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A B S T R A C T

INSTANCE-BASED REGRESSION BY PARTITIONING 
FEATURE PROJECTIONS

Ilhan Uysal
M.S. in Computer Engineering 

Supervisor: Assoc. Prof. Halil Altay Güvenir 
January, 2000

A new instance-based learning method is presented for regression problems 
with high-dimensional data. As an instance-based approach, the conventional 
K-Nearest Neighbor (KNN) method has been applied to both classification and 
regression problems. Although KNN performs well for classification tasks, it 
does not perform similarly for regression problems. We have developed a new 
instance-based method, called Regression by Partitioning Feature Projections 
(RPFP), to fill the gap in the literature for a lazy method that achieves a higher 
accuracy for regression problems. We also present some additional properties 
and even better performance when compared to famous eager approaches of 
machine learning and statistics literature such as MARS, rule-based regression, 
and regression tree induction systems. The most important property of RPFP 
is that it performs much better than all other eager or lazy approaches on 
many domains that have missing values. If we consider databases today, where 
there are generally large number of attributes, such sparse domains are very 
frequent. RPFP handles such missing values in a very natural way, since it 
does not require all the attribute values to be present in the data set.

Keywords: Machine learning, instance-based learning, regression.
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Ö ZET

ÖZNİTELİK İZDÜŞÜMLERİNİN PARÇALANMASI İLE 
ÖRNEKLERE DAYALI REGRESYON

Ilhan Uysal
Bilgisayar Mühendisliği, Yüksek Lisans 

Tez Yöneticisi: Doç. Dr. Halil Altay Güvenir 
Ocak, 2000

Yüksek öznitelik sayılarına sahip verilerin regresyon çözümleri için örneklere 
dayalı yeni bir öğrenme metodu sunulmuştur. Örneklere dayalı bir yaklaşım 
olarak geleneksel K-Yakm Komşu (KNN) yöntemi hem sınıflandırma hem de 
regresyon problemleri için uygulanmıştır. KNN sınıflandırma işlemleri için iyi 
bir performans sergilerken, regresyon için benzer bir performansa sahip değildir. 
Biz literatürdeki bu boşluğu doldurmak üzere, tembel öğrenme yaparak yüksek 
başarı sağlayan örneklere dayalı yeni bir regresyon yöntemi olan, Öznitelik 
İzdüşümlerinin Parçalanması ile Regresyon (RPFP) isimli yöntemi geliştirdik. 
RPFP makina öğrenmasi ve istatistik literatüründe yer alan MARS, kurallara 
dayalı regresyon ve regresyon ağacı öğrenen sistemler gibi önemli çalışkan al
goritmalarda dahi bulunmayan bazı özelliklere ve hatta daha iyi performansa 
sahiptir. RPFP’nin bu özelliklerinden en önemli olanı verilerde eksik değerler 
olduğu durumlarda pek çok uygulama için diğer tüm çalışkan veya tembel 
yöntemlerden daha çok başarı sağlamasıdır. Günümüzde, çok sayıda alanları 
bulunan veri tabanlarını dikkate aldığımız zaman, böyle ortamlara sıklıkla rast
lanır. RPFP veri seti içindeki tüm öznitelik değerlerinin doldurulmuş olmasını 
gerektirmediği için eksik olan değerleri doğal bir şekilde çözümler.

A nah tar Sözcükler: Makina öğrenmesi, örneklere dayalı öğrenme, regresyon.
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Chapter 1

Introduction

Predicting values of numeric or continuous attributes is called regression in 
the statistical literature, and it has been an active research area in this field. 
Predicting real values is also an important topic for machine learning. Most of 
the problems that humans learn to solve in real life such as sporting abilities 
are continuous. Dynamic control is a research area in machine learning. For 
example, learning to catch a ball moving in a three dimensional space, is an 
example of this problem, studied in robotics. In such applications machine 
learning algorithms are used to control robot motions, where the response to 
be predicted by the algorithm is a numeric or real-valued distance measure 
and direction. As an example of such problem, Salzberg and Aha proposed an 
instance-based learning algorithm for robot control task in order to improve a 
robot’s physical abilities [4].'

In machine learning, much research has been performed on classification, 
where the predicted feature is nominal or discrete. Regression differs from 
classification, in that the output or predicted feature in regression problems 
is continuous. Even though, much research is concentrated on classification 
in machine learning, recently the focus of the machine learning community 
has moved strongly towards regression, since a large number of real-life prob
lems can be modeled as regression problems. Various names are used for this 
problem in the literature, such as functional prediction, real value prediction, 
function approximation and continuous class learning. We prefer its historical

1



CHAPTER 1. INTRODUCTION

name, regression, henceforth, for simplicity.

In designing expert systems, induction techniques developed in machine 
learning and statistics have become important especially for cases where do
main expert is not available or the knowledge of experts is tacit or implicit [1, 
42]. These techniques are also important to discover knowledge in cases where 
domain experts or formal domain knowledge is available but difficult to elicit [39]. 
Probably, the most important advantage of induction techniques is that they 
enable us to extract knowledge automatically.

By the term “knowledge”, we mean two types of information. One is the 
information used for prediction of a new case, given example cases; the other 
is the information used for extracting new rules about the domain which have 
not yet been discovered, by interpreting induced models. The techniques re
viewed and developed in this thesis can be employed in such systems, when 
the underlying problem is formalized as a prediction of a continuous target 
attribute.

The idea behind using induction techniques, investigated particularly in 
machine learning literature, is widely accepted by a newly emerged discipline. 
Knowledge Discovery in Databases (KDD), which incorporates researchers 
from various disciplines [17, 18, 60]. The main source of information in this field 
is large databases. Since databases can store large amounts of data belonging 
to many different domains, the use of automatic methods such as induction for 
knowledge discovery is viable, because it is usually difficult to find an expert for 
each different domain or relation in databases. Today, database management 
systems enable only deductive querying. Incorporating an inductive compo
nent into-such databases to discover knowledge from different domains auto
matically is a long-term expectation from this new field [32]. This particularly 
requires the cooperation of knowledge engineers and database experts. Such 
expectations make regression an important tool for the stand-alone or domain- 
specific KDD systems today and Knowledge and Data Discovery Management 
Systems [17, 60] in the future.



1.1 P aram etr ic  versu s N o n -P aram etr ic  R eg res

sion

The most common approach in regression is to fit the data to a global para
metric function. Classical linear regression in statistical analysis is an example 
of parametric learning. This model involves a dependent variable y and pre
dictor (independent) variables (a;’s), and assumes that the value of y changes 
at a constant rate as the value of any independent variable changes. Thus the 
functional relationship between y and x ’’s is a straight line.
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J / i  —  ^ 0  +  ^ l ^ i l  +  ^ 2 ^ i 2  +  · · · +  l^pXip  +  S i (1.1)

The subscript i denotes the observations or instances, the second subscript 
designates p independent variables. There are p + 1 parameters, = 0 , . . . ,  p, 
to be estimated. In the parametric model, the structure of the function is 
given, and the procedure estimates the values of the parameters, /?j, according 
to a fitting criterion. This criterion is generally a minimization of an error 
function for all data points in a training set. Very often this is a least squares 
criterion, which minimizes the sum of the squares of the prediction errors of 
the estimated linear function for all instances. The error term, e,· , denotes 
the error of estimation for each instance i, and it is assumed to be normally 
distributed.

Parametric methods have been very successful when the assumed structure 
of the function is sufficiently close to the function which generated the data to 
be modeled. However, the aim in machine learning is to find a general structure 
rich enough to model a large portion of all possible functions. This idea leads 
us to non-parametric regression methods, where no assumption is made about 
the structure of the function or about the distribution of the error.
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1.2 E ager versu s L azy L earning

We categorize regression algorithms with two classes, eager a,nd /azy approaches. 
The term eager is used for learning systems that construct rigorous models. By 
constructing models, two types of knowledge, prediction and concept descrip
tions that enable interpretation can be addressed. By using induced models of 
many eager methods, interpretation of the underlying data can be obtained. 
Decision trees and decision rules are such models, that are reviewed. On the 
other hand, lazy approaches [3] do not construct models and delay processing 
to the prediction phase. In fact the model is the data itself. Because of these 
properties, some disadvantages of the lazy approach immediately become ap
parent. The most important of all is that the lazy approaches are not suitable 
for the first type of knowledge, interpretation, since the data itself is not a 
compact description .when compared other models such as trees or rules. So, 
the major task of these methods is prediction. A second limitation is that they 
generally have to store the whole data in the memory, it may be impossible if 
the data is too big.

However, lazy approaches are very popular in the literature, due to some 
of their important properties. One of them is that they make predictions 
according to the local position of query instances. They can form complex 
decision boundaries in the instance space even when relatively little information 
is available, since they do not generalize the data by constructing global models. 
Another one is that learning in lazy approaches is very simple and fast, since 
it only involves storing the instances. Finally, they do not have to construct a 
new model, when a new instance is added to the data.

Besides these common characteristics of lazy approaches, however, the most 
significant problem with them is the one posed by irrelevant features. Some 
feature selection and feature weighting algorithms have been developed in the 
literature for this purpose. A review of many such algorithms can be found in 
literature [61]. However, these algorithms have also a common characteristic 
that they ignore the fact that some features may be relevant only in context. 
That is, some features may be important or relevant only in some regions of the 

instance space. This characteristic is known as context-sensitive or adaptive in



the literature. Even most eager approaches have this property, most of lazy 
approaches are not adaptive. Such important properties of surveyed important 
regression techniques are also discussed in Chapter 2.

1.3 R egression  by P a r titio n in g  F eature P ro 

jec tio n s
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This thesis describes a new instance-based regression method based-on fea
ture projections called Regression by Partitioning Feature Projections (RPFP). 
Previous feature projection-based learning algorithms are developed for classi
fication tasks. The RPFP method works similar to those methods, by making 
predictions on the projections of data to all featui’es separately. A complete 
survey of literature for feature projection-based learning is given in [13],

The RPFP method described in thesis is adaptive. This property is also 
called as context sensitive in the literature. For different query locations in 
the instance space RPFP forms a different model and a different region, and 
makes a different approximation. This is one of the major properties that 
makes RPFP a flexible regression method. This brings in another advantage: 
Robustness to irrelevant features, as well as, eager algorithms that partition the 
instance space, such as, decision tree induction methods. The regions formed 
for the queries will be long on the dimensions of irrelevant features and short on 
relevant dimensions as the case in eager partitioning methods. Besides those 
pi’operties, RPFP is robust to the curse of dimensionality, in that it is suitable 
for high-dimensional data. This is due to the elimination of irrelevant features, 
and by making approximations on feature projections for each feature dimen
sion separately. Making predictions on each feature separately enables another 
important property of RPFP. It handles missing feature values naturally, with
out filling them with estimated values. The experimental results shows that, 
RPFP achieves the highest accuracy when there are many missing values in 
the data set. These important properties of RPFP and a detailed comparison 
of it with other famous approaches are described in detail after the description 
of RPFP in Chapter 3.



From the point of view of these characteristics, we can define RPFP as lazy, 
non-parametric, non-linear, and adaptive regression method based on feature 
projections in implementation.
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1.4 N o ta tio n

In the rest of the thesis, training set D is represented by the instance matrix 
X, where rows represent instances and columns represent predictors, and a 
response vector y represents the continuous or numeric response to be predicted 
for all instances. Estimated values of y are shown with a column vector y, 
where yi is a scalar of the vector. Coefficients in Equation 1.1 are represented 
by a column vector /3. Any instance or any row in the instance matrix is 
represented by Xi, where i = 1, . . .  ,n and n is the number of instances in the 
training set. Any column of X is represented by Xj, where j  — 1, . . .  , p ,  and 
p is number of predictor features. Xij,yi and /3j represent scalars of X ,y  and 
/3, respectively. For the operations where /3 is included, a column consisting 
only of constant 1 values is inserted into the instance matrix as the first row 
so as to enforce the first term in Equation 1.1 [j = 0, . . .  ,p). The notations 
Xj and y are used as variables to represent predictor features and response 
feature respectively. To denote instance vectors (x,) with a variable, x is used. 
To represent residuals, a column vector r is used, where Tj·, f =  1, . . . ,  n, is a 
scalar. To denote a query instance, a row vector q or x, is used.

1.5 O rgan ization

In next chapter, we make an overview of existing important regression tech

niques in the literature. In Chapter 3 we describe RPFP and a robust version 
of it to noise RPFP-N. The detailed description of characteristic properties of 
RPFP and theoretical comparison of it with the existing important approaches 
in the literature is also given in this chapter. Empirical evaluations of RPFP 
are shown in Chapter 4, and we conclude the thesis with Chapter 5.



Chapter 2

Overview of Regression 
Techniques

In this chapter, we review important regression techniques developed in ma
chine learning and statistics. We first review lazy approaches for regression, 
instance-based regression, and locally weighted regression, in the first two sec
tions and then we review eager approaches rule-based regression, projection 
pursuit regression, tree-based regression and multivariate adaptive regression 
splines, respectively in Section 2.3 through Section 2.6. We present a compar
ison of these techniques in Section 2.7 for their important properties.

2.1 In sta n ce-B a sed  R egression

Instance-based learning (IBL) algorithms are very popular since they are com
putationally simple during the training phase [2, 11]. In most applications, 
training is done simply by storing the instances in the memory. This section 
describes the application of this technique to regression problems [36].

In instance-based regression, each instance is usually represented as a set of 
attribute value pairs, where the values are either nominal or continuous, and the 
value to be predicted is continuous. Given query instance, the task is to predict 
the target value as a function of other similar instances whose target values are



known. The nearest neighbor is the most popular instance-based algorithm. 
The target values of the most similar neighbors are used in this task. Here 
the similarity is the complement of the Euclidean distance between instances. 
Formally, if we let real numbers, i? be a numeric (continuous) domain, and X 
be an instance space with p attributes, we can then describe the approximation 
function, F , for predicting numeric values as follows:
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F{xi, ...,Xp) = Pi where pi G R. (2.1)

Training:
[1] Vxj € Training Set
[2] normalizei^i)

Testing:
[1] Vxt G Test Set
[2] normalize(xt)
[3] Vxt{xi 7  ̂x<}: Calculate Similaritp{xt,Xi)
[4] Let Similars be set of N  most similar instances to Xt in Training Set
[5] Let Sum = Exi€Simi!ars Sim ilar Up (xt,Xi)
[6] Then !/, = (x,)

Figure 2.1. The Proximity Algorithm

There is a variety of instance-based algorithms in the literature. Here, 
the simplest one, the proximitp algorithm is described in Figure 2.1. The 
proximity algorithm simply saves all training instances in the training set. The 
normalization algorithm maps each attribute value into the continuous range 
(0 — 1). The estimate pt for test instance x̂  is defined in terms of a weighted 
similarity function of Xi’s nearest neighbors in the training set. The similarity 
of two normalized instances is defined by Equation 2.2.

Similaritp{xt, Xi) = ^  Sim{xtj, Xij) (2.2)
j=l

where Sim [x,p) = 1.0 — \x — p\ where 0 < a;,?/ < 1, and j  is the feature 
dimension.



The assumption in this approach is that the function is locally linear. For 
sufficiently large sample sizes this technique yields a good approximation for 
continuous functions. Another important property of instance-based regression 
is its incremental learning behavior. By default, the instance-based regression 
assumes that all the features are equivalently relevant. However, the predic
tion accuracy of this technique can be improved by attaching weights to the 
attributes. To reduce the storage requirements for large training sets, aver
aging techniques for the instances can be employed [2]. The most important 
drawback of instance-based algorithms is that they do not yield abstractions 
or models that enable the interpretation of the training sets [40].

2.2 L oca lly  W eigh ted  R egression
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Locally weighted regression (LWR) is similar to the nearest neighbor approach 
described in the previous section, especially for three main properties. First, 
the training phases of both algorithms include just storing the training data, 
and the main work is done during prediction. Such methods are also known 
as lazy learning methods. Secondly, they predict query instances with strong 
influence of the nearby or similar training instances. Thirdly, they represent 
instances as real-valued points in p-dimensional Euclidean space. The main 
difference between IBL and LWR is that, while the former predicts instances 
by averaging the nearby instances, the latter makes predictions by forming 
an averaging model at the location of query instance. This local model is 
generally a linear or nonlinear parametric function. After a prediction for 
query instance is done, this model is deleted, and for every new query a new 
local model is formed according to the location of the query instance. In such 
local models, nearby instances of the query have large weights on the model, 
whereas distant instances have fewer or no weights. For a detailed overview of 
the locally weighted methods see [7], from where the following subsections are 
summarized.
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2.2.1 N onlinear Local M odels

Nonlinear local models can be constructed by modifying global parametric 
models. A general global model can be trained to minimize the following 
training criterion:

(2.3)

where yi is the response value corresponding to the input vectors Xj·, and /3 is 
the parameter vector for the nonlinear model y,· = f(xi,/3) and L is the general 
loss function in predicting yi. If this model is a neural net, then the /3 will be a 
vector of the synaptic weights. If we use the least squares for the loss function 
L, the training criterion will be

(2.4)

In order to ensure points nearby to the query have more influence in the 
regression, a weighting factor can be added to the criterion.

C{q) = T,lL(f(^i,l3),yi))K (d{x„q))] (2.5)

where K  is the weighting or kernel function and d(Xj, q) is the distance between 
the data point x,· and the query q. Using this training criterion, /  becomes a 
local model, and can have a different set of parameters for each query point.

2.2.2 Linear Local M odels

The well-known linear global model for regression is simple regression (1.1), 
where least squares approximation is used as the training criterion. Such linear- 
models can be expressed as

=  Vi ( 2 . 6 )
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where ¡3 is the parameter vector. Whole training data can be defined with the 
following matrix equation.

X/3 = y (2.7)

where X is the training matrix whose ¿th row is x, and y is a vector whose ith 
element is y,·. Estimating the parameters ¡3 using the least squares criterion 
minimizes the following criterion:

C =  -  Vif ( 2.8)

We can use this global linear parametric model, where all the training in
stances have equal weight; for locally weighted regression, by giving nearby 
instances to the query point higher weights. This can be done using the fol
lowing weighted training criterion:

c = -  s,)“/i(«i(x,·, q))|. (2.9)

Various distance (d) and weighting [K) functions for local models are de
scribed in [7]. Different linear and nonlinear locally weighted regression models 
can be estimated using those functions.

2.2.3 Im plem entation

In LWR, as stated above, the computational cost of training is of a minimum 
since training includes only storing new data points into the memory. However 
the lookup procedure for prediction is more expensive than other instance- 
based learning methods, since a new model is constructed for each query. Here, 
the usage of a kd-tree data structure to speedup this process is described 
briefly [7].

The difficulty in the table lookup procedure is to find the nearest neighbors, 
if only nearby instances are included in LWR. If there are n instances in the
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o o o
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Figure 2.2. “Id-tree data structure. The black dot is the query point, and the 
shaded dot is the nearest neighbor. Outside the black box does not need to be 
searched to find the nearest neighbor.

database, for a naive implementation we need n distance computations. For 
an efficient implementation, a kd-tree can be employed.

A kd-tree is a binary data structure that recursively splits a A;-dirnensional 
space into smaller subregions, and those subregions are the branches or leaves 
of the tree data structure. The search for the nearest neighbors starts from the 
nearby branches in the tree. For a given distance threshold there is no need 
to search further branches by implementing this data structure. Figure 2.2 
illustrates a two-dimensional region.

2.3 R egression  by R u le  In d u ction

Inducing rules from a given training set is a well-studied topic in machine 
learning. Weiss and Indurkhya employed rule induction for a regression prob
lem and reported significant results [58, 59]. In this section, we will first review 
the rule-based classification algorithm [57], Swap-1, that learns decision rules 
in Disjunctive Normal Form (DNF), and later on describe its adaptation for 
regression.
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[1] Input: D, a set of training cases
[2] Initialize Ri <— empty set, /?<—!, and Ci D

[3] repeat
[4] create a rule B  with a randomly chosen attribute as its left-hand side
[5] while (B is not 100-percent predictive) do
[6] make single best swap for any component of B, including

deletion of the component, using cases in Ck
[7] If no swap is found, add the single best component to B
[8] endwhile
[9] Pk rule B  that is now 100-percent predictive
[10] Ek <— cases in C that satisfy the single-best-rule Pk
[11] R k+ i^R k (J {P k }
[12] Ck+i Ck — {Ek}
[13] k ^ k  + 1
[14] until {Ck is empty)
[15] find rule r in Rk that can be deleted without affecting performance

on cases in training set D
[16] while (r can be found)
[17] Rk+i ^ R k -  {r}
[18] k ^ k - \ - \
[19] endwhile
[20] output Rk and halt.

Figure 2.3. Swap-1 Algorithm

The main advantage of inducing rules in DNF is their explanatory capa
bility. It is comparable to decision trees since they can also be converted into 
DNF models. The most important difference between them is that the rules 
are not mutually exclusive, as in decision trees. In decision trees, for each 
instance, there is exactly one rule encoding, a path from a root to a leaf, that 
is satisfied. Because of this restriction, decision tree models may not produce 
compact models. However, because of this property of rule-based models, the 
problem emerges that, for a single instance, two or more classes may be sat
isfied. The solution found for this problem is to assign priorities or ordering 
to the rules according to their extraction order. The first rule, according to 
this ordering that satisfies the query instance, determines the class of a query. 
The Swap-1 rule induction algorithm [57] and its sample output are shown in 
Figure 2.3 and Figure 2.4, respectively.
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CA > 0.5 And CP > 3.5 ^  Class = 2
T HA L  > 6.5 ^  Class = 2
[True] <— Class = 1

Figure 2.4. A solution induced from a hart-disease data

While constructing a rule, the Swap-1 algorithm searches all the conjunctive 
components it has already formed, and swaps them with all possible compo
nents it will build. This search also includes the deletion of some components 
from the rule. If no improvement is established from these swaps and deletions, 
then the best component is added to the rule. To find the best component to 
be added, the predictive value of a component, as the percentage of correct 
decisions, is evaluated. If the predictive values of them are equal, maximum 
instance coverage is used as the second criterion. These swappings and addi
tions end when the rule reaches 100% prediction accuracy.

STEP PREDICTIVE 
VALUE(%)

RULE

1 31 p3
2 36 p6
3 48 p6 L· pi
4 49 p4 & pi
5 69 p4 &; pi &: p2
6 80 p4 &: pi & p2 & p5
7 100 p3 & pi & p2 & p5

Table 2.1. Example of swapping rule components.

Table 2.1 illustrates a sample rule induction. After forming a new rule for 
the model, all instances that the rule covers are removed from the instance 
set, and the remaining instances are considered for the following steps. When 
a class is covered, the remaining classes are considered, in turn. This process 
iterates until the instance set becomes empty, that is, all instances are covered.

After formation of the rule set, if the removal of any rule does not change 
the performance on training set, such rules are removed from the model. Fur
thermore, to reach an optimum rule set, an optimization procedure is used [57].

The rule induction algorithms for classification, such as Swap-1, can also 
be applied to regression problems. Since these algorithms are designed for the
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prediction of nominal attributes, using a preprocessing procedure, the numeric 
attribute in regression to be predicted is transformed to a nominal one.

[1] Input: {y} a set of output values
[2] Initialize n =  number of cases, k = number of classes

[3] repeat for each Classi
[4] Classi = next n /k  cases from list of sorted y values
[5] end

[6] repeat for each Classi (until no change for any class)
[7] repeat for each case j  in Classi
[8] 1. Move Cascij to Classi-i , compute Err new
[9] If Err new > Err old return CaseijtoCi
[10] 2. Move Cascij to Classi^i , compute Err new
[11] If Err new > Err old return Cascij to Ci
[12] next Cascj in Classi
[13] Next Classi

[14] repeat for each Classi (until no change for any class)
[15] If Mean(C'/a5s,·) =  Mean(C'/assj) then
[16] Combine Classi and Class]
[17] end

Figure 2.5. Composing Pseudo-Classes (P-Class)

For this transformation, the P-class algorithm, shown in Figure 2.5, is used 
in [59]. This transformation is in fact a one-dimensional clustering of training 
instances on response variable y, in order to form classes. The purpose is 
to make y values within one class similar, and across classes dissimilar. The 
assignment of these values to classes is done in such a way that the distance 
between each yi and its class mean must be minimum.

The P-Class algorithm does the following. First it sorts the y values, then 
assigns an approximately equal number of contiguous sorted ?/, to each class. 

Finally, it moves a j/j to a contiguous class if it reduces the distance of it to the 

mean of that class.

This procedure is a variation of the K M E A N S  clustering algorithm [16, 
35]. Given the number of initial clusters, on randomly decomposed clusters, the
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1. Generate a set of Pseudo-classes using the P-Class algorithm.
2. Generate a covering rule-set for the transformed classification 

problem using a rule induction method such as Swap-1.
3. Initialize the current rule set to be the covering rule set and save it.
4. If the current rule set can be pruned, iteratively do the following:

a) Prune the current rule set.
b) Optimize the pruned rule set and save it.
c) Make this pruned rule set the new current rule set.

5. Use test instances or cross-validation to pick the best of the rule sets.

Figure 2.6. Overview of Method for Learning Regression Rules

K M E A N S  algorithm swaps the instances between the clusters if it increases a 
clustering measure or criterion that employs inter and intra-cluster distances. 
Given the number of classes, P-Class is a quick and precise procedure. However, 
no idea is stated in. the literature about an efficient way to determine the 
number of classes.

After the formation of classes (pseudo-classes) and the application of a rule 
induction algorithm to these classes, such as Swap-1, in order to produce an 
optimum set of regression rules, a pruning and optimization procedure can be 
applied to these rules, as described in [57, 59]. An overview of the procedure 
for the induction of regression rules is shown in Figure 2.6.

The naive way to predict the response for a query instance is to assign the 
average of responses. The average may be a median or mean of that class. 
However, different approaches also can be considered by applying a paramet
ric or non-parametric model for that specific class. For example, the nearest 
neighbor approach is used for this purpose, and significant improvements of 
this combination against the naive approach are reported in [59].

2.4  P r o je c tio n  P u rsu it R eg ressio n

One problem with most local averaging techniques, such as the nearest-neighbor, 
is the curse of dimensionality. If a given amount of data is distributed in a
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high-dimensional space, then the distance between adjacent data points in
creases with increasing number of dimensions [29]. Friedman and Stuetzle 
give a numeric example about this problem [20]. Projection pursuit regression 
(PPR) forms the estimation model by reflecting the training set onto lower 
dimensional projections as a solution for high dimensional data sets.

Another important characteristic of PPR is its successive refinement prop
erty. At each step of model construction, the best approximation of the data 
is selected and added to the model, while removing the well described portion 
of the instance space. The search on the data set continues for the I'emain- 
ing part and this process iterates by increasing the complexity of the model 
at each step. The successive refinement concept is applied to regression in a 
different way here, by subtracting the smooth from residuals. A smooth is a 
function formed by averaging responses (y). An example of smooth is shown 
in Section 2.4.2.

The model approximated by the PPR algorithm is the sum of the smooth 
functions S  of the linear projections, determined in each iteration:

v(x) =  E  5im(/?m.X) (2. 10)
m = l

where fixa is the parameter vector (projection), X is the training set against 
predictor variables, is i'h® smooth function and M  is the number of terms 
or smoothes in the model.

2.4.1 P rojection  Pursuit R egression  A lgorithm

At each iteration of the PPR algorithm, a new term, m  in Equation 2.10, is 
added to the regression surface (/?. The critical part of the algorithm is the 
search for the coefficient vector ¡3 or projection of the next term. After finding 
a coefficient vector at each iteration, the smooth of the estimated response 
values resulting from the inner product is added to the model as a
new term, where the term is a function of all features. The linear sum of these 
functions (2.10) forms the model, which is employed for the prediction task.
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,n[1] n  <- yi , M  <- 0, i = I,.
[2] Search for the coefficient vector that maximize fitting criterion I(/3)

by using Equation 2.11
[3] If /(/?) is greater than the given threshold
[4] Tj' < Tj i 1 , . . . ,  n
¡5] M ^  M + 1
[6] go to Step 2
[7] Otherwise stop, by excluding last term M.

Figure 2.7. Projection Pursuit Regression Algorithm

The search for the coefficient vector for each term is done according to 
a fitting criterion (figure of merit) such that, the average sum of the squared 
differences between residuals and the smooth is the minimum. For this purpose, 
/(/3), the fraction of unexplained variance that is explained by smooth Sp, is 
used as an optimality criterion or figure of merit. I(/3) is computed as

i = l  ¿=1
(2.11)

where ri is a residual which takes the value of y, in the first step of the algo
rithm. The coefficient vector /3 that maximizes I{/3) is the optimal solution.

In the first line of the algorithm current residuals and the term counter are 
initialized. In the second step, the coefficient vector that results in the best 
smooth close to the residuals according to the fitting criterion I  is found. A 
smooth is found for each ^  vector, in ascending order of the linear combination 
(/3.X). If the criterion value found is below a given threshold, the iteration of 
the algorithm is continued by the new residual vector, which is found by sub
tracting the smooth from the current residuals at Step 4. With this subtraction 
operation, the algorithm gains the successive refinement characteristic.

For search of the coefficient vector that maximizes the fitting criterion, a 
modification of the Rosenbrock method [50] is chosen in [20], and as a smooth
ing procedure, a method is described in the next subsection.

Some models approximate the regression as a sum of the functions of in
dividual predictors (standard additive models), and because of that, they can
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not deal with interactions between predictors. In such models, the projections 
are done onto individual predictors rather than onto a projection vector, which 
is the linear sum of the predictors, as in PPR. These projection vectors, instead 
of individual predictors, allow PPR to deal with interactions, which is the third 
main property of PPR.

2.4.2 Sm ooth ing A lgorithm

Traditional smoothing procedures assume that the observed variation, response 
yi, is generated by a function which has a normally distributed error compo
nent. The smooth constitutes an estimation for that, function. As an example, 
in simple linear regression, this function is a linear combination of predictors. 
As stated above, PPR tries to explain this variation with not just one smooth, 
but with a sum of smoothes over linear combinations of predictors.

Generally, the smooth functions employed here are not expressions, rather, 
they are a local averaging of the responses or residuals. Taking the averages of 
responses in neighborhood regions forms this smooth function. The boundaries 
of the neighborhood region where the averages are taken are called bandwidth. 
For example, in the k-nearest neighbor algorithm, k is used for the constant 
bandwidth. In [20], a variable bandwidth algorithm is employed, where larger 
bandwidths are used in regions of high local variability of response. To clar
ify the concept of smoothing, we describe the constant bandwidth smoothing 
algorithm of Tukey [52] called “running Medians”.

Running medians is a simple procedure that averages the response by tak
ing the median of the neighbor region. Running medians of three algorithms, 
described in [52], are shown with a simple example in Figure 2.8. The smooth 
of each response is found by the median of three values in the sequence. One 
of them is the response itself, and other two are neighbors.

Given : 4 7 9 3 4 11
Smooth : ?  7 7 4 4 11

12 1304 10 15 12 13 17
12 12 15 12 13 13 ?

Figure 2.8. Running Medians of Three
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Friedman and Stuetzle [20], employ running medians of three in their vari
able bandwidth smoothing algorithm, as is shown in Figure 2.9.

[1] Running medians of three;
[2] Estimating the response variability at each point by the average squared

residual of a locally linear fit with constant bandwidth;
[3] Smoothing this variance estimates by a fixed bandwidth moving average;
[4] Smoothing the sequence obtained by pass (1) by locally linear fits with

bandwidths determined by the smoothed local variance estimates 
obtained in pass (3).

Figure 2.9. Variable Bandwidth Smoothing Algorithm

In Step 1, a smooth for the response is formed. In Step 2, for each smoothed 
response value, we find the variance of the neighbors in the interval determined 
by a given constant bandwidth. In Step 3, these variances are smoothed by 
a given constant bandwidth. Finally, by employing these smoothed variance 
values as a bandwidth for each smoothed response determined in Step 1, a 
variable bandwidth smooth is obtained.

2.5 R eg ressio n  by Tree In d u ctio n

Tree induction algorithms construct the model by recursively partitioning the 
data set. The task of constructing a tree is accomplished by employing a 
search for an attribute to be used for partitioning the data at each node of the 
tree. The explanation capability of regression trees and their use to determine 
key features from a large feature set are their major advantages. In terms of 
performance and accuracy, regression tree applications are comparable to other 
models. Regression trees are also shown to be strong when there are higher 
order dependencies among the predictors.

One characteristic common to all regression tree methods is that, they par
tition the training set into disjoint regions recursively, where the final partition 
is determined by the leaf nodes of the regression tree. To avoid overfittiiig 
and form simpler models, pruning strategies are employed in all regression tree 
methods.
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In the following subsections, three different regression tree methods are de
scribed: CART, RETIS and M5. They share the common properties described 
above, but show significant differences in some of measures and traits they 
demonstrate.

2.5.1 CAR T

Using trees as regression models was first applied in the CART (Classification 
and Regression Trees) program, developed by the statistical research commu
nity [9]. This program induces both regression and classification trees.

In the first step, we start with the whole training set represented by the 
root node to construct the tree. A search is done on the features to construct 
the remaining part of the tree recursively. We find the best feature and feature 
value of any instance at which to split the training set represented by the root 
node. This splitting forms two leaf nodes that represent two disjoint regions in 
the training set. In the second step, one of these regions is selected for further 
splitting. This splitting is again done according to a selected feature value of 
an instance. At each step of partitioning, one of the regions, which are not 
selected before are taken and partitioned to two regions in the same manner 
along a feature dimension.

After forming regions, which are represented by the leaf nodes of a tree, 
a constant response value is used for estimation of a query. When a test 
instance is queried, the leaf node that covers the query location is determined. 
A constant average value of response values of the instances of the region is 
assigned as the prediction for the test instance. Each disjoint region has its own 
estimated value that is assigned to any query instance located in this region.

To construct optimum disjoint regions, an error criterion is used. The op
timum value of this criterion produces a decomposition at any step of the tree 
induction process described above so that the correct region, feature, feature 
value (splitting surface) and estimates for each region are selected. To deter
mine the predicted target values in these regions, averaging methods such as 
mean and median are used. As a fitting criterion, the variances of the regions
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are used (2.13).

Error iy  ariance) =  — yY
t = l

where n is the number of instances in the region.

( 2. 12)

Splitting Error = ~ l  H  (Vi “  Hn/tf  + J]) (Vj -  Vrighif > (2.13)
^XiGXu/t

After computing the splitting error for all possible splits of a particular 
predictor, the splitting that maximizes the following criterion is selected.

C = Variance — Splitting Error (2.14)

The node and predictor that reach the maximum criterion (7, are selected 
for splitting. An example regression tree is shown in Figure 2.10. The con
struction process is illustrated in Figure 2.11.

Figure 2.10. Example of Regression Tree 

Formally, the resulting model can be defined in the following form [9, 19]: 

If then f{x)  = g r a i x M l ) .  (2.15)
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Figure 2.11. An example of the tree construction of process. Four regions are 
determined by predictors a;i and X2 ·

where {Rm}i a,re disjoint subregions representing p partitions of the training 
set. The functions g are generally in simple parametric form. The most com
mon parametric form is a constant function (2.16), which is illustrated with 
the example given in Figure 2.10.

(2.16)

The constant values of leaves or partitions are generally determined by 
averaging. More formally, the model can be denoted by using basis functions:

M

rn=l

The basis functions Bm{x) take the form

(2.17)

.B„i(x) = / ( x  e / C )  (2.18)

where /  is cin indicator function having the value one if its argument is true and 
zero otherwise. Let H[g\ be a step function, indicating a positive argument

m  =
1 if 7/ > 0 
0 otherwise

(2.19)

and let LOF(5') be a procedure that computes the lack of fit of an estima
tion function g to the data. The recursive partitioning algorithm is given in 
Figure 2.12.
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[1] ^i (x)  ^  1
[2] For M = 2 to M„ do : /o/* <— oo
[3]
[4]
[5]
[6]
[7]
[8]
[9]
[10] 
[11] 
[12] 

[13]

For m = 1 to M — 1 do :
For = 1 to n do :

For t C {Xvj\Bm{y-j) > 0}
S < ”1“ <Zm5jrj(x)ii[d'(.Xt; t)] -|- (̂ Xy 0]
lof  <- minai...aMLOF{g) 
if lof < lof* , then lof* < 

end for 
end for 

end for
Bm (^) ^  Bm^i^)H[-{Xy· -t*)]
B^.(x) <- Bm>iy^)H[+iXy· -  t*)]

lof·, m* m; u* <— n; i* <— i end if

[14] end for

Figure 2.12. Recursive Partitioning Algorithm

The first line of the algorithm assigns the whole training set as the initial 
region. The first loop iterates the splitting until reaching a maximum num
ber of regions. The next three loops selects the optimum basis function Bm· 
(intuitively the optimum region), predictor a;,,., and split point t*. At lines 12 
and 1 .3 , the selected region for splitting, Bm-, is replaced with its two parti
tions. This is done by adding a factor to its product; with H[—(xy» — /*)] for 
the negative portion of the region at line 12 by creating a new basis function, 
and with H[+{xv· — i*)] for the positive portion of the region at line 13, by 
modifying or removing the previous basis function. Finally the basis functions 
formed by the algorithm will .take the following form:

A '„
( 2.20)

k=l
where the quantity Km is the number of splits that gave rise to Bm, and the 
arguments of the step functions contain the parameters associated with each 
of these splits. The quantity Skm takes ( + /—)! values indicating the right/left 
portions, v{k,m)  label the predictor variables, and tkm represent values on 
the corresponding variables. A possible output of the algorithm is shown in 
Figure 2.13.



CHAPTER 2. OVERVIEW OF REGRESSION TECHNIQUES •25

Bi -  /{[-(Xya -  ia)]B[-(Xyb ~  ¿(,)]
B 2  =  B [ - ( X y a  -  t a) ] H[ +{Xyb -  t b) ] H[ ~{Xyc ~  ¿ c ) ]  

B-i  =  H [ - { X y a  -  t a) ] H[ +{ Xvb -  t b) ] H[ +{Xyc ~  tj)] 

B 4 =  H[-\-(Xya — ia)j

Figure 2.13. A binary tree representing a recursive partitioning regi’ession 
model with the associated basis functions

The partition may lead to very small regions with a large tree. This sit
uation may cause overfitting with unreliable estimates. Stopping the process 
early may also not produce good results. The solution to this problem is to 
employ a pruning strategy.

Pruning the regression tree by removing leaves will leave holes, which is 
an important problem, since we will not be able to give an answer to queries 
that fall into these regions or holes. That is why the removal of regions is done 
pairwise, with siblings, by merging them into a single (parent) region. This 
pruning strategy is described in [9].

Recursive partitioning regression is an adaptive method, one that dynam
ically adjusts its strategy to take into account the behavior of a particular 
problem to be solved [19]. For example, recursive partitioning hcis the ability 
to exploit low local dimensionality of functions. In local regions, the depen
dence of the response may be strong on a few of the predictors, and these few 
variables may be different in different regions. Another property of recursive 
partitioning regression is that they allow interpretations, especially when a
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constant estimation is done on the leaves.

On the other hand, it has some drawbacks and limitations, the most im
portant is the fact that the estimation is discontinuous. The model cannot 
approximate even simple continuous functions such as linear functions, which 
limits the accuracy of the model. As a consequence of this limitation, one can
not extract from the representation of the model the structure of the function 
(e.g. linear or additive), or whether it involves a complex interaction among 
the variables.

2.5.2 RETIS

In the basic CART algorithm described above, the estimated response value, 
y on the leaves of the regression tree was a constant function(2.16). On the 
other hand, RETIS (Regression Tree Induction System) [33, 34], a different 
approach used to construct regression trees, developed by the machine learning 
community, is an extension of CART that employs a function on the leaves. 
This is a linear function of continuous predictors. The use of linear regression 
at the leaves of a regression tree is called local linear regression [33]. RETIS 
can also be categorized as a LWR system (Section 2.2).

O

O
o

o

Figure 2.14. An example region, with large variance, which is inappropriate 
for splitting

RETIS is not just a modification of CART at the leaf nodes. The em
ployment of linear regression enforces modifications in the construction of the 
regression tree. In the process of tree construction, the CART system forms 
subtrees to minimize the expected variance (2.13). However, when applying
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local linear regression to a regression tree, the variance is not an appropriate 
measure as an optimality criterion. If the relationship between the predictors 
and response is linear, this region may not be appropriate for splitting even 
if the variance is very large. This situation is illustrated with an example in 
[3 .3]. Suppose we have a region with four instances described with only one 
predictor as shown in Figure 2.14. Even the error is large in terms of variance, 
it is almost zero according to a linear approximation on these four points. Such 
regions cire not appropriate for further splitting. That is why an alternative 
splitting criterion is employed in RETIS as given in Equation 2.22. Let us first 
define impurity measure^ I:

/(X )  =  E ( w  -  «(>'.))' ( 2.21)
2 = 1

where n is the number of instances, g is the linear function that best fits 
the instances of the region. Consequently, the figure of merit (the splitting 
criterion) is defined as in Equation 2.22.

^  T ^̂ rightĴ right\ (2.22)

The use of Equation 2.21 instead of Equation 2.13 in computing figure of 
merit is the main difference between CART and RETIS. When estimating a 
response value for a query, the value that results from the linear function on 
which the leaf node the query falls is used.

After construction of a regression tree, a pruning strategy is employed, as 
in most other tree induction models. See [41] for an in-depth explanation of 
pruning. The strategy used in RETIS computes two different error measures: 
static error and the backed-up error. The static error is computed at a node, 
supposing it is a leaf, and backed-up error is computed at the same node for 
the ca,se, in which the subtree is not pruned. If the static error is less than or 
equal to the backed-up error, then the subtree is pruned at that node, and the 
tree node is converted into a leaf node.
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2.5.3 M5

M5 is another system [45] that builds tree-based models for the regression 
task, similar to CART and RETIS. Although the tree construction in M5 is 
similar to CART, the advantage of M5 over CART is that the trees generated 
M5 are generally much smaller than regression trees. Standard deviation is 
employed as the error criterion in M5, instead of variance as used in CART. 
The reduction on the error (2.23) on subregions after splitting a region is the 
measure used to decide on splitting:

error = <^(x) -  E (2.23)

where cr is standard deviation and i is the number of subregions of a region 
whose instances are denoted by X. After examining all possible splits, M5 
chooses the one that maximizes the expected error reduction (2.23).

M5 is also similar to RETIS in that it employs a linear regression model 
on the nodes to estimate responses by using standard linear regression tech
niques [43]. These linear models are constructed on all the nodes, starting from 
the root down to the leaves. However, instead of using all the attributes or 
predictors, a model at a node is restricted to the attributes referenced by linear 
models in the subtree of that node.

After constructing the tree and forming linear models at the nodes as de
scribed above, each model is simplified by eliminating parameters to maximize 
its accuracy. The elimination of parameters generally causes an increase in the 
average residual. To obtain linear models with fewer of parameters, the value 
is multiplied by (n -f p){n — p), where n is the number of instances and p is 
the number of parameters in the model. The effect is to increase the estimated 
error of models with many parameters and with a small number of instances 
or training cases. M5 uses a greedy search to remove variables that contribute 
little to the model. In some cases, M5 removes all of the variables, leaving only 
a constant [33].

The pruning process in M5 is the same as RETIS. To prune the constructed 
tree, each non-leaf node is examined, starting near the bottom. If the estimated
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error at a node is smaller than its subtree, then that node is pruned.

A smoothing process is employed in M5 for estimation of the response 
variable. The smoothing process described in [33] is as follows:

1. The predicted value at the leaf is the value computed by the 
model at that leaf.

2. If the instance follows branch S) of subtree S, let n; be the 
number of training cases at Si, PV(Si) the predicted value at Si, 
and M(S)  the value given by the model at S. The predicted value 
at S  is given by recursive Equation 2.24

FV(S) = niPV(S^) + kM(S)
Tii T k

(2.24)

where k is the smoothing constant.

The accuracy of the model is enhanced by the smoothing process. Improve
ments in accuracy cind model simplification are obtained by M5 over CART, 
some applications with different training sets are reported in [45]

2.6 M u ltiv a r ia te  A d a p tiv e  R eg ressio n  Sp lin es

As stated in the previous section, a fundamental drawback of recursive parti
tioning regression (CART) is the lack of continuity, which affects the accuracy. 
Another problem with that method is its inability to provide good approxi
mations to some functions, even to the most simple linear ones. Multivariate 
adaptive regression splines (MARS) addresses these two problems of recursive 
partitioning regression, in order to achieve higher accuracy [19].
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2.6.1 P iecew ise Param etric F ittin g  and Splines

There are different paradigms for global parametric modeling to generalize low 
dimensional data. One of them is piecewise parametric fitting. The basic idea 
is to approximate a function by several simple parametric functions (usually 
low order polynomials) each defined over different subregions of the training 
set. The constraint for the formation of polynomial fitting is that it must be 
continuous at every point.

The most popular piecewise polynomial fitting procedures are based on 
splines^ where the parametric functions are polynomdals of degree q. The pro
cedure is implemented by constructing a set of globally defined basis functions. 
These functions span the space of the ^th order spline approximations, and 
fit the coefficients of the basis function to the data using the least squares 
technique. The spline basis functions are denoted by,

{(a; -  tk)lY^ (2.25)

where {tk}i is the set of split (knot) locations. The subscript indicates a 
value of zero for negative values of the argument. This is known as a truncated 
power basis in the mathematical literature. A general review of splines is given 
in [12].

2.6.2 M A R S A lgorithm

The MARS algorithm is a modified recursive partitioning algorithm, given in 
the previous section, which addresses the problems stated above. The reason 
that recursive partitioning algorithms are discontinuous, the first problem, is 
the use of the step function. If the step function were replaced everywhere 
by a continuous function where it appears in that algorithm (lines 6, 12 and 
13), it could produce a continuous model. The step function employed in that 
algorithm can be considered as a special case of a spline basis function, where 
q = 0.

The one-sided truncated power basis functions for representing (j'th order
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splines are
bq{x - t )  = { x - (2.26)

where t is the knot location, q is the order of the spline, and the subscript 
indicates the positive part of the argument. For 9 > 0, the spline approximation 
is continuous. A two-sided truncated power basis is of the form

6±(x -  i) = [±(x -  i)ll (2.27)

The step functions that appear in recursive partitioning algorithms are seen 
to be two-sided truncated power basis functions for q = 0 splines. The solution 
for discontinuity is solved by employing spline functions, of the order of g > 0, 
instead of step functions in the algorithm.

The second modification is related to the second problem, the inability 
of the algorithm to provide good approximations to certain functions. Af
ter the first modification, the algorithm tends to involve functions with more 
than a few variables (higher order interactions). At each split, one such func
tion is removed, and two new functions are produced with one more variable. 
This causes a one level increase in the interaction order. With such complex 
functions, having high level orders, it becomes difficult to approximate simple 
functions like linear ones.

The solution for this problem is not to delete the lower order parent after 
splitting. With this modification, all basis functions now become eligible for 
further splitting. The new model involves either high or low order interactions, 
or both.

A third problem emerges after the employment of splines in the algorithm. 
Since the algorithm allows multiple splits on the same predictor, along a sin
gle path of the binary tree, final basis functions may include several factors, 
involving the same variable in their product. For q > 0, higher orders than q 
may be produced on a single predictor.

After the second modification, not deleting the parents after splits, a re
striction on the basis function can be applied to involve distinct predictors. 
Since we do not remove the parent after splitting, many such splits can be
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done on the same parent. By employing another split to that parent instead 
of splitting a child, MARS does not increase the depth or add a new factor to 
the product.

One remaining problem, which is not solved with MARS, is the value of q. 
The general idea is to use 9 = 1 . A discussion of this problem is given in [19].

In summary, the following modifications are done to the recursive parti
tioning algorithm: (a) Replacing the step function H[±{x — i)j by a truncated 
power basis function [i(rr — i)]+; (b) not removing the parent basis function 
Bm- after its split, thereby making it and both its daughters eligible for fur
ther splitting; (c) restricting the product associated with each basis function 
to factors involving distinct predictor variables.

After using two-sided truncated power basis functions, instead of a step 
function, the MARS algorithm (shown in Figure 2.15), now produces multi
variate spline basis functions of the following form:

= n  H[Skm-{Xv(k,m) ~  ifcm)]- (2.28)
k=l

For pruning of the resulting model after the MARS algorithm, it is now 
no longer necessary to employ the two-at-a-time deletion strategy used in the 
previous algorithm. Because the parents are not deleted thus, there will be no 
holes left after any deletion. Any pruning algorithm can be employed for the 
MARS procedure.

In the algorithm above, truncated power basis functions (^ = 1) are sub
stituted for step functions in lines 6 , 12 and 13. The parent basis function is 
included in the modified model in line 6 and remains in the model through 
lines 12-14. Basis function products are constrained to contain factors involv
ing distinct variables by the control loop in line 4. Figure 2.16 illustrates the 
regions after constructing the model. Note that the split regions are not deleted 
from the model, as in CART, and another splitting for the same region can be 

applied with the same or a different predictor.
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[1] 5 i ( x ) ^  l ;M  = 2
[2] Loop until M  > Mjnax ■ lof* <— oo
[3] For m = 1 to M — 1 do :
[4] For V ^ {u(fc,Tn)|l < k < Km}
[5] For t G {Xvj\Bm{Xj) > 0}
[6] g <- a,-Bi(x) + amBm{^)H[-P{xy -  i)]+

-\-0,MBm{^^^H.y {Xy 0] +
lof  <- mina,...aM-iLOF{g)

then lof* <— lof·, m*
[7]
[8] if lof < lo f
[9] end for
[10] end for
[11] end for
[12] 5 m (x) <- Bm>{^)H[+{xy* -  r)]_
[13] 5 m+i (x) Bm>i^)H[-{xy· -  t*)]
[14] M ^ M  + 2
[15] end loop
[16] end algorithm

m; V V , t* t end if

Figure 2.15. MARS Algorithm

2 .7  D iscu ss io n

We have reviewed six different regression techniques, each having different 
characteristics when compared to others. Three of them (instance-based re

gression, locally weighted regression and rule-based regression) have been de
veloped mainly by the machine learning community, and others (projection 
pursuit regression, regression tree induction, and multivariate adaptive regres
sion splines) mainly by the statistics community. The common property of all

R1

_____________________________ a______

R 2 R 3

h a____________

R 4 R 5 R 3

h a c

R 4 R 5 R 6 R 7

H

R 8 R 9

Figure 2.16. An example for the regions of MARS algorithm
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these methods is that all of them are non-parametric, and they are the most 
popular among current regression methods.

In instance-based learning, a lazy approach is employed, where no model 
is constructed in the training phase. The model is the training set itself. The 
whole computational complexity of this method is in its prediction, especially 
the determination of neighbor instances. The prediction is based on the loca
tion of the query, and it is computed according to the target values of neighbor 
instances. The criterion used to detect neighbor instances is the similarity 
measure based on distance.

Locally weighted regression is another lazy (or memory-based) approach, 
where the instances are simply stored in memory during the training phase. 
The difference between locally weighted regression and instance-based methods 
is in the prediction phase, where a local parametric model is constructed for 
each query instance by using the neighbor instances. Since, at each query 
instance, a new local model is constructed, it is more complex than the previous 
approach.

The projection pursuit regression method has the ability to reduce dimen
sionality by projecting instances to lower dimensional (one or two) vectors or 
surfaces. The idea of projection is also used in exploratory data analysis to 
determine clusters on projections [21]. The same idea is adapted to regres
sion. Successive refinement technique is also applied in the projection pursuit 
regression, which shows significant improvements for most applications.

All the remaining methods estimate models by partitioning the training set 
into regions. Rule-based regression techniques accomplish this by partitioning 
the data using the rule induction techniques of machine lecirning. On the other 
hand, in the other partitioning methods (CART, RETIS, M5 and MARS), this 
is done by splicing the features recursively into two regions, by constructing 
a binary regression tree. The main difference between these methods and 
MARS is that MARS is continuous at the borders of the partitioned regions, 
while others are discrete. CART simply uses the averages of the regions for 
prediction; RETIS and M5 make prediction by constructing linear models. On 
the other hand, since MARS produces a large number of overlapping regions.
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its computational complexity is larger than other partitioning methods.

Properties

Instance
Based
Reg.

(KNN)

Locally
Weighted

Reg.
(LOESS)

Proj.
Pursuit

Reg.
(PPR)

Rule
Based
Reg.

(Rule)

Tree
Based
Reg.

(CART)

Adaptive
Reg.

Splines
(MARS)

Memory-based y V
Partitioning V V V
Interpretable 7 V V V
Adaptive y 7 V V V
Incremental

Table 2.2. Properties of Regression Algorithms (the names of programs devel
oped with those methods are shown in parentheses).

The properties of regression methods are summarized in Table 2.2. Five 
different properties are used to compare the algorithms. The main character
istic of memory-based models is storing the instances and delaying processing 
to the prediction phase. The model constructed is in fact the training set it
self. Recursive partitioning algorithms construct the models by partitioning 
the data into regions. Interpretability is one of the main concerns for most 
knowledge acquisition and knowledge engineering applications, in order to ex
tract information that can be verified by experts. The algorithms covered in 
this chapter that induce models have this property. If the locations of the test 
or query instances affect the model, prediction and contribution of variables 
in the regression task, such algorithms are called adaptive. Another important 
property given in the table is incremental property of the algorithm. This is 
the inverse of batch processing. For large training sets, or databases, particu
larly processing can be done without loading all of the data set into memory if 
this property is satisfied. The order of the training instances is ignored when 
constructing any such model.



Chapter 3

Regression by Partitioning 
Feature Projections

In this chapter we describe the new regression method called Regression by 
Partitioning Feature Projections (RPFP). RPFP is an instance-based method 
where most properties are similar to other instance-based methods such that 
it is a local, memory-based, lazy and distance-based approach. All such prop
erties of RPFT will be described and discussed in detail in the chapter.

In developing this technique, we have incorporated also some advantages 
of eager approaches, while eliminating most limitations of both eager and lazy 
methods.

In Chapter 2, previous approaches for regression were described. If the 
parametric form of the function to be approximated is known, the best solution 
is to cipproximate the parameters of the function. For example if function 
is linear, linear least squares regression can produce accurate results in the 

following form.

/(x?) = I ]  + ^0 (3.1)
J=1

here, p is the number of features, x , is the query point, is the j th  feature 
value of the query, /3j is the j th  parameter of the function and /(x ,) is the

.36
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estimated value of the function for the query point x9J·

However, the assumption that the approximated function is linear is a very 
strong one and causes large bias error, especially for many real domains. Many 
modern techniques have been developed, where no assumption is made about 
the form of the approximated function in order to achieve much better results. 
Tree and rule induction algorithms of machine learning are such non-parametric 
approaches.

Additive regression models [30] and feature projection based classification 
methods of machine learning such as CFP [24] improves the linear paramet
ric form of the (3.1) by replacing the parameters in this equation with non- 
parametric functions of the following form.

/(x) = E
j=i

(3.2)

where ffj is the estimation for feature j .

With this form, the assumption that the approximated function is para
metric is removed. However, it is assumed that the input features or variables 
additively form the approximated function. It is shown that for classification 
tasks of many real world domains, for example that of the data sets used for 
classification in UCI repository, additive forms achieves high accuracy [31, 24]. 
Even though regression and classification are similar problems, one predicts a 
continuous and the other predicts a categorical target, their characteristics are 
different, and they are investigated independently in the literature. In order to 
achieve high accuracies in regression problems, interaction effects of features, 
additional to main (additive) effects, must be handled properly. This is also 
shown empirically in Chapter 4 by comparing the additive form of RPFP with 
its original form by using many real world domains obtained from different

sources.

There are many approximation techniques that can cope with interac
tion effects. KNN [40] and partitioning approaches such as rule-based regres
sion [59, 60] tree-based regression [9, 23] and MARS [19] are such techniques. 
Among projection-based methods, only projection pursuit regression, PPR [20],
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handles interactions with the following model.

M  p

(3.3)
m = l  j = l

where M  is the number of projections, ^mj is the jth. parameter of the mth pro
jection axis and fm is the smooth or approximation function for mth projection 
axis.

Here the instances are not projected to feature dimensions. Instead, they 
are projected to projection axes, found through complex computations [20]. 
The whole model is constructed with successive M  steps, and at each step of 
the model construction process, a new projection is found which is a linear 
equation. We think that if there are both interactions and additive (main) 
effects in a domain, most models that handle interactions, including PPR, 
may loose some information by not evaluating main effects by using individual 
features.

RPFP is a projection-based approach that can handle interactions. How
ever, if main effects are higher than interaction effects in a domain, or some 
features have only main effects, which is probably the case for most real world 
regression problems, the functional form of RPFP, given below (3.4) enables 
those effects to be incorporated in the solution properly.

A'^q) — ^  R )
R'e{R„X} i=i

(3.4)

where R' is either the whole instance space X or the region obtained after s 
partitioning steps, R t, and I{j) is an indicator function whose value is either 
0 or 1, according to the feature j .

RPFP incorporates interactions as partitioning techniques do, by partition
ing the instance space. However, this partitioning does not produce disjoint 
regions, such as in C4.5 for classification and CART for regression. Instead, 
these are overlapping regions similar to MARS, DART and KNN. Query in
stances are always close to the center of these regions, which is the way nearly 

all lazy approaches work. If some features do not have interactions with others.
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which is the situation for most cases, RPFP incorporate main effects of these 
features as much as possible by using the whole instance space, with much 
crowded instances as additive methods. It decreases the effects of curse of di
mensionality, a problem for almost all other approximation techniques except 
projection-based approaches. On the other hand, if a feature has interactions 
with others, the region after partitioning, Rg, is used instead.

3.1 R P F P  A lg o r ith m

The main property of RPFP is that, a different approximation is done for 
each feature by using the projections of the training instances on each feature 
dimension separately. These approximations may be different for each feature 
and for each query point. A partitioning strategy is employed in the algorithm 
and some portion of the data is removed from the instance space at each step. 
The same approximations are repeated for a sequence of partitioning steps, 
where it continues until reaching a small number of instances.

For all query instances the procedure described above is applied. This 
produces different regions and different contribution of features for each query 
in the instance space, which enables the context-sensitive solutions.

3.1.1 Training

Training involves simply storing the training set as their projections to the 
features. .This is done by associating a copy of target value with each feature 
dimension, then sorting the instances for each feature dimension according to 
their feature values. If there are missing feature values, they are placed at 
the farthest end of the feature dimensions. These instances, having missing 
values for the feature dimension, do not effect the results for those features. 
An example training set with 2 features and 10 training examples projected to 
these features is shown in Figure 3.1.
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/1 : 2 4 6 8 9 11 14 16 17 18
TARGET : 14 14.5 16 2 3 3.5 4 8 9 8.5

/2 1 3 4 6 8 20 24 28 32 36
TARGET 14 9 3 8.5 2 4 16 8 14.5 3.5

P'igure 3.1. An example training set projected to two features:/i and / 2.

3.1.2 A pproxim ation  using Feature P rojections

In this section, we describe how the individual predictions of features are com
puted for continuous and categorical features.

3 .1 .2 .1  C ontinuou s Features

Approximation at feature projections is the first stage in the prediction phase 
of RPFP algorithm. Since the location of the query instance is known, the 
approximation is done according to this location. At each feature dimension, 
a separate approximation is obtained by using the value of the query instance 
for that feature.

Taylor’s theorem states that if a region is local enough, any continuous 
function can be well approximated by a low order polynomial within this re
gion [23]. By determining a different linear equation for each different query 
value at feature dimensions, we can form the function g(Xq) in Equation 3.4, 
even it is complex.

Given the linear equation to be approximated in the following form. Equa

tion 3.5, the classical approach is to approximate coefficients of this equation 
using the least squares error criterion in Equation 3.6.

y,/ = ^0/ + (3.5)
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Ej = 'Ziy. -  y . , f  (3.6)
i=l

where n is the number of training instances, y^j is the approximation for query 
at feature / ,  and yi is the actual target value.

We employ the weighted linear least squares approximation for the feature 
predictions. Similar to the standard linear least squares approach, we find 
the parameters of (3.5), ¡3of and /3i/ for each feature by employing a weight 
function to the least squares error, in order to determine weighted linear least 
squares approximation.

and

= -  Vif? 
¿=1

(3.7)

1
{Xif -  XgfY

(3.8)

By taking the derivatives of (3.9) to minimize the error Ef,  we find the 
parameters /3of and /?i/ for weighted linear least squares approximation.

Ef = Y^Wij{yi -  l3of -  /3ifXifY
i=l

(3.9)

T7' dEfrom dPof = 0

i=l z=l ¿=1
(3.10)

From ^  =  0

i=l 1=1 i=l

By solving the above equations, ^o/ and /3if are found as follows.

Er=i V iW if -  I 3 i f E"=i X i fW i f
^0/ —

^ l/ =

E L i Wif 

SPf
S S x f

(3.11)

(3.12)

(3.13)
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where

and

sP j  = l^^ r fy iW i f ------------------------------------
¿=1 ¿-¿=1 ^¿/

OO ' ^ 2  iJ2 i= l X i/WifYS S x f  =  l ^ X i f W i f -------
i= l  2 ^ i = l

(3.14)

(3.15)

To illustrate the feature averaging phase, we can compute a prediction 
for an example query for the training set given in Figure 3.1. Suppose /i  = 
12 and /2 = 5 are feature values of a query instance. Coefficients of the 
approximated weighted linear least squares equations for these features and 
the feature predictions are shown in Figure 3.2.

Î Ofi 5.037
-0.034

yh 4.630

/̂ 0/2 

A /2

yi2

6.779
-0.091
6.320

Figure 3.2. Approximations for Feature Projections

3.1.2.2 Categorical Features

The weighted linear least squares approximation is not appropriate for some 
cases encountered in real life applications. One of them is categorical fea
ture values. Since there is not an ordering between most categorical features 
extracting a linear relation at any region the query instance fall, is not mean
ingful. On the other hand, if a categorical feature has an ordering between 
categorical values (e.g. days of a week), then it can be evaluated by defining 

it as linear.

Another situation is possible for linear features. If all the instances have 
same linear value for a particular feature dimension, the slope of the equation 
will be infinity. This situation can be determined by looking at the value of 
SSx  in Equation 3.15. If SSx  — 0, we can not employ the weighted linear least 

squares approximation. This refinement is done to determine such situations 

together with categorical features.
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Those situations can be handled easily by employing an averaging procedure 
instead of linear approximation. For the RPFP algorithm, mean values of the 
target values are used as an approximation on such feature dimensions, as 
shown in Equation 3.16. If none of the values of a categorical feature matches 
the feature value of the query instance, the contribution of that feature in the 
final prediction is excluded.

y<if ~
Er=i Vi

n (3.16)

3.1.3 Local W eight

Some regions on a feature dimension may produce better approximations when 
compared to others. In order to obtain a degree of prediction ability of a region 
on feature dimension, we employ a measure in the prediction algorithm. If the 
region that query point falls in is smooth, we give a high weight to that feature 
in the final prediction. By this way we reduce the effect of irrelevant features, 
as well as the irrelevant regions of a feature dimension. This establishes an 
adaptive or context sensitive nature, where at different locations in the instance 
space, the contribution of features on the final approximation differs.

3.1.3.1 Continuous Features

In order to measure the degree of smoothness for continuous features we com
pute the distance weighted rnean squared residuals. Residuals are differences 
between target values of the instances and their predicted values found by 
weighted linear least squares approximation for the feature value of each in
stance. We denote this measure with V/ as given in (3.18). By subtracting it 
from the variance of the target values of all instances, Vaii, we find the explained 
variance according to the region the query instance falls in. By normalizing it 
with the variance of training set we obtain a measure, called prediction index 
(PI) (3.20). We use the squared PI as the local weight (LW) for each feature 
(3.21).
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Vall =
Z t i i V i - y ) '

n
(3.17)

where y is the mean of target values of training set.

(3.18)

where w[ is defined in Equation (3.19). For an overview of weight functions for 
regression problems see [7].

1
гу.if 1 {xij

Prediction index of feature / :

P If  =
Van -  Vf

Vail

(3.19)

(3.20)

Local weight of feature / :

LWf =
PI'j if PIf  > 0 

0 otherwise
(3.21)

For the example query on the training data in Figure 3.1 the local weight 

for f i  is 0.405, local weight for /2 is 0.297.

3.1.3.2 Categorical Features

For the computation of local weight for categorical features, a refinement is 
required. By replacing (3.18) with (3.22), in such a case, we can use the same 
procedure used for continuous features for the computation of local weight. 
Note that w'-j in (3.19) will be 1 for all the same categorical values.

Efel w'ijyi -  Vgff
Eüh гу;.

(3.22)

where Nc is the number of instances having the same categorical value, and 

y^f is the average of their target values.
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3.1.4 P artition ing  A lgorithm

Partitioning enables us to deal with interactions among features. If there is no 
interaction among some features, we use the results we obtained and recorded 
for these features before the partitioning of the instance space. We try to figui'e 
out interactions by looking at local weights before and after partitioning.

Partitioning is an iterative procedure applied to each query instance, where 
the remaining final region may differ for each query instance. It improves 
the context-sensitive nature of RPFP such that, the edges of the final region, 
a hyper-rectangle, are not equal in length for each query, according to the 
relevancy of features for the prediction of the query. This causes longer edges 
for less relevant features, and much shorter edges for relevant ones. The region 
is formed by the partitioning algorithm that will be described in this section, by 
using an iterative procedure that continues until a small number of instances, 
say k, are left. This is taken by default 10 in the experiments.

In the first step of partitioning, the predictions and local weights of the 
fecitures are found and recorded. The feature with the highest local weight 
for the partitioning of the data is used. Partitioning is done on this feature 
dimension. The farthest instances to the query value on this featiu'e dimension 
are marked. The number of these instances are determined by using local 
weight of that feature, then they are removed on all feature dimensions. If 
the feature selected for partitioning is nominal, simply all the instances having 
different nominal values on that feature are also removed. After shrinking the 
marked instances on all feature projections, partitioning continues by selecting 
a new feature at each step.

The partitioning algorithm applies a strategy in order to select the right 
feature for partitioning. For example, if the feature selected in the first step 
again has the highest local weight for the query in the second step, then the 
feature helving the second highest local weight is selected. By this way, we can 
péiss possible ridges in the data set, .so that, selecting a feature with small local 
weight or that of some others, may increase their local weights in forthcoming 
steps significantly. However, at a particular step the features with zero local 

weights are not used for partitioning for that step, unless all local weights
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Figure 3.3. Example data set and its partitioning.

in a particular step are zero. This strategy decreases the effect of irrelevant 
features, especially in high-dimensional domains. Since all the features may 
have been selected in previous steps, a counter is associated with each feature 
in order to give chance to different features each time. An example training set 
and it partitioning on feature /1 is illustrated in Figure 3.3. in this example, 
we suppose that local weight of /1 is 0.5 and k is small enough.

A different strategy is applied for nominal features. If a nominal feature 
is selected for partitioning once, it is never used again for partitioning. The 
partitioning algorithm of RPFP is shown in Figure 3.4. The partitioning is 
repeated for all query instances by using a copy of the feature projections of 
the data obtained in the training phase.

At line 30, in Figure 3.4, number of steps for the partitioning is recorded to 
be used in the final prediction phase. At line 27, a partitioning of the remaining 
training set, D' , is employed along the feature dimension, MaxF,  selected for 

partitioning.

Suppose, at any particular step of partitioning, the best feature along with 
the partitioning will occur has been found according to the partitioning strat
egy. We must determine the number of instances that will remain after parti
tioning, n , according to the local weight of the feature in that step. However,
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[1] n' n; Smax log n; s <— 0; D *— D
[2] For /  = 1 to p
[3] priority{f) <— S m ax

[4] end for

[5] While n k 3>nd S  Sjjiax
[6] 3 <— 5 +  1
[7] For /  = 1 to p
[8] if Xqj is known then
[9] compute and record LWj{s) and yqj{s) on D
[10] end if
[11] end for
[12] M axF  <— any /  where Xqj is known and LWf{s) > 0
[13] For /  = 1 to p
[14] if LW}{s) > 0 and Xqf is known then
[15j \i priority(f) > priority[Maxf) then M axF <— f  end if
[16] if priority(f) — priority{Maxf)  then
[17] if LWf{s) > LWMaxFis) then M axF  <— /  end if
[18] end if
[19] end if
[20] end for
[21] if M axF  is continuous then
[22] p r i o r i t y  {MaxF)  <— priority {MaxF) -  1
[23] end if
[24] if MaxF  is nominal then
[25] priority {MaxF) <— 0
[26] end if
[27] D' <—partition{D', MaxF)
[28] n' <— size of D'
[29] end while

S ^  s

Figure 3.4. Partitioning Algorithm
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if we use local weight as a ratio of removing instances, since it takes values 
between 0 and 1, all the instances will remain or all of them will be removed 
for extreme values. The solution to this problem is brought by windowing 
the local weight to a narrower interval. Its size is determined by a window
ing constant, Ct„, that takes values between 0 and 0.5, leading a local weight 
interval, [0.5 T ^w]· Local weights are transformed to this interval. Thus for 
Cw = 0.3, the value we have used in experiments, the largest local weight 
becomes LWmax = 0.8 and smallest one becomes LWmin = 0.3 after this trans
formation. The equation used for transformation is given below (3.23).

na  — (^ 6  f ^ i ^ L W j n a x  (^ L W -ir n a x  T lT ,n in ) T V k y ) T t l f (3.23)

where Па and пь are number of instances after and before partitioning respec
tively, and m / is the’ number of missing values at dimension / .

After determining the number of instances that will remain after partition
ing according to the local weight of the selected feature, the farthest instances 
according to the query value, in the selected feature dimensions are marked 
until reaching that number of instances are left. The instances having miss
ing values for that feature are excluded from this marking process, and they 
remain at the end of the feature dimension. If other feature values of such 
missing valued instances are close to their query values in those dimensions, 
this enables better accuracy for their predictions, however we always exclude 
them from the computations in the dimension where their values are missing. 
Finally feature values of all marked instances are removed from all dimensions. 
For the example data set, the instances after first step of partitioning according 
to / i ,  which has higher local weight, is shown in Figure 3.5; and new results 

are shown in Figure 3.6.

3.1.5 P rediction

The partitioning process results in a region with the query instance in its center. 

Then we compare local weights obtained for a feature for this region and for 
the whole region before partitioning. This comparison is performed for each
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/ l : 8 9 11 14 16
TARGET : 2 3 3.5 4 8

/2 : 4 8 20 28 36
TARGET : 3 2 4 8 3.5

Figure 3.5. Example training set after partitioning.

-1.759 ^0/2 2.868
l^lh 0.476 /̂ 1/2 -0.002
LWj, 0.959 LW,j, 0.981
Vh 3.950 Vh 2.860

Figure 3.6. Approximations for Feature Projections

feature separately. If the local weight of a feature on the initial projections 
of the instances is larger than that of the projections of the final region, we 
use the initial computations for prediction and local weight of that feature. 
Otherwise we use the computations for the final region for that feature in the 
final prediction.

If a ciuery value for a feature is missing, that feature is not used in the final 
prediction. Finally a prediction is done for a query instance by computing the 
weighted average of feature predictions, where weights are the computed local 
weights. Prediction algorithm is shown in Figure 3.7. For the query in the 
example above, the solution'is: 

prediction = (0.959 * 3.95 + 0.981 * 2.86)/1.94 = 3.4.

3.2 R P F P -N  A lgorith m

We have extended the RPFP algorithm to RPFP-N in order to use it with 
domains with noisy target values. Instance-based algorithms are robust to 
noisy or extreme input feature values since the query instances will be far from
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[1] Prediction <— 0; WeightSum  <— 0
[2] S', L W  and Yq are determined by partitioning algorithm.

[3]
[4]
[5]
[6]

[7]
[8]

[9]
[10] 

[11] 
[12] 

[13]

For feature /  =  1 to p 
if Xqj is known then

if LVF/(0) > LWfiS)  then
Prediction <— Prediction + y<j/(0)

W eightSum + LVF/(0)W  eightSum 
end if 
else

Prediction <r 
W  eightSum 

end else 
end if

[14] end for
[15] Prediction <— Prediction/WeightSum

Prediction + yqf{S)
- WeightSum  + LWj{S)

Figure 3.7. Prediction Algorithm

these instances and their effect will be very small [40]. However if the target 
values of training instances are noisy, this situation must be handled.

We have modified RPFP algorithm, by changing only the feature prediction 
phase, in order to cope with noisy domains, as described in Section 3.1.2. We 
have employed an averaging procedure in RPFP-N, instead of weighted linear 
least squares approximation for feature prediction. This is distance weighted 
median and its algorithm is shown in Figure 3.8, which is used for both cate
gorical and continuous features. For categorical features, the instances which 
are in the same category as the feature value of query instance are used for 
computation of both feature prediction and local weight. In the algorithm, 
equation (3.19) is used as the weight function for feature prediction.

After determining the prediction of a feature, in order to determine its local 
weight, (3.22) is employed in (3.20), for both categorical and continues features.
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[1] sum <— 0
[2] weight
[3] sort instances according to their target values
[3] While sum < weight/2 take a new instance in the sorted order
[4] feature prediction <— yi
[5] sum <— sum + w-j
[6] end while
[7] y^j <— feature prediction

Figure 3.8. Weighted Median Algoi'ithm

3.3 P r o p e r tie s  o f  R P F P

In this section, we describe important properties and problems for regression 
algorithms and evaluate RPFP according to them.

3.3.1 Curse o f D im ensionality

The curse of dimensionality is a problem for nearly all learning and predic
tion methods that do not make strong assumptions about the domains. There 
are some models that handle this situation by making some assumptions. As
sumption made in additive models is that features separately contribute to the 
solutions, as in (3.2). Another solution to this problem comes with projec
tion pursuit regression. The instance space is projected to a lower dimensional 
space (generally one or two dimensional). However, this approach also has an 
assumption such that, the information in data can be evaluated by using only 
the projection of data to some projection cixes. Assuming linearity between in
put features and target in the prediction problems can be seen as a sub-category 
of additive models by comparing (3.1) and (3.2); and it is a strong assumption 
that is employed in classical linear regression and linear discriminant analysis, 
which are parametric models.

The strong assumptions made in prediction tasks cause large bias errors in 
most domains. This is also what the curse of dimensionality problem causes 
in other non-pararnetric learning methods. Therefore, generally the choice is
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whether to put up with strong assumptions or with the curse of dimensionality.

Most modern techniques for regression in the literature, such as those de
scribed in Chapter 2, are developed in order to obtain better accuracy results 
by eliminating assumptions employed in classical, generally linear and para
metric methods. So developing some measures to decrease the effects of curse 
of dimensionality is important for modern techniques in order to achieve higher 
accuracies.

The problem can be illustrated with a simple example. Consider a one 
dimensional input space, where all instances are uniformly distributed cind fea
ture values range from 0 to 1. In this situation half of the feature dimension 
contains half of the instances. If we add one more feature with the same prop
erties to the instance space, using half of each feature dimension will include 
l/4 th  of the instances. One more feature will decrease this ratio to 1/8, and so 
on exponentially. Adding new features will cause much sparse instance spaces. 
In order to keep the same ratio for the number of instances in a region we have 
to increase the volume of the region exponentially. This is because in high 
dimensional spaces it is impossible to construct regions that have small size 
simultaneously in all directions and containing sufficient training data; thus, 
using Icirge regions for approximation causes large bias errors [23].

size(Rk) _  
size(Ro) \ n  J

l/p
(3.24)

where k is the number of training instances in region Rk and Rq is the instance 
space.

Thus,’in high dimensions the size of the region will be close to Rq even for 
A: = 1 in (3.24). Curse of dimensionality is a much more important problem for 
KNN, when compared to eager methods. Nearly all eager learning approaches 
(Rule-based learning, tree-based learning and MARS) have some measures to 
decrease the effect of the curse of dimensionality. The most important one 
is to properly select the features to be included in the model, and decrease 
the number of dimensions. This is also the reason for the success of eager 
approaches against irrelevant features.
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Another measure is the adaptive nature of partitioning eager approaches. 
For example, in a uniformly distributed space, after a normalization process, 
KNN always has regions with a sphere shape, having the same diameter in 
all dimensions. However this volume is a hyper-rectangle for most eager ap- 
pi'oaches rather than a sphere or hypercube, since the edge lengths are deter
mined according to the position of the query in the instance space. Intuitively, 
important features have smaller edges when compared to unimportant features 
at that location.

Some solutions similar to these measures are available for KNN, by using 
external feature selection and feature weighting algorithms before applying 
it [61]. Feature selection can eliminate irrelevant features and feature weighting 
can produce elliptic regions instead of spherical ones. However, there is still 
a problem, that the shape of this elliptic region does not change according to 
the location of the query in the instance space, which is dynamic in most eager 
approaches.

On the other hand, the problem of curse of dimensionality is much impor
tant for KNN when the task is regression instead of classification. There is an 
important empirical evidence that KNN can achieve high accuracies in many 
domains for classification. However this is not the situation for regression [23]. 
This property of KNN will be discussed in the following sections.

RPFP is a member of instance-based approaches, that are local, memory- 
based, lazy, non-parametric and do not depend on strong assumptions such 
as those described above. However, RPFP has some measures to decrease the 
effect of curse of dimensionality.

In the final prediction phase of RPFP, a subset of features are used in addi
tive form, only for their main effects on the target. The curse of dimensionality 
does not effect their contributions, since feature prediction is determined only 
on that single dimension. For remaining features, the effect of curse of di
mensionality is not severe. The partitioning algorithm either does not allow 
irrelevant features to effect partitioning (if their local weights are 0), or their 
effects are small since a dynamic partitioning occurs according to their local
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weights. The partitioning strategy of RPFP forms adaptive regions. Accord
ing to the position of each query instance, the edge lengths of these regions for 
each feature dimension may change. For remaining features, predictions are 
done on these regions.

3.3.2 Bias-variance Trade-ofF

Following the considerations presented in [22], two important error types col
lectively effect the success of learning approaches according to the underlying 
problem they are applied. They are bias and variance errors, caused by under
fitting and over-fitting respectively on the learning application. A decrease in 
one of those errors, generally causes an increase on the other. However the 
behavior of interaction between bias and variance differs according to the al
gorithm and the domains the algorithms are applied. If we illustrate these 
error components with an example, large K  values in the application of KNN 
algorithm may cause large bias error, on the other hand, small K  values may 
cause large variance error.

Many factors are effective for these error components. The curse of dimen
sionality, model complexity, model flexibility, local vs. global approximations, 
assumptions of the learning approach, noise, missing attribute values, number 
of features and number of observations in applications are some of those. For 
example large number of features, small number of training instances, many 
missing values, large local approximation regions, strong assumptions and sim
ple models are among reasons of bias error. The effect of these issues on RPFP 
will be discussed in the folloyring sections.

An important result presented in [22] is that for classification tasks the 
major component of the error is formed by variance, on the other hand, for 
regression problems the bias error becomes important. This is shown as the 
main reason for the success of the simple nearest neighbor approach such that 
it over-performs some sophisticated methods for many classification tasks even 
though the curse of dimensionality problem of KNN causes strong bias. How

ever, this is not the situation for regression, and the effect of bias error is much 
important unless the underlying domain includes small number of features or
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large number of observations.

In learning problems, this trade-off is unavoidable and RPFP casts its vote 
for variance by employing many arguments to decrease the bias error. The 
way for handling bias error caused by the curse of dimensionality is described 
in the previous section. Besides, it does not make strong assumptions as non- 
parametric methods. It develops flexible, adaptive and locally weighted approx
imations in small local projections at each feature dimension for each query 
instance. All these things may increase the over-fitting, which causes an in
crease on the variance error. However empirical results show that RPFP is 
much more successful than KNN, which justifies these claims stated about the 
behavior of classification and regression for the bias-variance trade-off.

3.3.3 M odel C om plexity  and O ccam ’s Razor

William of Occam’s Razor principle states that “Entities should not be mul
tiplied beyond necessity” [14]. This idea has been accepted theoretically in 
many disciplines including machine learning. Its adaptation on learning ap
proaches states that, simpler models must be preferred to complex ones. Two 
different versions of this idea are described in [14]. One of them is, “Given two 
models with the same accuracy, the simpler one must be selected because the 
simplicity is desirable in itself.” Especially, if the interpretation of the induced 
model is concerned, it is widely accepted. On the other hand, another version 
states that, “Given two models with the same training-set error, the simpler 
one should be preferred beca,use it is likely to have lower prediction error on the 
test set.” The well known example for this second interpretation is the pruning 
applied in some eager learning methods in order to achieve better accuracy in 
unknown test cases.

The second interpretation has been found inconvenient by many researchers 
recently and some theoretical and empirical work are published supporting this 
idea [56]. An overview is given by Domingos [14]. The model complexity issue 
is strongly related with the considerations presented in previous two sections. 
It is also possible that complex models can produce better accuracies than 
simpler ones. That is why the belief for second interpretation may cause to
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cease developing new complex techniques that will perform well. Especially 
with very large databases today, with many instances, avoiding complex models 
in order to prevent over-fitting may cause information loss and poor accuracies.

RPPT is flexible and complex, such that for different query locations in 
the instance space, producing infinite number of different local approximation 
functions on many different domains is possible. If we consider many different 
feature dimensions having such approximations, RPFP becomes more flexible 
and complex as the number of dimensions increase. The performance results 
of RPFP on real data sets confirm those resent worries about the second in
terpretation of the Occam’s Razor principle.

3.3.4 Lazy Learning

Lazy learning methods defer most processing to the prediction time. The train
ing phase includes mainly storing the instances. Since those methods store 
instances without any generalization in the memory, they are also referred to 
as memory-based methods. On the contrary eager learning methods complete 
most processing in the training phase, before a query is given. These two 
categories among learning methods is probably the most important in order 
to differentiate learning methods. Both of them have some advantages and 
disadvantages in itself.

In eager learning, a single global model is used to fit all the training data. 
The generalization of the whole data set may improve accuracy, besides such 
representations generally produce comprehensible models that allow interpre
tation by humans. An other advantage of eager approaches is their fast pre
diction time. However if the training instances change dynamically, forming a 
new model each time new instances are added may be time consuming for such 
domains, if the method is not incremental. If an eager method is incremental, 
this time it will be sensitive to the presentation order of the instances.

On the other hand, lazy approaches are useful in dynamic domains, since 
the main processing is accomplished after the query is given. They are incre
mental in nature, and it is not order sensitive. Lazy learning enables an other
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advantage such that they attempt to fit the training data in the region of the 
query instance, which may allow better fitting. However if the queries are very 
frequent, this situation makes lazy approaches time consuming because of long 
prediction time. Besides, their memory cost is larger. Another limitation of 
lazy approaches is that generally they are not suitable for interpretation, since 
they do not produce global models.

Being a lazy approach, RPFP has the properties of lazy approaches ex
plained above. When compared to KNN its training phase includes an extra 
sort operation on the train data. However, RPFP avoids some tasks required in 
the training phase of KNN. They are normalization and filling missing values 
and they will be discussed in the following sections. Incrementality of RPFP 
can easily be enabled by inserting new instances on sorted feature projections. 
Extracting relative importance of features and determining features having 
interactions using RPFP are some interpretation tasks that can be researched.

3.3.5 Local Learning

Local learning is a paradigm devoted to lazy and some eager learning (e.g. 
recursive partitioning) approaches. It is motivated by the Taylor’s theorem 
which states that if a region is local enough any continuous function can be 
well approximated by a low order polynomial within it [23]. With this approach 
the instance space is covered by a set of local regions.

Lazy approaches are those mainly benefit from this paradigm, by locating 
queries in the center of such overlapping regions. However, I'ecursive parti
tioning approaches that produce disjoint regions have some trouble that the 
different low order approximations for each region are not continuous at the 
boundaries of these regions. The adaptive and flexible determination of the 
boundaries of these regions is their main advantage that allows local approx
imations. However, this does not prevent discontinuity. Some solutions are 
developed for the discontinuous approximations of recursive partitioning ap
proaches by producing overlapping regions instead of disjoint ones [19, 23]. 
We have compared RPFP with those improved implementations of recursive 
partitioning methods in the next chapter.
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The local learning paradigm is strongly related with the curse of dimension
ality, which will effect the size of the regions and the performance of approxi
mations in these regions. The measures taken for RPFP against the curse of 
dimensionality are described above. The discontinuity problem of some local 
learning approaches is not encountered for RPFP, since, being a lazy approach, 
queries are always centered in these overlapping regions.

3.3.6 Irrelevant Features and D im ensionality

The sensitivity to irrelevant features is the most important problem for lazy 
methods. On the other hand, eager approaches are successful in eliminating the 
effects of irrelevant features. For example, in recursive partitioning regression 
(e.g. regression tree induction), the partitioning starts from the most significant 
feature and continués recursively by employing less relevant ones. It is very 
likely that most of the irrelevant features will not be used in constructing a 
regression tree.

The reason that irrelevant features cause problems in lazy learners stems 
from the distance measure used in those methods. In the nearest neighbor 
approach for example, nearest instances are determined according to a distance 
measure in a p dimensional space. This is generally the Euclidean distance. In 
the computation of distance all features are given equal importance including 
irrelevant ones. This may cause important instances for a query to go away 
from the query.

Irrelevant features do not cause any difficulty for RPFP, since distances are 
computed for each feature separately. Another important advantage of RPFP 
is that it is highly likely for those features to take lower local weights, since 
the distribution of target values of nearest instances at any query location will 
be very close to the distribution of the whole target values in the training 
set (3.20). RPFP is capable of incorporating all features according to their 
relevancy on the query instance. If the irrelevant features or the relevance 
of features changes according to the locations of the instcince space, this is 
handled by RPFP, since it is an adaptive approach.
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Eager approaches also handle the adaptivity case by arranging the edge 
lengths of the regions according to relevancy of feature dimensions in the in
stance space. However, in contrast to irrelevant features problem, another 
problem may harm most eager approaches. This is high dimensionality. If the 
number of features is large when compared to the number training cases, in 
addition to the curse of dimensionality, it is possible that some features will 
not be evaluated even they are very relevant. This can be illustrated with re
gression trees. After a small number of steps in the tree construction process, 
the number of instances at tree nodes may be exhausted before many relevant 
features get a chance.

This second problem of high dimensionality is also resolved in RPFP, since 
all the features are used in the final prediction phase.

3.3.7 C on text-sen sitive Learning

RPFP is an adaptive or context-sensitive method in the sense that in different 
locations of the instance space the contribution of the features are different. 
This property is achieved by two characteristics of RPFP. One of them is 
the partitioning algorithm. The region formed around the query instance is 
determined adaptively; different features have different lengths of edges in the 
final region according to the location of query. The other one is in the local 
weights. Features may take different local weights according to the location of 
the query. On the other hand, the local weights of fecitures will be different since 
different instances will be the neighbors at different feature dimensions. The 
difference in the neighbors will I’educe possible over-fitting, similar to sampling 
approaches such as boosting [10], which brings an advantage to RPFP. Nearly 
all eager approaches, in some extent, are context-sensitive, while it is one of 
the limitations of KNN [15].
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3.3.8 M issing Feature Values

It is likely that some feature values may be unknown in the application domain. 
In relational databases, the most suitable form of databases for the most cur
rent learning techniques, the problem occurs frequently because all the records 
of a table must have the same fields, even if values are inexistent for most 
records [38]. For example, in a hospital database including many fields for 
many laboratory tests and medical procedures, only a few of these fields will 
be filled in for any patient.

Even the importance of handling missing values is accepted in literature, 
the distortion on the information contained in the data caused by missing 
values is not exactly prevented in many learning techniques [46, 47, 48]. The 
most common way to handle missing values is to fill those places with some 
approximations or some constant values. If missing values are very frequent 
on some rows or columns, removing these instances or features can also be 
considered.

The most natural solution for handling missing values is leaving those places 
empty and not to distort the information in the data. Additive models or 
feature projection based methods handle missing values in that way, since each 
feature is evaluated separately. However, their limitation is that they assume 
all features to have independent effects on the target.

RPFP deals with missing values similar to additive or previous feature pro
jection based models, and also resolve the interactions between features by 
applying a partitioning process. RPFP achieves this by applying approxima
tions on feature projections using only known values, and in partitioning, for 
a selected feature dimension along with the partitioning occurs, by keeping 
missing valued instances of that feature.
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3.3.9 Interactions

If some input features have inter-relationship such that the effect of any feature 
on the target is dependent on one or more different input features, those rela
tions are called as interactions. RPFP produces a local region for each query. 
Making predictions on those regions enable it to handle interactions and to 
achieve better accuracy.

On the other hand, some research on the classification methods and real 
data sets show that, generally the main effects of the features are sufficient to 
determine the target values [24, 31]. If some features have only main effects on 
targets, RPFP makes predictions for those features by using the whole instance 
space instead of local region determined by partitioning, since large number 
of training instances allow better approximations. Another limitation of some 
partitioning methods, such as regression tree induction is that the partitioning 
always occurs with many variables and this causes handling of only high-order 
interactions. This problem makes it difficult to approximate even some simple 
forms such as linear functions [19].

Dealing with interactions is an important property for regression methods 
in order to achieve better accuracies. To illustrate it with a simple example, 
we can consider predicting the area of a rectangle. Both width and length of 
a rectangle must be evaluated together since predicting the area by using only 
one of them is not sufficient.

3.3.10 Feature P rojection  Based Learning

RPFP is a feature projection based learning approach. The results reported 
for feature projection based classification methods, CFP [24], KNNFPR [5], 
COFI [25], FIL [6, 27] and VFI [26], and feature projection based regression 
method RFP [54] motivated us to develop RPFP. The major distinction be
tween those methods and RPFP is its capability of dealing with interactions.

RPFP inherits most advantages of feature projection based approaches 
(handling missing values, robustness to irrelevant features etc.), on the other
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hand benefits from the advantages of nearest neighbor (nearest instances at 
any dimension have larger effects on solution when compared to othei's) and 
partitioning methods (dealing with interactions, adaptivity and regions with 
flexible edges are formed by partitioning).

3.3.11 D ifferent Feature T ypes

Induction methods generally accepts two feature types. One of them is nominal 
features, which take binary or categorical values, the other one is continuous 
features which take numeric or real values. Induction methods either can han
dle both type of features, or use only on type. If the later is the case, some 
transformation methods are applied. If a method accepts only continuous fea
tures, each nominal value of a feature is replaced with a unique numerical 
value. On the othet hand, if a method use only nominal features, the con
tinuous features are transferred to discrete values generally by employing a 
clustering procedure. In that case, the range of all possible values of a feature 
is partitioned into intervals and all the values in each interval is replaced with 
a unique nominal value. Such procedures nuiy be time consuming, and may 
cause some information loss. For such reasons, RPFT is developed in order to 
handle both type of features without any modification.

3.3.12 N oise

Instance based algorithms are generally robust to extreme or noisy input fea- 
tui'e values since query locations will not be close to these values [40]. On 
the other hand, most regression approaches, including KNN, are not robust 
to target noise. The empirical results show that robustness to noise in RPF'P 
is better than some other well known methods. Even though, the robustness 
of RPF'P is better when compared to others, it is unacceptable especially for 
extremely noisy domains.

A measure of robustness is called the breakdown point, which is defined 
to be the smallest percentage of noisy data that can lead prediction to take
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unacceptable large value. The RPFP-N algorithm developed for noisy data, 
achieves close to the highest possible breakdown value of 50%, since it em
ploys median for approximation on feature projections. On the other hand, in 
comparison, for classical linear least squares regression method, the breakdown 
point is only 0%.

3.3.13 N orm alization

Learning approaches, such as KNN, that employ distance measures require the 
normalization of feature values in order to give all features equal contribution 
in the computation of distance. The wider the range of values for a feature, 
the higher effect it has in the distance computation. For example, without 
normalization, a feature which includes values for body weight will cause dif
ferent nearest neighb'oi's to be determined if it is measured with pound instead 
of kilogram. On the other hand the weight feature will not effect the computa
tion of distance if there exists an other feature, say population, having values 
that ranges with millions. RPFP eliminates the need for normalization, since 
approximations are done on each feature separately.

3 .4  L im ita tio n s o f  R P F P

RPFP has two main limitations. The effect of redundant features is a com
mon problem for most inductive algorithms, and lack of interpretation is the 
common shortcoming of instance-based approaches, which are described be
low. The' limitation caused by rectangular regions, common to most learning 
approaches, is also mentioned.

3.4.1 R edundant Features

In a database, it is possible that the same information may be repeated in 
different places. Existence of features that have functional dependencies with 

each other is such a case. A similar case occurs if some features in the data
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are obtained by combining some others. This issue is known in statistical 
literature as collinearity, if such a relation occurs between two features, or as 
multicollinearity, if more than two features have similar relationship.

The effect of redundant features in RPFP is seen on the final prediction 
phase when merging feature approximations. Redundancy will cause similar 
features to effect the final prediction more than the other features. Intuitively, 
if one feature is a copy of another for example, the weight of that information 
will be duplicated in the final result.

3.4.2 Interpretation

The inerpretability of the constructed model is an important aspect of eager 
learning algorithms. .The conventional motivation of statistical data analysis is 
to develop simple compact models that are easy to interpret by human experts. 
However, the accuracy is the main goal in many applications. That is why re
cent research has resulted in many complex models, hard to interpret, such 
as neural networks. KNN is also a common lazy approach that does not pro
duce any model for interpretation. RPFP, as a non-parametric lazy approach 
which does not construct global models, does not have this property either. 
However, instead of concept descriptions, some information about the relative 
importance of the features and interactions between them can be determined 
with further research.

3.4.3 R ectangular R egions

The partitioning algorithm employed in RPFP partitions the instance space 
around query point by using a single feature at each step, and the space is 
partitioned along this feature dimension. This process forms regions as hyper
rectangles. It is not always possible that the instances at any query location 
will have a rectangular shape parallel to feature dimensions. However, this 
is the way most partitioning approaches work, and it is generally possible to 
make good local approximations using instances enclosed by hyper-rectangles.
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3.5 C o m p lex ity  A n a lysis

Since RPFP is a lazy approach, and stores all instances in the memory, a space 
proportional to the whole training data is required. Given a data set with 
n instances and m features this space is proportional to m.n. Again, for the 
training phase, the computational complexity of projecting instances to input 
features, followed by a sort operation on each feature, is 0(m .n. log n). The 
computation of variance, 0(n), of target values for all training data is also 
computed in the training phase, and it does not change the above complexity.

Computing the prediction of the target value for a query point starts with 
making a copy of the projections, which has a complexity of 0(n). The com
putation complexity of local approximation in the first step of partitioning is 
again 0{n). The complexity of computing local weight is also 0{n), which is 
also the total computation complexity at first partitioning step. The parti
tioning at each step removes, on the average, half of the instances. For the 
whole partitioning process the total computation for a single feature will be 
proportional to 2n since n -t- n/2 -|- n/4 -f-. . .  ft! 2n. If we compute the complex
ity for all features we obtain a complexity proportional to 0{m.n), which is 
equal to the complexity of KNN. If we consider situations for nominal features, 
this complexity is even slightly shorter than linear features. In the worst case, 
where a nominal feature has two values (only half of the data is removed), it 
requires on the average the same complexity. The test times of the algorithms, 
run on the real data sets also shows that the running test time of RPFP is 
proportioned to KNN.

3.6 C om p arison s o f  R egression  M eth o d s

In the previous sections we have described some properties and limitations of 
RPFP, and made some comparisons with other important approaches in the 
literature. In this section we summarize such properties and comparisons with 
different important approaches. Methods included are instance-based regres
sion (KNN [40]), locally weighted regression (LOESS [7]), rule-based regression
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(RULE [59]), projection pursuit regression (PPR [20]), partitioning algorithms 
that induces decision trees (CART [9],DART ( [23]) and multivariate adap
tive regression splines (MARS [19]). The summary of properties is shown in 
Table 3.1. One interesting result obtained from the table shows that all par
titioning methods (RULE, CART, DART, MARS) except RPFP have similar 
pi'operties. A detailed overview and comparison of these regression techniques 
is given in [53].

Properties RPFP KNN LOESS PPR RULE CART DART MARS
Adaptive V y 7 y y
Continuous V V V v/ y y
Between Regions 
Different V V v/ V y y
Feature Types 
Curse of V v'
Dimensionality
Incremental V V V
Handle V V V V V V y y
Interactions
Interpretable V V V y y
Handle Irrel. V V V y
Features
Local V V V V V y y
Memory Cost 
Handle Missing 
Values

V
V V V y y

Robust to 
Noise

RPFP-N

No Need for 
Normalization

v/ V V y y
Regions Overlap V V V V y y
Partitioning
Occurs

V V V y y
Testing Cost 
D̂*ain Cost V V V

V V V y y

Table 3.1. Properties of Regression Algorithms. The (y^ is used for cases if the 
corresponding algorithm handles a problem or it is advantageous in a property 
when compared to others.



Chapter 4

Empirical Evaluations

In this chapter empirical evaluation of RPFP and other important regression 
methods are presented. Even though, the main purpose is to measui’e the 
relative performance of RPFP and to compare it with contemporary regression 
algorithms, another intension is to present a comparison of those methods on 
a large number of real domains since it is difficult to find such comparative 
evaluations in the literature.

The algorithms are properly selected according to some criteria. All of 
them can handle high dimensional domains and accept both categorical and 
continuous input features. We did not include LOESS for example, since it does 
not work with higher dimensions, for more than 6 features. On the other hand, 
they are successful representatives of different approaches, such as regression 
tree induction, instance-based learning and rule-based learning. Most of them 
are recently developed and outperform early developed algorithms within the 
same cipproach. Finally, all of them are obtained from shared resources or 
available in published material.

Those algorithms are KNN (instance-based), the most important one since 
it belongs to the same category as RPFP, RULE (rule-based learning), DART 
(regression tree induction), and MARS (spline-based, partitioning regression).

In this chapter, we describe the evaluation methodology commonly used 
to measure accuracy of regression methods. Later, algorithms and real data

67
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sets are described and empirical results are presented, including the accuracy 
performance, robustness of algorithms to irrelevant features, missing values 
and noise, and computation times.

4.1 P erform an ce  M easu re

The accuracy performance of the regression methods is measured by comput
ing the prediction error of the algorithms. Since the target values are con
tinuous, the absolute difference between prediction and true target value in 
the test example is used. One common measure is the mean absolute distance 
(MAD) [59, 60]. It is the mean of absolute error found for all test examples.

M AD E f= i \vi  -
T (4.1)

where T is the number of test instances.

MAD values depend on the target values in the given domain. MAD will 
be higher for a domain with high target values than for a domain with low 
target values. In order to get a normalized performance measure for all data 
sets, a modified version of MAD, relative error (RE) [59, 60] is used in the 
experiments. Relative error is the true mean absolute distance normalized by 
the mean absolute distance from the median.

RE = M AD
fEfci b. -median{y)\

(4.2)

Performance results in the experiments are reported as the average of rel
ative errors measured by applying 10-fold cross-validation on data sets.

4.2 A lgor ith m s U sed  in  C om parisons

In this section the properties of algorithms used in experiments are briefly 
described.
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4.2.1 R P F P

K is the parameter of RPFP that defines the minimum number of instances 
allowed for a region determined by the partitioning algorithm; and is set to 
10. An other parameter is the windowing constant^ c^, that is described in 
Section .3.1.4, and it is taken as 0.3. RPFP-N algorithm is also used for artificial 
noisy domains extracted from real data sets, to measure robustness to noise.

4.2.2 K N N

The distance weighted KNN algorithm [40] is used here since it performs better 
than simple KNN that employs simple averaging. The instances close to the 
query have larger weights, and these weights are determined by inverse squared 
distance. The distance measure is Euclidean distance. A normalization on 
test and train input feature values is applied in order to obtain a value range 
between 0 and 1. For matching nominal values, the difference is measured as 0, 
and for the difference between different nominal values on a single dimension 
1 is assigned.

Missing values are filled with mean values of the feature if it is continuous, 
or filled with the most frequent categorical value, if that feature is nominal. K 
is set to 10 for all experiments.

4.2.3 RULE

The latest rule-based regression implementation, written by Weiss and In- 
durkhya [59, 60] is used in experiments. The program is available in the data 
mining software kit (DMSK), attached to [60].

4.2.4 D A R T

It is the latest regression tree induction program developed by Friedman [23]. It 
avoids limitations of disjoint partitioning, used for other tree-based regression
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methods, by producing overlapping regions with increased training cost. In the 
experiments, the maximum dimension (features) parameter, is increased from 
100 to 200, in order to enable experiments for irrelevant features.

4.2.5 M A R S

The latest shai’ed version of MARS, mars.3.6, is used in experiments, which is 
developed by Friedman [19]. The highest possible interaction level is enabled 
and linear spline approximation is set, it generally produces better results than 
cubic splines on most real data sets.

4.3  R ea l D a ta  S ets

It is possible to obtain large number of real world data sets for classification, 
however this is not easy for regression. That is why, data sets used in the 
experiments are collected mainly from three sources [37, 8, 51]. Properties of 
all data sets are shown in Table 4.1. Detailed information about these data 
set is available in Bilkent Function Approximation Repository [28]. In order to 
save space, they are coded with two letters (e.g., AB for Abalone).

4 .4  A ccu racy

The relative errors of algorithms on 27 real data sets are shown in Table 4.2. 
The best results, smallest relative errors, are typed in boldface. RPFP achieves 
best results in 9 of these data sets. DART and MARS achieves the best in 7 
and 6 of these data sets, respectively. In the remaining 6 data sets KNN and 
RULE achieves better accuracy.

One important result extracted from Table 4.2 is the distribution of relative 
errors for different data sets. We have computed the variance of errors for each 
algorithm on all data sets. These variance values show that the performance 
of RPFP is not effected much for different domains. This is an important
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Data Set Code Instances Features
(C+N)

Missing
values

Target
Feature

Abaione AB 4177 8 (7+1) None Rings
Airport AI 135 4 (4+0) None Tons of mail
Auto AU 398 7 (6+1) 6. Gas consumption
Baseball BA 337 16 (16+0) None Salary
Buying BU 100 39 (39+0) 27 Husbands buy video
College CL 236 20 (20+0) 381 Competitiveness
Country CO 122 20 (20+0) 34 Population
Cpu CP 209 7 (1+6) None CPU performance
Electric EL 240 12 (10+2) 58 Serum 58
Fat FA 252 17 (17+0) None Body height
Fishcatch FI 164 7 (6+1) 87 Fish weight
Flare2 FL 1066 10 (0+10) None Flare production
Fruitfly FR 125 4 (3+1) None Sleep time
Gss2 GS 1500 43 (43+0) 2918 Income in 1991
Hornerun HO 163 19 (19+0) None Run race score
Housing HU 506 13 (12+1) None House prices
Norrntemp NO 130 2 (2+0) None Heart rate
Northridge NR 2929 10 (10+0) None Earthquake magnit.
Plastic PL 1650 2 (2+0) None Pressure
Poverty PO 97 6 (5+1) 6 Death rate
Read RE 681 25 (24+1) 1097 Reader satisfaction
Schools SC 62' 19(19+0) 1 Reading score
Servo SE 167 4 (4+0) None Rise time of a servo
Stock ST 950 9 (9+0) None Stock price
Television TE 40 4 (4+0) None People per TV
Usnews UN 1269 31 (31+0) 7624 Rate of Ph.D.’s
Village VL 766 32 (29+3) 3986 Number of Sheep

Table 4.1. Characteristics of the data sets used in the empirical evaluations.
C: Continuous, N: Nominal.
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result that shows the domain independence characteristic of RPFP, which is 
important for large databases today, where data that belong to large number 
of domains is collected together. Increasing number of different domains in 
databases is one of the reasons that increase the need for automatic knowledge 
discovery tools and inductive learning algorithms. On the other hand, when 
the average relative errors of algorithms on real data sets are compared, RPFP 
again achieves the smallest average relative error. Also the variance of RE is 
the smallest.

The final column of Table 4.2 shows the standard deviation of results of 
algorithms for all data sets. The standard deviation values are used only to 
determine small number of data sets to be used for further comparisons of al
gorithms for noise, irrelevant features and missing values. We have determined 
a subset of data sets that have similar results for the comparison of algorithms 
for increasing missing values, irrelevant features and noise. Selected data sets 
with standai'd deviation less than 0.07 are typed in last column with bold font. 
Only in one of these selected data sets RPFP performs best, by chance.

4.5 R o b u stn ess  to  Irrelevant F eatu res

The performance of algorithms on selected data sets (AU, BU, CP, HU, PL and 
SC) by adding new irrelevant features are shown in Figure 4.1. From graphs it 
is seen that, the performance of RPFP is not effected from irrelevant features 
in all data sets except PL, by preserving nearly a straight line parallel to the 
horizontal axis. RULE and MARS are also robust to irrelevant features. It is 
affected from irrelevant features in PL probably because it is a low dimensional 
data set, initially having only two input features. Note that, in only one of 
these data sets (BU), RPFP performs best initially. Most advantages of RPFP 
are generally benefited for high dimensions.

These graphs show that RPFP is not affected much from irrelevant fea
tures. This is the major drawback of KNN, the other lazy algorithm in these 
comparisons, and this is apparent in the graphs. Robustness of RPFP to irrel
evant features is achieved by the local weights assigned to each feature and by
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Data Set RPFP KNN RULE DART MARS StdDev
AB
AI
AU
BA
BU
CL
CO
CP
EL
FA
FI
FL
FR
GS
HO
HU
NO
NR
PL
PO
RE
SC
SE
ST
TE
UN
VL

0.675
0.473
0.334
0.664
0.792
0.692
1.301
0.650
1.009
0.667
0.243
1.218
1.056
0.566
0.868
0.618
0.962
0.947
0.415
0.703
1.008
0.319
0.527
0.729
1.659
0.666
0.970

0.661
0.612
0.321
0.441
0.951 
0.764 
1.642 
0.603 
1.194 
0.785 
0.582 
2.307 
1.201 
0.654 
0.907 
0.600 
1.2.32 
1.034 
0.475 
0.796 
1.062 
0..388 
0.619 
0.599 
' 1.895 
0.480 
1.017

0.899
0.744
0.451
0.668
0.944
0.290
6.307
0.678
1.528
0.820
0.258
1.792
1.5.58
0.218
0.890
0.641
1.2.50
1.217
0.477
0.916
1..3.52
0..341
0.229
0.906
4.195
0.550
1.267

0.683
0.720
0.333
0.497
0.883
1.854
5.110
0.571
1.066
0.305
0.190
1.556
1.012
0..359
0.769
0.526
1.012
0.928
0.404
1.251
1.045
0.223
0.441
0.781
7.203
0.412
1.138

0.678
0.546
0.321
0.525
0.858
0.261
1.845
0.510
1.095
0.638
0.284
1.695
1.077
0.342
0.986
0.522
1.112
0.873
0.4.32
0.677
1.194
0.350
0.337
0.754
2.690
0.444
1.131

0.101
0.115
0.056
0.102
0.066
0.646
2.300
0.066
0.207
0.204
0.155
0.397
0.222
0.177
0.078
0.054
0.128
0.134
0.034
0.2.33
0.142
0.062
0.153
0.110
2.281
0.101
0.116

Mean
Variance

0.768
0.102

0.882
0.220

1.162
1.659

1.158
2.323

0.821
0.310

Table 4.2. Relative Errors of Algorithms. Best results are typed with bold 
font.
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AD (Number of Irrelevant Features)

CP (Number of Irrelevant Features) HU (Number of Irrelevant Features)

PL (Number of Irrelevant Features) SC (Number of Irrelevant Features)

F’igure 4.1. Relative errors of algorithms with increasing irrelevant features.
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making computations on each feature separately.

A comparison of algoi’ithms on all data sets where 30 irrelevant features are 
added to each of them is shown in Table 4.3. RPFP and MARS outperform 
other algorithms for the robustness to irrelevant features according to this 
table.

4 .6  R o b u stn ess  to  M issin g  V alues

With current relational databases, the issue of missing values is a common 
problem for most domains. RPFP handles missing values naturally by simply 
ignoring them, and using all other values available. A comparison of RPFP 
with other algorithms for increasing missing values on selected data sets is 
shown in Figure 4.2. As the values are removed from the data, information 
loss and performance degradation become obvious. However, the decrease in 
performance is smaller in RPFP than other algorithms, where the missing 
values are filled with means or most frequent nominal value. The error rate of 
RPFP becomes relatively minimal in all selected data sets, when proportion of 
missing values reaches 90%, except for low dimensional PL data set. According 
to these results, DART also performs well in robustness to missing values.

A comparison of algorithms on all data sets, where 20% of the values of 
real data sets are removed, is shown in Table 4.4. According to these results 
RPFP outperforms other algorithms in terms of robustness to missing values.

4 .7  R o b u stn ess  to  N o ise

It is apparent from the graphs in Figure 4.3 that RPFP-N outperforms other 
algorithms for most of the selected data sets. An interesting result is that 
RPFP also achieves better than other algorithms in most data sets. However, 
all algorithms except RPFP-N reaches unacceptable error rates with a small 
increase in the ratio of noise.
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Data Set RPFP KNN RULE DART MARS
AB 0.704 0.906 0.899 * 0.682
AI 0.500 1.539 0.744 0.658 0.682
AU 0.351 0.618 0.451 0.511 0.369
BA 0.670 0.723 0.668 0.641 0.573
BU 0.802 1.005 0.944 0.938 1.049
CL 0.716 1.320 0.290 0.306 2.195
CO 1.330 3.027 6.307 1.662 4.126
CP 0.753 1.214 0.678 0.668 0.590
EL 1.018 1.076 1.528 1.236 1.134
FA 0.698 1.058 0.820 0.877 0.249
FI 0.295 0.985 0.258 0.350 0.208
FL 1.038 1.537 1.792 1.490 1.629
FR 0.959 1.075 1.558 1.430 1.777
GS 0.568 0.893 0.218 0.573 0.404
HO 0.876 0.974 0.890 1.165 0.847
HU 0.642 0.963 0.641 0.653 0.521
NO 1.024 1.071 1.250 1.157 1.370
NR 0.979 1.149 1.217 * 0.916
PL 0.674 0.952 0.477 0.734 0.407
PO 0.775 0.934 0.916 1.013 1.005
RE 1.033 1.060 1.352 1.311 1.042
SC 0.362 0.673 0.341 0.391 0.305
SE 0.589 1.021 0.229 0.650 0.798
ST 0.782 1.151 0.906 0.756 0.818
TE 1.617 2.455 4.195 2.709 5.614
UN 0.671 0.856 0.550 0.906 0.394
VL 0.972 1.111 1.267 1.307 1.257
Mean 0.793 1.161 1.162 0.964 1.147
Variance 0.084 0.258 1.659 0.271 1.429

Table 4.3. Relative errors of algorithms, where 30 irrelevant features are 
added to real data sets. If the result is not available due to singular vari- 
ance/covariance matrix, it is shown with (*). Best results are typed with bold 
font.
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Figure 4.2. Relative errors of algorithms with increasing missing values.
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Data Set RPFP KNN RULE DART MARS
AB 0.7.39 0.750 0.962 0.688 0.748
AI 0.532 0.726 0.676 0.546 0.798
AU 0..393 0.414 0.526 0.363 0.414
BA 0.817 0.560 0.783 0.565 0.709
BU 0.881 0.964 0.989 0.983 0.877
CL 0.796 0.942 0.400 ,0.4.35 0.801
CO 1.439 1.856 3.698 2.377 3.7.33
CP 0.584 0.652 0.843 0.607 0.880
EL 1.029 1.097 1.537 1.191 1.074
FA 0.767 0.849 0.949 0.735 0.731
FI 0.273 0.584 0.336 0.320 0.348
FL 1.377 1.851 1.751 1.421 1.557
FR 1.033 1.711 1.557 1.347 1.012
GS 0.702 0.743 0.497 0.536 0.595
HO 0.889 0.911 1.040 0.974 0.836
HU 0.687 0.761 0.748 0.590 0.649
NO 0.986 1.229 1.363 1.222 0.989
NR 0.940 1.072 1.272 * 0.972
PL 0.668 0.733 0.686 0.420 0.679
PO 0.682 0.976 1.189 0.792 1.026
RE 1.007 1.059 1.364 1.229 1.048
SC 0.327 0.449 0.500 0.370 0.303
SE 0.938 0.921 0.849 0.495 0.733
ST 0.777 0.744 0.904 0.707 0.930
TE 1.810 4..398 3.645 2.512 16.503
UN 0.669 0.559 0.620 0.844 0.497
VL 1.014 1.056 1.410 * 1.090
Mean 0.843 1.058 1.152 0.891 1.501
Variance 0.110 0.587 0.670 0.323 9.372

Table 4.4. Relative errors of algorithms, where 20% of values of real data sets 
are removed. If the result is not available due to singular variance/covariance 
matrix, it is shown with (*). Best results are typed with bold font.
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RPFP is generally more robust when compared to other methods even it 
produces complex models, that may cause large variance error which is sensi
tive to noise. The reason for that may be the decrease in variance error since 
the feature predictions are computed with different neighbors in each feature 
dimension. This probably makes bootsrapping effect on prediction. Boot
strapping is a common method to decrease variance error by using multiple 
overlapping subsets of the same data instead of a single training set.

4.8  In teraction s

RPFP handles interactions in a similar way as the other eager partitioning 
approaches work, that is by partitioning the instance space. The best way 
to show how partitic>ning in RPFP handles interactions and generally increase 
accuracy for data sets having interactions is to compare it with its additive 
version. All other algorithms compared in the pi’evious chapters have this 
property. The following experiments show that RPFP also has this property 
as other eager partitioning algorithms.

The additive version of RPFP is obtained by excluding the partitioning 
from RPFP algorithm and simply by combining the feature predictions and 
obtaining the final prediction after the first step. We denoted the additive 
version as RPFP-A.

The first experiment is done with a simple artificial data set having two 
interacting features and 100 instances formed as shown in Figure 4.4. Here 
cind x2 are the input features and y is the target. The feature .xT takes binary 
values while x2 and y take continuous values from 0 to 50. The relative error 
of RPFP on this data set is 0.31, which is much smaller than that of RPFP-A, 
whose relative error is 1.35.

Another experiment is conducted on real data sets, and the results are 

shown in Table 4.5. The results show that RPFP significantly outperforms 
RPFP-A, which indicate the ability of RPFP in handling interactions.
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Figure 4.4. Artificial data set. x l and x2 are input features.

D RPFP RPFP-A D RPFP RPFP-A D RPFP RPFP-A
AB 0.675 0.815 FA 0.667 0.855 PL 0.415 0.819
AI 0.473 0.500 FI 0.243 0..334 PO 0.703 0.783
AU 0.334 0.430 FL 1.218 1.487 RE 1.008 1.000
BA 0.664 0.752 FR 1.056 1.041 SC 0.319 0..337
BU 0,792 0.896 GS 0.566 0.667 SE 0.527 0.944
CL 0.692 0.773 HO 0.868 0.9.39 ST 0.729 0.992
CO 1.301 1..354 HU 0.618 0.710 TE 1.659 1.629
CP 0.650 0.738 NO 0.962 0.958 UN 0.666 0.718
EL 1.009 1.019 NR 0.947 0.956 VL 0.970 0.988

Table 4.5. Comparison of RPFP with its additive version RPFP-A. Best results 
are typed with bold font.
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4.9  C o m p u ta tio n  T im es

Since the computation times of lazy and eager approaches differ significantly 
for training and prediction phases, training times of eager approaches and 
prediction or test times of lazy approaches are given in Table 4.6. Generally 
test times of eager approaches and training times of lazy approaches are close 
to zero. The time durations are measured on a Pentium450 personal computer 
running Linux operating system.

The results justify the theoretical considerations in determining the compu
tational complexity of RPFP such that it is proportional to the linear predic
tion complexity of KNN. On the average, prediction time of RPFP is 2.5 times 
higher than of KNN. This is more apparent for largest datasets (AB, GS, NR). 
In general computation performances of algorithms differ for different datasets.
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Datei Set RPFP
Test

KNN
Test

RULE
Train

DART
Train

MARS
Train

RPFP/KNNR
Ratio

AB
AI
AU
BA
BU
CL
CO
CP
EL
FA
FI
FL
FR
CS
HO
H U
NO
NR
PL
PO
RE
SC
SE
ST
TE
UN
VL

40081.2
7.5

124.1
261.9
51.6

150.9
32.0
30.6

141.1 
167.0
18.1

1198.8
9.0

14241.0 
92.8

449.2
6.0

24027.0 
1536.4

6.1
2717.0

7.5 
6.9

1173.8
0.1

6459.7
2113.9

17217.1
3.0

41.8
50.1
49.2
35.6
31.7 

161.0
19.5
30.3 

161.3 
775.9
44.0 

6435.2
140.7
98.9 

1.7
9.346.7
1415.5

2.0 
674.6

2.0
4.0

759.8 
' 0.0

3858.9
1229.5

6593.3
248.4
407.4
429.8
284.9
464.0
396.5
251.4
389.1
403.9
278.5
408.7
2.34.5

1236.6
266.3
594.4
236.8 

7006.4
503.3
250.3
625.2
251.2
221.6 
845.6
2.35.4 

4834.2 
1101.0

458.503.0
57.8 

1772.2 
.3022.1
667.7
708.6
4.59.4
263.6 
933.2

16.54.4
200.5
901.4
42.8 

2.3845.8
835.8 

7576.7
18.0

81984.0 
9.343.1

41.1 
.35.541.5

78.2
78.2 

16203.2
3.1

153959.0
107661.0

7629.1 
1-53.5 
573.9 
912.4
738.6 

1039.9
484.8
361.0 
.385.6
755.8
226.7
543.8 
99.9

8797.0 
616.2

1186.2 
68.1

4207.3
670.7 
121.6

2260.1
283.8
109.0 

18.39.2
25.5

7287.0
3082.9

2.3
2.5
3.0
5.2
1.0
4.2 
1.0 
0.2
7.2
5.5 
0.1
1.5 
0.2
2.2 
0.7
4.5
3.5
2.6 
1.1 
3.1 
4.0 
3.8
1.7
1.5

*

1.7
1.7

Mean 2.5

Table 4.6. Time durations of algorithms for real data sets in milliseconds.



Chapter 5

Conclusion and Future Work

In this thesis we have presented a new regression method called RPFP. It 
is an instance-based, non-parametric, nonlinear, context-sensitive, and local 
supervised learning method based on feature projections. It achieves higher 
accuracy results especially when compared to the most common lazy approach, 
KNN. Its performance is also significant when compared to important eager 
approaches of both machine learning and statistics. The main drawback of 
RPFP is the lack of interpretation and its high prediction time requirement, 
as other lazy approaches.

Even though, RPFP is a lazy method, it eliminates most drawbacks of 
other lazy methods. The most important one is that it is robust to irrelevant 
features. The local weight associated with each feature enables this property. 
Besides, it is context-sensitive that is contribution of features are computed 
separately in different regions of the instance space. Some features may be 
important only some regiorts of the instance space.

RPFP also properly handles most problems belonging to all types of learn
ers, eager or lazy. Those are curse of dimensionality, missing feature values, 
and noise, handled by a modification on RPFP algorithm. These are important 
and common problems especially with large databases today. RPFP outper

forms all other important methods used in comparisons on domains having 

large number of missing values or noise.

84
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The advantages and limitations of RPFP is described in the previous chap
ter. Future work can be directed to overcome these limitations and to incor
porate new properties to RPFP. Possible improvements are described in the 
following paragraphs.

Redundant Features: If there are functional dependencies between some fea
tures, or some of the features give the same information, they can be factorized 
to a single feature, or some of them can be removed from the training set.

Interpretation: Lack of interpretation of the underlying data is a common 
drawback of all lazy approaches. However further research can be directed for 
RPFP in order to determine relative importance of features by using the local 
weights of features determined for each query instance. Similar work can be 
done in order to determine interactions between features, by using the changes 
in the local weights of features at each partitioning step.

Incorporating Domain Knowledge: The main motivation to develop ma
chine learning algorithms or knowledge discovery tools is to extract knowledge 
without an expert, since number of domains in the databases is large. How
ever for stand-alone applications, where the data belongs to a single domain, 
and where a domain knowledge is available, incorporating domain knowledge to 
these automatic tools, including RPFP, may increase the accuracy significantly.

Misclassification Cost: Incorporating misclassification costs to classification 
algorithms is a current research topic. Misdiagnosing a patient as healthy 
is much important fault than vise versa. Given a misclassification function 
for continuous target values, similar research can be directed for regression 
algorithms, including RPFP.

Feature Weighting and Selection: RPFP employs an implicit local weight 
for each feature at each step of RPFP algorithm. Incorporating feature weights 
computed by external weighting algorithms is not researched as well as feature 
selection algorithms.

Classification Tasks: Some authors describe classification as a sub-category 
of regression. By associating a feature having binary values for each class value 
of a categorical target, the performance of RPFP for classification tasks can
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be evaluated.

Bootstrapping: Bootstrapping is a sampling method used to increase the 
performance of learning algorithms by decreasing the variance error. However 
for lazy approaches, where variance error is small when compared to bias error, 
this method does not work and they are called stable because of this property. 
The same thing may not occur for RPFP since it an adaptive partitioning 
method, and whether boosting increase its performance can be researched.

As a final word, instance-based regression by partitioning feature projec
tions is a successful technique in regression. RPFP method can compete with 
the most famous and successful methods of both machine learning and statis
tical literature. Some important properties of RPFP that are missing in many 
important other methods such as handling missing values naturally, robustness, 
and domain independence enable it to become an important tool for knowledge 
discovery and data mining systems.
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