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Abstract

This thesis addresses the problem of fault detection and isolation in linear 
systems based on unknown input observers.

Functional disturbance decoupled observers which estimate specified or un­
specified linear functions of system states regardless of the disturbances are first 
studied. Necessary and sufficient condition for the existence of such observers 
are presented. The investigation is extended to simultaneous disturbance de­
coupled observers where multiple systems are observed by a single disturbance 
decoupled observer.

The application of disturbance decoupled observers to fault detection and 
diagnosis are explicitly outlined, and a new scheme that is based on simulta­
neous unknown input observers is proposed to enhance the already existing 
schemes.

Finally, a detailed simulation example is carried out to examine the utility 
of the proposed scheme.

Keywords: linear systems, unknown-input observers, simultaneous ob­
servers, robust fault detection, fault diagnosis, fault isolation
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özet

Bu tezde doğrusal sistemlerde oluşabilecek hataların bulunması, tanınması 
ve izolasyonu problemleri, bilinmeyen girişli gözleyiciler yöntemiyle İncelen­
mektedir.

Önce bir sistemin durum vektörünün tamamını veya bir fonksiyonunu, 
bozucu girişlerden bağımsız olarak, gözleyebilen bilinmeyen girişli gözleyiciler 
incelendikten sonra, buradaki sonuçlar birden fazla sistem için tek gözleyiciden 
ibaret olan eşzamanlı gözleyicilere genellenmiştir.

Bilinmeyen girişli gözleyicilerin hata bulma, tanıma ve izolasyonuna nasıl 
uygulandığı özetlendikten sonra, orijinal bir katkı olarak, eşzamanlı bilinmeyen 
girişli gözleyicilerin bilinen hata bulma yöntemlerinde sağlayacağı kolaylıklar 
gösterilmektedir.

Bu yeni sonuçların uygulamadaki yararları bir simülasyon örneğiyle ayrıntılı 
bir şekilde gösterilmiştir.

Anahtar Kelimeler : Doğrusal sistemler, bilinmeyen girişli gözleyici, 
eşzam,anh gözleyici, hata bulma, hata tanıma, hata izolasyonu

IV
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Chapter 1

INTRODUCTION

There has been great concern about improving the process supervision tech­

niques in industrial control applications in order to meet the growing demands 

for the reliability and safety. These demands are in fact amplified by the in­

creasing complexities and interlinkage of industrial processes as well as the 

growing scopes of automation and the high capital investments in such pro­

cesses. The motivation is to detect and locate (isolate) the unexpected and 

unperrnitted process deviation, the so-called fault, from the standard condi­

tions and then take the necessary control action to stop the expansion of the 

fault and to avoid possible damages to the whole plant such as instabilities 

and degradation in performance, not to mention the possible hazards to the 

personnel and the economic losses[l].

The problem is approached by introducing system redundancies whether 

physical, which are obtained through the repeated hardware elements, or ana­

lytical, which are contained in the static and dynamic relationships among sys­

tem inputs and outputs. However, because of the penalties that the hardware



redundancy imposes on the system including the high cost of the extra equip­

ments, their weight and the space needed to accommodate them, newer fault 

detection and isolation (FDI) approaches are emerging based on the analytical 

redundancy at the cost of a mathematical model of the physical plant[2, 3, 4, 5]

CHAPTER 1. INTRODUCTION 2

The basic principle of model-based (analytical redundancy-based) FDI, is 

the comparison of the actual behavior of the plant with an anticipated behavior 

generated with the help of the mathematical model of the same plant. Gener­

ally speaking, the FDI schemes of this type involve two stages: the generation 

of residuals and the analysis of them. Residuals are functions that are accentu­

ated by faults. They carry relevant information exploited to extract the fault 

type, source, time of occurrence etc., the kind of data to isolate the fault.[2, 6]

There is a broad spectrum of model-based procedures used for FDI, which 

can be brought down to parity space approach [7], dedicated observer approach 

[14, 15, 18] fault detection filter approach [8, 9, 10, 11, 12] and parameter 

identification approach[3, 13]. The most effective and popular among all is 

observer-based approach.

In the observer-based approach, the difference between the actual and the 

estimated system outputs is chosen as the residual. The residual is zero as long 

as the system is operating fault-free and nonzero when a fault takes place. The 

underlying assumption is that the mathematical model is a faithful represen­

tation of the physical system. In practice, this idealized assumption is never 

met because of the system parameters’ variation, modeling error, noises and 

other disturbances. As a result, there is always a mismatch between the actual 

and estimated outputs even in the absence of faults. Clearly, this creates a 

source of false alarms and corrupts the performance of the FDI system. These
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difficulties lead to the robustness issue recognized by [6, 19, 20, 22].

In order to ensure a robust FDI scheme, the FDI system should be de­

signed to be sensitive to faults of interest and at the same time insensitive to 

other system discrepancies. These conflicting goals are achieved by employ­

ing unknown input observer (UIO), a tool to discriminate between faults and 

disturbances[22, 21, 15]. Unknown input observers are special kinds of Luen- 

berger observers that continues to estimate system states even when the system 

input or part of it is unknown [24, 27, 28, 30, 31]. Since the FDI scheme requires 

the estimation of the system output, which is a function of the state vector, 

functional UIO seems to be more appropriate for our purpose, especially that 

the design problem is then formulated under more relaxed conditions[23, 33].

This thesis is devoted to various types of unknown input observers and their 

application to robust observer-based fault detection and isolation schemes. It 

is organized as follows. Chapter 1 covers the unknown input observation prob­

lem with special emphasis on the functional UIO. The results achieved by [28] 

and [33] are restated and alternative, more transparent proofs are provided. 

Chapter 2 examines simultaneous unknown input observers and provides some 

new sufficient conditions for their existence. The objective of Chapter 3 is to 

give an explicit description of the different aspects of UlO-based FDI schemes 

and to introduce the simultaneous UlO-based FDI. Finally, in Chapter 4 a sim­

ulation example is considered to illustrate the design procedure and highlight 

the applicability of simultaneous UIO for the purpose of FDI.



Chapter 2

UNKNOWN-INPUT
OBSERVERS

In the classical observer theory of Luenberger, [25], the states are reconstructed 

or estimated from measurements of the outputs as well as the inputs. Unknown- 

input observers, [27], [26], reconstruct the states from the measurement of the 

outputs only. A main need for unknown-input observers arises whenever some 

disturbances unavailable for measurements influence the system. The distur­

bance inputs may also be superficially introduced into the model in order to 

summarize the effect of modeling errors or to represent unaccountable noises 

influencing certain state variables. In such applications, the unknown-input 

observers are also designated as “disturbance-decoupled observers (or estima­

tors)” , [35].

In this section, we first review the theory of (linear) functional disturbance 

decoupled observers. The full-state unknown-input observers are examined as 

a special case of functional observers.



CHAPTER 2. UNKNOWN-INPUT OBSERVERS

2.1 Disturbance Decoupled Observers

Consider a linear time-invariant system in state-space representation

■̂ x = Ax{t) -I- 
y{t) =  Cx{t) -\- Dd{t), 
z{t) = Ex{t) + Fd{t),

(1)

where x G R " ,d  G R ',y  G R^ are the state vector, the disturbance vector, 

and the output vector, respectively. The vector z G R*̂  is a function of states 

and disturbance inputs and we are interested in estimating its value from a 

knowledge of y. The matrices A, B, C, D, E, and F  are known matrices. The 

problem is to determine a system, called observer, of the form

|x· =  H x { t ) L y { t ) ,  
z{t) = Mx{t)  +  Jy{t),

(2)

such that the reconstruction error e{t) =  z{t) — z{t) satisfies the following 

conditions:

(i) e(i) is independent of d{t), and

(ii) /imt_>oo||e(i)|| =  0 for all initial states 2:(0) ,x (0).

The observer (2) is called a functional disturbance decoupled observer 

(DDO) for (1) provided (i) and (ii) above hold. Figure 1 illustrates a func­

tional DDO scheme in transfer matrix representation.

x(0)

d
Z
G

V
¿(0)j

Y Z
G(s) =

C{sl  -  A)-^B P D 
E{sl  -  A)-^B + F

r is )  = M{sl  - H ) - ^ L  + J

Figure 1; Functional DDO
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Notice that, the control input, which is assumed to be measurable, is omit­

ted in (1) and the observer (2) does not use the control input. This causes 

no loss of generality since the more general case can be reduced to the above 

simpler case by redefining the output y{t) to include the control inputs as well, 

see [28]. A rigorous treatment of the problem based on the frequency domain 

methods is presented in [28]. A necessary and sufficient condition for the exis­

tence of a functional DDO is given below. We supply an alternative proof of 

this result of Hautus as the proof in [28] is rather indirect.

P rop osition  1.1. There exists a functional DDO for (1) if and only if 

there exist stable proper rational matrices X{s),  F (s) such that

- X ( s )  Y{s)
' A - s i  b '

— ' E f '
C D _

(3)

P roo f. We first note that the sought observer (2) can be restricted to be 

canonical (controllable and observable) without loss of generality. Taking the 

Laplace transform of e{t) (with initial conditions), one gets

e(s) = [ E -  T (s)C ](s / -  A)-^x{0) -  M{sl  -  H)-^z{0) +  [G(s') -  r(s)Z(s)]J(s·),

where e{s),d{s) are the Laplace transforms of e{t),d{t), T (s) :=  M{sl  — 

H)~^L -f J is the observer transfer matrix, and Z(s) := C{sl  -  A)~^B -t- D,

G{s) := E{sl  — Ay'-B + F  are the transfer matrices of the system from d to 

y, z, respectively. The requirements (i) and (ii) are equivalent to

(a) G{s )^Y{s )Z {s )
(b) E - Y { s ) G  = X{s) {s l  -  A),
(c) X (s ) and M(sl  -  Hy'· are stable rational matrices.

Since {H,L) is controllable, it follows that M{sl  -  W)“ '· is stable rational if 

and only if y(.5·) is. It is now straightforward that (a) -  (c) are equivalent to (3)



holding for some stable proper rational matrices X (s)) ^(*')· Note that given 

any stable rational solution X (s),]h(s‘) of (3) with F(s) proper, a canonical 

realization of F(s) is a functional DDO (2). □

The equation (3) involves the (polynomial) system matrix

CHAPTER 2. UNKNOWN-INPUT OBSERVERS 7

S{s) :=
A - s i  B 

C D

and the question as to “when an appropriate solution to (3) exists” need to be 

answered. There are at least two alternative answers. One answer is provided 

by the geometric approach. The problem of disturbance decoupled estimation 

of [34], [36], [35] is precisely the functional DDO for the special case F =  0, 

the case where the outputs to be estimated are linear combinations of states 

only, and for D = 0. The condition for the existence of a functional DDO with 

F = 0 and D =  0 is that

n K e r C  C KerE, (4)

where T>1̂  ̂  denotes the “smallest detectability subspace containing Jm B” 

which is the dual space of the smallest stabilizability subspace contained in 

KerC,  see e.g. [36]. A second approach is to transform the equation (3) to 

a linear matrix equation over the ring of stable proper rational functions and 

thereby obtain a condition for its solvability in terms of “unstable invariant 

zeros” of S{s), see e.g. [37]. Both of these methods provide the valuable 

intuition that the interaction of the unstable invariant zeros of the system with 

the matrix on the right hand side of (3) determines whether or not a functional 

DDO exists. One can state more precise conditions in some special cases. One 

such case is considered next.
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2.2 Full-State DDO

If, in (1), one lets E = R, F =  0, then z{t) =  x{t) and the output z of (2) is an 

estimate of the states of the original system whenever the conditions (i) and 

(ii) hold. The observer (2) is then a full-state DDO. According to Proposition

d(t) y(t)

z(t)

Figure 2.1: Structure of a Full-state DDO

1.1, a full-state DDO exists just in case (3) holds with E =  I , F  =  0, i.e., the 

equation

- X ( s )  y (s )
A - s i  B 

C D
In 0 ] (5)

has a proper stable rational solution [—A'(s') F(s)]. It is not difficult to see 

that if (5) is satisfied for some stable rational AT(s), F (s), then

rank
-s in  +  A B = n + rank

' B '

C D D
Vs G C, Re{s) > 0. (6)

If X (s), F(s) are moreover proper, then writing F(s) =  Fq -t- K_iS  ̂ -I-..., one 

obtains from condition (a) that YoD -  0, VqCB -f- V-iD =  B, or equivalently.

0̂ P-l
CB D 
D 0

B 0
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It follows that

rank
OB D 
D 0

rank
OB D r
D 0 =  rankD +  rank

B 0 _ -

B
D

(7 )

Hence, if (5) has a proper stable rational solution [—X (s) F(s)], then (6) and 

(7) hold. In [28], the converse is also shown. The following is Theorem 1.12 of 

[28].

P roposition  1.2. There exists a full-state DDO for (1) if and only if (6) 

and (1) hold.

Let us assume, without loss of generality, that the matrix [B' D 'f has full 

column rank. Then, the condition (6) is equivalent to the system {A, B, 0, D) 

being left invertible (i.e., Z{s) has full column rank over R (s)) and all its 

invariant zeros (i.e., roots of the largest invariant factor of its system matrix 

S{s)) being in the open left half complex plane. Alternatively, (6) is equivalent 

to the system matrix S{s) having a stable left inverse. The condition (7), on 

the other hand, is equivalent to S{s) having a proper left inverse. Finally, the 

conditions (6) and (7), together, are equivalent to the existence of a proper 

stable left inverse for the polynomial system matrix S{s).

The geometric solvability condition (4) specialized to E =  I  (and F = 0, 

D = 0) becomes:

D K e r C  = {0}.
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An alternative condition is due to [22]: A full-state DDO for (1) with E =  

I , F = 0, D =  0 exists if and only if

(?) rank CB — rank B,
(ii) (C, Ai) is a detectable pair,

where Ai := A — B{CB)'^CA with (CB)'^ denoting a Moore-Penrose inverse 

of CB.  Note that the first condition (?) is eciuivalent to (7) under D = 0. 

The condition implies in particular that rank B < rank C which means that 

the number of disturbances that can be decoupled cannot exceed the number 

of independent measurements. The condition (??), on the other hand, can be 

shown to be equivalent to (6) and means that the invariant zeros of {A, B, C) 

are all stable and the system is left invertible.

In the literature, considerable other work is devoted to the design of full- 

state unknown-input observers using procedures such as system inversion or 

singular value decomposition, [30], [31]. Whatever method is applied, the re­

strictive existence conditions for full-state observers limit their use in many 

applications.

2.3 Unspecified Function of States

Full-state DDO’s suffer from stringent existence conditions. Fortunately, in 

many applications, not all states are required, rather certain states or certain 

combination of the states are enough to fulfill the task, [32], [33]. Moreover, in 

fault detection applications, it is even enough to focus on functional unknown- 

input observers which estimate some (a priori unspecified) function of states.
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Given a system

=  Ax{t) +  Bd{t), 
y{t) =  Cx(t) +  Dd{t), (8)

the problem of functional DDO with unspecified E is to determine a function 

of states

z{t) — Ex{t), E 0 (9)

and a disturbance decoupled observer (2) as in the previous section. The 

significant difference from the problem considered in Proposition 1.1 is that 

F — 0 and the matrix E on the right hand side of equation (3) is now also an 

unknown and is to be determined. It is easy to see by similar reasoning that 

lead to Proposition 1.1 that the problem of functional DDO with unspecified 

E has a solution if and only if there exist stable proper rational matrices 

X{s),  Y{s) and a constant nonzero E satisfying

[ -A -(s ) r (s )  ]
A - s i  B 

C D
=  [ i  o ] . ( 10)

A simple condition for solvability for the problem has been obtained in [33] 

using ideas from the theory of descriptor (generalized) systems. We now state 

this result and give an alternative proof using more elementary notions.

P roposition  1.2. There exists a functional DDO with unspecified E for 

the system (8) if and only if either one of the following conditions hold:

(i) rank C D > rank D.

(a) 5  has a stable invariant zero.
(11)
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P roo f. Let t /(5),L (s ) be some unirnodular polynomial matrices such that 

U{s)S{s)V{s)  =  A(s) is the Smith normal form of S{s) over the ring of poly­

nomials. Let A =  AsAa be a stable-antistable factorization of A with Â  square, 

nonsingular. Thus, det As{s) includes among its zeros all zeros of A in the strict 

left half complex plane and only these.

[If] Suppose (i) in (11) holds. Then, there exists J e for some A; > 1, 

such that JC ^  0 and JD =  0. Let E =  JC,X{s)  =  0, F(s) =  J. Then, 

(10) is satisfied. This shows that if (?) holds, then a constant DDO exists. If 

(m) in (11) holds, then A~^U is stable rational, non-polynomial, and satisfies 

Aj^US =  AaI/“ L Partitioning A~^U =  [ —X  Y ] with X  having n columns, 

we have

X {s l  -  A) + YC 
- X B  + YD =  T 2,

(12)

for some polynomial matrices T i ,T 2. Let us write X  =  X+ -\- X _, where

X -  =  X -is X-i-iS   ̂ -f-..., X_i /  0, and I > 1. Multiplying each term in 

(12) by and taking the strictly proper part of each term gives

{V-CX)4sI  - A )  + {s^-W)_C =  X_i,
{V-^X)_B = {V -W) .D .

Since E ·.— X_i ^  0, (10) is satisfied and (s^~^F)_ is a transfer matrix for a 

DDO. Note that the poles of (ŝ “ ^F)_ are among the roots of det As which are 

the stable invariant zeros of the system matrix S{s).

[Only if] Conversely, suppose there exists a DDO so that for some 

X (s),F (s),£^  ^  0, (10) holds. We assume, without loss of generality, that 

in (10) [C D] has full row rank. If not, by appropriately redefining F(.s), a
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similar equation with the assumption fulfilled can be obtained. We have

- X  Y U~^AsAa= E 0 V

Let us first suppose that S, and hence Aq, has full row rank. Let 

—X  Y U~  ̂ =  0r~^ be a right coprime polynomial factorization, where 

detr  is a Hurwitz stable polynomial since —X  Y  j U~̂  is stable rational. 

It follows by left coprimeness of 0  and F and by the fact that 0 r~^A5Aa is 

polynomial, that A^Aq =  Fd̂  for some polynomial matrix Therefore, either 

F and As have a nontrivial common left factor implying that Â  has a stable 

invariant zero, so that (ii) in (11) holds, or F is unimodular implying that 

- X  Y  is constant. In the latter case, since X  =  YC{A — sl)~^ is strictly 

proper, we must have X  =  0. This gives that E =  YC ^  0 and YD =  0 which 

implies (i) in (11).

Suppose next that the system matrix S is not of full row rank. Let

- 0  T be a minimal polynomial basis, [38], for the left kernel of S, i.e..

[ -0  ^ A - s i  B 
C D

=  0,

where, by 0  =  ^C{s l  — A) ,

deg Oir < deg i =  1, (13)

with 0jr, 'Fi,· denoting the of the matrix 0 , \k respectively. Let A ;=

diag{ai, ...,ak} for Hurwitz stable polynomials satisfying degai =  deg'^i for 

i =  1,...,A:. Then, X  := A " i 0 , r  := (A -^T)_, and E := -(A -H F )oC' are 

such that (10) is satisfied. By the degree condition (13), X  is strictly proper 

so that (A“ HI/)qT) z= 0. Further, by the definition of a minimal polynomial
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basis, is of full row rank. If =  0, then (A“ '̂3/)o[C'Zi>] =  0 which,

by our assumption that [C D] has full row rank, is not possible. Hence, E — 

— (A“ Hlf)Q(7 ^  0 whereas — q. It follows that (z) in (11) holds. □

Note that the argument in the last paragraph of the proof also establishes 

the fact that “If

ranik S < n  + rank \̂ C Z) ]

(or, if [0 D] has full row rank but S has a row defect), then a constant DDO 

exists” . A closer examination of the construction parts in the proof yields the 

following facts stated without proof.

C orollary 1.1. Suppose [0 D] has full row rank. There exists a DDO with 

unspecified E which

(i) is constant if and only if rank ^C  Z) j > rankD,

(a) has any set of desired stable poles if and only if the system matrix S 

does not have full row rank.

If the system has a stable invariant zero, then there exists a DDO with 

unspecified E with poles a subset of the stable invariant zeros of S.

Let us now consider the following example which shows that the trivial case 

where Y(s)  =  0 is a disturbance decoupled observer transfer function must be 

considered as an observer with fixed dynamics.

Exam ple. Consider the system.

A =
-1  0
0 1

,B =
0

1
0 1 ,D =  1.
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Then, the observer K(s) — 0 and the choice E \ 0 satisfy the reciuire- 

rnents from a DDO with unspecified E. For this data, D is nonsingular so that, 

by Corollary 1.1, a constant observer does not exist. On the other hand.

/1 - s · /  D 
C D

is nonsingular so that, again by Corollary 1.1, an observer with assignable 

poles does not exist. Therefore, Y(s) =  0 must be treated as a case with “fixed 

dynamics” in spite of the fact that this causes an abuse of the term since 0 can 

be considered to have any stable denominator.

The trivial solution F(s) = 0  can be avoided by assuming that {A, B) is 

controllable. To see this, let M(s) , N (s), N (s), M{s)  be polynomial matrices 

such that M{s) ,M{s)  are nonsingular.

U(s) : =

[ A -  s /  B

M{s) -N{ s )  
N{s) M{s)

is unimodular, and

' M(s) -N { s )  '
’ / o '

N{s) M{s)

(14)

Such matrices exist by controllability of {A, B), [40]. Multiplying both sides of 

(10) on the right by U{s), and supposing y(s) =  0, we obtain -A '(s )  =  EM{s).  

In this equality, the left hand side is a strictly proper rational matrix and the 

right hand side is a polynomial matrix. It follows that both sides are zero and 

hence E = 0. Therefore, T(s·) =  0 is not a functional DDO with unspecified 

E.

The assumption of controllability of {A, B) leads to a further simplification 

in (10).

C orollary  1.2. Suppose the system (8) is controllable. There exists a
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functional DDO with unspecified E for the system (8) if and only if there exists 

a proper stable rational matrix Y(s) and a constant E 0 satisfying

E - Y { s )
{ s i -  A)-^B 

C{sl  -  A)-^B +  D
=  0 . (15)

P roof. By controllability of (8), there exists a unirnodular U{s) as in (14). 

Multiplying both sides of (3) on the right by U and using (14), we obtain 

Y{s)[DM{s) -  CN{s)\ =  -N{s )E.  Since, from (14), N{s)M{s)-^ =  - { s i  -  

A)-^B,  we have P(s)[C'(s·/ -  A)~^B + D] =  E{s l  -  A)~^B and (15) holds. 

Conversely, if (15) holds for a proper stable Y (s) and constant nonzero E, then 

let X (s) :=  Y{s)[CM{s) + DN{s)] — EM{s)  which is stable rational. By (15), 

we also have Y{s)[DM{s) — CN{s)\ — —N{s)E.  Combining the two, we have

- X ( s )  Y{s) A - s i  B U{s) =  [ ^  0 ] U{s)

which gives (10) for a proper stable rational l^(s) and a stable rational X{s).  

However, X{s)  =  [E — Y{s)C]{sI — A)~^ and properness of P (s) implies that 

X (s ) is also proper (actually, strictly proper). □



Chapter 3

SIMULTANEOUS
UNKNOW N-INPUT
OBSERVERS

The idea of simultaneous observation can at least be traced back to [39]. It is 

concerned with the design of a common observer for a given set of two or more 

systems. Such a set of systems may result from a plant undergoing changes 

in its structure or in its parameters as a result of changes in operating con­

ditions. It may also be a set of linear models matching a nonlinear system 

closely at various operating points. In the latter case, the simultaneous ob­

server, whenever it exists, can be considered an approximate linear observer 

for the nonlinear system. Although the problem of simultaneous stabilization 

has been intensively examined, see e.g. [41], the dual problem seems to have 

attracted less attention. In [43] and [42], the problem of simultaneous observers 

has been investigated using coprime factorization techniques: [4.3] takes a sim­

ilar approach to that of [41] and reduces simultaneous functional observation 

problem of r 4-1 plants to the same problem for r auxiliary plants. Conditions

17
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for the existence of a simultaneous observer for two plants are obtained but 

they are conditions on transformed data. In [42], the focus is on obtaining a 

parametrization of all simultaneous functional observers for a set of plants and 

this has been done under a rather severe restrictive assumption of the existence 

of a stable left inverse for a composite plant. This assumption can easily be 

shown to be equivalent to the assumption that the plants admit a simultaneous 

“full-state” observer.

In this section, we investigate the conditions for existence of functional 

simultaneous unknown-input or disturbance decoupled observers. Since our 

objective is to employ such observers in the design of fault detection and iso­

lation, we are interested in functional observers with unspecified function(s) of 

states. Although the results below apply to an arbitrary number of systems 

with appropriate modifications, for simplicity, we will constrain the presenta­

tion to the synthesis of a simultaneous DDO for two systems only. We first 

consider the general case of simultaneous DDO where the estimation of, in 

general, different functions of states of the two systems is desired. The results 

are then specialized to the estimation of the same function of states.

3.1 Simultaneous DDO

Let us consider two linear, time-invariant systems Si and S2 described by the 

following equations:

El :
xfit) — AiXi{t) -f- 
yfit) =  Cixfit) +  Didfit)
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and

So ; X2{t) — ^̂ 2X2{i) +  52^2 (i)
y2(t) = C2X2{t) + D2d2{t)

where xi{t),X2{t) G R " are the state vectors, di{t) G R"'“ ,d2(i) € R"̂ "̂  are 

disturbance vectors, yi{t),y2{t) G R^ are the measurement vectors of Si and 

So, respectively, and Ai, A2, Ri, Ro, Ci, C2, R i, and D2 are constant ma­

trices with appropriate dimensions. The problem of simultaneous DDO is to 

determine matrices Tj 7̂  0, '¿ =  1,2 and a functional DDO of the form

X =  Hx{t) P Ly{t),z{t) — Mx{t) P Jy{t),

where y{t) is a vector-input to the observer such that the errors

ei{t) =  TiXi{t) -  w{t), i =  1,2

satisfy the following conditions for =  1, 2: Whenever y{t) =  yi{t),

(i) ei{t) is independent of d{t) and

(ii) limt^oo\\ei{t)\ \ — 0 for all initial states ^¿(O) and i ( 0).

X[(0)
switch

z(0)

System I y\

switch^  ̂ Q—

ySystem 2

T “
^(0)

T^J-O

Observer
J

Figure 3.1: Simultaneous DDO
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P rop osition  2 .1 . There exists a simultaneous DDO for Ej, i =  1,2 if and 

only if there exist stable rational proper matrices Xi{s), i = 1,2, Y{s) and 

constant Ti ^  0, i — 1,2 satisfying

X l( s )  X 2(.?) r ( s )

yli -  s i 0 P i 0

0 A 2 -  s i 0 P 2

Cl C 2 C l D 2

Ti T2 0 0 .(1)

P roo f. The result follows easily by writing (10) for both Ei and E2 with the 

same Y(s)  and combining the two equalities obtained in one matrix equation. 

□

Thus, by Proposition 2.1, a simultaneous DDO exists for Sj, i — 1,2 just 

in case there is a DDO for the combined system

E  =  ( C l C2
0

0 /I2
Pi 0
0 B2

, [  A  D2 ])

with a special function of states, i.e. a function [Ti T2] /  0 where Ti and T2 

are separately nonzero. Theorem 1.2 applied to E gives that if a simultaneous 

observer exists, then either the system matrix associated with E has a stable 

invariant zero or ranA: [Ci C2 Di D2] > rank[Di D2]· This condition is also 

sufficient provided the transfer matrices Ej(s) := Cj +  {si — Ai)~^Bi +  Di have 

full row rank for i =  1, 2.

T heorem  2 .1. Suppose the transfer matrices Zi{s) ofEi have full row rank 

for i — 1, 2. There exists a simultaneous DDO for Ej, i =  1, 2 and only if 

rank [Cl C2 Di D2] > rank [Di C 2] or E has a stable invariant zero.

P roof. The “only if” part is by Theorem 1.2. To see the “if” part, suppose 

either E has a stable invariant zero or the rank condition holds. Then, by 

Theorem 1.2, there exists a functional DDO for E for some [Ti T2] /  0. We



show that if Tj =  0 for some z =  1,2, then the corresponding transfer matrix has 

a row rank defect. Suppose Ty =  0. Then, by (1), yYi(s)(yl -  s / ) +  X2(-5)C'i =  0 

and Xi{s)By X 2{s)D i — 0. Now, [JYi(s) .̂ 2̂(5)] 0 since otherwise in (1)

T2 =  Y{s)C2 =  0 contradicting [Ti T2] ^  0. It follows that the system matrix 

associated with Ei has a row rank defect which implies that the transfer matrix 

of El has a row rank defect. □

Corollary 1.2 also gives an alternative useful condition for simultaneous 

DDO in terms of the existence of a left kernel of a special type.

T heorem  2.2. Suppose Ei, z =  1,2 are both controllable. There exists 
a simultaneous DDO for Ej, z =  1,2 if and only if there exist constant Tj /  
0, z =  1, 2, and a stable rational proper matrix T (s) satisfying
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Ti T2 - Y { s )

{sI-Ay)-^Bi  0
0 {sI-A2)-^B2

Ci{sl -  Ay)-^By + Dy C2{sl -  A2)-^B2 + D2

= 0. (2)

P roo f. This is a direct consequence of the problem definition and Corollary

1.2. □

3.2 Simultaneous DDO with Common Func­
tion of States

Let us now impose a further constraint that Ty =  T2 in the simultaneous DDO 

sought for Ej, z =  1,2. The eciuation (1) should now be satisfied for some 

T := Ty = T2. The following counterpart to Proposition 2.1 can be stated.

P rop osition  2.2. There exists a simultaneous DDO with common func­

tions of states for Ei, i — 1,2 if and only if there exist stable rational proper
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matrices Xi(s), i =  1,2, Y{s) and a constant matrix T ^  0 satisfying

X,{s)  X 2(s) V(s)

P roof. Note that

Ai — si A2 — Bi B2 

0 A2 -S I  0 B2 

Cl C2 - C 1 Di D2

Ai -  s i ^̂ 2 - A i Bi B2
0 ^2 - s i 0 B2

C'l C2 - C l Di D2

r  0 0 0 .(3)

I I 0
0 I 0
0 0 /

A\ — si 0 0
0 A2 — si 0 B2 

Cl C2 Di D2

/  -J  0 0 
0 / 0 0  
0 0 / 0  
0 0 0 /

It follows that (1) has a solution Xi, X 2, Y  for some T =  Ti =  T2 if and only 

if X i , X 2 — X i , Y  is a solution to (3) for that T. □

T heorem  2.3. Suppose the systems Si and S 2 are both controllable. There 

exists a simultaneous DDO with a common function of states for Sj, 'i == 1,2 

if and only if there exists a proper stable rational matrix Y (s) and a constant 

matrix T ^  0 satisfying

T -Y (s )
C ,{sl -  A , r ' B i  +  f l i  C2(sl -  A2)-'B2 + D2

0. (4)

P roof. The result is an immediate consequence of the problem definition and 

Corollary 1.2. □



Chapter 4

ROBUST OBSERVER-BASED 
FAULT DETECTION

4.1 Mathematical Model of The System

Recalling that the observer based FDI (and the model based FDI in general) 

involves a comparison between the actual system response and an anticipated 

system response generated using a mathematical model, the performance of 

the scheme depends on how faithful the model is to the underlying physical 

system. The better the model used to represent the dynamic behavior of the 

system, the better is the chance of achieving a robust fault detection and iso­

lation system. In practice, the system is subject to different uncertainties that 

if omitted tend to create false alarms and corrupt the system performance. 

These uncertainties include modeling errors due to system parameter varia­

tions, unknown noise-type disturbances on the system and nonlinear terms in 

the dynamics. Therefore, the mathematical model should include a realistic 

description of the uncertainties in the system to be monitored. This kind of

23



model is known as a diagnostic system model (in contrast to a representative 

model used for control purposes). In general, a dynamic system subject to 

faults and system uncertainties may be represented as follows [6]:
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X — (̂ A +  Ay4)a;(f) +  (5  +  A.0)ri(i) +  Endi(t^ +  / ’f i / ( f ) ,

y{ )̂ ~  AC)x(t) +  (D +  AD)u[t) +  E\2d\{t) +  K 2f{t), ( 1 )

where x E RL,u G R '” , d̂  G R^ /  G R^, y G R^ are the state vector, the control 

input (known), the disturbance vector, the fault vector, and the measurement 

vector, respectively. The matrices A ,B ,C ,D ,  En, E 12, Hi and K 2 are known 

matrices of appropriate dimensions. The matrices AA, A S , AC  and AD  

are the parameter errors or variations representing the modeling errors. The 

disturbance and the fault vectors are unknown time functions whereas the 

fault and disturbance entry matrices , S i, S 2, K\ and K 2 which represent the 

effects of faults and disturbances on the system are known. According to [44], 

the modeling errors can be summarized as additive disturbances E2\d2{t) and 

E22(t)d2(t) on the states and the outputs, respectively, where E21 and E22 are 

computed as functions of AA, A S , AC  and A S , and where ¿2 is an unknown 

function of time. We can then write (1) as

X — Ax{t) +  Bu{t) +  Eid{t) +  Kif{t ) ,  
y{t) =  Cx(t) +  Du(t) +  E2d(t) + K 2f{t),

( 2 )

where d{t) =  [di(ty d2{t)']' is a new disturbance vector and Ei =  [En E21], 

E2 — [Ei2 E22]· In transfer matrix representation, (2) is

y{s) =  Gu(s')'u(s) +  Gd{s)d{s) +  Gf{s)f{s). (3)
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Figure 4.1: Diagnostic System Model

4.2 UIO-Based Residual Generation

A residual in the context of FDI is a scalar or vector valued signal that is 

accentuated by the fault vector. It carries information about the time and 

location of an occurrence of a fault. It is also independent of the normal 

operating state of the system.

To avoid false alarms that may be triggered by system uncertainties men­

tioned in the previous section, the residual should be insensitive to such un­

certainties yet sensitive- enough to faults that may occur. In other words, the 

residual should be chosen so that it discriminates between faults of interest 

and other disturbances acting on the system. Motivated by the decoupling 

property of the UIO, most robust residual generation is performed based on 

UIO. The residuals are chosen as the reconstruction errors of the states of the 

system which are independent of the unknown uncertainties thanks to the UIO 

observer. In fact, what interests us in FDI is the reconstruction of a function 

of states in presence of disturbances and not necessarily all the states. Recall 

from Chapter 2 that the existence condition for such observers are easier to
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4.2.1 Residual Generation

Let us consider a faulty system given by the equations (2) in state-space rep­

resentation and by (3) in frequency domain. Let a general functional observer 

for this system be given by

x{t) =  Hx{t) 3- Ly{t) -f Niu{t), z{t) =  Mx{t) -I- Jy{t) -I- N2u{t), (4)

where the matrices H ,L ,M ,N i ,N 2,J, and T  /  0 are to be determined such 

that the residual

r{t) =  Tx{t) — z{t) (5)

in steady-state becomes zero for the fault-free case and nonzero for faulty cases. 

Taking Laplace transform of each term with initial conditions a;(0) and i(0 ) 

yields

f(s) =  [T -  Hy{s)C\{sI -  4)-ia ;(0) -  M {sl  -  Hy^x{D) 
T\T{sI -  A)-^E, -  Hy{s)Gd{s)]d{s)

+[T(s·/ -  A)-^B -  Hy{s)Gu{s) -  H^]u[s)
+ [T (s / -  A)-^K, -  Hy{s)Gj{s)]f{s)

( 6 )

Here, Hy[s) — M {sl  — H)~^L -I- J is the observer transfer matrix from y io w 

and Hu{s) — M {sl  — H)~^Ni q- N2 is the observer transfer function from u to 

w. We now pose the following requirements:

{i) [T — Hy{s)G]{sI — and M {sl  — H)~^ are stable rational,
(n ) T{sI-A)-^E,^Hyis)Gd{s),
(■m) T (sl  -  A)-^B =  Hy{s)Gu{s) +  W„(s).
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Figure 4.2: Residual Generator 

Note, by (6), that (i) — (Hi) hold if and only if

y(s)

r(s)

lirn r{t) =  0 V 2;(0), ¿(0); V u(t), d{t).
t—̂ oo (7)

We now claim that (i) — {in) hold if and only if {H, L, M, J) is a functional 

DDO for the system {A, Ei,C, E2) for a function Tx{t) of the states. To see 

this, first observe that the requirements (¿) — {in) can be expressed equivalently 

by

(a) [T -Hy{s)C]  =  X { s ) { s I - A ) ,

{b) T{sI - A ) - ^ [ e , B
Ga{s)

I
Hy{s) Hu{s)

(c) ^ ( 5), Hy{s), Hu{s) are stable proper rational matrices.

Since

’ G,{s) ■ ' G '
El B E 2 D

/ 0
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by Proposition 1.2, the requirements (a) — (c) are satisfied if and only if there 

exist stable proper rational X (s ) , Hy{s), Hu{s) satisfying

[ - ;i(6 ·) Hy{s) Hu{s ) '

which holds if and only if

[ - x ( s )  n w  n w ;

A -  si El B
C E2 D
0 0 I

T O O ( 8 )

/ 1 - s /  El 0
C E2 0
0 0 /

[ t o o

is satisfied for some stable proper rational X{s),Yi{s),Y2{s). It is now clear 

that this last equality can be satisfied by ^2(5) =  0, Pi(s) a functional DDO 

transfer function for {A, B, Ei, E2), and an appropriate yY(s). This proves 

the italicized claim above. The existence conditions for a functional DDO 

(4) for the system (2) of this chapter and a DDO (2) for (8) of Chapter 2 

thus turn out to be the same. The synthesis procedures are only slightly 

different. In designing a (4) for (2), one first obtains T  /  0 and stable proper 

X{s) ,Y{s)  such that the equality (10) of Chapter 2 (with E T) is satisfied. 

Then, Hy{s) =  Y{s),Hy,{s) =  X{s)B — Y{s)D  will satisfy (8), with the same 

X (s ) and T, and hence the requirements (a) — (c). A canonical realization of 

[Hy[s) Hu{s)] is now a functional DDO (4) for (2).

R em ark 4.1: Suppose that in our synthesis procedure we neglect the 

control inputs u{t) altogether and choose a functional DDO {H,L, M , ./), i.e., 

(4) with Ni — 0, i — 1,2, for the system (2) with T /  0. We know from 

Section 2.1 that the requirements (i) and (ii) will be satisfied. We check the



requirement (iii). The transfer function

T{.sl -  A)--^B -  Hy{s)Gu{s) =  [ T -  Hy{s)C]{sI -  A)~^B -  Hy{s)D

is stable rational by (?) and by the stability of the observer transfer function 

Hy[s). This implies that for all bounded control inputs |wi(i)| < oo, i =  

1 , m,  the effect on the residual will be bounded at all times and the presence 

of a fault can still be detected by a change in the steady-state residual value 

in the presence of a fault.

R em ark 4.2: If the system (2) is stable, a common method of taking 

care of the control inputs u{t) in the literature is canceling their effect on the 

outputs y{t) at the outset. This requires defining

y{t) ■=y{' t ) -y {t) ,

where y{t) is the output of the “fault and disturbance free system” , i.e., it is 

the output of (2) with d{t) — 0, f{t)  =  0, i > 0. The observer (4) is then 

replaced by
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x{t) =  Hx{t) -l· Ly{t), z{t) =  Mx{t) -b Jy(i). (9)

The residual r{t) =  Tx{t) — z{t) now becomes

f{s) =  [ T -  Hy{s)C]{sI -  A)-^[x{0) -  5(0)] -  M {sl  -  FI)-^x{0)
- T { s l  -  y4)-i5(0) +  T{sl  -  A)-^Bu{s)
+[T{sI -  A)-^E, -  Hy{s)Ga{s)]d{s)
+ ( T ( s /  -  A)-^K, -  H,(s)G,(s)]l(s),

where the effect o f the term —T{sl — yl)“ ^5(0) +  T{sl — A)~^Bu{s) on r{t) 

is a constant at the steady-state for bounded control inputs. Note that this
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method requires the simulation of a fault-free system model in order to obtain 

the output y{t). In view of our Remark 4.1 however, this method seems rather 

pointless since, a functional DDO will provide constant steady-state effects on 

the residual for bounded inputs anyway.

A residual (6), in addition to (7), must have some further properties to 

detect and isolate faults;

1. The fault effect must be distinguishable from the effect of disturbances 

for the purpose of fault detection.

2. The effect of a fault must be distinguishable from the effects of distur­

bances and other faults for the purpose of fault isolation.

We now formally define detectability and isolability of faults with respect to 

the residual (6).

Suppose that (i) — (Hi) are satisfied for some T  7̂  0 and a functional DDO 

(4). Then, the residual (6) becomes

f{s) =  e(.s) +  Grf{s)f{s),

where

e{s) := [T -  Hy{s)C]{sI -  A)-^a;(0) -  M{sl  -  H)-^x{0),
Grf{s) := T{sl  -  A)-^Ki -  Hy{s)Gj{s).

Let [G'r/(s)]i denote the Ath column of the matrix [G'r/(6·)]·

Definition 3.1-Fault Detectability ([21]): A fault fi{t) is said to be 

detectable if /  0-
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Thus a detectable fault signal /¿(i) (from the residual r{t)) is such that

/.(¿) 7̂  0 ^  lim r{t) 7̂  0c—>oo

for any 2;(0),£ '(0) and for any d{t),u{t). In order for all faults to be detectable 

through our residual (6), in addition to (a) -  (c), we also need to satisfy

[T{sl -  A)-^K, -  Hy{s)Gf(s)]i 7̂  0 V z =  1, g ( 1 0 )

by an appropriate choice of T  7̂  0 and M, L, J, N 1 , N2.

D efinition 3.2-Fault Isolability ([21]): A signal fi{t) is isolable from 

/2(1) by the residual (6) if

[Grf{s)]i,[Grf{s)]2

are linearly independent vectors (over R (s)). This means that the effect of 

fault fiif)  on the residual is different from the effect of f 2{t) since [Gr/(s)]i =  

[Grf{s)]2{fi{s)/f2{s)) is not possible. Fault isolability is ensured together with 

fault detectability (by the same residual vector) if Gr/{s) has full column rank 

over R (6‘), a condition that will not be satisfied in case of a large number of 

faults. In practice, and in our simulation example of Chapter 5, however, fault 

isolation is achieved by defining different residuals for capturing different faults 

as we discuss in the next section.

4.2.2 Structured Residuals

Fault isolation is a more difficult task than just detecting a fault. One approach 

to fulfill this task is to design a structured residual set—structured in the sense
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that each residual is sensitive to a certain group of faults, while insensitive 

to others. The design procedure consists of two steps, the first is to specify 

the sensitivity and insensitivity relationships between the residuals and faults, 

and the second is to design the residual generators that will implement these 

desired specifications by treating the faults that the residual is insensitive to 

as unknown inputs (in addition to the already existing disturbances). The 

advantage of the structured residuals is that the diagnostic analysis is reduced 

to determining which residuals are non-zero. For each residual, a threshold 

test is performed separately, yielding a boolean decision table that will serve 

to isolate the faults taking place.

Given a set a faults /¿(t), (i=l,2,...,g), a set of residuals rj(t), (i=l,2,...,g) 

can be designed according to one the following two types of structured residuals

Dedicated Residual Set: A set of residuals obeying the following condi­

tion

nit) =  Qifi{t));i e {1 ,2 ,,..,^ },

where Q(.) denotes a functional relation. A simple threshold logic can be used 

to decide about the appearance of a specific fault by logic decision according 

to:

nit) > Ti fi ^  0;i e  {1, 2,,

where Tj (i =  l,2,...,g) are threshold values. If we let g =  4, we get the following 

table of dependency.
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r2(t) o{t) n{t)
fl{t) 1 0 0 0

f2{t) 0 1 0 0

hit) 0 0 1 0

U(t) 0 0 0 1

In the table above, a “1” in ith row and jth column denotes that the residual rj is 

sensitive to the fault /¿, i.e., depends on it, whereas a “0” denotes insensitivity.

G eneralized Residual Set: The residuals of this type are generated ac­

cording to the following equations;

ri{t) =  Q{f2 {t),--Jait))

ri(t) =  Qihit),  ···, ··., fg{t))

^git) =

The isolation is again performed using simple threshold testing according to 

the following logic:

uit) < Ti 
rj{t) > Tj 'ij ^  i

Again, if we let <; =  4, we get the following table of dependency.

l̂it) oit) nit) nit)
hit) 0 1 1 1

hit) 1 0 1 1

hit) 1 1 0 1

hit) 1 1 1 0



4.3 Fault Detection and Isolation Scheme

Having addressed and discussed the residual generation problem, we are now 

ready to introduce UlO-based FDI scheme. Given a faulty system, the basic 

idea is to use a bank of (functional) unknown input observers to generate a 

set of structured residuals. The bank of observers, known as observer scheme 

may generally consist of an arbitrary number of observers, but often equals 

the number of faults to be detected and isolated[l]. To be more specific, let us 

assume that g different faults /¿(t) {i =  1,2,...,^) may take place in the system 

to be monitored. A bank of g (functional) unknown input observers is driven 

by the control input u{t) and the system output y{t) to generate g residuals 

Tj(i) {i =  1,2,...^) which in turn drive a decision logic unit responsible for 

issuing the fault alarms. The system is depicted in the following diagram.

x (0 ) f
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Figure 4.3: General Structure of UIO Scheme

The choice of structured residual type that the scheme relies on is deter­

mined by how many faults we want to detect and isolate at the same time. 

There are two main situations: either only a single fault is to be detected and 

isolated at a time or all faults are to be detected and isolated even if they occur



simultaneously. In the first case, generalized residuals are used and the scheme 

is known as generalized observer scheme, while in the second case dedicated 

residuals are used and the scheme is refereed to as dedicated observer scheme.

4.3.1 Generalized Observer Scheme

The basic assumption underlying this approach is that only a single fault can 

take place at a given time, which is in practice most probable. To generate the 

(j residuals, g different systems are formed from the state space equation of the 

plant (2) by treating one fault as a disturbance at a time. For each of these 

systems an UIO is designed to decouple the augmented disturbance vector that 

now includes one of the faults. A set of generalized residuals is then obtained. 

If a fault fi takes place in the plant, the P'’’ residual is completely invariant to 

it {ri{t) =  0) , whereas the remaining g — 1 residuals rj{t), j  ^  i, carry the 

fault symptoms. The appropriate evaluation of the residuals reveals the fault.

This kind of detection scheme is accurate and robust because the distur­

bance vector is augmented by only one fault leaving some design freedom to 

decouple the unknown inputs from the residual and achieve the desired robust­

ness. However, if more than one faults simultaneously act on the system, all 

residuals will be affected by one fault or another and none of them is zero. In 

such cases, the scheme collapses.

4.3.2 Dedicated Observer Scheme
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In contrast to the generalized observer scheme, the dedicated observer scheme 

handles simultaneous faults. Again g different systems are formed but this 

time all faults but one are treated as disturbances in turn. Each of the g UIO’s



is designed to decouple g — 1 faults in addition to the unknown input vector. 

Therefore any residual rj(i) {i — l,...,g) is sensitive (dedicated) to a unique 

fault If multiple faults occur in the system, then the specialized residuals 

will be nonzero while the rest remain unaffected. By considering which residual 

deviates from zero the faults are detected and isolated. The problem with this 

scheme is that the augmented disturbance vector is overloaded by faults. In 

most cases it is difficult to design observers that decouple all — 1 faults. 

Even if they exist, there will be no design freedom left to reject other I true 

disturbances influencing the system resulting in a nonrobust EDI system.

4.4 Introducing Simultaneous UIO in FDI
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The observer schemes, generalized and dedicated alike suffer from limitations 

that make it sometimes difficult to design a reliable detection and isolation sys­

tem. In the previous section, we have seen that the former fails to reveal faults 

that act simultaneously on the system and the latter is not robust enough and 

is difficult to design. Nevertheless, each of them has its nice features; while the 

generalized observer scheme is relatively immune against system discrepancies, 

the dedicated observer scheme is capable of coping with simultaneous faults 

affecting the system. We want to combine both schemes so that the limita­

tion of one of them is compensated by the other resulting in a robust scheme 

against disturbances as well as simultaneous faults. The approach is based on 

simultaneous functional UI observers of both types,the one that estimates the 

same function T of states and the other that estimates different functions T\ 

and T‘2 of states.

As a first step, we form g augmented systems using the plant equations (2)



by augmenting one fault at a time to the disturbance vector as in the case of 

the generalized observer scheme. We then partition the overall fault vector into 

non-disjoint q sets Qi (i =  1 , with each set containing at least two isolable 

faults. They also should obey the following rule: For any set Qi containing j  

faults, the corresponding j  augmented systems formed in the first step should 

have a simultaneous UIO with the same function of states T. This requirement 

allows a single residual from the set

Rd =  {Rd{t), i ^  1,

to be sensitive only to the faults belonging to the complementary set of Qi de­

noted by Qi. In such a case, we say that Ri{t) is dedicated to Qi which is slightly 

different from the usual dedicated residual scheme in the sense that a residual 

is dedicated to a group of faults instead of a single one. This kind of residuals 

allows the designer to exploit the decoupling properties of the system to the 

maximum without overloading the disturbance vector, a major problem that 

most of the time hinders the implementation of a dedicated observer scheme. 

Another advantage is that the designer can dictate the desirable robustness 

to the unknown inputs affecting the system, just like the case of generalized 

residuals. Of course, most likely, this will be at the cost of increasing the set 

of faults the residual is sensitive to and which in fact we want to bring as close 

to a single fault as possible.

To complete the picture, a regular set of generalized residuals
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is also designed. This time, simultaneous UIO’s with different functions of 

states are used. Given the g augmented systems, an UIO is designed to observe



different state functions of two or more systems. So more than one residual can 

be generated based on a single observer. Therefore, the number of observers 

deployed is reduced. The appeal to generating the residual set TZd in addition 

to the generalized set IZg is mainly to allow some sort of isolation in the case of 

multiple faults acting simultaneously. In fact, by partitioning the fault vector 

into smaller sets, the faults are squeezed into smaller groups and the isolation 

task is narrowed down to these groups. If the number of sets is high enough 

and/or well portioned, the redundancies allow an exact isolation of faults. Even 

if we fail to tell exactly which faults are affecting the system, we can at least 

limit them to a few possibilities. There is also the strategy of using these 

residuals in conjunction with some knowledge about the fault. For instance in 

the simulation example in the next chapter, the assumption that faults occur 

abruptly helps to exactly isolate them. Note that single faults are guaranteed 

to be detected and isolated thanks to TZg, in this case Rj, can be used for 

validation, to confirm the decision reached based on Rg.

Algorithm

There are two possible algorithms that can be followed in obtaining a simulta­

neous DDO for a given number of two or more systems. The first algorithm is 

based on Propositions 1.2, 2.1, and 2.2 and Theorem 2.1. The second is based 

on Theorems 2.2 and 2.3.
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Given Ej, i =  1,2, of Section 3.1, the first algorithm that is used to 

design a functional simultaneous DDO is based on the fact that “either 

rank [Cl C2 Di D2] > rank [Di D2] or E has a stable invariant zero” is a 

necessary condition for its existence. The algorithm that is described in the
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‘if” part of Proposition 1.2 can hence be applied to the system matrix

Ai — si 0 Bi 0
Sn{s) ■- = 0 A2 - S I 0 B2

Cl C2 Di D2

A lgorith m  1:

Step 1: Determine if a constant matrix J exists such that J[Di D2] =  0 

but Ti := JCi ^  0 and T2 ;= JC2 0. If “yes” J is a constant simultaneous 

observer. If “no” check for a dynamic observer through steps 2-4.

Step 2: Determine the Smith Normal Form (SNF) and the associated uni- 

modular matrices of <$'12(-5)· Let A ;= USuV, where U and V are unirnodular 

matrices, be the SNF.

Step 3: Factorize A =  A^A  ̂ into stable-antistable matrices, with the stable 

matrix As square and nonsingular. Then, partition the stable rational and non­

polynomial matrix Aj^U =  [ —X  Y  ] with X having 2n columns.

Step 4: Write X  =  X+ -I- AT_, where AT_ is the strictly proper part of X. 

Expand the power series AT_ =  X-iS~  ̂ -I- X-i-iS~''~^ +  ..., X^i 7̂  0 and I >  1.

Step 5: Check if there exists a constant To such that TqX^i =: [Ti T2] 

(with each T  having n columns) satisfies T  /  0 for i =  1, 2. If “yes” , then The 

transfer function of a simultaneous DDO is Hy{s) =  To(s^“ ^F)_. If a To exists 

further satisfying Ti =  T2, then the constructed observer is a simultaneous 

DDO with the same state function.

The second algorithm can be applied if Ej, ¿ =  1,2, are both controllable. 
{ s I - A i ) -^ B i  0

Let 2 1̂2(5) ~  0 (si  — A2)~^B2

_ Cl (si -  AiY^Bi +  Di C2(sl -  A2)-^B2 +  D2
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A lgorith m  2:

Step 1: Let [©(s) be a minimal polynomial basis for the left kernel 

of Zi2{s), where 0  has n and has p columns. Let the number of rows of the 

minimal polynomial basis be k and its row degrees be rij; i =  Ley

[0p(s) iTp(s)]

Note that, by properties of a minimal polynomial basis, [0p(s) d-'pis)] is  ̂

proper rational matrix and its constant coefficient matrix [0p(s) 'Lp(s)]o is of 

full row rank.

Step 2: Determine a proper rational row vector $p(s) 6 such that

To := <hp(s)0p(s) G i.e., it is constant and nonzero.

Step 3: Partition To as [Ti T2], where Ti consists of the first n entries of 

Tq. If Ti ^  0 and T2 0, then a DDO transfer matrix is given by y"(s) := 

—<I>p(s’)d/p(s). If not, go back to step 2 and determine a different $p(s). Note 

that whenever Ti =  T2, this algorithm produces a simultaneous DDO with 

the same T. Alternatively, Algorithm 2 can be directly applied to the transfer

matrix Ai Ai 
0 L

Zi2{s) which appears in Theorem 2.3, instead of to Zi2{s).

Both Algorithm 1 and 2 have the drawback of being based on “sufficient 

but not necessary conditions” . In some cases where a simultaneous DDO exist, 

the algorithms may fail to produce one. However both sufficient conditions, 

especially the one that Algorithm 1 is based on, are “weak” so that they are 

close to being necessary. The chances of success of the algorithms is thus high.



Chapter 5

SIMULATION EXAMPLE: A  
FOUR-TANK SYSTEM

5.1 System description

In this chapter, detection and isolation of faults using simultaneous unknown 

input observers is illustrated. The example, a pilot plant, was originally studied 

by [46] then by [14] and [48]. Figure (5.1) shows a four-tank water flow system, 

with water levels xi, X2, X3, and X4. The water level of the second tank, x  ̂ is 

assumed unavailable for measurement. The tank is driven by the water flow 

input ui. The linear model of the system in state space is given by

A -

There are eight possible faults /¿(t), ? =  1,2, ...,8, that can affect the system. 

The first four fi(i), i =  1 ,2 ,3 ,4 are leakages in the tank i and the remaining 

i =  1 ,2,3,4 cire cloggings in pipe i. Table (5.1) gives the expressions

’  - 1 1 0 0 '  1 '

’  1 0 0 0 ’
1 - 2 1 0 ,B =

0
, C ' = 0 0 1 0

0 1 - 2 1 0
0 0 0 1

0 0 1 - 2  _ 0

41
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Aj:Cross-seclionoftani(i, 
SjiCross-seclionofpipei. 
X j.'W alerleveloftanli, 
u i :  Water inflow totanlil,

Figure 5.1: Four-Tank System

Mt) = ^[2g(xi-hi)]-2,i =  l,2,3,4.
fi+ijt) =  -S*[2g{xj -  i=l,2,3.
h{t)  = -Sl{2gx^)^. ~

Table 5.1: Failure Functions of the Pilot Plant

of these fault signals, where Si and hi are the cross-section and the height of 

the leak in tank i, respectively, and S* is the reduction of cross-section of pipe 

i due to clogging, z =  1, 2,3,4. The fault entry matrices are depicted in Table 

(5.1).

Leakage Clogging-
1 0 0 0 0 0 0
0 1 0 0 1

A 2
1

A 2 , 0 0
0 0 1 0 0 _^

A s

1 0
0 0 0 1 0 0 _L

A a

1
A a

Table 5.2: Failure Signature Matrices of the Pilot Plant



In addition, it is assumed that the system is under the effect of some dis­

turbance d{t) (this was not considered in the works of [46],[14] and [48]) acting- 

on the rate of change of the unmeasurable water level x^it) and directly influ­

encing the water levels Xi{t),X4{t). Since the “entry vectors” of faults /4 and 

fs are linearly dependent, these two faults are not isolable (see the discussion 

in Section 4.2). Hence they will be treated as a single fault. This isolation 

limitation is in fact the result of assuming that the fault signals are unknown. 

However, if a prior knowledge about these two faults is available, they may 

be isolated from each other. Letting the cross sections of the four tanks to be 

equal to 1, the overall system description is given in the fashion of (2) by the 

following equations
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1 1 0 0 ' 1
1 -2 1 0 0

x{t) = x(t) +
0 1 — 2 1 0
0 0 1 -2  _ 0

’ 1 0 0 0 1 0 0
0 1 0 0 -1 1 0
0 0 1 0 0 -1 1
0 0 0 1 0 0 — 1

’ 1 0 0 0 ’ ’ 1 '

y ( t )  = 0 0 1 0 x\[t) + 0 d(t).

0 0 0 1 1

Wi(i)-1-

/W  +

0
1

0

0

d{t), ( 1 )



5.2 FDI System Design

5.2.1 System Configuration

The proposed fault detection and isolation system to monitor the tank system 

is based on six unknown irrput observers, five of them simultaneous. Their 

role is to generate the two residual sets and IZg of Chapter 4. Given that 

the system tank is under the influence of seven different isolable faults, seven 

generalized residual signals IZg =  {rj{t), j  =  are produced. The

number of the other residual signals are set to three IZd =  [Riil), i — 1, 2,3} 

insensitive to the fault sets Qi =  { / i , / 2, / 3, / 5, ./e}, Q2 =  { / 5, / e }  and Q3 == 

{ / 3» A) / 7}· The decision concerning the number of the last set of residuals as 

well as the partition of the faults in the three sets was reached after considering 

different choices and checking the existence conditions of the UIOs.

Figure 5.2 depicts the overall system. It includes a fault free duplicate of the 

plant which serves the purpose of canceling the effect of the control input ui 

on the residual signals. The output difference between the faulty and fault free 

tank systems is fed to the six observers. The residual array generated drive a 

decision logic unit which makes use of the sensitivity relation of the residuals 

to issue an alarm signal stating the fault nurnber(s) and the time of occurrence.

5.2.2 Observers Design
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To illustrate the process of observers design, consider the first unknown input 

observer which generates the residual signals ri(i) and r[i{t) insensitive to the 

faults /1 and /3  respectively. Two systems. S i  =  {A, Bl ,C,  Dl)  and S 3 =  

( / I ,  B3,0, D3) are formed by throwing fault /1 in the first case and fault /3  in



CHAPTER 5. SIMULATION EXAMPLE: A FOUR-TANK SYSTEM 45

Figure 5.2: Four Tank System

the second case to the disturbance vector. Here, the control input and the rest 

of the fault vector are omitted because they do not play a role in the observer 

design. The augmented disturbance entry matrices, Bi, 5aand D-̂  are 

given by

1 0 

0 1 

0 0 

0 0

Di =
0 1 
0 0 

0 1

5 , =

’ 0 0 ‘
’ 0 1 ’

0 1
, A  = 0 0

1 0
_ 0 1

_ 0 0 _

Since the transfer functions of Ei and E3,

+  6s^ +  10s +  4 (s  ̂ +  6s^ +  10s +  4)(s +  1) 

s +  2 (s +  2)(s +  1)

1 (s'̂ T  6ŝ  T  9s T  2)(s T  1)

Z , ( s ) ______ 1_______
<+7i3+15s2 + 10s+l
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=  jr 1
5'‘+7,s3+15.s2 + 105+1

s -\- 2̂
s'̂  -f- 5s  ̂“I" Ti’ +  2

(s  ̂ +  6s  ̂+  10s +  4)(s +  1) 
(s +  2) (s +  1)

+  3s +  1 (s  ̂ +  6s  ̂+  9s +  2)(s +  1)

do not have full row rank, Theorem 3.1 cannot be applied to check for the 

existence of a common UIO for the two systems. Nevertheless, Algorithm! 

was given a try and applied to the· composite system matrix
— 1 — s 1 0 0 0 0 0 0 1 0 0 0

1 -2  - s 1 0 0 0 0 0 0 1 0 0
0 1 -2  -  s 1 0 0 0 0 0 0 0
0 0 1 - 2 - 5 0 0 0 0 0 0 0 0
0 0 0 0 1 - 5 1 0 0 0 0 0 0

5l3 = 0 0 0 0 1 -2 - 5 1 0 0 0 0 1
0 0 0 0 0 1 - 2 - 5 1 0 0 1 0
0 0 0 0 0 0 1 - 2 - 5 0 0 0 0
1 0 0 0 1 0 0 0 0 1 0 1
0 0 1 0 0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 1 1 0 0 1

According to Step 1, a constant observer should be targeted first, however

since C and A ,  (i=l)2,...,7) common to all formed systems Sj, it follows 

that if such observer exists, it will be insensitive to all faults, (indeed such an 

observer exists). Consequently, throughout the design Step 1 is skipped.

S t e p  2 :

The Smith normal form of A s .̂nd the associated left unimodular matrix are 

given by
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1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0

Ai3 = 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 ' 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 s 4" 2 0 0
0 0 0 0 0 0 0 0 0 0 5̂  +  3<s +  2 0

Uv,=

[1,0, 0,10,0, o,c),0:,0,0,0]

[s +  2,1 ,0 ,0 ,0 ,0, 0,0,0,0,(3]
[s'* ~h 4s 4” 3, s ■+ 2:, 1,0,0,0,,0,10,0 ,0, ]

[0 ,0 ,0 ,0 ,0 ,0 ,01,0, 1,0,0]

[0 ,0 ,0 ,0 ,1 ,0 ,0 ',0, 0,0,0]

[0, 0,0,0, s 4~ 2, 1, 0,0,0,0,0]

[0,0,0,0, “I" 4s 3, s -)- 2,1,0, 0, 0, 0]

[s  ̂+  4s +  3, s +  2,1,0, ŝ  +  4s +  3, s +  2,1,0, ŝ  +  5s  ̂+  6s +  1,0, —1]

[0, —1, —s — 2,0, ŝ  +  6s  ̂+ 10s +  4, ŝ  +  4s +  2, 0,1,1,-—s  ̂— 4s — 3, s 4- 2]

[—s — 2, —s — 3, —ŝ  — 4s — 4,0, s'̂  +  8s  ̂+  22s  ̂+  23s +  6, ŝ  +  6s  ̂ +  10s +  

3,0, s +  2, -s^  -  2s +  1, -s^  -  Gs^lls -  5, ŝ  +  4s +  4]

[s2 +  3s +  2, s-̂ +  7ŝ  +  16s2 +  14s +  3, s^+9s'‘+30s3+45s2+28s+4, -1, -s^- 

13s'̂  - 68s^ - 183s'* - 268s^ - 205s'2 - 69s - 6, -s^ - llŝ  - 64s'‘ - 915^ - 86s^ - 

33s - 3,0, -s^ - 7ŝ  - 16ŝ  - 13s - 3, -s'* - 6ŝ  - 12s^ - g s - l , s ^  +  lls^ + 

47s'* +  98s** +  102s2 +  46s +  6, -s** - 9s'* - 30s** - 45s** - 29s - 6]
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S t e p  3 :

A i3,5 =  Ai3

a: =

[1 ,0,0,0,0,0,0,0]

[(5+  2), 1,0,0,0, 0,0,0]

[(6-" +  4.s +  3),(s +  2) , l , 0 , 0, 0 , 0]

[0,0,0,0,0,0,0,0]

[0,0,0,0,1 ,0,0,0]

[0 ,0 ,0 ,0 ,s +  2 ,l,0 ,0 ]

[0, 0, 0 , 0, 6-2 + 4s +  3 , 6- +  2, 1, 0]

[ŝ  +  4s +  3 , s +  2, 1, 0, s  ̂+  4s +  3, s + 2, 1 , 0]

[0 , —1, —s — 2 ,0 , s  ̂ +  6s  ̂ 4- 10s "h 4 , s  ̂ 4- 4s 4· 2, 0, 1]

- 1 ,
— 5—3 „   9 0 +85 +̂225 +̂235+6 5̂ +65̂  + 105+3 n 1+5 7̂ ,,4.9 7 .,54_9 7̂ 7-·-

1 ,

s+2 > i+2 > s+2
s'*+7s3+i65̂  + 14s+3 5°+95'‘+305̂ +45ŝ +28s+4

i2+3s+2 > «2+3S+2 >
-1 -13s®-68s®-183s‘'-268i3_205i2-69s-6 -s«-lli®-64s'*-91s3-86A-2-33s-3

s2+3s+2> 5̂ 4“3ii"|-2 s2+3s+2 , 0, s‘‘ -7s®-16a'^-135-
s2+36-+2

Y =

0 0 0

0 0 0

0 0 0

1 0 0

0 0 0

0 0 0

0 0 0

ŝ  4- 4- 6s 4-1 0 - 1

1 —ŝ  — 4s — 3 s 4“ 2
-i2-26-+l — 5 —̂65^115 — 5 s +  2

-s®-9s'‘-30s®-45,
s+2

-s ‘'-6s3-12s'^-9s-l
5 + 2

s® + 11s®+47s‘'+98s® + 102s2+4()S+C
s2+3s+2 5̂ +35 + 2 5̂  +35 + 2

s t e p  4 :
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[0 ,0 ,0 ,0 ,0 ,0,0 ,0]

[0 ,0 ,0 ,0 ,0 ,0,0 ,0]

[0 ,0 ,0 ,0 ,0 ,0,0 ,0]

[0 ,0 ,0 ,0 ,0 ,0,0 ,0]

[0 ,0 ,0 ,0 ,0 ,0,0 ,0]

[0 ,0 ,0 ,0 ,0 ,0,0 ,0]

[0,0, 0,0, 0,0,0,0]

[0 ,0,0 ,0 ,0 ,0,0 ,0]

[0 ,0,0,0,0,0,0,0]

0,
A 1 5+2 1 5+2 1 A g+1

’ s2+35+2> 52+35+2’ s2+35+2’ 52 + 3s+2 ’ 52+35+2 ’ '̂ ’ 52+3s + 2

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

X_1 = 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 1 0 0 0 1 0 0
0 0 1 0 1 0 0 -1

Step 5:

Let

T o -
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
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then,

h =
0 1 0  0 

0 0 0 1 

0 1 0  0

1 0  0 - 1  
le observer transfer matrix is

¿3 =

and t 

fii3 = T o (s i-iF )_
1

5-|-2
1

1
S-̂ 2,
— s

_ -\-3s~\-2, 5^+35-|-2

0

0

Since the second state is not available for measurements, the first rows of 

ti and ¿3 are chosen zeros.

The remaining five observers are designed in a similar fashion based on Algo­

rithm 1 when the observer is common to two systems and a generalized version 

of it when more than two systems share one observer as in the case of Hi (s) 

where five system are observed simultaneously. The summary below gives the 

transfer functions of the observers, the residuals being generated by each of 

them, and the corresponding T.

1. Hi{s) = 0 5+1 05" -|-36'-f-2

used to generate/?!(i) and r^it) with

Ti 0 0 0 1 and t-2

2. H2(s) -s -2 - 1

- 1 0  1 2

5+1
s^4"3s-f-2 5'̂ -f-3A'-i“2 5 -̂|-3s-|-2

used to generate R2{t) and with

%  =

3. H . =

- 1 0 0 - 1

2 S“i-2
52+35+2 52+35+2

1 1
52+35+2 52+35+2

to generate R'i{t) with

and ¿4 -

0 

0

- 2 0 1 0

T347 = 1 0  0 0

4. 2̂5 ~t~2 
+35-|-2

35+4 
5 2 +35+ 2
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to generate r5(i) and rc(i) with

¿5 =  [ - 1  - 1  0 - 2  , and tQ— 0 - 1  - 1  - 3  ]

5· =  [ 7 ^ 1 ^  f f e S i  ^ ^ 2  ]> to generate rr(t) with ty =

1 0 0 0 ]
Tables 5.3 and 5.4 give the sensitivity relations of the obtained residual vectors 

R(t) and r(t) respectively, to the faults, where “0” represents insensitivity.

RliO P2Í0 M iO
.A(i) 0 1 1
MO 0 1 1
MO 0 1 0
M O 1 1 0
M O 0 0 1
M O 0 0 1
¡7(0 1 1 0

Table 5.3: Sensitivity Relations of Residual Vector R(t)

nCO M O M O M O M O M O o iO
f l ( 0 0 1 1 1 1 1 1
M O 1 0 1 1 1 1 1
M O 1 1 0 1 1 1 1
M O 1 1 1 0 1 1 1
M O 1 1 1 1 0 1 1
M O 1 1 1 1 1 0 1
f l iO 1 1 1 1 1 1 0

Table 5.4: Sensitivity Relations of Residual Vector r(t)



5.3 Simulation Results

The fault detection and isolation system to monitor the pilot plant is simulated 

using SIMULINK. Figure 5.3 depicts the sirnulink model of the overall system. 

It contains nine main blocks:

ACTUAL PLANT: This block is the representation of the four tank system 

as described by the state equations (5.1). See Figure 5.4.

FAULT-FREE PLANT: This is the model of the same plant but with the 

fault and disturbance vectors. It is driven only by the control input as depicted 

in Figure 5.5.

UI01,....,UI06: These blocks represent the six unknown input observers we 

have designed. They are implemented using state space equations. An example 

of UIO is depicted in Figure 5.6.

FAULT SIGNAL GENERATOR: This block is used to generate the fault 

signals described in Table (5.1) and to program the timing of start for a par­

ticular fault. See Figure 5.7.
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The control input applied to the actual and fault-free plants is a unit step 

function. The disturbance d(t) is a random signal uniformly distributed in the 

interval [-.05 0.5] which is 50% of the control input. The leak fault signal is 

generated with the leak cross-section S equals the tenth of the corresponding 

tank cross-section and flight h — .01. Similarly, the clogging fault signal is
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Figure 5.3; Overall Simulink Model
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Figure 5.4: Actual Plant Model

Figure 5.5: Fault-free Plant Model

Figure 5.6: Simultaneous UIO No.l Model

generated by considering the reduction of the pipe cross-section by the tenth 

of its normal value. All faults are programmed to occur suddenly without 

building up. In all experiments, the simulation time was 60 seconds and the 

initial conditions were chosen randomly including those of the each of the plants 

and observers.

First consider the case of a single fault acting on the pilot plant. The 

fault /4 is programmed to occur at time t =  10 sec. By looking at the signal 

e(i) =  y(t) — xjo{t) (Figure 5.8) driving the observers, where y{t) and yo{t) 

are the actual and fault-free plants outputs respectively, the presence of the 

random disturbance is clearly noticed. Based on e{t) it is very difficult to
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Constant

Figure 5.7: Fault Signal Generator 

decide if a fault took place at all.

Based on the residual signals r{t) of Figure 5.9, it is observed that fault /4 took 

place at i =  10 sec. In fact, prior to this time instant and after the transients 

died out, all the residuals were identically zero indicating that the system is 

running fault free. At i =  10 sec, the abrupt change of the residual signals 

reveal that a fault just took place. Since all residuals but 74(i) are non zero, /4
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Output Diffrence Between Actual and Fault-free Plants

Figure 5.8; Output Difference of Actual and Fault-free Plants

must have taken place. Note that there is no trace of the random disturbance 

signal in any of the residuals. This is noticed especially when the system was 

operating fault-free.

Next, consider the pilot plant under the influence of multiple faults. It is as­

sumed that multiple faults do not start to act at the same instant, instead they 

are separated by some time interval, which is practically a valid assumption. 

Four among the seven faults, /2, /7, /e and /4 are programmed to take place in 

the system starting at time instants 10 sec 20 sec 30 sec and 40 sec respectively. 

Figure 5.10 depicts the residual vector r(t) as a function of time. At t =  10 

sec, all the residuals but 72(i) start to deviate remarkably from zero which was 

their common value after the transients vanished. Hence fault /2 took place at 

that instant.

Ten seconds later, an abrupt change in the signals’ behavior including r ît) 

(but not rjlt)) is observed. This means that a new fault just took place and 

induced the new residual behavior. However, the logic decision for generalized
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Response of Residuals r(t) to Fault f4(t)

Figure 5.9: Generalized Residual Response to Single Fault

residuals cannot be applied anymore. This time the second set of residuals, 

R{t) come into picture. Figure 5.11 shows that in addition to the change tak­

ing place at t =  10 sec as a result of /2 and in which i?2(i) and R^it) switch 

to nonzero signals, the residual Ri{t) became nonzero starting at t =  20 sec. 

Since Ri(t) is sensitive only to /4 and /7 it is concluded that the new fault

Rosponsa of Roslduols r(() lo fault snquonco 2-7 -6 -4

Figure 5.10: Generalized Residual Response to Multiple Faults 

must be one of them. Furthermore, by taking into consideration that faults
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Ros|X>nso of Residuals R(l) lo fault soquonco 2-7-6-A

Figure 5.11: Residual Vector R(t) Response to Multiple Faults

o c c u r  s u d d e n ly  a n d  th a t  rj{t) d id  n o t  s h o w  a n y  a b r u p t  c h a n g e  w h ile  r {̂t) d id , 

it  ca n  b e  in fe rre d  th a t  th e  fa u lt  is /7 .

Again the abrupt behavior of the residual vectors r{t) and R{t) at t — 30 sec 

indicates a new additional fault. By looking R(t), it is noticed that Ri{t) and 

i?2(0 continue to run smoothly whereas i?3(i) changes abruptly suggesting that 

/5  or /g  took place. From the observation of the abrupt change i n r^lt) but 

not re{t) it is deduced that /g is the fault.

Finally at i =  40 sec the new sudden change of Ri{t) and R2(t) but not Rz{t) 

indicates the presence of / 4.

This example demonstrates that assuming the abrupt occurrence of faults, 

the use of the generalized residual vector r{t) in conjunction with R(t) enables 

and enhcinces the detection and localization of multiple faults acting on the 

system, a goal that cannot be achieved with r{t) only. Still, without the men­

tioned assumption the first fault can be detected and located and the second 

can be detected and isolated to two possibilities: /4  and /7 .

If the number of residuals R{t) are increased, there is certainly a better chance
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of detecting and isolating multiple faults. Of course, the method is restricted by 

the existence conditions of the corresponding simultaneous UIO with common 

T.



Chapter 6

CONCLUSION

Robustness is a decisive criterion for a practical fault detection system. The 

failure to address this problem in the design of FDI scheme could jeopardize its 

ability to distinguish between faults and disturbances stemming from model 

inaccuracies and different noise sources, thereby causing false alarms or missed 

targets. Unknown input observer based residuals discriminate between fault 

signals and other disturbances, thus revealing reliably any occurrence of a fault 

provided that the fault is detectable.

FDI schemes, whether generalized or dedicated, rely on structured resid­

uals in achieving the tasks of fault detection and localization simultaneously. 

The generalized scheme is robust as most of the design freedom is invested in 

disturbance decoupling. However, it fails when more than one fault simultane­

ously act on the system. In contrast, the dedicated scheme could handle more 

than one fault since each residual is specialized in monitoring one particular 

fault. The price to pay for this scheme if it could be implemented at all is the 

lack of robustness as a result of exhausting the decoupling capabilities of the 

system.

60
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VVe have proposed an alternative scheme that detects and isolates simulta­

neous faults while conserving the robustness thereby combining the advantages 

of the dedicated and the generalized schemes. Maximum exploitation of the 

decoupling capabilities of the system is sought by designing residuals dedicated 

to groups of faults rather than to a single fault. The redundancies among these 

groups either allow the isolation of a fault or at worst narrow down the iso­

lation to small groups of faults. A regular set of generalized residuals is also 

employed in the scheme to guarantee the isolation of single faults and to help 

validating the decisions reached by the group dedicated residuals in the case of 

multiple faults. Generation of group dedicated residuals as well as a reduction 

in the total number of observers deployed in the proposed scheme are achieved 

thanks to simultaneous unknown input observers.

Since our main interest in simultaneous unknown input observers is their 

application in FDI, functional observers with unspecified function of states are 

examined. Two classes are distinguished. The first is the class of observers with 

different functions of states used to generate two or more regular residuals per 

observer. The second is the class of observers with common functions of states 

used to design group dedicated residuals. Based on some sufficient conditions 

for the existence of such observers, two algorithms are proposed in order to 

assist the design of regular and simultaneous unknown input observers,

A simulation example of a four tank system reveals the potential of the 

proposed scheme in detecting and isolating simultaneous faults without sacri­

ficing from robustness. However, its performance depends heavily on how fine 

the fault vector is portioned into smaller sub-vectors and how many groups of 

dedicated residuals are deployed. Therefore, there is a great need to further 

the existence conditions for simultaneous unknown input observers and
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to parameterize all such observers for a given fault-monitored system.
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