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Abstract

SPATIAL PROPERTIES OF QUANTUM  MULTIPOLE
RADIATION

Muhammet Ali Can
M. S. in Physics

Supervisor: Prof. Dr. Alexander S. Shurnovsky
June 2000

Complete quantum mechanical treatment of multipole radiation is con­
structed. Vacuum noise of polarization for transversally and longitudirudly 
polcirized fields is discussed for different total angular momentum values due to 
the presence of quantum localized sources. It is shown that the spatial properties 
of the multipole vacuum noise are independent of the type of the radiation, either 
electric or magnetic.

New definition of polarization matrix constructed from the field-strength 
tensor, Ricci Tensor, is introduced. Using Jaynes-Cummings model Hamiltonian 
for electrical dipole atom, some statistical properties of the rcidiation are 
considered.

A new method for polarization measurement at short and intermediate 
distances from the source, based on the use of optical Aharonov-Bohm effect 
is proposed which is classified as a quantum nondemolition measurement. This 
proposed experiment leads to measure the longitudinal pohirization and spcice- 
tirne correlation of polarizations of multipole rcidiation.



K eyw ords: Quantum multipole radiation, Qucxnturn nondemolition po­
larization measurement, Quantum optics. Quantum entcingle- 
ment.
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özet

ÇOK KUTUPLU KUVANTUM  IŞINIMININ UZAYSAL
ÖZELLİKLERİ

Muhammet Ali Can
Fizik Yüksek Lisans

Tez Yöneticisi: Prof. Dr. Alexander S. Shumovsky
Haziran 2000

Bu çalışmada çok kutuplu ışmırmn tam kuvantum mekaniksel ifadesi ele 
alınmıştır. Enine ve boyuna gelişen alanlar için bu kutuplcişmamn boşluktaki 
gürültüsü, yerel kaynakların varlığından dolayı, fcirklı toplam açısal rnomentumlar 
için tcirtışılmıştır. Ayrıca boşluktaki çok kutuplu gürültünün uzayscd özellik­
lerinin elektriksel ya da manyetik ışınımdan bağımsız olduğu gösterilmiştir.

Diğer taraftan alan-etkili tensor, Ricci tensor, ile kurulan kutuplaşma matrisi 
tcinıtılmıştır. Son olarak elektriksel iki kutuplu atom için Jaynes-Cummings 
model Harniltanyen kullanılarak ışınımın bazı istatistiksel özellikleri incelenmiştir.

Kciynaktan kısa ycida orta mesafede kutuplaşma yada şiddet ölçümlerinde
yeni bir metod, etkisiz kuvantum ölçümleri olarak adlandırılcin optik Aharanov-
Bolırn etkisi temel alınarak kullanılmıştır. Bu yeni metod boyuna kutuplaşma
ölçümlerini ve çok kutuplu ışınımın kutuplaşmasının uzay-zaman etkileşimini

kapsar.
Anahtar
sözcükler:

Çok kutuplu kuvantum ışınımı, etkisiz kuvantum kutuplaşma 
ölçümleri, kuvantum bağımlılığı, kuvantum optiği .
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Chapter 1

Introduction

Measurement of polarization is one of the fundamental tools for experimental 
sciences such as spectroscopy and optics where it is usually considered from the 
clcvssical point of view.^ However, since the beginning of new directions such as the 
quantum computation and quantum information processing, deeper investigation 
of quantum-mechanical picture of polarization measurement has become to be 
important. These new topics put the entanglement of photons in the central 
position. Due to the i^hoton polarization entanglement in the process of creation 
of a pair of photons, the detection of polarization state of one photon gives 
information about the state of the second photon.^ Therefore, in recent yecirs 
there has been growing interest to understand the quantum nature of polcirization 
and polarization measurement both in theoretical and experimental ways.^

According to the classical point of view, the polarization phenomena 
is determined by given direction of oscillations of the electromagnetic field 
which is considei’ed to be a transversal one. The polarization is usually 
calculated as though the radiation field consists of the monochromatic (or quasi- 
monochromatic) plane waves. In this case, the field strengths E and B are 
orthogonal to the direction of proi^agation k and have equal magnitudes, so that 
the polarization can be considered as the measure of transversal anisotrophy 
of either of the field strengths. The quantitative description of polarization is 
based on the use of the quadratic forms in the field strengths, forming either the

1



CHAPTER 1. INTRODUCTION

(2 X 2) Hermitian polarization (coherence) matrix or corresponding set of Stokes 
parameters^’'* (operators, in quantum case**). These quadratic forms cire chosen 
to be determined through the intensity measurements of the field..*

It is well known that the atomic and molecular transitions emit the multipole 
radiation represented by spherical electromagnetic waves.** In classiccil picture, 
either plane or spherical waves can be used since both of them form the 
complete orthogonal sets of solutions of the wave equation. However, in qucintum 
picture, there is a fundamental difference between these two representcitions of 
electromagnetic field. First of all, the plane waves of photons correspond to the 
states of the field with given linear momentum. At given wave number k, they 
are specified by only four operators of creation and destruction with two different 
polar izat ions .At  the same time, the spherical waves of photons correspond to 
the states with given angular momentum. At given k, total angular momentum 
j  >  1 and parity, they are specified by 2(2j  +  1 ) > 6 different operators of creation 
and destruction.^’® Since the components of linear and angular momenta do not 
commute with each other, the two representations correspond to the physical 
observables which cannot be measured simultaneously. Therefore, in order to 
describe the quantum multipole radiation, we have to deal with the spherical 
waves of photons rather than plane waves.^

Quantum electrodynamics interprets the polarization as a given spin state 
of photons.® The spin of a photon, defined as the minimum angular momenta, 
is known to be 1 .®’*° Hence there are three different spin states of a photon. 
In the case of plane waves of photons, the projection of spin on the direction 
of propagation is forbidden and therefore there are only two allowed spin states 
(polarizations).® In this case, the polarization is the quantum number, describing 
the states of electromagnetic field in cill space.

In contrast to the plane waves, all three projections of spin are allowed for the 
multipole photons, so that there are three different polarizations: two transversal 
with opposite helicities and one linear in the radial direction with respect to the 
source of radiation (e.g., see*®). Such a three-dimensional picture of polarization 
should be described either by the (3 x 3) Hermitian polarization matrix** or by an
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equivalent set of the nine Stokes operators, forming a representation of the SU{3) 
sub-algebra in the Weyl-Heisenberg algebra of multipole p h o t o n s . I t  should be 
stressed that the SU{3) structure of the polarization of multipole radiation is 
directly connected with the spin s =  1 of a photon.

Existence of the third (radial) polarization of the multipole radiation is not 
a surprising fact. Actually, it is well known that the classical electric multipole 
radiation can be defined as the transverse magnetic multipole field, while the 
electric field strength has the radial (longitudinal) component at any point.® 
In turn, the magnetic multipole radiation is the transverse electric field with 
the longitudinal component of magnetic induction. It is also known that the 
longitudinal (radial) components of either electric or magnetic classical multipole 
radiation are important only in the near and intermediate zones when kr < j, 
while vanish at far distances. Thus, the polarization can be different at different 
points with respect to the source. In other words, the polarization is the local 
characteristics of a classical multipole radiation.

In most of the applications, the detection of the radiation occurs far away 
from the source of the radiation where the longitudinal component of the field 
vanishes and spherical waves practically considered to be expressed by plane 
waves. Here, the wavelength of radiation is the critical parameter. In other words 
if the wavelength of the radiation is also small then neither near nor intermediate 
field effects occur. However recent developments, such as high proton pohirization 
and radiation from Rydberg atom, provides very long wavelength of radiation 
even in order of meters. That is the detector can be placed in these zones where 
the radiation can not be considered as classical anymore. Moreover as a 
future application, the development of first generation quantum computers ciin 
use atoms as logic gates and photons as the communication tools between these 
atoms which can be separated in the order of wavelengths. In this case as well 
as the two transversal polarizations which are interpreted as logical bits, qubits, 
the longitudinal polarization can be used as a new degree of freedom for sending 
quantum information.

In the measurement proccess it is also important to figure out the noise.
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coming from the quantum fluctuations of polarization measurement. In other 
words the spatial dependence of polarization of atoms and molecules can also 
influence the quantum noise of polarization measurement in a different way at 
different distances from the source.



Chapter 2

Polarization Properties Of 
Quantum Multipole Radiation

2.1 Polarization Matrix Of Classical Radiation

In classical electrodynamics, the polarization is defined to be the given direction 
of oscillations of electromagnetic field. The different spatial components of 
monochromatic field, oscillating with the same frequency, may have different 
amplitudes and phases. In most of the conventioiicil books on electrodynamics, 
the polarization is calculated as the radiation field consists of the monochromatic 
or quasi-monochromatic plane waves. Here both E and B have the same 
magnitudes. They are located in transversal planes orthogonal to the direction 
of the propagation k. In this case, the polarization is considered as the measure 
of transversal anisotrophy of the field. Since a local source like an atom emits 
the multipole radiation represented by spherical electromagnetic waves, we have 

to stress the difference between the plane and sphericcil electromagnetic waves. 
Then, let us consider first the case of classical monochromatic phme wave 
described by the positive-frequency part of the vector potential of the form

a=x,y

i[k'r—ckt) (2 .1)
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where 7  is the normalization constant and a« denotes component of the 
field amplitude in a plane which is transversal to the direction of propagation 

=  k/k. Then, the field strengths are defined as follows

E{r) = ikA = ik-f
a=x,y

B(r) =  V  X i  =  İ7  (fc X (2 .2)
cx=x,y

Due to the orthogonality and symmetry relations

E -B  = 0,

Bx — Ey, By — Exj

valid for the plane waves, the transversal anisotrophy of the plane wave can be 
specified by either of the field strengths Ê and B. Following the conventional 
choice of the electric field strength, we get the Plermitian polarization (coherence) 

matrix of the form^’̂

Pplane —

e ;E x EiEy alax alay
(2.3)

EyEx E*Ey j  \ u,yu.x UyU-y

It should be stressed that, although the mode functions in Eq. 2.1 depend on 
the polarization matrix Eq. 2.3 is the global object, describing the properties of 
the field in all space. The diagonal elements of Eq. 2.3 describe, apart from a 
factor of 1 / 2, the contribution of the two transversal components into the energy 
density, while the off-diagonal terms give the "phase information” about the pluise 

difference between the transversal components.®
We now turn to the consideration of a classical monochromatic, pure 7-pole 

electromagnetic radiation. To establish connection with quantum case, we shall 

employ the so-called helicity basis^

X± =  T- ’
xYo = (2.4)

These vectors formally coincide with the spin states of a photon. As usual, we 
assume that the origin of the reference frame coincides with the localized source
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(atom). In this basis, the positive-frequency part of the vector potential of the 
multipole field has the form^’®’ °̂

1

M n  = ( - i r x . , A U f ) c —ickt (2.5)

In the spirit of our philosophy, we can choose to interpret A\ij,(r) as the component 
of vector potential with given polarization ¡x at given ¡Doint r where A stands for 
electric or magnetic types of radiation. For the electric multipole radiation

A sir) · r ^  0, [V X Asir)] · r =  0, 

while the magnetic multipole radiation obeys the conditions 

AM {r)-r = 0, [V X 24A/(r)] · r 7  ̂ 0. 

The explicit form of A\^{r) in Eq. 2.5 is®’^

m = - j

(2 .6 )

(2.7)

(2 .8 )

where a\m denotes the global field amplitude defined in all space. In the classical 
picture, a\m is usually specified in terms of the source functions.®’ ®̂ The mode 
functions in Eq. 2.8 are defined as follows

VMp.m =  jMfj{kr){l,j,n,m -  /x\jm)Yj,rn- ,̂

Vŝ m = '7E[-\/jfj+l{kr){l,j -b fl\jm)Yj+i r̂n-^

-  \ / T ^ fj- i {k r ){ l ,j  -  1, ix,m -  fi\jm)Yj_ı,rn-^^■

Plere 7a is the normalization factor, (· ■ · | · · ■) denotes the Clebsch-Gordon 
coefficient and YcniO, (f) are the spherical harmonics. The radial part of the mode 
functions is defined as follows

h{kr) -  <
h^^\kr), outgoing spherical wave 
h]^\kr), converging spherical wave , 
je(kr), standing spherical wave

(2.9)



depending on the boundary conditions^® Here and denote the spherical 
Hankel and Bessel functions respectively.

Consider first the case of a monochromatic electric j-pole radiation. Due 
to the relations Eq. 2.6, the magnetic induction B{r) always oscilhites in the 
transversal plane, while the electric-field strength has an additional (longitudinal) 
degree of freedom. Thus, the spatial anisotrophy of the radiation field can be 
specified by the components of the electric field strength. Following,^® let us 
choose the polarization (coherence) matrix of the electric multipole radicition in 
the following form

CHAPTER 2. POLARIZATION PROPERTIES... 8

P£;(r) =
A*e.^Aeq A'eji.Ae-

A*eqAe+ A*̂ qAeo A*ĵ qAe-
A};_Ae+ A*e_Aeo A*^_Ae-

(2.10)

/

where we take into account that E =  ikA for a harmonic field. Unlike Eq. 2..3, the 
polarization matrix Eq. 2.10 depends on the position with respect to the source.

In the case of magnetic multipole radiation, the electric field strength is always 
transversal and the spatial anisotrophy of the field is defined by the magnetic 
induction which also dominates in the near and intermediate zones.® Therefore, 
corresponding polarization matrix should be constructed from the bilinear forms 
in the components of B(T). Taking into account the reciprocity relation

BM{r) -  Bsir) =  ikÂE{r) (2 .11)

we arrive at conclusion that the spatial structure of polarization of the magnetic 
multipole radiation is described in the same way as that of the electric multipole 
radiation. In both cases, the classical polarization matrix depends on the point 

where the polarization is measured.

2.2 Operator Polarization Matrix

The quantum counterpart of classical relations, discussed in the previous Sec., Ccin 

be obtained in a standard way by substitution of the photon operators instead of
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the field amplitudes. For example, in the case of plane waves, we have to subject 
the field amplitudes in Eq. 2.1 to the Weyl-Heisenberg commutation relations

=  ¿cra'j

which allows Eq. 2.3 to be cast into the normal-ordered operator polarization 

matrix

d (")
plane

at ay
a+ÜX a

(2 .12)
y

whose elements are the quadratic forms in the creation and destruction operators. 
To simplify the notations, hereafter we denote the photon operators by the same 
letters as the classical field amplitudes. Similar form can also be obtained in 
any other basis, for example, in the so-called circular polarization basis® which 
coincides with the helicity basis Eq. 2.5 to within the inversion of one of the 

vectors.
Besides Eq. 2.12, we can determine the anti-normal operator polarization 

matrix

Æ  =  ( k l f
a^at
a^ay a,ja+

so that the difference

p{an)  _  p{n )  _  p(vac) _  / L \2 
 ̂ plane  ̂ plane plane \^ / / (2.13)

describes the zero point (vacuum) contribution into the polarization of plane 
waves. In other words, the elements of Eq. 2.13 give the vacuum fluctuations 
of corresponding elements of the polarization matrix of plane waves. I should 
be stressed that Eq. 2.13 is independent of position as well as Eq. 2.3 and 
Eq. 2.12 . This means the homogeneity of the vacuum noise of polarization along 

the direction of propagation.
Taking into account that the multipole field is quantized in much the same 

way as the plane waves,^ we have to subject the field amplitudes in Eq. 2.8 to
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the Weyl-Heisenberg commutation relations (at given k and j) :

(2.14)

Consider cigain the electric multipole radiation. In analogy with the case of plane 
waves, we can introduce the normal-ordered operator polarization matrix with 
the elements

=  ¿  (2.15)

which is the quantum counterpart of Eq. 2.10. Then, the anti-normal operator 
polarization matrix has the elements

Pe2 ' { ^  =  * " ( - 1 ) ' '+ “ '' É  VE_„„(f)V3 _„,,„,(f)aE,

Hence, the elements of the vacuum polarization matrix of the electric multipole 

radiation are

E  yÊ-,n,yB (2.16)

A similar analysis can be performed in the case of the magnetic multipole 
radiation. In view of the reciprocity relation, the spatial dependence of Em HC) 
is similar to that in Eq. 2.15, while the photon operators should be changed by 

and aMm- H also follows from the commutation relations Eq. 2.14 that the 
vacuum polarization matrix of the magnetic multipole radiation coincides with 
Eq. 2.16. Hence, the vacuum noise of polarization is independent of the type 
of I'cidiative transition in the source (atom). At the same time, the elements ot 
Eq. 2.16 as well as of Eq. 2.15 depend on position in spite of the global nature ol 

the photon operators defined in all space.
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2.3 Another Definition For Polarization Matrix

Properties of electromagnetic field is completely described by Maxwell equations 
whether we treat it as a completely classical or quantum object. Since the field- 
strength tensor which is a second rank antisymmetric tensor is constructed 
by the components of Electric and Magnetic field variables it includes all the 
physical information. Taking this into account we can define a construction 
similar to Ricci tensor directly from the field-strength tensor as

W S 
 ̂ S* 2P

where

R =  F^F = (2.17)

PILH _

 ̂ 0 -E x -E y -E z \

iu)t E'a: 0 -B z By
Ey Bz 0 — Bx

\ Ez -B y Bx 0 /

(2.18)

The Ricci tensor, R, is represented by the 4 x 4  Hermiticin matrix which 
consists of the three blocks: scalar kP, describing the energy of the field, vector 
S\ describing the energy flux of the field (Poynting vector), and sub-matrix P, 
describing the polarization.

Although Maxwell Stress Tensor is a Lorentz invariant object, constructed by 
another combination of field strength tensor, the new Ricci Tensor is not. This 
is expected because the polarization matrix which is a sub-matrix of Ricci tensor 
is a local object. In other words polarization is measured at a definite point in 
space where the source of the field is located at another point.

It is a straightforward manner to calculate the Ricci tensor for monochromatic 
plane wave propagating in the positive z direction where both Ê  and are 
zero. Using the orthogonality and symmetry relations between E and B Eq. 2.2, 
polarization matrix can be easily obtained as

i \E,\‘ E:E, 0 \
P = e ; e .  \e , p 0

0 0
(2.19)
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It can be seen that this matrix consists of a conventional tensor of polarizcition 
in transversal plane and a scalar which is the half of the total intensity. Then 
we C cin  conclude that this new Ricci tensor gives us compact description of 
polarization.

Moreover the field strength tensor can be written in terms of spin bcises Eq. 2.4 
by applying the unitary matrix U which rotcites the Cartesian basis to the spin 
bases. Since the field strength tensor is a 4 x 4 matrix, the 4 x 4  unitary matrix 
can be constructed from U by just adding a phase rotation to the time part as

0 ^( v/2 v/2
0 0
— 1 —i

1 (2 .20)U = \ 1 , where U =
\ 0 U } V 75  ̂^

Then the representation of the field strength tensor in spin bases can be found 
simply

(2 .21)Fy. =  ÜFÜ*

and the Ricci tensor can be written in new basis as follows

«X = FiF^· (2 .22)

The same procedure can be followed to obtain the polarization matrix for any type 
of radiation in any bases. For example for electric type radiation, it is well known 
that the electric field has a nonzero component along the direction of propagation 
unlike the magnetic field which is perpendicular to both of the electric field and 
the direction of propagation. That is if the direction of polarization is in z 
direction. Bo = 0 but Eq ^  0. Then the polarization matrix is

|EVP +  I^+P -E lE o ElE^ -  B IB - \
-E * E - (2.23)-E*E+  |e;oP +  |5+P +  |5-P 

\E*_E+-B*_B+ -E*_Eo |E’_p  +  |B_|2 /

To see the contributions coming from the electric and magnetic fields, the 

polarization matrix can be separated into two parts Pe and Pm like.
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2P = Pe +  Pm - (2.24)

In the above equation, the first matrix Pe coincides with Eq. 2.10.
This new method simplifies the procedures to obtain the polarization matrix. 

Moreover we can easily see the contributions coming from the electric and 
magnetic fields to the polarization matrix. Then it is a straight forward procedure 
to quantize and find the vacuum fluctuations. Further the new method has 
a mathematical elegant form which needs to be investigated using differential 
geometry.



Chapter 3

Spatial Properties Of The 
Vacuum Noise Of Polarization

It is clecir that the sptitial structure of the rnuItiiDole vacuum state is Cciused by 
the existence of source (atom) in the origin (in fact, in the ’’generation zone” of 
the order of atomic size surrounding the origin). First of all, it is not astonishing 
that the presence of an atom can influence the electromagnetic vacuum state even 
in the absence of radiat ion.Then,  due to the spherical symmetry, the vacuum 
polarization matrix Eq. 2.16 should be indei^endent of the sphericcil angle d and 
(f). This intuitively clear statement can be proven in the following way.^® First, it 
is easy to prove the SU{2) invariance of the operator vector potential (Eq. 2.8). 
Then, taking into account that

we get the SU(2) invariance of as well. Hence, the ¡polarization properties
of the multipole vacuum state are determined by the distcince from the source.

Taking into account the following property of spherical harmonics^^

F,· (0 ,«  =
>2( i ± l )  +  l

4tt

for the mode functions in Eq. 2.8 in the ”pohir” direction (along xo) we get

14
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=  VEA.r) =  ■ ^ [ ^ j ( 2j  +  S)fj+^{kr){l,J +

-\/U  +  l)(2 i -  i ) f j - i {k r ) { l , j  -  l,ц,0\jц)]S„г^,. (3.1)

Thus, only three states with m =  // =  0 ,±1 out of 2j +  1 possible multipole 
states can contribute into the polarization properties of the multipole vacuum in 
the polar direction. We now insert Eq. 3.1 into Eq. 2.16 to get

(3.2)
^  P i 0 0 ^

0 1̂1 0

0 0
;

where

Pl(r) =  e\VE±{r)\\ P||(r) = e\VEo{r)\^.

Since Eq. 2.16 is the Hermitian matrix, it can be diagonalized at ¿my point r 
by a proper rotation of the reference frame. Due to the SU{2) invariance of the 
vacuum polarization matrix Eq. 2.16, the diagonal form Eq. 3.2 represents the 
vacuum polarization matrix in the local frame:

U{r)P̂ '̂ '̂ ‘̂ \r)U^{r) = V̂ '̂ '̂'\r), U{r)U^{r) =  l. (3.3)

It is a straightforward matter to arrive at the following explicit form ol the 

elements of the unitary matrix [¡{r):

J-J _  ^ IJ.il' ~b (1 ~

Here A^^/(r) is expressed in terms of the elements of matrices Eq. 2.16 and Eq. 3.2 
as follows

A+„ = ^ [i> __ (P i-/> + + ) +  |P+-P]. A+_ = - ■lPc-(Pi -  P++) + PloPi-],

Ao+ = — (. ^1 1 ~  A o ) +  l- fo -H ) A o - — . [-^+-(-^11 -fbo) +  .^+oTb-]j
Ao '^0

A_+ = -  P -)  + Po-PU, A_„ = - ^ [ i ’++(Pi -  P -)  + |p+-|"|.
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The following notations are used,

A+

Ao

A_

=  p ; o P - - p ; - P o - ,

= P+0P - - P 0-P + -,

=  p + .p ; , - P o - R ++·

The elements of the vacuum polarization matrix Eq. 3.2 describe the zero point 
contribution into circular polarizations P±{r) and linear polarization in the radial 
(longitudinal) direction T||(r) at any distance r from the source. This contribution 
strongly depends on the boundary conditions, defining the character of radial 
dependence (Eq. 2.9) of the mode functions in Eq. 2.8. For example, in the 
standard case of standing spherical waves, corresponding to the quantization of 
multipole field in a spherical volume with ideal reflecting w a l l s , t h e  transversal 
and longitudinal zero point contributions into polarization are represented by 
the damped oscillating functions shown in Fig. 1 for dipole field (j =  1 ). It 
is seen that the vacuum fluctuations of both the transversal and longitudiruil 
polarizations are very strong at the short distances. Even at the distance of the 
order of the wavelength where kr — 27t, Py exceeds Pj_. At the same time, it is 
seen that P||(r) decays faster than P±{r) at the long distances. It is interesting 
that there are some points where the vacuum fluctuations of either P_l or Py are 
equal to zero.

Let us stress that the above qualitative dependence of the zero point 
contribution into polarization on the boundary conditions is not an astounding 
fact. The dependence of the electromagnetic vacuum on the boundary conditions 
is traced in the Casimir effect^“ as well.

It should be underlined that the above results were obtained under a ’’ hidden” 
assumption that j  is fixed. In fact, we only know that there is a source (atom) in 
the origin. The presence of the local source violates the symmetry properties 
of the possible solution of the wave equation^® and hence leads the spatial 
inhornogeneity of the vacuum state. Therefore, the total zero point contribution 
into polarization should involve summation over all possible y > 1 in Eq. 3.2. The 
limit of p C “‘̂ )(r) at ¿r ^  1 coincides with Eq. 2.13, while the vacuum fluctuations
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kr
Figure 3.1: Zero point (vacuum) contributions into the transversal P\\ cind the 
longitudinal P i polarizations versus kr for dipole field ( j=l ) ,  =  0, =  0

of polarization are much stronger at short and intermediate distances (kr < 2tt) 
than those in dipole case (j =  1 ).

In Fig.2 and Fig.3, the contributions to the vacuum fluctuations for j  = 2 
and j  — 3 can be seen. It is understood from these figures that the magnitude 
of the contributions decreases very rapidly. Moreover the peak values for both 
transversal and longitudinal polarizations shift to the right where kr > j. Then 
for kr >> j  the total fluctuation summed over j  approaches to the case of plane 
waves where the fluctuations are homogeneous.
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kr
Figure 3 .2: Zero point contributions into the transversal P|| and the longitidunal 
Pj_ polarizations versus kr for quadrupole (j=2)

3.1 Polarization of multipole radiation

We shall now return to the discussion of the operator polarization matrix Eq. 2.1-5. 
Consider first the polar direction when 0 =  0 in the mode functions in Eq. 2.8. 

One can get

(3.4)

Thus, the photons with |m| > 2 which may exist a,t j  > 2 do not contribute into 

polarization in the polar direction.
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J-

kr
Figure 3.3: Zero point contributions into the transversal P|| and the longitidunal 
Px polarizations versus kr for j=3

It should be noted that the local properties of polarization can simply be 
described in the proper frame which has been introduced in the previous section. 
Consider the operator Eq. 2.5, Eq. 2.8 as the formal vector-column

i  AeA
A fi (r )  - Aeo 

\ Ae-

in the three-dimensional space spanned by the basis Eq. 2.4. It is clear that the
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local unitary matrix Eq. 3.3 transforms Asir) into the operator vector

/  ^
= A e ,U{f)AE{r) = A eo 

A e -  }

ı̂' = -l  m'=-1 rn= -j

defined in the local proper frame. Employing Eq. 2.8 and Eq. 2.14, it is a straight 
forward matter to arrive at the commutation relations

(3.6)

where the position dependent functions in the right-hand side are defined by the 
equation Eq. 3.2. Then the representation of the operator polarization matrix 
Eq. 2.15 in the proper frame is specified by the following elements

^eJu'O') — ^^AE^(r)AE/j.'(r)· (3.7)

Averaging Eq. 3.7 over the quantum state of radiation, we get the position- 
dependent polarization (coherence) matrix of the electric multipole radiation. As 
a particular example, we now consider the multipole radicition in the coherent 

state I a) such that for all m

Then, from Eq. 3.7 we get

=  *"/);(?)/?,■(?),

where ¡3̂  is defined by the condition

AE {̂r̂ \(Ai =  ^m( 0 I«)·

According to Eq. 3.5, we get

j 1

(3.8)

(3.9)

m = - j i/= —1



CHAPTER 3. SPATIAL PROPERTIES... 21

Here ¡3 (̂r) can be interpreted as the local parameter of coherent state, describing 
the mean amplitude of the field with given polarization ¡x at given point r.

It is now seen that the variance of Eq. 3.7 in the coherent state Eq. 3.8 has, 
in view of the commutation relation Eq. 3.6, the following form

(3.10)



Chapter 4

Dipole Atom As A Source Of 
Quantum Multipole Radiation

After the long discussion of the properties of the multipole field let us consider 
now the source of this radiation. It is an electron transition between two states of 
an atom with well-defined angular momentum and ¡rarity. Then spherical waves 
of photons rather than plane waves should be considered. The atom is considered 
to be initially in the excited state of the multipole transition and the field is in 
the vacuum state. In the process of transition, the atom falls into the ground 
state, while the photon is created.

To understand the quantum nature of this atomic transition, the Jciynes- 
Cummings model can be used.^  ̂ It is well known that the Jaynes-Cumrnings 
model describes fairly well the physical picture of interaction of an atom with 
the cavity field and at the same time admits an exact s o l u t i o n . I n  the 
usual treatment of the Jaynes-Curnmings model, the multipole nature of the 
atomic transitions^® is neglected. The process of radiation is described as though 
an atomic transition radiates a photon with given energy, linear momentum 
and p o l a r i z a t i o n . T h i s  simplified picture overlooks the fcict that the 
multipole atomic transition can radiate and absorb corresponding multipole 
photon described by the quantized spherical w a v e s . I n  contrast to the case of 

plane photons, the multipole photons are specified by given energy and angular

22
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momentum. Let us stress that the two representations are different in 
principle. First, the components of linear and angular momenta do not commute 
and therefore the two representation correspond to the physical quantities which 
cannot be measured at once. Then, the two representations give different picture 
of polarization. In fact, polarization of plane waves is described by two vectors 
orthogonal to the direction of propagation k. Since a monochromatic, pure 
7-pole spherical wave of a given type A (either electric or magnetic) can be 
expanded over an infinite set of plane waves with all possible directions of k on a 
sphere, the polarization of multipole radiation can have any direction, depending 
on the choice of observation point.

4.1 Model Hamiltonian and Coupling Constant

Next, let‘s consider^®’ ®̂ the Jaynes-Cummings model, describing an electric dipole 
transition between the states \j = T,m — 0 ,±1 ) =  ||m) and \j' =  0; m' =  0) =  
ll̂ r) of an atom located at the center of an ideal spherical cavity. Here the former 
wave function corresponds to the triple-degenerated with resjDect to the projection 
of angular momentum excited atomic state, while the latter describes the ground 
atomic state . The coupling constant of the atom-field interaction can be found 
from the matrix element^’ ®̂

2m.pC
{m\p· Ä +  A -^ g ) --- iko{m\d· A\g) -  igm (4.1)

where e and rUg denote the charge and mass of electron, respectively ko =  o;o/c is 
the wave number, corresponding to the transition frequency, d =  er is the dipole 
moment, and A {f) denotes the vector potential of the electroinagnetic field and 
ikA =  E is the electric field strength. In the usual treatment of the atom- 
field interaction,®’ ®̂ the matrix elements in the above equation are calculated as 
though the cavity field is represented by the plane wave with the operator vector 

potential

A{r) =  7 X ) -f- H.c.
Ai=±l

(4.2)
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It should be stressed that the operator vector potential Eq. 4.2 is defined in the 
so-called circular polarization basis^

0̂ — kjk. (4.3)

In Eq. 4.2, 7 denotes the normalization constant and is the destruction 
operator of a photon with energy %kc and polarization yu, propagating along k. 
Since the matrix element in Eq. 4.1 is not equal to zero only inside the generation 
zone of the order of atomic size where ¿r <C 1, the exponential position-dependent 
term in Eq. 4.2 is approximated by unit. Such a calculation leads to the same 
value of the atom-field coupling constant, defined by Eq. 4.1 for all m — 0,

In contrast to Eq. 4.2, the monochromatic electric dipole filed is described by 
the operator vector potentiaE’ °̂

=  Y , {-^Y x-nA ^{r)
ß = - i

(4.4)

where the vectors

X ±  =  T -
i  ¿e„

Xo =  ê;, =  6,IH-L' 5 (4.5)

are spin states of spin 1 of a photon and A ^r) denotes the spherical component 
of the vector potential

4l±(r) =  ±  iAy{r)], ylo(r) =  A^T^.

Unlike Eq. 4.2, the equation Eq. 4.4 describes the three po.ssible directions 
of polarization in any point. In fact, it is well known that the electric dipole 
radiation always has the radial (longitudinal) component of the electric field 

strength together with the two transversal c o m p o n e n t s . L e t  us emphasize
—A

that here in contrast to Eq. 4.3 Xo does not coincide with the direction of k but 
shows an arbitrary radial direction. Moreover, k is the scalar quantity in the case 
of multipole radiation.® Let us point that the use of the base vectors Eq. 4.5 lead 
to well-known interpretation of the polarization in terms of spin states of photons, 
forming the radiation f i e l d . T h e  spherical components of the operator vector



CHAPTER 4. DIPOLE ATOM... 25

potential of the electric dipole radiation are defined at equation Eq. 2.8 with 
X = E and j  = 1.

Taking into account that the spin part of the atomic state does not change 
in the electric dipole transition, we can represent the atomic states under 
consideration as follows^®

||?u) — 'R-excij'^^Xmiß 1 4'̂ i

II5') — R'ground{j'')Too{0., (j)) —

Then, representing d in the basis as.

M l .

' = —=sin6e^‘̂ x^i +  rcosOxo----- j=sin9e X i (4.6)
V2 V2^

and performing the scalar product f.A  in terms of their spherical components by 

means of the equation

Ä .B  =  E  A , B . ,
f i= - l

(4.7)

the coupling constant of the atom-field interaction can be found alter sinqsle 

calculations

gm = ko{m\d· A\g) =
^ ( \ D , - D o )  ifm = 0.

(4.8)

where

D i=  [  r^Rl^Rgrfedr 
Jo

(4.9)

The radial dependence in Eq. 2.8 and Eq. 2.9, corresponding to the standing 
waves in the cavity, is given by spherical Bessel functions with hall-integer 

index®’ ’̂ *̂̂

M ^r) =

Within the generation zone where kr 1, they can be approximated as follows

fo{kr) Ri 1, f 2{kr) «  0.
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Then the coupling constant in this limit takes the following form,

g „ =  k„{m\d ■ A\g) =  {
' ' * - ^ ^ 7  if =  0.

(4.11)

This means that although the coupling constants are generally different for 
m =  0 and m =  ±1, they have the same Vcilues for the transitions ||±) —> 
and ||0) —>· ll̂ r) for the electric dipole case of kr <C 1.

Finally, the model Hamiltonian of the two-level electric dipole atom, 
interacting with the cavity field, can be represented in the rotating-wave 
approximation as follows

H =  Hq -\- Hint·,

Hq — % ^ ) (cun̂ Ct̂ j -j- CUo/?7nni),
m =—l

1

Hint — ^ y '̂ QmRmĝ m “l· H.C.̂
?71 = —1

where the atomic operators are defined in the standard way^°

Rmg ~  Rmm' ~  II

and cuo and u> are the transition and cavity frequencies respectively.

(4.12)



Chapter 5

Dynamics Of Multipole 
Single-Atom Radiation

At the end of the last chapter the model Plamiltonian for the atom-field system, 
which is the well known Hamiltonian for Jaynes-Cummings model for electric 
dipole transition in rotating wave approximation (Eq. 4.12), was defined. To 
investigate the steady-state dynamics of the system for this Hamiltonian, we 
have to clarify the wave function. Then let us first assume that the atom is 
initially in the excited state with given m, while the cavity field is in the 

Vcicuurn state. The most general wave function can be written as

4) =  AoV’o + AiV’i

where

(5.1)

(5.2)ipo — ||m)|uac) and tpi =  ||<7)|1̂ )̂·

After writing the time independent Schrdinger equation Hip — Eip and 
equating the coefficients of ipo and ipi, the energy eigenvalues E Ccin be found 
ecisily

A A
 ̂ ±1 (5.3)Ei — hujQ----------(- )

where

n „  =  y *  +  (hA/2y.

27

(5.4)
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Here A =  Wo — ^ is the detuning parameter and |l^m) denotes the state of the 
cavity field with one dipole photon with the projection of total angulcir momentum 
m. So the steady-state wavefunction can be written, using the normalization 
condition Aq d- =  1, as

\4>e) =  [{Ee -  -  gl]~ '̂' [̂igm\\m)\vac) + {E( -  /iwo)||(7)|lA;m)]. (5.5)

In order to investigcite the dynamics of the atom-field system we should consider 
the time evolution of the wave function. Then let us describe the wave function
as

!« (( ) )  = (5.6)
£=±1

Taking into account the initial conditions, i.e. the atom is in excited and the field 
is in vacuum state, |i'(0)) =  ■0O) the constants in equation Eq. 5.6 are given

by,

(5.7)

Averaging over the state given in Eq. 5.6, we get

2 COS 6̂77X771̂ · (5.9)

We now note that the modes of the cavity field for different m values normally 
have different period of oscillations. In fact, according to Eq. 4.8, the Rabi 

frequency in Eq. 5.9 have the form

^ ^  i \/g±i +  (^A/2)2 if rn =  ±1
+  (fiA/2)2 if m =  0.

(5.10)

If we look at the behaviour of the field in the generation zone, i.e. ¿r <  1, the 
Rabi frequency is same too, since the coupling constants ĝ , for different m ’s cire 

the same (Eq. 4.11).
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The averages in Eq. 5.9 defines the structure of the polarization matrix

K.· (5.11)
m= — l

obtained from Eq. 2.16 by averaging over Eq. 5.6. The imitrix in Eq. 5.11 is 
the generalization of the so-called coherence matrix^ in the case of electric dipole 
radiation.

It can be easily seen from Eq. 5.11 that even if the atom emits the photon 
of a given type m, all three polarizations /j, =  0, ±1 can be observed in the 
radiation field. It should be noted here that due to the choice of basis Eq. 4.5, 
the component with = 0 corresponds to the radial (longitudinal) polarization 
in the direction of Xo, while the other two components // =  ±1 correspond 
to the transversal circular polarizations with positive and negative helicities, 
respectively.

5.1 Measurement Of Quantum Multipole Polar­
ization

The standard polarization measurement, including the measurement of varicinces, 
is based on the intensity measurement in conjunction with a linear polarizer, 
quarter-wave plates or equivalents and a beam splitter.^ The intensity measure­
ment via transformation of photons into electronic signals in a photodetector is, in 
principle, called the local measurement. ^ T h e  rigorous description of a local 
measurement of quantum electromagnetic field needs the picture of localizing 
photons.

It should be noted that the problem of photon localization has cittracted a 
great deal of i n t e r e s t . T h e  point is that the photon operators, creation and 
destruction, in any representation (plane photons, multipole photons etc.) are the 
global objects defined in all space. It has been shown that the position operator 
cannot be defined for the photon^^ and that the maximum precise description 
of localization is j^rovided by the notion of wavefront. '̂* At the same time, the
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transformation of a photon into an electric signal in a photodetector can be 
interpreted as a manifestation of strong l o c a l i z a t i o n . A n o t h e r  example of 
strong localization is provided by generation of a photon by an atom, when the 
photon (at the time preceding the emission) is assumed to be confined in the 
generation region of the order of atomic size.

An important step forward in the understanding of the problem of localization 
has been taken by Mandel.^^ He defined the photon localization in operational 
way (in terms of what is measured) via the ‘configurational number operator, 
represented by the integral of intensity over the ‘volume of detection‘ (a cylinder 
whose base is the sensitive surface of the photodetector and whose height is 
proportional to the detection time).

It should be stressed that the objects, considered in the previously such as 
the operator polarization matrix Eq. 2.15 or Eq. 3.7 cire local by construction, 
however the photon operators are global in nature. Therefore, it looks tempting 
to ‘renormalize‘ the operators AEfi{P) in Eq. 3.7 in the following waŷ ®

1

\/7T)
in order to introduce the ‘ local‘ representation of multipole photons with given 
polarization, specified by the Weyl-Heisenberg commutation relations

(5.12)

which directly follows from Eq. 3.6.
Consider now the complete scheme of two identical atoms, including both the 

generation of multipole photons and their detection. One of the atoms (source), 
located at the point r),. is prepared initially in the excited state of some multipole 

transition. The second atom (detector), located at the point r ,̂ is initicilly in 
the ground state. Then the process of generation and detection can be described 
in terms of interaction of atomic transitions with the photons. In taking into 
account the geometry of the system under consideration, we have to assume 
that the multipole field in the superposed state of the outgoing and converging 
spherical waves focuses on the source and on the detector, respectively. The
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boundary condition, describing this superposition, is for the real radiation field. 
Then the spatial components of the operator vector potential of the superposed 
field can be expressed as

j

A U f)  =  E  E
i  =  l Tn = - j

Xjm (5.13)

where

(out) (coni/)+i _  p.
^Xjm  ? ^X'j'rn' J

while the photon operators of the same kind (either outgoing or converging) 
obey the standard Weyl-Heisenberg commutation relations Eq. 2.14. Hence, the 
vacuum noise of polarization is siDecified by the matrix with the following elements

OO j

= 2 k ^ Y :'L  (5.14)
j — l m = - j

Thus, the spatial properties of the multipole vacuum noise of polarization in 
the system under consideration are caused by both atoms. In the spirit of 
our philosophy, this seems to be natural. Both atoms should influence the 
surrounding space in the same way. In particular, this means that the vacuum 
noise of polarization and field amplitude influence the process of measurement 
even if the distance between the two atoms strongly exceeds the wavelength. If 
the distance between the atoms is of the order of the wavelength or even shorter, 
than the vacuum noise, arising from the presence of source, strongly influences 
the zero-point fluctuations in the location of detecting atom.

We now note that the space-time properties in the source-detector system of 
two identical atoms can be described through the use of special form of Bethe 
ansatz^® potential.

The measurement of intensity or polarization with the aid of a local 
photodetector presupposes detection of a photon by absorption and, hence the 

change of its state. Besides the local measurement, the quantum detection of the 
topological properties of the vector potential is allowed through the use of the
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Aharonov-Bohm e f f e c t . I n  this case, the magnetic flux through a niiicroscopic 
dosed loop produces this effect rather than the local value of the field strength. 
If the magnetic flux passes through a conducting loop, used as a quantum 
interferometer, the change of the phase of electron state in the loop is directly 
proportional to the magnitude of the flux.

Usually the quantum Aharonov-Bohm interferometry is applied to the static 
or slowly varying fields.^® It has been shown recently^^ that the longitudinal 
optical frequency fields can also produce a measurable effect. As an example, 
the TEoi mode of the fiber field,^° inducing the oscillations of conductance in 
the loop, surrounding the fiber, was considered.Definitely, such a topological 
measurement of electromagnetic field neither leads to the absorption of a 
photon nor changes its quantum state. In other words, this is an example of 
nondemolition measurement of the photon propagation.

It should noted that this topological measurement can be applied to the 
detection of magnetic multipole radiation. In fact there is a radicd (longitudinal) 
magnetic field in the case of magnetic multipole radiation, which can be strong 
enough for measurement in the near and intermediate zones when kr < 2-k. 
Surrounding the radial direction, corresponding to the maximum intensity in the 
angular distribution of the magnetic multipole field,®’ °̂ by a conducting loop of 
proper radius, we can measure the propagation of magnetic multipole photons via 
the resistance oscillations in the loop as in the case of optical f i b e r . I t  should 
be stressed that such a measurement reveals only the linearly polarized radial 
component and not the transversal components. In principal, combining the 
topological and local measurements of polarization at different distances from the 
source, it is possible to measure the spatial correlations of different polarizations.

It is clear that topological nondemolition measurement of polarization of 
visible light encounters a number of technical obstacles. First of all, the wave 
length is very short which implies that the measurement should be made at very 
short distances from the source (shorter than lOOnm) and conducting loop should 
have smaller radius. Moreover, the magnetic multipole radiation of atoms is much 
(in about(137)^ times) weaker than the electric multipole radiation with the same
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26J-
Nevertheless, a powerful and at the same time local, source of quantum 

magnetic dipole radiation e x i s t s . I t  is represented by a system of protons 
(usually, solids or liquids, containing a lot of hydrogen atoms per unit volume). 
The spin of photons are polarized by an external static magnetic field. After 
that, the system is culled to increase the spin relaxation time. Then, the external 
static magnetic field is inverted to populate the upper sub-level in the Zeeman 
splitting. Such a system can amplify the thermal noise resonant with the Zeeman 
splitting like conventional paramagnetic m a s e r . U n d e r  some conditions, the 
linear amplification stage is transformed into the Dicke superradiance,^^ when 
the energy of inverted spin system is emitted in the form of very short and 
powerful pulse of coherent radiation (e.g., see^°). The frequency of radiation in 
such a system coincides with the Zeeman splitting

u =  gusBext,

where g is the Lande factor, /zs is the Bohr magneton and is the magnetic 
induction of static external field, responsible for the Zeeman splitting of proton 
spin. Depending on the magnitude of Bext·, the wavelength of this radiation can 
vary from ten centimeters to even hundred meters, while the source occupies 
the region with the linear size of the order of few c e n t i m e t e r s . T a k i n g  into 
account the sharp radiation pattern of the superradiance which can be narrowed 
by a proper choice of the shape of source,^® it seems to be quite realistic to perform 
the nondemolition polarization measurements of the longitudinal component of 
radiation at short or intermediate distances or even to measure the correlation 
between the linear longitudinal polarization at short distances and transversal 
polarization at far distances from the source.

Let us stress that recent success in high proton polarization at reasonably 
high temperatures^^ can lead to technical simplification of Dicke superi'cidicince 
by a system of polarized proton spins.



Chapter 6

Conclusion

Let us briefly summarize our results. We have studied the vacuum or zero- 
point noise caused by the presence of quantum localized sources (atoms). It 
was shown that the vacuum fluctuations of the field amplitude (operator vector 
potential) of multipole photons differ essentially from those in the case of 
quantized plane Wcwes. Although the latter are spatially invariant, the former 
are local in principle because of the strong dependence on position with respect 
to the source (atom). The spatial structure of the multipole vacuum noise is 
described by the Hermitian (3 x 3) vacuum polarization matrix whose elements 
correspond to the commutators of conjugated components of the operiitor vector 
potential. The spatial properties of the multipole vacuum noise are independent 
of the type of radiation, being electric or magnetic. At short and intermediate 
distances from the source, the multipole vacuum noise is much stronger than that 
predicted within the model of plane photons. Also an alternative way to define 
the polarization matrix from the field-strength tensor, Ricci Tensor, that gives 
mathematical simplifications to the theory of polarization, has been showed.

In spite of the fact that, at far distances, the multipole waves can be well 
approximated by plane waves, the multipole vacuum noise can strongly influence 
the process of detection even in the far zone. For example, in a special case 
when an atom is used as a detector of photons, it also influences the surrounding 
space^  ̂ and produces spatial inhomogeneity of the electromagnetic vacuum state

34
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which leads to a strong increase of zero-point fluctuations in the polarization or 
intensity measurements in comparison with conventional case of plane waves of 
photons. This fact can be important for the polarization entanglement processing 
and atomic entanglement engineering in the system of Ridberg atoms.Sirnihu· 
noise effect also takes place in the case of local measurement by a photodetector 
with finite sensitive area, measuring the plane waves of photons.

A new method of polarization or intensity measurement at short and 
intermediate distances from the source, was proposed based on the use of 
optical Aharonov-Bohm e f f e c t t o  detect the propagation of the linearly- 
polarized longitudinal component of magnetic induction, generated by a magnetic 
dipole transition. Since the Aharonov-Bohm effect is caused by the topological 
properties of the field and therefore does not influence the state of photons, 
this is a quantum nondemolition measurement of polarization (intensity). In 
combination with conventional photodetection at far distances, it permits to 
measure the space-time correlation of polarizations of multipole radiation. Since 
the ratio between the transversal and longitudinal polarizations of multipole 
radiation is determined by distance from the source, the different polarizations 
can be considered as the entangled quantum quantities. Hence, the above 
proposed nondemolition measurement of correlation of polarizations opens a 
tempting possibility in the quantum entanglement processing.
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