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ABSTRACT

GAUSSIAN MIXTURE MODELS DESIGN AND
APPLICATIONS

Khaled Ben Fatma
M.S. in Electrical and Electronics Engineering 

Supervisor: A. Enis Çetin, Ph. D.
January 2000

Two new design algorithms for estimating the parameters of Gaussian Mix­

ture Models (GMh-l) are developed. These algorithms are based on fitting a 

GMM on the histogram of the data. The first method uses Least Squares Error 

(LSE) estimation with Gaus,s-Newton optimization technique to provide more 

accurate GMM parameter estimates than the commonl}' used Expectation- 

Maximization (EM) algorithm based estimates. The second method employs 

the matching pursuit algorithm which is based on finding the Gaussian func­

tions that best match the individual components of a GMM from an over- 

complete set. This algorithm provides a fast method for obtaining GMM pa­

rameter estimates.

The proposed methods can be used to model the distribution of a large set of 

arbitrary random variables. Application of GMMs in human skin color density 

modeling and speaker recognition is considered. For speaker recognition, a 

new set of speech fiiature jmrameters is developed. The suggested set is more

m



appropriate for speaker recognition applications than the widely used Mel-scale 

based one.

Kexjxoords'. Gaussian Mixture Models, Parameter Estimation, Expectation- 

Maximization Algorithm, Gauss-Newton Algorithm, h/Iatching Pursuit Algo­

rithm, Least Sciuares Error, Speaker Recognition.
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ÖZET

GAUSS KARIŞIM MODELLERİNİN TASARIMI VE
UYGULAMALAR

Khaled Ben Fatma
Elektrik ve Elektronik Mühendisliği Bölümü Yüksek Lisans 

Tez Yöneticisi: Prof. Dr. A. Enis Çetin 
Ocak 2000

Gauss Karışım Modellerini (GMM) parametrelerinin kestirimi amacıyla iki 

yeni tasarım algoritması geliştirilmiştir. Bu algoritmalar veri histogramı uy­

durma yoluna dayanmaktadır. Birinci yöntem, GMM parametre k(!stiriminde 

alışılagelmiş Ixiklenti en büyükleme (EM) algoritması tabanlı kestirimlerden 

daha doğru sonuçlar sağlamak için Gauss-Newton eniyilerrıe tekniğiyle en küçük 

kareler hata k(!stirimini (LSE) kullanmaktadır, ikinci yöntem, sözlük olarak ad­

landırılan, aşırı tamamlanmış Gauss modelleri kümesinden bir GMM’in her bir 

bileşenini en iyi eşleyim Gauss işlerlerini bulmak için kullanılan uyum izleme 

algoritmasına dayanmaktadır. Bu algoritma GMM parametre kestirimi için 

hızlı bir yöntem sunmaktadır.

Önerilen yöntem geniş bir rasgele değişken kümesini modellemekte kul­

lanılabilir. GMM’lerin kullanım alanı olarak insan deri renk yoğunluğu mod- 

ellemesi v(î konuşmacı tanıma problemleri seçilmiştir. Konuşmacı tanıma 

için yeni bir konuşma öznitelik parametre kümesi geliştirilmiştir. Ongörühm



bu yeni küıiK!, yaygın olarak kullanılan Mel-skala tabanlı küni(;ye kıyasla 

konuşmacı tanımaya daha uygundur.

Anahtar Kelinuder: Gauss Karışım Modelleri, Parametre Kestirimi, Bcîkhmti 

En Büyükleme Algoritması, Gauss-Newton Algoritması, Uyum İzleme Algorit­

ması, En Küçük Kareler Hatası, Konuşmacı Tanıma.
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Chapter 1

Introduction

In nature, observed phenomena tend to have a wide variety of non-uniform dis­

tributions that often are very hard to estimate or model. In signal processing, 

modeling the distribution of an arbitrary phenomenon is a primordial step in 

understanding and analyzing the behavior of that phenomenon.

Gaussian Mixture Models (GMM) have been recently used in many appli­

cations as an efficient method for modeling arbitrary densities [1]. A Gaussian 

mixture density is defined as a weighted sum of different Gaussian component 

densities. GMMs were shown to provide a smooth approximation to the under­

lying long-term sample distribution of observations obtained from experimental 

measurements [1]. This is mainly due to the fact that a linear combination of 

Gaussian basis is capable of representing a large class of sample distributions, 

in addition to the observation that most natural phenomena tend to ha.ve a 

Gaussian distribution.



There are several techniques available for estimating the parameters of a 

GMM [2], [3], [4]. By far the most popular and well-established method is 

maximum likelihood (ML) estimation. The aim of ML estimation is to find 

the model parameters that maximize the likelihood of the GMM, given the 

training data. This usually leads to a nonlinear global optimization problem. 

ML parameter estimates can be obtained in an iterative manner using a special 

case of the Expectation-Maximization (EM) algorithm [5]. The EM algorithm 

is an iterative algorithm, which starts with an arbitrary model and tries to 

obtain a better model at each iteration until convergence in some sense is 

reached. The EM algorithm usually leads to good estimates of the GMM 

parameters. However, it does not always provide accurate estimates of the 

GMM parameters. Moreover, its computational complexity makes it unsuitable 

for applications where speed is important such as real time and adaptation 

applications.

New methods for estimating the parameters of a GMM by curve fitting 

to the histogram of the observation data are introduced. Two methods are 

described; one is based on least squares error estimation using Gau.ss-Newton 

algorithm and the other is based on the matching pursuit algorithm.

The least squares error method tries to obtain the best parameters by mini­

mizing an error function over the unknown parameters. A parameter separation 

technique is used to simplify the optimization procedure [12]. The resulting er­

ror function is a highly nonlinear function of the parameters, the Gauss-Newton 

algorithm is used to obtain an iterative estimate to the problem. This method 

provides more accurate estimates resulting in a better model. Moreov(>r, it 

needs a v('iy few number of iterations to converge.



The second method is based on the matching pursuit algorithm. Pursuit 

algorithms are generally used to decompose arbitrary signals [15]. Decompo­

sition vectors are chosen depending upon the signal properties. Vectors are 

selected'one by one from a dictionary, while optimizing the signal approxima­

tion at each step. In this thesis, a modified version of the matching pursuit is 

used as an alternative method for estimating the parameters of a GMM. This 

method has a lower accuracy than the EM based method, but its low com­

putational complexity makes much faster and more suitable for applications 

where speed is crucial such as adaptation algorithms [27], [28], and real time 

applications.

Speaker recognition is an important application where the use of GMMs has 

proven to be very efficient [1], [10]. Speaker recognition can be divided into two 

sub-fields: Speaker Identification which tries to identify the person speaking an 

utterance from a known set of speakers, and Speaker Verification which tries to 

check wh(!ther a speaker is that who he claims to be or is an impostor. For both 

of these tasks, many models like Hidden Markov models (HMMs), Midtiple 

Binary Glassiher Model (MBCM), Neural Networks, etc.. [10], ai(i proposcxl. 

GMM is recognized as one of the most accurate models for Automatic Spcuiker 

Recognition (ASR), using telephone speech [1]. The speech spectrum basoid 

parameters are very effective for speaker modeling. The most widely used 

speech feature parameter set is based on the Mel-scale cepstrurn. Tin; Mel-scale 

based features produce excellent results for speech recognition, as the Mel-scale 

division of the spectrum is compatible with the human auditory system. This 

spectrum division may not be the best possible division for speaker recognition 

applications. In this thesis, we propose a new set of features that is more 

appropriate to speaker recognition applications.



This thesis is organized as follows. In Chapter 2, we describe briefly the 

general form of a GMM and the EM algorithm used for estimating its param­

eters. In Chapter 3, we develop the idea of using least squares data modeling 

implemented Iry the Gauss-Newton algorithm to derive more accurate GMM 

parameter estimates. An application of this idea is also described. Chapter 4 

presents a fast GMM parameter estimation method based on a modified ver­

sion of the matching pursuit algorithm. Speaker recognition is considered in 

Chapter 5, where a new set of speech feature parameters is proposed. Finally, 

conclusions are given in Chapter 6.



Chapter 2

Gaussian M ixture M odels 

(GM M )

2.1 Description

Given an arbitrary Z)-dimensional random vector f , a Gaussian mixture density 

of M  components is defined as a weighted sum of individual D-variate Gaussian 

densities i = 1, as follows
M

p(f|A) = Y ^ P ik  (f) (2.1)
z=l

where p,:, i -- are the weights of the individual components and are

constrained by
M

E ”· = 1 (2.2)
z=l

The D-vai'iat(' Gaussian function h i { x )  is given by

hr{x) =
1

-  exp <: -  ̂  (f -  fii)' T.· ' (f -  /1,;) (2.3)

5



where /î  is tlui mean vector and E,; is the covariance matrix. Therefore a GMM 

can be rei)resented by the collection of its parameters A as

A = = (2.4)

The GMM can have different forms depending on the choice of the co- 

variance matrices. The covariance matrices can be full or diagonal. Because 

the component Gaussians are acting together to model the overall probability 

density function, full covariance matrices are not necessary even if the observa­

tions are statistically dependent. The linear combination of diagonal covariance 

Gaussians is capable of modeling the correlations between the observation vec­

tor elements. The use of full covariance matrices can significantly complicate 

the GMM estimation procedure, while the effect of using M  full covariance 

Gaussians can be approximated by using a larger set of diagonal covariance 

Gaussians.

2.2 Applications of GMM

Gaussian mixture models have been used in many applications as an efficient 

method for modeling arlntrary densities. Since a GMM is capable of modeling 

a broad range of pi obability densities, it has found use in a very large area, of 

applications. In [7] for example, the probability density function of human skin 

color was estimated using a GMM. The estimated probability density function 

has many applications in image and video databases. These applications range 

from hand tracking to human face detection. Similarly in [8], an object tracking 

algorithm is developed using GMMs. Gaussian mixture models were used to 

estimate the ])robability densities of objects foreground and scene background

6



colors. Tracking was perfonned by fitting dynamic bounding boxes to image re­

gions of maximum probabilities. GMMs have been also used very effectively in 

speaker recognition for modeling speaker identity [1], [10]. Short-term speaker- 

dependent feature vectors are obtained from the speech signal, then Gatissian 

mixture modeling is used to estimate the density of these vectors. The use 

of Gaussian mixture models for modeling speaker identity is motivated by the 

interpretation that the Gaussian components represent some general speaker- 

dependent spectral shapes and the capability of Gaussian mixtures to model 

arbitrary densities.

2.3 GMM Parameter Estimation

Given an observation sequence X  - f>̂C)m a random vector x,

the goal is to estimate the parameters of the GMM A, which in some sense 

best matches the distribution of the observation data. This GMM can then be 

considered as a valid estimate to the distribution of the random vector x.

There are several techniques available for estimating the parameters of a 

GMM [2], [3], [4]. By far, the most common and popular method is maximum 

likelihood (ML) estimation [5]. This method tries to find the model parameters 

that maximize the GMM likelihood

T

p ( . i |A ) = n p ( a |A )  (2.5)
i=l

given the training vectors X.  This leads to a nonlinear function of the param­

eters A and direct minimization is not possible. However, ML estimates ca,n



be obtained in an iterative manner using the Expectation-Maximization (EiM) 

algorithm [5]. The EM algorithm is described in the next subsection.

Another possilrle method for the estimation of the GMM parameters A, is to 

trj' to make a smooth fit to the histogram of the observation sequence A'” using a 

linear coml)ination of Gaussian functions. This idea will be further investigated 

in later chapters. Two new methods using this idea will be presented along 

with some possible applications.

Usually there are two important factors in training of a GMM: model or­

der selection and parameter initialization for iterative methods. We will not 

address these problems in this thesis.

2.4 Expectation M aximization (EM) Algo­

rithm

The EM algorithm tries to find the estimates of the ML parameters iteratively. 

It begins with an initial model A, and tries to estimate a better model until 

some convergence is reached. In each EM iteration, first a posteriori probability 

is estimated as

= (2.G)
L·k=ı Pkh [xt)

Based on this jn-obability, mixture weights, means and variances are estimated 

using the following re-estimation formulas, which guarantee a monotonie in­

crease in the model’s likelihood value:



Mixt/are weights:

Pi = i = l , . . . ,M (2.7)
i=l.

where p, is the new e.stimate of the ?;th mixture weight and it is obtained 

by a.veraging all a posteriori probability estimates.

Means:
7  ̂ _  'YJt=\P{AiL·t■,p. =

E f= iP ( 'la .^ )
( 2 .8)

where /7 is the new estimated mean vector of the ¿th mixture.

Variances;
^2 ^  _  .2 >.9)

where a'f refers to new estimates of arbitrary entries on the diagonal of 

the covariance matrix and :ct, pi refer to the corresponding elements of 

the vectors Xf and ~p.

In many applications, the EM algorithm has shown satisfying results . How­

ever, it does not always provide accurate estimates and it may converge to bad 

local maxima. Better estimates can usually be obtained for the same model 

under consideration. Moreover, the computational complexity of the EM algo­

rithm is relatively high especially when the training set is large [6].



Chapt er 3

Least Squares Error (LSE) 

Estim ation

In the previous chapter, we described how ML estimation can be used to obtain 

estimates to the parameters of a GMM through the EM algorithm. In this 

chapter, we discuss the estimation of the parameters of a GMM Iry trying a 

least squares fit to the histogram of the observation data. Given an olrservation 

sequence X  — , ■■■■■Lt ·, }> obtain the normalized histogram H[x).

We want to use H (x) to obtain a Gaussian mixture estimate to the unknown 

distribution of X of the form

M

= J 2 pA { x ) (3.1)
i=l

where A represents the model parameters and the weights Pi are constraiiKid

by E f : ,w  = i·

10



We start by ex])ressing the histogram as

M
H(x) = + 10(f) (3-2)

i=\

where w{x) is the error l)etween the histogram and the Gaussian mixture den­

sity to be estimated. In other words, we express the histogram of the observa­

tion data as a linear combination of Gaussian functions bi{x).

We use the least squares data modeling to estimate the parameters of the 

GMM. This is done by minimizing a given function of the estimation error 

’w{x). We use the Least Squares Error (LSE) criterion. The Gauss-Newton 

algorithm is later used to obtain estimates to the unknown parameters in an 

iterative manner.

We first present a brief review of the basic concepts of least squares data 

modeling, then we proceed to its application in GMM parameter estimation.

3.1 Least Squares Data Modeling

In many applications, the observed signal or sequence is often assumed to be 

composed of a linear combination of “basis functions” which are characterized 

by a set of ])arameters, and additive noise [11]. The observation vector of 

length N  is given by
M

h^Y^Pibi{9i) (3.3)

where p, is the coefficient of ith basis vector bj{0j), which depends on the 

parameter vector while w is the additive error sequence. This expressio))

11



can also Ixi written in the compact form

h = B{6)p + w

where B{0) is a N  x M  Irasis matrix given by

(3.4)

(3.5)

p is the vector containing the M coefficients and 6 is the composite parameter 

vector

« = [ €  « r  . i t ] ' (3.6)

The objective is to select the unknown parameter vectors 9 and the amplitude 

set p so that the linear combination of the basis functions best fits h. Using 

the LSE criterion we have to minimize the functional

e(^,p) = \ \ h - B { 9 ) ^ \ (3.7)

This is a highly nonlinear optimization problem with no closed from solution, 

therefore nonlinear programming techniques are necessary to achieve the opti­

mization.

To make the optimization problem in (3.7) simpler, we note that the func­

tion to be minimized has two important properties:

• The unknown parameters 9 and p are separable.

• The least squares error criterion e{9,p) is a quadratic function of the 

amplitudes p-

For problems with these properties, Gloub and Pereyra [12], proposed a 

parameter se])aration technique to ease the complexity of the problem. The

12



idea is to fiml tlui optimum amplitude vector in terms of the unknown 

paramete.rs 9. Then the set of unknowns reduces to the vector 9. Once these 

are found, the o])tirnum amplitude vector j f  can then be obtained directl}^ This 

parameter separation tcichnique simplifies the computations and significantly 

improves the speed of convergence.

To obtain an expression of the optimum amplitude vector in term of the 

unknown parameters 9, we first use the QR decomposition to write basis matrix 

B{9) in the form

B(9) = Q{9)R{9) (3.8)

where Q{9) is a N  x M  orthonorrnal matrix and R{9) is a M x M  nonsingular 

upper triangular matrix. The expression for the optimum amplitude vector is 

formulated in [11] and given by

/  = R{0)-^Q{0fh. (3.9)

The corresponding least squares error criterion’s value for this optimum choice 

is given by

е Ц У )  = ! f h  -  h^Q[0)Q{9fh.  (3.10)

By minimizing criterion (3.10), we obtain the vector of the unknown parameters 

Once this vector has been found, it is substituted into expression (3.9) to 

obtain the corresponding amplitude vector j f .

3.2 GMM Parameter Estim ation

In our ai)])lica,tion, we want to estimate a density function that fits the distri­

bution oi' a s(4|uenc:e of observed data, as a mixture of Gaussian functions. To

13



use least s(}uares data modeling, we have to put expression (3.2) in the form 

of expression (3.4). For 1-D case, this is straightforward:

M
h = '^PгbiX0i) + w (3.11)

1=1

B {0)p + w

where:

(3.12)

P = b i P2 ■·· PmY is the mixture weights vector.

6j — [p,i is the parameter vector of the zth Gaussian component

and

B(0) - b l { X 2 , i l )  h { X 2 , l 2 )

bi {̂ Xi, )

bl{X2,0M)

blixN,ii) bi{xM,02) · · ·  bi{xN,0n̂ )

In our model, we use diagonal covariance matrices. Expression (3.9) gives 

us the optimum weights vector as

/  = R{0)-^Q{0fh.

where Q{0) and R{ff) are obtained from QR decomposition oi B{&).

(3.1.3)

This approach can be extended to higher dimensions in a similar manner. 

The observation vector h can be obtained by putting the columns of H{x) into 

one vector seijuentially, R(^) can be then obtained accordingly.

14



The minimization piol:>lem (3.10) is highl}  ̂nonlinear in the unknown vector 

therefore nonlinear programming techniques must be used to achieve the opti­

mization. For this task, we use the Gauss-Nev'ton algorithm developed in [11], 

which is a descent method that has proven to be very effective in solving highly 

nonlinear programming problems. In typical iterative optimization techniques, 

the parameter vector is incrementally perturbed so that the cost criterion takes 

lower values at each iteration. In other words, the current parameter vector в/. 

is perturbed to obtain

(ЗЛ4)

where S,. is the perturbation vector which is chosen in such a wa.y that a 

decrease in the cost criterion results.

In Gaus.s-Newton algorithm, the optimum perturbation vector 61, which 

results in the highest decrease in the cost criterion, is estimated at each iter­

ation. This procedure ensures that quadratic or superlinear convergence rates 

are attained in a neighborhood of a relative minimum.

For the nonlinear optimization problem given in (3.4), the Gauss-Newton 

perturbation vector at the kth iteration is given by

3.2 .1  G a u ss-N ew to n  A lgorith m

= -
-1

(.3.15)

where J {(h.) is the Jacobian matrix and the residual vector e(p",^/J is given 

by

= (3.10)

15



■J il) =

The Jacobian matrix, J { ( f )  lias the form

de. (3.17)

The partial derivative terms are approximated as

A  -  _ A ;

where is a projection matrix defined as Pq_ =  Q{e)Q{9)^.

(3.18)

(3.19)

The algorithm starts with an initial estimate 0_o of the unknown parameters. 

At each iteration of the Gauss-Newton algorithm, the optimal perturbation 

vector is used to update the parameters vector e_o so that an improvement in 

the criterion (3.10) is obtained

h+\  -  + “ fcii/c· (3.20)

The step size a.k is selected large at earl}'̂  iterations and reduced at later stages 

of the optimization procedure. Usually, a*, is chosen from the sequence

= 1 i  i  i
‘ ’ 2 ’ 4 ’ 8 ’ ·"

(3.21)

until the first value of a.k which reduces the cost criterion is found. Once 

the parameter vector 9 is found, it is inserted in expression (3.13) and the 

amplitude set p" is obtained.

16



Initialization

One critical i'actor in GMM parameter estimation is the initialization of the 

model parameters. The initialization procedure is verj  ̂ important for the per­

formance of the Gauss-NeAvton algorithm. It was checked experimentall}· that 

a bad initialization can result in high estimation error and a poor model. One 

efficient initia.liza.tion method consists of randomly choosing vectors from the 

training data as mean vectors followed by /f-means clustering to initialize 

means, variances and mixture weights.

Optimum Step Size

In subsection 3.2.1, we discussed how the step size used in expression (3.20) 

can be chosen from the sequence in Equation (3.21 ). This procedure can be 

effective in finding an appropriate step size that results in a decrease in the error 

criterion for a. given perturbation vector. However, it does not find the best 

possible step size that results in the highest decrease in the cost criterion. Since 

the calculation of a perturbation vector 6̂  is relatively costly in computation 

power, we wa,nt to get the most out of this perturbation vector once it is 

calculated by estimating the corresponding step size that results in the 

highest decrease in the error criterion. Here, we introduce a procedure! lor 

estimating the optimum step size al  for a given perturbation vector. We start 

by considering the error function to be minimized given in Equation (3.7), 

which is the sciuared error between the normalized histogram and tlu' estimated 

distribution. Once a. new ])erturbation vector is calculated the new A-alue of this

3 .2 .2  A lg o r ith m ic  Issues
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error funelioii depends on the stejr size a.k , denoted by e(a'fc). We want to find 

the value ofo!^ for which c(o;^) < e(o; .̂), for all 0 < < 1 . For these values of

Qifc, it was found oixperimentally that the error function can be approximated 

by a paralrola as

= «-«fc + FttA- + C 5 0, G IR.

For this ])arabola the minimum value is given for

h
<  = - 2a

(3.22)

(3.23)

To fit a parabola to e{a.k) we need its value at three different point of 

between 0 and 1 . We use the region 0 < Q!̂: < 1, because we do not want to 

get too far from our current operating point (a* =  0), since far from this point 

the error function is unpredictable and our approximation becomes invalid. We 

already know c(0) which is the error value at the previous iteration so need two 

more points. We use e ( l /2) and e(l), this is enough to find the parameters a, 

and c of the parabola. We equate the values of e{ak) and e(ak) at a*; = 0, 1  / 2, 1 . 

Then the three following equations gives us the solution:

(3.24)

e(0) = c a 2 - 4 2 ■ e(0) ■

e{^) = <̂’· + + c h -3 4 - 1

e(l) = a + b c c 1 0 0

We plug the values of a and b into Equation (3.13) to obtain

b 3e(0) -  4 e (l/2 )+  e(l)
at  = (3.25)

2o. 4[e(0) -  2e ( l /2) +  e(l)]·

This gives us an estimate for the best step value a;°.. Some typical experimental 

realization of this method are shown in Figure 3.1. The results in Fignix' 3.1 

show that our approximation is valid around the region 0 < a;*; < 1. The 

estimated optimum stej) size is very close to the correct one.
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Figure 3.1: Two typical realization of the parabolic fit of the error function 
with the eorr(ispoii(ling minimum value.

3.2.3 Sim ulation Studies

In this subsection, simulation studies are carried out to compare the perfor­

mance of the suggested method with the EM algorithm. For this purpose, data 

from Gaussian mixture densities are generated at random. Simulations were 

carried out for both 1-D and 2-D GMMs. For each Gaussian mixture, 2000 

observations are gxmerated and used to obtain an estimate to the parameters

of the original distribution. The estimation error criterion is defined as

2

= T  “  p(·'· (3.26)

where A represents the original Gaussian mixture density and A represents the 

estimated one. Both 1-D and 2-D density cases are considered. For each case, 

4-cornponent and 12-component mixtures are used. For each experiment, 100 

runs were made and the mean square error of the 100 runs is computed. The 100 

runs are also divided into 10 groups of 10 runs such that in each group of 10 runs 

the GMM parameters are kept constant but 10 different sets of observations 

are generated, from which the histogram is computed. Figure 3.2 shows the

19



results for the 1-D and 2-D cases corresponding to 4 and 12 component GMMs.

7
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Figure 3.2; Mean square error obtained for GMM estimation using GN(straight 
line) and EM (dashed line) algorithms, (a) 1-D GMM, M=4, (b) 1 -D GMM, 
M = 12 , (c) 2-D GMM, M=4, (d) 2-D GMM, M = 12 .

3.3 An Application

Probabilit}' density modeling using GMMs have been used in a wide range 

of applications ranging from speech and image processing to biology. In this
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section, we consider some simple recent applications of GMMs to test the per­

formance of the proposed Gauss-Newton based parameter estimation method 

compared to the EM-based one.

In [7], a probability density function of human skin color was estimated 

using a Gaussian mixture model whose parameters were estimated through the 

EM algorithm. The estimated density function has many applications in image 

and video databases. These applications range from human face detection to 

hand tracking.

A set of experiments similar to those described in [7] were carried out to 

estimate a probability density function of human skin color, but in our case 

the estimation of the GMM parameters was done using both the EM algorit.hm 

and the Gauss-Newton based method and the results are compared.

Typical human skin pictures were collected and human skin regions were 

extracted manuallj'. A sample is shown in Figure 3.3. Each sample (skin color 

pixel) consists of three values (R,G,B). To reduce the dependence on the light­

ing condition, each sample is transformed from RGB to CIELUV color space 

and then the brightness component is discarded. The color space transfor­

mation from RGB to GIELUV in given in Appendix A. Figure 3.4 shows the 

resulting 2-D histogram of skin color (histogram of x =  {u,v)‘̂  ).

As in [7], two Gaussian components were used to estimate the probability 

density function corresponding to the histogram shown in Figure 3.4. Figure 

3.5 and Figure 3.6 show the estimated densitj^ function for EM and Gauss- 

Newton methods respectivel}^ The corresponding estimation squared error is 

shown in Figure 3.7.
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(a) (b)

Figure 3.3: Human skin color pdf estimation, (a) original image, (b) skin pixels 
extracted for GMM training.

From Figure 3.5 and 3.6, we can see that the Gauss-Newton method results 

in a better model then the EM algorithm. This is confirmed by Figure 3.7 

since the estimation squared error is smaller in the case of the Gauss-Newton 

estimation. Figure 3.7 also shows the improvements in performance obtained 

when using the optimum step size described in 3.2 .2 .

3.4 Conclusions

In this chapter, we described Gauss-Newton optimization technique based ap­

proach to obtain the parameters of a Gaussian Mixture Model. We experimen­

tally demonstrated that this method provides a more accurate representation 

of the data compared to the widely used EM algorithm. Furthermore, this 

method often converges in less number of iterations.
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Figure 3.4: 2-D human skin color histogram in the UV space seen from different 
angles.
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Figure 3.5: Estimated human skin color density function using EM algorithm, 
(a) 3-D view of the estimated histogram, (b) Top view of estimated histogram 
compared to the histogram shown in Figure 3.4d.
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Figure 3.6: Estimated human skin color density function using Gauss-Newton 
algorithm, (a) 3-D view of the estimated histogram, (b) Top view of estimated 
histogram compared to the histogram shown in Figure 3.4d.
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Figure 3.7 : Skin color estimation squared error obtained at each iteration using 
EM algorithm, Gauss-Newton algorithm with normal perturbation step size 
and Gauss-Newton algorithm with estimated optimum perturbation step size.
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Chapter 4

M atching Pursuit Based GM M  

Estim ation

In this chapter, we develop a fast method for obtaining GMM parameter esti­

mates for arbitrar}^ probability densities. This method is based on the matching 

pursuit algorithm. As in Chapter 3, we use the histogram of the observation 

data for deriving our model. The matching pursuit algorithm is used to de­

compose the histogram into different Gaussian functions. This decomposition 

results in a Gaussian mixture density that can be used as an estimate to the 

probability density of the random vector under consideration. In section 4.1, 

we start by giving a brief description of the matching pursuit algorithm. The 

suggested method is presented in section 4.2.
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Matching pursuit is a recently proposed algorithm for deriving signal-adaptive 

decompositions in terms of expansion functions chosen from an over-complete 

set called a dictionary -over-complete in the sense that the dictionary elements, 

also called atoms, exhibit a wide range of behaviors [13]. Roughly speaking, 

the matching imrsuit algorithm is a greedy iterative algorithm which tries to 

determine an expansion for an arbitrary signal a:[n] given a dictionary of atoms, 

g-y[n], as follows
K

x[n] = ^a.kg^\n]  (4.1)
k=\

where the dictionary is a family of vectors (atoms) g^ included in a Hilbert space 

H with a unit norm || .̂y|| = 1 and 7  is the set of parameters characterizing g .̂

4.1 M atching Pursuit Algorithm

Matching pursuit algorithms are largely applied using dictionaries of Ga.- 

bor atoms [14]. Gabor atoms are appropriate expansion functions for time- 

frequency signal decomposition, which are a scaled, modulated, and translated 

version of a single unit-norm window function, g{.), which has the following 

form in continuous-time domain

(4.2)

where 7 is the collection of parameters 7  = (s,iJ.,e) € F = R"''x R .̂ Note that 

ĝ , is centered in a neighborhood of /i whose size is proportional to s and its 

Fourier transform is centered at u = s. This parametric model provides mod­

ification cai)abilities for time and frequency localization properties of signals.

26



4.2 M atching Pursuit Based Estim ation

We want to use the matching pursuit algorithm with Gabor atoms to find a 

suitable decomposition to the speech features histogram. In our application, 

the modulation factor e'~'' in expression (4.2) is not necessary since the fre­

quency localization has no meaning in this case, and thus it is dropped and we 

use

(4.3)

Furthermore, if we choose g{t) as a Gaussian function of zero mean and unit 

variance

then we obtain

' 23^'’ ,
= \/s.Ai{n, s^)

(4.4)

(4.5)

(4.6)

which is a Gaussian function with mean /r and variance scaled by a factor 

^/s. The discrete form of (4.5), is

(/yM =
1 /  inN — ¡xY'

exp -  - (4.7)

where and N  is the sampling period. The resulting g^[n] is a suitable decom­

position function for our application.

In the following, we introduce a fast method for estimating the param­

eters of a GMM using the matching pursuit algorithm with decomposition 

functions derived in (4.7). Given an arbitrary D-dimensional random vcic-

tor X vr.Tj X'> ■ · · xd\ , wei want to obtain a Gaussian mixture chmsitv
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which api)roximat,es the distribution of .f, using a set of observation vectors 

A' = •••>̂ 7··, }■ Let us first write A as

A =

X l

•i^'2.1 ■ ■ '^2,2 ^2.T = X 2

■ C£),l ^D,T .  .

(4.8)

where Xi , i = I, ...,D are the sequences of training data corresponding to each 

of the D components of x. For each A',;, we calculate the corresponding 1-D 

normalized histogram Hi{x). If we can decompose Hi{x) into a finite weighted 

sum of Ganssian components, we obtain a valid estimate to the distribution 

of ,Xi, the 'ith component of x. The decomposition is done as follows. We first 

define our dictionary D as a family of vectors g^. The form of is given in 

(4.7). Each decomposition vector g^ depends on the parameter 7  = (p-, *)· 

The range of // can be obtained from the range of Hi{x), while the range of 

s should be chosen experimentallJ^ The dictionary should be large enough to 

cover a wide range of vectors. The algorithm starts by finding ĝ  ̂0 ^ ^  

best matches Hi{x) in the sense that the inner product q) |, which is a

measure of similarity between Hi{x) and grŷ ,̂ , is maximized, i.e.,

\ { H i , g j i , o ) \  > sup |(i7i,5^)|. (4.9)

Then, we can write

Hj i?7i,0 T RHi (4.10)

where RHi is the residual vector. The iteration then proceeds on RHi as the 

initial vector. Supjoose that R^'Hi denotes the r¿th residual of Hi , at the ?7,th 

iteration we get

R"H, = (4.11)
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If we cany the iteration to order M, we obtain

77. =  0
M-l

— ^  ‘̂ Í,n!J'n,n + Hi

(4.12)

(4.13)
n=0

where and 7,;„, = (/¿¿,71,6',:,„,)· This gives us a decompo.sition

of Hi{x) as a weighted sum of Gaussian components. Let’s examine the first 

term of the RHS of Equation (4.12). From Equation (4.5) we obtain
M-l M-l

7?. =  0 7?,=0

If we further define the weight pi n̂

Piji — M - lE Jvl - 
n =

(4.14)

(4.15)
0 Y •̂2,n'-*'2,77-

SO that ~  r  tlien we obtain a valid Gaussian mixture model for .x·,;
M - l

p{^i\K) = '^Pi,nh,n{^i) (4.16)
7г=0

where hi^n{x) is a Gaussian with mean g.î n and variance both obtained from 

the decomposition of Hi{x).

If we carry out this procedure for all the individual components of x, then we 

obtain D separate 1-dimensional models corresponding to the D components 

of .x: Xi , i = For 1-dimensional signal, this procedure results in

one GMM that can be used as a model for the distribution of that signal. 

However, in higher dimensional cases the resulting 1-D models cannot be used 

to obtain the overall distribution directly, unless the individual components of 

the random vector are uncorrelated. For this case, the overall Z)-dimensionaJ 

GMM can be obtained by multiplying the individual 1-D GMMs
D

p(,f|A) = flp(ii|A ,;). (4.17)
¿-1
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For random variables with correlated components, this is not valid. One 

possible solution is to applj' a. transformation that decorrelates or at least 

iTiinimizes the correlation between the individual components of x. In speech 

processing for example, a Discrete Cosine Transform (DCT) is used to decor­

relate the speech feature obtained from a speech signal. A DCT or a similar 

transform can be used to decorrelate (or at least minimize) the correlation be­

tween the individual components of the random vector. In this case, expression

(4.17) can be used to obtain a good estimate to the overall distribution of the 

random vector.

In the next section, a fast calculation method is proposed to increase the 

algorithm’s speed.

4.3 Fast Calculations

The matching pursuit can be implemented using a fast algorithm described 

in [23], that computes from {R^Hi,gy) with a simple updating-

formula. Consider Equation (4.11), which we can write as

Take the inner ]noduct with g~,. on each side, we obtain

(4.18)

{rr*'H„a„) = {R'‘H.,g,) -  (o is)

which is a simple updating formula for Hi, gy). If we can calculate the

inner product of all the atoms in the dictionary, {ga,(j0), î̂ nd store it in a 

lookup table, then we can use this update formula to calculate {RJ'^^Hi,gy) a.t 

each iteration. The final algorithm is summarized below:
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For eac.li //,; , i —

1 . Set 77, = 0 and compute

2. Find r;̂ ,„ G V  such that; (/^.„)| > sup \{H,,g^)\ for all 7  G F

3. Update for all g^^ ,̂,̂ G V:

4. If n < M — 1 increment n and go to 2.

4.4 Experim ental Results and Discussion

Even though the proposed method provides a less accurate model then the EM 

algorithm for random variables with correlated entries, its low computational 

complexity makes desirable. This method is especially useful for applications 

where speed is important. We have tried the matching pursuit based method 

in the application of speaker identification and the rates of recognition were 

compared to those obtained using the EM algorithm. Table 4.1 summarizes 

the results for a 30-speaker set with a training sequence of 40 sec for each 

speaker. The simulations were carried out on an Intel-Pentium based PC using 

MATLAB. The rates of identification in the matching pursuit case are h;ss 

than those for the EM algorithm. However the model training time for the 

30-speaker set is extremely lower than that required by the EM algorithm.
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Using EM Using MP
Identification rate 77.8% 71.5%
Training time 42 min 8 min

Table 4.1: Speaker identification rate using EM algorithm and the matching 
pursuit algorithm. The model training time corresponds to a set of 30 speakers 
and 40 sec speech signals per speaker.
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Chapter 5

Speaker Recognition U sing  

GM M  and a Nonlinear 

Frequency Scale

In general, the field of speaker recognition can be classified into two sub-areas: 

verification and identification. Recognition rate in both cases largely depends 

on extracting and modeling the speaker dependent nature of the speech signal, 

which can effectively distinguish one speaker from another. The most widely 

used speech feature parameter set is based on the Mel-scale Cepstrurn: the 

Mel Frequency Cepstral Coefficients (MFCC) [16]. The MFCC features are 

obtained from a Mel-freciuency division of the short-time speech spectra and 

produce very good results for speech recognition [22], as Mel-scale division of 

the spectrum is compatiljle with the human auditory system. In Section 5.1, 

we give a biief review of MFCC feature extraction and the use of Gaussian
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Mixture Models (GA4M) in speaker recognition for modeling the distribution 

of MFCC features.

In [17], we ol)served that the use of scales other than the Mel-scale may be 

more advantageous for speaker recognition applications. In this chapter, we 

propose the use of a nonlinear frequency scale for speaker recognition applica.- 

tions. In the modified Mel-scale, more emphasis is given to frequencies around 

2 kHz. The idea of modifying the Mel-scale was originally proposed in [24] 

and used successfully in accent classification. In Section 5.2 , we introduce a 

new nonlinear frequency scale for speaker recognition and its computation us­

ing the FFT domain filter bank. Section 5.3 describes the computation of the 

same frequency scale using a subband wavelet packet transform. Experimental 

results for speaker identification are given in Section 5.4.

5.1 M el-Frequency Cepstral Coefficients

In speaker recognition, the use of speech spectrum has been shown to be very 

effective ]21]. This is mainly due to the fact that the spectrum reflects vocal 

tract structure of a person which is the main physiological system that distin­

guishes one person’s voice from another. Recentl}^ cepstral features computed 

directly from the s])ectrum are found to be more robust in speech and speaker 

recognition, especially for noisy speech [19].

In speaker recognition systems, the Mel-frequency cepstral-coefficients 

(MFCC’s) are usually used as features to characterize the speech signal [1C]. 

Brief!}', the MFCC’s are computed by smoothing the Fourier transform spec­

trum by integrating the s])ectra.l coefficients within triangular bins arranged on
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a non-linear scale called the Mel-scale shown in Figure 5.1. This scale tries to 

imitate the frequencj^ resolution of the human auditory system which is linear 

up to 1 kHz and logarithmic thereafter. In order to make the statistics of the 

estimated speech power spectrum approximately Gaussian, logarithmic com­

pression is applied to the energy obtained from each frequency bin. Finallj^ the 

Discrete Cosine Transform (DCT) is applied in order to compress the spectral 

information into the lower-order coefficients. Moreover, the DCT de-correlates 

these coefficients allowing the subsequent statistical modeling to use diagonal 

covariance matrices.

Figure 5.1 : Triangular bins arranged on a Mel-scale for MFCC features extrac­
tion.

Gaussian Mixture Models (GMM) have been used very widely in speaker 

recognition applications for modeling speaker identity. Short-term (usually 

20 ms) speaker-dependent feature vectors are first obtained from the speech 

signal, then GMM is used to model the density of these vectors. The individual 

Gaussian components of a GMM are shown to represent some general speaker- 

dependent spectral shapes that are efficient for modeling speaker identity. For 

speaker identification, each speaker is represented by a GMM and is referred 

to by his/her model.

35



5.2 New Nonlinear Frequency Scale

The Mel-scale, which is approximately linear below 1 kHz and logarithmic 

above, is more appropriate than linear scale for speech recognition performance 

across frequency bands. This scale tries to imitate the frequency resolution 

of the human auditory system which is linear up to 1 kHz and logarithmic 

thereafter. However, in [17], we observed that the use of scales other than the 

Mel-scale may be more advantageous for speaker recognition applications.

In [24], properties of various frequency bands in the range between 0-4 kHz 

was investigated for accent classification. It was shown that for speech recog­

nition applications the lower range frequencies, mainly between 200-1500 Hz, 

have most of the relevant information. This explains the use of Mel-scale for 

speech recognition. While for accent classification applications, it was shown 

that the most relevant frequency band lies around 2 kHz. This suggests that 

mid-range-frequencies (1500-2500 Hz) contribute more to accent classification 

performance. Following these results, a new frequency axis scale was formu­

lated for accent classification [24], which is shown in Figure 5.2. Since a large 

number of filter banks are concentrated in the mid-range frequencies, the out­

put coefficients are better able to emphasize accent-sensitive features.

Similarly, the frequency range that is most relevant for speaker recognition 

is investigated in this paper. Then a scale that gives more emphasis to this 

frequency range is formulated.

In [24], a series of experiments were performed to investigate the accent 

discrimination ability of various frequency bands. We carried out similar ex­

periments to investigate the importance of different frequency bands in speaker
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Figure 5.2: A sampling scheme for filter banks which is more sensitive to accent 
characteristics.

recognition. The frequenc}' axis (0-4 kHz) was divided into 16 uniformly spaced 

frequency bands. The energy in each frequency band was weighted with a tri­

angular window. The output of each filter bank was used as a single parameter 

in generating a GMM for each speaker. Figure 5.3 shows speaker identifica­

tion performance across the 16 linearly spaced frequency bands. Unlike speech 

recognition, the most relevant frequency band lies slightly above 2 kHz.

Figure 5.3; S])eaker identification performance based on the energy in different 
frequencA' bands.
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In accordance with the previous result, a new frequenc}  ̂ axis scale is de­

rived. The scale is shown in Figure 5.4. Since a relatively large number of 

filters (windows) are concentrated in the midrange frequencies, the output co­

efficients are better able to emphasize speaker-dependent features. The 16 

center frequencies of the filters which range between 0-4 kHz are also given in 

Table 5.1.

Figure 5.4: A new frequency axis division suitable for speaker recognition 
applications.

Filter # Center frequency (Hz) Filter # Center frequency (Hz)
1 350 9 2100
2 700 10 2220
3 1000 11 2390
4 1250 12 2600
5 1450 13 3000
6 1650 14 3300
7 1850 15 3500
8 2000 16 3700

Table 5.1: Center frequencies (Hz) of triangular windows shown in Figure 5.4.

Usually a ])re-ernphasis, shown in Figure 5.5, is applied to the magnitude 

spectrum from each speech frame. This pre-emphasis gives more importance 

to mid-range and high frequencies and has proven to be effective in speaker 

recognition.
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Figure 5.5: Pre-ernphasis applied to speech frames.

After the pre-emphasis and log compression, the cepstral features are com­

puted using the discrete cosine transform (DCT).

5.3 Subband Decom position (W avelet) Based  

Com putation of Features

The wavelet analysis associated with a. corresponding decomposition filterbank 

is proposed in [18] to obtain a scale similar to the one derived in the previ­

ous section. The implementation of the wavelet packet transform can differ 

according to the application. In this case, a tree structure which uses a sin­

gle basic building block is used repeatedly until the desired decomposition is 

accomplished [19]- [20]. This single block, shown in Figure 5.6, divides the 

frequency range of the input into two half-bands.

S[n],

LPF ------ 2-i ---------- ^ S,[n]

HPF ------ -- 21- ------ >-SJn]

Figure 5.6: Basic block of a subband decomposition.
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The pass-bands for the low-pass and high-pass filters are [O, |]  and 

respectively. One possible choice for these filters is the order Lagrange 

filters having transfer functions

(5.1)

(5.2)

Using subband decomposition, a frequency domain decomposition similar 

to Mel-scale can be obtained [18], the corresponding scale is shown in Figure 

5.7. In [18], the resulting cepstral coefficients are called SUBCEP’s.

■ . 1 . _____L

Figure 5.7: Subband decomposition approximation to Mel-scale.

In speaker recognition within the telephone bandwidth, the frequency range 

0-4 kHz is decomposed in a manner to give more emphasis to mid-range fre­

quencies between 2 and 2.75 kHz. The corresponding frequency domain de­

composition is shown in Figure 5.8.

J ____ I____I____ I I I I . I___ I___ _̂__L

Figure 5.8: Frequency scale for speaker recognition using subband decomposi­
tion.
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5.4 Experimental Study and Conclusions

5.4.1 Database Description

The experiments were carried out on the POLYCOST 250 database (vl.O). 

The POLYCOST database is dedicated to speaker recognition applications [26]. 

The main purpose behind it is to provide a common database on which speaker 

recognition algorithms can be compared and validated. The database was 

recorded from 134 subjects coming from 14 European countries. Around 10 

sessions were recorded for each subject, each session contains 14 items. The 

recordings were made over the telephone network with an 8 kHz sampling 

frequenc,y. In [26], a set of baseline experiments is defined for which results 

should be included when presenting evaluations made on this database. Our 

experiments follow the set of rules defined in [26] under “text-independent 

speaker identification” .

5.4.2 Experim ental Results

A set of experiments was carried out to anal}'ze the performance of the pro­

posed freciuenty scale for speaker identification. The speech signal is first 

analyzed, and the silence periods are removed. Then the signal is divided into 

overlapping frames of approximately 20 ms length and a spacing of 10 ms. 

For each frame, 12 speech features are extracted. The experiments were done 

using features obtained from both methods described previousl}', i.e., cepstral 

features computed via Fourier analysis and wa.velet analysis (SUBCEP) using 

frequency sealers shown in Figure 5.4 and Figure 5.8, respectively. Table 5.1
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shows the results oirtained for both methods for different frequenc}  ̂scales. The 

first column is computed using the DFT while the second column is computed 

using wavelet analysis.

Recognition rate using 
DFT analysis based 
cepstral features

Recognition rate using 
wavelet analysis based 
cepstral features

Mel-scale 77.8% 78.4%
Modified Mel-scale derived 
for accent classification

78.9% 79.5%

Frequency scale derived for 
speaker Identification

79.5% 80.7%

Table 5.2; Speaker identification performance for different frequency domain 
scales using MFCC and SUBCEP features.

The results obtained in Table II confirm that the Mel-scale is not appro­

priate for speaker recognition applications. In fact, Mel-scale performs slightly 

better than a uniform decomposition of the frequency domain. The frequency 

scale derived in [24] for accent classification performs better than the Mel- 

scale. This is mainly due to the fact that this scale emphasizes mid range 

frequencies which are important for speaker recognition. Finally, the new de­

rived frequency scale for speaker identification performs the best among the 

three scales. This scale emphasizes exactly the frequency bands that are most 

significant for speaker identity.

The experimental results also show that the use of wavelet analysis for 

feature extraction performs slightly better than MFCC’s which are computed 

using DFT. We finally conclude that the choice of the frequency domain scale 

should dej)end primarily on the type of application under consideration. For 

speaker recognition, it is shown that mid-range and some high frequency com­

ponents are more important for representing speaker identity.
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Chapter 6

Conclusion

In this thesis, the design of Gaussian mixture models for arbitrary densities 

was studied. Estimation of model parameters is one of the most important 

issues in GMM design. The Expectation-Maximization algorithm is widely in 

literature as a method for estimating these parameters. GMM parameters are 

usually estimated from a set of observed data. Since the density function to be 

estimated should be close to the histogram of the observed data in shape, the 

latter can be used to derive good model estimate. In this work, we proposed 

two new methods for estimating GMM parameters based on this approa.ch, 

which overcome some drawbacks of the EM algorithm.

The first method is based on least squares estimation. The least squares 

criterion is used to minimize an error function based on the difference between 

the observation data histogram and the estimated densitj^ The minimization 

is carried out using the Gauss-Newton optimization technique. This technique 

usually needs a very few number of iterations to converge. Simulations results
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have shown tliat the model estimated using the proposed method is more ac­

curate than the EM based model, in the sense that the mean squared error 

between the estimated density and the data histogram is lower. In the opti­

mization procedure, the step size related to the perturbation vector used in the 

parameter update formula, has an important effect on the convergence speed 

and the final model error. We have provided a simple method for obtaining an 

estimate to the perturbation step size at each iteration of the Gauss-Newton al­

gorithm. Experimental results showed an increase in model convergence speed 

and accuracy when this method was applied.

Human skin color distribution modeling was used as an experimental exam­

ple to the a.pplication of the suggested method. The results showed a significant 

increase in the model accuracy when our method is used instead of the EM 

based method.

In the second method, we used the matching pursuit algorithm to decom­

pose the histogram of the observation data with a proposed set of decom­

position functions. The decomposition results in a set of weighted Gaussian 

functions which was used to obtain a G MM for the density function of the 

process under c:onsideration. This method provides a fast way to obtain GMM 

parameter estimates. In the application of speaker identification, the proposed 

method resulted in a less accurate model then the EM algorithm but the re­

quired training time was remarkably lower. Still, the matching pursuit based 

method further needs to be investigated for applications where speed is impor­

tant. The use of this method may be advantageous in applications like speaker 

adaptation.
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In Chapter 5, we developed a new set of sjreech feature parameters that are 

more appropriate for speaker recognition applications than the commonly used 

Mel-scale based features. The proposed features are based on a nonlinear divi­

sion of the freipiency scale that gives more importance of mid-range frequencies 

around 2 kHz. In a set of experiments on speaker identification, we found that 

the suggested set of features results in some increase in the identification rate.

Each of the proposed GMM parameter estimation methods has its advan­

tage. In fact, the two methods can be exploited together in one system. For ex­

ample, in an application, the model obtained b}̂  the matching pursuit method 

can be used a good initial point for the Gauss-Newton based method. This can 

result in a faster convergence of the optimization procedure. Another interest­

ing application is to use the Gauss-Newton method to obtain a starting model 

for our process, then whenever new data comes the matching pursuit method 

can be used to adapt the existing model to the new data in a fast manner. The 

adaptation procedure can be done using a method called modeling weighting. 

Briefl)', what modeling weighting does is whenever there is new adaptation 

data the final model is calculated as a weighted sum of the original model and 

the model derived from the adaptation data. A smaller weight is given to the 

adaptation model, also a forgetting factor can be inserted with time.
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A ppendix A

RGB to CIELUV Color Space 

Conversion

A .l  CIELUV Color Space

This is based on CIE Yu’v’ (1976) and is a further attempt to linearize the 

perceptibilitj^ of unit vector color differences. It is a non-linear color space, but 

the conversions are reversible. Coloring information is centered on the color 

of the white point of the system, (D65 in most TV systems). The non-linear 

relationship for Y* is intended to mimic the logarithmic response of the eye.

RGB color values cannot be transformed directly to CIELUV. Instead, they 

should be first converted to CIE XYZ, then CIELUV values can be computed 

from CIE XYZ.
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A .2 RGB to XYZ Conversion

RGB valuois in a. particular set of primaries can be transformed to and from 

CIE XYZ via a 3 x 3  matrix transform. These transforms involve tristirnulns 

values, that is a set of three linear-light components that conform to the CIE 

color-matching functions. CIE XYZ is a special set of tristimulus values. In 

XYZ, an,y color is represented as a set of positive values.

To transform from RGB to XYZ, the matrix transform used is:

0.412453 0.357580 0.189423 1 [ R 

0.212671 0.715160 0.072169 G (A.l)

0.019334 0.119193 0.950227 J [ B 

The range for valid R, G, B values is [0,1].

X

Y =

z
valid R, G

A.3 XYZ to CIELUV Conversion

CIE 1976 L*u*v* (CIELUV) is based directly on CIE XYZ and is another 

attempt to linearize the perceptibility of color differences. The non-linear re­

lations for L*, and V* are given below:

L*

L*

u =

=

903.3(Y/Y„) 

116(Y/Y„,)3 -  16 

13L *(u '-u ;) 

13L* (v' -  v'.)

for Y/Y„ < 0.008856 

for Y/Y„ > 0.008856

(A.2)

(A.3)

(A.4)

(A.5)

L* scales from 0 to 100 for relative luminance (Y/Y,i) scaling 0 to 1. Here X„,, 

Y„ and Z„. ar(> the tristirnulus values of the reference white. The quantities
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and vj, reie.r to the reference white or the light source; for the 2" observer 

and illuminant C, uj, = 0.2009, vj, = 0.4610. Equations for u' and v' are given 

below:

u' = 4X/(X + 15Y + 3Z) (A.6)

v' = 9Y/(X + 15Y + 3Z) (A.7)
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