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ABSTRACT

FORMALIZATION OF THE TRAFFIC WORLD IN 
THE C ACTION LANGUAGE

Selim T. Erdoğan 
MS in Computer Engineering 

Supervisor: Prof. Varol Akman 
July, 2000

Reasoning about actions and effects of actions is an important task in Arti­
ficial Intelligence, with connections to knowledge representation and planning. 
Many formal methods for representing actions and inferring their effects have 
been developed over the years (e.g. action languages, fluent calculus, situation 
calculus). However, the examples formalized so far have been “toy” domains 
of very small sizes. Successful formalizations of scenarios of nontrivial size are 
needed in order to show that these methods are suitable for real applications 
and to assess the strong and weak sides of different methods. The C action 
language is a logic programming language designed to represent the effects of 
actions on fluents. In this thesis we formalize the TRAFFIC scenario world 
— a domain of moderate size, specified at the Logic Modelling Workshop at 
http://www.ida.liu.se/ext/etai/lmw/ — using the C action language. Example 
planning problems using the formalization are successfully solved using the Causal 
Calculator — available at http://www.cs.utexas.edu/users/tag/cc/ — , a program 
for planning and querying in action domains. The formalization is contrasted with 
previous work on the TRAFFIC world, namely the formalization of A. Henschel 
and M. Thielscher using the fluent calculus.

Keywords: Action languages, planning, causal reasoning, knowledge representa­
tion, C, Causal Calculator, TRAFFIC, Logic Modelling Workshop.
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ÖZET

TRAFFIC DÜNYASININ C EYLEM DİLİNDE 
BİÇİMSELLEŞTİRİLMESİ

Selim T. Erdoğan
Bilgisayar Mühendisliği, Yüksek Lisans 
Tez Yöneticisi: Prof. Dr. Varol Akman 

Temmuz, 2000

Eylemler ve sonuçları hakkında akıl yürütme Yapay Zekâ açısından bilgi gösterimi 
ve planlama ile bağlantıları olan önemli bir iştir. Geçmiş yıllarda eylemlerin 
gösterimi ve sonuçlarının çıkarımı için pek çok biçimsel yöntem geliştii'ilmiştir 
(örneğin, eylem dilleri, akar hesabı, durum hesabı). Ne var ki, şimdiye kadar 
niodellenmiş bütün örnekler çok küçük boyutlarda olan “oyuncak” dünyalardır. 
Bahsedilen yöntemlerin gerçek uygulamalar için uygun olduklarını göstermek 
ve değişik yöntemlerin güçlü ve zayıf yanlarını saptayabilmek için basit ol­
mayan boyutlardaki senaryoların başarılı biçimselleştirmelerine gerek vardır. 
C eylem dili eylemlerin akarlar üzerindeki etkilerini göstermek için tasar­
lanmış bir mantık programlama dilidir. Bu tezde TRAFFIC senaryo dünyası 
— http://www.ida.liu.se/ext/etai/lmw/ adresindeki Logic Modelling Workshop 
tarafından tanımlanmış, orta büyüklükte bir dünya — C eylem dili kullanılarak 
biçimselleştirilmektedir. Örnek planlama problemleri eylem dünyalarında plan­
lamaya ve sorgulamaya yarayan Causal Calculator programını — bu program 
http://www.es.utexas.edu.users/tag/cc/ adresinden temin edilebilir — kulla­
narak başarılı bir biçimde çözülmektedir. Biçimselleştirme, TRAFFIC dünyasını 
biçimselleştirmek için daha önce A. Henschel ve M. Thielscher’in akar hesabı 
kullanarak yaptıkları çalışmayla karşılaştırılmaktadır.

Anahtar sözcükler: Eylem dilleri, planlama, nedensel akıl yürütme, bilgi 
gösterimi, C, Causal Calculator, TRAFFIC, Logic Modelling Workshop.

http://www.ida.liu.se/ext/etai/lmw/
http://www.es.utexas.edu.users/tag/cc/
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Chapter 1

Introduction

Reasoning about actions and effects of actions is an important task in Artificial 
Intelligence, with connections to knowledge representation and planning. Many 
formal methods for representing actions and inferring their effects have been de­
veloped over the years. However, the examples formalized so far have been “toy” 
domains of very small sizes. Successful formalizations of scenarios of nontrivial 
size are needed in order to show that these methods are suitable for real applica­
tions and to assess the strong and weak sides of different methods.

1.1 The Logic Modelling Workshop

The Logic Modelling Workshop (LMW) [23] is a part of the Reasoning about Ac­
tions and Change [32] research area^. The Reasoning about Actions and Change 
area investigates formal methods, usually based on formal logic, for character­
izing processes in terms of discrete-level state descriptions and events, actions, 
and activities which are capable of changing the current state [32]. The purpose 
of LMW is to provide an environment for researchers of action to communicate 
formalizations of scenario worlds of nontrivial size [23].

^This is one of the research areas of the journal Electronic Transactions on Artificial Intel­
ligence (ETAI) [8].

1



CHAPTER 1. INTRODUCTION

To this end, two scenario worlds have been specified at LMW: (i) ZOO, which 
is a world of a classical zoo with animals and cages, and (ii) TRAFFIC, a world 
of nodes and segments with cars traveling from node to node over the segments, 
obeying certain traffic rules.

The Logic Modelling Workshop challenges researchers to formalize the two 
scenario worlds in one of six well-known logics: action languages [11], cognitive 
robotics logic (CRL) [33], event calculus [31], fluent calculus [34], situation cal­
culus (Toronto variant) [17], time and action logic (TAL) [7].

1.2 Organization of the Thesis

In this thesis we will formalize a discrete-time version of the TRAFFIC scenario 
world using the C action language, an action language based on causal explana­
tion. Our decision to choose the TRAFFIC world is based on the fact that it 
is closely related to important real life applications such as controlling real cars 
on real roads, and planning for automated driving. This implies that if the C 
language can be successfully used to formalize the TRAFFIC world, it may later 
be extended to larger and more complicated worlds. We chose C as the logic we 
would be using because of two reasons: it has many expressive possibilities (such 
as inertia, action preconditions, concurrency, nondeterminism), and there is a tool 
-  the Causal Calculator [24] — for performing planning in domains expressed in 

C.

In Chapter 2 we review the background knowledge that is needed to under­
stand our work. This starts with a review of the causal theories of McCain and 
Turner [26], on which C is based. The C language and its abbreviations are re­
viewed after that. Satisfiability planning and how it may be done in domains 
expressed in C are explained at the end of that chapter. The formalization of 
the TRAFFIC world is presented in Chapter 3. First we decribe the TRAFFIC 
world and then all the aspects of the world are formalized. In Chapter 4 some 
planning problems and the solutions found are presented, demonstrating that our
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formalization works. Chapter 5 contrasts our formalization with that of Henschel 
and Thielscher [13] which uses the fluent calculus. This is the only previous work 
on formalizing the TRAFFIC world. Similarities and differences of the formal­
izations are analyzed. We show that we can expand our formalization to include 
the aspects Henschel and Thielscher have formalized differently. Finally, we offer 
our conclusions and suggestions for future work in Chapter 6.



Chapter 2

Background Knowledge

We will formalize the TRAFFIC world using the C action language [12] and 
then we will solve some example planning problems using the Causal Calculator 
[24]. C is based on the theory of causal explanation and is closely related to 
the causal theories of McCain and Turner [26]. Satisfiability planning [14, 15] 
can be performed with C using the Causal Calculator. In this chapter we first 
review causal theories and the C language. After that, satisfiability planning and 
how the Causal Calculator can be used for action domains formalized in C are 
explained.

2.1 Causal Theories

Causal theories of actions and change were introduced in 1997 by McCain and 
Turner [26]. Their previous work on a causal theory of ramifications and qualifi­
cations can be found in [25]. This review follows [26, 12].



2.1.1 What Type of Causal Knowledge?

Before we begin to describe causal theories we need to make more precise what 
kind of causal knowledge we will be dealing with.

There are two kinds of causal knowledge, one strong and one weak. In the 
strong case we know the causes of a fact. In the weak case, we do not know 
precisely what caused the fact but we know the conditions under which it is 
caused. We can express these two cases as follows:

(i) The fact that cj) causes the fact that 0.

(ii) Necessarily, if <j) then the fact that ip is caused.

CHAPTER 2. BACKGROUND KNOWLEDGE 5

Sentence (i) describes one of the causes of the fact ip. Sentence (ii) only 
describes one of the conditions under which the fact ip is caused. It should be 
noted that sentence (i) implies sentence (ii), but not vice versa. For example, 
the evacuation siren indicates that the explosion of the nuclear reactor in a few 
minutes is caused (type (ii)), but the cause of the explosion is not the siren (type

(i))·

Having causal information about a certain domain enables an agent to ratio­
nally reason about that domain (this reasoning may be in the form of predictions, 
planning, or querying, just to name a few of the most common reasoning tasks). 
Given a set of facts F about the present and/or past which are known to be true, 
if there exists a causal sentence of type (i) or (ii) which shows that a fact ip holds 
in the future, one may say that the fact ip is part of a “causally possible world 
history^.” If the fact could be shown to hold in every causally possible world 
history, then, given F we could safely predict ip.

The causal theories that we will be discussing assume the “principle of uni­
versal causation.” This principle posits that the facts which hold in a causally 
possible world history are exactly the ones which are caused. In other words, 
every fact that is caused must hold, and every fact which holds must be caused.

Hn a causally possible world history, every fact that is caused holds.
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Although this may look like a very strong ontological restriction, we show below 
how it may be bypassed in practice^.

It is not difficult to see that when causally describing a domain in order to 
compute the causally possible world histories we may make use of information in 
the form of sentence (ii) just as well as information in the form of sentence (i). 
This allows us to have simpler and more homogenous representations. This idea 
is not something originally introduced by McCain and Turner. Previously, [9, 22] 
have also used knowledge of form (ii) in formalizing action domains.

2.1.2 Syntax

The language of causal theories is one of propositional^ logic. Its signature is 
given by a nonempty set of atoms. A literal is an atom (e.g. A) or a negated 
atom (e.g. ~'A). The expression True is a zero-place logical connective which is 
a tautology and False stands for -<True.

A causal law is an expression of the form

tp ir— (f) (2.1)

where (f) and -0 are formulas^ of the propositional language^. The antecedent and 
consequent of (2.1) are 0 and 0, respectively.

Expression (2.1) is read as “Necessarily, if 0 then the fact that 0  is caused.” 
This is causal knowledge of type (ii). As mentioned above, knowledge of type (i) 
can also be correctly (for our purposes) represented in this form.

A causal theory is a finite set of causal laws.

^We almost never hold all facts exempt from the principle of universal causation. Usually 
only the initial facts, and occasionally some others, benefit from this exemption.

^Only propositional causal theories will be dealt with in this thesis. For a reformulation of 
causal theories in predicate logic the reader is referred to [18].

"̂ By a formula we mean any well-formed combination of atoms using the five logical connec­
tives of propositional logic (-i, A, V, D, =).

^An alternative syntax for (2.1), used in [26] is 0 => 0.
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2.1.3 Semantics

Let D be a causal theory and I  be an interpretation®. For every D and /, let D^ 
be the following set

D^ = {i/) : for some </>, ^  and I\= (f)}.

D^ is the set of consequents of the causal laws in D whose antecedents are true 
in I. In other words, the formulas in D^ are exactly those which are caused to be 
true in /  according to the causal theory D.

M ain definition. Let D be a causal theory. An interpretation /  is causally 
explained according to Z) if /  is the unique model of D^.

This can also be stated as follows. An interpretation /  is causally explained 
according to D if and only if for every formula

I \ ^  <f>\E D^ \^ (¡>.

This means that I  is causally explained according to D if and only if the 
formulas true in /  are exactly those caused to be true according to D. This is 
equivalent to what we had stated earlier as the principle of universal causation. 
Everything which holds is caused and everything that is caused holds. Thus, each 
causally explained interpretation is a causally possible world history.

A formula (¡> is called a consequence of a causal theory D li <f> is true in every 
interpretation which is causally explained according to D.

2.1.4 Definite Theories and Literal Completion

Let D be a causal theory in which

^By an interpretation 7 of a propositional language we mean a set of literals of the language 
such that this set includes exactly one literal for each atom.



• the consequent of every causal law ij) <r- cf) is either a literal or False,

• every literal is the consequent of finitely many causal laws.

Such a causal theory is said to be definite. Definite theories are important be­
cause there is a procedure to translate a definite causal theory into a classical 
propositional theory.

The literal completion of a definite causal theory is the classical propositional 
theory obtained by applying a modification of the Clark completion method [6]. 
The procedure is as follows:

• For each literal L in the language of D

— Find all the causal laws (L <— . . .  ,L <— (/>„) having L as the conse­
quent, and add the formula L = (</>i V . . .  V

— If no causal law has the consequent L, add L =  False,

• For each causal law False <— (¡>, add

P rop osition  2.1 Let D be a definite causal theory. An interpretation I  is 
causally explained according to D if and only if I  is a model of the literal comple­
tion of D.

CHAPTER 2. BACKGROUND KNOWLEDGE 8

The proof of this proposition can be found in [28, 27]. Now that we have a trans­
lation method from causal theories into classical propositional theories and we 
also know Proposition 2.1, the task of finding causally explained interpretations 
(and thus causally possible world histories) of a causal theory D is reduced to 
finding models of its literal completion.



2.2 Action Language C

2.2.1 About Action Languages

Action languages are formal models of parts of the natural language that are used 
for talking about the effects of actions [11]. They are one of the many formal 
methods developed to represent actions and effects of actions.

The first action language, A, was developed in 1993 [10]. Later on, more 
action languages were developed, the most recent one of which is the language 
C [12]. C is a language with many desirable properties. Nondeterminism, con­
current actions, action preconditions, inertial and noninertial fluents may all be 
conveniently expressed in C.

In the following sections we review C since it is the language which we will 
use to formalize the TRAFFIC world. Our review will follow [12, 11]. ([11] has 
general definitions of action languages.) More information about action languages 
may be found in [10, 3, 4, 35, 19, 21].

2.2.2 Syntax and Semantics of C

CHAPTER 2. BACKGROUND KNOWLEDGE 9

There are two sets of propositional symbols in C: is the set of fluent names,
and is the set of action names. The union of the sets and is 
a. An action is an interpretation of What this means is that there
cire elementary actions which comprise the set (e.g. cr“'^^={load_the^un, 
aim_gun_at_enemy, pu ll_the_trigger, sm ile_w ith _satisfaction }) and an ac­
tion a which specifies a group of elementary actions to be executed concurrently’  ̂
(e.g. an interpretation of which assigns the value True to pu ll_the_trigger 
and sm ile_w ith _satisfaction  and the value False to load_the^un and 
aim_gun_at _enemy).

’ So we might imagine the set of actions as the power set of
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There are two types of propositions in C\

caused F  if (9, 

caused F \i G after H.

( 2 .2)

(2.3)

In the above propositions (and in the rest of this chapter) F  and G are formulas 
of and H is a, formula of a. Propositions of form (2.2) are static laws and 
propositions of form (2.3) are dynamic laws. In both kinds of propositions F is 
called the head.

An action description is a finite set of propositions.

Let D be an action description. A state is an interpretation of which 
satisfies G D F  for every static law (2.2) in D. A transition is any triple (s ,a ,s ') 
where s, s' are states and a is an action; s is the initial state of the transition, 
and s' is its resulting state. A formula F is caused in a transition (s ,a ,s ') if it is

• the head of a static law (2.2) from D such that s' satisfies G, or

• the head of a dynamic law (2.3) from D such that s' satisfies G and s U a 
satisfies H.

A transition is causally explained according to D if its resulting state s' is the 
only interpretation of which satisfies all formulas caused in this transition.

2.2.3 Abbreviations

Although the only laws in C are (2.2) and (2.3), many abbreviations of those 
two laws are used both to shorten action descriptions and to make them more 
comprehensible. We present the abbreviations which we will be using (in the 
abbreviations below t/ is a formula of cr“*̂ )̂.

(i) An expression of the form

caused F  after H (2.4)
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stands for the dynamic law

caused F  if  True after H.

(ii) An expression of the form

inertial F (2.5)

stands for a dynamic law of the form

caused F  if F  after F.

This means that if a formula holds in two consecutive states, the fact 
that it holds is caused by virtue of its persistence. Making formulas 
inertial solves the frame problem [30] for them.

(iii) An expression of the form

inertial Fi, F2 , . . . ,  F„ 

stands for the group of expressions

inertial Fi, 

inertial F2 ,

(2.6)

inertial F„.

(iv) An expression of the form

U causes F  if  G 

stands for the dynamic law

caused F  if True after U AG.

(v) An expression of the form

U causes F

stands for the dynamic law

caused F  if True after U.

(2.7)

(2.8)
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(vi) An expression of the form

nonexecutable U if F  (2.9)

stands for the dynamic law

caused False if  True  after U A F.

This states an “action precondition” . The action specified by U can­
not be executed in states where F  holds.

(vii) An expression of the form

default F (2.10)

stands for the static law

caused F  if F.

Sometimes we would like to say that a fact holds whenever it has not 
been prevented by executing an action. For example, in a domain 
about tossing rocks in the air, we would make the fluent representing 
the rock being on the ground a default fluent (instead of inertial).

(viii) An expression of the form

stands for the static law

never F (2.11)

caused False if F.

(ix) An expression of the form

U m ay cause F if  G (2.12)

stands for the dynamic law

caused F if F  after U AG.

This law enables us to specify nondeterministic effects of actions. For 
example, the outcome of a coin tossing action [U) may be formalized 
using two laws like (2.12) with different outcomes, one to cause tails 
[F) and one to cause heads {~'F).
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2.2.4 From C Action Descriptions to Causal Theories

Let D be an action description. Then for any positive integer n, we may decribe 
the translation ctn{D) into causal theories as follows. The signature cr„ of ctn{D) 
consists of n +  1 disjoint copies (0 < ¿ < n) of the fluent signature and of 
n disjoint copies (0 < ¿ < n) of the action signature For any formula F  
of the original signature cr, is the formula obtained by replacing every atom in 
F  by the corresponding atom from or

Intuitively, the subscript i represents time. For a fluent symbol P, the atom P¿ 
expresses that P  holds at time i. For any action symbol A^ the atom Aj expresses 
that the elementary action A is executed between times i and ¿ +  1.

As the causal laws of the causal theory ctn{D), we have, for each static law 
of form (2.2) in D, the laws

Fi e- Gi {0 < i < n),

and for all dynamic laws of form (2.3) in D, the laws

F¿+i <— Gi^i A Hi (0 ^ z < 7z).

Recall that all facts in a causally explained interpretation must be caused. 
This rule includes actions and initial states also so we must include laws for 
these to be caused. It is typically assumed that these facts are exogenous to the 
causal theory. Therefore, the following laws are added (where A, F, and t are 
meta-variables for action, fluent, and time names, respectively).

At e - At

Fo

^Fo

-'At

Fo

-'Fo

Now, given an action description, we have shown a translation to obtain the 
corresponding causal theory. In Section 2.1.4 we had shown how, given a definite
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causal theory, we can use literal completion to translate it into a theory of classical 
propositional logic. What remains is how to apply this propositional theory to 
planning. This is the subject of the next section.

2.3 Satisfiability Planning

Approaching planning as a satisfiability problem was first proposed by Kautz and 
Selman [14]. There are indeed attractive properties of planning as satisfiability: 
Instead of just stating facts about the initial and goal states, arbitrary facts about 
any state of the world may be stated. Of course, this freedom is not limited to 
states. We may state constraints on actions, like having a certain action occur at 
a certain time.

As Kautz and Selman explain in [15], a plan corresponds to any model which 
satisfies a set of logical constraints that represent the initial state, the goal state 
and the domain axioms. Time consists of a fixed number of instances. Constraints 
specify conditions on fluents holding and actions being executed at particular 
times. When there are general constraints in the domain description, these are 
instantiated for all the time instances of the problem. This means that there is a 
limit for the maximum plan length. If the plan length is not known in advance, 
a binary search on instantiations with various time limits can find the solution.

2.3.1 Satisfiability Planning with Causal Theories

The idea to apply satisfiability planning to causal theories comes from (not sur­
prisingly) McCain and Turner [28]. They define a special type of causal theories: 
causal action theories. The form of a causal action theory is exactly like the 
translation ci„(D ) obtained from an action description D.

An initial state description So is a set of fluent literals which refer to time 
0, including exactly one literal for each atom in ctq. A time-specific goal G is a 
fluent formula. A plan P  is a set of actions such that it includes at most one
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literal of each atom in {0 < i < n).

In a domain decription D, a plan P  is a causally possible plan for achieving G 
in So ii SqG P  I/d -'G. a  deterministic plan is one in which for every time t, the 
history up to and including time t together with the actions performed at time t 
entail the state of the world at time f +  1. It is proven in [28] that every causally 
possible and deterministic plan is valid (i.e. the actions in P  are sufficient for 
achieving G in So and furthermore, we can always execute the plan).

2.4 The Causal Calculator

The Causal Calculator (CCALC) [24] is a model checker for the language of 
causal theories which runs in Prolog. Propositions in the action language C may 
be translated into the language of causal theories by using rewrite rules. This 
way, planning and querying may be done for action descriptions in C.

Given a file with a domain description in C, CCALC first translates this into 
schemas in the language of causal theories. These schemas are then instantiated 
with respect to the language signature and translated into propositional logic to 
obtain a set of clauses. When a planning problem is given along with a set of 
times (the integers from 0 to the time of the latest goal) the set of clauses is used 
to obtain another set of clauses whose models correspond to causally possible 
world histories over the time range. Finally, this set of clauses is combined with 
clauses describing the initial state and clauses decribing the desired goals, and a 
satisfiability checker® is called to search for a model of all the clauses. If a model 
is found, the action literals in it correspond to the plan.

The plan found will be causally possible, but not necessarily valid. CCALC 
also gives the user the option to verify the plans found (i.e. check whether the 
initial state was completely specified and whether the plan is deterministic). If 
the plan is verified, it is valid.

®Two satisfiability checkers can be used with CCALC; relsat [5] or sato [36].



Chapter 3

The Formalization of the 
TRAFFIC World

3.1 The TRAFFIC World

The TRAFFIC World is described at the Logic Modelling Workshop [23]. The 
goal is to represent vehicles traveling from town to town (or from intersection to 
intersection, depending on the interpretation) along roads, with the vehicles re­
specting speed limits and other cars they encounter on the road. The specification 
consists of the landcape and the activities^.

3.1.1 The Landscape

There are two types in TRAFFIC: nodes and segments. These may be thought 

of as road crossings (or towns) and roads which connect the nodes, respectively. 
There is a start node, an end node, and a length for each segment. All the nodes 
and segments are fully known and can be assigned unique names.

verbatim copy of the full specification from the Logic Modelling Workshop can be seen 
in Appendix B.

16
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3.1.2 The Activities

The only activities in TRAFFIC are done by cars. Cars drive along the segments 
from node to node.

At each point in time, each car has a position which is composed of t\yo parts: 
The segment on which the car is traveling and the distance traveled along the 
segment. However, cars can travel in both directions along segments so (although 
it is not specified at LMW) there needs to be a third component of the position, 
namely the direction in which the car is traveling.

Cars traveling in opposite directions along the same segment may pass by 
each other without any problems.

Overtaking is not allowed. When a car driving along a segment reaches an­
other car traveling in the same direction, it must stay behind the car until they 
reach the next node. This is called the surrounding traffic restriction. There is a 
fixed safety distance varsigma. The car behind is never allowed to be closer than 
varsigma to the car in front, so its speed must be adjusted when it gets close to 
the car in front.

There is a top speed for each car and a speed limit for each segment. At each 
point in time, the speed of the car is the maximum allowed by its own top speed, 
the speed limit of the segment on which it is traveling, and the surrounding traffic 

restriction.

3.2 Sorts

We use six sorts in the formalization:

car, node, segment, distance, speed, direction
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The first three sorts are for representing the vehicles, nodes, and segments, re­
spectively. The sort distance is for representing the distances between nodes (i.e. 
the lengths of segments) and the distances which vehicles have traveled along 
segments. The speeds of the vehicles are represented by speed. An alternative 
formalization could use a single sort number in place of the these two sorts. We 
chose to use two sorts because it increases the efficiency of planning since there 
are fewer rules when the generic rules are grounded (this will be explained in the 
section about variables). The last sort direction is for representing the direction 
in which the vehicle is traveling on a segment^.

3.2.1 Constants

In order to describe domains and problems, we need to specify the constants of 
each sort. These will be the node and segment names, the car names, the numbers 
we use for the speeds and distances, and the direction names.

All of these constants, except for the direction names, are problem-dependent 
and are specified with the problems. Only the direction constants, listed below, 
are common to all problems:

backward, forward : direction

3.2.2 Variables

When stating general static and dynamic laws, variables of the appropriate sort 
are used in fluents instead of the actual constants we have in our scenario world. 
This saves us from writing the same rule many times only changing the arguments 
of the fluents or actions.

^Another alternative formalization may choose to omit this sort and allow negative distances. 
However, there doesn’t seem to be any advantage gained by this and it doesn’t make the 
formalization any clearer. In fact, the number of ground rules would increase, making planning 
much less efficient.
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We have the following variables for each sort:

C, C l, C2 
N, N1
S, SI
D, D l, D2, D3 
Sp,Spl,Sp2,Sp3 
Dir, Dirl

: car 
: node 
: segment 
: distance 
: speed 
: direction

At the time of grounding, the variables in the general fluents and the general 
laws are made ground using all the constants of the matching sorts. For example 
if we had a fluent foo (C ), and we had the constants barl and bar2, then we 
would have the atoms fo o (b a r l) and foo(bar2) in our actual action description. 
The same kind of replacement happens with the variables in the laws.

This is why we have the two sorts distance and speed instead of number. If 
we had a single sort number, the constants of this sort would be all the integers 
from 0 to the largest number in the domain, which is either the largest speed 
or the largest distance. All the fluents which had number as their argument 
(the fluents which take a number argument to represent speed or distance) would 
be instantiated for all these integers. In contrast, when we have the two sorts 
distance and speed then we have two sets of integers from 0 to the largest integer 
of the sort. Usually, we would expect the largest speed to be much less than the 
largest distance. So when we ground the fluents, we get fewer instantiations of 
fluents having an argument of sort speed.

We also have some variables of a special sort computed which are used to 
increase the efficiency.

X, XI, X2, X3 computed

Unlike with the variables of other sorts, C C A LC  does not need to select values 
for computed variables during grounding since they are pre-computed by looking 
at the grounded values of the other arguments of the fluent or action in which
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they appear. So instead of having all the versions of a causal law for all the 
possible combinations of the values the arguments of the fluents and actions may 
take, we have only the versions in which the arguments not of computed sort take 
all the possible combinations.

3.3 Fluents

The LMW specification says that at any point in time cars have a position com­
posed of two components: the segment on which the car is traveling, and the 
distance the car has traveled along that segment. In addition to these compo­
nents, we have also included a third component for times when a car is at a node. 
In this case, instead of simultaneously being on all the segments which meet at 
that node (at a distance of 0), the car is simply at the node^. The three fluents 
for the position of the car are:

on_segment (car,segment) 
at _distance( car, distance) 
at _node( car, node)

Of these three fluents, we want on_segment and a tjiod e  to be inertial when they 
are true. This means that once a car is at a node, it can stay at that node and 
once it is on a segment it will stay on that segment until it gets off. However, 
a t-d istan ce  does not need to be inertial since a unique positive literal which 

corresponds to the distance is always caused to hold by one of the laws which we 
will introduce shortly. So

inertial on_segment(C,S). 
inertial at_node(C,N).

^This is what we would naturally expect if we think of nodes as towns or some other kind of 
area where the cars may stop for any amount of time. In the case where nodes are intersections 
with traffic lights, it is not that intuitive.
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We could have chosen to have one fluent Tpositioii{car,segment,distance) in­
stead of the two fluents on_segment and at_distance. We preferred to have two 
because it makes planning more efficient. Imagine that there are n constants of 
each sort. If we had chosen the fluent with three arguments, then the ground ver­
sion of our fluent would have atoms but since we have the two fluents declared 
above we get 2n  ̂ atoms.

Cars also have a velocity at each point in time. This means that they have a 
certain speed and they are traveling in a certain direction along the segment on 
which they are. There are two fluents for representing the velocity:

at _speed( car,speed)
in_direction(car,dfrech'on)

The speed is determined at all times by the causal laws but the direction isn’t. 
Therefore in _d irection  should be made inertial when true so that the direction 
stays the same as long as the car is traveling on the segment.

inertial in_direction(C ,D ir).

The LMW specification forbids cars to “make a U-turn” at a node and go 
back on the segment they just traveled on. To solve this problem we have a 
fluent which is true if and only if a car has just traveled on a certain segment:

la s t  ( car,sepmeni)

The fluent la s t  needs to be inertial for both the true and the false cases. 
This is because of cases where we might have a car at a node in the initial state 
and that car may stay there for a while. We would not want to restrict this car 
from traveling on any segments once it decides to travel so both -ila st  and la s t  
would need to be caused.

inertial last(C ,S ), - ’ last(C ,S).
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Sometimes a car will be blocked by another car in front of it traveling in the 
same direction and it will modify its speed in order to meet safety measures. 
Hence, a fluent notifying whether a car is blocked is needed:

blocked(car)

When a car is on a segment it will most likely not be blocked. We only have 
a law causing blocked, so we should have a way to have -«blocked caused if the 
car is not blocked. The best way to do this is to make it a default false fluent:

default -iblocked(C).

3.3.1 Uniqueness

A car cannot be at more than one node at a given time. Likewise, it cannot 
be on more than one segment at a time either. In fact, if one looks at all the 
fluents above, one can see that a car cannot have more than one distance, speed, 
direction, or segment on which it last traveled. Therefore, there must be laws 
which cause the fluents with different arguments to be false when fluents with 
certain values hold. This is formalized in the following static laws:^

caused -«at_node(C,N) if at_node(C,Nl) hL· -«(N=N1).

caused ->on_segment(C,S) if on_segment(C,Sl) && ->(S=S1.)

caused ->at_distance(C,D) if at_distance(C,Dl) && -«(D=D1).

caused -iat_speed(C,Sp) if at_speed(C,Spl) && ->(Sp=Spl).
caused ->in_direction(C,Dir) if in_direction(C,Dirl) ¿¿L· ->(Dir=Dirl).

caused -'last(C,S) if last(C,Sl) && -«(8=81).

^We use to denote logical conjunction.
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3.3.2 Using Macros Instead of Fluents

Some relations between sorts stay the same throughout our plans. For example, 
the lengths of segments and the start node and end node of each segment do not 
change. Likewise, the speed limit of a segment and the maximum speed of a car 
do not change either.

Declaring these as fluents would not only add a lot of fluents to our domain 
but it would also force us to have a very large number of uniqueness laws and 
this would decrease the efficiency considerably. (The number of laws about the 
speed limits and the maximum speeds would be especially large due to the large 
number of constants — all the integers from 0 to the largest integer.)

The Causal Calculator allows users to declare rewrite rules called macros. Us­
ing these, we can have a certain expression transformed into a Prolog expression. 
So, instead of declaring as fluents, we use macros for the following:

startnode(se^rneni,node) 
eTidnode[segment,node) 
length.(segment,distance) 
s'peedAim it (segment,speed) 
max_car_speed( car,speed)

These macros are used just like fluents in static or dynamic laws. What each 
macro stands for is dependent on the problem. During execution, if C C A LC  
encounters one of the above macros it replaces it with the corresponding substi­
tution. (Example macro declarations can be seen in Section 4.2.)

In addition to the problem-dependent macros, we have macros which we use 
for representing mathematical functions:

sum(#l,#2,#3)

a b sd iff(# l,#2 ,#3)

d iff(# l,# 2 ,# 3 )

-  > #1 is min((:?5^2)-|-(#3), maxinteger)

-  > #1 is a b s ((# 2 )-(# 3 ))
-  > #1 is m a x ((# 2 )-(# 3 ), 0)
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minim um (#l,#2,#3) -  > #1 is m in(#2,#3)

These are also used just like fluents. They hold when the expression on the 
right side of the declaration holds. The sum and d i f f  macros are for addition 
and subtraction in the 0..maxInteger range®, maxinteger is the largest integer in 
the program (usually the length of the longest segment), a b s d iff  is for finding 
the absolute value of the difference and minimum is for finding the smaller of 
two numbers®. The arguments of these macros are always speed and distance 
variables. (They are the only numerical variables.)

As a final comment on macros, we may say that (like variables) everything 
we do with them could be done without them but would be much more difficult.

3,4 Actions

There is only one action7 .

ENTER_SEGMENT( car,

This action causes a car at a node to get onto a segment. Once a car is on a 
segment, the speed is uniquely determined by the road conditions so there is no 
need for an action to change the speed.

^The sum and d i i f  macros and the idea of representing mathematical functions with macros 
were taken from [20].

^Actually, these macros are not necessarily for finding the said values. Only when the 
argument which is ‘̂found” is a variable of computed sort can they be said to find since they 
limit the number of ground rules. Their real effect in the causal laws in which they appear is 
just like fluents.

^From now on, when we say “action” , we mean an elementary action (i.e. a single element
of -act )·
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3.4.1 Effects of ENTER_SEGMENT

Executing the ENTER_SEGMENT action causes a car to be positioned on the seg­
ment at the next instant and the distance traveled is caused to be zero, indepen­
dent of the node from which the car enters the segment.

ENTERjSEGMENT(C,S) causes on_segment(C,S).

ENTERjSEGMENT(C,S) causes at_distance(C,0).

time ti
at_node(carl, A), -ion_segment(carl, AB) 
at_distance(carl, 0), at_speed(carl, 0)

B

4 Btime ti+i

on_segment(carl, AB), -lat mode (carl, A) 
at_distance(carl, 0), in_direction(carl, forward)

Figure 3.1: The effects of ENTER_SEGMENT

The direction a car is going in depends on the node from which the car enters 
the segment. If it is at the start node of the segment when the action is executed, 
it is caused to be going in the forward direction. If it is at the end node of the 
segment when the action is executed, it is caused to be going in the backward 

direction.
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ENTERjSEGMENT(C,S) causes in_direction(C,forward)
if startnode(S,N) at jaode(C,N).

ENTER_SEGMENT(C,S) causes in_direction(C,backward)
if endnode(S,N) && atjtiode(C,N).

Once a car enters a segment, it is no longer at a node. We could formalize this 
with a dynamic rule involving the action ENTER_SEGMENT. However, we might 
like to have problem descriptions with cars already on segments (instead of all 
cars being at nodes initially). To allow this we include a static law in which the 
car is caused not to be at any node if it is on a segment.

caused -'at_node(C,N) if on_segment(C,S).

The same thing goes for the fluent la s t . A static law states that a segment is 
caused to be the segment on which the car has most recently traveled if the car 
is on that segment.

caused last(C,S) if on_segment(C,S).

Note that we could represent the two cases above as effects of the action EN­
TER-SEGMENT if we state the value of all the fluents in the initial state. Our for­

malization makes it easier to state problems. It seems more natural to say that a 
car is not at a node because it is on a segment. In relation to the ENTER_SEGMENT 
action, these effects are represented as indirect effects, i.e. ramifications.

3.4.2 Execution Conditions for ENTER_SEGMENT

When describing an action domain usually there are some action preconditions 
which must be satisfied before the related actions can take place. Therefore, we 
must include in our domain description information about what these precondi­

tions are.



A car can only enter a segment if it is at a node. This means that the action 
ENTERJSEGMENT cannot be executed if the car is not at any node®.

non executable ENTERjSEGMENT(C,S) if -'( \/N: at_node(C,N) ).
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The law above said that a car must be at a node to be able to execute the 
ENTER-SEGMENT action, but this is not enough. The node at which it is must 
be the start node or the end node of the segment which it is trying to enter. So 
a car cannot enter a segment which does not have that node as its start or end 
node:^

nonexecutable enter_segment(C,S)

if at_node(C,N) && -■( startnode(S,N) + +  endnode(S,N) ).

Looking at the two laws above one may, at first sight, think that including only 
the second one in our domain description would suffice and that the first one is 
redundant. This is not true. If we carefully inspect this second law, we see that if 
the car is not at any node then the first part of the conjunction (at_tiode(C,N)) 
fails and there is nothing preventing the execution of ENTER_SEGMENT. We 
include the first law to prevent the execution of the action in such cases.

Cars at nodes are not allowed to go back on the segments on which they came 
to that node. The law that a car cannot enter a segment on which it most recently 

drove is formalized as follows:

nonexecutable ENTER_SEGMENT(C,S) if last(C ,S ).

®We use \/ in front of a variable to mean the logical disjunctions of the following expression 
replaced with constants of the same sort as the variable. It is similar to the existential quantifier 
in First Order Logic.

®We use ‘+ + ’ to denote logical disjunction.
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3.5 Automatic Speed Determination

The speed of a car at each point in time is uniquely determined as the maximum 
speed it can drive at without violating the safety measures. The safety measures 
say that no car may get closer than a fixed distance varsigma to the car traveling 
in front of it.

The maximum speed that the car may travel at when there is no car in front 
restricting its speed is the smaller of two limits: the speed limit of the road on 
which it is traveling and its own top speed. The maximum speed that the car 
may travel at when there is a car blocking it is the speed which will bring it to a 
position exactly varsigma behind the car in front. So we see that there are two 
distinct cases for which we must design causal laws to have the speed of the car- 
caused. What we need now is a way to know when which causal law should be 
applied to cause the speed.

This is where the fluent b locked comes into play. If we can design a causal 
law to cause b locked to be true at times when we need to adjust the speed to 
be just varsigma behind the car in front , and have blocked be caused to be 
false when the road is free to go at the smaller of the two limits, then the case is 
solved.

Fortunately there is a quite straightforward way to do this. Ordinarily we 
would expect that a car goes at the smaller of its own top speed and the speed 
limit of the segment. Since we know the current position and the smaller of these 
two limits we can imagine for a moment where the car would be if it indeed went 
at this speed. We also know the positions and the current speeds of the cars 
in front of it on the same segment. So we can check whether it will be closer 
than varsigma to (or even ahead of) any of the cars in front. This way we can 
detect when the surrounding traffic restriction would be violated if the car doesn’t 
adjust its speed as if it were blocked, and we can prevent such situations. This 
is formalized in the law below which causes the fluent blocked to be true for a 
car when there is another car traveling in front of it and it will get closer than 
varsigma to that car (or possibly even pass it) if it goes at the smaller of its two
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speed limits:

caused blocked(C)

if on_segmeiit(C,S) && on_segment(Cl,S) SzL· - ’(C=Cl)
&&; in_direction(C,Dir) && in_direction(Cl,Dir)
&& at_distance(C,D) && at_distance(Cl,Dl) SzL· (D1>D)
&& speedJ.imit(S,Spl) && max_car_speed(C,Sp2)
SzSz minimuin(X,Spl,Sp2) SzSz sum(Xl,X,D)

&& at_speed(Cl,Sp3) SzL· sum(X2,Sp3,Dl)
&& diif(X3,X2,uarsi^ma) && (XI > X3).

An example where this law causes blocked to be true is shown in Figure 3.3.

Recall that the fluent b locked was caused to be false by default in Section 
3.3. This means that when it is not caused to be true by the law above it is 
caused to be false. This is what we would like to have in the usual case. If there 
is no other car in front blocking the way, then, since b locked is false, the car 
goes at the smaller of its two speed limits (the speed limit of the road and its 
own maximum speed):

caused at_speed(C,X)

if ->blocked(C) && on_segment(C,S) SzL· speed_limit(S,Spl) 
SzL· max_car_speed(C,Sp2) && minimum(X,Spl,Sp2).

An example where this law causes the speed of a car which is not blocked is shown 
in Figure 3.2.

When a car is blocked, it has to adjust its speed so that it will be traveling at 
the fastest possible speed without getting closer than varsigma to the car in front 
of it. Clearly, this speed will be the speed that brings it to a distance of exactly 
varsigma behind the car it is following. Writing a causal law which causes the 
speed of the car to be adjusted according to the car in front of it may seem to be 
a good solution. However, there is a subtlety here. Among the cars which are on
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A B
at_distance(carl, 1), at_distance(car2, 5) 
speed_limit(AB, 3), max_car_speed(carl, 4)
at_speed(car2, 2), varsigma=2 
-iblocked(carl), at_speed(carl, 3)

Figure 3.2: Automatic speed determination when carl is not blocked

the same segment with the car for which we are trying to determine the speed, 
there may be more than one which is in front of it. Such a causal law would cause 
more than one speed which would be nonsense and of course would lead to no 
plans being found. So we must make sure that the speed is adjusted according to 
the closest car in front. This can be done by making the causal law so that the 
speed is adjusted according to a particular “blocking” car in front if (i) there are 
no cars on the segment and going in the same direction other than the blocked 
and the “blocking” car, or (ii) the other cars on the segment which are going in 
the same direction are at distances which are greater than the distance at which 
the “blocking” car is. The adjustment causes the speed to be such a value that at 
the next time instant the car will be exactly varsigma behind the point at which 
the blocking car will be. This is true even when the car in front reaches a node 
(in this case the speed will take the car to a distance of varsigma away from the 
node). We formalize the adjustment law as follows;^®

caused at_speed(C,Spl)

use /\  in front of a variable to mean the logical conjunctions of the following expression 
replaced with constants of the same sort as the variable. It is similar to the universal quantifier 
in First Order Logic.
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if blocked(C) && on_segment(C,S) && on_segment(Cl,S)
~'(C=C1) && in_direction(C,Dir) SzL· in_direction(Cl,Dir) 

SzL· at_distance(C,D) at_distance(Cl,Dl) (D1>D)
&& at_speed(Cl,Sp)
(/\C2: ( -on_segment(C2,S) + +  (C2-C) + +  (C2=C1)

+ +  -'in_direction(C2,Dir)
++(at_distance(C2,D2) &&; (D2 > Dl)) ) )

&& diff(X l,D l,D ) && sum(X2,Xl,Sp) 
diff(Spl,X2,var5i^ma).

A B
at_distance(carl, 1), at_distance(car2, 3) 
speed_limit(AB, 3), max_car_speed(carl, 4) 
at_speed(car2, 2), varsigma=2 
blocked(carl), at_speed(carl, 2)

Figure 3.3: Automatic speed determination when carl is blocked

3.6 Movement Along Segments and Arrival at 
Nodes

Movement in the TRAFFIC world is accomplished without actions. After ex­
ecuting the ENTER-SEGMENT action the car is on the segment and its speed is 
determined automatically by the laws in the previous section so everything needed 
for movement is ready. As would be expected, a car is caused to be at a distance 
equal to the sum of its speed and the current distance it has already traveled
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(Figure 3.4). Of course, if this distance is greater than the length of the segment 
it is traveling on, it will be reaching the next node so the law should not cause 
the fluent a t.d istan ce  in such cases.

caused at_distance(C ,X )
after at_distance(C ,D l) at_speed(C,Sp) && sum(X,Sp,Dl) 
¿¿L· on_segment(C,S) && length(S,D2) (X<D2).

I

time ti
at_distance(carl, 1), at_speed(carl, 3)

time ti+i

at_distance(carl, 4), at_speed(carl, 3)

Figure 3.4: Movement of cars along segments

If the point to which the car would advance with its current speed is equal to 
or more than the length of the segment, this means that the car should arrive at 
the next node at the following time instant (Figure 3.5). The fluent at mode is 

caused to be true by this dynamic law:

caused at_node(C,N)
after at_distance(C ,D l) && at_speed(C,Sp)
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&&; sum(X,Sp,Dl) ¿¿L· on_segment(C,S)
&& length(S,D2) L·S¿ (X>=D2)
&& ( (in_direction(C,forward) && endnode(S,N))

+ +  (in_direction(C,backward) && startnode(S,N)) ).

time ti

on_segment(carl, AB), -iat_node(carl,B) 
at _di stance (carl, 4), at_speed(carl, 3)

В

time ti+i

at_node(carl, B), -ion_segment(carl, AB) 
at_distance(carl, 0), at_speed(carl, 0)

В

Figure 3.5: Arrival of cars at nodes

3.6.1 Effects of Being at a Node

A car which arrives at a node is not on any segment anymore. Of course, not 
being on any segment, there is no direction in which it is traveling either. A car 
which is at a node is caused to be at a distance of 0. We could cause it to be at 

no distance at all (by causing the fluents with all the values of the distances to be 
false) but that wouldn’t make any diiference. The speed is also caused to be 0.
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Finally, a car at a node is clearly not blocked^^. All these points are formalized 
by the following static laws:

caused -ion_segment(C,S) if at_node(C,N). 
caused at_distance(C,0) if at_node(C,N). 
caused -iin_direction(C,Dir) if at_node(C,N). 
caused at_speed(C,0) if at_node(C,N). 
caused -'blocked(C) if at_node(C,N).

3.7 Surrounding Traffic Restrictions

The surrounding traffic restrictions state that (i) two cars traveling in the same 
direction on the same segment cannot be closer than varsigma and that (ii) cars 
cannot pass other cars in front of them.

We have already guaranteed by the laws in Section 3.5 that cars already on 
segments will adjust their speeds to obey the restrictions. However, we must also 
consider two other cases: in the first one there are two cars at the same node 
and they want to enter the same segment. With the causal laws listed so far 
they will both be allowed to execute the ENTERjSEGMENT action and enter the 
segment, which will cause them both to be at the same distance. (Of course the 
same goes for more than two cars also.) In the second case, there is a car at a 
node and there is another car which is already on the segment which the first car 
wants to enter. If the second car hasn’t reached a distance greater than varsigma 
by the time the first car has completed the execution of ENTERJSEGMENT, the 
restrictions will be violated. These two cases need to be prevented. This is easily 
taken care of by the following law which forbids two cars which are on the same 
segment and traveling in the same direction to be closer than varsigma·.

never on_segment(C,S) && on_segment(Cl,S) && ~'(C=C1)

could easily omit this last law if we specify in our problem descriptions whether cars at 
nodes in the initial state are blocked or not.



CHAPTER 3. THE FORMALIZATION OF THE TRAFFIC WORLD 35

&& in_direction (C ,D ir) && in_d irection (C l,D ir) 
&& at_distance(C ,D ) && at_distance(C l,D l)
&& absdiff(X ,D ,D 1) SzL· (X < varsigma).

Overtaking is prevented by the laws which automatically determine the speed. 
A car on a segment can never have a speed which would take it to a point 
farther than varsigma behind the car in front of it. Cars cannot violate the 
overtaking restriction when they are entering segments either, since the action 
ENTERJSEGMENT causes all cars to be at distance 0 when they first enter the 
segment.

Having in our domain description both the law above and the law which 
states that ENTER_SEGMENT causes cars to be at a distance of 0 when they enter 
a segment puts an implicit condition on actions: two cars cannot enter the same 
segment at the same time.



Chapter 4

Example Planning Problems

The formalization of the TRAFFIC world presented in the previous chapter has 
been implemented as a domain description file for the Causal Calculator^ Ex­
ample planning problems were devised to illustrate that the causal laws indeed 
work as desired. In this chapter, we explain each planning problem and the 
plans found. The planning problems and the solutions found are presented in the 
original CCALC format, which is easy to understand.

All of the problems were tested using CCALC version 1.23 which ran in SICS- 
tus Prolog version 3 #5. The satisfiability checker was relsat [5]. This setup was 
used on a Sun UltraSPARC-II running SunOS 5.6. Although the computer had 
IGB of memory, the version of SICStus we were running had a limit of 64MB 
for the memory it can use. Due to this limitation, we were not able to run large 
planning problems.

^The CCALC program listing for the world and problem descriptions can be seen in Ap­
pendix A.

36



CHAPTER 4. EXAMPLE PLANNING PROBLEMS 37

4.1 Constants

The causal laws in the action description were written using variables. To get the 
actual causal laws which govern our problems we need to state the constants of 
each sort over which the variables will be instantiated.

Most of the constants in our planning problems our common. These are

carl, car2 :car
a, b, c ■.node
road_ab, road.bc ■.segment
0..maxDistance ■.distance
0..maxSpeed ■.speed
back ward,forward ■.direction

4.2 Macros

In Chapter 3, we mentioned that there are some relations between sorts that are 
constant in the domain, like lengths of segments, top speeds of cars, and so on. In 
the interest of efficiency we have represented these constant relations as macros 
instead of as fluents. Here we list the macros we use in most of the planning 
problems we will examine.

startnode(:j^l,#2) 

endnode(^l,#2) 

length(#l,#2) 

speed_limit(#l,#2) 

max_car_speed(^ 1 ,^2)

— > ( (#l=road_ab && #2= a)
+ + (# l= road _bc && # 2 = b ))

— > ( (#l=road_ab && # 2 = b )
+ + (# l= road _bc && ^2=c))

— > ( (#l=road_ab && #2=10)
+ + (# l= road _bc #2=10))

— > ( (#l=road_ab && #2=4)
+ + (# l= road _bc && #2=4))

— > ( (# l= ca r l #2= 2 )
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+ + (^ l= ca r2  && # 2 -4 ) )

The first four of the above macros define the landscape of the world (Figure 
4.1). The last one defines the top speeds of the cars.

Figure 4.1; Landscape of the world in our planning problems

The next group of macros is used in defining other macros or for setting limits 
on integer constants. maxSpeed and maxDistance are the largest values speed 
and distance can take in our problems, maxinteger is the largest integer we may 
encounter in the arithmetic operations.

varsigma
maxSpeed
maxDistance
maxinteger

-  >  1
-  > 4
-  >  10 
-  >  10
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4.3 Problem 1: Getting from one node to an­
other

This problem was designed to test whether the basic parts of the formalization 
work. Only carl and road.ab were used; car2, road.bc, and the node c were left 
out. In the process of leaving a node and going to another, a car must successfully 
and correctly execute an ENTERjSEGMENT action. Once on the segment, the 
speed must be determined automatically as the smaller of its own top speed and 
the speed limit of the segment. The laws causing the car to move along a segment 
must function properly. And finally, the law causing arrival at a node needs to 
work correctly.

The planning problem given to CCALC was:

: -  plan 
facts : :

0: at_node(carl,a),

0: /\C: /\S: -la st(C ,S ); 
goal : :

6: at_node(carl,b).

The plan found is shown below. Note that we set CCALC so that it would 
show only the fluents which are true at each state and the actions executed 
between states.

0. at_distance(carl,0) at_node(carl,a) at_speed(carl,0)

ACTIONS: enter.segment(carl, road_ab)

1. at_distance(carl,0) at_speed(carl,2) in_direction(carl»forward) 
la s t(c a r l, road_ab) on_segment(carl, road_ab)

2. at_distance(carl,2) at_speed(carl,2) in_direction(carl.forward)
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la s t(c a r l, road_ab) on_segment(carl, road_ab)

3. at_distance(carl,4) at_speed(carl,2) in_direction(carl»forward) 
last(carl,road_ab) on_segment(carl,road_ab)

4. at_distance(carl,6) at_speed(carl,2) in_direction(carl»forward) 
last(carl»road_ab) on_segment(carl»road_ab)

5. at_distance(carl»8) at_speed(carl»2) in_direction(carl»forward) 
la s t(c a r l»road_ab) on_segment(carl»road_ab)

6. at_distance(carl»0) at_node(carl»b) at_speed(carl»0) 
la s t(c a r l»road_ab)

4.4 Problem 2: Getting from one node to an­
other —  concurrent change

This second problem is for checking whether concurrent change is handled without 
any problems. It involves two cars at the outer nodes in our landscape which want 
to meet at the node in the middle. The cars must leave their respective nodes, 
travel along the two segments and arrive at the middle node.

The planning problem was:

plan 
facts : :
0: at_node(carl»a)»
0: at_node(car2»c)»

0: /\C: /\S: -last(C »S); 
goal : :
6 : at_node(carl»b)»

6 : at_node(car2»b).
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The plan found was:

0. at_distance(carl,0) at_distance(car2,0) at_node(carl,a) 
at_node(car2,c) at_speed(carl,0) at_speed(car2,0)

ACTIONS: enter_segment(carl,road_ab) enter_segment(car2,road_bc)

1. at_distance(carl,0) at_distance(car2,0) at_speed(carl,2) 
at_speed(car2,4) in_direction(carl, forward) in_direction(car2.backward) 
last(carl,road_ab) last(car2,road_bc) on_segment(carl,road_ab) 
on_segment(car2, road_bc)

2. at_distance(carl,2) at_distance(car2,4) at_speed(carl,2)
at_speed(car2,4) in_direct ion(car1 ,forward) in_direct ion(car2, backward) 
last(carl,road_ab) last(car2,road_bc) on_segment(carl,road_ab) 
on_segment(car2, road_bc)

3. at_distance(carl,4) at_distance(car2,8) at_speed(carl,2) 
at_speed(car2,4) in_direction(carl.forward) in_direction(car2.backward) 
last(carl.road_ab) last(car2.road_bc) on_segment(carl.road_ab) 
on_segment(car2. road_bc)

4. at_distance(carl.6) at_distance(car2.0) at_node(car2.b) 
at_speed(carl.2) at_speed(car2.0) in_direction(carl.forward) 
last(carl.road_ab) last(car2.road_bc) on_segment(carl.road_ab)

5. at_distance(carl.8) at_distance(car2.0) at_node(car2.b) 
at_speed(carl.2) at_speed(car2.0) in_direction(carl.forward) 
last(carl.road_ab) last(car2.road_bc) on_segment(carl.road_ab)

6. at_distance(carl.0) at_distance(car2.0) at_node(carl.b) 
at_node(car2.b) at_speed(carl.0) at_speed(car2.0) last(carl.road_ab) 

last(car2 . road_bc)
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4.5 Problem 3: A blocked car

This is the most complicated problem. In the first problem we had tested whether 
the causal laws for the automatic determination of speed worked as desired for a 
lone car. Here we test the law causing the fluent b locked and the law causing a 
blocked car to adjust its speed to meet the surrounding traffic restrictions.

The law causing the speed of a blocked car involves not only the blocked and 
blocking cars but also pays attention not to mistakenly adjust the speed according 
to other cars in front of the blocking car. In order to test this we added a third car 
to the world. Since the number of rules explodes with each new car, we weren’t 
able to run the test with the world we described initially so we needed to make 
some changes to our world.

In this problem, there is only one segment (road.ab) and the length of that 
segment is 6. Of course, this means that maxDistance and maxinteger are also 
6. The third car is named ‘car3’ and its top speed is 1. The initial state of the 
problem is shown in Figure 4.2.

The problem we gave to CCALC was:

plan 
facts : :
0: on_segment(carl,road_ab),

0: on.segment(car2, road_ab),

0: on_segment(car3, road.ab),

0: in_direction(carl»forward), 
0: in_direction(car2,forward), 
0: in_direction(car3,forward), 
0: at_distance(carl,2 ) ,

0: at_distance(car2,0) ,

0: at_distance(car3,5),

0: at_speed(carl,2),

0: at_speed(car3,1) ,
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0 : -b lo c k e d (c a r l) ,  
0: -b lo c k e d (c a r 3 ) ; 
goal : :
4: a t_ n o d e (c a r l,b ) , 
4: a t_n od e (ca r2 ,b ), 
4: a t_ n o d e (ca r3 ,b ).

Figure 4.2: Initial state of problem 3 

The solution plan returned was:

0. blocked(car2) at_distance(carl,2) at_distance(car2,0) 
at_distance(car3,5) at_speed(carl,2) at_speed(car2,3) at_speed(car3,1) 
in_direction(carl, forward) in_direction(car2,forward) 
in_direction(car3 »forward) la st(c a r l, road_ab) last(car2 , road_ab)

last(car3,road_ab) on_segment(carl, road_ab) on_segment(car2, road_ab) 
on_segment(car3, road.ab)

1. blocked(car2) at_distance(carl,4) at_distance(car2,3) 
at_distance(car3,0) at_node(car3,b) at_speed(carl,2) at_speed(car2,2) 
at_speed(car3,0) in_direction(carl»forward) in_direction(car2 »forward) 
last(carl»road_ab) last(car2»road_ab) last(car3»road_ab) 
on_segment(carl»road_ab) on_segment(car2»road_ab)

2. at_distance(carl»0) at_distance(car2»5) at_distance(car3»0)
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at_node(carl,b) at_node(car3,b) at_speed(carl,0) at_speed(car2,4) 
at_speed(car3,0) in_direction(car2,forward) last(carl,road_ab) 
last(car2,road_ab) last(car3,road_ab) on_segment(car2,road_ab)

3. at_distance(carl,0) at_distance(car2,0) at_distance(car3,0) 
at_node(carl,b) at_node(car2,b) at_node(car3,b) at_speed(carl,0) 
at_speed(car2,0) at_speed(car3,0) last(carl,road_ab) last(car2,road_ab) 
last(car3 , road_ab)

4. at_distance(carl,0) at_distance(car2,0) at_distance(car3,0) 
at_node(carl,b) at_node(car2,b) at_node(car3,b) at_speed(carl,0) 
at_speed(car2,0) at_speed(car3,0) last(carl,road_ab) last(car2,road_ab) 
last(car3 ,road_ab)

Notice that car2 is blocked in the initial state, so its speed is adjusted so that 
it will be exactly varsigma behind carl at time 1. card affects neither carl nor 
car2. At time 1, car2 is still blocked but now it is exactly varsigma behind carl. 
This time its speed is adjusted to simply match that of carl. At time 2, carl 
gets off the segment. Not blocked anymore, the speed of car2 is changed to the 
maximum speed of 4.



Chapter 5

Comparison with a Previous 
Formalization

The only previous work on formalizing the TRAFFIC world has been done by 
Henschel and Thielscher [13]. They use the fluent calculus to axiomatize a slightly 
modified version of the original specification. For information about the fluent 
calculus the reader is referred to [34].

In this chapter we first note the parts of their formalization which are similar 
to ours (for convenience, we will be calling their formalization “the H-T formal­
ization” from now on). Then we examine in detail what they have chosen to do 
differently. We show how these different aspects can be formalized using C and 
combined with our formalization. Finally, we discuss the various advantages and 
disadvantages of choosing the C action language or the fluent calculus to formalize 
the TRAFFIC world.

5.1 Similarities

Most parts of the H-T formalization are similar to ours, of course, due to its being 
based on the same specification given at LMW.
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The world in their formalization is also made up of nodes and segments. Each 
segment connects two nodes, has a fixed length, and a fixed speed limit. All nodes 
and segments have unique names.

The activities are done by cars with each car having a fixed top speed. The 
cars cannot go faster than their top speeds or the speed limits of the segments 
they are driving on and they cannot violate the surrounding traffic restrictions.

At each point in time each car is either on a segment or at a nodeh

Cars are not allowed to make a U-turn and go back on the segment they just 
traveled on.

The minimum of two numbers is found using a function which is similar to 
our macro minimum.

5.2 Differences

Instead of having all cars obey the same rules, the H-T formalization separates 
cars into two groups: deliberative cars, and non-deliberative cars. Deliberative 
cars are under our control (i.e. we say what actions they will execute and when 
they will execute them) and non-deliberative cars are not.

A non-deliberative car must go at the maximum speed allowed by its own 
top speed, the speed limit of the segment it is on, and the surrounding traffic 
restrictions. In contrast, a deliberative car is free to go at any speed it likes, as 
long as it does not exceed the two limits and does not violate the surrounding 
traffic restrictions. There is an action ChangeVel for a deliberative car to change 

its speed.

In our formalization we had allowed cars to stay at nodes. In the H-T for­
malization, this right is reserved only for deliberative cars. Non-deliberative cars 
must turn into (enter, in our terminology) a segment as soon as they arrive at

^There is a small catch to this which will be explained in the next section.
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a node (this is denoted by the action ArriveAt). They are not allowed to stop. 
Deliberative cars which arrive at nodes (denoted by action Arriveatu) may turn 
into segments when they want to (of course, they need to be at the start or end 
node of that segment). The action which accomplishes this is Turn.

Having non-deliberative cars turning into segments immediately and deliber­
ative cars turning when they want to is likely to lead to violations of the sur­
rounding traffic restrictions. To overcome this problem, a waiting area is used 
for each segment (Figure 5.1). When a car turns into a segment at a node, be 
it deliberative or not, instead of starting to move, it is placed in the next free 
spot in the waiting area of that segment-node pair. If there is another car on the 
segment at a distance less than varsigma, it will wait. Otherwise it is immedi­
ately set in motion. There is a counter at the waiting area which is incremented 
or decremented as each car enters or leaves the waiting area, respectively. Each 
car entering the waiting area is assigned a number in the queue (which is the 
current number of the counter). The counter is represented by the fluent Counter 
taking nodes, segments and numbers as arguments. The fluent with the number 
argument n is true when the next free spot available is the one.

For each node, priorities are assigned to segments which connect to that node. 
When more than one car tries to turn into a segment, they are placed into the

^This figure has been drawn by us based on a figure which appears in [13].
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waiting area in order of decreasing priority of the segment they are coming from. 
This is just like the right-of-way rule at real life intersections.

Allowing the release of cars from the waiting area onto the segment is orga­
nized as follows: There is a virtual traffic light. When the car which has most 
recently moved onto the segment reaches a distance of varsigma, the traffic light 
is triggered and the next car in the queue is allowed to go (Figure 5.2).

± = k
varsigma

Figure 5.2: Triggering the traffic light"

The virtual traffic light is formalized as a fluent Blocked (with 2 arguments: a 
node and a segment) which is true when there is a car waiting at spot 0 (the first 
spot) in the waiting area for that segment-node pair. The action Unblock makes 
the fluent Blocked false when a car which left that node and got on the segment 
reaches a distance of varsigma.

A major difference between the two formalizations is with respect to time. 

In C, there are states and transitions between states. Each causal law expresses 
a condition which causally explained transitions must satisfy. Intuitively, each 
distinct point in time is represented by a state^ and this is the interpretation we 
have used in the TRAFFIC formalization. In contrast, in the fluent calculus, time

^This figure has been drawn by us based on a figure which appears in [13].
Although this is the most natural interpretation which is strongly suggested by the use of 

the word after in dynamic causal laws, it does not necessarily have to be the case. Recently, 
we have heard that work is being done on representing time as a fluent with two arguments, 
the numerator and denominator of a rational number [16].
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is a sort, the elements of which are the real numbers along with their standard 
interpretation [13, Appendix A], so the H-T formalization uses time values as 
arguments in the fluents.

When a car is moving on a segment, instead of representing the distance it has 
traveled so far, the distance the car had left behind at the time of the last change 
of velocity is represented, along with the time of the last change of velocity. The 
distance the car has traveled at the current time can then be calculated using 
these two values.

Segments don’t have a start node and an end node. Instead, a predicate with 
three arguments describes that the segment connects two nodes and for each such 
predicate which holds, a predicate with the node arguments interchanged holds. 
Since segments do not have a direction, the information about which way the car 
is going is represented as the node it is heading for.

At each point in time a car is in exactly one of three states: moving, waiting, 
or at a node (only deliberative cars can be in this last state). This is formalized 
as three fluents: Movement (with arguments for the car, distance, velocity, time, 
segment, and node). Waiting (with arguments for the car, node, segment, and 
number), AtNode (with arguments for the car, node, and segment).

In the section where we mention the similarities between the two formaliza­
tions, we said that a car is always either at a node or on a segment. This is 
because we consider waiting cars as being on the segments for which they are 
waiting. Once a car turns into that segment it is just a matter of time before 
it starts traveling on it. It cannot change its mind and later choose another 
segment.

In addition to the two actions ChangeVel and Turn which deliberative cars 
can execute, there are four “natural” actions. They are ArriveAt, ArriveAto, 
Approach, and Unblock which denote a non-deliberative car arriving at a node, a 
deliberative car arriving at a node, a car reaching the safety distance of the car in 
front, and a segment leaving a node becoming unblocked, respectively. These are 
actually not “actions which are executed” but “events which take place” when the
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preconditions are satisfied. Nonetheless, they have certain effects on the state of 
things. The effects of all except Approach were described above. Approach makes 
a car adjust its speed to match the speed of the car in front.

Arithmetical operators like addition, subtraction and multiplication are part 
of the language and not fluents (nor macros).

5.3 Formalizing the Different Aspects in C

The sections of the H-T formalization which are different from ours can be for­
malized as causal laws using C and incorporated into our formalization.

Let’s start with separating cars into deliberative and non-deliberative cars. 
This is easily done by adding a fluent which indicates whether a car is deliberative 
or not:

d e lib era t ive( car)

Since the fact that a car is deliberative or not does not change, we make both 
d e lib e ra tiv e  and -id e lib era tive  inertial.

inertial d e lib era tive (C ), - 'd e lib era tiv e (C ).

Non-deliberative cars must turn into a segment in the next time instant after 
they arrive at a node. They cannot stay at a node.

caused False if ->deliberative(C ) && at_node(C,N) 
after at_node(C,N).

Notice that non-deliberative cars still need to execute an action to turn into 

a segment.

We add a new action for deliberative cars to change their speed:
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CHANGEJSPEED(car,speec?)

This action can only be performed by deliberative cars.

nonexecutable CHANGEJSPEED(C,Sp) if -'deliberative(C).

The effect of executing CHANGEJSPEED is to set the speed to a new value.

CHANGEJSPEED(C,Sp) causes at_speed(C,Sp).

No deliberative car can change its speed to go faster than the speed limit of 
the segment it is on or its own top speed.

nonexecutable CHANGEJSPEED(C,Sp)

if on_segment(C,S) && speed_limit(S,Spl) && (Sp > Spl).
nonexecutable CHANGE_SPEED(C,Sp)

if max_car_speed(C,Spl) &&: (Sp > Spl).

Cars which are at nodes cannot change their speeds because this would conflict 
with the law causing speed to be 0 at a node.

nonexecutable CHANGE^PEED(C,Sp) if at_node(C,N).

A car cannot change its speed to its current speed (this would not violate 

anything, but it can be confusing to see a CHANGE-SPEED action be executed 

without the speed changing).

nonexecutable CHANGE_SPEED(C,Sp) if at_speed(C,Sp).

The speeds of non-deliberative cars are determined automatically by the laws 
given. We only need to make sure that the laws are only for non-deliberative
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cars. This is done by adding -> d elibera tive (C )’ to the end of each of the 
three laws in Section 3.5.

We would like to have a waiting area for each segment-node pair. When a car 
at a node enters a segment, it should be placed in this area in the appropriate 
place in a queue. The appropriate place is determined by the priority of the 
segment the car came to the node on. To formalize all this, we will need a new 
sort number to represent the position in the queue and the priority, and two new 
fluents:

wait ing( car,segment, node, number)
Tprior i t  j{node,segment,number)

We will use the variables Nu, Nul, Nu2, Nu3 for the sort number.

The fluent p r io r it y  will need to be made inertial since the priority of a 
segment does not change, and the uniqueness laws should be included:

inertial priority(N,S,Nu).
caused -'priority(N,S,Nu) if priority(N,S,Nul) ¿¿L· -'(Nu=Nul).

The causal law which stated that entering a segment causes the car to be on 
that segment should be removed. The new effect of ENTER-SEGMENT is to place 
the car in the waiting area.

The waiting area imposes many different constraints on cars:

• Each car in it must be in a unique position in the queue.

• Multiple cars entering the area at the same instant must be placed into the 
queue according to the priority of the segment they are coming from (and 
they should be placed behind all the cars which are already waiting).

• The order in the queue should be preserved from one time instant to the 

next.
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• There should be no gaps in the queue. (This means that no car is behind 
an empty spot in the queue.)

In order not to violate the surrounding traffic restrictions, the first car in the 
queue does not get on the segment (which now is different from entering the 
segment) until the road is clear up to a distance of varsigma. And as soon as the 
road is clear it moves onto the segment.

This means that a car may leave the waiting area at the same time that 

some other cars are entering the area. This and all the constraints listed above 

suggest that calculating new values for the position of cars in a queue and causing 

fluents to be true at these calculated values is very difficult®. Interestingly (but 

not really surprisingly), the hint to a succesful solution is hidden in that last 

sentence which seems to imply failure. Constraints is the keyword here. We 
can make ENTERJSEGMENT affect the fluent w aitin g  nondeterministically (by 

a rule like 2.12 in Section 2.2.3) and then formalize all the constraints so that 

the only fluents which can be chosen nondeterministically will be the ones which 

satisfy the constraints. We want a car to be waiting at a unique position after 

ENTER_SEGMENT(C,S). This can be expressed by three causal laws:

caused waiting(C,S,N,Nu) if waiting(C,S,N,Nu)
after ENTER_SEGMENT(C,S) kk  at_node(C,N). 

caused False if (/\Nu:( ->waiting(C,S,N,Nu) ) )
after ENTER_SEGMENT(C,S) k k  at_node(C,N). 

caused ->waiting(C,S,N,Nu) if  waiting(C,S,N,Nul) k k  -'(Nu=Nul).

Executing ENTER_SEGMENT(C,S) also causes (indirectly) the car to no longer 

be at a node.

caused -iat_node(C,N) if waiting(C,S,N,Nu).

®If not impossible! We spent many fruitless hours trying to devise such laws but in the end 
discovered a different way based on constraints.
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When a car is waiting in the waiting area of a segment leaving a node, it 
cannot be waiting anywhere else.

caused -iwaiting(C,S,N,Nu)
if waiting(C,Sl,Nl,Nul) && - (  (S=S1) && (N=N1) ).

Now we formalize the constraints. Two cars entering a segment at the same 
time must be placed in positions respecting the priority values of the segments 
they came on:

caused False if priority(N,S,Nu) SzL· priority(N,Sl,Nul)
&& waiting(C,S2,N,Nu2) && waiting(Cl,S2,N,Nu3)
&& (Nu>Nul) && (Nu2>=Nu3) 
after last(C,S) last(Cl,Sl).

SzL· atJnode(C,N) && at_node(Cl,N) 
k k  enter_segment(C,S2) k k  enterjsegment(C1,S2).

Any car which just entered the waiting area must be behind all the other cars 
which were already in the queue at the previous time:

caused False if waiting(C,S,N,Nu)
k k  waiting(Cl,S,N,Nul) kk  (Nu>=Nul) 
after waiting(C,S,N,Nu2)

kk  (/\Nu3: ( -'waiting(Cl,S,N,Nu3) ).

Cars already in the waiting queue must preserve their order:

caused Fa/se if waiting(C,S,N,Nu)
kk  waiting(Cl,S,N,Nul) kk  (Nu>=Nul) 
after waiting(C,S,N,Nu2) kk  waiting(Cl,S,N,Nu3) 

kk  (Nu2<Nu3).

There are no gaps in the queue. That is, for all cars in the queue except the 
first car, there is another car in the spot immediately in front of it.
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caused False if  waiting(C,S,N,Nu)
&& d iff(l,N u ,N u l) L·L· - ’ (\ /C l; waiting(Cl,S,N ,N ul) ) 
&&: -'(Nu=0).

In a transition from one state to the next, two things may happen to cars in 
the queue. They will either move up a spot (if the first car gets on the segment) 
or they may stay at their current places. Also if a car is not in any queue then it 
will probably still not be in a queue so there should be a law which causes this. 
These last two cases are inertial.

caused waiting(C,S,N,Nu) if waiting(C,S,N,Nu)
after waiting(C,S,N,Nul) && d i f f  (l,Nul,Nu). 

inertial waiting(C,S,N,Nu), -'waiting(C,S,N,Nu).

Now we have all the numbering of and entering into the waiting area under 
control. So when do cars leave the waiting area? Simply when there is no car 
on the segment which has traveled a distance less than varsigma. Indication of 
whether there is such a car is done by the help of a fluent:

b l o cked_s egment (se^meni, node)

Typically, the segment is expected not to be blocked: 

default -iblocked_segment(S,N).

The law to cause blocked-segment is

caused blocked_segment(S,N)
if on_segment(C,S) && at_distance(C,D)
&& ( (in_direction(C,forward) h h  startnode(S,N))

+ +  (in^direction(C,backward) && endnode(S,N)) ) 

&& (D<i;iirsi^ma) hk, -iwaiting(C,S,N,0).
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Notice that if the only car on the segment closer than varsigma is the first 
car in the queue, then the road is not blocked. This is because we want the first 
car to be on the segment if it is not blocked.

caused on_segment(C,S)
if  waiting(C,S,N,0) SzL· -'blocked_segment(S,N).

Once the first car gets on the segment it will not be in the queue at the next 
state.

caused ->waiting(C,S,N,0)
after on_segment(C,S) && waiting(C,S,N,0).

The above laws secure the correct management of waiting and queueing. The 
surrounding traffic restrictions were already formalized in our original formaliza­
tion and they work for non-deliberative cars. However, for deliberative cars, we 
need to add two extra laws to prevent overtaking. This is because non-deliberative 
cars set their own speeds and if the speed difference between two cars is more 
than 2 X varsigma^ then the car behind at one time instant may be ahead at 
the next time instant and we want to prevent this. The first law below prevents 
overtaking when the cars would both still be on the segment after the overtaking. 
The second law prevents the case where the overtaking car arrives at a node (and 
its speed drops to 0).

caused False if on_segment(C,S) &&: on_segment(Cl,S) ¿¿L· -i(C =C l)
&& in_direction(C ,D ir) SzL· in_direction (C l,D ir)
&& at_distance(C,D) ¿¿L· at_distance(C l,D l) SzL· (D1>D) 
after at_distance(C,D2) && at_distance(Cl,D3)

&& (D2>D3).
caused False if at_node(C,N) && on_segment(Cl,S) && ->(0=01) 

after on_segment(C,S) SzL· on_segment(Cl,S)
&& in_direction(C ,D ir) && in_direction(C l,D ir) 
&& at_distance(C,D) ¿cL· at_distance(C l,D l) 
k k  (D1>D).



We complete the formalization of the different aspects by making the fluents 
at_distance and at_speed inertial when true. This is because we need to have 
some value of these fluents caused while waiting in the queue.

inertial at_distance(C ,D ), at_speed(C,Sp).

5.4 Fluent Calculus vs C for the TRAFFIC 
World
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In our view, the biggest difference between fluent calculus and C is that the 
former allows continuous, real-valued time, whereas the latter does not. Due 
to the discrete nature of C which is based on transition systems, we were only 
able to formalize a discrete-time version of the TRAFFIC world whereas the H-T 
formalization is for continuous time.

Having continuous time makes the problem more realistic. On the other hand, 
one may argue that continuous change is a matter of granularity. The smaller 
the time steps get, the more realistic the model becomes.

We showed that all the aspects of the H-T formalization which differ from our 
formalization (except continuous time) could be formalized using C. This basically 
shows that in this domain, C is no less expressive than the fluent calculus.

Furthermore, formalizing the differences required almost no modification of 
the laws in our original formalization. Only one causal law needed to be removed 
from our formalization and a conjunction was added to the end of three other 
laws. This is quite an interesting and even impressive fact. We may say that our 
original formalization has proven to be robust and easily extendable. This is an 
important property for formalizations, which is desired by the Logic Modeling 
Workshop. It also shows that our formalization is “elaboration tolerant” [29] to 
a certain extent®.

® Previously, [20] discussed the input language of the Causal Calculator with respect to the 
problem of elaboration tolerance.
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Using C to model TRAFFIC has one huge advantage over fluent calculus. To 
our knowledge, there is no tool which does for fluent calculus, what CCALC does 
for C. Having a well-functioning computational tool to test the formalization is 
invaluable. While we were working on formalizing TRAFFIC, with each small 
change, we were able to test whether we had overlooked any details. Without 
such a tool, a formalization may look correct but fail due to some small mistake.

Unlike toy problems, the TRAFFIC domain has strong ties to the real world. 
Having a computational tool to do planning with a formalization is a valuable 
resource for applications, besides being a helper for testing formalizations. We 
think that this, together with the fact that we were able to formalize everything 
the H-T formalization did, makes C a better choice than fluent calculus for the 
TRAFFIC World, despite the fact that we cannot represent continuous time.



Chapter 6

Conclusion

Our aim in this thesis was to formalize the TRAFFIC world using the C action 
language. This is an important goal because of its implications for logic-based 
formal knowledge representation methods. Although many logic-based methods 
have been defined, the problems typically used to show their expressiveness are of 
small size. It is time, especially with funding agencies nowadays tending to favor 
research leading to practical applications, for researchers in logic-based methods 
to demonstrate that the formalisms they invent are useful for more than just toy 
problems.

The formalization of the TRAFFIC world presented shows that it is possible 
to formalize domains of nontrivial size in C. The TRAFFIC world models most of 
the important properties of real traffic: cars moving on a well-defined landscape 
of nodes and segments, traveling at well-defined speeds, and coping safely with 
the surrounding traffic. Being able to formalize these important properties of 
real world traffic points out to us the possibility of some future work which might 
be built upon the current formalization. The domain specification may be made 
more detailed and more in correspondence with the rules governing real life traffic.

Test problems were run to demonstrate that the formalization functioned as 
desired when applied to planning problems. We postulate that, because the basic 
rules are the same no matter how many cars, nodes, or segments we have, bigger

59
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planning problems should present no challenge to the formalization. However, 
to say that the formalization is scalable is not to say that the implementation 
is also scalable. It was observed that, as the values of the largest integers for 
the speeds of the cars or the lengths of the roads were increased, the number of 
rules exploded. This is because numbers require a large number of uniqueness 
laws and also because domains involving numbers usually require laws involving 
multiple number variables (for arithmetic operations). The number of ground 
rules of laws with multiple variables of a single sort increases exponentially as 
the number of the constants of that sort increases. This suggests another area of 
future research: representing numbers in action languages and other logic-based 
approaches in ways which would yield efficient implementations.

The formalization was contrasted with the formalization of Henschel and 
Thielscher which uses the fluent calculus [13]. It was shown that, when new 
specifications were added to the domain, we were able to extend the existing for­
malization without changing much. Such modularity and suitability for successive 
development is an important property of the formalization. We showed that in 
the TRAFFIC domain, except for being unable to represent time continuously, C 
is no less expressive than the fluent calculus.



Appendix A

The CCALC Program Listing

A .l The World Description File

0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ P/ 0/ 0/ 0/ P/ Pi

y. Last update: July 5, 2000 
y, Author: Selim T. Erdoğan
P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ p/ p/ 0/ P/ P/ P/ P/ P/ P/ p/ p/ p/ p/ Pi

include 'C .t '

sorts 
car; 
node; 
segment; 
distance; 
speed; 
direction.

variables

C,C1,C2 ::  car;

61
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N,N1
S,S1
D,D1,D2,D3 
Sp,Spl,Sp2,Sp3 
Dir, Dirl

node; 
segment; 
distance; 
speed; 
direction;

X,X1,X2,X3 : computed.

constants

forward, backward : : direction;

% Actions:
enter„segment(car, segment) action;

7o Fluents :
at„node(car,node) inertialTrueFluent;

on„segment(car, segment) 
at„distance(car,distance)

inertialTrueFluent; 
flu en t;

at„speed(car, speed) 
in„direction(car, direction)

flu en t;
inertialTrueFluent;

la st(c a r , segment) inertialFluent;

blocked(car) defaultFalseFluent.

0/ 0/ 0/ 0/ 0/ 0/ 0 / 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ Oi

y, Uniqueness

y y y y y y y y y yy xyy yyy 5o7 y yy y yyyy
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% a car cannot be at two nodes at once.
caused -at_node(C,N) i f  at_node(C,N1) && -(N=N1).

y, a car cannot be on two segments at once.
caused -on_segment(C,S) i f  on_segment(C,Sl) && ~(S=S1).

% a car cannot be at two points on a segment at once, 
caused -at_distance(C,D) i f  at_distance(C,Dl) && -(D=D1).

y, a car cannot be traveling at two different speeds at once 
caused -at_speed(C,Sp) i f  at_speed(C,Spl) && -(Sp=Spl).

y, a car cannot be travelling in two different directions at once 
caused -in_direction(C,Dir) i f  in_direction(C,Dirl) && -(Dir=Dirl)

y, the segment that each car most recently travelled on is unique 
caused -last(C ,S ) i f  last(C ,Sl) && -(S=S1).

0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ ·/  9/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 9/ 9,

y, Action: enter_segment(car,segment)
9/ 9/ 9/ 9/ 9/ 9/ 9/ 9/ 9/ 9/ 9/ 9/ 9/ 9/ 9/ 9/ 9/ 9/ 9/ 9/ 9/ 9/ 9/ 9/ 9/ 9/ 9/ 9/ 9/ 9/ 9/ 9/ 9/ 9/ 9/ 9/ 9i

enter_segment(C,S) causes on_segment(C,S). 

enter_segment(C,S) causes at_distance(C,0).

enter_segment(C,S) causes in_direction(C,forward) i f  startnode(S,N)
&& at_node(C,N).

enter_segment(C,S) causes in_direction(C,backward) i f  endnode(S.N)
&& at_node(C,N).
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% once a car enters a segment, it  is  no longer at any node, 
caused -at_node(C,N) i f  on_segment(C,S).

*/o the segment most recently travelled on is recorded 
caused last(C ,S) i f  on_segment(C,S).

% a car cannot enter a new segment unless it  is  at a node 
nonexecutable enter_segment(C,S) i f  - (  \/N: at_node(C,N) ) .

y, a car cannot enter a segment while not at the startnode or 
y, endnode of that segment
nonexecutable enter_segment(C,S) i f  at_node(C,N)

&& - (  startnode(S,N) ++ endnode(S,N) )

y, a car cannot return on a segment it  most recently drove on 
nonexecutable enter_segment(C,S) i f  last(C ,S ).

0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ Q/ 0/ 0/ 0/ 0/ Q/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ · /  0/ 0/ 0/ 0/ 0/ 0/ 0/ 0 / 0.

% Movement of cars which are on segments
0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ V  0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ Р/ 0/ 0/ 0/ 0/ 0/ 0/ 9/ 0/ 9/ 9)

y, the distance that a car has travelled along a segment is incremented 
У by the amount of its  speed
caused at_distance(C,X) after at_distance(C,Dl) && at_speed(C,Sp)

&& sum(X,Sp,Dl) && on_segment(C,S)

&& length(S,D2) && (X<D2).

caused at_node(C,N) after at_distance(C,Dl) && at_speed(C,Sp)
&& sum(X,Sp,Dl) && on_segment(C,S)

&& length(S,D2) && (X>=D2)
&& ( (in_direction(C,forward) && endnode(S,N))

++(in_direction(C,backward) && startnode(S,N)) )
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y y y y y y y y%y 75oy yy 7 77 y yy yy Xyy 7 yy y yy 7 y5o7y y y yy y yyyy y 7
*/« Arrivals of cars at nodes and the effects of arrivals
0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ P/ 0/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ p/ p/ p/ P/ P,

% arriving at a node causes the car to get off the segment 
caused -on_segment(C,S) i f  at_node(C,N).

% arriving at a node causes the car to be at a distance of zero 
caused at_distance(C,0) i f  at_node(C,N).

7o arriving at a node causes the car to not be in any direction 
caused -in_direction(C,Dir) i f  at_node(C,N).

y, arriving at a node causes the car to stop ( i .e .  drop its  speed 
y, to zero
caused at_speed(C,0) i f  at_node(C,N).

y, a car at a node is not blocked 
caused -blocked(C) i f  at_node(C,N).

P/ py py py py py py py py py py py py py py py py py py py py py py py py py py py py py py py py py py py P;

y, Surrounding tra ffic  restrictions
py py py py py py py py py py py py py py py py py py py py py py py py py py py py py py py py py py py py Pi

y, cars going in the same direction cannot be closer than varsigma

never on_segment(C,S) && on_segment(Cl,S) && -(C=C1)

&& in_direction(C,Dir) && in_direction(Cl,Dir)

&& at_distance(C,D) && at_distance(Cl,D1)
&& absdiff(X,D,D1) && (X<varsigma).

py py py py py py py py py py py py py py py py py py py py py py py py py py py py py py py py py Pi

y, Automatic speed determination
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0/  0/  0/  0/  0/  0/  0/  0/ 0/  0/  0/  0/  0/  0/  0/ 0/  0/  0/  0/  0/  0/ 0/  0/  0/  0/  0/  0/  0/  0/  0/  0/  0/  0/  0,

Уо a car is blocked i f  traveling at the maximum speed allowed by the 
y, road and its  own top speed w ill make it  get closer than varsigma 
y, to a car in front of it

caused blocked(C) i f  on_segment(C,S) && on_segment(Cl,S) && -(C=C1)
&& in_direction(C,Dir) && in_direction(Cl,Dir)

&& at_distance(C,D) && at_distance(Cl,D1) && (D1>D) 
&& speed_limit(S,Spl) && max_car_speed(C,Sp2)
&& minimum(X,Spl,Sp2) && sum(Xl,X,D)
&& at_speed(Cl,Sp3) && sum(X2,Sp3,Dl) 
kk diff(X3,X2,varsigma) && (X1>X3).

y, cars which are not blocked travel at the maximum speed that the speed 
y, limit of the road and the top speed of the car allow

caused at_speed(C,X) i f  -blocked(C) kk on_segment(C,S)
kk speed_limit(S,Spl) kk max_car_speed(C,Sp2) 
kk minimum(X,Spl,Sp2).

y. a blocked car adjusts its  speed in a way so that it  is exactly 
y, varsigma away from the car blocking it (the car blocking is the 
y, closest one in front of it)

caused at_speed(C,Spl) i f  blocked(C) kk on.segment(C,S)
kk on_segment(Cl,S) 
kk -(C=C1) kk in_direction(C,Dir) 
kk in_direction(Cl,Dir) kk at_distance(C,D) 
kk at_distance(Cl,Dl) kk (D1>D) kk at_speed(Cl,Sp) 
kk (/\C2: ( -on_segment(C2,S) ++ (C2=C) ++ (C2=C1) 

++ -in_direction(C2,Dir)

++ (at_dist2ince(C2,D2) kk (D2>D1)) ) )
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diff(X1,D1,D) && sum(X2,Xl,Sp) 
diff(Spl,X2,varsigm a).

A .2 Scenario File for Problem 1

0 /  0 /  0 /  0 /  0 /  0 /  0 /  0 /  0 /  0 /  0 /  0 /  0 /  Q /  0 /  0 /  0 /  0 /  0 /  0 /  0 /  0 /  Q /  0 /  0 /  0 /  0 /  0 /  0,

y. Last update; April 24, 2000

% Author: Selim T. Erdoğan
0/  0/  0/  0/  0/  0/  0/  0/  0/  0/  0/  0/ 0/  0/ 0/  0/  0/ 0/  0/ 0/ 0/  0/  0/  0/  0/  0/  0/  0/  0.

0/ P/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ P/ P/ P/ P/
/p /p /0 /p /p /p /p /p /p /p /p /p /p /p /p /p /p /o /p /0 /p /p /p /0 /p /p

% macros for constants

7.y.yj.y.y;/.y.y.r/.y.y.y.r/.y.r/.y.y.y.y.*/.y.y.

macros

y. surrounding tra ffic  restriction parameter 
varsigma -> 1;

y, Largest values for the speeds and distances 
maxSpeed -> 4; 
maxDistance-> 10;

y, change the following four macros to add nodes and segments 
startnode(#l,#2) -> ( (#l=road_ab && #2=a)

++(#l=road_bc && #2=b) ) ;

endnode(#l,#2) -> ( (#l=road_ab && #2=b)
++(#l=road_bc && #2=c) ) ;
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length(#l,#2) -> ( (#l=road_ab && #2=10)
++(#l=road_bc && #2=10) ) ;

speed_limit(#l,#2) -> ( (#l=road_ab && #2=4)

++(#l=road_bc && #2=4) ) ;

% change this macro to add cars

max_car_speed(#l,#2) -> ( (#l=carl && #2=2)
++(#l=car2 && #2=4) ) .

0/ 0/ 0/ 0/ 0/ P/ 0/ 0/ 0/ 0/ 0/ 0/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ Pi

y. Macros for arithmetic
P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ Pi

macros
sum(#l,#2,#3) -> #1 is min((#2)+(#3), maxDistance); % addition

absdiff(#1,#2,#3) -> #1 is a b s((# 2 )-(# 3 )); 

d iff(#1 ,#2 ,#3) -> #1 is max((#2)-(#3), 0 ); 

minimum(#l,#2,#3) -> #1 is min(#2,#3).

P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ p/ P/ p/ 
/p /p /p /p /p /p /p /p /p /p /p /p /p /p /p /p /p /p /p /p /p /p /p /p /p /p

y, Domain description
P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ p/ p/ p/ P/ P/ p/ P/ p/ p/ p/ 
/o /o /p /p /o /p /p /p /p /p /p /p /p /0 /p /o /p /p /0 /p /p /o /p /0 /p /p

include 'n ew _trafficl.t■

constants

carl

a

: : car;

:: node;
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b
road_ab

::  node;
: :  segment;

0 . .maxDistance 
0 . .maxSpeed

: : distance; 
: : speed.

0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ Oi

7o Problem description
0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ Oi

plan 
facts ; :

0: at_node(carl,a),
0: /\C: /\S: -la st(C ,S ); 

goal : :
6: at_node(carl,b).

A.3 Scenario File for Problem 2

0/ 0/ 0/ 0/ 0/ 0 / 0/ 0/ 0/ 0/ 0/ 0/ 0 / 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ Oi

*/o Last update: April 24, 2000
y. Author: Selim T. Erdoğan
0/ 0/ 0/ 0/ 0/  0/ 0/ 0/  0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/  0/  0/  0/  0/ 0/ 0/ 0/  0/ 0/  0/  0/  0,

0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 
/o /o /o /0 /o /0 /o /o /o /o /0 /o /o /0 /0 /o /o /0 /0 /0 /o /0 /o /o /0 /o

y, macros for constants
0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 
/0 /0 /0 /0 /0 /0 /0 /o /o /0 /o /o /0 /0 /o /o /0 /o /0 /0 /0 /0 /0 /o /0 /0

macros
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y, surrounding tra ffic  restriction parameter 
varsigma -> 1;

y. Largest values for the speeds and distances 
maxSpeed -> 4; 
maxDistance-> 10;

y, change the following four macros to add nodes and segments 
startnode(#l,#2) -> ( (#l=road_ab && #2=a)

++(#l=road_bc && #2=b) ) ;

endnode(#l,#2) -> ( (#l=road_ab && #2=b)
++(#l=road_bc && #2=c) ) ;

length(#l,#2) -> ( (#l=road_ab && #2=10)

++(#l=road_bc && #2=10) ) ;

speed_lim it(#l,#2) -> ( (#l=road_ab && #2=4)

++(#l=road_bc && #2=4) ) ;

y. change this macro to add cars
max_car_speed(#l,#2) -> ( (#l=carl && #2=2)

++(#l=car2 && #2=4) ) .

0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ Q/ 0/ 0/ P/ 0/ 0/ 0/ Oi

y, Macros for arithmetic
0/ 0/ 0/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ p/ p/ p/ p/ p/ p/ p/ Pi

macros
sum(#l ,#2 ,#3) -> #1 is min( (#2) + (#3) , maxDistance) ; */, addition

absdiff(#1,#2,#3) -> #1 is a b s((#2 )-(# 3 ));
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d iff(#1 ,#2 ,#3) -> #1 is m ax((#2)-(#3), 0 ); 

minimum(#1,#2,#3) -> #1 is min(#2,#3).

0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/
/o /o /0 /o /o /o /o /o /0 /0 /o /0 /o /0 /0 /0 /0 /0 /0 /o /o /0 /0 /0 /0 /0

% Domain description
0 /  0 /  · /  0 /  0 /  0 /  0 /  0 /  0 /  0 /  0 /  0 /  0 /  0 /  0 /  0 /  0 /  0 /  0 /  Q /  0 /  0 /  0 /  0 /  0 /  0 /
/o /o /o /o /o /o /0 /o /o /0 /0 /o /o /o /0 /0 /0 /o /O /0 /o /0 /0 /0 /0 /0

include 'n ew _trafficl.t'

constants

carl ::  car;

car2 ::  car;

a ::  node;

b :: node;

c ::  node;

road.ab ::  segment;

road.be ::  segment;

0 . .maxDistance 
0 . .maxSpeed

::  distance; 
: :  speed.

n y,y.y.y.y.r///.y.y.r/.r/.y.y//.m y.r/.n
y. Problem description

y.y ,y //.y .y //.y //.y .y .y //.y .y .y .y .y .y .y .y .’/.y.y.y.y.y.

plan 
facts : :

0: at.node(carl,a),
0: at_node(car2,c),
0: /\C: /\S: -last(C ,S);
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goal : :
6: at_node(carl,b), 
6: at _node(car2, b ) .

A .4 Scenario File for Problem 3

0/ 0/ 0/ 0/ 0/ 0/ P/ 0/ 0/ 0/ 0/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ Pi

% Last update: July 5, 2000 
y. Author: Selim T. Erdoğan
P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ Pi

P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/
/p /0 /o /p /p /p /p /p /p /p /p /p /p /p /p /p /p /p /p /p /p /p /p /p /p /p

7o macros for constants 
V  V  V  V  V  V  V  V  V  V  V  V  V  V  V  V  V  V  V  y V  y y y ®/ y/0 /0 /o /o /p /0 /0 /p /0 /p /p /p /0 /p /p /p /o /o /p /p /p /p /0 /0 /0 /o

macros

y, surrounding tra ffic  restriction parajneter 
varsigma -> 1;

y, Largest values for the speeds and distances 
maxSpeed -> 4; 
maxDistance-> 6;

*/o change the following four macros to add nodes and segments 
startnode(#l,#2) -> (#l=road_ab && #2=a);

endnode(#l,#2) -> (#l=road_ab && #2=b);

length(#l,#2) -> (#l=road_ab && #2=6);
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speed_lim it(#l,#2) -> (#l=road_ab && #2=4);

% change this macro to add cars
max_car_speed(#l,#2) -> ( (#l=carl && #2=2)

++(#l=car2 && #2=4) 
++(#l=car3 && #2=1) )

0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ V  0/ 0/ 0/ 0/ 0/ P/ 0/ 0/ 0/ 0/ 0-

% Macros for arithmetic
0/ 0/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/

macros
sum(#l,#2,#3) -> #1 is m in((#2)+(#3), maxDistance); % addition

absdiff(#1,#2,#3) -> #1 is abs((# 2 )-(# 3 )) ; 

d iff(#1 ,#2 ,#3) -> #1 is m ax((#2)-(#3), 0 ); 

minimum(#l,#2,#3) -> #1 is min(#2,#3).

P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ p/ p/ p/ p/ p/ p/ p/ p/ p/ p/ P/ 0/ P/
/o /p /0 /p /0 /p /p /p /p /p /p /0 /0 /p /p /p /p /p /p /p /o /p /0 /p /p /p

y, Domain description
P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ P/ p/ p/ p/ p/ p/ p/ 0/ P/ P/ P/ P/
/p /p /0 /p /p /p /p /o /p /o /p /o /0 /p /p /p /o /0 /0 /p /0 /p /p /0 /p /p

include 'n e w _tra ffic l.t '.

constants

carl : : car;

car2 :: car;

car3 :: car;

a :: node;

b :: node;



APPENDIX A. THE CCALC PROGRAM LISTING 74

road_ab : :  segment;

0 . .maxDistance 
0 . .maxSpeed

:: distance; 
: :  speed.

0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0-

% Problem description 
0/  0/  0/ 0/  0/  0/ 0/  0/  0/  0/ 0/  0/  0/  0/  0/ 0/  0/  0/  0/  0/ 0/  0/ 0/ 0/  0/  0/  0,

plan 
facts : :

0: on_segment(carl,road_ab),
0: on_segment(car2,road_ab),

0: on_segment(car3,road_ab) ,
0: in_direction(carl»forward), 
0: in_direction(car2,forward), 
0: in_direction(car3,forward), 
0: at_distance(carl,2) ,
0: at_distance(car2,0) ,

0: at_distance(car3,5),

0: at_speed(carl,2 ) ,
0: at_speed(car3,1),

0: -blocked(carl),

0: -blocked(car3); 
goal : :

4: at_node(carl,b),

4: at_node(car2,b),
4: at_node(car3,b).



Appendix B

The TRAFFIC Scenario World

B .l Introduction

The TRAFFIC scenario world is intended to capture simple hybrid phenomena: 
vehicles moving continuously with well defined velocities along roads with well 
defined lengths, respecting speed limits and other restrictions on the vehicle’s 
behaviors.

B.2 Landscape Structure

The landscape in the TRAFFIC Scenario World uses the following two types:

• Nodes, which can be thought of as road crossings without any particular 
structure (no lanes, etc)

• Segments, which can be thought of as road segments each of which connects 
two nodes.

The set of nodes and the set of segments are both considered as fully known, and 
all nodes and segments can be assigned individual names.

75
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Each segment has exactly one start node and exactly one end node. It also 
has a length., which is a real number (or rational number, if preferred). This is 
all the structure there is.

Figure 1 shows an example of a traffic landscape that may be used for specific 
scenarios.

B.3 Activities in the TRAFFIC world

The activity structure in the TRAFFIC world uses only one sort:

• Cars, which are intuitively thought of as driving along the arcs in the 

TRAFFIC landscape structure.
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Each car has a position at each point in time. The position is indicated 
as a pair consisting of the segment where the car is located, and the distance 
travelled along the segment. The distance travelled is a number between 0 and 
the segment’s length.

Each car has a top speed, and each road segment has a speed limit. The actual 
velocity of a car at each point in time is the maximum velocity allowed by the 
following three conditions:

• The speed limit of the road segment where it is driving

• Its own top speed

• Surrounding traffic restrictions

Cars drive at piecewise constant velocity, and can change velocity discon- 
tinuously. (A more refined variant, TRAFFIC2, will require cars to change their 
velocity continuously, and assumes piecewise constant acceleration/ deceleration). 
When a car arrives at a node ( “intersection” ) then it may continue on any segment 
that connects to that node, except the one it is arriving at.

Cars can drive in both “directions” along a segment, that is, they can move 
both from the start node to the end node, and vice versa.

Cars can not overtake — if two cars go in the same direction on the same 
road segment, and one catches up with the other, then it has to stay behind at 
least until they arrive to the next node, where possibly the second car can choose 
another direction onwards. Cars going in opposite directions on the same segment 
can meet without difficulty, however.

The surrounding traffic restriction says that a car is never allowed to be closer 
than a fixed safety distance varsigma to the car in front of it, and it may never 
get itself into a situation where that could happen. This means, first of all, that 
when it gets to a distance of varsigma to a car moving in front of it on the same 
segment and in the same direction, then it must reduce speed to match the speed 
of the car in front of it. Also when getting close to a node (=  an intersection).
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a car must reduce its speed in a way that takes into consideration all other cars 
that are just approaching or leaving the same node.
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