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ABSTRACT

SIGNAL PROCESSING APPLICATIONS OF THE 

FRACTIONAL FOURIER TRANSFORM

i. Şamil Yetik

M. S. in Electrical and Electronics Engineering

Supervisor: Prof. Dr. Haldun M. Özaktaş 
August 2000

In this work, first we give a summary of the fractional Fourier transform 

including its definition, important properties, generalization to two-dimensions 

and its discrete counterpart. After that, we repeat the concept of filtering in 

the fractional Fourier domains and give multi-stage and multi-channel filtering 

configurations. Due to the nonlinear nature of the problem, the transform 

orders in fractional Fourier domain filtering configurations have usually not 

been optimized but chosen uniformly up to date. We discuss the optimization 

of orders in the multi-channel filtering configuration. In the next part of this 

thesis, we discuss the application of fractional Fourier transform based filtering 

configurations to image representation and compression. Next, we introduce the 

fractional Fourier domain decomposition for continuous signals and systems. In 

the last part, we analyse perspective projections in the space-frequency plane 

and show that under certain conditions they can be approximately modeled in 

terms of the fractional Fourier transform.

Keywords: Fractional Fourier transforms, signal and system synthesis, image 

representation and compression, perspective projections.
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ÖZET

KESİRLİ FOURIER DÖNÜŞÜMÜNÜN 

SİNYAL İŞLEME UYGULAMALARI

i. Şamil Yetik

Elektrik ve Elektronik Mühendisliği Bölümü Yüksek Lisans

Tez yöneticisi: Prof. Dr. Haldun M. Özaktaş 
Ağustos 2000

Bu çalifjimula, önce kesirli Fourier dönüşümünün bir özeti verildi. Bu 

özetde, kesirli Fourier dönüşümünün tanımı, önemli özellikleri, iki boyuta 

genellenmesi ve sayısal kesirli Fourier dönüşümünün tanımı vınildi. Daha 

sonra, kesirli Fourier dornenlerinde süzgeçleme ve çok kanallı ve çok kademeli 

süzgeçleme düzenekleri tanımlandı. Bu düzeneklerde doğrusal olmayan bir 

yapı gözlendiğinden, bu zamana kadar dönüşüm dereceleri düzgün dağılımlı 

olarak alınmıştı. Bu çalışmada, bu dereceler üzerinden iyileştirmeyi sağlayan 

bir yöntem sunuldu. Bir sonraki bölümde, kesirli Fourier dönüşümü süzgeçleme 

düzeneklerinin görüntü sıkıştırılması alanında kullanımı gösterildi. Daha sonra, 

devamlı işaretler için kesirli Fourier dorrıen çözümlemesi tanımlandı. Son olarak, 

perspektif izdüşüm uzay-sıklık düzleminde incelenerek, perspektif izdüşüm ih; 

kesirli Fourier dönüşümü arasındaki ilişki irdelendi. Belli şartlar altında, kcisirli 

Fourier dönüşümü kullanılarak, perspektif izdüşümünü yaklaşık olarak elde 

etmenin bir yöntemi verildi.

Anahtar Kdimder: kesirli Fourier dönüşümü, işaret ve sistem sentezi, görüntü 

sıkıştırılması, perspektif izdüşüm.
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Chapter 1

Introduction

Digital signal processing has found a central place in signal processing after 

the popular use of digital computers in various applications, where oikí needs 

to process signals for many purposes like transmitting, storing, compressing, 

enhancement and many others. Some of the .systems of the processes mentioned 

above are non-linear, some of them are linear. However, linear systiuns are (iasy 

to handle and in some applications they constitute a group of systems that is 

adequate lor many purposes. Linear systems can also be used to model non­

linear .systems. Boicause of these reasons, linear systems have been extensively 

emphasiz(!(l in digital signal processing.

A general linear .systtnn can be characterized as.

g(u) = I  H{u,u' )f{u' ) du\ ( f . l )

where H{v., u') is called the kernel of the system and g{u) and /(n ) a.re the output 

and input of the system, respectively. Discrete version of 1.1 can be expresscid 

as,
N - l

(1.2 )s{n] = f :H in ,k ]m ,
k=Q

where fj[n] and f[n] are either samples of f{u)  and g{u) or discrete functions 

that somehow occur in digital systems, and H[n, k] are either samples oi H{u, u')



or the kernel of a digital .system. The last equation is simply a matrix vector 

multiplication which can also be written as,

g = Hf, (1.3)

where g and f ai(i vectors representing ()[n] and /[n] and H is a, rmitrix 

representing /i[n, A:]. A detailed discussion of the signals and systems may be 

found in [1,2].
In many a.pplications, we face with linear systems that are shift-invariant. 

In the case of shift-invariant systems, when the input is shifted l)y a cfutain 

amount, the output is also shifted by the same amount. This property is 

equivalent to having a kernel of the special form H{u,u') =  h{u -  u'). Fourier 

transform is a very powerful tool in analyzing shift-invariant systems, because 

shift-invariant systems correspond to a multiplication in the Fourier domain. 

Turning our attention to the digital case, matrices representing the shift-invariant 

digital s3̂ sterns are circulant matrices and the Fourier transform matrix (DFT) 

diagonalizes the kernel matrix. There exists a fast algorithm (FFT) that allows 

us to compute Fourier transform in 0{N\ogN)  time (Here N  is the length of 

the discrete signal vectors or the time/space-bandwidth product of continuous 

signals). This efficient implementation is the main reason that Fourier transform 

plays a central roh; in the analysis of shift-invariant systems.

We can think of the general linear systems and shift-invariant linear systems 

as the two extremes. In one end, implementation cost is 0{N\ogN)  (shift- 

invariant syst(uns), and in the other end, implementation cost is 0 (N ‘̂ ) (general 

linear systems). In some applications, shift-invariant systems may be inadeciuate 

but efficient, and general linear systems may be adequate but inefficient. This 

situation suggests to search for a way to be able to trade-off between cost and 

performance. One way which makes this trade-off possible is the use of fractional 

Fourier transform. The fractional Fourier transform is a generalization of the 

ordinary Fourier transform; definition and some of its properties will be given in



the next chapter.

The original contribution of this thesis to the research area is summarized 

in this part. The optimization of orders in fractional Fourier transform has 

not been addressed before, in this thesis we have given a method to optimize 

orders in the multi-chanii(!l filtering configuration. Although fractional Fouricu' 

transform bas(xl hltering configurations are used in systern/signal synthesis, 

signal resl.oration and feature extraction, the idea of using fractional F'ouriiu· 

transform Irased filtering configurations in image representation and compr(',ssion 

is introduced in this thesis, for the first time. Continuous counterpart of fractional 

Fourier domain decomposition is defined. Finally, relation between persjKîctive 

projections and fractional Fourier transforms are also studied in detail, and it 

is shown that perspective projections can be approximated by fractional Fourier 

transforrns under certain conditions.

In Chapter 2, we give the definition of the fractional Fourier transform and 

some of its important properties. Also, we are going to giræ a brief history of 

the fractional Fourier transform and mention some of the applications where the 

fractional Fourier transform is used. In Chapter 3, we give the conccipt of filtering 

in fractional Fourier domains and represent the multi-stage and multi-channel 

filtering configurations. Also, we discuss the optimization of fractional Fourier 

transform orders for multi-channel filtering configurations by first finding the 

optimal filter coefficients for a larger number of uniformly chosen ordcus, and then 

maintaining tlu! most important ones. Chapter 4 is reserved for the discussion 

of the application of fractional Fourier transform based filtering configurations 

to image repiiisentation and compression. In Chapter 5, w(! defiiui continuous 

version of fractional Fourier domain decomposition, of which the discrete v(usion 

and its apirlications were studied before.



In Cha,[)ter 6, we arial.yse perspective projections in the space-fr(Kiuenc,y plane 

and show that under certain conditions they can be approximately modeled 

in terms of the fractional Fourier transform. Conclusions and future work are 

discussed in Chapter 7.



Chapter 2

The Fractional Fourier Transform

2.1 Introduction and History

The fractional Fourier transform is a one-parameter generalization of the ordinary 

Fourier transform. We obtain the fractional Fourier transform l>y using this 

parameter as the functional power of the ordinary Fourier transform.

The fractional Fourier transform is introduced to the mathematics community 

by the early papers [3 5]. However, it did not draw much attention until it has 

been used by o|)tics and signal processing communities. Number of publications 

has exploded after 1980’s when it has found its place in optics and signal 

processing.
The fractional Fourier transform suggests a potential improvcunent in tlû  

applications where! ordinary Fourier transform is used, since il. provides an <!xtra 

parameter. We can improve the solution to any problem that had jiievionsly 

utilized Fouri(!r transform, by carrying the extra parameter throughout tlu! 

solution and then optimizing over this parameter. We can group the se'veral 

applications of the fractional Fourier transform as: i) applications in mathematics 

and physics, ii) optical information processing applications and iii) digital signal 

proc(!Ssing applications.



In this thesis, we are more interested in signal processing applications of the 

fractional Fourier transform, however we briefly give some selected publications 

in other areas as well. Mathematics and physics applications of the fra,ctional 

Fourier transform [6- 8] include quantum mechanics, uncertainty i)rinciples and 

solution to differential equations. Optics applications of the fractional Fourier 

transform [9 16] include optical propagation and diffraction, anal5̂sis and design 

of Fourier optical systems, beam shaping and other applications.

Fractional Fourier domains are first introduced in [17], and many applications 

of the fractional Fourier transform has been based on this concept. Oi)timum 

Wiener filtering in fractional Fourier domains are studied in [18]. In this paper, 

analytic solutions are presented that yield the optimum fractional Fourier domain 

and optimum filter coefficients corresponding to this domain. As an application 

of the optimal filtering in fractional Fourier domains, optimal image restoration 

is studied in [19]. In these papers, a single fractional Fourier domain has been 

used. The concept of generalizing the fractional Fourier domain filtering to two 

or more number of domains has been studied in two directions mostly. First 

one is multi-stage filtering, which is defined as filtering in consecutive fractional 

Fourier domains, and has been studied in [20]. Multi-stage filtering has found 

applications in signal restoration [20], system synthesis [21], mutual intensity 

synthesis [22]. Se(;ond one is multi-channel filtering, which is defined as filtering in 

parallel fractional Fourier domains in [23]. Multi-channel filtering has been used 

in system decomposition [24,25]. In [24], fractional Fourier domain d(;composition 

is defined and its applications like efficient implementations of linear systems 

are given. Other applications of multi-channel filtering including signal recovery 

and restoration, signal synthesis and system synthesis has been studied in [23]. 

Continuous version of fractional Fourier domain decomposition is dehned in [25]. 

The fractional correlation is first defined in [26] and developed in [27]. The 

concept of fractional correlation is used in pattern recognition in [28,29]. Also, 

feature extraction using the fractional Fourier transform can be found in [30].
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Some of the other references related to the fractional Fourier transform and its 

applications can be listed as [31-41].

Here, we do not give the complete list of references, for a morci complete list 

one can refer to [2].

2.2 Definition and Properties

The ath order fractional Fourier transform of the function /(« ) will be denoted 

by faiu)· Here, we are going to give the linear system kernel definition of the 

fractional Fourier transform. Other equivalent definitions can be found in [2]. 

The fractional Fourier transform of a signal is defined as:

M u )  =  I  K.{u,u' )f(u' )du',

Kai'll", u') = A,j, exp |̂ i7r(cot (j) — 2 esc (f> uu' +  cot 4>

(2 .1)

where

, air (2.2)

A,j, = \jl — i cot (j). (2,3)

The square root is defined such that the argument of the result lies in the interval 

(—7t/ 2, 7r /2j. When a is an even integer the above kernel is undefined. However, 

it is possible to show that as o, approaches an even integer, the kernel approaches 

a delta function. That is, Kij{u,u') = 6{u -  u') and K^j±2{u.,u') -  + ■(/,'),

where j  is an arbitrary integer.

Now, we are going to give some special cases of the fractional Fourier 

transform. The fractional Fourier transform is equal to the identity operation 

when a -- 0, to the ordinary Fourier transform when a =  1, to the parity op(!ration 

when a — 2 and to the inverse Fourier transform when a — 3. Close, examination 

of the kernel given in 2.1 reveals that the fractional Fourier transform is periodic 

in a with period 4. The fractional Fourier transform interpolates between tin; 0th

7



order fractional Fourier transform (original function) and the 1st order fractional 

Fourier transform (ordinary Fourier transform of the signal). This is illustrated 

for a rect function in Figure 2.1.

Having given the definition, now we are going to have a look at Hie important 

Iiroperties of the fractional Fourier transform, briefly. First, the fractional Fourier 

transform is a one iiarameter generalization of the ordinary Fourier transform and 

it is a member of the linear canonical transforms. Another important profierty of 

the fractional Fourier transform is index additivity. That is, aith order fractional 

Fourier transform of the «,2th order fractional Fourier transform is ecpial to the 

(04 +  a2)th order fractional Fourier transform. Relation between the fractional 

Fourier transform and the Wigner distribution is of central importance in many 

applications. Before giving this relation, we are going to give the definition and 

some important properties of the Wigner distribution here for convenience.

The Wigner distribution Wf{u,n) of a function f{u)  is defined as

Wfiu, fi) = I f{u + u'/2)f* {u -  «72)6-' ’̂̂ '·''“' du', (2.4)

where // represents the Fourier domain variable. Wf{u,ii) can also be expressed 

in terms of Fiji) (the Fourier transform of /(« )), or indeed as a function of any 

fractional Fourier transform of f{u). Some of its most important properties are:

|/(.u)|2 = J W/(u,/r)

I  Wf{u, î)d.u, 

E n [/ ( 'u ) ]  =  I  Wf(u, fi) dudfj,,

(2.5)

(2.6) 

(2.7)

En[/(u)] is the total energy of the signal f{u). These properties reveal that 

Wigner distribution gives the distribution of the signal energy over space and 

frequenc,y. The Wigner distribution of F'(/i), is a ninety degree rotated version 

of the Wigrier distribution of ,f{u). More on the Wigner distribution and other 

such distributions and representations may be found in [42].



fa(u)

Figure 2.1; Axis ranging from 0 to 1 indicates the fractional Fourier transform 
order. Each slices of this three-dimensional figure corresponds to the fractional 
Fourier transform of the rect function with a certain order. Wh(iii a == 1, we 
observe the Fourier transform of the rect: a sine (After [48]).



If Wf(u,iJ,) d(!iiotes the Wigner distribution of f{u), then the Wigner 

distribution of the ath order fractional Fourier transform of f{u), denot(id l)y 

Wfju,fi), is given by:

W/■„ (u, ft) = Wf (u cos Ф — (Л sin Ф, и sin Ф + fi cos Ф), (2.8)

that is, the Wigner distribution of /„('u) is the clockwise rotated version of thci 

Wigner distril)ution of fin) by an angle 4>. A result of this property is as follows:

/  W!jn,^ )d^=\Un)? . (2.9)

That is, the integral projection of the Wigner distribution of a function onto 

the Щ axis is equal to the magnitude square of the ath order fractional Fourier 

transform of the function.

Finally, there exists a fast implementation of the fractional Fourier transform 

[43] with implementation cost 0{N\og{N)).  Actually, this fast implementation 

makes it i)ossible to use the fractional Fourier transform in applications where the 

ordinary Fourier transform is used, with no additional cost, resulting in possible 

improvements. However we should note that, this fast implementation cannot 

be interpreted as the discrete fractional Fourier transform, because it does not 

satisfy important properties like index additivity and Wigner rotation property, 

exactly.
Discrete fractional Fourier transform is defined in [44]. The discrete fractional 

Fourier transform satisfies the properties of the continuous fractional Fourier 

transform. But, an efficient implementation of the discrete fractional Fourier 

transform has not been found up to this date.

Until now, we have considered only the one-dimensional definition of the 

fractional Fourier transformation. Here, we will generalize the definition of 

the fractional Fourier transform to two-dimensions. There are two ways of 

generalizing the definition to two-dimensional systems.

10



First one is the separable two-dimensional fractional Fourier transform defined

as:

/.(q) = ¡......M  = ^“/(q) =
= j  j  Ka,,,u.{u,v,u\v')H:u,\ v')du'dv\

(2 .10)

for two dimensions and similarly for higher dimensions. Here q = viu + vv a.nd 

a =  a„u-|-a^v where ii and v are unit vectors in the u and v directions. Kai'ii·, 'ti') 

is the one-dimensional kernel defined in equation 2.1.

Second one is the non-separable two-dimensional fractional Fourier transform 

defined as /citetwod:
/ 00

-00

where

(q, q") = Kq exp['f7r(q'^Aq + 2q^Bq" +  q"'^Cq")]

(2 .11)

( 2 . 12)

with r T r 1

A q — Ky/ K y !, r U V , q" = u " v "
T

A =
cot (¡)yi 0

0 cot (/)yi

B
COS O2 CSC sin 0i CSC (p̂, f
COs(̂ l-6/2) COs(0i-(?2)
sin O2 CSC (p̂,t _ cos 0l CSC (f) t
COs(̂ l-02) COs(0i-/?2) -

c =
con-O2 ....f J, I nm^O’2 rni-fh ; sin cos (92 rn f  rh : 4- sin 0'2 f.f.f A .

conHO,-(h) W  +  COS’̂ (0 l - 02) cos‘̂ (0i-02) ^  COS-^(0l-02)
sill0J cos 02 A 1 sin 02 COS 01 ,,^4. ^  . COŜ  0] .̂̂ 4. ^  . j ____ Siir' 0]___ ,

L “  COS*̂(0, -02) COS-̂ r01-02) COS‘̂(0i-02) ^  COs’̂ (01-02)
Here we give the definitions of the fractional Fourier transform for tlui salui 

of completeness. These two-dimensional fractional Fourier transforms will not be 

employed in this thesis.
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Chapter 3

O ptim ization of Orders in 

M ulti-C hannel Fractional Fourier 

D om ain Filtering Configurations

3.1 Filtering Configurations Based on the Frac­

tional Fourier Transform

Space- and freciuency-dornain filtering are special cases of fractional Fonrier 

domain filtering (3.1(a,h,c)) [18,46]. Fractional Fonrier domain filtcuing consists 

of (i) taking tlici fractional Fourier transform of the input signal, (ii) multiplication 

with a filter function, and (iii) taking the inverse fractional Fourier transform 

of the result. Tlui fractional version of the optimal Wiener filtering ])rohlem 

has been studied in detail in [18]. Fractional Fourier domain filtering has been 

further gciueralized to midti-stage and multi-channel filtering (3.1 ((>,f)). In multi­

stage filtering [21,47] the input is first transformed into the oi th domain, where 

it is multi[)li(!(l 1)3̂ a filter hi. The result is then transformed back into the 

original domain. This process is repeated M  times. Denoting the diagonal matrix

12



corresponding f.o inultiplication by the kth filter by A^, we can writii the following 

expression for the overall effect of the multi-stage filtering configuration:

(3.1)

where T,i,h i« a matrix representing the overall multi-stage filtering configuration 

and F “*' denot(',s the discrete fractional Fourier transform matrix [44]. Multi­

channel filtering configurations [24,47] consist of M single-stage blocks in ])arallel. 

For each chaniKd k, the input is transformed to the â kth domain, nndtiplied by a 

filter hk and then transformed back. Now, we can write the following expression 

for the oviuall effect of the multi-channel filtering configuration:

T --L m r —
M
^ F - “'=AfcF“*̂

LA;=1
(3.2)

where T„„·, is a matrix representing the overall multi-channel filtering config­

uration. It is i)ossible to further generalize these filtering configurations by 

using parallel and series arrangements together; such systems have been called 

generalized filtering circuits [47,48]. The problem of finding the optimal filter 

coefficients, given the transform orders, has been solved in [18,21,47]. Given 

a matrix H which represents a system one wishes to synthesizci, one seeks 

the filter coefficients such that the resulting matrices T^s or T„,c is as c;lose 

as possible to H according to some specified criteria, such as mean s(iuare 

error. Until now, the transform orders have usually been chosen uniformly 

(a, = 1/M, 0-2 =  2/M, ...o,M = 1); the problem of optimizing the orders has 

not yet been addressed. In this chapter, we show how one can optimize over the 

orders
A A A  for multi-channel filtering by first finding the optimal filter coefficients 

for a larger number of uniformly chosen orders, and then maintaining the most 

important ones.
In [21,24,47] fractional Fourier transform based filtering configurations have 

been used for approximating linear space-variant systems, represented by some

13
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Figure 3.1: a) Fourier domain filtering, b) Space domain filtering, c) ath order 
fractional Fourier domain filtering, d) ath order fractional Fourier domain, e) 
Multi-stage filtering, f) Multi-channel filtering. (After [22])
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matrix H. It was shown that for many such systems encountered in various 

applications, it is possible to approximate the system H with a multi-stage or 

multi-channel conhguration T„ik or T,n(; with acceptable mean square (uror, by 

using a small or rnoderatii number (M) of stages or channels. Since the cost of 

implementing the fractional Fourier transform (optically or digitally) is similar 

to the cost of implementing the ordinary Fourier transform, this hiads to a. fast 

implementation of the space-variant system in question. For instance, for digital 

systems, the cost becomes O(AdNlogN), which should be comparcxl to the cost 

0{N'^) for direct implementation of linear systems.

In the multi-channel case it is possible to analytically find the optimal filter 

coefficients, provided the transform orders are given. In practi(;e, however, an 

iterative method is preferred. In the multi-stage case it is not possible to find 

analytic solutions, so an iterative method must be used to begin with.

3.2 Optimization of Orders in the M ulti- 

Channel Filtering Configuration

In this section, we concentrate on the multi-channel filtering case, and consider 

the improveriKmt of optimizing over the M  orders in addition to the filter 

coefficients. We first hnd the optimal filter coefficients for a larger nnmber P 

of uniforiidy chosen orders and then maintain the most important ones. More 

specifically, w(' start with P uniformly chosen orders, where P  is several tiimis the 

number of orders M  we are eventually going to use. Then the M  ord(;rs resulting 

in filters with the highest energies are chosen, and the other P — M  l)ranches 

of the multi-channel configuration are eliminated. Finally, with the M  orders 

thus chosen, we reoptimize the filter coefficients. Here, we should note that the 

method proposed does not give the global optimum for the orders but gives the 

orders that provides imi)rovements compared to uniformly choosing tlui orders.

15



As an (ixainple, we will consider the problem of synthesizing light with a 

desired inntual intiuisity. Here we wish to synthesize a system H such that, 

when light of giv(ni rnutnal intensity is present at the input, light wdiose mutual 

intensity is as close as possible to the given specification is obtained at tlu! output. 

Choosing to work with one-dirnensional signals for simplicity, w(' let f{x) and 

(j{x) denote the input and output optical fields, and i?,/(.г■|,.T2) and 

denote tlui input a.nd out[)ut mutual intensities. If f{x)  and (j(x) are the input 

and output of a system characterized l)y a kernel H{x,x' )  such that <]{x) = 

J H{x,x' )f{x' )  dx', then the input and output mutual intensities ata; related by

B,f,{xi,X2) = I J Rf{x[,x'2)I-iixi,x[)H*{x2,X2)dx[dx'.>, (3.3)

where H* denotes the complex conjugate of H. The sampled, discnitc vcusion of 

the optical fields will be represented by column vectors f and g and tho! mutual 

intensity functions will be represented by matrices R / and R^. Then, we have 

g =  Hf, wtieii', H is the discrete form of the system kernel and the double integral 

relationship above assumes the following matrix form:

R^ = H R /R t, (3.4)

where is tlie Herrnitian conjugate of H. Equation 3.4 is (piadratic in H. VV(; 

are going to employ an eciuivalent representation which is linear. Since inutTial 

intensity matrices R  are Hermitian and positive serni-definite, it is possible to 

diagonalize them as
R  = UDUt, (3.5)

where D is a diagonal matrix whose elements are the real eigenvalues, and U is

a matrix whose columns constitute the set of orthonormal eigenvectors of R  so 

that U^U = I, where I is the identity matrix. Letting denote the diagonal 

matrix whose (dements are the positive square roots of the elements of D, w(; 

substitute for D in the above equation:

R = U D ^/^u tuD i/^u^  (3.6)
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Now, using this expansion for both and R/·, we can write equation 3.4 as

R/· = RyRy: = RyRy -- Ry,

(3.7)

where

R^ = R j =  UD /̂'^^Ut 

R^ = R} = UD^/^U^

Substituting 3.8 into 3.4 we obtain the following:

R^Rj = H R yR |H ^

One way of satisfying the above equation is to ensure that

R  ̂ = HRy,

(3.8)

(3.9)

(3.10)

or
H = RgR7^ (3.11)

In our nuinerical examples, we are going to consider the input light source 

to be incoherent. Assuming this source extends uniformly from -vo to ro, its 

mutual intensity can l)e written as

Ry(.r,,.'i';2) = i(.T] -  .x-2)rect ) . (3.12)

When discretized, the corresponding matrix Ry (and its square root Ry) is e(iual 

to the identity I, i)rovided tq is larger than the interval over which we sample. 

Therefore!, the matrix H we wish to approximate is simply equal to R ,̂.

As a hrst example, we wish to synthesize a Gaussian Schell-model beam with 

mutual intensity:

R,,{xi ,X2) =  exp ( ------ -------- j  exp \̂ -
(xi -  .X'2)̂ '̂  f x'i +

2r.?
(3.13)
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(In our exami)l(iH ri =  5 and 72 = 10, in suitable units.) When we syntlnisize 

the filter H corresponding to this mutual intensity using the multi-chaniKd 

configuration with M  = 3 filters (ci = 1 /3 ,0,2 =  2/3, a,·) =  1), tlu; norinalized 

error turns out to be 15.42 %. Using the proposed method of optimizing the orders 

with P =  12, we find that the optimal orders are 04 - 2/12, (I2 — 5/ 12, a.i = 

10/ 12, and th(i normalized error using these orders becomes 12.64 %. When we 

synthesize the same H with M = 2 filters (ai = 1/2, 0,2 = 1), the normalized 

error is 22.36 %. Optimizing the orders with P  — 8, we find that the oirtimal 

orders ar(i a,\ = 2/8, (I2 = 6/ 8, and the normalized error using tluise orchus is 

16.36 %. Further simulations have been undertaken for other values of M  and 

P  and th(! result errors are plotted in Figure 3.2(b). Part a of this hgure shows 

the desired mutual intensity, part c shows the synhthesized mutual intensity for 

M = 2 without optimization of orders, and part d shows the synthesized mutual 

intensity for M  = 2 with optimization of orders with P = 8.

As a second example, we consider the synthesis, as closely as i)ossible, of a 

mutual intensity r)rofile specified as

= « c t reel ( |C )  ( | | (3.14)

where 72 > r\. This amounts to specifying the amplitude of light at two points to 

be fully correlated when the distance between those points is less than 27-1, and 

totally uncorrelated otherwise. Since the rectangle function does not represent a 

physically realizable mutual intensity function (it is not positive siuni-definite), 

its negative eigenvalues will be replaced by zero in obtaining its square; root 

representation. This amounts to replacing the rectangle function with tin', closest 

positive si'rni-definite function. When we synthesize the filter H corresi)onding 

to this mutual intensity using the multi-channel configuration with M=3 filters 

(ai =  1/3, (I2 =  2/3, a,3 =  1), the normalized error is 15.35 %. Using the proposed 

method of optimizing the orders with P -  12, we find that the optimal orders ar(! 

0,1 = 2/ 1 2 ,0.2 = 6/ 12, 0,3 = 10/ 12, and the normalized error using these orders is
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Figure 3.2: a) Desired Gaussian Schell-model mutual intensity profile, b) 
Normalized error vs P  for different values o fM  (M =  2: ’-I-’, M  =  4;
M = 8: ’o’, M  =  12: ’.’). c) Synthesized profile using uniform orders (M =  2). 
d) Synthesized profile using optimized orders (M = 2, P  =  8).
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12.3 %. When we synthesize the same H with M=2 filters (ai = ll2,a·) =  1), 

the normalized error is 22.64 %. Optimizing the orders with P  =  8, we hnd that 

the optimal orders are a.\ = 2/8, 0,2 = 6/8, and the normalized error nsing these 

orders is 15.45 %. Once again, further simulations have been underta.ken for otlnn· 

values of M  and P  and are plotted in Figure 3.3(b). Part a of this figure shows 

the desired mutual intensity, part c shows the synhthesized mutual intensity for 

M  = 2 without optimization of orders, and part d shows the synth(\sized mutual 

intensity for M = 2 with optimization of orders with P  =  8.

A number of conclusions can be drawn by examining the numerical results. 

First, optimization of the orders is capable of offering tangible improvements with 

respect to choosing the orders uniformly. We also observe that beyond a certain 

value of P, further increases in this parameter do not offer further reductions 

in the error (the l)enefits of optimizing over the orders is saturated). This is 

because further increasing P  merely allows further refinements and fine-tuning 

in choosing the optimal orders, which has diminishing return once one moves 

roughly closer to the optimal orders. Also, we can see that improvements coming 

from optimization of the orders are greater when M  is smaller but less when M  

is larger. This is because when M  is large to begin with, it is already [)ossible 

to concentrate the filtering action in those domains which are optimal. This 

of course means that the other domains add cost to the system implementation 

with litth'. benefit, and the method we propose is useful precisely because it allows 

these low beruiht domains to be pruned.

In conclusion, we have presented a simple and effective way of optimizing the 

orders in fractional Fourier domain based multi-channel filtering configurations. 

Until now, the orders had mostly been chosen uniformly since there was no simple 

way of solving the nonlinear problem of optimizing over the orders. The nuithod 

we proposed is niorti likely to be useful when confronted with low-cost, rather than 

high-accuracy applications, because larger improvements are obtained when tlui 

use of a snialhu· number of filters is desired. Future work might include extending
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Figure 3.3: a) Desired rectangular mutual intensity profile, b) Normalized error 
vs P  for different values of M  {M  =  2: M =  4: M = 8: ’o’, M  =  12:
’.’). c) Synthesized profile using uniform orders (M =  2). d) Synthesized profile 
using optimized orders {M — 2, P  =  S).
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the method to the multi-stage case, which poses a number of chalhuiges, and to 

more general iiltering circuits.
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Chapter 4

Im age R epresentation and 

Com pression w ith the Fractional 

Fourier Transform

There has been a (.remeiidous amount of work on data compression in general and 

image comi)ression [49] in particular, leading to efficient compression algorithms. 

In this cha,pt(ir, we discuss a novel way of representing images based on fractional 

Fourier domain filtering configurations [47, 48], leading to an image coding 

method.
In Cha.ptcr 3, we have; introduced the fractional Fourier transform bastvl 

filtering configurations. Here, we repeat the matrices representing the overall 

effect of the multi-stage and multi-channel filtering configurations:

(4.1)

T me
M
^ F - “*'AfeF“*̂ (4.2)

LA;=1

In this chapter, we interpret the matrices T,nc and T^s not as represiuiting
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a linear s.y.stem, but as representing a two-dimensional signal or image. Thus 

the filtering c.oeffieients in the multi-stage or multi-channel approximation of 

this matrix, can be used to approximately re[)resent and reconstruct this matrix 

and the associated image. In other words, the optimal filtering coefficients 

minimizing the; mean square error between the original matrix and its multi-stage 

and multi-channel approximation, are taken as the compressed viusion of the 

image. R(u;onstruction of compressed images is possible in 0 (M N log N ) time. 

The cited work on synthesis of space-variant systems for fast impleriuuitation 

shows that satisfactory approximations are possible with rnoderati; nunilxus of 

filters and hence large reductions in implementation cost. Therefore, it seems 

worth investigating whether similar approximations with similar reductions in 

cost (measured by the compression ratio) is possible when these configurations 

are used for image compression. Since the original image has N'̂  luxels and tlu! 

compressed data has N M  pixels, the compression ratio is N/M.

In the multi-channel filtering case, we have also considered the improvement 

of optimizing over the orders as described in Chapter 3.

The compression method proposed is tested on the 128 x 128 image shown 

in Figure 4.1(a). Figure 4.1(b) shows the trade-off between the reconstruction 

error and compr(',ssion ratio. The mean square error has been normalized 

by the energy of the original image. The horizontal axis of the plot is the 

inverse of this normalized error. We see that the multi-channel and multi-stage 

configurations give comparable results, though the multi-stage configuration is 

slightly l)(!tter. Optimizing over the orders for the multi-channel case rcisults in 

tangible improvements.
Figure 4.1(c,d) show illustrative results obtained with the riudti-stage 

configuration. Although the order-optimized multi-channel case yields smaller 

errors, we present results for the multi-stage configuration so as to illustrate the 

performance of the method in its rawest, most basic form. Whereas we ol)serve 

that nearly an order of magnitude compression is possible with moderate errors.
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larger coiiipr(;ssioii ratios are accompanied by larger errors.

Urifortuiiat(ily, we observe that the use of fractional Fourier domain filtering 

configurations for image compression, does not yield results as good as thos(i 

obtained when they are used for synthesis and fast implementation of shift-variant 

linear systems. In its present form, the proposed idea does not yield better rtisults 

than presently available c:ompression algorithms. However, we em])hasiz(i that 

the results presented refhict the performance of the basic method in its ra.west 

and barest form; wc; merely represent the image with the filter coefhcients which 

make th(i forms giv(ui in (3.1) and (3.2) as close as possible to the image matrix. 

Further refineiiKint and development of the method and its combination and 

joint use with other techniciues may lead to full-fledged compression algorithms 

with bettcu' p(irforniance. Also, it is possible to use the discrete fractional cosine 

transform which is a real transform, since images we are dealing with arti real 

and a real transform would therefore reduce the cost. (One way of geiKualizing 

the method, which can lead to i)otentially higher compression ratios with similar 

errors is to em[)loy filtering circuits based on linear canonical transforms, rather 

than fractional Fourier transforms [50].)

Moreover, r(!gardless of the performance that can ultimately be obtained with 

irnprovenumts of the present idea, the fact that the information inherent in an 

image and be decomposed or factored into fractional Fourier domains in the 

manner dtiscribed is of considerable conceptual significance. In a, sens(!, tluise 

domains “span” a certain space which is a subset of the image space, although 

the precisi! nature of this is difficult to ascertain in the nonlinear niulti-sta,ge 

case. The information contained in the image is distributed to the different 

domains in an uiuKiual way, making some domains more dispensable than othous 

in repres(uiting the image. Exploring and exploiting these issues se(mi potiuitially 

rewarding.
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Figure 4.1: (a) Original image, (b) Compression ratio vs inverse normalized error: 
multi-channel (dashed line), multi-stage (solid line), multi-channel with optimized 
orders (bold line). Reconstructed images with compression ratio 32 (c), 21.3 (d), 
8 (e), 5.3 (f). Part c and d represent too much error to be considered compressed 
versions of the original image. However, they have been shown to illustrate the 
dependence of the error on the number of coefficients used.
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Chapter 5

Continuous Fractional Fourier 

D om ain D ecom position

The continuous spectral decomposition (or expansion) and its discrete counter­

part, the singular value decomposition (SVD), plays a fundamental role in signal 

and system analysis, representation and processing. The spectral decomposition 

of a function h{u, u') is
CXJ

h{u,u') = J  l̂jy{u)Xy'ilj*{u')dv, (5.1)

where the A„ are the eigenvalues and the 'tpviu) are the eigenfunctions of h{'u,/uf) 

(that is, they are solutions of the equation J^^h{u,u')f(u')du' =  A/(u)).

In this chapter, we define the continuous fractional Fourier domain decom­

position (FFDD). While the FFDD may not match the spectral decornpo.sitiori’s 

central importance, we believe it is of fundamental importance in its own right 

as an alternative which may offer complementary insight and understanding. We 

believe the FFDD has the potential to become a useful tool in signal and system 

analysis, representation, and processing (especially in time-frequency space), in 

some cases in a similar spirit to the SVD.

Let h{u,u') be a two-dimensional function, representing either an image or
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the kernel of a. one-dirnensional linear system. Its fractional Fourier domain 

decomposition is defined as

i‘2 /*oo 

-2 ./ —oo

/■2 roo
h(u,u') =  / / K-a{u,u")c{a,u")Ka{u", u') du" da, (5.2)

./ —2 ./—oo

where c(a, u") is a family of one-dimensional weighting functions with parameter 
a. The integration interval is limited to [-2 2], since the fractional Fourier 

transform is periodic in a with period 4. We can obtain c(a,u") by solving the 

integral eciuation 5.2. Sampling this equation we obtain a matrix eciuation which 

can be solved by using the tools of the linear algebra. Comparing the fractional 

Fourier decomposition with the spectral decomposition given in (5.1), we can see 

that the integrands in both expressions consist of three terms. The definition of 

the FFDD can be rewritten in the form
2 oo

h{u,u') =  I  !  c{a,u")Pa{u,u',u") dv," da (5.3)
-2 —oo

where we hav(i defined

Pa{u,u',u") = Ka{u",u')K_a{u,'u!') (5.4)

Equation (5.3) can be interpreted as an expansion of h(u, u') in terms of the basis 

functions Pa{u', u", u'") with c{a,u") corresponding to the expansion coefficients.

The basis functions in (5.4) can easily be shown to be linearly indcipendent 

as a direct consequence of the fact that {Ka{u",u), Ka>{u,u"))u is nonzero for all 

a, a'. Here {■,■),,. denotes a one-dimensional inner product with respect to tlui 

variable w.
A natural extension of the FFDD would be the linear canonical domain 

decomposition (LCDD) based on linear canonical transforms [50].
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Perspective Projections and 

Fractional Fourier Transforms

Chapter 6

6.1 Introduction

Perspective j)iojectioiis are used in many applications in image and video 

processing, especially whcm confronted with natural or artificial scenes with 

depth (for instance, in robot vision applications). Perspective projections can 

be considered as a geometric or pointwise transformation, in the sense that each 

point of the ()l)ject is mapped to another point in the perspective projiiction 

[51-53]. In this chapter we will examine the perspective projection in the spac(!- 

frequency i)laii(i and show that its effect on the object can be modeled in terms 

of the fractional Fourier transform [56].

The VVigner distribution of an exponential function exp[i27rî a·] is a line (hdta 

lying parallel to the space axis:

W jix ,a ,)= S ia ,-0 ,  (6.1)

and the VVigner distribution of a chirp function exp[i7r(y.'i;  ̂ + 2i;.7; + ()] is an 

oblique line delta:

Wf{x, cr,,) =  6{a^~ XX -  0 ·
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To uiuloirstand why the fractional Fourier transform is expected to play a role 

in perspective projections, let us consider the perspective projection of an image 

exhibiting periodic features, such as a railroad track. More “distant” parts of the 

image will appear in the projection smaller than “closer” parts. Thus a periodic 

or harmonic feature of certain frequency will be mapped such that it (exhibits 

a monotonie increasing frequency. Under certain conditions, this incr(ias(i can 

be assuirnul liiKîar so that the harmonic function is mapped to a chirp function. 

Since fractional Fourier transforms are known to map harmonic functions to chirp 

functions, we expect that perspective projections can be modeled in terms of 

fr actional Four ier trarrsforrns. The purpose of this chapter is to forrrrulatri this 

relationship.
In the next section, we are going to present the perspective model we use and 

examine the effect of the perspective projection on the Wigner distribirtiorr. In 

the following section, we will discuss the relation between the fractional Fourier 

transforrrr and perspective projections based on their effects on the Wigner 

distribution. We will discuss how perspective projections can lx; rrrodeled as 

shifted and fractional Fourier transformation. The last section is devotc'.d to an 

analysis of th(; errors and the region of validity of the approximations.

6.2 Perspective Projections

The perspective; model we use is shown in Figure 6.1. Initially we consider 

perspective; ])ie)jectioris for one;-dimensional signals, since this signifie;antly 

simplifies the presentation. The horizontal axis, labeled :r, represents the; e)riginal 

object space. The vertical axis, labeled Xp, represents the perspective pre)je;e;tie)n 

space. The pe)int A with coordinates {-Xo,Xpo) is the center of prelection. We 

denote the; original signal (object) by f{x ) and its perspective pre)jection by 

g{xp). We assume that most of the energy of f{x ) is confined to the inte;rval 

[x - Ax/2,x +  A.'/;/2]. In the frequency domain, we assume that me)st of
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.X’lj

X

Figure 6.1: Pei;.si)ecfcive model: f{x ) represents the object distribution on the x 
axis, (j(xp) represents its [)erspective projection onto the Xp axis. The point A 
with coordinates {-xo,^:po) is the center of projection.

the energy of F(cr,;), the Fourier transform of f{x), is confined to the inti'.rval 

[ox — /S.axl2,(7.j· + A(7;c/ 2]. The value of f{x ) at each x is mapped to the point 

Xp, which is the projection of the point x:

XXpo
Xp —  ̂ )

X +  Xo 
XoXp

3
Xpo Xp

X =

(6.3)

(6.4)

which can l)e derived by simple geometry. Thus, the projection g{xp) is expressed 

as follows:

= f ( · (C-5)
 ̂Xpo Xp y

The interval to which most of the energy of g{xp) is approximately confined can 

be determined u.sing (6.3).

In order to see the effect of perspective projections in the space-frexiuency 

plane, we decompose f{x)  into harmonics as follows:

m  = ¡ F {  ax) exp{i2nxax) dox. (6.6)

where F(a,,) is the Fourier transform oi f{x). Using (6.5) and linearity we obtain
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the following (expression for gixp):

<j{xp) =  j  F{a,r)h{xp,ax)dux,

where

h{xp, a.j.) =  exp i2TTar XpXp

, X’po ~  '■¡"'P ,
dcTx·

(6.7)

(6.8)

We will initially concentrate on a single exponential with frequency a.,, and s(;udy 

the effect of perspective i)rojectiori in the space-frequency plane. Then, we will 

construct (;(.x·,,) by first decomposing /(.x) in terms of exponentials and using 

(6.7).
The Wigner distribution of h{xp, d )̂ cannot be explicitly obtained. Therefore, 

to continue our analytical development, we expand the phase of h(xp, (t.„) in a 

Taylor series. We will expand the phase of h{xp,dx) around the point which x is 

mapped to;

-Xpo (6.9)
X

X + xo
which we (ixpress as KXp„ where « = Expanding the phase of h{xp,d,,)

around KXpo we obtain the following after some algebra:

h(.Xp, (T,,.) = exp i2'Ka:,.xp
xt. _ l _  3k) ^ /c

(1 -  (1 -  K)̂ Xpo (1 -  /i.)·*
+

(6.10)

Ignoring t(urns higher than the second order, the projection of a harmonic is seen 

to be a chirp function. The validity of this approximation requires the third order 

term to be much smaller than the second order term:

k: -|- 2| \2xpo{K — 1)|. (6.11)

This approximation is more accurate for larger values of Xp„. This is exjKicted 

since larger Xp„ correspond to less deep perspective projections. The Wigner 

distribution of the cdiirp given in (6.10) is a line delta given by;

‘2.(7x ( T x j l  -  3/t)
(1 -  (1 -  K.ŷ Xpo\ ’
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( J t . (b)

Figure 6.2: (a) Wigner distribution of the original exponential, (b) VVigner 
distribution of the approximate perspective projection: a chirp.

and is shown in Figure C.2b.

Having obtained an approximate analytical form for the perspective projection 

of a harmonic, as well as its Wigner distribution, we now move on to our discussion 

of perspective i)rojections in the space-frequency plane, as well as its relation to 

the fractional Fourier transform.

6.3 Perspective Projections and Fractional 

Fourier Transforms

In the previous section, we obtained an approximate expression for the Wigiuir 

distribution of the perspective projection of a single exponential. The Wigner 

distribution of a typical exponential and the Wigner distribution of the 

approximate perspective projection of the exponential are shown in Figure 6.2.

The angle the line delta makes with the x axis is arctan 

on &x. The fact that the oblique line delta is a rotatec

2(Jr. , which depends

version of the horizontal 

line delta sugg(;sts a role for the fractional Fourier transform since this operation
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corresponds to rotation in the space-frequency plane.

We will now show how the perspective projection of a signal can Ixi 

approxinmtely (!xi)iessed in terms of the fractional Fourier transform. We claim 

that the perspective projection of a signal can be obtained from, or mod(ded by, 
the following steps:

1. Shift the signal by it: in the negative x direction and by a.j., in the luigative 

fT,; direction. This translates the Wigner distribution of tlui signal to the 

origin of the spacii-freciuency plane.

2. Tak(i the fractional Fourier transform with the order a =
— arctan7T

angle an/2.

2(Tr.{x+xo) --- 2̂ ■■ This rotates the Wigner distribution by an

3. Shift th(! result by in the positive x direction and by in the
XOXpo

positive (7,; direction.

These steps represent a decomposition of the overall effect of tin; perspective 

projection, from which we see that the substance of perspective projection is 

essentially to (iffect a rotation in the space-frequency plane. However, this 

rotation is enacted on the space-frequency content of the signal referred to tlui 

origin of the si)ace-frequency plane. The above steps are illustrated in Figure 

6.3.
Different iix'.qmmcy components of the signal require differ(uit fractional 

Fourier orders, l)ecause the order a given in step 3 depends on cf,,.. However, 

as we will se(g under ciu'tain conditions, a satisfactory approximation can b(i 

obtained by using a uniform order corresponding to the central fnxiuency of the

We now demonstrate our claim that perspective projection can b(i decomposed 

into the three steps given above. We start by decomposing f(x)  into harmonics:

/(.'/;) = I  F{ax)exp{2inxa.j,)da^,
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Figure 6.3: Illustration of the decomposition of the approximation into 
elementaiy ojxirations in the space-frequency plane, a) Original signal. 1)) After 
step 1 (Space and frequency shift), c) After step 2 (Fractional Fouricir transi()rm.) 
d) After st(ip 3 (Sj)ace and frequency shift): Approximate perspective projection.

We will concentrate on a single harmonic component exp(z27r.x'(7i:) and the r(!srdt 

for general f{x)  will follow by linearity. Applying step 1 to a single harmonic we 

obtain
Qxp{i2nxax). (6.14)

Now, we apply stej) 2 and step 3 to this result to obtain
1/2

i+'i-
. 2a,r.'i; -I- .Xq

,v.2 .V.3 Xj)qXq
exp{i2nxax) e x p

2 + •'*''0 
i 2ttx (Tt -.̂ 2 (6.15)

Finally, w(! ap[)ly step 4 and obtain our final result:

 ̂ ,2α,.(.x-l·.x„)■’V ^ ' .-o - ^
1 +  *------ 1--------------  exp(*27T.X(Jx) e x p,,.2 ,,.3

'¿27rCTj. ( X —
X +  ,Xo

X +  .X,0

X  e x p lA-na.

I ,,.2 .,.3

( x-^-rV
xf)Xpa ,

(6.16)

Multiplying this with F{ax) and integrating over yields the ch'sired 

approximate expriission for the perspective projection of /(.x), which is the 

mathematical expression of the four steps outlined above.

To see that this expression is indeed an approximation of the perspectivci 

projection, we again concentrate on a single harmonic component whose exact 

perspectiv(i projection is

e x p  2 z7T(7i
X()Xp

Xpo Xp^
(6.17)
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Using the, Taylor scuies expansion we obtain

exp < i2'Ka.j.Xi)
•2

X p j l  -  3k) AC"
(6.18)

{ l - K ) ^ X p „  ( l - « ; ) 3j j ’

which (lifi'ers iVoiii (6.16) only l.)y a constant factor. As far as a single harmonic 

component is concerned, the only approximation that is involved is the hinomial 

expansion in the exponent. When the harmonic components are superposed to 

obtain th(i original function f(x),  we make the additional approxirmition of using 

the order corresponding to the center frequency for all harmonic components. 

Thus our three-ste[) procedure will deviate from the exact perspective projection 

more and more as the bandwidth of f{x)  is increased. The limitations associatcid 

with this approximation will be discussed in the next section.

Figure 6.4 shows the exact perspective projection of the function

cos(47ra;)rect
X -  4 

6
exp(z47ra;) +  exp(—z47ra;)

rect
X — 4

(6.19)

po 6superimposed with the approximation given by (6.18). We chose xq = —3, x 

as the center of projection. As a second example, we consider the narrowband 

signal shown in Figure 6.5. Again, the exact perspective projection and the 

fractional Fourier approximation are superimposed in part b of the same figure. 

We of)serve that the approximation is quite satisfactory except very near the 

edges, which shotdd be avoided.

Generalization of the proposed method to two dimensions is possible by 

following sirniliar steps. In our two-dimensional perspective model we use a two- 

dimensional image with midpoints x, y\ center frequencies (J,, and spatial 

widths Ax, Ay. Our center of projection is located at [xQ,Xpo,0). The model 

described is shown in Figure 6.6.

With this model, using simple geometry we can obtain the following mapi)ings 

and reverse mappings for each Xp and ?/p:

XXr.
Xp  --

p̂o
X -1- ;co 
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(a)

(b )

Figure 6.4: a.) Original signal, b) Exact perspective projection (solid line)
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(a)

Figure 6.5: a.) Original signal, b) Exact perspective projection (solifl line)
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Figure 6.6: Perspective model: f{x,y)  represents the object distribution on the 
x-y plane, g{xp,yp) represents its perspective projection onto the Xp-yp plane. 
The point A with coordinates (—.xq, OJpo, 0) is the center of projection.
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X{)Xp 
X =  ----------—

Up =

•̂ p.o ‘̂ p
xAy + 2xoy
2[x + xq)

(Jp̂ po
y =  —

X p A y

Xpo ^ p  ^(^*0 ^p')

As in the one-dirnensional case we first decompose f{x,y)  into harmonics, 

fix, y) =  j  F{(Tx, Uy) e-xp[i2TTaxx) Qxp[i2'Kayy) da-x day.

(6 .21)

(6 .22)

(6.2.3)

(6.24)

We proce(!cl by writing an expression for the perspective projection of a two- 

dimensional harmonic exp[i27rd'j;a:] exp[f27rd’j,7/]:

(ixp i27rarXT.X0
x'̂J'p ^ X p j l  -  3k) ^

(1 -  K^xlo (1 -  K̂ Xpo (1 -  Kf

X exp —tTTayAy
X p X p i l  — 3 k, ')

+ +
K/.'3

X exp i2Tray7jp

(1 — k')^Xq (1 — K')̂ .'ro (1 “  ^0^
^  X p { \  — 3k) ^  3Kf —  3/i 4- 1^Xt,

(6.25) 

and

^p(l -  («·' -  1)·̂  .

where again the; binomial approximation has been employed and k  =  

k' =  xf^y ■ Close examination of (6.25) reveals that we have the product of a oiio;- 

dimensional chirp in the Xp direction and a scaled harmonic in the; yp direction 

whose scaling factor depends on Xp. We are going to approximate the perspective 

projection by using one-dimensional shifts and one-dirnensional fractional Fouri(;r 

transforms followed by scaling. We claim that the two-dimensional perspective 

projection of a signal can be obtained from, or modeled by, the following st(;ps:

1. Shift the signal by x in the negative x direction and by dx in the negative 

Gx direction. This translates the Wigner distribution of the signal to the 

origin of the space-frequency plane.

2. Take; the one-dimensional fractional Fourier transforms in the variable

with order a _  - 2 arctan 2äx(x+xo)'̂  _  (x+Ay)̂ äy
Ay'̂ xl ̂2•̂ pôO , treating y as a parameter.

This rotates the Wigner distributions by an angle air/2.
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3. Shift thc! result by in the positive x direction and by
[q;;:(.i.+.i-())—  (T,, 1 positive (7t; direction.

4. Scale each horizontal line of the perspective projection by
(7,1 '■,».( I-«)

u______L- k)··' +
_|_ ’iK"—3/fc-f-1

, ;„ (l- «0 3  ^  ( « - 1 )3  J

The mathematical combination of the above steps yields the two-dimensional 

perspective projection of a two-dimensional harmonic, given by ecjnation (6.25). 

Multiplying this with F(o·;,;, ay) and integrating over â  and ay yields tlui (h'sired 

approximate (expression for the perspective projection of f{x,y),  which is the 

mathematical (expr(̂ „ssion of the four steps outlined above. An example is givcen in 

Figure 6.7, whcere the fractional Fourier transform-based result shown in part c is 

seen to b(i a rceasonable approximation of the actual perspective projection shown 

in part b.

6.4 Error Analysis

In this section, we examine the conditions under which the fractional Fourier 

transform apinoximation to the perspective projection is valid. We hrst examine 

the modifications the Wigner distribution undergoes corresponding to the 

approximation. Since we know that the approximation can be decomposed into 

the four steps given in Section 6.3, it is an easy matter to find the resulting changes 

in the Wigner distribution. To estimate the error inherent in our approximation, 

we will think of the original Wigner distribution as consisting of horizontal strips 

of narrow fre(]uency components. The major approximation we rnakci is to i(!plac(i 

the fractional orders required by these different frequency components by a single 

order corresponding to the central frequency. To determine thc error introduced 

by this approximation, we will determine how the highest and lowcist frcxiuency 

strips would be mapped had their individual frequencies been used instead of 

the center frciquency. Let us assume that most of the energy of the Wigner
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(a)

(b)
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VVVW%Td"W*W*J*i
Figure 6.7: a) Original signal, b) Exact perspective projection, c) Fractional 
Fourier approximation. 2̂



distribution of a signal is concentrated in a rectangular region in the spacc;- 

freciuency plane (Figure 6.8a). Part b of the same figure shows the Wigner 

distribution corresponding to the fractional Fourier approximation (solid lines). 

The dashed lines, on the other hand, show the Wigner contour obtained by using 

the individmd fre(iuencies for the highest and lowest frequency stri[)s.

Our error criteria will be the deviations of the corners of the two superimposed 

Wigner contours in Figure 6.8b. There will be one spatial deviation and one 

frequency deviation for each of the four corners of the contours. We will normalize 

the spatial deviation by A./; and the frequency deviations by Acr..,,. a,nd take tlu! 

maximum of the resulting eight normalized deviations as our final error measuni. 

Expression for the eight normalized deviations are given below:

A(T.r
eup-leil„spa.o - sm

xxo
_  AcTj; 

6up-right,spac(i —

A(7r

sm

^low—right,SI )acc

Axxo
A ct.

sm

sm

2

2
Qi(.

2
(y.Q o¿(i

lS.xxt) V 2
_  1 . (a ,,-a u

^hip-left,iVaq. I o,
.7-0 V I

1 (̂ <̂· ~
*2up—right,tV(i(]. I D■I’o V ^

\ , 1 . f  (^c +  Of-u

ac + (y.u\ 1 . /  + cy.ue o s , - ^ j - - s m ( ^ ^

cy.c +  a.d\ 1 . fa,: + a,i

ttc +  1 . /CV,: + (y.,l
cos 1 — z----1 -------sm I — -̂----

sm

sm

2 / .x'o
oif. T  Of.y, \  A.X’

2
(Xc +  (Xu

+ COS

1
f-low—IhR.Ithc].

(V.,, -  f-Vrf
.X'o

* l̂ow—riglit,rreq. I nX{) \  ¿

where

. ( c Ol d .sm 1 — z----1 +

. f  OLc +  CXu sm

A(7j,..Xo

A.X

A.X

Acr,.,;.xo

(X-c +  (K

A(T;,;.X'0 V 2
A.X /  (X,: -h cx„,

COS -
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2

«r + 0¡d 
2

cos

cos
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and

cVü! = arctan
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V ;C0 J

A<T.r n3
:!in__2£ílA-JííL__(i££.)2

43



(b )

Figure 6.8: (a) Wigner distribution of the original signal, (b) Comparison of 
Wigner distributions underlying error analysis.
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Figure 6.9: The dark regions represent the parameter combinations whose 
normalized error is less than 10%. See text for explanation.

To reduce the number of parameters by one, we have expressed the above results

so that all free parameters appear divided by xq.

It does not seem possible to analytically derive conclusions using these 

formulae so that we will resort to numerically obtained plots. The approximation 

will be assumed to be acceptable if the maximum normalized error is less than 

10%. The above given expressions give the error as a function of six variables: 

xo,Xp„,x,(7.j;, Ax, However, normalizing all variables by .tq, the number of

variables can l)e reduced to five. Figure 6.9 shows the region where the maximum 

normaliz(!(l error is less than 10% as darker regions, whereas the lighter regions are 

where tlui error is large. The horizontal axis in each of the 75 plots represents the 

value of Ax/xo and the vertical axis represents Aox/xq. Both of these variables 

range from 10 '/“’ to lo^'“’/·'*« in these log-log plots.

Each member of the 5 x 5  matrices of plots corresponds to different 

values of x/xo (horizontal) Gx/ xq (vertical). The five separate values of x/xq 

are 10“ /̂̂ , lO*’/'"̂ , lÔ /' ,̂ 10'̂ /'̂ , 10'̂ /'̂  and the five separate values of Gx/ x() are 

lO“ /̂'̂ , 10*’/^, 10 /̂ ,̂ 10'̂ /'̂ , 10'̂ /'̂ . The three groups of 25 plots each correspond 

to different values of the center of projection. Figure 6.9a: Xp„/xn =  0.1, 

Figure 6.9b: Xpo/xn = 1, Figure 6.9c: Xpo/xo =  10.
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This set of plots covering a broad range of the parameter values allows us to 

determine whether the approximation developed is acceptable for a certain range 

of parameters. Generally speaking, we have larger acceptable regions for larger 

values of ax. Not surprisingly, the approximation is strained as Ax and Aox 

increase, i.e. as the space-bandwidth product of the signal increases.

In this chapter, we examined perspective projections in the space-freciuency 

plane and showed how to approximate the perspective projection in terms of the 

fractional Fourier transform. Our main motivation was that the fractional Fourier 

transform approximately captures the essence of the warping characteristic of 

perspective projections. We observed that perspective projection approximately 

maps harmonic components into chirps and therefore can be modeled in terms 

of the fractional Fourier transform. We saw that the substance of perspective 

projection is essentially to effect a rotation in the space-frequency plane. However, 

this rotation is enacted on the space-frequency content of the signal referred 

to the origin of the space-frequency plane. Elementary numerical examples for 

both one-dimensional signals and two-dimensional images are presented. The 

errors associated with the approximation and the region of validity with respect 

to the approximations involved are numerically discussed. In natural scenes, 

it is more typical to encounter periodic or nearly periodic patterns as opposed 

to chirp-like patterns. If such assumptions can be quantified and posed into a 

form of constraints, then it may be possible to estimate the transform order and 

center of projection associated with a perspective image and recover the original 

undistorted image.
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Chapter 7

Conclusions and Future Work

The fractional Fourier transform is a generalization of the ordinary Fouri(!r 

transform and therefore supersedes the ordinary Fourier transform. With the 

extra parameter that the fractional Fourier transform provides, any application 

where ordinary Fourier transform is used, is a potential application area where 

the fractional Fourier transform can yield improvements. In this thesis, we have 

illustrated some of these applications.

In Chapter 3, we have presented a simple and effective way of o[)tirnizing the 

orders in fractional Fourier domain based multi-channel filtering configurations. 

Until now, the orders had mostly been chosen uniformly since there was no simple 

way of solving the nonlinear problem of optimizing over the orders. The riuithod 

we proposed is more likely to be useful when confronted with low-cost, rather than 

high-accuracy applications, because larger improvements are obtained when tlui 

use of a smaller number of filters is desired. Future work might include extending 

the method to the multi-stage case, which poses a number of chalhuiges, and to 

more gernual hltering circuits. Also, another interesting direction of research is 

the selection of filtering configurations for a given specific application.

We have used the fractional Fourier transform based filtering configurations 

in image representation and compression in Chapter 4. In its present form, the
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proposed idea does not yield better results than presently available compression 

algorithms. However, we emphasize that the results presented reflect the 

performance of the basic method in its rawest and barest form. The information 

contained in the image is distributed to the different domains in an uiKiqual 

way, making some domains more dispensable than others in representing the 

image. Exploring and exploiting these issues seem potentially rewarding. Further 

refinement and development of the method and its combination and joint use 

with other techniques may lead to full-fledged compression algorithms with Ixitter 

performance. (One way of generalizing the method, which can lead to potentially 

higher compression ratios with similar errors is to employ Altering circuits l)ased 

on linear canonical transforms, rather than fractional Fourier transforms [50].)

A chapter is devoted to the continuous fractional Fourier domain decomposi­

tion. A future work would be the linear canonical domain decomposition (LCDD) 

based on linear canonical transforms [50].

In Chapter 6, we have examined perspective projections in the space- 

frequency plane and showed how to approximate the perspective projection in 

terms of the fractional Fourier transform. Our main motivation was that the 

fractional Fourier transform approximately captures the essence of the warping 

characteristic of perspective projections. We observed that perspective projection 

approximately maps harmonic components into chirps and therefore can be 

modeled in terms of the fractional Fourier transform. We saw that the substance 

of perspective [)rojection is essentially to effect a rotation in the space-frequency 

plane. Elementary numerical examples for both one-dimensional signals and two- 

dimensional images are presented. The errors associated with the ai)proxirnation 

and the irigion of validity with respect to the approximations involved ai(i 

numerically discussed.
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Future work in this area might include the extension of the analysis to wide­

band signals by using multiple orders. Another promising direction is to optimize 

over the single order used in approximating the narrow-band signals’ perspectivt; 

projections rather than simply using the order corresponding to the c(uitral 

frequency.

Some [)art of this thesis was previously presented. Optimization of orders 

which is (!xplained in Chapter 3 is presented in [54]. Image reprtisentation and 

compression introduced in Chapter 4 can be found in [55]. Continuous fractional 

Fourier transform is prciviously presented in [25] and analysis of perspective 

projections in the space-frequency plane is published previously in [56].
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