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ABSTRACT

ASYMPTOTIC ANALYSIS OF HIGHLY RELIABLE
RETRIAL QUEUEING SYSTEMS

Mimin Kurtulug
M.S. in Industrial Engineering
Supervisor: Professor Vladimir V. Anisimov
June, 2000

The thesis is concerned with the asymptotic analysis of the time of first loss
of a customer and the flow of lost customers in some types of Markov retrial
queueing systems with finite buffer. A retrial queueing system is characterized
by the following feature: an arriving customer finding all of the servers busy
must leave the service area and join a special buffer. After this it may re-apply
for service after some random time. If the buffer is full the customer is lost.
The analysis of the time of first loss of a customer is based on the method of
so-called S — sets and the results about the asymptotic behavior of the first
exit time from the fixed subset of states of semi-Markov process of a special
structure (so-called monotone structure). Single server retrial queueing systems
(M/M/1/m with retrials) as well as multiple server retrial queueing systems
(M/M/s/m with retrials) are analyzed in cases of fast service and both fast
service and fast retrials. Exponential approximation for the time of first loss
and Poisson approximation for the flow of lost customers are proved for all of

the considered cases.

Keywords: Retrial queueing systems, rare events, s-set, asymptotic analysis.
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OZET

COK GUVENILIR TEKRAR DENEMELI SIRA
SISTEMLERININ ASIMTOTIK ANALIZI

Mimin Kurtulus
Endustri Mihenlisligi Yiksek Lisans
Tez Yoneticisi: Profesor Vladimir V. Anisimov
Haziran, 2000

Bu tez cahgmasi, bazi Markov tekrar denemeli sira sistemlerindeki ilk
miigteriyi kaybetme zamaninin asimtotik analizi ile ilgilidir. Tekrar denemeli
sira sistemleri gu ozellikleri ile tamimlanabilir: sisteme girdigi anda, biitin
makinalar1 meggul bulan migteri, makinalarin bulundugu alam terkeder ve
6zel bir siraya dahil olur. Miisteri rassal bir sire¢ sonunda tekrar makinalara
servis icin bagvurabilir. Geldiginde, butin makinalai ve bekleme yerlerini
dolu bulan misteriler, sistemden uzaklagir (kaybedilir). Birinci miigteriyi
kaybetme zaman ile ilgili analiz, S-kimeleri diye bilinen ve monoton (tekdize)
yapilar diye bilinen kavramlar yardim: sayesinde yapilmigtir. Bir-makineli ve
birden fazla makineye sa,hib olan sistemler i¢in analiz yapilmigtir. Makinalarin
siratli calistify ve tekrar servis igin deneyen miusterilerin bunu hizli yaptig
farz edilerek, yukarida sozi edilen sistemler incelenmigtir. Birinci kaybedilen

miisterinin zaman dagihminin exponential oldugu kamtlanmgtir.

Anahtar sozcikler. Tekrar denemeli sira sistemleri, nadir olaylar, s-

klimeleri, monoton yapilar, asimtotik analiz.
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Chapter 1

INTRODUCTION AND THE
GENERAL MODEL

Real life mathematical models of computing systems, telephone switching
systems and communication networks usually have complex hierarchical
structure and operate in different scales of time. For example real time
and computer time are in different scales. Even for Markov models, exact
analytic solutions can be obtained only for special rare cases. Therefore
asymptotic methods and approximation techniques play a very important role

in investigation and modeling of such systems.

In many models of practical interest, usually “small parameters” are
present, e.g., the rate of incoming customers in a system is much smaller than
the rate of service (in queueing theory this is termed as “fast service”). These
small parameters give rise to-the so called flows of rare events in reliability and
queueing theory. In applications a rare event usually means different types of

failures, an exit from some region, a loss of call, exceeding some level, etc.

The thesis is devoted to the asymptotic analysis of stochastic systems with
finite number of states and different orders of transition probabilities. Analysis
is oriented toward Markov retrial queueing system with finite buffer and which

operates in different scales of time.
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Queueing systems in which arriving customers who find all servers and
waiting positions (if any) occupied may retry for service after aperiod of time

are called retrial queues or queues with repeated customers.

In the simplest and best known queueing system models, an arriving
customer may receive immediate service, may wait in line to receive immediate
service after some future departure, or may leave the system without receiving
service. Retrial queueing models attempt to capture a property of many real
queueing systems not present in the simple models - that a customer not
receiving immediate service on arrival may return at a later time to try again.
A customer waiting to return is said to be in orbit. In a system of this type a

server may be idle while unserved customers remain in the system.

The theory of retrial queues, like queueing theory itself, had its origin in
problems of communication. Retrial queues have been widely used to model

many problems in telephone switching systems, telecommunication networks,

computer networks and computer systems.

1.1 The General Retrial Queueing Model

The general retrial queueing model consists of s identical independent servers
and m waiting positions. Customers arrive at the system according to a Poisson
process with parameter A. The service time for each customer served is an
independent identically distributed random variable. On arrival, if one or more
of the servers are free, the customer will receive service immediately; otherwise,
if none of the servers is free and there are free waiting positions, the customer
will join the queue waiting for service. On the other hand, if an incoming
customer finds all servers and waiting positions full, the customer will leave the
system forever with probability 1 — Hp or leave the service area temporarily
with probability Hy and will retry for service after a random period of time.
Those customers who will retry for service are said to be “in orbit”. The

capacity of orbit is denoted as O and can be either finite or infinite. If the
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orbit is full in the case of finite O, any customer coming to the orbit will
be forced to leave the system forever. Each orbiting customet will retry for
service with independent input rate of v. Customers retrying for service are
treated as primary customers. Again if customer finds free server he will start
service immediately or if the servers are full and there is free waiting position,
he will join the queue waiting for service. On the other hand, if an incoming
customer finds all servers and waiting positions full, customer will leave the
system forever with probability 1 — Hy (if it is the k' unsuccessful retrial) or

join the orbit, if the orbit is not full, with probability H.

Waiting Positions

Llels] [ [ In]

—_—

Primary Calls Service
Departure
Repeated Calls
Hxk 1- Hk
Retrial Group Loss

Figure 1.1: General Retrial Queueing Model

The model described above is quite general one and many of the retrial
queueing systems can be considered as its special case. An extended Kendall
notation of the form A/B/s/m/O/H can be used to represent a general retrial

queueing system. Retrial time is not described in the notation above. Usually

the retrial time is exponential with parameter v.

A Describes interarrival time distribution. )
B Describes the service time distribution.

S The number of servers in the system.

m  The number of waiting positions in the system.

0 Capacity of the orbit.

H Stands for the loss model and can be described as a series Hy, Hy, Hy, . . .

' dmve:m,
s-LIrary
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When Hi = 1 for £ > 0, every customer receives service if O is infinite and
such systems are called no-loss systems (H is NL). On the other hand, when

Hy =a <1 for k > 0 the system is called a geometric loss system (H is GL).

As stated previously, the model described above is quite general and many
of the models considered previously are special cases of this model. The model

that we considered through the thesis can be described as follows.

Consider the system with single server and m waiting places. The customers
arrive to the system one at a time. Upon arrival, if the server is free, the
customers receive service immediately, otherwise the customer joins the special
queue which we call retrial queue. The customers waiting in the retrial queue
will attempt for service after some random period of time. If a retrying
customer finds the server empty, he will receive service immediately, otherwise
(if the server is busy) he will return to the retrial queue and retry for service

later. If an incoming customer finds the server and all of the waiting positions

occupied, the customer will leave the system forever.

Although the model considered in this thesis is a retrial queueing system
with waiting positions, it is a special form of the model considered in the
literature. Unlike the models considered in the literature, we assume that
repeated calls originate from waiting positions (i.e, customers rejected from

bY

service form a special queue from which they repeat their attempt for service).

———-
Primary Calls Service
—_—
Departure

Repeated Calls//

Retrial Group

m waiting places

Figure 1.2: Retrial Queueing Model where repeated calls originate from the

waiting positions
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We will consider the time of loss of first customer for single server and

multiple server retrial queues under some different assumptions.

Chapter 2 is divided into two parts. The first part is devoted to the
literature review on retrial queues. We consider retrial queues of single server
and multiple server types as well as retrial queues with waiting positions and
retrial queues with batch arrivals which are the models of interest in the area.
The second part is devoted to literature review on asymptotic analysis of rare

events in queueing systems which essentially forms a basis for this thesis.

In Chapter 3, the results about asymptotic behavior of first exit time from
a fixed subset of states of a SMP are reviewed. The exponential approximation

for the time of exit is proved. Notions of S — set and monotone structure are

introduced.

Chapter 4 deals with the time of loss of first customer in an M/M/1/m
queueing system with retrials under some different assumptions. The method
of analysis is based on the results about asymptotic behavior of the first exit
time from the fixed subset of states of a SM P which forms an S — set, which
we give in chapter 3. First we consider asymptotic behavior of the system
under the assumption of fast service and then we consider the system under
the assumptions of both fast service and fast retrials. Finally, we consider the
system operating in Markov environment and under the assumption of fast
service. We derive the expression for the parameter of exponential distribution

for the time of loss of first customer for these models.

In Chapter 5, we study the multiple-server retrial queueing system of
type M/M/s/m and derive the asymptotic expression for the parameter
of exponential distribution for the time of loss of first customer under the
assumptions of fast service and fast retrials. The method of derivation is as
follows: first we study the system with only 2 servers (s = 2) and m waiting

places, then the general result for s server case is obtained by generalizing the

previous results.

Chapter 6 is devoted to the simulation of retrial queueing systems. Time of
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first loss of customer in Markov retrial queueing system is simulated and results
of simulation and approximate results are compared. Also timé of first loss of
customer in retrial queueing system where service is assumed to be uniformly

distributed is simulated and results are compared. The service is assumed to

be fast for both cases.

1.2 Examples of retrial queueing systems

Retrial queues arise naturally as models of many problems in telecommuni-
cation, computer networks and computer systems, and in daily life. In this

subsection, we give some examples of problems which can be modeled as retrial

queues.

1. Making reservations. Consider a service shop in which most of the
reservations are made through telephone calls. There is only one line
which is dedicated to answering requests for reservations. Normally, if a
customer calls the service shop and finds the line busy, the customer tries
the number again after some random period of time with probability H
(Hy < 1) if it is the k* unsuccessful retrial. This example can be modeled
as an M/G/1 retrial queue with loss if the arrival process is approximated
as Poisson. However, when Hy; — 1 it can be approximated as an M/G/1
retrial queue without loss. The interesting questions about the model
described above can be: How long will the busy period last? What is
the average waiting time of a customer? How many customers will the

service shop lose due to blocking?

2. Real time computer system. Consider a real time computer system in
which there are s ports and m (m > s) terminals. For a terminal to
be connected to the computer, exactly one port must be used. Students
arrive at the computing §e11ter to use the computer for a random period
of time. An arriving student must first find a free terminal to log on.

If there is no free terminal, the student will normally try his luck after
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some random time. If, on arrival, the student finds a free terminal, he
will send commands to a central switch to request connection to the
computer; otherwise the request will be queued by the switch and the
student has to wait until there is a free port for him. This example
can be modeled as multiple-server retrial queue with waiting positions (if

m > s) and infinite orbit capacity.

3. Cellular phone subscriber. Consider a cellular phone system. It is well
known that a telephone subscriber who obtains a busy signal usually
repeats the call until the required connection is made. As a result, the
flow of calls circulating in a telephone network consists of two parts:
the flow of primary calls, which reflects the real wishes of the telephone
subscribers, and the flow of repeated calls, which is the consequence of
the lack of success of previous attempts. If the subscriber finds telephone
system available, he will be served, on the other hand cellular phone
systems have an option that allows a second call to wait until the primary
call is served. The system can be modeled as a single server retrial
queueing system with single waiting place and system with losses. The
interesting question to answer for the above system can be: What is the

time of loss of first customer due to blocking?



Chapter 2

LITERATURE REVIEW

The pioneering work on the theory of queues was done by A. K. Erlang of the
Copenhagen Telephone Company during 1909 to 1920. A systematic treatment
of the theory from the point of view of stochastic processes is due to D. G.
Kendall and this has greatly influenced subsequent works in this field. Many

books and research papers were devoted to the theory of queues since that time

[Prabhu [46], Neuts [45], Lipsky [44], etc.].

Queueing theory arise with the problems in telecommunication, therefore,
the need for more reaiistic models give rise to the retrial queueing models.
At present, the theory of retrial queues is recognized as an important part of

queueing theory and teletraffic theory.

This chapter is devoted to the literature review on retrial queueing systems
and includes a part which is devoted to the review of some asymptotic

techniques used in analysis and investigation of queueing models.

2.1 Retrial queues

Retrial queueing models arise since the early works of Kosten[39], Cohen[24],

Wilkinson[57], and Riordan[48]. Various techniques and results have been

8
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developed to solve particular problems and to understand the nature of retrial
queueing models. Some textbooks and monographs on queueing theory and
teletraffic theory include sections devoted to retrial queues where only simple
results concerning this type of systems are stated. The book by Falin and
Templeton [33] is the first to consider retrial queues in full detail. Also, a

detailed discussion of results obtained can be found in reviews by Yang and

Templeton[58] and Falin[34].

In particular, the nature of results obtained, methods of analysis and areas
of application allow us to divide retrial queues into two large groups: single-

server systems and multiple-server systems.

2.1.1 Single-server retrial queues

The first result on M/G/1 retrial queues is due to Keilson, Cozzolino and
Young in [37] who used the method of supplementary variables. Most of the
previous papers considered M/M/s retrial queues, where the M/M/1 retrial

queues are treated as a special case and both analytic and numerical results

were obtained.

The system will be said to be in state (m,E) if the server is idle and
m customers are orbiting. The system will be said to be in state (m,z) if the
customer in service has been in service for time z and m customers are orbiting.
The states {(m, F),0 < m < oo} and {(m,2),0 £ m < 00,0 < z < oo} form
the set of states of a Markov process. Using this method, the ergodic solutions
are obtained for the generating functions of number of customers in the queue,
as well as mean number of customers waitAing, mean waiting time of a customer,

and mean number of retrials per customer.

«

Later in [1] Aleksandrov studied the same model and obtained similar
results using residual service time as a supplementary variable rather than
elapsed service time and briefly discussed the structure of the busy period.

The busy period is defined as the period that starts at the epoch when a call
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enters an empty system and ends at the departure epoch at which the system
is empty. The busy period consists of alternating service periods, and periods

during which the server is free and there are sources in the system.

Choo and Conolly in [23] and Falin in [26] also examined the M/G/1
retrial model and obtained some analytic results about the distribution of
waiting time, system busy period, system idle time, system output flow, and

the number of orbiting customers.

2.1.2 Multiple-server retrial queues

Multiple-server retrial queueing models have important applications in
telephone switching systems. The earliest investigations in this area are by
Kosten in [39], Wilkinson in [57], Cohen in [24] and Riordan in [48] where
exponential interarrival time, exponential service time, and exponential retrial
time (M/M/s retrial queues) were considered. The cases of finite and infinite
orbit capacities and the possibility of lost customers were investigated. Steady
state equations, major probabilistic characteristics of the system and analytic

solutions for some special cases were obtained in these papers.

The later papers dealing with multiple server retrial queues can be viewed

in two categories.

2.1.2.1 Full-available systems

Multiple server retrial queueing system in which any idle server can be

immediately seized by a primary or orbiting customer. Cohen in [24] studied

M/M/s retrial queue of this type extensively.

~

Later Jonin and Sedol in [36] studied M/M/s retrial queue with Hy = o <1
and derived explicit expressions for steady state probability that there are :
busy servers and j orbiting customers in the system. Solving these equations

is extremely difficult even for some special cases. Therefore, approximation
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methods and asymptotic formulation are preferred in solving these problems.

Stepanov in [52] and Falin in [28] considered the method of asymptotic
formulation. Stepanov in [52] considered M/M/s retrial queue with Hy < 1
and H, = 1(k 2 1). Asymptotic formulation of the model in the case of
extreme load are presented for the system. Characteristics such as the blocking

probability, the mean number of busy servers, and the mean number of orbiting

customers are obtained.

Le Gall in [43] studied the M/G/s retrial queueing model with Hy = o < 1,
(k > 0). Le Gall considered the blocking probability for primary customers, the
mean blocking probability for the orbiting customers and the mean blocking

probability for the orbiting customers.

2.1.2.2 Non-full-available systems

The system receives m independent Poisson flows of primary customers at rates
Ai (1=1,2,...,m). Customers of the ith flow can only choose one of V; servers
(Vi + Va4 ... + Vin = s) for servicing. If a customer from the 1** flow finds that
all the servers that he can take are busy, then with probability H; (if it is the

k™ retrial) the customer will retry for service after an exponential amount of

time.

Non-full-available systems are extensively studied by Falin in [27], and
Stepanov in [50], [51], and [53]. Steady state equations are determined, and

asymptotic formulations of the model are obtained for the major probabilistic

characteristics of the system.

2.1.3 Retrial queues with waiting positions

Retrial queues with waiting positions occur in practical applications. Waiting
positions, in many computer communication networks, telephone ordering

systems and computer operating systems are frequently used to improve the



CHAPTER 2. LITERATURE REVIEW 12

efficiency of the servers and to decrease the influence of the retrial customers.
Research done on retrial queues with waiting positions can be classified in two

groups as single server and multiple server retrial queues with waiting positions.

2.1.3.1 Single server retrial queue with waiting positions

Hashida and Kawashima in [35] considered the single server system with
waiting positions and customer retrials where they assumed a geometric
loss model with finite orbiting capacity. The model can be classified as
M/M/1/m/O/GL with finite m and O. They also assume that Hy = « for
k > 0. The states are defined as (j, k) where j denotes the number of customers
in the waiting room (including the one in service) and k denotes the number of
customers orbiting. The authors derive the steady-state equations for the state
probabilities and develop an efficient procedure to calculate the exact values of
these state probabilities. Also, performance measures such as the mean queue

length, mean number in the orbit, and mean waiting time are all expressed in

terms of the state probabilities.

Later in [47] Ridout considered a different model where the orbit capacity
is infinite (no-loss model) that is O = oo and Hy = 1 for all £ > 0. The
model analyzed by Ridout can be classified as M/M/1/m/O/NL. The states
of the system are defined as (J, k), as in the previous model. The steady-state
equations for the state probabilities are derived but since both the number of
unknowns and the number of equations are countable infinite, it is not easy to

solve these equations for general m.

Ridout has developed analytical expressions for state probabilities in the

case m = 1, and recursive procedures to calculate state probabilities for m = 2
using generating functions. For m > 2, an iterative procedure was used to find

approximate values of state probabilities.
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2.1.3.2 Multiple server retrial queue with waiting positions

Stepanov and Tsitovich in [54] have studied a multiple server retrial queueing
system with waiting positions which can be classified as M/M/s/m/O/NL
with O = co and Hy = 1 for k > 0. Although H; = 1, their model is viewed as
a loss system since they assumed that if a waiting customer does not succeed
in receiving service, the customer leaves the waiting position after a random
period which is exponentially distributed. The states of the system are defined
as (7,7) where j is the number of orbiting customers and ¢ is the number of
customers in the waiting room or in service. The author consider the basic
probabilistic characteristics such as the probability that all servers and waiting
positions are busy and the distribution of mean number of orbiting customers.

These quantities are considered in case of extreme load.

2.1.4 Retrial queues with batch arrivals

Retrial queues with batch arrivals are quite common in computer communica-
tion networks. In batch arrival retrial queues it is assumed that at every arrival
epoch a batch of £ primary calls arrive with probability c,. If the channel is
busy at the arrival epoch, then all these calls join the queue. On the other
hand, if the channel is free, then one of the arriving customers begins service

and the others form sources of repeated calls.

Falin in [25] considered the M/G/1 retrial queue model with batch arrivals
and no customer loss and obtained the probability generating function of the
number of customers in the system. Falin also used the embedded Markov

chain technique to derive the joint distribution of the channel state and the

queue length.

Kulkarni in [42], has examined the same model but with two types of
customers. Kulkarni obtained analytic expressions for the mean number of

type 7 (¢ = 1,2) customers in the system, mean waiting time and mean number

of retrials of a type ¢ customer.
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Models with multiclass (there are n types of customers and type ¢ primary
customers arrive in a Poisson process with rate ; and the retrial intensity is

v;) batch arrivals were considered by Falin in [32] and Kulkarni in [42].

2.2 Asymptotic analysis of rare

events in queueing models

Different asymptotic approaches for reliability analysis of various classes of
stochastic systems are studied in the books [Borovkov [22], Korolyuk and
Turbin [38], Kovalenko [40], Anisimov et al. [9], Anisimov [11]]. A survey

of results devoted to the analysis of rare events in queueing systems is given

by Kovalenko [41].

Anisimov in [2] introduced the concept of the so-called S-sets (asymptot-
ically connected set). Several results devoted to the asymptotic analysis of
integral functionals and flows of rare events on trajectories of the process with
discrete component are obtained by Anisimov in [2], [4], [11]. The method of
S-sets allows us to study the asymptotic behavior of the time of the first loss of
a call for wide classes of Markov and semi-Markov processes with finite number
of states and in case of fast service or light loading. Various applications of
method of S-sets can be found in Anisimov et al. [9], Anisimov and Sztrik [12],

[13], [14], Sztrik and Kouvatsos [55], Sztrik [56]) and Anisimov [16].

Anisimov and Sztrik [13] considered asymptotic analysis of a complex
renewable system operating in random environment. Supposing "fast repair”
it is shown that the time up to the first system failure converges in distribution,
under appropriate normalization, to an exponentially distributed random
variable. The failure and repair intensities of the elements depend on the
indices of the failed elements and the state of the given random environment.
This assumptions make the problem difficult. Using the results about method

of S — sets and monotone structure the asymptotic exponentiality is proved.
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Sztrik and Kouvatsos [55] proposed an asymptotic queueing theoretic
approach to analyze the performance of a FCFS (first comé, first served)
heterogeneous multiprocessor computer system with a single bus operating
in a randomly changing environment. All stochastic times in the system are
considered to be exponentially distributed and independent of the random
environment, while the access and service rates of the processors are subject
to random fluctuations. It is shown under the assumption of “fast” arrivals
that the busy period length of the bus converges weakly, under appropriate

normalization, to an exponentially distributed random variable. The results

about S — sets were used in the proof.

Anisimov in [16], studied a Markov queueing system of the type
My /M/l/m where customers arrive according to a Poisson process where
the local intensity of entry at time ¢ is X; if z(t) = i. Here, z(t), ¢t > 0 is
a continuous time Markov Process with finite state space {1,2,...,r} given by
the intensities of transition a;;,7 = I,7,5 = I,7,7 # j. The system has [ labeled
servers and server ¢ has intensity of service u,(z), ¢ = I,1. The system has also
m waiting places. The call entering the system occupies the free server with
minimal label or joins the queue, if all of the servers are busy. If all servers
and all waiting places are busy the call is lost. Supposing that the service

is asymptotically fast, the author proved that time of first customer loss is

exponentially distributed.

The operation of a wide class of stochastic systems can be described
in terms of random processes such that the character of their development
varies spontaneously (switches) in some moments of time which are random
functionals of the previous trajectory. A special subclass of random processes

with discrete component named switching processes were introduced by

Anisimov in [5], [6], and [7]. .

Switching processes are two-component processes (z(t),£(t)), t > 0, taking
values in the space (X, R"), for which there exists a sequence of moments ¢; <
{, < t3 < .... such that on each interval [tx, tk41), 2(t) = z(tx) and the behavior
of the process £(t) depends on the value (z(tx),€(t)) only. The moments ¢
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are switching moments and «(t) is the discrete switching component. The
component z(.) usually corresponds to a random environment, a number of
working servers or nodes (in queueing networks), etc., £(¢) can be the size of

queue (or queues in the nodes of queueing networks), virtual waiting times,

and process of lost calls, etc.

Switching processes are suitable for the analysis and asymptotic investiga-
tion of stochastic systems with “rare” or “fast” switchings. Various applications

of switching systems can be found in Anisimov [7], Anisimov [11].

Anisimov in [19] considered the class of state-dependent queueing systems
and networks with Markov or semi-Markov type switches and studied the
results about the convergence of the vector-valued process £(¢), which
corresponds to the number of calls in the system. The author proved the
convergence to a solution of differential equation (Averaging principle) and to
some diffusion process (Diffusion Approximation) in heavy traffic conditions
for the case when the component z(t) is asymptotically ergodic. The method

of investigation is based on limit theorems for so called switching processes

[Anisimov [7] and [15]).

Another technique, called asymptotic merging of states, which allows us
to study asymptotic characteristics for some classes of Markov systems with
hierarchical arbitrary state space operating in different scales of time (slow and
fast) was proposed by Anisimov [17]. Anisimov considered Markov systems of
hierarchical structure functioning in different scales of time (slow and fast)
and such that their local transition characteristics may be dependent on the
current value of some other stochastic process (external random environment,
stochastic failures, etc.). For systems of these types a new approach of
decreasing dimension, approximate analytic modeling and estimating different

reliability and efficiency characteristics is proposed.

N

Bobbio and Trivedi [21] introduced an approximation algorithm for
systematically converting a stiff Markov chain into a nonstiff chain with smaller

state space. After classifying the set of all states into fast and slow, the

algorithm proceeds by further classifying fast states into fast recurrent subsets
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and a fast transient subset. A separate analysis of each of these fast subsets is
done and each fast recurrent subset is replaced by a single slow state while the
fast transient subset is replaced by a probabilistic switch. After this reduction,

the remaining small and nonstiff Markov chain is analyzed by a conventional

technique.

Mostly asymptotic analysis for the time of loss of first customer and method
of rare events was made for general queueing models of various types by
Anisimov. Concerning the asymptotic analysis of retrial queueing models, only

Falin [29] [30] [31], Stepanov [52] and Anisimov [18] performed some analyses.

Falin in [29] studied a retrial queueing system of the type M/M/C /oo with
absolutely insisting customers; the author studied the asymptotic behavior
of the system’s characteristics when the intensity of repetition becomes large.
Later in [30], Falin studied the M/M/1 retrial queueing system with no waiting
space and derived some asymptotic results for heavy and light traffic. Falin
in [31] studied the M/M/C/oo retrial queueing system with loss (customers
finding all servers busy are either queued or lost according to a Bernoulli
switching rule). The author presented ergodic system occupancy results and

ergodic server utilization under a high intensity of repetition for repeated calls.

Stepanov in [52] considered the M/M/s retrial queue with Ho < 1 and
H, = 1(k > 1). Stepanov considered the model in the case of extreme load
and presented asymptotic formulation for the system. Characteristics such
as the blocking probability, the mean number of busy servers, and the mean

number of orbiting customers were obtained.

Anisimov in [18] studied transient and stable regimes in overloading retrial
queueing systems. This approach is based on limit theorems of averaging
principle and diffusion approximation types for so-called switching processes.
Two models of retrial queueing systems of the types M/G/1 with retrials
(multidimensional Poisson input flow, one server with general service time,
retrial system) and M/M/m with retrials (m servers with exponential service

times) are considered in the case when the intensity of calls that reapply for

the service tends to zero.



Chapter 3

PRELIMINARY RESULTS

In this chapter, an important notion of S — set (asymptotically connected
set) is introduced. An exponential approximation for the first exit time from
an S — set is introduced. A special class of hierarchical type S — sets, a
“monotone structure”, is studied, and there is a part where the results obtained

by Anisimov in [2] are studied. These results give us an analytical technique for

the analysis and simulation of reliability characteristics of hierarchical Markov

and semi-Markov models.

3.1 Results about asymptotic behavior
of the first exit time from the fixed
subset of states of SMP

Let z.r,k > 0 be a Markov process (MP) with finite state space X =
{1,2,...,r} depending on some parameter n and given by a matrix of one-
step transition probabilities P, = ||p.(1,7)|], ¢,7 = 1,r. Let X be some fixed

subset of X. Denote by

vo(i) = min{k : k > 0, znr & Xo given that @m0 = i}, i € Xo, (1)

18
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the number of steps up to the time of the first exit from X, starting from the

state ¢ € Xp.

Definition 3.1.1 The subset Xo is called an S-set if for any 1,7 € X,

P{ there ezists k, k < v,(t) such that 2, = j/Tao =1} — 1 as n — oo.

Figure 3.1: S-set

As can be seen from the Figure 3.1, the set X, forms one essential class i:;1
limit (n — o) (meaning that the process will spend most of the time in subset
Xo given that the initial state is 7 € Xo) and the probability that there exists
k smaller than the number of steps to exit from the subset Xy, where k is the
number of steps to go to state j € Xy given that the process starts from the

state ¢ € Xg, goes to one as n — co.

Now let z,(t) be a SMP with finite state space X = {~1,2,...,r} given by
the embedded MP z,; and by the family of sojourn times {r,(I), | = 1,7}

(suppose for simplicity that sojourn times do not depend on the next step).

Denote by
Qa(2) = inf{t: ¢t >0, z,(t) € Xo given that z,(0) =1}

the time of the first exit from the subset X, starting from the state ¢ € Xp.
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Consider the limit behavior of the value Q,(7). Let, us construct an auxiliary

MP %, with state space Xy and matrix of transition probabilities f’n(Xo) =

Ilﬁn(z7])”7 2,] € XO where
ﬁn(%]) = Pn(i>j)Pn(iaX0)_l> Z)J € XO
and p, (¢, Xo) is defined as

pa(t, Xo) = Y pa(s, ).

1eXo

Suppose that the set X, forms an S-set. Denote by #,(z),7 € Xy a stationary

distribution for MP Z., (which exists at least at large enough n) and define

9n(Xo) = > #a(t)(1 = pali, Xo). (2)

1€Xo

Theorem 3.1.1 Let the set Xy form an S-set and there exist a normalizing

factor B, and functions a;(6) (a;(£0) =0) such that as n — oo
9n(X0) 11 ~ Eexp{—=L,07.(2)}) — a:i(6), i € Xo.
Then for any initial state 19 € Xo it is true

lim Eexp{—fa00(i0)} = (1 + A(6)),

where

A) = lim > #ali)as(6).

i€Xo
Corollary 3.1.1 In particular if the set Xo forms an S-set, then for any iy €
Xo
Jim P{gn(Xo)vn(io) > t} = exp{—t}, t >0, (3)

which means that we have an exponential approzimation for the number of steps

in subset Xg.

The proof can be found in Anisimov {2], [4], Anisimov et al. [9]. It is based on

the asymptotic analysis of the matrix equation for the characteristic function
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of the normed vector {$,0.(:),¢ € Xo} and uses the representation (I —

Bo(X0))™ = ga(Xo) M Tn(Xo), where I is the unit matrix, and I.(Xo) =
7 (2)(1 + 0i5(1))ll, 45 € Xo.

In these papers also an algorithm to check whether some subset forms an
S-set or not is given. In papers of Anisimov [8] and Anisimov et al. [10]

estimates of proximity for the rate of convergence in (3) are also given.

Corollary 3.1.2 Suppose that the process zn(t),t > 0 is a continuous
time MP given by the embedded MP with matriz of transition probabilities
P, and by ezit rates A\(1), ¢ = 1,r, the set Xy forms an S-set,
min; A, (2) 4 0 and Tiex, #a(t)/An(2) £ 0. In this case we can put B, =
gn(X0)<ZieXo 7~r,,(i)//\,,b(i))_1 and the asymptotic distribution of the variable

BnS2,(2) is exponential with parameter 1.

We mention that in this case f, is asymptotically equivalent to the value
Yiexo Pn(t) Trgx, An(t, k), where pn(i),7 € Xo is the stationary distribution

of the auxiliary continuous time MP with state space X, and transition rates

’\n(i)j))i)j € XO)i 76 ]

These results show that to find a parameter in exponential approximation of

exit time from the subset it is enough to estimate the main order of stationary

probabilities 7,(z), ¢ € Xo.

If we denote by Y,(¢) the number of lost calls on the interval [0,¢].
It can be said that the process Y,(f;!t) weakly converges in the sense of
convergence of finite dimensional distribution to ordinary Poisson Process with

some parameter. Asymptotic analysis of flows of rare events switched by

some random environment is provided by Anisimov in [20]. The environment

can be nonhomogeneous in time. In case when the environment satisfies

an asymptotically mixing condition, an approximation by nonhomogeneous
Poisson flows is proved. In general, it can be said that flows of rare events

in systems with mixing can be approximated by Poisson process with average

integral intensity
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Figure 3.2: Monotone Structure

Let us consider an important class of MP with special monotone structure
of it’s state space introduced in Anisimov et al.[9]. In this case it is possible to
write an explicit formulas for main parts of stationary probabilities. Models of

this type appear at the asymptotic analysis of wide classes of queueing systems

with fast service.

Let z,x, k > 0 be some MP with finite state space Z = {(l,¢)} and one-step
transition probabilities p,((4,s),(J,¢)). Suppose that its state space can be

represented in the form Z = UMt} (Z,, s).

Definition 3.1.2 The subset of states Z = {(,3), 1 € Z,, s =0,m} is called

a monotone structure if the following asymptotic relations hold:

1. pa((i,8), (4, +1)) = en(s)aiz(s)(1 + 0(1)), ¢ € Zsy J € Zsyr, where

en(s) = 0, s =0,m;
2. pn((i,S),(j,S-}- k)) = 0) 1€ Zsa .7 € Zs+k’3 = 67777' - 2’ k> 1)'

3. pn((i,s),(j,s)) = Pij(s)(l + 0(1))7 Za] € ZS7 s = m)
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where the matrizc I — P(s) is invertible for each s =1,m and P(0)

is an irreducible matriz with stationary distribution w;, 1 € Zy (here

P(s) = |lp;;(s)ll, 4,5 € Zs).

We call the subset of states Z, = { (i,q), 1 € Z,} a g-level.

Figure 3.2 illustrates the general form of a monotone structure. Monotone
structures, in a sense, can be interpreted as special type hierarchical S — sets
(i.e, the subset Z forms an S — set). Condition 1 in the definition of the
monotone structure ensures that the transition probabilities from any Z, to
Zg41 for ¢ = 0,m goes to zero in limit (n — oo0). Condition 2 ensures the
monotonicity of the structure (i.e, there can be only transitions from Z, to Z,4,
for ¢ = 0, m, no transitions are possible from Z, to Z,4, for s > 1. Condition
3 states that transition within any given level are possible and I — P(s) is
invertible for each s = 1I,m and P(0) is an irreducible matrix with stationary
distribution where P(s) = ||p:;(s)]l, %,7 € Z,. Transitions from any Z, to Z,_;
are possible and probability of these transitions are of O(1) (see Figure 3.2 these

transitions should exist, otherwise the matrix I — P(s) would be singular).

Let 7n(s) = (7a(i,8), 1 € Z), s=0,m, # =(m, 1€ Z,) and b= (b, 1 =
T,7) be row-vectors, where m,(é,s) be the stationary probability of the state

(¢,s) for the MP with state space Z and matrix of transition probabilities
Pﬂ(Z) = {lpa((3, 5), (4, q))pn((i,s),Z)"IH, (4,8),(4,9) € Z,
where pn((i,s), Z) = E([,Q)EZ pn((ias)v (lug)), and b; = ZkeZm.H aik(m)~

Theorem 3.1.2 If the state space Z = {(i,3), t € Zs, s = 0,m} forms
a monotone structure then it also forms an S-set and for all ¢ = 1,m the

following representation holds:

—w(HA (1= PG+ 1)) "eals)) (1 + 0(1), (4)

and

=7'T(HA )(I = P(j + 1)) en(7)) en(m)b*(1 + o(1)),

7=0
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where A(s) = ||ai;(s)|], 4,7 € Zs, and b* is the transposed vector to b.

The main idea of the Theorem 3.1.2 is the following: In order to find the
parameter of exponential approximation for the time of exit from a fixed subset
of states, we need to find the stationary distribution of exit from Z, (g,(Z2)).
To be able to find g,(Z) we need to know the stationary distribution of the
states (7»(¢), ¢ = 0,m). Instead of solving the set of linear equations to find all
of the stationary distributions, we just calucate the stationary distributions for
the states in Zp and multiply by the corresponding matrices to obtain g,(Z).

Note that Zo forms one essential class in limit (i.e, the process will spend most

of the time in Zo)

The proof of this result i1s made recursively to the order of the monotone

structure. The main problem is in estimation of the stationary probabilities.

It can be shown that

g1
m(1,q) = O(H en(s)), i=1,r, ¢>0, asn — oo.

s=0
Then from the matrix equation

7a(2) = 72(0)Pa() + Fald = Deala = DA(g— 1) + O(T] ea(s)),

s=0

where P,(q) = ||lp-((2,9), (4, 0))ll, 1,7 € X, we obtain
fin(q) = (g = 1)A(g = 1)(I = Pu(g)) 'ea(g — 1)(1 + 0(1)),

and this implies (4). The expression for g,(Z) follows from (2).

These results allow to study the asymptotic behavior of the time of first loss

of a call for wide classes of queueing systems and networks with finite number

of states and fast service or low loading (see Anisimov et al. [9], Anisimov [16].

We note that as it follows from Theorem 3.1.1 the asymptotic behavior of a
sojourn time in S-set does not depend on the initial state. This gives possibility

to study models of asymptotic aggregation of state space (see Anisimov (3],

Anisimov et al. [9]).



CHAPTER 3. PRELIMINARY RESULTS 25

3.2 M/M/s/m queueing system

In this section we consider an example which illustrates the use of the method
of monotone structure. We will study the time of first customer loss in this
system and will derive the parameter of exponential distribution using the

method described in the previous section of this chapter.

Consider a Markov queueing system where customers arrive to the system
with rate A and there are s independent identical servers and the intensity
of service is u, for each server. The system has also m waiting places. The
customer entering the system occupies the server or joins the queue. If all

servers and all waiting positions are busy, the customer is lost.

Suppose that the service is asymptotically fast in the sense that

Yn = np, Where n — oo

Let Q,(g) be the time of the first loss of a customer if the initial conditions
are @,(0) = g where Q,(t) is the number of customers in the system at time

t. We study the asymptotic behavior of ,(g) as n — oo.

Qu(q) =min{t: 1> 0,Qn(t) > s+ m}

It is easy to see that the process @Q,(t) forms a homogeneous MP in

continuous time and state space for the process is in the form I = {(¢),q =

0,s +m}
Then as ¢ <'s
(G.0+1) = 1A
Pnlq,9q nqu
otherwise, as ¢ > s :
Pa(g,q+1) = i

It is also easy to see that the state space Z forms a monotone structure

in which 0-level is the subset Zy = Iy U I;, g-level is the subset Z, = I 41,

O<q§s+mand5n(s+m)_—_%ﬁ:
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Let m,(q) be the stationary distribution for the embedded MP.

g—1

W(l +o(1)), if¢< s

ma(g) = n~" (1)

and
g-1

mn(q) = n~""m, (1) (1+0(1), if g > s

slsa—sp9-1
Applying the matrix relation of theorem 3.1.2, we obtain

s+m

se (1 + (D)

gn(Z) —p 5™
gn(Z) can be rewritten as

90(2) = —=G(1 +o(1)

where G is
)\s+m

- 2slgm ystm
From Theorem 3.1.1 it follows

1
ns+m

GQn(i) ~ Mn, forany i€ 2

where M = iz, TEE&:, m is exponential distribution with parameter 1 and
§; is the sojourn time in state ¢:. Rearranging the terms we get

1 N M
'n—s:;,;Qn(i) ~Fh
From above relations, by setting 8, = n™°"™, we obtain the parameter of

exponential distribution as
A~ —

Theorem 3.2.1 For the system M/M/s/m under the assumption of fast
service the distribution of the variable n™*"™Q,(q) weakly converges for any

0 < g < s+ m to the exponential distribution with parameter

lim P{n™"7*Q,(¢) >t} = exp{—At}, t >0,

n—oo

where
/\ps+m

slsm
where p = A/u and the flow of lost calls weakly converges to a Potisson one

A=

with parameter A.



Chapter 4

SINGLE-SERVER RETRIAL
QUEUEING MODELS

4.1 M/M/1/m system with retrials

Consider a single server queueing system with m waiting places in which
customers arrive in a Poisson process with rate A. These customers are
identified as primary calls. If the server is free at the time of a primary call
arrival, the arriving call begins to be served immediately and leaves the system
after service completion. Otherwise, if the server is busy, the arriving customer
becomes a source of repeated calls (a customer in retrial queue, a customer in
orbit, a customer in pool, etc.). The pool of sources of repeated calls may
be viewed as a sort of queue which we call retrial queue. Every such source
produces a Poisson process of repeated calls with intensity of v. If an incoming
repeated call finds the server free, it is served and leaves the systérn after
service. On the other hand, if an arriving customer finds server and all of

the waiting positions occupied, the customer will be lost. This system can be

represented as an M/M/1/m system with retrials.

This chapter deals with the time of loss of first customer in an M/M/1/m

queueing system with retrials under some different assumptions. The method

27
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of analysis is based on the results about asymptotic behavior of the first exit
time from the fixed subset of states of a SM P which forms an S — set, which we
give in previous chapter. First we consider asymptotic behavior of the system
under the assumption of fast service and then we consider the system under
the assumptions of both fast service and fast retrials. Finally, we consider the
system operating in Markov environment and under the assumption of fast
service. We derive the expression for the parameter of exponential distribution

for the time of loss of first customer for these models.

We assume the service time distribution is exponential with parameter u, =
nu (fast service as n — 00) for both primary calls and repeated calls. Also we
assume that the input flow of primary calls, intervals between repetitions, and

service times are mutually independent.

The queueing process evolves in the following manner. Suppose that the
(¢ — 1)th call completes its service at epoch 7;-; (the calls are numbered in
the order of service) and the server becomes free. Even if there are some
customers in the system who want to get service they cannot occupy the
server immediately. Therefore the next, ith, call enters service only after some
time interval R; during which the server is free while there may be waiting
customers. If the number of sources (number of customers in the queue) of
repeated calls at the time 7;_; is equal to ¢, then the random variable R; has
an exponential distribution with parameter A + gv. The ¢th call is a primary
call with probability ﬁ and it is a repeated call with probability /\—_9‘_';—1/ At
epoch & = m;-; + R; the ith call’s service starts and continues during a time
S; (service time of the ith call). All primary calls arriving during the service
time form sources of repeated calls (i.e. join the retrial queue). Then, at epoch

n; = & + S; the ith call completes service and the server becomes free again.

Let Q,(t) be the number of sources of repeated calls (which may be viewed
as a sort of retrial queue) at time t and 6,(t) = 7, 7 = 0,1 denote the state of
service at time ¢ (6,(¢) = 1 if in the moment ¢ i-th server is occupied and 6,(t) =
0 otherwise). The process (6,(t), @n(t)) is Markov process and describes the

number of customers in the system and is the simplest and simultaneously
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the most important process associated with the above queueing system and
the state space for the process is S = {0,1} x Z,, where Z, is the set of

nonnegative integers.

Let A, v, and p, be given and A be the input rate, v, be the rate for retrials
for waiting customers and p, be the service intensity where n is a scaling factor

(n — o0). We will consider the following cases:

Case 1: v, = v (usual retrials) and u, = ny (fast service) as n — oo.

Case 2: v, = nv (fast retrials) and p, = ny (fast service) as n — co.

Denote by Qn(t) the number of waiting calls (in the retrial queue) at time ¢

also let ¥;,(¢) be the number of lost calls on the interval [0, ¢].

Theorem 4.1.1 For the system described above (case 1), under the assump-
tion of fast service, independently of the initial state, the distribution of the
normalized random variable n™™"1Q,, (4, q) weakly converges to an ezxponentially

distributed random variable

lim P{n"™"'Q,(j,q) > t} = exp{—At}, t > 0,

n—0oo

where Ll m
p

[T+ k),

l,,m
m.v k=1

A=

where A is the input rate, v is the rate for retrial calls and ny is the service
intensity.

If the rate of incoming customers, rate of service and the rate of retrials
depend on the size of the queue, the parameter of exponential distribution

becomes

B _1_ ~Mk) T AK) + (k+ Dv(k+1)
=05 gu H v(k+1) ’
(g

where A(q) is the input rate, v(q) is the rate for retrial calls and nu(q) is the

service intensity if Qn(t) = q.
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Also, the process Y (n™*'t) weakly converges in the sense of convergence of

finite dimensional distribution to ordinary Poisson Process with parameter A.

Proof:

Let ,(7, ¢) be the time of first loss of a call given Q,(0) = g and 6,(0) = j.
The asymptotic behavior of Q,(7,¢) as n — oo is studied.

Q.(q) =min{t: ¢t > 0,Q.(t) > m}

Consider a multicomponent process z,(t) = (6,(t),Qn(t)) where the
indicator is introduced for the states of the server: 6,(¢) = 1 if at time ¢,
i-th server is occupied and 6,(t) = 0 otherwise. The process z,(t) forms a

homogeneous MP in continuous time and the state space for the process is in

the form of
Z = {(j’q)’j = 0)17q = 0_)77-?'-}

If we denote by @n(t) the number of waiting calls in the system with infinite

number of waiting places, then §1,(7, ¢) is the time of exit of the process z,(t) =

(8.(t), On(2)) from the subset z,(t).

The rates of iransitions for the process z,(t) can be calculated and it can be
seen that the subset Z forms monotone structure (see Definition 3.1.2) where

at each fixed ¢ = 0,1,..,m the subset Z, = {(J,¢),7 = 0,1} forms g-level.

The monotone structure for the model and corresponding transition

probabilities are shown in Figure 4.1 where a, B, and ¢,(g) are defined as

v _ A _1A
aq—A+qV IBQ_/\+qV en(q)_n,u

In each state (j,q) the process z,(t) spends an exponential time with

parameter
Adnp ifj=1

AG,q) =
U-a) {A+mxﬁj=0
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......

level-(g-1) level-(q) level-(g+1)

J

\.

Figure 4.1: Monotone structure for single server mode] with assumption of fast

service

The transition probabilities for the process are as follows:

(1,0 (La+1) = 22 P00 (9= 1) = 72
(0,019 = 15 pn((1,0),(0,0) = 3 = 1

Now we can directly apply matrix relation of Theorem 3.1.2. Denote by
Tn(q) = (7,(0, ¢), 74(1, q)) the stationary distribution of the embedded-Markov
process for z,(t) and let 7;,¢ = 0,1 (& = (mo, m1)) be the stationary distribution

. for the states at Zy (level-0) of the monotone structure (such probabilities exist

since Zg (level-0) forms one essential class in limit).

The matrix relation of Theorem 3.1.2 is

—w(HA (1= P(j +1))eal5)) (1 + 0(1)),

7=0

where matrices A(j) and P(5 + 1) are

N
A(j) = [ g /\(/)/l } PG+1)= [ ? ,\+(JO+1)V J
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The stationary distribution for the states of the embedded Markov process

z,(t) can be written as

_ A0 0 0 s+ [\-11
wn(q>=w(g[o WJ(I—L O J) =)(1+ (1)),

rearranging the terms, we obtain

SN = N S (R IO W EY RS, 1 sy | !
Wn(Q)—”ﬂzo[O /\/#JW[I ’\"'(1"') JT—{)(1+0(1)).

Finally, the expression for 7,(q) is obtained as follows
q g
Tn(g) = mn~9—— H A+ 7v)(1 + o(1))

where p = )\/u, and note that
g—-1
= O(I] ea(s))
s=0

The expression for g,(Z) can be obtained in the same way as applying the

matrix relation of Theorem 3.1.2.

m+1 m

gn(Z) = mn™"1 o | H(/\ +7v)(1+ (1))

gn(Z) can be written as

1
gn(2) = —=G

nm+1

where G is
m+1 m

G=mE— [\ +v)

I,,m
mv j=1

and it follows
GQ(j,q) ~ Mn,

nm+l
where M = Yicz, TiE&, n1 1s exponential distribution with parameter 1 and
€ is the sojourn time in state ¢. Rearranging the terms we get

1 . M
U, q) ~ el

nm+1
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which means exponential approximation for the normalized variable n=™~1Q(5, q).
From above relations, as setting the normalization constant £, = n™™"1, we

obtain parameter of exponential distribution as

which is

Now, we consider the system with single server and m waiting places where
service and retrials are fast in the sense that u, = ny and v, = nv and will

study the asymptotic behavior of the time of first lost customer as n — oo.

Theorem 4.1.2 For the system described above (case 2), under the assump-
tion of fast service and fast retrials, independently of the initial stdte, the
distribution of the normalized random variable n=™"1Q, (4, q) weakly converges

to an exponentially distributed random variable

lim P{n"""'Qu(j, q) > t} = exp{—At}, t >0,

where
A

A = M(Z)mH
()

where X is the input rate, v is the rate for retrial calls, and nu is the service

intensity.

If the rate of incoming customers, rate of service and the rate of retrials

depend on the length of the queue, the parameter of exponential distribution
becomes .
01l k)

o (k)

where A(q) is the input rate, nv(q) is the rate for retrial calls and nu(q) is the

service intensity if Qu(t) = ¢q.
Also, the process Y (n™*'t) weakly converges in the sense of convergence of

finite dimensional distribution to ordinary Poisson Process with parameter A.
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Proof:

The method of proof is similar to the previous one. Assume that the rate of

service and the rate of retrial are fast in the sense that p, = ny and v, = nv.

Q4(7, q) is the time of first loss of a call given @,(0) = ¢ and §,(0) = 5. We

will consider the asymptotic behavior of Q,(7,¢) as n — oo.

Consider a multicomponent process z,(t) = (6,(t), @.(t)) where indicator
stands for the states of the server: 6,(t) = 1 if in the time ¢ ith server is
occupied and 6,(t) = 0 otherwise. The process z,(t) forms a homogeneous MP

in continuous time and the state space for the process is in the form of

Z={(7,9),j=0,1,¢=0,m}

The subset Z forms monotone structure where at each fixed ¢ = 0,1,..,m

the subset Z, = {(4,¢),7 = 0,1} forms g-level.

(

oooooo

level-(g-1) level-(q) level-(g+1)

)

Figure 4.2: Monotone structure for the model with single server and
assumptions of fast service and fast retrials

.

Figure 4.2 illustrates the monotone structure for the model and correspond-

ing transition probabilities.

In each state (j,q) the process z,(t) spends an exponential time with
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parameter
: Atjnp ifj=1
A(j,q) = o
Adgnv ifj=0
The transition probabilities for the process are as follows:
Pn((l,Q),(l,q-i-l)) = li pn((0>Q)7(1>q—1)) = e — 1
i ' A+ gnv
A ny
2((0,9), (1, = 0 w((1,9), (0, —
P00 (L) = e pal(1,0),(0,0) = 3 1

Denote by 7.(¢) = (7x(0,¢),7.(1,q)) the stationary distribution of the
embedded Markov process for z,(t) and let 7,7 = 0,1 (& = (w0, 7)) be the
stationary distribution for the process 6,(¢).

Applying the matrix relation of Theorem 3.1.2,

rola) = #([] AGII = PG+ D)) (14 o),

where matrices A(j) and P(j + 1) are

A(j)={§ ?}

00
P(1+1)=
(G+1) [ Lo J
The expression for #,(g) is obtained as

1A

Fala) = T (271 + o{0)

The expression for g,(Z) follows from Theorem 3.1.2
1 A

n(2) = zm (27 (1+o)
Finally as setting f#, = n™™"!

we obtain the parameter of exponential
distribution as

A= /\(i)m+l

7
The same result can be obtained as substituting v in the formula obtained

for Theorem 4.1 with v, = nv and analyze the case when n — oco. Also, note
that the result obtained does not depend on the retrial rate v.
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4.2 My/My/1/m retrial queueing system

operating in Markov environment

Consider a Markov retrial queueing system of the type My/My/1/m with
retrials. The system with one server and m waiting places. Calls enter the
system one at a time. On arrival, if the server is free the customer will
receive service immediately; otherwise, if there are free waiting positions the
customer will join the queue waiting for service. On the other hand, if an
arriving customer finds server and all of the waiting positions occupied, the
customer will be lost. Each waiting customer independently of others repeats
its attempts for service after some random time. If at this time the server is
free it takes the customer for service, if server is busy the call remains in the

queue and repeats its attempts for service in the same way.

Suppose that the system is operating in a Markov environment z(¢),¢ > 0

with finite state space X = {1,2,...,7} given by some initial state zo and rates

of transitions a;;, ¢,7 € X,1 # J.

Let A(1,q),v(3,9),nu(i,q),1 € X,q = 0,m be given non-negative functions
and A(i,q) be the instantaneous input rate, v(7,q) be the rate for retrials for
waiting customers and nu(7,q) be the service intensity given z(¢) = ¢ and
Qn(t) = ¢ where n is a scaling factor (n — c0). That means the service is fast.
Denote by Qn(t) the number of waiting calls (in the retrial queue) at time t.

Denote also by Y,(t) the number of lost calls on the interval [0,].

Now, we will study the asymptotic behavior of the time of loss of first
customer and will derive the parameter of the exponential approximation for

the time of loss of first customer using the same technique (see Definition 3.1.2)

Let ,(z, 7, ¢) be the time of first loss of a call given @,(0) = g and 6,(0) = ;.

The asymptotic behavior of {0,(z,7,¢) as n — oo is studied.

Consider a multicomponent process z,(t) = (z(t), (), Qn(t)) where

indicator is introduced for the states of the server: é,(¢) =1 if in the moment
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t i-th server is occupied and 8,(t) = 0 otherwise. The process z,(t) forms a

homogeneous MP in continuous time and the state space for the process is in

the form of
Z = {(Z,],q),l € ‘X>j = 0)17q = 07_777'}

If we denote by @n(t) the number of waiting calls in the system with infinite
number of waiting places, then ,(z, 7, ¢) is the time of exit of the process z,(t)

from the subset Z,(t).

The rates of transitions for the process z,(t) can be calculated and it can

be seen that the subset Z forms monotone structure where at each fixed ¢ =

0,1,..,m the subset Z, = {(3,7,9),s =1,7,7 = 0,1} forms g-level.

Monotone structure and corresponding transition probabilities for the

model described above are shown in Figure 4.3.

In each state (,7,¢) the process z,(t) spends an exponential time with

parameter
. A, q) +nu(i,q)+ay; ifj=1
A(i,4,q) = (. ) (. ) L
Aty ) +qv(i, @) +ai ifj=0

where a;; = Y4 aix. The transition probabilities for the process are as follows:

p((6,0,0), (1,9 = 1) = it
pu((5,0,01(1,0) = T p e,
Pa((3,0,9), (k,0,9)) = A(i)q)+iik+ 6D i # K,
pa((4,1,9), (3,0,9)) = D) :ZEj’f)n#(i,q) -1,
pa((i,1,0), (k,1,9) = A(i,qH;z: i

Now we can directly apply matrix equation of Theorem 3.1.2. Denote by
wn(4,q) = (ma(2,7,9),2 € X,5 = 0,1, = 0,1, ..,m) the stationary distribution
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(1+b)-1249]

(1+b94)

(b)-1242; (1-b)-1249)

(b'o4)
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(1-bo'r)

(b'r)

(b'r1)

(br'7)
(brq)
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Figure 4.3: Monotone structure for single server system which operates in

additional Markov environment and assumption of fast service
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of the embedded Markov process for z,(t) and let 7;,7 = 1,7 be the stationary

distribution for the process z(t) and # be the row vector (m,..,m,).

The matrix equation is
= w(H AT = P(G + 1) en(7)) (1 + o(1)),

where the matrix A(j) is defined as

=3 )

and G(q) is a matrix with elements A(%, ¢)/u(7, ¢) on diagonal and P(j +1) is
defined as

pii41)= | B+ A(j+1)J

I 0

where B(q) is defined as
a;-(l - 5,") .. -
B(q) = |l Lo, i,j =TT,
R L
where 6;; = 0if ¢ = j and 6;; = 1 if ¢ # j and A(q) is defined as
Az, q)6i; A _
A = ; s &
(q) ll)‘(za q)+aii +qV(zaQ)H z
Define 7—rn(q) = (ﬁn(()»‘I))ﬁn(l,Q)) where ﬁn(O’Q) = (W(i>0aQ)) 1= T>_T> qg=

0,m) and 7,(1,q) = (n(i,1,9), ¢ = 1,7, ¢ = 0,m) are row vectors.

s
I
=
=
i
3

(I-B(q)—Ag)™  (I-Blg)—Ag)'Alg)

(I-P(g)" = [ . .
(I-B(q)=Ag)™ (I-Blg)—Alg))™'(I - Blg))
and expression for the stationary distribution becomes
L 0 0 1|0
T = |7(0,0), 7 >O —
@) = 0.0 7L O] [ GHIKG+1) GUIKG+1U - Bl +1) J) g [ 1 J

where K(j) = (I - B(j) - A(j))_1 and following the equation for g,(Z) of

Theorem 3.1.2, we obtain

Gn(Z) = ——7(1,0 (HG VE(j +1)(I - B +1))) Gm)(L +o(1)).

1m+1
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Since the level Zy forms in limit one essential class, stationary distribution

for each state in Zgy exist and satisfy the system of equations:

Qi

7(0,0) = kZﬁW(k,0,0)m + 7(1,0)
#(1,0) = 7(0,0—0) 1

A(5,0) + ai’

It can be easily shown that

. _ (/\(7,,0) + aii) .
600 S BE )+ e T

and L0
F(i,l,O)_ (’l, ) i, i:T,_T

- z;=1 7rk(2/\(k,0) + akk)

Finally we obtain the parameter of exponential distribution as
A=7A0)G(0)(I — B(1) — A(1))"' (I = B(1))G(1)...

..G(m = 1)(I = B(m) — A(m))™Y(I = B(m))G(m)I,

Theorem 4.2.1 At our conditions for any initial state (3,5,q) € Z

lim P{n"™"'0,(3,4,q9) > t} = exp{—At}, t > 0,

n—oo

where

A =7A0)G(0)(I — B(1) - A1)} (I — B(1))G(1)...
..G(m =1)(I = B(m) — A(m))"(I — B(m))G(m)T,

and the process Y (n™*'t) weakly converges in the sense of convergence of finite

dimensional distribution to ordinary Poisson Process with parameter A.



Chapter 5

MULTIPLE-SERVER
RETRIAL QUEUEING
MODELS

Consider a group of s fully available servers in which a Poisson flow of calls with
rate A arrives and system consists of m waiting places for repeated calls. If an
arriving primary call finds some server free, it immediately occupies a server
and leaves the system after service. Otherwise, if all servers are engaged, an
arriving primary call produces a source of repeated calls. Every such source
after some delay produces repeated calls until after one or more attempts it

finds a free server, in which case the call receives service and then leaves the

system.

We assume that periods between successive retrials are exponentially
distributed with parameter v,, and service times are exponentially distributed
with parameter p,. As usual, we suppose that interarrival periods, retrial times

and service times are mutually independent.

The functioning of the system can be described by means of a bivariate
process (Nn(t), @n(t)), where Ny(t) is the number of busy servers and Q,(t) is

the number of calls in the retrial queue at time ¢{. Under the above assumptions

41
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the bivariate process (N,(t),Qn(t)) is Markovian with the state space S =
{0, 1, ...,S} X Z+

In this chapter, we study multiple-server retrial queueing system of type
M/M/s/m and will derive the expression for the parameter of exponential

distribution for the time of loss of first customer. We will consider two cases:

Case 1: v, = v (usual retrials) and p, = nu (fast service) as n — oo.

Case 2: v, = nv (fast retrials) and p, = nu (fast service) as n — co.

The method of derivation is as follows: first we study the system with only 2

servers (s = 2) and m waiting places, then the general result for s server case

is obtained as generalizing the previous results.

51 M/M/2/m system with retrials

Consider Markov retrial queueing system with two independent and identical
servers and m waiting places. Customers arrive to the system one at a time
and customers arrive according to Poisson process with rate A. On arrival, if
a customer finds one of the servers free, he will be served with an exponential
rate of 4, immediately, otherwise he will join the special queue from where he
will repeat, independently of other customers, his attempts for service after an
exponential time with rate v,. On the other hand, if an arriving customer finds

server and all of the waiting positions occupied, the customer will be lost.

Let A, v and u, be given and A be the input rate, v be the rate for retrials
for waiting customers and p, = np be the service intensity for each server
where n is a scaling factor (n — o). That means the service is fast. Denote

by @.(t) the number of waiting calls (in the retrial queue) at time ¢.

Theorem 5.1.1 For the system described above (case 1), under the assump-

tion of fast service, independently of the initial state, the distribution of the
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normalized random variable n™™2Q,(j, ¢) converges weakly to an ezponentially
distributed random variable
Jim P{n™"7*Q,(j,q) 2 t} = exp{—At}, t >0,

where

A m
A= )‘(ﬂ) 2

where X is the input rate, v is the rate for retrial calls, and u, = nu is the

service intensity.

Proof:

Let ,(7, q) be the time of first loss of a call given @,,(0) = ¢ and N,(0) = j

in a system where the rate of service is fast in the sense that u, = nu. We

study the asymptotic behavior of £2,(j,¢) as n — oo.

Consider a multicomponent process (N,(t),Qn(t)) with state space S =
{0,1,2} x Z;. The process (Nn(t),@n(t)) forms a homogeneous MP in

continuous time and the state space for the process is in the form of

Z ={(j,9),j = 0,1,2,¢ = 0O,m}

The rates of transitions for the process (N,(t), @n(t)) can be calculated and
it can be seen that the subset Z forms monotone structure where at each fixed

qg=0,1,..,m the subset Z, = {(j,q),7 = 0,1,2} forms g-level.

Figure 5.1 shows the moriotone structure and corresponding probabilities

where o, f;, aq, by and €,(g) are defined as

o = qv b, = A
" A4 qu T A4 qu
1 qv 1A LA
aq-—;“ﬂ——’o bq_;;—»O En(q)—nZ;z

and note that a, and b, are in the order of €n(q).
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o ¢ o 0 o o
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Figure 5.1: Monotone structure for the model with two servers and assumption

of fast service
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In each state (j, q) the process spends an exponential time with parameter

A42npu  if j=2
AGyg) =4 Atnu+gr if j=1
A+ qv if 7=0

Denote by #n(q) = (mn(0,¢),mn(1,9),7ma(2,9)) for ¢ = 2,3,....,m + 2 the
stationary distribution of the embedded Markov process for (N,(t), @(t)) and
let m;,¢ = 0,1,2 (F = (mo,m1,7m2(n))) be the stationary distribution for the
states in Zo and Z; (see Figure 5.1) where components 7y and 7, belong to
the states in Zp and m,(n) belongs to the state in Z;. Note that Z; in limit
forms one essential class. The method of study will be as follows: First, we
will obtain expression for g,(Z) which will be a function of 72(n), then we will

use o and m; to recalculate 73(n) and obtain final expression for g,(Z).

The expression for g,(Z) can be obtained directly as applying matrix

relation of Theorem 3.1.2

0n(2) = malm) ()™ 1+ o(1)

hence, as substituting the mp(n) = %%ﬁ in the relation above, we obtain

1 1. X
9(2) = e 5(5;

)™ (1 + 0(1))

and from the expression for ¢,(Z) we obtain, as setting 8, = n':m‘z, the

parameter of exponential distribution as

— A m+2

Now, we will study the same system described above with assumption of

fast service and fast retrials which is g, = ny and v, = nv and will study the

asymptotic behavior of the time of first lost customer as n — co.

Theorem 5.1.2 For the system described above (case 2), under the assump-
tion of fast service and fast retrials, independently of the initial state, the

distribution of the normalized random variable n™™=2Q, (5, q) converges weakly
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to an ezponentially distributed random variable
lim P{n™"7*Q,(j,q) 2 t} = exp{—At}, t > 0,
where \
A= A(=—)m*?
2p
where A is the input rate, nv is the rate for retrial calls, and nu is the service

intensily.

Proof

Let £2,.(7, ¢) be the time of first loss of a call given @,(0) = ¢ and N,(0) =5
in a system where the rate of service and the rate of retrials are fast in the sense

that u, = nu and v, = nv. The asymptotic behavior of 2,(j,¢) as n — oo is

studied.

Consider a multicomponent process (N,(t),@n(t)) with state space S =
{0,1,2} x Z,. The process (Nn(t),@n(t)) forms a homogeneous MP in

continuous time and the state space for the process is in the form of

7 = {(],Q),] = 0>172)q =D,_”'Z}

The rates of transitions for the process (N,(t), @.(t)) can be calculated and

it can be seen that the subset Z forms monotone structure where at each fixed

g=0,1,...m the subset Zq = {(], q),] =0, 1)2} forms g-level.

Monotone structure for the system can be seen in Figure 5.2 and e,(q) is

defined as
(@)= 5
Enll) = n2u

In each state (j,q) the process spends an exponential time with parameter

AGyg)=q A+nu+qnv if j=1
A+ gnv if 5=0
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Figure 5.2: Monotone structure for the model with two servers and assumptions

of fast service and fast retrials
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Denote by 7n(gq) = (74(0,9),7,(1,¢),mn(2,q)) for ¢ = 2,3,...,m + 2, the
stationary distribution of the embedded Markov process for (N,(t), @.(t)) and
let 7,1 = 0,1,2 (7 = (mo,m,m2(n))) be the stationary distribution for the
states in Zp and Z; (see Figure 5.2) where components 7o and m; belong to
the states in Zo and 7(n) belongs to the state in Z;. Note that Zy in limit
forms one essential class. The method of study will be as follows: First, we
will obtain expression for g,(Z) which will be a function of 73(n), then we will

use mo and 7y to recalculate m5(n) and obtain final expression for g,(Z).

The expression for g,(Z) can be obtained directly as applying Theorem

3.1.2
I A

gn(2) = 71'2(72)nm+1 (ﬂ)mﬁl(l +0(1))

hence, as substituting the my(n) = %%5’-\; in the relation above , we obtain

n(2) = sy ™0 + o)

and from the expression for g,(Z) we obtain, as setting S, = n~™"2, the
parameter of exponential distribution as
A
A= Mz=—)"*?
2u
Note that the result obtained for Theorem 5.1.1 is exactly the same as the
result obtained above. We can conclude that the time of exit for both cases

does not depend on the retrial rate if v, /4 0.

5.2 M/M/s/m system with retrials

Consider a Markov retrial queueing system of the type M/M/s/m with retrials
The system with s servers and m waiting places. The servers are independent
and identical. Calls enter the system one at a time. On arrival, if one of the
servers is free the customer will receive service immediately; otherwise, if there
are free waiting positions the customer will join the queue waiting for service.

On the other hand, if an arriving customer finds all servers and all of the
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waiting positions occupied, the customer will be lost. Each waiting customer
independently of others repeats its attempts for service after some random
time. If at this time there is free server the customer is served, if all of the

servers are busy again the call remains in the queue and repeats its attempts

for service in the same way.

Let A, v, and u, be given and A be the input rate, v, = nv be the rate for
retrials for waiting customers and u, = nu be the service intensity for each

server. We will consider the cases:

Case 1: v, = v (usual retrials) and u, = ny (fast service) as n — oo.

Case 2: v, = nv (fast retrials) and p, = nu (fast service) as n — oco.

Theorem 5.2.1 For the system described above, under the assumption of fast
service, independently of the initial state, the distribution of the normalized

random variable n=*"™§,(4,q) converges weakly to an ezponentially distributed

random variable

lim P{n™*""Q,(j,q) > t} = exp{—At}, t >0,

n—+oo

where

A
A=)

where A is the input rate, v is the rate for retrial calls, nu is the service

intensity.

Proof:

Let Q.(7, ¢) be the time of first loss of a call given @,(0) = ¢ and N,(0) = ;

in a system where the rate of service is fast in the sense that u, = nu. We

study the asymptotic behavior of Q,(j,¢) as n — oo.

Consider a multicomponent process (N,(t), @n(t)) with state space S =
{0,1,2,...,8} x Z;. The process (N,(t),@n(t)) forms a homogeneous MP in
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continuous time and the state space for the process is in the form of
Z - {(]7q)7] = 6)—‘5—7(] = 07m}

The rates of transitions for the process (Ny(t), @n(t)) can be calculated and

it can be seen that the subset Z forms monotone structure where at each fixed

¢=0,1,..,m the subset Z, = {(4,q),7 =0, s} forms g-level.

In each state (j,¢) the process spends an exponential time with parameter

A+ snu if j=s
A(J,9) =<4 XA+ jnu+qv if je€(1,2,..,5s-1)
A+ qv if 7=0

Denote by 7,.(q) = (7(0,¢), Tn(1,9), ..., ®n(s,q)) for g = s,s+1,...,5+ m, the
stationary distribution of the embedded Markov process for (N,(t), @(t)) and
let 7,4 = 0,8 (F = (7o, m1,m2(n),...,ms(n))) be the stationary distribution for
the states in Zy to Z, where components my and m; belong to the states in
Zo and mi(n), k = 2,5 belongs to the state in Z;, ¢+ = I,s — 1, respectively.
Note that Zp in limit forms one essential class. The method of study will be
as follows: First, we will obtain expression for ¢,(Z) which will be a function

of m4(n), then we will use 7o and m; to recalculate 7,(n) and obtain final

expression for g,(2).

The expression for ¢g,(Z) can be obtained directly as applying matrix

relation of Theorem 3.1.2
1 A

—- 2 ym+l
gT'-(Z) - Ws(n)nm.f.l(slu) (]‘ +O(1))
hence, as substituting the
11 A,
mn) = 5=(3)
in the above relation, we obtain
L1, A s
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and from the expression for g,(Z) we obtain, as setting 5, = n™™"° the

parameter of exponential distribution as
A
A= A(—)mts
sp

Theorem 5.2.2 For the system described above, under the assumption of fast
service and fast retrials, independently of the initial state, the distribution of the
normalized random variable n=*"™8, (7, q) converges weakly to an ezponentially

distributed random variable

lim P{n™*"™Q,(j,q) >t} = exp{—At}, t >0,

R0
where
amslype
where A is the input rate, nv is the rate for retrial calls, nu is the service
intensity.
Proof

Let ,(7, ¢) be the time of first loss of a call given @, (0) = ¢ and N,(0) = j
in a system where the rate of service and the rate of retrials are fast in the sense

that u, = nu and v, = nv. The asymptotic behavior of Q,(4,¢) as n — oo is

studied.

Consider a multicomponent process (N, (), Q.(t)) with state space S =
{0,1,...,8} x Zy. The process (N,(t),Qn(t)) forms a homogeneous MP in

continuous time and the state space for the process is in the form of
Z={(j,4),j=0,5,¢=0,m}

The rates of transitions for the process (N,(t), @»(t)) can be calculated and

it can be seen that the subset Z forms monotone structure where at each fixed

qg=0,1,..,m the subset Z, = {(7,9),7 = 0, s} forms g-level.
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In each state (7, ¢) the process spends an exponential time with parameter

A+ 2nu if j=s
A(j,9) = ¢ A+ jnu+qnv if j€(1,2,...,8-1)
A+ gnv if 7=0

Denote by #,(q) = (72(0,9), ma(1,9), ..., ma(s,q)) for g =s5,5+1,...,s+m
the stationary distribution of the embedded Markov process for (N,(t), Qn(t))
and let m;,7 = 0, s (F = (mo, 71, 72(n), ..., ms(n))) be the stationary distribution
for the states in Zy to Z,-1 where components 7y and 7; belong to the states
in Zo and m(n), k = 2,s belongs to the state in Z;, 1 = 1,5 — 1, respectively.
Note that Zp in limit forms one essential class. The method of study will be
as follows: First, we will obtain expression for ¢,(Z) which will be a function

of me(n), then we will use mp and m; to recalculate 7,(n) and obtain final

expression for gn(Z).

The expression for ¢,(Z) can be obtained directly as applying Theorem

3.1.2
1

gn(2) = (v (\_g%)mﬂ(l + o(1))

hence, as substituting the

in the above relation, we obtain

9n(Z) = nn}ﬁ%(ﬁ)mw(l +o(1))

and from the expression for ¢g,(Z) we obtain, as setting f, = n™™7*, the
parameter of exponential distribution as
A
A= M—)mt
sp
Note that the result obtained for Theorem 5.2.1 is exactly the same as the
result obtained above. We can conclude that the time of exit for both cases

does not depend on the retrial rate if v, /4 0.



Chapter 6

SIMULATION RESULTS

Since the results obtained in the previous chapters are approximate results, we
need to perform simulation analysis and see how the approximation technique

works. The method of S — sets can be used in analysis of Markov systems, but

it is much more harder to analyze non-Markov systems.

The simulation analysis is performed for the following two cases:

Case 1: M/M/1/m system with retrials.
System with single server and two waiting places (m = 2) where customers
arrive according to Poisson process with rate A = 1 customer per unit time,
service rate is exponential with parameter y = 10 customers per unit time and

rate of retrial for each customer is exponential with parameter v = 2 customers
per unit time.
Case 2: M/G/1/m syétem with retrials.
= 2) where customers

System with single server and two waiting places (m =
arrive according to Poisson process with rate A = 1 customer per unit time,

service rate is uniformly distributed between [0,0.5] (U[0,0.5]) and rate of

retrial for each customer is exponential with parameter v = 2 customers per

unit time.

53
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6.1 Simulation of M/M/1/m system

with retrials

M/M/1/m system with retrials is simulated to compare the approximation
results with those obtained by simulation. The system can be described in
the following manner. The system consists of a single server and two waiting
positions. Customers arrive to the system according to Poisson process with
rate A = 1 customer per unit time and if the server is free, an arriving
customer starts service immediately and the service time will be exponential
with parameter g = 10 customers per unit time. If, upon arrival, the server
is busy, the customer will join the retrial queue and will reapply for service
after an exponential time with parameter v = 2 customers per unit time. The
capacity of the retrial queue is m = 2. If an incoming customer finds the server

and all of the waiting positions full, the customer will leave the system forever.

We studied the behavior of the time of first lost customer in such a system
and we know that this time under appropriate normalization and assumption of

fast service weakly converges to an exponentially distributed random variable.

The results obtained from simulation analysis are shown in Table 6.1 and

the comparison of simulated density and expected exponential density is shown
in Figure 6.1

The result obtained using the formula of Theorem 4.1.1 for the case when
m=2 A=1,u=10,and v = 2is A = ;5 (mean is 533.33). On the other
hand the result obtained from simulation of the system of the type M/M/1/m

with retrials, has mean of éxponential distribution as 545.321 which is close to

the value obtained by simulation.

The main difference between simulated value and approximation value is
due to the small number of simulation trials (we performed the simulation only

160 times) and we chose n (scaling factor) to be of the order of 10 which is not

very large.
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3.184 3.856 6.632 8.542 11.784 14.479 15.547

16.33 18.925 19.389 19.698 22.308 23.568 25.888

32.639 36.458 40.058 42.551 44.034 53.194 57.836

61.592 64.324 73.765 74.918 87.834 88.785 91.555

93.325 97.602 | 105.196 | 116.552 | 119.658 | 122.638 | 127.25

132.059 | 141.831 | 142.072 | 142.448 | 167.38 | 175.316 | 185.186
189.639 | 191.017 | 210.931 | 215.414 | 219.685 | 222.958 | 238.644
241.469 | 241.578 | 242.372 243.1 246.614 | 246.637 | 251.363
257.863 | 258.813 | 267.711 | 268.779 | 272.965 | 274.054 | 286.813
291.216 | 296.262 | 297.397 | 301.743 | 317.148 | 317.501 | 318.593
324.294 | 324.623 | 329.766 | 348.053 | 385.591 | 386.477 | 389.934
391.959 | 421.904 | 422.092 | 424.142 | 428.915 | 436.713 | 436.841
457.197 | 459.011 | 469.757 | 469.853 | 478.066 | 486.408 | 507.896
512.016 | 512.131 | 526.21 | 527.106 | 530.806 | 531.176 | 536.914
537.842 | 553.689 | 565.988 | 567.425 | 569.083 | 587.823 | 588.622
618.293 | 628.375 655.6 664.216 | 666.202 | 666.299 | 676.752
688.114 | 698.099 | 709.676 | 723.063 | 728.492 | 741.744 | 754.546
783.471 | 797.205 | 843.845 | 844.282 | 854.884 | 874.513 | 879.755
892.09 | 897.025 | 905.43 | 906.496 | 978.087 | 996.985 | 1006.016
1009.595 | 1053.852 | 1064.096 | 1080.221 | 1090.025 | 1104.761 | 1106.961
1107.94 | 1115.806 | 1117.39 | 1200.67 | 1226.672 | 1237.699 | 1248.01
1274.386 | 1375.404 | 1488.44 | 1533.473 | 1613.755 | 1656.102 | 1737.921
1783.989 | 1798.627 | 1799.949 | 1802.216 | 2407.96 | 2553.084

Table 6.1: Results of simulation of the time of first customer loss in the system
of the type M/M/1/m with retrials where m =2, A =1, p =10, and v = 2

If we increase the scaling factor n to be larger and would perform the

simulation more than 10.000 times we would obtain much more better values by

simulation (i.e, average of the simulated value would be closer to that obtained

from approximate calculatjons).

As we noted previously, the simulation of rare events requires some special

simulation techniques (see [41]). The simulation of rare events in Markov and

non-Markov retrial queueing system can be a further research direction in this

field. One can investigate for which values the scaling factor n can be accepted

as large enough.
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T T I I I I
— simulated density
approximated density

16} -

500 1000 1500 2000 2500 3000

Figure 6.1: Approximated and simulated densities for the time of loss of first
customer in a M/M/1/m system with retrials where m =2, A =1, p = 10

v =2
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6.2 Simulation of M/G/1/m system

with retrials

The method of 5 — sets can be used in the analysis of Markov systems but
it is much more harder to study non-Markov systems using the method of
S — sets, so we could not perform analysis for non-Markov systems. We
can expect the time of exit from the system of the type M/G/1/m with
retrials to be exponentially distributed random variable under the assumption
of fast service. We performed simulation analysis for the non-Markov system

M/G/1/m with retrials where the service time distribution is assumed to be

uniformly distributed.

The system can be described in the following manner. The system consists
of a single server and two waiting positions. Customers arrive to the system
according to Poisson process with rate A = 1 customer per unit time and if the
server is free, an arriving customer starts service immediately and the service
time will be uniformly distributed in the interval [0,0.5]. If, upon arrival, the
server is busy, the customer will join the retrial queue and will reapply for
service after an exponential time with parameter v = 2 customers per unit
time. The capacity of the retrial queue is m = 2. If an incoming customer

finds the server and all of the waiting positions full, the customer will leave the

system forever.

The results obtained from simulation for the cases when service rates are
uniformly distributed on.the intervals U[0,0.5) and U[0,0.2] are shown in
Table 6.2 and Table 6.3, respectively. Also, comparison of simulated density
and exponential density are shown in Figure 6.2 and Figure 6.3 for both cases.

Simulated parameter for U[0,0.2] is A = 1/780.42 and simulated parameter for

U[0,0.5] is A = 1/91.55.
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T T T T T T T T I I I
— simulated density
exponential density |

10F

| 1 ] ] Il | A | | | |

50 100 150 200 250 300 350 400 450 500 550

Figure 6.2: Approximated and simulated densities for the time of loss of first
customer in a M/G/1/m with retrials where m = 2, A = 1, v = 2 and service
times are uniformly distributed on the interval [0,0.5].
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— simulated density
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500 1000 ~ 1500 2000 2500 3000 3500

Figure 6.3: Approximated and simulated densities for the time of loss of first
customer in a M/G/1/m with retrials where m = 2, A = 1, v = 2 and service
times are uniformly distributed on the interval [0,0.2].
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2.566 4.483 5.029 6.446 8.221
12.045 | 13.367 16.1 16.452 | 18.009
18.645 | 23.668 | 24.589 | 27.418 | 30.868
31.286 | 34.542 | 35.383 | 35.791 | 36.382
44.363 | 45.674 | 47.026 | 51.576 | 51.977
55.824 | 56.949 | 62.428 | 63.923 | 65.308
73.046 | 81.398 | 90.43 91.5 | 103.877
106.182 | 110.241 | 111.352 | 151.586 | 171.074
171.849 | 182.604 | 186.054 | 209.688 | 219.172
248.999 | 264.33 | 317.296 | 356.875 | 450.409

Table 6.2: Results of simulation of the time of first customer loss in the system
of the type M/G/1/m with retrials where m = 2, A = 1, v = 2 and service
times are uniformly distributed on the interval [0,0.5].

22.291 28.267 42.901 48.42 74.725
83.572 96.85 125.368 | 148.956 150.6
245.858 | 262.708 | 266.762 | 272.47 | 282.066
330.856 | 346.204 | 363.184 | 363.95 | 377.421
392.372 | 439.792 | 471.117 | 510.087 | 586.226
608.23 | 659.679 | 777.863 | 778.604 | 783.319
791.318 | 792.812 | 831.125 | 836.562 | 855.93
856.505 | 887.199 | 941.248 | 954.121 | 1081.796
1129.714 | 1148.186 | 1159.879 | 1209.135 | 1224.8
1235.548 | 1354.681 | 1625.982 | 1641.299 | 1679.173
1853.042 | 1877.712 | 1987.76 | 2161.174 | 2865.675

Table 6.3: Results of simulation of the time of first customer loss in the system
of the type M/G/1/m with retrials where m = 2, A = 1, v = 2 and service
times are uniformly distributed on the interval [0,0.2].



Chapter 7

CONCLUSION

This thesis investigates the asymptotic behavior of the time of first loss of
customer in retrial queueing models of the single server and multiple server
types. We analyze the systems under two different assumptions: a model

where service 1s considered to be fast and a model where both service and

retrials are considered to be fast.

We used the method of S —sets to prove that the time of first customer loss
from the given Markov system, under appropriate scaling, weakly converges in

distribution to an exponentially distributed random variable.

We analyzed single server retrial queueing systems of various types

e Single-server retrial queueing system where service is considered asymp-
totically fast and both the rate of incoming customers and the rate of

retrials are of usuaLl orders. Also the results for the case when rates

depend on the size of the queue were considered.

Single-server retrial queueing system where both service and retrials are
considered asymptotically fast and the rate of incoming customers is of

usual order. Also the results for the case when rates depend on the size

of the queue were considered.
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e Single-server retrial queueing system operating in Markov environment
where the service is considered asymptotically fast. Also the rates in the

model depend on the size of the queue and on the state of the additional

Markov environment.

An exponential approximation for the time of loss of first customer was proved

and the parameter of exponential distribution was derived for all of the cases

described above.

We also considered the multiple-server retrial queuing systems of various

types

o Two-server retrial queueing system where service is considered asymptot-
ically fast and the rate of incoming customers and the rate of retrials are
of usual orders. We also considered the case where both service rate and

rate of retrials are considered asymptotically fast and rate of incoming

customers is of usual order.

s-server retrial queueing system where service is considered asymptoti-
cally fast and both the rate of incoming customers and the rate of retrials
are of usual orders. We also considered the case where both service rate

and the rate of retrials are considered asymptotically fast and the rate of

incoming customers is of usual order.

An exponential approximation for the time of loss of first customer was proved

and the parameter of exponential distribution was derived for all of the cases
described above.
Table 7.1 and Table 7.2 summarizes the results derived in Chapter 4 and

5 for the time of loss of first customer in retrial queueing system with waiting

positions under some different assumptions.
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Future Research Directions

¢ Single server retrial queueing model where server is subject to breakdowns

(unreliable server) with any combination of fast service and fast repairs.

o Also multiple server models with servers subject to breakdowns can be

considered.

o Non-Markov retrial queueing systems with fast service. We can consider
the case where arrivals are non-Markov and service is exponential as
well as the case where service is non-Markov and arrivals are exponential

and asymptotic behavior for the time of loss of first customer can be
considered.
e Another direction can be the simulation of the retrial queueing systems.

Systems for which asymptotic analysis is not possible can be simulated

and various characteristics can be obtained.
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Figure 7.1: Summary of the results for single server retrial queueing models
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Figure 7.2: Summary of the results for multiple server retrial queueing models




Bibliography

[1] A. M. Aleksandrov, A queueing system with repeated orders, Engineering
Cybernetics Rev. 12, 3(1974)1.
[2] V. V. Anisimov, Limit distributions of functionals of a semi-Markov

process given on a fixed set of states up to the time of first exit, Soviet

Math. Dokl. 11 (1970), No.4, 1002-1004.

[3] V. V. Anisimov. Asymptotic consolidation of the states of random

processes, Cybernetics 9 No.3 (1973) 494-504.

[4] V. V. Anisimov, Limit theorems for sums of random variables in an array

of sequences defined on a subset of states of a Markov chain up to the exit

time, Theor. Probability and Math. Stat. 4 (1974) 1.

[5] V. V. Anisimov. Limit theorems for random processes and their applica-
tions to discrete summation schemes, Teoria Veroyatnostey i Primenen.

20 No.3, (1975) 692-694. English translation in Theor. Probab. Appl. 20,
(1975).
[6] V. V. Anisimov. Switching processes. Cybernetics 13 No.4 (1977) 590-595.

[7] V. V. Anisimov. Limit theorems for switching processes and their

applications, Cybernetics 14 No.6 (1978) 917-929.

[8] V. V. Anisimov, Inequalities in Markov approximation of lumped
processes, Probability Theory and Mathematical Statistics. Proc. 4-th
Vilnius Conf., USSR, 1985, VNU Science Press, The Netherlands. Vol.

1, (1988).
66



BIBLIOGRAPHY 67

[9] V. V. Anisimov, O. K. Zakusilo, and V. S. Dontchenko, The elements of

queueing theory and asymptotic analysis of systems, Publ. ”Visca Scola”

Kiev p.248 (1987) (in Russian).

(10} V. V. Anisimov and S. G. Pushkin, Limit theorems and proximity

estimates for summation schemes on Markov chains, Theory of Probability

and Mathematical Statistics, 37 (1988).

[11] V. V. Anisimov, Random processes with discrete component. Limit
theorems, Publ. Kiev Univ. p.184 (1988a) (in Russian).

[12) V.V. Anisimov and J. Sztrik. Asymptotic analysis of some controlled finite-

source queueing systems, Acta Cybernet. 9 (1989), No.1, 27-38.

[13] V. V. Anisimov and J. Sztrik. Asymptotic analysis of some complex

renewable system operating in random environment, European Journal

of Operations Research 41(1989b), 162-168.

[14] V. V. Anisimov and J. Sztrik. Reliability analysis of a complex renewable

system with fast repair, J. of Information Processing and Cybernetics,

EIK, Berlin, 25, No. 11/12, (1989c) 573.

[15] V. V. Anisimov. Switching processes: Averaging Principle, Diffusion Ap-

proximation and Applications, Acta Applicandae Mathematicae, Kluwer

40 (1995) 95-141.

[16] V. V. Anisimov, Asymptotic analysis of switching queueing systems
in conditions of low and heavy loading, Matriz-Analytic Methods in
Stochastic Models, Eds. S.R. Chakravarthy and A.S. Alfa, Lecture notes in
Pure and Applied Mathematics Series, Marcel Dekker, Inc., 183 (1996),

241-260.
[17) V. V. Anisimov. Asymptotic merging of states in hierarchical stochastic

models and applications in queueing networks, Advances in Computer and
Information Sciences ’98, Editors, U. Gudukbay et al., IOS Press (1998).



BIBLIOGRAPHY 68

(18] V.V. Anisimov. Averaging methods for transient regimes in overloading

retrial queueing systems, Mathematical and Computer Modelling 30(1999)
65-78.

[19] V. V. Anisimov. Averaging methods for switching queueing networks
in asymptotically consolidated environment, Proc. of 11th European

Simulation Conference ESS’99, Erlangen, Germany, Oct. 26-28, (1999),
682-686.

[20] V. V. Anisimov. Asymptotic analysis of reliability for switching systems in
light and heavy traffic conditions, Recent Advances in Reliability Theory:
Methodology, Practice and Inference, Eds: N. Limnios, M. Nikulin,
Birkhauser Boston Inc., (2000) (forthcoming)

[21] A. Bobbio and K. S. Trivedi, An aggregation technique for the transient
analysis of stiff Markov chains, I[EEE Transactions on Computers, C-35

9, (1986) 803-814.

[22] A. A. Borovkov, Asymptotic Methods in Queueing Theory, John Wiley
and Sons Ltd., 1984.

[23] Q. H. Choo and B. Conolly, New results in the theory of repeated orders
queueing systems, J. Appl. Prob. 16 (1979) 631.

[24] J. W. Cohen, Basic problems of telephone traffic theory and the influence
of repeated calls, Philips Telecom. Rev. 18, 2(1957) 49.

[25] G.I. Falin, Aggregate arrival of customers in one-line system with repeated
calls, Ukrainian Math. J. 28 (1976) 437 (in Russian).

[26] G. L. Falin, A single-line system with secondary orders, Engineering

Cybernetics Rev. 17 2(1979) 76 (in Russian).

[27] G. L. Falin, Not completely accessible schemes with allowance for repeated
calls, Engineering Cybernetics Rev. 18, 5(1980) 56 (in Russian).

[28] G. 1. Falin, Investigation of weakly loaded switching systems with repeated

calls, Engineering Cybernetics Rev. 19, 3(1981) 69.



BIBLIOGRAPHY 69

[29] G.I. Falin. Asymptotic investigation of completely accessible switching
systems with a high rate of repetition of blocked calls, Vestnik

Moskov. Univ.Ser.I Math.Mekh. 6 (1984) 49-53, 111 (in Russian).

[30] G.I. Falin. On the waiting-time process in a single-line queue with repeated
calls, Journal of Applied Probability 23 (1986) 185-192.

[31] G.I. Falin. Multichannel queueing systems with repeated calls under high
intensity of repetition, Journal of Inform. Processes. Cybernet. 28 (1987)

37-47 (in Russian).

[32] G. I Falin, On a multiclass batch arrival retrial queue, Adv. Appl. Prob.
20 (1988) 483-487.

[33] G. I Falin and J. G. C. Templeton, Retrial Queues, ChapmanHall (1997)
[34] G. Falin, A survey of retrial queues, Queueing systems 7(1990) 127-168.

[35] O. Hashida and K. Kawashima, Buffer behavior with repeated calls,
Electronics and Communication in Japan 62-B, 3(1979) 27.

[36] G. L. Jonin and Y. Y. Sedol, Investigation of telephone systems in the
case of repeated calls, Latvian Mathematical Yearbook 7 (1970) 71.

[37] J. Keilson, J. Cozzolino and H. Young, A service system with unfilled
requests repeated, Oper. Res. 16 (1968) 1126.

[38] V.S. Korolyuk and A.F. Turbin, Mathematical Foundations of Phase
Consolidations of Complex Systems, Publ. ”Naukova Dumka”, Kiev (1978)

(in Russian).
[39] L. Kosten, On the influence of repeated calls in the theories of probabilities
of blocking, De Ingenieur 59 (1947) 1.

[40) I.N. Kovalenko, Rare Events Analysis in the Estimation of Systems
Efficiency and Reliability, Publ. ”Sov. Radio”, Moscov (1980) (in Russian).

[41] 1. N. Kovalenko, Rare events in queueing systems, A survey, Queueing

Systems 16 (1994) 1-49.



BIBLIOGRAPHY 70

[42] V. G. Kulkarni, Expected waiting times in a multiclass batch arrival retrial
queue, J. Appl. Prob. 23 (1986) 144.

[43] P. Le Gall, The repeated call model and the queue with impatience, Proc.
Third Int. Seminar on Teletraffic Theory, Moscow (1984) 278-289.

[44] L. Lipsky, Queueing Theory, A Linear Algebraic Approach, Macmillian
Publishing Company, USA, 1992.

[45] M. F. Neuts Matrix-Geometric Solutions in Stochastic Models: An
Algorithmic Approach. Dover Publ. 1995. (First Published in 1981 by
Johns Hopkins University Press).

[46] N. U. Prabhu, Foundations of Queueing Theory, Kluwer Academic
Publishers ( International Series in Operations Research and Management
Science,7), 1997.

[47] G. E. Ridout, A study of retrial queueing systems with buffers, M.A.Sc.
Thesis, Department of Industrial Engineering, University of Toronto
(1984).

[48] J. Riordan, Stochastic Service Systems, (Wiley, New York, 1962).

[49] A.D. Soloviev, Asymptotic behavior of the first occurrence time of a rare
event in a regenerative process, [zv. Akad. Nauk. SSSR Tekhn. Kibern., 6
(1971) 79 (in Russian).

[50] S. N. Stepanov, Integral equilibrium relations of non-full-access systems
with repeated calls and their applications, Prob. Inf. Trans. 16, 4(1980)
88 (in Russian).

[51] S. N. Stepanov, Probabilistic characteristics of an incompletely accessible

multi-phase service system with several types of repeated calls, Problems

of Control and Information Theory 10, (1981) 387 (in Russian).

[52] S. N. Stepanov, Asymptotic formulae and estimations for probabilistic
characteristics of full-available group with absolutely persistent sub-

scribers, Problems of Control and Information Theory 12, 5(1983) 361

(in Russian).



BIBLIOGRAPHY 71

[53]

[54]

[55]

[56]

[57]

[58]

S. N. Stepanov, Probabilistic characteristics of an incompletely accessible
service system with repeated calls for arbitrary values of subscriber

persistent function, Problems of Control and Information Theory 13,
2(1984) 69 (in Russian).

S. N. Stepanov and I. I. Tsitovich, The model of a full-available group with

repeated calls and waiting positions in the case of extreme load, Problems

of Control and Information Theory 14, 1(1985) 25 (in Russian).

J. Sztrik and D. Kouvatsos. Asymptotic analysis of a heterogeneous
multiprocessor system in a randomly changing environment, [FFFE
Transactions on Software Engineering 17 (1991), No.10, 1069-1075.

J. Sztrik. Asymptotic analysis of a heterogeneous renewable complex

system with random environments, Microelectronics and Reliability 32

(1992) 975-986.

R. I. Wilkinson, Theories for toll traffic engineering in the U.S.A., Bell
System Tech. J. 35, (1956) 421.

T. Yang and J. G. C. Templeton, A survey on retrial queues Queueing
Systems 2 (1987) 203-233.



VITA

Mimin Kurtulug was born on March 5, 1976 in Kircali, Bulgaria. He completed
his primary education in Kircali, Bulgaria. In 1989, his family moved to
Istanbul, Turkey and he received his high school diploma from Yesilkoy 50. Y1l
Lisesi, Istanbul, Turkey. He has received his Bachelor of Science Degree from
the Department of Physics, Koc University, Istanbul, Turkey. In September
1998, he joined the Department of Industrial Engineering at Bilkent University,
Ankara, Turkey as a research assistant. From that time to the present, he

worked with Professor Vladimir V. Anisimov for his master’s thesis at the

same department.



