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Abstract

STR O N G L Y  IN T E R A C T IN G  O N E -D IM E N SIO N A L  
BO SE  C O N D EN SA TES

K am il Erkan
M. S. in Physics 

Supervisor: Prof. Bilal Tanatar 
September 2000

Recent observation of Bose-Einstein condensation in dilute alkali gzises led 
to a great interest in this area both experimentally and theoretically. The most 
important characteristics of a Bose-Einstein condensate is that it consists of a 
large number of atoms occupying a single quantum state. This kind of a feature 
seen in photons led to the production of widely-used photon lasers. Coherent 
state of atoms may lead to the production of atom lasers in near future.

The well-known Bogoliubov model to explain the nature of Bose-Einstein 
condensates of trapped dilute gases is valid when the interaction between particles 
is weak. However, as the number of atoms is increased, the interaction effects 
lead to a significant contribution in the system. Several attempts were made to 
improve the Bogoliubov model and to explain strongly interacting systems but 
these treatments are accurate up to a finite strength of the coupling .

One-dimensional Bose systems is important because exact solution of the 
homogenous problem exists. Also it is a good testing ground to study interaction 
effects since only two-body interactions play role in these systems. Furthermore,
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experimental realization of one-dimensional systems are attracting a great deal 
of interest into the present problem.

We investigate a somewhat different method to study the properties of 
strongly coupled Bose condensates in one-dimensional space. It uses the so- 
called Kohn-Sham theory to solve the problem by considering the exact solution 
of the homogenous one-dimensional Bose gas. The new approach reveals tha t 
interactions are expressed by a ■0  ̂term in the strongly coupled regime in contrast 
to a 0^ term in weak coupling regime. The model is applied to several types of 
trap potentials by performing a numerical minimization. We also improve the 
model for the case of a finite temperature. We observe that the system has 
a non-zero critical temperature which suggests a real phase transition in one
dimensional space. In the last part, we work on the stability of a two-component 
condensate in a harmonic trap potential. We find that for a wide range of system 
parameters either a coexisting or a phase-segregated mixture can be obtained.

Keywords:
Bose-Einstein condensation, Gross-Pitaevskii equation, mean- 
field theory, Kohn-Sham equation, Thomas-Fermi approxima
tion, two-gas model, one-dimensional Bose gas, Bose gas, two- 
component, strong interaction
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ö zet

k u v v e t l i  e t k i l e ş i m l i  t e k  b o y u t l u  b o s e

Y O Ğ U N LU K LA R I

K am il Erkan 
Fizik Yüksek Lisans 

Tez Yöneticisi: Prof. Bilal Tanatar 
Eylül 2000

Bose-Einstein yoğunlaşmasının, yakın geçmişte alkali gazlarda gözlenmesi bu 
konuya deneysel ve teorik alanda büyük bir ilginin uyanmasına sebep olmuştur. 
Bose-Einstein yoğunluğunun en önemli özelliği, tek bir kuvantum durumunda 
olan çok sayıda atomdan oluşmuş olmasıdır. Fotonlarda böyle bir özelliğin 
görülmesi, günümüzde birçok alanda kullanılan foton lazerlerinin üretilmesini 
beraberinde getirmiştir. Benzer bir durumun atomlarda gözlenmesi, gelecekte 
atom lazerlerinin üretilmesini beraberinde getirebilir.

Seyreltik atomlardan oluşan Bose-Einstein yoğunluğunun açıklanmasında 
sıkça kullanılan Bogoliubov modeli, atomlar arasında zayıf etkileşim olduğunda 
doğru sonuçlar vermektedir. Fakat, sistemdeki atom sayısı arttığında atomlar 
arası etkileşimin de önemi artmaktadır. Kuvvetli etkileşimli sistemleri açıklamak 
amacıyla Bogoliubov modeli daha da geliştirilmiştir. Fakat bu uygulamalar ancak 
belli bir etkileşim seviyesine kadar iyi sonuçlar vermektedir.

Tek boyutlu Bose sistemleri, homojen problemin tam sonucu olmasından 
dolayı önemlidir. Bunun yanında bir boyutlu sistemler, atomlar arası etkileşimleri 
incelemek için uygun bir zemindir. Çünkü sistemde sadece iki-madde etkileşimleri
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rol oynamaktadır. Bunun ötesinde, tek boyutlu sistemlerin deneysel olarak 
oluşturulabilmesi birçok bilim adamının bu konuya ilgi duymasına sebep 
olmuştur.

Biz, yüksek etkileşimli tek boyutlu Bose sistemlerini incelemek amacıyla 
biraz farklı bir yöntem kullanıyoruz. Yeni yöntem, homojen ve tek-boyutlu 
Bose sistemlerinin kesin çözümünü kullanarak, Kohn-Sham teorisini probleme 
uygulamaktadır. Sistemin kuvantum durumunu 'tp ile ifade edersek, yeni model, 
yüksek etkileşimi '0® in bir fonksiyonu olarak tanımlamaktadır. Zayıf etkileşim 
durumunda ise bu bağıntı 0® şeklindedir. Yeni modeli, sıfır sıcaklığı sınırında, 
nümerik minimizasyon yoluyla, çeşitli sıkıştırma potansiyelleri üzerine uyguluy
oruz. Bunun yanında, modelimizi sıfırdan yüksek sıcaklıklar için geliştiriyoruz. 
Nümerik çüzüm yoluyla, sistemin sıfırdan yüksek değerde bir kritik sıcaklığa 
sahip olduğunu görüyoruz. Bu sonuç, bir boyutlu uzayda gerçek bir faz geçişinin 
olduğunu göstermektedir. Son olarak harmonik potansiyel altinda, iki bileşenli 
yoğunlukların kararlılığını inceliyoruz. Sistem parametrelerinin çok geniş bir 
aralığı için, üst-üste veya ayrık-fazlı karışımlar elde edilebileceğini görüyoruz.

Anahtar
sözcükler: Bose-Einstein Yoğunlaşması, Gross-Pitaevskii denklemi, 

ortalama-alan teorisi, Kohn-Sham denklemi, Thomas-Fermi 
yaklaşımı, iki-gaz modeli, tek-boyutlu Bose gazı, Bose gazı, 
iki-bileşenli, kuvvetli etkileşim
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Chapter 1

Introduction

Bose-Einstein condensation (ВЕС) has been an important area of low tempera
ture physics for many years because of its key-role in the fundamental phenomena 
such as superfluidity and superconductivity. The recent observation of ВЕС 
in dilute alkali gases attracted the interest of many physicists into the present 
problem.^

Evidence for ВЕС in superfluid helium emerged from the analysis of 
the momentum distribution of the atoms measured in neutron scattering 
experiments.^ In recent years, ВЕС has been also investigated in the gas of 
paraexitons in semiconductors.^ However, an unambiguous signature for ВЕС 
was difiicult to And in such systems. A milestone in the history of the ВЕС 
was the experiment performed by Cornell and collaborators at JILA group of the 
University of Colorado.“̂ Vapors of rubidium were confined in magnetic harmonic 
traps and cooled down to temperatures of the order of nanokelvin. Such low 
temperatures were achieved by slowing down each atom using laser light.® In the 
same years, first evidence of ВЕС in Li were shown by Bradley et al.  ̂ and in Na 
were shown by Davis et al.7 Recently, more than 20 groups in the world reported 
their achievements of ВЕС in alkali atoms.®

The first evidence for the condensation emerged from time-of-flight measure
ments. The atoms were left to expand by switching off the confining trap and 
then imaged by optical methods. A sharp peak in the velocity distribution was

1



Chapter 1. Introduction

Figure 1.1: Velocity distribution of the particles after release. A large population 
of particles near the zero velocity region is the evidence of Bose-Einstein 
condensation.

then observed below a certain temperature, providing a clear signature for ВЕС 
(Fig. 1.1). More reliable evidence was seen in anisotropic trap potentials. The 
occurrence of anisotropy in the momentum distributions has been interpreted as 
an important signature of ВЕС. Because of this, if the particles, instead of being in 
the ground state, were thermally distributed among many eigenstates at higher 
energy, their distribution function would be isotropic in the momentum space 
according to the equipartition principle. In Fig. 1.2, momentum distribution of a 
condensate in a cylindrically symmetric trap is seen. Difference in the horizontal 
and vertical direction is a clear evidence of ВЕС. That is why cylindrically 
symmetrical type potentials are chosen in most of ВЕС experiments.

The most striking feature of ВЕС is that wave-like behavior of matter 
predicted by quantum mechanics is exhibited on a macroscopic scale due to 
the condensation of, typically, millions of identical atoms into the same state. 
This is counter-intuitive to our daily experience of the world, where objects 
are distinguishable and behave like particles that follows classical trajectories 
described by Newton’s law of motion. In ВЕС experiments, this classical 
description of the system is initially valid when the atomic sample is loaded
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Figure 1.2: Top view of the velocity distribution in a cylindrically symmetric 
system. Egg-shaped distributions are another manifestation of the condensation.

into a vacuum cell and laser cooling begins, followed by evaporative cooling in 
a second stage of the experiment. As the temperature of the gas approaches 
some critical value Tc (~ 10“^K) the wavelike nature of the particles become 
important to consider. As the gas is cooled down and wave nature of the particles 
become distinguishable. Each wave-packet has a characteristic wavelength A =  
{2Tr^/m kBTy^'^ called the thermal de Broglie wavelength, where m  is the mass 
of the atom and T is the temperature. As the temperature is lowered close to 
Tc, the de Broglie wavelength becomes comparable to the mean-free-path and 
wave-packets begin to overlap. At this point it becomes impossible to distinguish
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one particle from another. Due to this indistinguishability, the particles become 
correlated in a particular way, depending on whether they are bosons or fermions. 
For bosons, this correlation causes all of the particles “condense” into a single 
wave-packet with the longest wavelength permitted by the size of the trap. Since 
photons are bosons, they too exhibit this phase transition, which takes the form 
of the well-known laser, which produces a phase-coherent beam of light. One 
obvious application of the ВЕС, then, would be to produce a phase-coherent 
beam of atoms namely atom laser.®

Alkali atoms are well suited to laser-based methods because their optical 
transitions can be excited by available lasers and because they have a favorable 
internal energy-level structure for cooling to very low temperatures. Once they 
trapped, their temperature can be lowered further by evaporative cooling. It 
is worth noticing that in these conditions, the equilibrium configuration of the 
system would be the solid phase. Thus, in order to observe ВЕС, one has to 
preserve the system in a metastable gas phase for a sufficiently long time. This 
is possible because three body collisions are rare events in dilute and cold gases, 
whose lifetime is hence long enough to carry out experiments. The measure 
of diluteness is the ratio a /r  of the characteristic range of interaction potential, 
expressed by scattering length a to the mean interparticle separation r. For ratios 
near 1, as in the case of liquid ^He, the simple picture of ВЕС fails completely. 
For alkali gases of current interest a/r  is about 0.01. However, at T  =  0, alkali 
atoms show 99% condensation whereas for liquid helium the fraction is only on 
the order of 10%.

Despite the very dilute nature of these gases, the combination of ВЕС and 
harmonic trapping greatly enhances the effects of the atom-atom interactions 
on important measurable quantities. For instance, the central density of the 
interacting gas at very low temperature can be easily one or two orders of 
magnitude smaller than the density predicted for an ideal gas in the same trap. 
Despite the inhomogeneity of these systems, which makes the solution of the many 
body problem nontrivial, the dilute nature of the gas allows one to describe the 
effects of the interaction in a rather fundamental way. More clearly, interaction
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between particles in a dilute atomic gas have a weak effect, so that the wave-like 
condensate dominate the system and collisions can be treated perturbatively. In 
this case, the interaction of all particles on a single particle can be summed to give 
an averaged effect, as a first approximation. This approach is called mean field 
theory and with suitable approximations leads to the Gross-Pitaevskii equation 
which describes the time-evolution of the condensate. The effect of interactions 
gives rise to a density dependent effective potential that makes the dynamics of 
the condensate nonlinear. Gross-Pitaevskii theory is reliable to explain various 
properties of a condensate such as density distribution, collective excitations, 
finite temperature excitations and stability of two-component condensates. We 
give a more detailed explanation of the theory in chapter 2 starting with the 
fundamental expressions of the many-body problem. The discussion in chapter 
2 includes effects of non-condensed particles and Gross-Pitaevskii equation is 
presented as the zero temperature limit of the model. The aim of such study 
is to give a clear insight of the picture to the reader from a mathematical point 
of view. As a second motivation, the analytical tools used in this part are also 
applied to the problem which discussed in chapter 3. In the last part of chapter 
2, we give a brief discussion on stability of two-component condensates using 
Gross-Pitaveskii formalism.

Since the system is dilute one can apply ideal gas approximation by neglecting 
atom-atom interactions. In this limit, almost all predictions are analytical and 
relatively simple since solution of the many-body problem is not more difficult 
than the one-particle case. The ground state wave function of N  particles for 
a homogenous gas is a plane wave having energy e =  p^/2m. Distribution of 
particles in the phase space is calculated by taking the Fourier transform of the 
ground state wave function which yields a Dirac delta solution. Thermal particles 
obey Bose-Einstein distribution.

However, applying an external potential changes the picture drastically. By 
using magnetic traps, a confinement potential can be safely approximated with 
a quadratic form

(1.1)



Chapter 1. Introduction

where uJx, cOy and are trapping frequencies in corresponding directions. For 
simplicity we can take lJx = cOy = = uj which enables us to treat the problem
in a spherically symmetric space. Then the many-body hamiltonian is the sum 
of each single particle hamiltonian whose eigenvalues have the form

hoj (1.2)

where n is an integer. The ground state is found by taking n =  0 which is given

by

, , fm u}\ I /  mcj 2\
= ( x J  ""’’ ( - a · ’· ) (1.3)

Eq.(1.3) describes the distribution of particles in the condensed phase which have 
a Gaussian profile. The size of the cloud is found by calculating the half-width 
of the Gaussian which is

•̂ho — m u ' (1.4)

This quantity is important since it gives a characteristic length scale for treating 
the problem. In available experiments it is typically in the order of Uho — 1pm. 
All length scales involved in the condensation phenomenon are some multiples of 
this quantity.

Phase space distribution is obtained by taking the Fourier transform of 
Eq.(1.3) which again yields again a Gaussian. The appearance of the condensate 
as a narrow peak in both coordinate and phase space is the most peculiar feature 
of trapped Bose gases having important consequences. This is different from the 
case of uniform gas where the particles condense into a zero momentum state but 
any condensation in coordinate space can not be revealed.

At temperature T  the total number of particles in the grand canonical 

ensemble

p{^)N  = No+ r
Jo QkgT _  I

(1.5)

where Âo is the number of particles in the ground state and ks is the Boltzman 
constant. p{e) can be evaluated by calculating the differential volume in the
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spherically symmetric phase space which gives p(e) =  At this point
we should clarify that a discrete distribution of energy e can be approximated 
to a continuous distribution. It is valid as long as number of trapped atoms 
is large and k sT  hu>. In available experiments with N  ranging from a few 
thousand to several millions'* the transition temperature is 20-200 times larger 
than hu. This means that our semi-classical approximation is reliable as far as 
experimental conditions are concerned. By proper substitutions the integral in 
Eq.(1.5) is taken to give

N - N o = m
'k e T  

hu) . (1.6)

where ^(n) is the Riemann-zeta function. By imposing No —>■ 0 to Eq.(1.5) one 
can find the critical temperature at which condensation starts as

Tc = h(jj
' N  ' (1.7)

in ideal gas limit. Inserting above equation into Eq.(1.6) we have a simpler form
as

^  - 1 / T
No

(1.8)

These results can be compared with the well-known theory of uniform Bose geis. °̂ 
In this case the density of states is given by p{e) = to give the
equation for the critical temperature as

jT . 3 /2

No \ToJ
(1.9)

The non-interacting harmonic oscillator model has guided experimentalists to 
proper value of critical temperature. In fact measured transition temperatures 
were found to be very close to ideal values.

The importance of trapping is seen clearly when the dimensionality is being 
considered. Density of states of a uniform Bose gas is p{e) a  s'*“ *. One can easily 
verify that the integral Eq.(1.5) gives a convergent solution only if d =  3 which
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predicts that ВЕС does not occur in one and two dimensional space. However 
for trapped gases density of states p{e) oc s ^ .  This reveals that a trapping 
potential enables realization of ВЕС in two dimensional system. ВЕС in one
dimensional space seem to be prohibited even with the addition of trapping 
potential. However it should be remembered that discrete level structure is 
approximated by a continuous density of states in Eq.(1.5) under the assumption 
that the level spacing is negligible compared to the temperature as mentioned 
before. Secondly above calculations is performed in the thermodynamic limit 
i.e. iV —> oo. However recent ВЕС experiments on atomic gases were performed 
with number of particles N  ranging from a few thousand to a few million which 
is quite small compared to the thermodynamic limit. It was shown that^'^in 
finite systems lowering the dimension increases critical temperature as Tc «  
and is therefore favorable for ВЕС. This is in contrast to the standard result 
obtained in the thermodynamic limit which states that ВЕС is not possible 
in one-dimensional systems as explained before.^ Van Druten and Ketterle^® 
investigated properties of one-dimensional ideal bosons in a finite sized system. 
They found that ВЕС occurs if the external parameters are properly chosen. 
They called it the “two-step condensation ” because the condensation in the 
third direction occurs after some critical point where the condensation in other 
directions formed before that. So, this kind of transition could be expressed as a 
quasi-one-dimensional transition rather than a real phase-transition. It is finally 
worth pointing that the above discussion concerns the behavior of the ideal Bose 
gas. Effects of two-body interactions are expected to modify the nature of the 
phase transition in a deep way in reduced dimensionality.

In above discussion the possibility of ВЕС in harmonic trap potentials was 
considered because of its conventional use and simplicity in mathematics. It is 
equally experimentally practical to use a power-law type potential like V(x) cc 

for 77 < 2 besides its complexity in mathematics compared to harmonic type 
potentials. Bagnato and Kleppner showed that ВЕС of one-dimensional ideal 
atoms does occur in a power-law type potentials even in the thermodynamic 
limit. They showed that the system has a finite Tc between 77 =  0 and 77 =  2.
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Recently the realization of ВЕС under power-law potentials for interacting one
dimensional bosons in finite sized systems was also shown by using Monte Carlo 
simulation method^^ and the semiclassical two-gas model.

It was argued that the standard Bogoliubov model (yielding Gross-Pitaevskii 
equation), which assumes that the interactions between bosons are weak, does 
not give a satisfactory explanation when the number of atoms in the condensate 
is large In this thesis, we aim to study on one-dimensional trapped bosons 
in strongly interacting regime. For this purpose we use a model explored by 
Tanatar.^® The one-dimensional system is a good testing ground to investigate 
effects of interactions in a Bose-Einstein condensate. Firstly, we should point out 
that the exact solution of one-dimensional interacting bosons ex is t.S eco n d ly , 
because of its physical nature, we only deal with two-body collisions. As a Izist 
point, we should remark that experimental realization of quasi one-dimensional 
systems is performed by using highly asymmetrical potentials. Therefore the 
theory can be tested directly by experiments.^® Detailed explanation of the new 
theory and some applications of it are given in chapter 3. The applications include 
solving the eigenvalue equation describing the current problem in various trap 
potentials, determining critical temperature and, lastly, stability of the system 
when there are two different types of atoms forming a two-component structure.^®



Chapter 2

Gross-Pitaevskii Theory

The basic idea for a mean field description of a dilute Bose gas was formulated 
by Bogoliubov.^° Gross^^and Pitaevskii^^developed the theory of the condensate 
of weakly interacting Bose gas afterwards. Although the theories are not realistic 
to study the physical properties of '^He at low temperature, they are well suited 
for condensed low density alkali gas.

The problem of N  interacting bosons is very complicated in general. The 
dynamical evolution of the systems is described by an AT-body wave function. In 
the case of a weakly interacting Bose gas, however, strong simplifications occur 
in the description of the system under the occurrence of the BEG phenomenon. 
In the formalism of second quantization a system of N  interacting bosons in the 
grand canonical ensemble interacting through a potential Uint and confined by 
an external potential Uext, is described by the following Hamiltonian:

H " L · ! I
+ ^ J  li*(r)V'*(r')&;„,{r,r')li(r)Vi(r')dr'iir (2.1)

where ^  are field operators satisfying Bose commutation relations.

[^/(r), =  5ij{T -  t'), [^(r), '0 (r')] =  0, [^^(r), ■0 ^(r')] =  0. (2.2)

10
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The dynamics follows from the Heisenberg equation of motion for the time 
dependent operators ^^(r, i) and •0 (r, i)

ih дф{г, t) 
dt +  Uextir) -  P + J t)Uint^{r', t)dr' ф{т,г). (2.3)

We assume that it is sufficient to describe interactions between atoms by a two- 
body potential Uint =  U{\ri — гу|) although in reality interactions between two 
particles are modified by the presence of a third particle due to their finite extent, 
such effect lead to three body combinations, for example. However, in the dilute 
limit, these effects should be negligible.Because we are only interested in very 
low temperatures at which ВЕС occurs, the kinetic energy in a collision is very 
low, so that we need keep only the s-wave term in a partial wave expansion. 
Furthermore, a generic form for the interatomic potential can be used that is 
independent of the details of the two body potential, but depends only on the 
s-wave scattering length represented by a. A pseudo-potential, given by

CAnt(|r -  r'l) = g6^(r -  r') (2.4)

can be used, which reproduces the correct s-wave scattering length for a two-body 
collision.^® The parameter g is given as

m
(2.5)

which is derived from the solution of the homogenous problem. Hence for an 
interaction denoted by Eq.(2.4) the Heisenberg equation of motion is converted 

into

t) =  ^ (r , t) + g'tp^{r, i)^ (r, i)^ (r, t). (2.6)

To simplify the calculations we consider a large box of volume V  with periodic 
boundary conditions. If the creation and annihilation operators aj and oq for the
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zero momentum mode are applied to the ground state they satisfy the following
equations:.25

ao|V>o(JV)> =  _  1)>

(2.7)

where 'ipo{N) =  |AT, 0 ,0 ,...)  is the ground state of N  bosons.
Operators uq and aj for a Bose system multiply the ground state by and 

(N  + 1)^/^ which is evidently large. Since it is generally preferable to deal with 
intensive variables, we shall introduce the operators

(2.8)

with the following properties:

K6,d i  =  V -1

iol*(Af)> =  ( ^ ) ‘ ’̂ |0 o ( iV - l ) )

fJWo(JV)) =  ( ^ ) ‘^^V’o(W +  l)).

(2.9)

(2.10)

(2.11)

Although (fo and ^ach multiply |'0o) by a finite factor, their commutator 
vanishes in the thermodynamic limit (N oo, V  —> oo, N /V  —> const.). 
Hence it is permissible to treat the operators and (fo as c-numbers (Bogoliubov 
approximation), as long as we consider only states where a finite fraction of the 
particles occupies the A: =  0 mode. This approximate procedure clearly neglects 
fiuctuations in the occupation number of the condensate. In an interacting 
system, the interparticle potential energy reduces the occupation of the preferred 
mode, so that the ground state expectation value

(’/’olfkolV'o) = ^oV ■ = no (2.12)
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is less than the total density n =  N /V . Nevertheless, the Bogoliubov replacement 
at 0̂ and by c-numbers correctly describes the interacting ground state in the 
thermodynamic limit whenever the number of particles in the zero momentum 
state remains a finite function of N. We are therefore led to write the boson field 
operator as

>/’(r) = 6  + y,'y =  io + ^(r) = nl/‘‘ + ii(l) (2.13)

where the prime means to omit the term A; =  0. The operator 'tp{r) ha^ no 
zero-momentum components, and is a constant c-number. Therefore, 
represents the non-condensed states.

Conservation of momentum implies that

(V'ol̂ lV’o) = 0. (2.14)

Then the quantity could be interpreted as the ground state expectation value 
of the field operator

(V’ol<̂ (r)|)/>o) = io· (2.15)

After this point, it is convenient to replace by a suitable function of r 
representing the ground state. Then we have

i)> =  io =  *(>■) (2.16)

where a short-hand notation is used for the expectation value of Consequently 
time dependent Bose field operator takes the form

^(r,i) =  0(r) + 1̂ (r,i). (2.17)
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Using the explicit form of the Bose field operator given in Eq.(2.17), the 
interaction term in Eq.(2.6) can be rewritten in the following form:

=  ($ * (r)+  ^ ^ ( r ,i ) ) ($ ( r )+ ^ ( r , i ) ) ($ ( r )+  0 (r ,i))

=  |$ (r)p $ (r) +  2|$ (r)p ^ (r , t) + $^(r)'0^(r, t) 

+$*(r)'0 (r, i)^ (r, t) +  2$(r)^^(r, i)^(r, i) 

4 -0 t(r ,i)^ (r ,i)^ (r ,i) . (2.18)
■ --r. · -

We treat the last term in Eq{2.18) in the selfrconsistent mean-field approximation, 
namely

t)xp{r, t) ~  2(^t(r)i^(r))^(r, i) + (^(r)i^(r))i^^(r, t) (2.19)

and then Eq.(2.18) reduces to

V i^(r,i)^(r,i)^(r,i) =  |$ (r)|^$(r)

-I- 2 [|$(r)|2 -I- (^^(r)^(r))] i>{r, t) + [$2(r) + (^(r)^(r)] ^^(r, t)

-h 2$(r)'0^ (r,i)^ (r,i)-t-$*(r) '0 (r, i)^ (r ,i) . (2.20)

The time independent, spatially-inhomogeneous Bose order parameter $ (r) is 
given directly by taking an average over Eq(2.6)

2m
+ Uextir) -  p  $(r) -I- ^(?^^(r)^(r)^(r)) =  0. (2.21)

On the other hand, after taking the anomalous average of Eq.(2.20), the linear 
terms in ■0 (r, t) vanish since ("0 (r, t)) = (^(r)) = 0  and we are left with

(■0^(r)^(r)'i^(r)) =  |$ (r)p $ (r)  -t- 2$(r)(^^(r)T^(r)) -l· $*(r)(-0 (r)^(r)). (2.22)

Using this in Eq(2.21), we get

( - ^  +  Uext(r) -  <^(r) +  ^[^^(r) +  2(^^^)]$(r) -I- ^(^^)$*(r) =  0. (2.23)

When we introduce the local densities

n o ( r )  =  I$ (г )| ^  n i ( r )  ~  ( i^ ^ (r )i^ (r )) ,  ri2( r )  =  ( ^ ( r ) i ^ ( r ) ) ,  ( 2.24)
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Eq.(2.23) could be rewritten as

( - ^  +  Uext{r) -  p j  $ (r) +  ^[no(r) +  2ni(r)]$(r) +  c/n2(r)$*(r) =  0. (2.25)

Here the terms ni and ri2 comes from the finite temperature excitations whereas 
no represents the density of the condensed atoms. Eq.(2.24) involving the 
excitations in a cold Bose gas has not a simple solution although it is evaluated 
in the dilute limit.

At temperatures T «  0, most of the atoms are in the condensate (A^o~-^)· If 
we set both ni(r) and n2(r) to zero Eq.(2.25) reduces to the well known Gross- 
Pitaevskii equation:^’̂’̂ ^

2m +  £̂ ea:t(r) ~ P + ^|Ф(г)1 Ф(г) =  0 (2.26)

which means that $(r) =  no(r) is described by a closed non-linear Schrödinger 
equation.

Another way of approximating Eq.(2.25) would be to keep ni(r) finite but 
neglect the anomalous density n2(r) which is a small quantity compared to no(r) 
and ni(r).'*® In this case we get

(
2m

+  -  /^^-í?[|Φ(г)f -t-2ni(r)] Ф(г) =  0. (2.27)

This approximation was used by Popov^^ in a homogenous gas to discuss the 
finite temperature region closed to BEG transition. This kind of approximation 
seems to give a reasonable first approximation for the excitation spectrum in 
the dilute Bose gas at all temperatures in addition to simplicity in the solution. 
Because of these reasons, we follow the Popov approximation to investigate finite 
temperature properties of one-dimensional bosons.

2.1 Thomas-Fermi Limit
At this point, it could be useful to consider the limiting case of many atoms 
in the condensate {N —>■ oo) which is known as Thomas-Fermi limit. In this
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case the kinetic energy term in Eq.(2.26) becomes negligible. Upon setting the 
kinetic energy term to zero and solving for the ground state solution in the 
Thomas-Fermi limit becomes

^TF(r) =  \ ------—  9{ptf  -  Uext) (2.28)

It could be useful to consider the specific case of the condensate in an isotropic 
harmonic potential C/eit(r) =  \rruij\T^ where ojq represents the trap frequency. 
The Thomas-Fermi radius is determined by solving the expression Uext{r) = ¡j-t f , 
which gives

Tt f  =
I2ijL'X'p 
mujQ ’

The chemical potential is determined for the normalization condition

r̂ TF
47t / =  N.Jo

(2.29)

(2.30)

After evaluating the integral, we find that the chemical potential in the Thomas- 
Fermi limit is

hcj /15Noa\ 5 (2.31)

where oj_ =  y ~ -  Thomas-Fermi approximation has a very wide use since it gives 
an analytical solution of the problem. Also, it allows us to check the consistency 
of results found by numerical calculations.

More generally the trapping potential is not isotropic but has the form

U,,t = ^ m { u y  + u j y  + u jy ) . (2.32)

The system then could be modeled as a system of one-dimensional bosons in 
each d irec tion .A no ther possibility is to have u>x =u)y = uj±_ and =  u}\\ which 
produce a cylindrically symmetric cigar shaped structure. The symmetry axis is 
then the z-axis. if we define

Wx (2.33)
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which is generally called as asymmetry parameter, the external potential can be 
written as

y „ i  =  5 m a,i(x2 +  y  ̂+  A V ). (2.34)

After performing the substitutions Xz -> z' and r ' —)■ 4- +  z'"̂  we obtain
again an isotropic form

1
i/eit =  -m oji r‘2 „/2 (2.35)

with the addition of the asymmetry parameter A.

2.2 Two-Component Structures
By combining different kind of alkali atoms (Rb-Na, Li-Rb, Na-Li etc.) or 
different hyperfine states of the same atom (|1,1) and |2,2) spin states of Rb) 
into the same space one can have coexisting or overlapping c o n d e n s a t e s . T w o  
species are distinguished by their mass or scattering lengths. Total energy of the 
system is given by

K  = E{tl)i,ip2) -  P\Nx -  P2N2

= E
i=l,2 ' 2m, ■IVV’i r  +  t/ilV’il dr

+  f  [9i i \ '^ i ?  +  -  p x N i  -  P 2 N 2
i,J=l,2

=  jF{'tpi,'ip2,r)dr

(2.36)

(2.37)

(2.38)

where xpi{i =  1, 2) represent wave functions of the first and second components 
and Ui{i = 1,2) are the external potentials of each component which, in principle, 
could differ from each other. The parameters ga (i = 1 ,2) represent mean field 
interactions in same component whereas gij ( i ,j  = 1, 2) represent the mean 
field interaction between different components. The Lagrange multipliers, the 
chemical potentials pi {i = 1, 2), are constrained by the normalization condition 
/ dr|i/’i(r)p  = Ni (i = 1, 2) with Ni being the number of particles of the zth
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condensate. To understand the ground state properties of the system one can 
apply a functional minimization {5K = 0) to Eq.(2.38) which means that the 

satisfy the Euler-Lagrange equation·^^

dF
dt dipi_

dF
d-ipi =  0 (2.39)

for each component. This leads to the coupled Gross-Pitaevskii Equations for ■0i 
and ^2 as

and

2mi

2mo

+  Ui{r) + + gi2\'tp2\

+ U2{r) +  ^22|V’2p + ^2l|V’l|^

^1 =  fj'li’l

'lp2 =  P2fp2·

(2.40)

(2.41)

It can be inferred from above equations that existence of a second component 
is seen as an additional effective potential for the first component. To have a 
stable minimum point in the two dimensional F('0i,V’2>r) space one must have 
further [d'^F/d'^X){d‘̂ Fld'\¡)^ — {d'^F/d'^\d'i¡)2)'^ > 0. In the absence of an external 
potential and neglecting the kinetic energy terms in Eq.(2.40) and Eq.(2.41) we 
conclude that

(2.42)9\2  >  \ / ^ 115'22 ·

Stability of a mixture of two condensates under an external potential can 
be analyzed by considering a square well potential with periodic boundary 
conditions. This kind of approach gives us a lot of physical insight about the 
problem.

With this kind of simplified potential coupled nonlinear Gross-Pitaevskii 
equation have an obvious homogeneous solution: Condensate densities can be 
defined as pi — ^  where V is the volume of the square well potential
trap. By neglecting the kinetic energy terms the chemical potentials are extracted 

from Eq.(2.40) and Eq(2.41) to give px =  g^^px + gx2P2 and p2 = 922P2 +  912P1· 
The corresponding total energy of the system is

^ho =  ñ 1̂1 V
N'̂

+  922~^ +  2̂ 12İVı̂ 2■
V

(2.43)



Chapter 2. GP Theory 19

Eq.(2.43) reveals that for a small gi2 total energy is increased with increasing 
interaction parameters and §22, implying that the excitations are stable. 
Therefore in this parameter regime the homogeneous state is the ground state 
and condensates sit on top of each other.

Let us consider the case of the inhomogeneous state in which the two 
condensates mutually exclude each other. For the moment we ignore the thickness 
of the interface and the corresponding extra energy. In this way we again 
temporarily ignore the derivative terms in Eq.(2.40) and Eq.(2.41) in determining 
the effective condensate wave functions.^^ Let Vi be the volume inside the trap 
occupied by the condensate i. We have jV’tP =  Pio = Щ/Ѵі and the total energy

, jy2
of the inhomogeneous state Ein =  5 · Minimizing Ei„ with respect to
Vi or V2 under the constraint I4 +  V2 =  F, we obtain the spatial volume occupied 
by each condensate:

1 , ,  , ,  1
1 4. /ШІИг 

^  V su
Vo =

N1

The corresponding condensate densities are

Pio 1 4 .
. i g n N j v ’

1 +

P20 —

¡яи N\ 
922 N2

V (2.44)

P22
PlO (2.45)

and the chemical potentials Pi =  gu p,o· The total energy for this inhomogeneous 
state is

-  2 ~V
N¡

9\l~Tr' 922-^ +  2л/ ^ і і <722
N^N2

V

The energy difference from the homogeneous state is then

NxN2AE = Ein — Eho = — (512 — \/911922) V

(2.46)

(2.47)

This equation reveals that for a large enough mutual repulsive interaction, that 
is, if

9l 2 >  y / 9l \922 ) (2.48)

then the inhomogeneous state has a lower total energy. Hence, for sufficiently 
large values of g\2 phase separated condensates are favorable in a trapped system.



Chapter 3

Strong Coupling in 
One-dimension

Although absence of any condensation of ideaP°and interacting^^ uniform bosons 
in the thermodynamic limit in the one-dimensional space, finite size effects and an 
external trapping potential may modify the p i c t u r e . I t  was shown by making 
an exact diagonalization of the many-body hamiltonian of «  40 particles, a 
real phase transition occurs in trapped finite sized systems.^® Also it was shown 
that Gross-Pitaevskii theory gives accurate results in these systems in the low 
density limit.

Exact solution of interacting homogenous one-dimensional bosons exists. 
This allows one to compare the accuracy of other approximate theories. It 
was shown by numerical analysis of the exact solution, Gross-Pitaeskii Theory 
(Bogoliubov model) gives correct results only when the density is small (weak 
interaction l i m i t ) . B o g o l i u b o v  model is seen to be valid up to 7 ~  2 where 
J  = p- Here g is the coupling strength as defined before and p is the density 
of atoms. It was shown that the first order perturbation theory (Bogoliubov 
model) have a large discrepancies from the second order perturbation theory 
when the interaction is strong.^® Recently, Bogoliubov model was improved with 
the addition of local-field corrections by using®  ̂ the method so called STLS 
approach®® and using®® so called VS scheme.^® However, these models give reliable

20
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results up to 7 < 10. In fact, both STLS and VS approaches are based on the 
perturbation theory so they are not expected to yield reliable results in the strong 
coupling regime.

A theory to investigate the properties of strongly interacting (7 —> 00) bosons 
could be derived^®by using exact solution of homogenous bosons within the 
spirit of Kohn-Sham theory.^^ In the following section we briefly mention about 
the original Kohn-Sham theory. Afterwards, the equations governing strongly 
interacting bosons are derived using Kohn-Sham approach.

3.1 Kohn-Sham Theory
The functional representing the total energy of an interacting inhomogeneous 
Bose gas in one-dimension could be written as

E  = N j d x \  +  V e M \' (3.1)

where Eint is the term coming from interaction between bosons and p{x) =  
N\'ip{x)\'^ represents the density of atoms at point x. For an appropriate value 
of ijj[x) the total energy is minimum. For an arbitrary system one can give no 
simple solution for Eint{p)· However if p{x) is sufficiently slowly varying, because 
of diluteness, one can show^^ that

Em {p) =  /  pt{p)dx (3.2)

where e{p) represents the interparticle energy per atom of a uniform Bose gas 
with density p{x). We can regard e{p) as known from theories of the homogenous 
Bose gas.^^’̂®

After the approximation of the interaction term, Eq.(3.1) takes the form.

E = Jd x  ^^/)(a:)v7/’W + Vat('x)p{x) + ({p(x))p(x) (3.3)

The equation representing ground state is obtained by minimizing the energy 
functional Eq.(3.3) with respect to p. If we perform a functional minimization,
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to Eq.(3.3) to satisfy the Euler-Lagrange e q u a t i o n , a r e  left with the 
following eigenvalue equation:

cP
2m dx'^ +  Vext + d{^jp)p)

dp
Ф Z= (3.4)

where the chemical potential p comes into the equation as a Lagrange multiplier 
in the Euler-Lagrange equation. Eq.(3.4) is in the form of Kohn — Sham  
equation which were firstly applied to interacting electron gas.'^’̂ However, it 
can be conveniently used for interacting bosons. By using the Kohn-Sham 
approach one can also develop an alternative theory to Gross-Pitaevskii theory 
for an inhomogeneous Bose gas. Gross-Pitaevskii theory gives closer results to 
Kohn-Sham theory as long as higher order terms in the perturbation expansion is 
concerned.^'* This means that Kohn-Sham theory gives more appropriate results 
than the well-known Gross-Pitaevskii theory in dilute systems.

3.2 Strongly Coupled Bosons
It. was shown that BEG is not realized in interacting homogenous one and two 
dimensional systems in the thermodynamic l i m i t . T h e  problem of homogenous 
interacting one-dimensional bosons with a repulsive delta-function potential 
(Bogoliubov model) were calculated exactly. Exact solution by Lieb and Liniger 
includes collection of three coupled equations so numerical analysis is inescapable 
for such exact solution. However when the interaction between particles are large, 
certain approximation can be used to find an analytical expression. As a result, 
the ground state energy of homogenous system of interactions bosons in the large 
g limit is

(3.5)

If the interaction is very strong i.e. 7 —>· oo, Eq.(3.5) becomes

E(p)!N = t(p) =
2m 3

(3.6)
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Then this exact result can be used to evaluate the system described by Eq.(3.4). 
For strongly interacting bosons Eq.(3.4) takes the form

Cp rr r \ ^ ^ 2  2/ N ip{x) = pip(x)

or, replacing by we obtain

hP cP
ip{x) =  ptp{x).

(3.7)

(3.8)

It is numerically and visually better to make all parameters dimensionless. The 
best and most conventional way is to use harmonic oscillator units which are 
deduced from the half-width of the Gaussian coming from the solutions of 
non-interacting bosons. It is calculated to be aho =  y j Length scale x 
can be converted into dimensionless form by a; —>· UhoX· In this case radius 
of the condensate becomes some multiples of the harmonic oscillator length. 
Furthermore, we can convert energy terms E  and the wave function 'tp into 
dimensionless form by E  — )■ hu>E and ip — >■ respectively. Here
N  represents the total number of particles in the condensate. After these 
manipulations we are left with

1 Cp tP 2 ,4 Ip — pip. (3.9)

The interesting point about the last expression is that in very strong coupling 
regime non-linear Schrôdinger equation involves the fifth power of ip. Recently, 
Kolomeisky et al.^^ obtained the same ip̂  dependence using renormalization group 
analysis and the concept of equivalence between bosons and spinless fermions in 
strong coupling regime. As in the normal case it is tempting to apply Thomas- 
Fermi approximation which means neglecting the kinetic energy term in Eq.(3.9). 
Condensate density is then found to be

p{x) = t/’̂ (i) =  y  -  V„,{x)). (3,10)

The chemical potential is calculated from the normalization of the wave function

J\fpTF{fJ', x)\^dx -  1. (3.11)
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The external potential could be taken very generally as

Vext = ra:'' (3.12)

in dimensionless form. Here rj controls the strength of the confinement. For the 
special case of a harmonic trap potential, rj = 2.

We solved both Eq.(3.9) and Eq.(3.10) using numerical methods. The 
numerical solution to find the exact results (Eq.(3.9)) were performed by 
steepest — descent method}^ It consists of projecting onto the minimum of 
the total energy functional an initial trial state by propagating it in imaginary 
time. At this point it could be useful to say something about this method. The 
method has been improved for more complicated problems but for our case the 
explanation given below is sufficient.

A time-dependent wave function where t is fictitious time variable, is
evaluated at different time steps, starting from an arbitrary trial function and 
converging to the exact solution ip{x,oo) =  ф{х)· The time evolution can be 
formulated in terms of the equation

(3.13)

where S indicates the constrained functional derivative that preserve the 
normalization condition along the time evaluation. This equation defines a 
trajectory in the wave function space in which at each step one moves a little bit 
down the gradient —4 r /^ ·  The constrained functional derivative is obtained by 
adding the normalization condition to the functional derivative

5E /N
= Нф{х, t) (3.14)

S't/;{x, t)

where H  represents the hamiltonian. The end product is the minimization of 
energy, which corresponds to {d'll^/dt) =  0. As far aa a numerical solution is 
concerned, one chooses an arbitrary time step At and iterates the equation

ф[х, t + At) ~ ф{х, t) — АШ ф{х, t) (3.15)
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Figure 3.1: Ground State wave function of strongly coupled one-dimensional 
bosons in harmonic potential. Dashed lines represent the results of Thomas- 
Fermi approximation.

with normalizing tf} at each iteration. The time step controls the rate of 
convergence. The number of iterations in imaginary time depends on the degree 
of the convergence which is controlled by Ai. Since the internal energy is a local 
functional each iteration is very fast. For 1000 grid points of 'ip and for A t  =  10“ ,̂ 
functional minimization takes no more than 3-6 min. of CPU on a Pentium-Pro 
200 processor.

Comparison of TF approximation and exact solution for 77 =  2 is shown in 
Fig. (3.1). We see that as the number of particles increases, TF approximation 
gives more accurate results compared to the exact solution. Only in the 
boundary of the condensate kinetic energy term makes a significant contribution. 
Nevertheless, Thomas-Fermi approximation is still a reasonable approximation 
in our case. The radius of the condensate can be calculated^® by considering the
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equivalence of the interaction term y (^ )^  and potential energy term near 
the boundary. From this point of view, it is found to be i i  =  (ttN) 2 which is in 
agreement with the numerical solution shown in Fig. (3.1).

Above results clearly indicate condensation of the one-dimensional bosons in 
the very strong coupling regime. However, above consideration is valid in the 
limit of zero temperature. It would be more realistic to include the effect of 
temperature. For this purpose, a finite temperature formalism is developed in 
the following section.

3.3 Finite Temperature Formalism
The model which was developed in chapter 2 can also be applied in the present 
case. The starting point is again the Heisenberg equation of motion presented 
before but with a different hamiltonian:

Q

7T̂ -4
+  tW { x , t m x ,  t)· (3.16)

Let

'ip{x, t) — t)) + '¡¡>{x, t) =  $(a;) + ip{x, t) (3.17)

where 'ip(x,t) represents the finite temperature excitations as explained before. 
The interaction term in Eq.(3.16) can be treated using explicit representation of 

■0 as

=  ($* -f +  ^)($* -l- -f- ■0)($ -f· '0) (3.18)

which leads to 32 terms after the expansion. By taking the anomalous average 
of Eq.(3.16), terms linear in 0  and 0^ vanishes because (0) =  (0^) =  0. Also the 
cubic and fifth order terms in 0  can be converted into a linear form within the 
self-consistent mean field approximation^^ and they also give zero contribution. 

We then remain with
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(3.19)

Last term involves only off-diagonal terms which represent anomalous fluctuations 
and has a small contribution as explained before (Popov approximation). For the 
forth term one can write the following equality by the self-consistent mean field 
approximation as

~  (3.20)

Consequently Eq.(3.19) becomes

-b 6$|$|^(^^'0) -b 2('0^'^)('0^'0). (3.21)

A more rigorous discussion about the above treatment can be found in Ref. (25) 
and Ref. (49).

On the other hand time-independent equation of motion is obtained by taking 
the average of Eq.(3.16) which is

( ” ^ ¿ 2  +  ~  +  y  =  0·

Putting Eq.(3.21) into above equation we conclude that

(3.22)

37T^I^|V(a:) +  7rX (x) j  (3.23)

Eq.(3.23) includes second power of the term representing thermal particles 
whereas the corresponding equation (Eq.(2.26)) in the weak coupling case 
includes only the first power of it. Thermal particles can be treated as ideal 
bosons subject to an effective potential®“

Veff = -x ^  -b 7T |̂$|  ̂-b 37r^|$prii(a:) -b 7r^nl(x).
¿i

(3.24)



Chapter 3. Strong Coupling in ID 28

The term involving the effects of condensed particles only is multiplied by 2 since 
all condensed particles are distinguishable from non-condensed particles.®“ For a 
well defined chemical potential p, the thermal average of non-condensed particles 
can be written as an integration of Bose-distribution function over all momentum 
space as

1
Til (2;) =  j  dp

+  Veff -  P )/T  -  1

j>i 3 "
(3.25)

where we used dimensionless parameters as defined before. Since the total number 
of particles is conserved one can write

A/’= y  Jn i{x)dx . (3.26)

When kinetic energy term is neglected in Eq.(3.23), $(x) can be extracted using 
the formula for the roots of a quadratic polynomial and one remains with the 
following analytical expression:

.̂ 2/  ̂ -3TTni{x) +  yj9TT̂ n\{x) -  2(7r2n?(a:) -f- x^/2 -  p)
^  [x) =  ----------------- ----------------------------------------------- (3.27)

7T

for X < xq and ^(x) = 0 for x > xq. The turning point Xq is obtained from 

$^(a;o) =  0 which gives

p = TT^Tilixo) + (3.28)

A self-consistent solution can be proposed for Eq.(3.23)-Eq.(3.28). Since 
equations are coupled, an iterative solution is necessary. We can find a critical 
temperature for a given particle number (iV) and trapping strength (77) by 
increasing temperature (T) until there are no particles in the condensed state 
(Â o =  0). The numerical results giving the distribution of condensed and non- 
condensed particles are given in Fig.(3.2) for 77 =  1 and 2. Temperature scale 
is in dimensionless form such that T —>· ^ T .  We see from the figure that 
non-condensed particles are concentrated at the boundary of the condensate to
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Figure 3.2: Distribution of condensed and non-condensed atoms for 77 =  1 and 
77 =  2.
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Figure 3.3: Ratio of number of condensed atoms as a function of temperature for 
7] = 1 ,1.5 and 2.
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minimize the total energy. The picture also shows the advantage of evaporative 
cooling which based on isolating thermal particles from the condensate by 
reducing the external potential. By this way, firstly the thermal particles escape 
from the trap. Sharp edges in distribution functions are because of neglecting 
kinetic energies of the condensates which are effective near the boundaries. The 
most important outcome of this calculations is the indication of a true phase 
transition at T  > 0. We also calculate the critical temperature for different values 
of N  and T], In various panels of Fig. (3.3) ratio of condensed atoms are shown as 
a function of temperature. The critical temperature shows increasing behavior 
when 7] is increased. Also, we see from Fig.(3.3) that Tg increases considerably 
with increasing number of total particles.

3.4 Two-component Condensates
In this section, we consider the behavior of two-component condensates trapped 
by a harmonic potential. To use the same type of atoms with different hyperfine 
states is not a proper way for our case since the only distinguishing factor, 
coupling constant (g), disappears in the very strong coupling limit. Instead, we 
can use different type of atoms with different masses. Total energy in Kohn-Sham 
form is given by

E{tpi,ip2) =  f  dx[ 2mi
# 1
dx +

27710
dl/’2
dx

+ ^{pi)p\ + ^{P2)P2 +  ^{p\)p2 + ^{P2)p\]i (3.29)

where V'l =  \ / ^  and -02 =  ^/P2 represent the wave function of the first and second 
condensate having masses m\ and m 2 respectively. The normalization condition 
is such that /  dxtpf{x) = Ni{i = 1,2). In a more general case trap frequencies 
can be considered as different.

The homogenous solution of e{pi) and e{p2) for very strongly coupled bosons 
were discussed previously. Inserting the results into Eq.(3.29) we remain with

-2^(0 1 , 0 2 ) =  J dx[ n?
2mi

dtpi
dx + 2mi

¿02
dx

-f- ^ m ıα ; V |0 ı |^  -I- ^ 7 7 i2 o ;V |0 2 p
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+ g h ’̂Tv'̂  g fî TT̂  4 2 ,2 ,4i
(3.30)

When we can again rescale all length terms as x  — )■ UhoX {uho =  energy-
terms as E  — y fiuE  and ipi — > (1= 1-52). As a result Eq.(3.30) becomes

=  j d x l ^ N ,
¿01 1

+ - 5N2 ¿02
dx 2 ^ dx + -I-

+ -I- j 6 N l i , ‘ + (3.31)

where <5 =  ^  and wave functions, ipi and -02, are normalized to unity in this case. 
By applying a functional minimization to E(0i,02)) one obtains two coupled 
nonlinear equations for the each condensate:

V»! + yM A204V2 +  =  Aii î (3-32)

+ y<^A^l-^20i02 +  V’2 =  P2'fp2 (3.33)

where p\ and p2 are the chemical potential of each condensate coming from 
the solution of the time dependent equation of motion. There is a clear 
asymmetry between Eq.(3.32) and Eq.(3.33) because of the mass difference of 
the atoms. Spatial distribution of the condensates can be calculated by solving 
both Eq.(3.32) and Eq.(3.33) in a self-consistent way. Iterations are carried out 
until minimum of Eq.(3.31) is achieved. Different configurations can be obtained 
by changing either the number of atoms in the system (Â i, N 2) or the mass ratio 
(5).

In Fig.(3.4) and Fig(3.5) some examples for coexisting and phase segregated 
condensates are shown respectively. In the absence of an external potential the 
condensates are totally separated by repulsive interaction and a stable coexisting 
condensate mixture never be achieved. However, under an external trap, two 
condensates can form a two-component structure. In this case the actual stability 
criterion must be a density dependent expression since the reason of the stability
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Figure 3.4: Two-component mixture showing a coexisting distribution.
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Figure 3.5: Two-component mixture showing a phase segregated distribution.
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is the interaction between species. To examine the stability of the mixture let us 
look at the system when Ni »  N2 ■ When the kinetic energy term is neglected 
in Eq.(3.32) we obtain :

-  t ) ■ (3.34)

This form of 'ipi can be inserted into Eq.(3.33) to obtain

n  1\
T  U  ~ 3 / V»2 =  Ai2V'2· (3.35)

(5 =  3 is a critical point for the second condensate since the second term in the 
effective potential ^  +  ̂ ( |  — |)  changes sign. For 5 < 3 minimum of the effective 
potential is obtained when Xo =  0 (2̂0 represents location of the peak of the second 
condensate). In this case both condensates are centered at the same point so that 
we obtain coexisting condensates. On the other hand for 5 > 3 the minimum is 
obtained at rro > 0. In this case second condensate sits apart from the first one so 
that overlapping condensates are formed. We calculated numerically the location 
of the peaks of each condensate for different values of S. Result for N 1 =  1000 
and N 2 = 10 is shown in Fig. (3.6). It is clearly seen that i  =  3 is the critical 
point and confirms our theoretical predictions. Another conclusion revealed from 
the figure is that even for large values of 5 we may obtain a stable two-component 
mixture. We solved the problem for i  =  30 and observed an overlapping two- 
component mixture. This shows that for a large range of system parameters a 
stable mixture can be constructed in the strong coupling regime.
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Figure 3.6: Location of the peak values of each component for different mass 
ratios.



Chapter 4

Conclusions

We studied properties of strongly coupled one-dimensional Bose-Einstein con
densates in several type of traps. Since well-known Gross-Pitaevskii theory is 
not satisfactory to explain the properties of strongly coupled bosons we used a 
different approach which was firstly derived by Tanatar.^® The main result of this 
approach is that interaction energy is a function of where represents the 
density of the condensate, in strong coupling regime in contrast to -0  ̂dependence 
in weak coupling regime. We assumed a harmonic trapping potential to plot the 
distribution of condensate in the zero temperature limit. We saw that even 
for small number of particles the density is reduced in the center of the cloud 
compared to the weak interaction case. By neglecting kinetic energy terms we 
compared the analytical result found from Thomas-Fermi approximation and 
solution of the exact solution. We observed that except the boundaries two 
solutions gave very close results. As a next step, it could be interesting to look at 
vortex state solutions and the effects of quantum fluctuations in zero temperature 
limit. One other possible direction could be to look at the response of the system 
against a periodic potential.

An important outcome of this thesis is to explore a finite temperature 
formalism to the current problem to see whether there is a non-zero critical 
temperature . In order to do this, we applied finite temperature self-consistent 
mean field theory for bosons. The resulting equations were solved numerically

37
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and revealed that there is a finite critical temperature for strongly interacting one
dimensional bosons. It proves that a Bose-Einstein condensation like behavior 
occurs in trapped systems even in the strong interaction limit. By changing 
various parameters and calculating the critical temperature we observed that Tc is 
highly dependent on system parameters N  and 77. We also verified the prediction 
Tc oc for harmonic trapping potentials'·^ (figure 3.3). Finite temperature 
properties can also be studied using Monte-Carlo simulation method which is a 
more reliable way to investigate the properties of many-body systems.

In the last part, we looked at the stability of two-component strongly coupled 
condensates in harmonic trap potentials. Because of vanishing the coupling 
constant in strong-coupling limit, components are distinguished by their masses 
only. Our calculations revealed that for a wide spectrum of mass ratio(5), a 
stable mixture can be obtained. After certain value of the mass ratio (S ^  3), 
we saw that coexisting condensates separate each other and one remains with a 
phase-segregated mixture. A possible future direction of this analysis could be 
to apply the equations to interacting boson-fermion mixtures.

Quantum transport properties of a condensate is an important issue for the 
future production of atom lasers. It requires the solution of the time dependent 
equation of motion. It was shown that the interaction strength plays an important 
role in the transport phenomenon.®^ The present model can be used to predict 
the quantum motion of strongly interacting condensed bosons.
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