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ABSTRACT

GAUSSIAN MIXTURE MODELS DESIGN AND
APPLICATIONS

Khaled Ben Fatma
M.S. in Electrical and Electronics Engineering
Supervisor: A. Enis Cetin, Ph. D.
January 2000

Two new design algorithms for estimating the parameters of Gaussian Mix-
ture Models (GMM) are developed. These algorithms are based on fitting a
GMM on the histogram of the data. The first method uses Least Squares Error
(LSE) estimation with Gauss-Newton optimization technique to provide more
accurate GMM parameter estimates than the commonly used Expectation-
Maximization (EM) algorithm based estimates. The second method employs
the matching pursuit algorithm which is based on finding the Gaussian func-
tions that best match the individual components of a GMM from an over-

complete set. This algorithm provides a fast method for obtaining GMM pa-
rameter estimates.

The proposed methods can be used to model the distribution of a large set of
arbitrary random variables. Application of GMMs in human skin color density
modeling and speaker recognition is considered. For speaker recognition, a

new set of speech feature parameters is developed. The suggested set is more

111



appropriate for speaker recognition applications than the widely used Mel-scale

based one.

Keywords: Gaussian Mixture Models, Parameter Estimation, Expectation-
Maximization Algorithm, Gauss-Newton Algorithm, Matching Pursuit Algo-

rithm, Least Squares Error, Speaker Recognition.
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OZET

GAUSS KARISIM MODELLERININ TASARIMI VE
UYGULAMALAR

Khaled Ben Fatma
Elektrik ve Elektronik Miihendislig1 Boliimu Yiiksek Lisans
Tez Yoneticisi: Prof. Dr. A. Enis Cetin
Ocak 2000

Gauss Karigim Modellerini (GMM) parametrelerinin kestirimi amaciyla iki
yeni tasarim algoritmasi geligtirilmigtir. Bu algoritmalar veri histogrami uy-
durma yoluna dayanmaktadir. Birinci yontem, GMM parametre kestiriminde
aligilagelmis beklenti en bitylikleme (EM) algoritmasi tabanl kestirimlerden
daha dogru sonuclar saglamalk i¢in Gauss-Newton eniyileme teknigiyle en kiigiik
kareler hata kestirimini (LSE) kullanmaktadir. Ikinci yontem, sozliik olarak ad-
landirilan, agir tamamlanmig Gauss modelleri kiimesinden bir GMM’in her bir
bilegenini en iyi esleyen Gauss islerlerini bulmak ic¢in kullanilan uyum izleme
algoritmasina dayanmaktadir. Bu algoritma GMM parametre kestirimi i¢in

hizli bir yontem sunmaktadir.

Onerilen yontem genig bir rasgele degisken kiimesini modellemekte kul-
lanilabilir. GMM’lerin kullanim alani olarak insan deri renk yogunlugu mod-
ellemesi ve konugmacit tamima problemleri secilmistir. Konugmaci tanima

icin yeni bir konugma Oznitelik parametre kiimesi geligtirilmigtir. Ongoriilen



bu yeni kiime, yaygin olarak kullanilan Mel-skala tabanh kiimeye kiyasla

konugmaci tanimaya daha uygundur.

Anahtar Kelimeler: Gauss Karigim Modelleri, Parametre Kestirimi, Beklenti
En Biyiikleme Algoritmasi, Gauss-Newton Algoritmasi, Uyum Izleme Algorit-

mas1, En Kiagiik Kareler Hatasi, Konugmaci Tanima.
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Chapter 1

Introduction

In nature, observed phenomena tend to have a wide variety of non-uniform dis-
tributions that often are very hard to estimate or model. In signal processing,
modeling the distribution of an arbitrary phenomenon is a primordial step in

understanding and analyzing the behavior of that phenomenon.

Gaussian Mixture Models (GMM) have been recently used in many appli-
cations as an efficient method for modeling arbitrary densities [1]. A Gaussian
mixture density is defined as a weighted sum of different Gaussian component
densities. GMMs were shown to provide a smooth approximation to the under-
lying long-term sample distribution of observations obtained from experimental
measurements [1]. This is mainly due to the fact that a linear combination of
Gaussian basis 1s capable of representing a large class of sample distributions,

in addition to the observation that most natural phenomena tend to have a

Gaussian distribution.



There are several techniques available for estimating the parameters of a
GMM [2], [3], [4]. By far the most popular and well-established method is
maximum likelihood (ML) estimation. The aim of ML estimation is to find
the model parameters that maximize the likelihood of the GMM, given the
training data. This usually leads to a nonlinear global optimization problem.
ML parameter estimates can be obtained in an iterative manner using a special
case of the Expectation-Maximization (EM) algorithm [5]. The EM algorithm
is an iterative algorithm, which starts with an arbitrary model and tries to
obtain a better model at each iteration until convergence in some sense is
reached. The EM algorithm usually leads to good estimates of the GMM
parameters. However, it does not always provide accurate estimates of the
GMM parameters. Moreover, its computational complexity makes it unsuitable

for applications where speed is important such as real time and adaptation

applications.

New methods for estimating the parameters of a GMM by curve fitting
to the histogram of the observation data are introduced. Two methods are
described; one is based on least squares error estimation using Gauss-Newton

algorithm and the other is based on the matching pursuit algorithm.

The least squares error method tries to obtain the best parameters by mini-
mizing an error function over the unknown parameters. A parameter separation
technique is used to simplify the optimization procedure [12]. The resulting er-
ror function is a highly nonlinear function of the parameters, the Gauss-Newton
algorithm is used to obtain an iterative estimate to the problem. This method
provides more accurate estimates resulting in a better model. Moreover, it

needs a very few number of iterations to converge.



The sccond method is based on the matching pursuit algorithm. Pursuit
algorithms are generally used to decompose arbitrary signals [15]. Decompo-
sition vectors are chosen depending upon the signal properties. Vectors are
selected one by one from a dictionary, while optimizing the signal approxima-
tion at cach step. In this thesis, a modified version of the matching pursuit is
used as an alternative method for estimating the parameters of a GMM. This
method has a lower accuracy than the EM based method, but its low com-
putational complexity makes much faster and more suitable for applications
where speed is crucial such as adaptation algorithms [27], [28], and real time

applications.

Speaker recognition is an important application where the use of GMMs has
proven to he very cfficient [1], [10]. Speaker recognition can be divided into two
sub-fields: Spcaker Identification which tries to identify the person speaking an
utterance from a known set of speakers, and Speaker Verification which tries to
check whether a speaker is that who he claims to be or is an impostor. For both
of these tasks, many models like Hidden Markov models (HMMs), Multiple
Binary Classifier Model (MBCM), Neural Networks, etc.. [10], are proposed.
GMM is recognized as one of the most accurate models for Automatic Speaker
Recognition (ASR), using telephone speech [1]. The speech spectrum based
parameters arc very effective for speaker modeling. The most widely used
speech feature parameter set is based on the Mel-scale cepstrum. The Mel-scale
based features produce excellent results for speech recognition, as the Mel-scale
division of the spectrum is compatible with the human auditory system. This
spectrum division may not be the best possible division for speaker recognition
applications. In this thesis, we propose a new set of features that is more

appropriate to speaker recognition applications.



This thesis is orga,ni'/,o.d as follows. In Chapter 2, we describe briefly the
general form of a GMM and the EM algorithm used for estimating its parain-
eters. In Chapter 3, we develop the idea of using least squares data modeling
implemented by the Gauss-Newton algorithm to derive more accurate GMM
parameter estimates. An application of this idea is also described. Chapter 4
presents a fast GMM parameter estimation method based on a modified ver-
sion of the matching pursuit algorithm. Speaker recognition is considered in
Chapter 5, where a new set, of speech feature parameters is proposed. Finally,

conclusions are given in Chapter 6.



Chapter 2

(Gaussian Mixture Models

(GMM)

2.1 Description

Given an arbitrary D-dimensional random vector Z, a Gaussian mixture density
of M components is defined as a weighted sum of individual D-variate Gaussian

densities 0;(¥), ¢ = 1,..., M, as follows

M
p(EA) = > pibi (2) (2.1)
1=1
where p;, © = 1,...., M, are the weights of the individual components and are
constrained by

M
> opi=1 (2.2)
1=1

The D-variate Gaussian function ;(7) is given by

. 1 1, o .
0i(T) = ———7—— exp {— (Z— 1) TN (F ~ [Z,;)} (2.3)

om) P2 L 2

(&3]



where ji; is the mean vector and %; is the covariance matrix. Therefore a GMM

can be represented by the collection of its parameters X as

A= {pi,ﬂf,;,Zi}, 1= 1,7]\4 (24)

The GMM can have different forms depending on the choice of the co-
variance matrices. The covariance matrices can be full or diagonal. Because
the component Gaussians are acting together to model the overall probability
density function, full covariance matrices are not necessary even if the observa-
tions are statistically dependent. The linear combination of diagonal covariance
Gaussians is capable of modeling the correlations between the observation vec-
tor elements. The use of full covariance matrices can significantly complicate
the GMM estimation procedure, while the effect of using M full covariance
Gaussians can be approximated by using a larger set of diagonal covariance

Gaussians.

2.2 Applications of GMM

Gaussian mixture models have been used in many applications as an efficient
method for modeling arbitrary densities. Since a GMM is capable of modeling
a broad range of probability densities, it has found use in a very large area of
applications. In [7] for example, the probability density function of human skin
color was estimated using a GMM. The estimated probability density function
has many applications in image and video databases. These applications range
from hand tracking to human face detection. Similarly in [8], an object tracking
algorithm is developed using GMMs. Gaussian mixture models were used to

estimate the probability densities of objects foreground and scene backgronnd



colors. Tracking was performed by fitting dynamic bounding boxes to image re-
gions of maximum probabilities. GMMs have been also-used very effectively in
speaker recoguition for modeling speaker identity [1}, [10]. Short-term speaker-
dependent feature vectors are obtained from the speech signal, then Gaussian
mixture modeling is used to estimate the density of these vectors. The use
of Gaussian mixture models for modeling speaker identity is motivated by the
interpretation that the Gaussian components represent some general speaker-
dependent spectral shapes and the capability of Gaussian mixtures to model

arbitrary densities.

2.3 GMM Parameter Estimation

Given an observation sequence X = {z,,z,,...,zr} from a random vector 7,
the goal is to estimate the parameters of the GMM A, which in some sense
best matches the distribution of the observation data. This GMM can then be

considered as a valid estimate to the distribution of the random vector .

There are several techniques available for estimating the parameters of a
GMM [2], [3], [4]. By far, the most common and popular method is maximum
likelihood (ML) estimation [5]. This method tries to find the model parameters

that maximize the GMM likelihood

T

p(XA) =[] p(z,/2)

i=1

—~~
o
(@A

N

given the training vectors X. This leads to a nonlinear function of the paramn-

eters A and direct minimization is not possible. However, ML estimates can



be obtained in an iterative manner using the Expectation-Maximization (EM)

algorithm [5]. The EM algorithm is described in the next subsection.

Another possible method for the estimation of the GMM parameters A, is to
try to make a smooth fit to the histogram of the observation sequence X using a
linear combination of Gaussian functions. This idea will be further investigated
in later chapters. Two new methods using this idea will be presented along

with some possible applications.

Usually there are two important factors in training of a GMM: model or-
der selection and parameter initialization for iterative methods. We will not

address these problems in this thesis.

2.4 Expectation Maximization (EM) Algo-

rithm

The EM algorithm tries to find the estimates of the ML parameters iteratively.
It begins with an initial model A, and tries to estimate a better model until
some convergence is reached. In each EM iteration, first a posteriori probability

is estimated as

: pibi(z,)
plilz,, A) = (2.6)
ZI].W:I pibi (zy)

Based on this probability, mixture weights, means and variances are estimated
using the following re-estimation formulas, which guarantee a monotounic in-

crease in the model’s likelihood value:



o Muzture weights:
"

. 1 : :
b= ;p (d|z,, A) i=1,...,. M (2.7)

where p; is the new estimate of the ith mixture weight and it is obtained

by averaging all a posteriori probability estimates.

o Means:

T .
- 2 =1 Plilzy, Nz,
fl = =5 —— (2.8)
D i Pilzy, A)

where /i is the new estimated mean vector of the ith mixture.

o Variances:

T )

52 — Zt:l p(’& Ly, )\)xf _ ,&2
7 T - >
Zt:l 7)(7'|3_51,, )\) '

where 67 refers to new estimates of arbitrary entries on the diagonal of

(2.9)

the covariance matrix and z;, fi; refer to the corresponding elements of

-
the vectors z, and .

In many applications, the EM algorithm has shown satisfying results . How-
ever, it does not always provide accurate estimates and it may converge to bad
local maxima. DBetter estimates can usually be obtained for the same model
under consideration. Moreover, the computational complexity of the EM algo-

rithm is relatively high especially when the training set is large [6].



Chapter 3

Least Squares Error (LSE)

Estimation

In the previous chapter, we described how ML estimation can be used to obtain
estimates to the parameters of a GMM through the EM algorithm. In this
chapter, we discuss the estimation of the parameters of a GMM Dy trying a
least squares fit to the histogram of the observation data. Given an observation
sequence X = {Z;,Zy, ..., y, }, we first obtain the normalized histogram H (7).
We want to use H(Z) to obtain a Gaussian mixture estimate to the unknown

distribution of # of the form
M
p(EA) = pibi(7) (3.1)
=1

where A represents the model parameters and the weights p; are constrained

by ZL’I pi =1

10



We start by expressing the histogram as
M
H(E) =Y pibi() + w(Z) (3.2)
i=1

where w(Z) is the exror between the histogram and the Gaussian mixture den-
sity to be estimated. In other words, we express the histogram of the ohserva-

tion data as a linear combination of Gaussian functions b;().

We use the least squares data modeling to estimate the parameters of the
GMM. This is done by minimizing a given function of the estimation error
w(Z). We use the Least Squares Error (LSE) criterion. The Gauss-Newton
algorithm is later used to obtain estimates to the unknown parameters in an

iterative manner.

We first present a brief review of the basic concepts of least squares data

modeling, then we proceed to its application in GMM parameter estimation.

3.1 Least Squares Data Modeling

In many applications, the observed signal or sequence is often assumed to be
composed of a linear combination of “basis functions” which are characterized
by a set of parameters, and additive noise [11]. The observation vector of
length N is given by
M
h= E pib;(6;) + w (3.3)

=1

where p; is the coefficient of ith basis vector §,;(6;), which depends on the

parameter vector @, while w is the additive error sequence. This expression

11



can also be written in the compact form

h=Bl)p+w (3.4)

where B(#) is a N x M basis matrix given by
B(6) = [01(8))  bo(f) - bar(Oas)], (3.5)

p is the vector containing the M coefficients and 6 is the composite parameter
vector

8=[67 65 .. %] (3.6)

The objective is to select the unknown parameter vectors § and the amplitude
set, p so that the linear combination of the basis functions best fits h. Using

the LSE criterion we have to minimize the functional
2
e(d,p) = ||n - B(@)p|| (3.7)

This is a highly nonlinear optimization problem with no closed from solution,

therefore nonlinear programming techniques are necessary to achieve the opti-

mization.

To make the optimization problem in (3.7) simpler, we note that the func-

tion to be minimized has two important properties:

e The unknown parameters  and p are separable.

e The least squares error criterion e(f,p) is a quadratic function of the

amplitudes p.

For problems with these properties, Gloub and Pereyra [12], proposed a

parameter separation technique to ease the complexity of the problem. The

12



idea is to find the optimum amplitude vector p° in terms of the unknown
parameters §. Then the set of unknowns reduces to the vector . Once these
are found, the optinum amplitude vector p® can then be obtained directly. This

parameter separation technique simplifies the computations and significantly

improves the speed of convergence.

To obtain an expression of the optimum amplitude vector in term of the
unknown parameters g, we first use the QR decomposition to write basis matrix
B(8) in the form

B(6) = Q(E)R(8) (3.8)
where () is a N x M orthonormal matrix and R(f) is a M x M nonsingular
upper triangular matrix. The expression for the optimum amplitude vector is

formulated in [11] and given by

p* = R(0)7Q0)" % (3.9)

The corresponding least squares error criterion’s value for this optimum choice

is given by

o

2(6,p°) = h"h = K Q()Q(8)"h. (3.10)

By minimizing criterion (3.10), we obtain the vector of the unknown parameters
8. Once this vector has heen found, it is substituted into expression (3.9) to

obtain the corresponding amplitude vector p°.

3.2 GMM Parameter Estimation

In our application, we want to estimate a density function that fits the distyi-

bution of a sequence of observed data, as a mixture of Gaussian functions. To

13



use least squarcs data modeling, we have to put expression (3.2) in the form

of expression (3.4). For 1-D case, this is straightforward:

M

h = Y pbi(l) +w (3.11)
1=1

= Bl@)p+uw (3.12)

where:

o p= [ pa pM]T is the mixture weights vector,

T . . : .
o 0. = [ o] is the parameter vector of the ith Gaussian component

and
b)) b)) bz 6y)
b I"Q b I;Q b x)Q
OB(Q): 1(2 1) 1(2 2) 1(2 M)
o) bilaw,8) o bilom ) |

In our model, we use diagonal covariance matrices. Expression (3.9) gives

us the optimum weights vector as
p’=R(O)'QO)" L (3.13)
where Q(f) and R(f) are obtained from QR decomposition of B(6).

This approach can be extended to higher dimensions in a similar manner.
The observation vector h can be obtained by putting the columns of H(7) into

one vector sequentially, B(#) can be then obtained accordingly.

14



3.2.1 Gauss-Newton Algorithm

The minimization problem (3.10) is highly nonlinear in the unknown vector 8,
therefore nonlinear programming techniques must be used to achieve the opti-
mization. For this task, we use the Gauss-Newton algorithm developed in [11],
which is a descent method that has proven to be very effective in solving highly
nonlinear programiming problems. In typical iterative optimization techniques,
the parameter vector is incrementally perturbed so that the cost criterion takes

lower values at each iteration. In other words, the current parameter vector g,
is perturbed to obtain

Ops1 = O + 9 (3.14)
where §, is the perturbation vector which is chosen in such a way that a

decrease in the cost criterion results.

In Gauss-Newton algorithm, the optimum perturbation vector ¢, which
results in the highest decrease in the cost criterion, is estimated at each iter-
ation. This procedure ensures that quadratic or superlinear convergence rates

are attained in a neighborhood of a relative minimum.

For the nonlinear optimization problem given in (3.4), the Gauss-Newton

perturbation vector at the kth iteration is given by

-1

5 = = [7(8)7 7 (6] (07 ee, ) (3.15)

where J (0,) is the Jacobian matrix and the residual vector e(p°, @) is given

by
e, 0) = (1 - Q) & (3.16)



The Jacobian matrix, J(@) has the form

0 0 0
J(8) = (6 — d . :
(©) 00}(&) 6926(6) G@f(g) (3.17)
The partial derivative terms are approximated as
0 0P,
—e(l) = ——=h
aake(—) aekb' (3.18)
dB(¢
= - 2 g go (3.19)
k

where I is a projection matrix defined as Py = Q(8)Q(8)”.

The algorithm starts with an initial estimate @, of the unknown parameters.
At each iteration of the Gauss-Newton algorithm, the optimal perturbation

vector is used to update the parameters vector ¢, so that an improvement in

the criterion (3.10) is obtained
Ops1 = 0 + idy. (3.20)

The step size «y, is selected large at early iterations and reduced at later stages

of the optimization procedure. Usually, o is chosen from the sequence

ap =1, (3.21)

DO =
>
o0

until the first value of ¢ which reduces the cost criterion is found. Once
the parameter vector @ is found, it is inserted in expression (3.13) and the

amplitude set p” is obtained.

16



3.2.2 Algorithmic Issues

Initialization

One critical factor in GMM parameter estimation is the initialization of the
model parameters. The initialization procedure is very important for the per-
formance of the Gauss-Newton algorithm. It was checked experimentally that
a bad initialization can result in high estimation error and a poor model. One
efficient initialization method consists of randomly choosing vectors from the
training data as mean vectors followed by K-means clustering to initialize

means, variances and mixture weights.

Optimum Step Size

In subsection 3.2.1, we discussed how the step size oy used in expression (3.20)
can be chosen from the sequence in Equation (3.21). This procedure can be
effective in finding an appropriate step size that results in a decrease in the error
criterion for a given perturbation vector. However, it does not find the best
possible step size that results in the highest decrease in the cost criterion. Since
the calculation of a perturbation vector ¢y is relatively costly in computation
power, we want to get the most out of this perturbation vector once it is
calculated by cstimating the corresponding step size af that results in the
highest decrease in the error criterion. Here, we introduce a procedure for
estimating the optimum step size o for a given perturbation vector. We start
by considering the error function to be minimized given in Equation (3.7),
which is the squared error between the normalized histogram and the estimated

distribution. Once a new perturbation vector is calculated the new value of this

17



error function depeuds on the step size ay, , denoted by e(ay). We want to find
the value of af for which e(ay) < e(ay), for all 0 < af < 1. For these values of
oy, it was found experimentally that the error function can be approximated

by a parabola as
é(y) = a.ajp + bay +c ca € IR (3.22)

For this parabola the minimum value is given for

b

O‘—‘_—
%= Tag

To fit a parabola to e(ax) we need its value at three different point of oy
between 0 and 1. We use the region 0 < aj < 1, because we do not want to
get too far from our current operating point (ay = 0), since far from this point
the error function is unpredictable and our approximation becomes invalid. We
already know ¢(0) which is the error value at the previous iteration so need two
more points. We use e(1/2) and e(1), this is enough to find the parameters a, b,
and c of the parabola. We equate the values of e(ay) and é(ay) at ax = 0,1/2, 1.

Then the three following equations gives us the solution:

e(0) = ¢ a 2 —4 2 e(0)
eMy=tatdv+e = b =]-3 4 -1]|]ed) |- (324
e(ly=a+b+c ¢ 1 0 0 e(1)

We plug the values of a and b into Equation (3.13) to obtain

b 3e(0) —4e(1/2) +e(1)
20 4e(0) — 2¢(1/2) +e(1)]’

(3.25)

ap = —

This gives us an estimate for the best step value a. Some typical experimental
realization of this method are shown in Figure 3.1. The results in Figure 3.1
show that our approximation is valid around the region 0 < «, < 1. The

estimated optimum step size af is very close to the correct one.
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Figure 3.1: Two typical realization of the parabolic fit of the error function
with the corresponding minimum value.

3.2.3 Simulation Studies

In this subsection, simulation studies are carried out to compare the perfor-
mance of the suggested method with the EM algorithm. For this purpose, data
from Gaussian mixture densities are generated at random. Simulations werc
carried out for both 1-D and 2-D GMMs. For each Gaussian mixture, 2000
observations arce generated and used to obtain an estimate to the parameters

of the original distribution. The estimation error criterion is defined as
<\ 2 o
¢ = Z (p(:x|)\) — j)(:l:l)\)) (3.20)
r

where A represents the original Gaussian mixture density and A represents the
estimated once. Both 1-D and 2-D density cases are considered. For cach case,
4-component and 12-component mixtures arc used. For each experiment, 100
runs were made and the mean square error of the 100 runs is computed. The 100
runs are also divided into 10 groups of 10 runs such that in each group of 10 runs
the GMM parameters arc kept constant but 10 different sets of observations

are generated, from which the histogram is computed. Figure 3.2 shows the
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results for the 1-D and 2-D cases corresponding to 4 and 12 component GMMs.

GN
EM

Squated emor

GN
EM

Figure 3.2: Mean square error obtained for GMM estimation using GN(straight
line) and EM (dashed line) algorithms. (a) 1-D GMM, M=4, (b) 1-D GMM,
M=12, (c) 2-D GMM, M=4, (d) 2-D GMM, M=12.

3.3 An Application

Probability density modeling using GMMs have been used in a wide range

of applications ranging from speech and image processing to biology. In this

20



section, we consider some simple recent applications of GMMs to test the per-
formance of the proposed Gauss-Newton based parameter estimation method

compared to the EM-based one.

In [7], a probability density function of human skin color was estimated
using a Gaussian mixture model whose parameters were estimated through the
EM algorithm. The estimated density function has many applications in image

and video databases. These applications range from human face detection to

hand tracking.

A set of experiments similar to those described in [7] were carried out to
estimate a probability density function of human skin color, but in our case
the estimation of the GMM parameters was done using both the EM algorithm

and the Gauss-Newton based method and the results are compared.

Typical human skin pictures were collected and human skin regions were
extracted manually. A sample is shown in Figure 3.3. Each sample (skin color
pixel) consists of three values (R,G,B). To reduce the dependence on the light-
ing condition, each sample is transformed from RGB to CIELUYV color space
and then the brightness component is discarded. The color space transfor-
mation from RGB to CIELUV in given in Appendix A. Figure 3.4 shows the

resulting 2-D histogram of skin color (histogram of z = (u,v)T ).

As in [7], two Gaussian components were used to estimate the probability
density function corresponding to the histogram shown in Figure 3.4. Figure
3.5 and Figure 3.6 show the estimated density function for EM and Gauss-
Newton methods respectively. The corresponding estimation squared error is

shown in Figure 3.7.
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Figure 3.3: Human skin color pdf estimation, (a) original image, (b) skin pixels
extracted for GMM training.

From Figure 3.5 and 3.6, we can see that the Gauss-Newton method results
in a better model then the EM algorithm. This is confirmed by Figure 3.7
since the estimation squared error is smaller in the case of the Gauss-Newton
estimation. Figure 3.7 also shows the improvements in performance obtained

when using the optimum step size described in 3.2.2.

3.4 Conclusions

In this chapter, we described Gauss-Newton optimization technique based ap-
proach to obtain the parameters of a Gaussian Mixture Model. We experimen-
tally demonstrated that this method provides a more accurate representation
of the data compared to the widely used EM algorithm. Furthermore, this

method often converges in less number of iterations.
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Figure 3.4: 2-D human skin color histogram in the UV space seen from different
angles.
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Figure 3.5: Estimated human skin color density function using EM algorithm,
(@) 3-D view of the estimated histogram, (b) Top view of estimated histogram
compared to the histogram shown in Figure 3.4d.
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Figure 3.6: Estimated human skin color density function using Gauss-Newton
algorithm, (a) 3-D view of the estimated histogram, (b) Top view of estimated
histogram compared to the histogram shown in Figure 3.4d.
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Figure 3.7: Skin color estimation squared error obtained at each iteration using
EM algorithm, Gauss-Newton algorithm with normal perturbation step size
and Gauss-Newton algorithm with estimated optimum perturbation step size.
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Chapter 4

Matching Pursuit Based GMM

Estimation

In this chapter, we develop a fast method for obtaining GMM parameter esti-
mates for arbitrary probability densities. This method is based on the matching
pursuit algorithm. As in Chapter 3, we use the histogram of the observation
data for deriving our model. The matching pursuit algorithm is used to de-
compose the histogram into different Gaussian functions. This decomposition
results in a Gaussian mixture density that can be used as an estimate to the
probability density of the random vector under consideration. In section 4.1,
we start by giving a brief description of the matching pursuit algorithm. The

suggested method is presented in section 4.2.
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4.1 Matching Pursuit Algorithm

Matching pursuit is a recently proposed algorithm for deriving signal-adaptive
decompositions in terms of expansion functions chosen from an over-complete
set called a dictionary -over-complete in the sense that the dictionary elements,
also called atoms, exhibit a wide range of behaviors [13]. Roughly speaking,
the matching pursuit algorithm is a greedy iterative algorithm which tries to
determine an expansion for an arbitrary signal z[n] given a dictionary of atoms,

g+[n], as follows
K
z[n] = Z Qi gy[n] (4.1)
k=1

where the dictionary is a family of vectors (atoms) g, included in a Hilbert space

H with a unit norm ||g,|| = 1 and v is the set of parameters characterizing ¢..

Matching pursuit algorithms are largely applied using dictionaries of Ga-
bor atoms [14]. Gabor atoms are appropriate expansion functions for time-
frequency signal decomposition, which are a scaled, modulated, and translated
version of a single unit-norm window function, g(.), which has the following

form in continuous-time domain

gy(t) = %g <t—:/f> et (4.2)

where 7 is the collection of parameters v = (s, u,€) € I' = R*x R% Note that
9 is centered in a neighborhood of u whose size is proportional to s and its
Fourier transform is centered at w = . This parametric model provides mod-

ification capabilities for time and frequency localization properties of signals.
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4.2 Matching Pursuit Based Estimation

We want to use the matching pursuit algorithm with Gabor atoms to find a
suitable decomposition to the speech features histogram. In our application,
the modulation factor e’** in expression (4.2) is not necessary since the {re-
quency localization has no meaning in this case, and thus it is dropped and we

use

nlt) = e (= “) (43)

Furthermore, if we choose ¢(t) as a Gaussian function of zero mean and unit

variance
g(t) = _1 ' t 4.4
g o exp 5 (4.4)

then we obtain

I SR A A O -
go(t) = NeING exp (—2—32> (4.5)
= VsN(u,s% (4.6)

which is a Gaussian function with mean p and variance s? scaled by a factor

/5. The discrete form of (4.5), is

1 nN — u)?
gqln] = NN (-%) (4.7)

where and N is the sampling period. The resulting g,[n] is a suitable decom-

position function for our application.

In the following, we introduce a fast method for estimating the param-
eters of a GMM using the matching pursuit algorithm with decomposition
functions derived in (4.7). Given an arbitrary D-dimensional random vece-

- A . . . .
tor £ = [.'1:1 Lo e :1;1_)] , we want to obtain a Gaussian mixture density
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which approximates the distribution of Z, using a set of observation vectors

X = {z,2y,....,2p, }. Let us first write X as

i T ]

T T2 Tyr Xy
N Ta1 T22 Ty T Xo
Tp, Zo;r | Xp

where X; , ¢ =1,..., D are the sequences of training data corresponding to each
of the D components of 7. For each X;, we calculate the corresponding 1-D
normalized histogram H;(z). If we can decompose H;(z) into a finite weighted
sum of Gaussian components, we obtain a valid estimate to the distribution
of z;, the ith component of £. The decomposition is done as follows. We first
define our dictionary D as a family of vectors g,. The form of g, is given in
(4.7). Each decomposition vector g, depends on the parameter v = (u,s).
The range of i can be obtained from the range of H;(z), while the range of
s should be chosen experimentally. The dictionary should be large enough to
cover a wide range of vectors. The algorithm starts by finding g,,, € D that
best matches H;(z) in the sense that the inner product |(Hj, g, )|, which is a

measure of similarity between H;(z) and g., ,, s maximized, i.e.,

|(His 9500)| = sup [(Hi, gy)] - (4.9)

Then, we can write
Hi = <Hi’g’7i.0> Jyi0 + RHi (4.10)

where RH, is the residual vector. The iteration then proceeds on RH; as the

initial vector. Suppose that R™H; denotes the nth residual of H; , at the nth

iteration we get

R'H, = (R*H;, ¢y...) 9. + B"*'H, (4.11)
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If we carry the iteration to order M, we obtain

M-]
H, = Z <RnH,;,_(].y’.,n> -(j'Yi.n + RMHZ (412)
n=()
M-1
= Z il + RM H; (4.13)
n=0

where a;,, = <R”H,¢, g%_”> and ¥ n = (fin, $1,,). This gives us a decomposition
of H;(z) as a weighted sum of Gaussian components. Let’s examine the first

term of the RHS of Equation (4.12). From Equation (4.5) we obtain

M-1 M-~-1
Y Qinbrn = Y VEunin N (i, 7,) (4.14)
n=0 n=0

If we further define the weight p; , as

\/ Si,nai,n
(4.15)

Pin = M1
En:O V Si,T].O'li,n
M-} : : . : ,
so that > ', pin = 1, then we obtain a valid Gaussian mixture model for z,

M-1
]9(-731"/\1‘) = Z pi,nbi,n(xi) (416)
=0
where b; ,(2) is a Gaussian with mean y; , and variance s?,, both obtained from

the decomposition of H;(x).

If we carry out this procedure for all the individual components of Z, then we
obtain D separate 1-dimensional models corresponding to the D components
of & z; , i+ = 1,...,D. For l-dimensional signal, this procedure results in
one GMM that can be used as a model for the distribution of that signal.
However, in higher dimensional cases the resulting 1-D models cannot be used
to obtain the overall distribution directly, unless the individual components of
the random vector are uncorrelated. For this case, the overall D-dimensional

GMM can be obtained by multiplying the individual 1-D GMMs

D
p() = ] [ (w20, (4.17)
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For random variables with correlated components, this is not valid. One
possible solution is to apply a transformation that decorrelates or at least
minimizes the correlation between the individual components of Z. In speech
processing for example, a Discrete Cosine Transform (DCT) is used to decor-
relate the speech feature obtained from a speech signal. A DCT or a similar
transform can be used to decorrelate (or at least minimize) the correlation be-
tween the individual components of the random vector. In this case, expression

(4.17) can be used to obtain a good estimate to the overall distribution of the

random vector.

In the next section, a fast calculation method is proposed to increase the

algorithm’s speed.

4.3 Fast Calculations

The matching pursuit can be implemented using a fast algorithm described
in [23], that computes (R"*'H;, g,) from (R"H;,g,) with a simple updating

formula. Consider Equation (4.11), which we can write as
R H; = R"H; ~ (R"H;, ... Gvim (4.18)
Take the inner product with g, on each side, we obtain
(R H,, g,) = (R"Hy, gy) — (R*Hiy 9y, ) (0,00 90) (4.19)

which is a simple updating formula for (R**'H,,g,). If we can calculate the
inner product of all the atoms in the dictionary, (g, 9s), and store it in a
lookup table, then we can use this update formula to calculate (R"'H;, g,) at

cach iteration. The final algorithm is summarized below:
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Foreach H;, ,2=1,....D

1. Set n = 0 and compute {<H77’97>}7er
2. Find g,,, € D such that: [(H;, gy,,)| > sup |(H;, g,)| forallyeTl

3. Update for all g, € D:

<R”+1Hi: f/y) - (R”H,;,gﬁ - <RnHi’g%'"> <g7i‘”’gy>

4. If n < M — 1 increment n and go to 2.

4.4 Experimental Results and Discussion

Even though the proposed method provides a less accurate model then the EM
algorithm for random variables with correlated entries, its low computational
complexity makes desirable. This method is especially useful for applications
where speed is important. We have tried the matching pursuit based method
in the application of speaker identiﬁcation and the rates of recognition were
compared to those obtained using the EM algorithm. Table 4.1 summarizes
the results for a 30-speaker set with a training sequence of 40 sec for each
speaker. The simulations were carried out on an Intel-Pentium based PC using
MATLAB. The rates of identification in the matching pursuit case are less
than those for the EM algorithm. However the model] training time for the

30-speaker set is extremely lower than that required by the EM algorithm.
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Using EM | Using MP

Identification rate | 77.8% 71.5%
Training time 42 min 8 min

Table 4.1: Speaker identification rate using EM algorithm and the matching
pursuit algorithm. The model training time corresponds to a set of 30 speakers
and 40 sec speech signals per speaker.



Chapter 5

Speaker Recognition Using
GMM and a Nonlinear

Frequency Scale

In general, the field of speaker recognition can be classified into two sub-areas:
verification and identification. Recognition rate in both cases largely depends
on extracting and modeling the speaker dependent nature of the speech signal,
which can effectively distinguish one speaker from another. The most widely
used speech feature parameter set is based on the Mel-scale Cepstrum: the
Mel Frequency Cepstral Coefficients (MFCC) [16]. The MFCC features are
obtained from a Mel-frequency division of the short-time speech spectra and
produce very good results for speech recognition [22], as Mel-scale division of
the spectrum is compatible with the human auditory system. In Section 5.1,

we give a brief review of MFCC feature extraction and the use of Ganssian
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Mixture Models (GMM) in speaker recognition for modeling the distribution

of MFCC features.

In [17], we observed that the use of scales other than the Mel-scale may be
more advantageous for speaker recognition applications. In this chapter, we
propose the use of a nonlinear frequency scale for speaker recognition applica-
tions. In the modified Mel-scale, more emphasis is given to frequencies around
2 kHz. The idea of modifying the Mel-scale was originally proposed in [24]
and used successfully in accent classification. In Section 5.2, we introduce a
new nonlinear frequency scale for speaker recognition and its computation us-
ing the FF'T domain filter bank. Section 5.3 describes the computation of the
same frequency scale using a subband wavelet packet transform. Experimental

results for speaker identification are given in Section 5.4.

5.1 Mel-Frequency Cepstral Coefficients

In speaker recognition, the use of speech spectrum has been shown to be very
effective [21]. This is mainly due to the fact that the spectrum reflects vocal
tract structure of a person which is the main physiological system that distin-
guishes one person’s voice from another. Recently, cepstral features computed
directly from the spectriun are found to be more robust in speech and speaker

recognition, especially for noisy speech [19].

In speaker recognition systems, the Mel-frequency cepstral-coefficients
(MFCC’s) are usually used as features to characterize the speech signal [16].
Briefly, the MIFCC’s are computed by smoothing the Fourier transform spec-

trum by integrating the spectral coefficients within triangular bins arranged on
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a non-linear scale called the Mel-scale shown in Figure 5.1. This scale tries to
imitate the frequency resolution of the human auditory system which is linear
up to 1 kHz and logarithiic thereafter. In order to make the statistics of the
estimated specech power spectrum approximately Gaussian, logarithmic com-
pression is applied to the cnergy obtained from each frequency bin. Finally, the
Discrete Cosine Transform (DCT) is applied in order to compress the spectral
information into the lower-order coefficients. Moreover, the DCT de-correlates
these coefficients allowing the subsequent statistical modeling to use diagonal

covariance matrices.

MIPOCCAN,

F(l Hz)

Figure 5.1: Triangular bins arranged on a Mel-scale for MFCC features extrac-
tion.

Gaussian Mixture Models (GMM) have been used very widely in speaker
recognition applications for modeling speaker identity. Short-term (usually
20 ms) speaker-dependent feature vectors are first obtained from the speech
signal, then GMM is used to model the density of these vectors. The individual
Gaussian components of a GMM are shown to represent some general speaker-
dependent, spectral shapes that are efficient for modeling speaker identity. For

speaker identification, each speaker is represented by a GMM and is referred

to by his/her model.

35



5.2 New Nonlinear Frequency Scale

The Mel-scale, which is approximately linear below 1 kHz and logarithmic
above, is more appropriate than linear scale for speech recognition performance
across frequency bands. This scale tries to imitate the frequency resolution
of the human auditory system which is linear up to 1 kHz and logarithmic
thereafter. However, in [17], we observed that the use of scales other than the

Mel-scale may be more advantageous for speaker recognition applications.

In [24], properties of various frequency bands in the range between 0-4 kHz
was investigated for accent classification. It was shown that for speech recog-
nition applications the lower range frequencies, mainly between 200-1500 Hz,
have most of the relevant information. This explains the use of Mel-scale for
speech recognition. While for accent classification applications, it was shown
that the most relevant frequency band lies around 2 kHz. This suggests that
mid-range-frequencies (1500-2500 Hz) contribute more to accent classification
performance. Following these results, a new frequency axis scale was formu-
lated for accent classification [24], which is shown in Figure 5.2. Since a large
number of filter banks are concentrated in the mid-range frequencies, the out-

put coefficients are better able to emphasize accent-sensitive features.

Similarly, the frequency range that is most relevant for speaker recognition
is investigated in this paper. Then a scale that gives more emphasis to this

frequency range is formulated.

In [24], a series of experiments were performed to investigate the accent
discrimination ability of various frequency bands. We carried out similar ex-

periments to investigate the importance of different frequency bands in speaker
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Figure 5.2: A sampling scheme for filter banks which is more sensitive to accent
characteristics.

recognition. The frequency axis (0-4 kHz) was divided into 16 uniformly spaced
frequency bands. The energy in each frequency band was weighted with a tri-
angular window. The output of each filter bank was used as a single parameter
in generating a GMM for each speaker. Figure 5.3 shows speaker identifica-
tion performance across the 16 linearly spaced frequency bands. Unlike speech

recognition, the most relevant frequency band lies slightly above 2 kHz.
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Figure 5.3: Speaker identification performance based on the energy in different

frequency bands.
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In accordance with the previous result, a new frequency axis scale is de-
rived. The scale is shown in Figure 5.4. Since a relatively large number of
filters (windows) are concentrated in the midrange frequencies, the output co-
efficients are better able to emphasize speaker-dependent features. The 16

center frequencies of the filters which range between 0-4 kHz are also given in

Table 5.1.

] ?I
/ II"JK ﬂ l* HHH".

F(LH")

Figure 5.4: A new frequency axis division suitable for speaker recognition
applications.

tD
I
+h

Filter # | Center frequency (Hz) || Filter # | Center frequency (Hz)
1 350 9 2100
2 700 10 2220
3 1000 11 2390
4 1250 12 2600
) 1450 13 3000
6 1650 14 3300
7 1850 15 3500
8 2000 16 3700

Table 5.1: Center frequencies (Hz) of triangular windows shown in Figure 5.4.

Usually a pre-emphasis, shown in Figure 5.5, is applied to the magnitude
spectrum from each speech frame. This pre-emphasis gives more importance
to mid-range and high frequencies and has proven to be effective in speaker

recognition.
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Figure 5.5: Pre-emphasis applied to speech frames.

After the pre-emphasis and log compression, the cepstral features are com-

puted using the discrete cosine transform (DCT).

5.3 Subband Decomposition (Wavelet) Based

Computation of Features

The wavelet analysis associated with a corresponding decomposition filterbank
is proposed in [18] to obtain a scale similar to the one derived in the previ-
ous section. The implementation of the wavelet packet transform can differ
according to the application. In this case, a tree structure which uses a sin-
gle basic building block is used repeatedly until the desired decomposition is
accomplished [19])- [20]. This single block, shown in Figure 5.6, divides the

frequency range of the input into two half-bands.

LPF ~ 2l " Sjn]

1) J——

HPF 2 = Sin)

Figure 5.6: Basic block of a subband decomposition.
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The pass-bands for the low-pass and high-pass filters are [O, %] and [%, 7r],
respectively. One possible choice for these filters is the 7 order Lagrange

filters having transfer functions

1 9, _ 1, _ .
Hi(z) = 5+ 3—2(2 '+ 2) - 3—2—(2 ) (5.1)

1 9 _ 1 .
H,L(z):§—3—2(z 1+z)+§§(z S+ 2% (5.2)

Using subband decomposition, a frequency domain decomposition similar
to Mel-scale can be obtained [18], the corresponding scale is shown in Figure

5.7. In [18], the resulting cepstral coefficients are called SUBCEP’s.

.|.l||.|.|.l.1L[ PRI |
0 1kH: 2kHz 3kH2 dkHz

Figure 5.7: Subband decomposition approximation to Mel-scale.

In speaker recognition within the telephone bandwidth, the frequency range
0-4 kHz is decomposed in a manner to give more emphasis to mid-range fre-
quencies between 2 and 2.75 kHz. The corresponding frequency domain de-
composition is shown in Figure 5.8.

| T T | |

1Kz 2kHz JkH: 4xHz

0

Figure 5.8: Frequency scale for speaker recognition using subband decomposi-

tion.
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5.4 Experimental Study and Conclusions

5.4.1 Database Description

The experiments were carried out on the POLYCOST 250 database (v1.0).
The POLYCOST database is dedicated to speaker recognition applications [26].
The main purpose behind it is to provide a common database on which speaker
recognition algorithms can be compared and validated. The database was
recorded from 134 subjects coming from 14 European countries. Around 10
sessions were recorded for each subject, each session contains 14 items. The
recordings were made over the telephone network with an 8 kHz sampling
frequency. In [26], a set of baseline experiments is defined for which results
should be included when presenting evaluations made on this database. Our

experiments follow the set of rules defined in [26] under “text-independent

speaker identification” .

5.4.2 Experimental Results

A set of experiments was carried out to analyze the performance of the pro-
posed frequency scale for speaker identification. The speech signal is first
analyzed, and the silence periods are removed. Then the signal is divided into
overlapping frames of approximately 20 ms length and a spacing of 10 ms.
For each frame, 12 speech features are extracted. The experiments were done
using features obtained from both methods described previously, i.e., cepstral
features computed via Fourier analysis and wavelet analysis (SUBCEP) using

frequency scales shown in Figure 5.4 and Figure 5.8, respectively. Table 5.1
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shows the results obtained for both methods for different frequency scales. The

first column is computed using the DFT while the second column is computed

using wavelet analysis.

Recognition rate using
DFT analysis based
cepstral features

Recognition rate using
wavelet analysis based
cepstral features

Mel-scale 77.8% 78.4%
Modified Mel-scale derived 78.9% 79.5%
for accent classification

Frequency scale derived for 79.5% 80.7%

speaker Identification

Table 5.2: Speaker identification performance for different frequency domain
scales using MFCC and SUBCEP features.

The results obtained in Table II confirm that the Mel-scale is not appro-
priate for speaker recognition applications. In fact, Mel-scale performs slightly
better than a uniform decomposition of the frequency domain. The frequency
scale derived in [24] for accent classification performs better than the Mel-
scale. This is mainly due to the fact that this scale emphasizes mid range
frequencies which are important for speaker recognition. Finally, the new de-
rived frequency scale for speaker identification performs the best among the
three scales. This scale emphasizes exactly the frequency bands that are most

significant for speaker identity.

The experimental results also show that the use of wavelet analysis for
feature extraction performs slightly better than MFCC’s which are computed
using DFT. We finally conclude that the choice of the frequency domain scale
should depend primarily on the type of application under consideration. For
speaker recoguition, it is shown that mid-range and some high frequency com-

ponents are more iinportant for representing speaker identity.
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Chapter 6

Conclusion

In this thesis, the design of Gaussian mixture models for arbitrary densities
was studied. Estimation of model parameters is one of the most important
issues in GMM design. The Expectation-Maximization algorithm is widely in
literature as a. method for estimating these parameters. GMM parameters are
usually estimated from a set of observed data. Since the density function to be
estimated should be close to the histogram of the observed data in shape, the
latter can be used to derive good model estimate. In this work, we proposed
two new methods for estimating GMM parameters based on this approach,

which overcome some drawbacks of the EM algorithm.

The first method is based on least squares estimation. The least squares
criterion is used to minimize an error function based on the difference between
the observation data histogram and the estimated density. The minimization
is carried out using the Gauss-Newton optimization technique. This technique

usually needs a very few number of iterations to converge. Simulations results
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have shown that the model estimated using the proposed method is more ac-
curate than the EM based model, in the sense that the mean squared error
between the estimated density and the data histogram is lower. In the opti-
mization procedure, the step size related to the perturbation vector used in the
parameter update formula, has an important effect on the convergence speed
and the final model error. We have provided a simple method for obtaining an
estimate to the perturbation step size at each iteration of the Gauss-Newton al-
gorithm. Experimental results showed an increase in model convergence speed

and accuracy when this method was applied.

Human skin color distribution modeling was used as an experimental exam-
ple to the application of the suggested method. The results showed a significant

increase in the model accuracy when our method is used instead of the EM

based method.

In the second method, we used the matching pursuit algorithm to decom-
pose the histogram of the observation data with a proposed set of decom-
position functions. The decomposition results in a set of weighted Gaussian
functions which was used to obtain a GMM for the density function of the
process under consideration. This method provides a fast way to obtain GMM
parameter estimates. In the application of speaker identification, the proposed
method resulted in a less accurate model then the EM algorithm but the re-
quired training time was remarkably lower. Still, the matching pursuit based
method further needs to he investigated for applications where speed is impor-

tant. The use of this method may be advantageous in applications like speaker

adaptation.
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In Chapter 5, we developed a new set of speech feature parameters that are
more appropriate for speaker recognition applications than the commonly used
Mel-scale hased features. The proposed features are based on a nonlinear divi-
sion of the frequency scale that gives more importance of mid-range frequencies
around 2 kHz. In a set of experiments on speaker identification, we found that

the suggested set of features results in some increase in the identification rate.

Each of the proposed GMM parameter estimation methods has its advan-
tage. In fact, the two methods can be exploited together in one system. For ex-
ample, in an application, the model obtained by the matching pursuit method
can be used a good initial point for the Gauss-Newton based method. This can
result in a faster convergence of the optimization procedure. Another interest-
ing application is to use the Gauss-Newton method to obtain a starting model
for our process, then whenever new data comes the matching pursuit method
can be used to adapt the existing model to the new data in a fast manner. The
adaptation procedure can be done using a method called modeling weighting.
Briefly, what modeling weighting does is whenever there is new adaptation
data the final mmodel is calculated as a weighted sum of the original model and
the model derived from the adaptation data. A smaller weight is given to the

adaptation model, also a forgetting factor can be inserted with time.
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Appendix A

RGB to CIELUYV Color Space

Conversion

A.1 CIELUYV Color Space

This is based on CIE Yu’v’ (1976) and is a further attempt to linearize the
perceptibility of unit vector color differences. It is a non-linear color space, but
the conversions are reversible. Coloring information is centered on the color
of the white point of the system, (D65 in most TV systems). The non-linear

relationship for Y* is intended to mimic the logarithmic response of the eye.

RGB color values cannot be transformed directly to CIELUV. Instead, they

should be first converted to CIE XYZ, then CIELUV values can be computed

from CIE XYZ.
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A.2 RGB to XYZ Conversion

RGB values in a particular set of primaries can be transformed to and from
CIE XYZ via a 3 x 3 matrix transform. These transforms involve tristimulus
values, that is a set of three linear-light components that conform to the CIE
color-matching functions. CIE XYZ is a special set of tristimulus values. In

XYZ, any color is represented as a set of positive values.

To transform from RGB to XYZ, the matrix transform used is:

X 0.412453 0.357580 0.189423 R
Y | = | 0.212671 0.715160 0.072169 G (A.1)
Z 0.019334 0.119193 0.950227 B

The range for valid R, G, B values is [0,1].

A.3 XYZ to CIELUV Conversion

CIE 1976 L*u*v* (CIELUYV) is based directly on CIE XYZ and is another
attempt to linearize the perceptibility of color differences. The non-linear re-

lations for L*, u*, and v* are given below:

L* = 903.3(Y/Y,) for Y/Y, < 0.008856 (A.2)
L* = 116(Y/Y,)?—16 for Y/Y, > 0.008856 (A.3)
Wt o= 13L"(u' —u;,) (A4)
v o= 13L* (v =) (A.5)

L* scales from 0 to 100 for relative luminance (Y/Y,,) scaling 0 to 1. Here X,

Y, and Z, are the tristimulus values of the reference white. The quantities
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u/, and v/, refer to the reference white or the light source; for the 2¢ observer
and illuminant C, u/, = 0.2009, vi, = 0.4610. Equations for u’ and v’ are given
below:

W o= 4X/(X +15Y + 3Z) (A.6)

v o= OY/(X +15Y +32) (A.7)
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