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ABSTRACT

SIGNAL PROCESSING APPLICATIONS OF THE
FRACTIONAL FOURIER TRANSFORM
I. Samil Yetik

M. S. in Electrical and Electronics Engineering

Supervisor: Prof. Dr. Haldun M. Ozaktag
August 2000

In this work, first we give a summary of the fractional Fourier transform
including its definition, important properties, generalization to two-dimensions
and its discrete counterpart. After that, we repeat the concept of filtering in
the fractional Fourier domains and give multi-stage and multi-channel filtering
configurations. Due to the nonlinear nature of the problem, the transform
orders in fractional Fourier domain filtering configurations have usually not
been optimized but chosen uniformly up to date. We discuss the optimization
of orders in the multi-channel filtering configuration. In the next part of this
thesis, we discuss the application of fractional Fourier transform based filtering
configurations to image representation and compression. Next, we introduce the
fractional Fourier domain decomposition for continuous signals and systems. In
the last part, we analyse perspective projections in the space-frequency plane
and show that under certain conditions they can be approximately modeled in

terms of the fractional Fourier transform.

Keywords: Fractional Fourier transforms, signal and system synthesis, image

representation and compression, perspective projections.
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OZET

KESIRLI FOURIER DONUSUMUNUN
SINYAL ISLEME UYGULAMALARI

I. Samil Yetik
Elektrik ve Elektronik Miithendisligi Bolumiu Yiiksek Lisans

Tez yoneticisi: Prof. Dr. Haldun M. Ozaktas
Agustos 2000

Bu caligmada, once kesirli Fourier doniigimiintiin bir 6zeti verildi.  Bu
ozetde, kesirli Fourier donigiimiinin tammi, onemli ozellikleri, iki boyuta
genellenmesi ve sayisal kesirli Fourier doniigimiiniin tammi verildi.  Daha
sonra, kesirli Fourier domenlerinde siizgecleme ve ¢ok kanalli ve ¢ok kademeli
sizgecleme diizenekleri tammlandi.  Bu diizeneklerde dogrusal olmayan bir
yap1 gozlendiginden, bu zamana kadar donigim dereceleri diizgiin dagiliml
olarak almmisti. Bu ¢alismada, bu dereceler iizerinden iyilegtirmeyi saglayan
bir yontem sunuldu. Bir sonraki boliimde, kesirli Fourier déniigimii siizgecleme
diizeneklerinin goriintii sikigtirlmas: alamnda kullanim gosterildi. Daha sonra,
devaml isaretler iin kesirli Fourier domen ¢oziimlemesi tanimlandi. Son olarak,
perspektif izdiigiim uzay-siklik diizleminde incelenerek, perspektif izdiigiim ile
kesirli Fourier doniigiimii arasindaki iligki irdelendi. Belli sartlar altinda, kesirli
Fourier doniigiimii kullanilarak, perspektif izdiglimiinii yaklagik olarak elde

etmenin bir yontemi verildi.

Anahtar Kelimeler: kesirli Fourier donligiimii, igaret ve sistem sentezi, gorintii

sikigtirilmast, perspektif izdiigim.
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Chapter 1

Introduction

Digital signal processing has found a central place in signal processing after
the popular use of digital computers in various applications, where one needs
to process signals for many purposes like transmitting, storing, compressing,
enhancement and many others. Some of the systems of the processes mentioned
above arc non-linear, some of them are linear. However, linear systems are casy
to handle and in some applications they constitute a group of systems that is
adequate for many purposes. Linear systems can also be used to model non-
linear systems. Because of these reasons, linear systems have been extensively
emphasized in digital signal processing.

A general linear system can be characterized as,
' ! ! / .
gw) = [ H(uw,u)f(u) o', (L.1)
where H (u,u') is called the kernel of the system and g(u) and f(u) are the output
and input of the system, respectively. Discrete version of 1.1 can he expressed
as,

gln] = :‘: Hin, K] f[K), (1.2)

where g[n] and f[n] are cither samples of f(u) and g(u) or discrete functions

that somehow ocenr in digital systems, and H(n, k] are either samples of H (u, u')



or the kernel of a digital system. The last equation is simply a matrix vector

multiplication which can also be written as,
g = Hf, (1.3)

where g and f are vectors representing gln] and f[n] and H is a wmatrix
representing I{[n, k]. A detailed discussion of the signals and systems may be
found in [1,2].

In many applications, we face with linear systems that are shift-invariant.
In the case of shift-invariant systems, when the input is shifted hy a certain
amount, the output is also shifted by the same amount. This property is
equivalent to having a kernel of the special form H(u,u') = h(u — v'). Fourier
transform is a very powerful tool in analyzing shift-invariant systems, hecause
shift-invariant systems correspond to a multiplication in the Fourier domain.
Turning our attention to the digital case, matrices representing the shift-invariant
digital systems are circulant matrices and the Fourier transform matrix (DFT)
diagonalizes the kernel matrix. There exists a fast algorithm (FFT) that allows
us to compute Fourier transform in O(Nlog N) time (Here N is the length of
the discrete signal vectors or the time/space-bandwidth product of continuons
signals). This cfficient implementation is the main reason that Fourier transform
plays a central role in the analysis of shift-invariant systems.

We can think of the general linear systems and shift-invariant linear systems
as the two extremes. In one end, implementation cost is O(Nlog N) (shift-
invariant systems), and in the other end, implementation cost is O( N?) (general
linear systems). In some applications, shift-invariant systems may be inadequate
but efficient, and general linear systems may be adequate but inefficient. This
situation suggests to search for a way to be able to trade-off between cost and
performance. One way which makes this trade-off possible is the use of fractional
Fourier transform. The fractional Fourier transform is a generalization of the

ordinary Fourier transform; definition and some of its properties will be given in



the next chapter.

The original contribution of this thesis to the research area is summarized
in this part. The optimization of orders in fractional Fourier transform has
not been addressed before, in this thesis we have given a method to optimize
orders in the multi-channel filtering configuration. Although fractional Fourier
transform based filtering configurations arc used in system/signal synthesis,
signal restoration and feature extraction, the idea of using fractional Fourier
transform based filtering configurations in image representation and compression
is introduced in this thesis, for the first time. Continuous counterpart of fractional
Fourier domain decomposition is defined. Finally, relation between perspective
projections and fractional Fourier transforms are also studied in detail, and it
is shown that perspective projections can be approximated by fractional Fourier
transforms under certain conditions.

In Chapter 2, we give the definition of the fractional Fourier transform and
some of its important properties. Also, we are going to give a brief history of
the fractional Fourier transform and mention some of the applications wherce the
fractional Fourier transform is used. In Chapter 3, we give the concept of filtering
in fractional Fourier domains and represent the multi-stage and multi-channel
filtering configurations. Also, we discuss the optimization of fractional Fourier
transform orders for multi-channel filtering configurations by first finding the
optimal filter coefficients for a larger number of uniformly chosen orders, and then
maintaining the most important ones. Chapter 4 is reserved for the discussion
of the application of fractional Fourier transform based filtering configurations
to image representation and compression. In Chapter 5, we define continnous
version of fractional Fourier domain decomposition, of which the discrete version

and its applications were studied before.



In Chapter 6, we analyse perspective projections in the space-frequency plane
and show that under certain conditions they can be approximately rmodeled
in terms of the fractional Fourier transform. Conclusions and future work arc

discussed in Chapter 7.



Chapter 2

The Fractional Fourier Transform

2.1 Introduction and History

The fractional Fourier transform is a one-parameter generalization of the ovdinary
Fourier transform. We obtain the fractional Fourier transform by using this
parameter as the functional power of the ordinary Fourier transform.

The fractional Fourier transform is introduced to the mathematics community
by the early papers [3-5]. However, it did not draw much attention until it has
heen used by optics and signal processing communities. Number of publications
has exploded after 1980°s when it has found its place in optics and signal
processing.

The fractional Fourier transform suggests a potential improvement in the
applications where ordinary Fourier transform is used, since it provides an extra
parameter. We can improve the solution to any problem that had previously
utilized Fourier transform, by carrying the extra parameter throughout the
solution and then optimizing over this parameter. We can group the several
applications of the fractional Fourier transform as: i) applications in mathematics
and physics, ii) optical information processing applications and iii) digital signal

processing applications.



In this thesis, we are more interested in signal processing applications of the
fractional Fourier transtorm, however we briefly give some selected publications
in other arcas as well. Mathematics and physics applications of the fractional
Fourier transform [6-8] include quantum mechanics, uncertainty principles and
solution to differential equations. Optics applications of the fractional Fourier
transform [9-16] include optical propagation and diffraction, analysis and design
of Fourier optical systems, beam shaping and other applications.

Fractional Fourier domains are first introduced in [17], and many applications
of the fractional Fourier transform has been based on this concept. Optimum
Wiener filtering in fractional Fourier domains are studied in [18]. In this paper,
analytic solutions are presented that yield the optimum fractional Fourier domain
and optimum filter coefficients corresponding to this domain. As an application
of the optimal filtering in fractional Fourier domains, optimal image restoration
is studied in [19]. In these papers, a single fractional Fourier domain has heen
used. The concept of generalizing the fractional Fourier domain filtering to two
or more number of domains has been studied in two directions mostly. First
one is multi-stage filtering, which is defined as filtering in consecutive fractional
Fourier domains, and has been studied in [20]. Multi-stage filtering has found
applications in signal restoration [20], system synthesis [21], mutual intensity
synthesis [22]. Second one is multi-channel filtering, which is defined as filtering in
parallel fractional Fourier domains in [23]. Multi-channecl filtering has been used
in system decomposition [24,25]. In [24], fractional Fourier domain decomposition
is defined and its applications like efficient implementations of linear systems
are given. Other applications of multi-channel filtering including signal recovery
and restoration, signal synthesis and system synthesis has been studied in [23].
Continuous version of fractional Fourier domain decomposition is defined in [25].
The fractional correlation is first defined in [26] and developed in [27]. The
concept of fractional correlation is used in pattern recognition in [28,29]. Also,

feature extraction using the fractional Fourier transform can be found in [30].



Some of the other references related to the fractional Fourier transform and its
applications can be listed as [31-41].
Here, we do not give the complete list of references, for a more complete list

one can refer to [2].

2.2 Definition and Properties

The ath order fractional Fourier transform of the function f(u) will be denoted
by f.(w). Here, we are going to give the linear system kernel definition of the
fractional Fourier transform. Other equivalent definitions can be found in [2].

The fractional Fourier transform of a signal is defined as:

folw) = [ Kalu,u)f(w) du, 2.1)
Ko(u,u") = Ay exp [iw(cot ¢ u® — 2cscd uu' + cot @ u'2)] ,
where
am
=— 9.9
¢ 2 ) (_"""’)

Ay =+/1—icotg. (2.3)

The square root is defined such that the argument of the result lies in the interval
(—m/2,7/2]. When a is an even integer the above kernel is undefined. However,
it is possible to show that as @ approaches an even integer, the kernel approaches
a delta function. That is, Ky;(u,v') = 6(u — ') and Kyjio(u,w') = 6(u + u'),
where 7 is an arbitrary integer.

Now, we are going to give some special cases of the fractional Fourier
transform. The fractional Fourier transform is equal to the identity operation
when a = (), to the ordinary Fourier transform when a = 1, to the parity operation
when a = 2 and to the inverse Fourier transform when a = 3. Close examination
of the kernel given in 2.1 reveals that the fractional Fourier transform is periodic

in @ with period 4. The fractional Fourier transform interpolates between the Oth
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order fractional Fourier transform (original function) and the 1st order fractional
Fourier transform (ordinary Fourier transform of the signal). This is illustrated
for a rect function in Figure 2.1.

Having given the definition, now we are going to have a look at the important
propertics of the fractional Fourier transform, briefly. First, the fractional Fourier
transform is a one parameter generalization of the ordinary Fourier transform and
it is a member of the linear canonical transforms. Another important property of
the fractional Fourier transform is index additivity. That is, a,th order fractional
Fourier transform of the asth order fractional Fourier transform is equal to the
(a) + az)th order fractional Fourier transform. Relation between the fractional
Fourier transform and the Wigner distribution is of central importance in many
applications. Before giving this relation, we are going to give the definition and
some important properties of the Wigner distribution here for convenience.

The Wigner distribution Wy (u, u) of a function f(u) is defined as
Wilu, ) = [ flutw/2)f (= [2)e duf, (2.4)

where p represents the Fourier domain variable. Wy (u, 1) can also be expressed
in terms of F'(;1) (the Fourier transform of f(u)), or indeed as a function of any

fractional Fourier transform of f(u). Some of its most important properties arc:

f(u)|? = / Wi (u, 1) dps, (2.5)
|F(u)|*> = / Wi (u, 1) du, (2.6)
Bulf(w)] = [ Wy(u, 1) dudg, (2.7)

En[f(u)] is the total energy of the signal f(u). These propertics reveal that
Wigner distribution gives the distribution of the signal energy over space and
frequency. The Wigner distribution of F(u), is a ninety degree rotated version
of the Wigner distribution of f(u). More on the Wigner distribution and other

such distributions and representations may be found in [42].
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Figure 2.1: Axis ranging from 0 to 1 indicates the fractional Fourier transforin

Each slices of this three-dimensional figure corresponds to the fractional

order.

1, we

When a

Fourier transform of the rect function with a certain order.
observe the Fourier transform of the rect: a sinc (After [48]).



If Wy(u,p) denotes the Wigner distribution of f(u), then the Wigner
distribution of the ath order fractional Fourier transform of f(u), denoted by

Wy, (u, ), is given Dy:
Wy, (u, ) = Wr(ucos ¢ — psin g, using + p1cos @), (2.8)

that is, the Wigner distribution of f,(u) is the clockwise rotated version of the

Wigner distribution of f(u) by an angle ¢. A result of this property is as follows:

[ W, ) s = | fu(u) (2.9)

That is, the integral projection of the Wigner distribution of a function onto
the u, axis is equal to the magnitude square of the ath order fractional Fourier
transform of the function.

Finally, there exists a fast implementation of the fractional Fourier transform
[43] with implementation cost O(Nlog(N)). Actually, this fast implementation
makes it possible to use the fractional Fourier transform in applications where the
ordinary Fourier transform is used, with no additional cost, resulting in possible
improvements. However we should note that, this fast implementation cannot
be interpreted as the discrete fractional Fourier transform, because it does not
satisfy important properties like index additivity and Wigner rotation property,
exactly.

Discrete fractional Fourier transform is defined in [44]. The discrete fractional
Fourier transform satisfies the properties of the continuous fractional Fourier
transform. But, an efficient implementation of the discrete fractional Fourier
transform has not been found up to this date.

Until now, we have considered only the one-dimensional definition of the
fractional Fourier transformation. Here, we will generalize the definition of
the fractional Fourier transform to two-dimensions. There are two ways of

eneralizing the definition to two-dimensional systems.
g g
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First one is the separable two-dimensional fractional Fourier transtform defined

as:

faQ) = funa, (w,v) = F2f(q) = Fo f(u,v)

= / /K,,",(,v (u, vy, ") f(u ") du' do',
Koo, (w0 u,0") = K, (u, ') K, (v,0"), (2.10)

for two dimensions and similarly for higher dimensions. Here q = «wi + ov and
a = a, 0+ a,v where @ and ¥ are unit vectors in the u and v directions. K, (v, u)
is the one-dimensional kernel defined in equation 2.1.

Second one is the non-separable two-dimensional fractional Fourier transform

defined as /citetwod:
Fae (@) = [ B (@, ) f(o) e, 2.1

where

[ )

Bym (a,q") = Kyexplin(q"Aq+ 2q"Bq” + q"" Cq")] (2.12)

with
T T
7
K,=KyKy, r= [ u } G EES [ u " ] :

cot ¢y 0
0 cot oy
__tos O2csc 1 sin 01 csc
B = cos(01—02) cos(6h—02)
- _sinfpcscp, _ cosOicscy ’
cos(81—02) cos(61—62)

cos? 0y , sin® 0. sin 0, cos 8 sin ¢y cos 0
C— e (e cot ¢y + W—J— Cot ¢y &)737(1{7{—L cot ¢y + Kr"_()lj COt ¢y

smO cos Oy sin 0 COSG Cos 0] xm 2 0,
T eos2(0) —02) €Ot s + cos2 (01 —02) cot (ﬁv: cos® (’Ot ¢“’ + cosZ(0y—0s) cot du

Here we give the definitions of the fractional Founer transform for the sake

of completeness. These two-dimensional fractional Fourier transforms will not be

employed in this thesis.
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Chapter 3

Optimization of Orders in
Multi-Channel Fractional Fourier

Domain Filtering Configurations

3.1 Filtering Configurations Based on the Frac-
tional Fourier Transform

Space- and frequency-domain filtering are special cases of fractional Fourier
domain filtering (3.1(a,b,¢)) [18,46]. Fractional Fourier domain filtering consists
of (i) taking the fractional Fourier transform of the input signal, (ii) multiplication
with a filter function, and (iii) taking the inverse fractional Fourier transform
of the result. The fractional version of the optimal Wiener filtering problemn
has been studicd in detail in [18]. Fractional Fourier domain filtering has heen
further generalized to multi-stage and multi-channel filtering (3.1(c,f)). In multi-
stage filtering [21,47] the input is first transformed into the @ th domain, where
it is multiplicd by a filter h,. The result is then transformed back into the

original domain. This process is repeated M times. Denoting the diagonal matrix

12



corresponding to multiplication by the kth filter by Ay, we can write the following

expression for the overall effect of the multi-stage filtering configuration:
Tps = [F7 Ay, .. . F2 A, FY], (3.1)

where T, is a matrix representing the overall multi-stage filtering configuration
and F* denotes the discrete fractional Fourier transform matrix [44). Multi-
channel filtering configurations [24,47] consist of M single-stage blocks in parallel.
For cach channel &, the input is transformed to the axth domain, multiplied by a
filter Ay and then transformed back. Now, we can write the following expression

for the overall effect of the multi-channel filtering configuration:

M
T = Z | AkFak ({32)
k=1

where T, is a matrix representing the overall multi-channel filtering config-
uration. [t is possible to further generalize these filtering configurations by
using parallel and series arrangements together; such systems have heen called
generalized filtering circuits [47,48]. The problem of finding the optimal filter
coefficients, given the transform orders, has been solved in [18,21,47]. Given
a matrix H which represents a system one wishes to synthesize, one seeks
the filter coefficients such that the resulting matrices T or Thye 18 as close
as possible to H according to some specified criteria, such as mean square
crror. Until now, the transform orders have usually been chosen uniformly
(ay = 1/M,ay = 2/M,...ap = 1); the problem of optimizing the orders has
not yet been addressed. In this chapter, we show how one can optimize over the
orders

A A A for multi-channel filtering by first finding the optimal filter coefficients
for a larger number of uniformly chosen orders, and then maintaining the most
important ones.

In [21,24,47] fractional Fourier transform based filtering configurations have

been used for approximating linear space-variant systems, represented by some

13
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Figure 3.1: a) Fourier domain filtering. b) Space domain filtering. c) ath order
fractional Fourier domain filtering. d) ath order fractional Fourier domain. e)
Multi-stage filtering. f) Multi-channel filtering. (After [22])
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matrix H. It was shown that for many such systems encountered in various
applications, it is possible to approximate the system H with a multi-stage or
multi-channel configuration T, or Ty, with acceptable mean square crror, by
using a small or moderate number (M) of stages or channels. Since the cost of
implementing the fractional Fourier transform (optically or digitally) is similar
to the cost of implementing the ordinary Fourier transform, this leads to a fast
implementation of the space-variant system in question. For instance, for digital
systems, the cost becomes O(MN log N), which should be compared to the cost
O(N?) for direct implementation of linear systems.

In the multi-channel case it is possible to analytically find the optimal filter
coefficients, provided the transform orders are given. In practice, however, an
iterative method is preferred. In the multi-stage case it is not possible to find

analytic solutions, so an iterative method must be used to begin with.

3.2 Optimization of Orders in the Multi-
Channel Filtering Configuration

In this section, we concentrate on the multi-channel filtering case, and consider
the improvement of optimizing over the M orders in addition to the flter
coefficients. We first find the optimal filter coefficients for a larger number P
of uniformly chosen orders and then maintain the most important ones. More
specifically, we start with P uniformly chosen orders, where P is several times the
number of orders M we are eventually going to use. Then the M orders resulting
in filters with the highest energies are chosen, and the other P — M Dhranches
of the multi-channel configuration are eliminated. Finally, with the M orders
thus chosen, we reoptimize the filter coefficients. Here, we should note that the
method proposed does not give the global optimum for the orders but gives the

orders that provides improvements compared to uniformly choosing the orders.



As an cxample, we will consider the problem of synthesizing light with a
desired mutual intensity. Here we wish to synthesize a systemm H such that,
when light of given mutual intensity is present at the input, light whose mutual
intensity is as close as possible to the given specification is obtained at the output.
Choosing to work with one-dimensional signals for simplicity, we let f(x) and
g(z) denote the input and output optical fields, and Ry(z|,x,) and Ry{ay, x)
denote the input and output mutual intensities. If f(z) and g(z) are the input
and output of a system characterized by a kernel H(x,z') such that g(x) =

[ H(z,z')f(2") da', then the input and output mutual intensities arve related by
Ry(x1, ) = //Rf(.’EI],.'E;)[{(fL'l,fE’l)H*(fEQ,.’l«'{z)d.'Ell dz,, (3.3)

where H* denotes the complex conjugate of H. The sampled, discrete version of
the optical ficlds will be represented by column vectors f and g and the mutual
intensity functions will be represented by matrices Ry and R,. Then, we have
g = Hf, where H is the discrete form of the system kernel and the double integral

relationship above assumes the following matrix form:
R, = HR/H', (3.4)

where Ht is the Hermitian conjugate of H. Equation 3.4 is quadratic in H. We
are going to cmploy an cquivalent representation which is linear. Since mutual
intensity matrices R arc Hermitian and positive semi-definite, it is possible to
diagonalize them as

R = UDU', (3.5)
where D is a diagonal matrix whose elements are the real eigenvalues, and U is
a matrix whose columns constitute the set of orthonormal eigenvectors of R so
that U'U = I, where I is the identity matrix. Letting D'/? denote the diagonal
matrix whose clements are the positive square roots of the elements of D, we

substitute D/2UTUD!/? for D in the above equation:
R = UD'?UtUuD?U'. (3.6)

16



Now, using this expansion for both Ry and Ry, we can write equation 3.4 as

R, =R,R! =R,R, =R, (3.7)
R, =R,Rl =R/R; = R?,
where
R, = Rl = UD'*Ut (3.8)
R, = R} = UDY?Ut
Substituting 3.8 into 3.4 we obtain the following:
R,R! = HR,RIH. (3.9)
One way of satisfying the above equation is to ensure that
R, = HR;, (3.10)
or
H=R,R;". (3.11)

In our numerical examples, we are going to consider the input light source
to be incoherent. Assuming this source extends uniformly from —ry to 7y, its
mutual intensity can be written as

Ty oy
R (z),2y) = 6(x) — z2)rect (—) : (3.12)
279
When discretized, the corresponding matrix Ry (and its square root R,) is equal
to the identity I, provided 7y is larger than the interval over which we sample.
Therefore, the matrix H we wish to approximate is simply equal to Ry.

As a first example, we wish to synthesize a Gaussian Schell-model beam with

mutual intensity:

(z1 — 2q)* i+ 3 o
Ry(21, ) = exp <_T exp o7 ) (3.13)



(In our examples 7y = 5 and 7, = 10, in suitable units.) When we synthesize
the filter H corresponding to this mutual intensity using the multi-channcl
configuration with M = 3 filters (a; = 1/3,a2 = 2/3,a3 = 1), the normalized
error turns out, to be 15.42 %. Using the proposed method of optimizing the orders
with P = 12, we find that the optimal orders are a; = 2/12,a, = 5/12,a3 =
10/12, and the normalized error using these orders becomes 12.64 %. When we
synthesize the same H with M = 2 filters (a; = 1/2,ay = 1), the normalized
error is 22.36 %. Optimizing the orders with P = 8, we find that the optimal
orders arc a; = 2/8,ay = 6/8, and the normalized error using these orders is
16.36 %. Further simulations have been undertaken for other values of M and
P and the result errors are plotted in Figure 3.2(b). Part a of this figure shows
the desired mutual intensity, part ¢ shows the synhthesized mutual intensity for
M = 2 without optimization of orders, and part d shows the synthesized mutual
intensity for M = 2 with optimization of orders with P = 8.

As a sccond example, we consider the synthesis, as closely as possible, of a

mutual intensity profile specified as

Ry(x),z9) = rect (H_Lé;_f_ﬂ) rect (2171) rect (21—:2) : (3.14)

where ry > ry. This amounts to specifying the amplitude of light at two points to
be fully correlated when the distance between those points is less than 27, and
totally uncorrelated otherwise. Since the rectangle function does not represent a
physically realizable mutual intensity function (it is not positive semi-definite),
its negative ecigenvalues will be replaced by zero in obtaining its square root
representation. This amounts to replacing the rectangle function with the closest
positive semi-definite function. When we synthesize the filter H corresponding
to this mutual intensity using the multi-channel configuration with M=3 filters
(ay = 1/3,as = 2/3,a3 = 1), the normalized error is 15.35 %. Using the proposed
method of optimizing the orders with P = 12, we find that the optimal orders are

a, = 2/12,ay = 6/12,a3 = 10/12, and the normalized error using these orders is
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Figure 3.2: a) Desired Gaussian Schell-model mutual intensity profile. b)

Normalized error vs P for different values of M (M = 2: '+, M = 4: ™,
M =80, M =12: ). c) Synthesized profile using uniform orders (M = 2).

d) Synthesized profile using optimized orders (M = 2, P = 8).
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12.3 %. When we synthesize the same H with M=2 filters (a; = 1/2,ay = 1),
the normalized error is 22.64 %. Optimizing the orders with P = 8, we find that
the optimal orders are a; = 2/8,ay = 6/8, and the normalized error using these
orders is 15.45 %. Once again, further simulations have been undertaken for other
values of M and P and are plotted in Figure 3.3(b). Part a of this figure shows
the desired mutual intensity, part ¢ shows the synhthesized mutual intensity for
M = 2 without optimization of orders, and part d shows the synthesized mutual
intensity for M = 2 with optimization of orders with P = 8.

A number of conclusions can be drawn by examining the numerical results.
First, optimization of the orders is capable of offering tangible improvements with
respect to choosing the orders uniformly. We also observe that beyond a certain
value of I°, further increcases in this parameter do not offer further reductions
in the error (the benefits of optimizing over the orders is saturated). This is
because further increasing P merely allows further refinements and fine-tuning
in choosing the optimal orders, which has diminishing return once one moves
roughly closer to the optimal orders. Also, we can see that improvements coming
from optimization of the orders are greater when M is smaller but less when M
is larger. This is because when M is large to begin with, it is already possible
to concentrate the filtering action in those domains which are optimal. This
of course means that the other domains add cost to the system implementation
with little benefit, and the method we propose is useful precisely because it allows
these low bencfit domains to be pruned.

In conclusion, we have presented a simple and effective way of optimizing the
orders in fractional Fourier domain based multi-channel filtering configurations.
Until now, the orders had mostly been chosen uniformly since there was no simple
way of solving the nonlinear problem of optimizing over the orders. The method
we proposed is more likely to be useful when confronted with low-cost, rather than
high-accuracy applications, because larger improvements are obtained when the

use of a smaller nunber of filters is desired. Future work might include extending
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the method to the multi-stage case, which poses a number of challenges, and to

more general filtering circuits.
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Chapter 4

Image Representation and

Compression with the Fractional

Fourier Transform

There has been a tremendous amount of work on data compression in general and
image compression [49] in particular, leading to efficient compression algorithmns.
In this chapter, we discuss a novel way of representing images based on fractional
Fourier domain filtering configurations [47, 48], leading to an image coding
method.

In Chapter 3, we have introduced the fractional Fourier transform based
filtering configurations. Here, we repeat the matrices representing the overall

effect of the multi-stage and multi-channel filtering configurations:

Ty = [P Ay, .. FA,F] (4.1)
M

The = [Z F_akAkFak:] (/12)
k=1

In this chapter, we interpret the matrices Ty, and Tpg not as representing
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a linear system, but as representing a two-dimensional signal or image. Thus
the filtering coefficients in the multi-stage or multi-channel approximation of
this matrix, can be used to approximately represent and reconstruct this matrix
and the associated image. In other words, the optimal filtering coectficients
minimizing the mean square error between the original matrix and its multi-stage
and multi-channel approximation, are taken as the compressed version of the
image. Reconstruction of compressed images is possible in O(M N log N) time.
The cited work on synthesis of space-variant systems for fast implementation
shows that satisfactory approximations are possible with moderate numbers of
filters and hence large reductions in implementation cost. Therefore, it scems
worth investigating whether similar approximations with similar reductions in
cost (measured by the compression ratio) is possible when these configurations
are used for image compression. Since the original image has N? pixels and the
compressed data has NM pixels, the compression ratio is N/M.

In the multi-channel filtering case, we have also considered the improvemnent
of optimizing over the orders as described in Chapter 3.

The compression method proposed is tested on the 128 x 128 image shown
in Figure 4.1(a). Figure 4.1(b) shows the trade-off between the reconstruction
error and compression ratio. The mean square error has been normalized
by the energy of the original image. The horizontal axis of the plot is the
inverse of this normalized error. We see that the multi-channel and multi-stage
configurations give comparable results, though the multi-stage configuration is
slightly better. Optimizing over the orders for the multi-channel case results in
tangible improvements.

Figure 4.1(c,d) show illustrative results obtained with the multi-stage
configuration. Although the order-optimized multi-channel case yields smaller
errors, we present results for the multi-stage configuration so as to illustrate the
performance of the method in its rawest, most basic form. Whereas we observe

that nearly an order of magnitude compression is possible with moderate errors,
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larger compression ratios are accompanied by larger errors.

Unfortunately, we observe that the use of fractional Fourier domain filtering
configurations for image compression, does not yield results as good as those
obtained when they are used for synthesis and fast implementation ol shift-variant
linear systems. In its present form, the proposed idea does not yield hetter results
than presently available compression algorithms. However, we emphasize that
the results presented reflect the performance of the basic method in its rawest
and barcst formn; we merely represent the image with the filter coefficients which
make the forms given in (3.1) and (3.2) as close as possible to the image matrix.
Further refinement and development of the method and its combination and
joint use with other techniques may lead to full-fledged compression algorithins
with better performance. Also, it is possible to use the discrete fractional cosine
transform which is a real transform, since images we are dealing with arc real
and a real transform would therefore reduce the cost. (One way of gencralizing
the method, which can lead to potentially higher compression ratios with similar
errors is to employ filtering circuits based on linear canonical transforms, rather
than fractional Fourier transforms [50].)

Moreover, regardless of the performance that can ultimately be obtained with
improvements of the present idea, the fact that the information inherent in an
image and be decomposed or factored into fractional Fourier domains in the
manner described is of considerable conceptual significance. In a sense, these
domains “span” a certain space which is a subset of the image space, although
the precise nature of this is difficult to ascertain in the nonlinear multi-stage
case. The information contained in the image is distributed to the different,
domains in an unequal way, making some domains more dispensable than others
in representing the image. Exploring and exploiting these issues secm potentially

rewarding.
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Chapter 5

Continuous Fractional Fourier

Domain Decomposition

The continuous spectral decomposition (or expansion) and its discrete counter-
part, the singular value decomposition (SVD), plays a fundamental role in signal
and system analysis, representation and processing. The spectral decomposition
of a function h(u,w’) is

o0

hiu, ') = / o (W) A (w) do, (5.1)

—00
where the A, are the eigenvalues and the 1, (u) are the eigenfunctions of h(u,u')
(that is, they are solutions of the equation [0 A(u,u') f(u') du’ = A f(u)).

In this chapter, we define the continuous fractional Fourier domain decom-
position (FFDD). While the FFDD may not match the spectral decomposition’s
central importance, we believe it is of fundamental importance in its own right
as an alternative which may offer complementary insight and understanding. We
believe the FFDD has the potential to become a useful tool in signal and system
analysis, representation, and processing (especially in time-frequency space), in
some cases in a similar spirit to the SVD.

Let h(u,u') be a two-dimensional function, representing either an image or
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the kernel of a one-dimensional linear system. Its fractional Fourier domain

decomposition is defined as
! 2 "0 n
h(u,u') = /;2 /_00 K _o(u,u")e(a, u") K, (u", u') du” da, (5.2)

where ¢(a, u”) is a family of one-dimensional weighting functions with paramecter
a. The integration interval is limited to [-2 2], since the fractional Fourier
transform is periodic in o with period 4. We can obtain ¢(a,«”) by solving the
integral equation 5.2. Sampling this equation we obtain a matrix equation which
can be solved hy using the tools of the linear algebra. Comparing the fractional
Fourier decomposition with the spectral decomposition given in (5.1), we can see
that the integrands in both expressions consist of three terms. The definition of

the FFDD can be rewritten in the form

b

2 o0
h(u,u') / / c(a,u")P,(u, v, u") du" da (5.3)
-2 -

where we have defined
R,,('U,, UI, u,") = Ka(u", U’)K_a('u,, 'u,”) (34)

Equation (5.3) can be interpreted as an expansion of A(u, ') in terms of the basis
functions P, (v, u", u") with c(a, u") corresponding to the expansion coefficients.
The basis functions in (5.4) can easily be shown to be linearly independent
as a direct consequence of the fact that (K,(uw",u), Ky (u,u")), is nonzero for all
a, /. Here (-, ), denotes a one-dimensional inner product with respect to the
variable .
A natural extension of the FFDD would be the linear canonical domain

decomposition (LLCDD) based on linear canonical transforms [50].
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Chapter 6

Perspective Projections and

Fractional Fourier Transforms

6.1 Introduction

Perspective projections are used in many applications in image and video
processing, especially when confronted with natural or artificial scenes with
depth (for instance, in robot vision applications). Perspective projections can
be considered as a geometric or pointwise transformation, in the sense that cach
point of the object is mapped to another point in the perspective projection
[51-53]. In this chapter we will examine the perspective projection in the space-
frequency planc and show that its effect on the object can be modeled in terins
of the fractional Fourier transform [56].
The Wigner distribution of an exponential function exp[i27€z] is a line delta
lying parallel to the space axis:
Wiz, 05) = 0(0, — &), (6.1)
and the Wigner distribution of a chirp function explim(xz? + 26w + ()] is an

oblique line delta:
Wi(x,0,) = 6(0s — xz = §). (6.2)
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To understand why the fractional Fourier transform is expected to play a role
in perspective projections, let us consider the perspective projection of an image
exhibiting periodic features, such as a railroad track. More “distant” parts of the
image will appear in the projection smaller than “closer” parts. Thus a periodic
or harmonic l[eature of certain frequency will be mapped such that it exhibits
a monotonic increasing frequency. Under certain conditions, this increase can
be assumed linecar so that the harmonic function is mapped to a chirp function.
Since fractional Fourier transforms are known to map harmonic functions to chirp
functions, we expect that perspective projections can be modeled in ferms of
fractional Fourier transforms. The purpose of this chapter is to formulate this
relationship.

In the next section, we are going to present the perspective model we use and
examine the effect of the perspective projection on the Wigner distribution. In
the following section, we will discuss the relation between the fractional Fourier
transform and perspective projections based on their effects on the Wigner
distribution. We will discuss how perspective projections can be modeled as
shifted and fractional Fourier transformation. The last section is devoted to an

analysis of the errors and the region of validity of the approximations.

6.2 Perspective Projections

The perspective model we use is shown in  Figure 6.1. Initially we consider
perspective projections for onc-dimensional signals, since this significantly
simplifies the presentation. The horizontal axis, labeled , represents the original
object space. The vertical axis, labeled z,, represents the perspective projection
space. The point A with coordinates (—zo, Zpo) is the center of projection. We
denote the original signal (object) by f(z) and its perspective projection by
g(z,). We assume that most of the energy of f(z) is confined to the interval

[z — Az/2,% + Az/2]. In the frequency domain, we assume that most of
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Point A
(=0, Tpo)

f(z)

Figure 6.1: Perspective model: f(x) represents the object distribution on the
axis, g(x,) represents its perspective projection onto the z, axis. The point A
with coordinates (—zg, 2,,) is the center of projection.

the energy of F(o,), the Fourier transform of f(z), is confined to the interval
[0 — Ao./2,0, + Ao, /2]. The value of f(z) at each z is mapped to the point

Zp, which is the projection of the point z:

TLpo
T, = — -
. (6.3)
yo ST (6.0
Lpo — Tp

which can be derived by simple geometry. Thus, the projection g(x,,) is expressed
as follows:
olay) = 1 (225 ). (©:5)
Tpo — Tp
The interval to which most of the energy of g(z,) is approximately confined can
be determined nsing (6.3).
In order to see the effect of perspective projections in the space-frequency

plane, we decompose f(x) into harmonics as follows:
f(z) = /F(az) exp(12mz0o,) doy. (6.6)

where F(o,) is the Fourier transform of f(z). Using (6.5) and linearity we obtain
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the following expression for g(z,):
g(,) = /F(a:,;)iL(:L‘,,,a:E) do, (6.7)

where
ToT
h(xy, 0,) = exp [7;27”% (*)} doy. (6.8)
; T, ‘

Tpo —

We will initially concentrate on a single exponential with frequency 7, and study

the effect of perspective projection in the space-frequency plane. Then, we will

construct g(x,) by first decomposing f(z) in terms of exponentials and using
(6.7).

The Wigner distribution of h(z,, ;) cannot be explicitly obtained. Therefore,

to continue our analytical development, we expand the phase of i(z,,7,) in a

Taylor series. We will expand the phase of h(z,,5,) around the point which 7 is

mapped to:

z
= Zpo (6.9
T+ Zy P ) )
which we express as kz,, where k = fzo Expanding the phasc of h(x,,d,)

around k1,, we obtain the following after some algebra:

) N zp(1 — 3K) + K3 N )} |

(1= &)%23, (1 =k)zp (1 =k)

h(zp,5,) = exp [722#0,,,:1:0 (
(6.10)

Ignoring terms higher than the second order, the projection of a harmonic is seen
to be a chirp function. The validity of this approximation requires the third order

term to be much smaller than the second order term:
|k + 2| < [22,0(k — 1)]. (6.11)

This approximation is more accurate for larger values of z,,. This is expected
since larger z,, correspond to less deep perspective projections. The Wigner
distribution of the chirp given in (6.10) is a line delta given by:
20,  0z(1—3k)

R R

§ oy + (6.12)

b
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Figure 6.2: (a) Wigner distribution of the original exponential. (h) Wigner
distribution of the approximate perspective projection: a chirp.

and is shown in Figure 6.2b.

Having obtained an approximate analytical form for the perspective projection
of a harmonic, as well as its Wigner distribution, we now move on to our discussion
of perspective projections in the space-frequency plane, as well as its relation to

the fractional Fourier transform.

6.3 Perspective Projections and Fractional
Fourier Transforms

In the previous section, we obtained an approximate expression for the Wigner
distribution of the perspective projection of a single exponential. The Wigner
distribution of a typical exponential and the Wigner distribution of the
approximate perspective projection of the exponential are shown in Figure 6.2.
The angle the line delta makes with the z axis is arctan [(_I%Tfm} , which depends
on &,. The fact that the oblique line delta is a rotated version of the horizontal

line delta suggests a role for the fractional Fourier transform since this operation
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corresponds to rotation in the space-frequency plane.

We will now show how the perspective projection of a signal can he
approximately expressed in terms of the fractional Fourier transforin. We claim
that the perspective projection of a signal can be obtained from, or modeled by,

the following steps:

1. Shift the signal by 7 in the negative x direction and by &, in the negative
o, direction. This translates the Wigner distribution of the signal to the

origin of the space-frequency plane.

2. Take the fractional Fourier transform with the order a =

=2 aretan
mw

This rotates the Wigner distribution by an

angle am /2.

3. Shift the result by f—j]ﬁ in the positive z direction and by in the

LoZpo

positive o, direction.

These steps represent a decomposition of the overall effect of the perspective
projection, from which we see that the substance of perspective projection is
essentially to effect a rotation in the space-frequency plane. However, this
rotation is enacted on the space-frequency content of the signal referred to the
origin of the space-frequency plane. The above steps are illustrated in  Figure
6.3.

Different frequency components of the signal require different fractional
Fourier orders, because the order a given in step 3 depends on 4,. However,
as we will sec, under certain conditions, a satisfactory approximation can be
obtained by using a uniform order corresponding to the central frequency of the
signal.

We now demonstrate our claim that perspective projection can be decomposed

into the three steps given above. We start by decomposing f(z) into harmonics:
flx) = /F(ax) exp(2imzo,) dos, (6.13)
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Figure 6.3: Illustration of the decomposition of the approximation into
elementary operations in the space-frequency plane. a) Original signal. ) After
step 1 (Space and frequency shift). ¢) After step 2 (Fractional Fourier transform.)
d) After step 3 (Space and frequency shift): Approximate perspective projection.

We will concentrate on a single harmonic component exp(i2nzo,) and the result
for general f(x) will follow by linearity. Applying step 1 to a single harmonic we
obtain

exp(i2nZoy,). (6.14)

Now, we apply step 2 and step 3 to this result to obtain

i, 1/2 _
20, +x o ) T+ .
(1 + /—r73—0> exp(i2nZo,) exp [(szz20m2—30 (6.15)
12,73 12,74 /.

Finally, we apply step 4 and obtain our final result:

_ N _ Y /-
20.,(T + zp)" , , T 2T+
(1 + 7—2—(2—l_;0)—> exp(i2mTo,) exp I:’I,27T0'm (z - i ) < 0

, T P 2 el
€ z+x ToTi

‘p()'ll‘()
, T+ xd o
X exp |idmo, | —— || (6.16)

T§po

Multiplying this with F(o,) and integrating over o, yields the desired
approximate cxpression for the perspective projection of f(z), which is the
mathematical expression of the four steps outlined above.

To sce that this expression is indeed an approximation of the perspective
projection, we again concentrate on a single harmonic component whose exact

perspective projection is

exp <2i7roz——$&-) (6.17)
Tpo — Tp
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Using the Taylor series expansion we obtain

2 .
' z z,(1 — 3k) 3
exp  12mo,w b p\ 01
! { xT0 (1- /{,)3:1;73)0 (1 - k)32,  (1—k) } ) (G.18)

which differs from (6.16) only by a constant factor. As far as a single harmonic
component is concerned, the only approximation that is involved is the hinomial
expansion in the exponent. When the harmonic components are superposed to
obtain the original function f(z), we make the additional approximation of using
the order corresponding to the center frequency for all harmonic components.
Thus our three-step procedure will deviate from the exact perspective projection
more and more as the bandwidth of f(z) is increased. The limitations associated
with this approximation will be discussed in the next section.

Figure 6.4 shows the exact perspective projection of the function

cos(4mx)rect ("I; _ 4) _ | oxp(i4nz) + exp(—idrz) rect ($ _ 4) (6.19)

2 6
superimposed with the approximation given by (6.18). We chose zg = —3, 2, = 6
as the center of projection. As a second example, we consider the narrowhand
signal shown in Figure 6.5. Again, the exact perspective projection and the
fractional Fourier approximation are superimposed in part b of the same figure.
We observe that the approximation is quite satisfactory except very ncar the
edges, which should be avoided.

Generalization of the proposed method to two dimensions is possible by
following similiar steps. In our two-dimensional perspective model we use a two-
dimensional image with midpoints Z, ¥; center frequencies 7., &, and spatial
widths Az, Ay. Our center of projection is located at (2o, Zpo, 0). The model
described is shown in  Figure 6.6.

With this model, using simple geometry we can obtain the following mappings
and reverse mappings for each z, and yj:

T .
T, = pPo_ (6.20)
T+ Xp
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Figure 6.4: a) Original signal. b) Exact perspective projection (solid line)
superimposed with the fractional Fourier approximation (dashed line).
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Figure 6.5: a) Original signal. b) Exact perspective projection (solid linc)
superimposed with the fractional Fourier approximation (dashed line).
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Point A
(_X'.) ' xpoy 0)

Figure 6.6: Perspective model: f(z,y) represents the object distribution on the
x-y plane, g(x,,y,) represents its perspective projection onto the x,-y, plane.
The point A with coordinates (—zo, 0, 0) is the center of projection.
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o

5=l (6.21)

Lpo — Tp

p A 2/.
UYp = M (6.22)

2(z + o)

YpT TpA

y= ez ey (6.23)

Tpo — Tp  2(zo — Zp)

As in the one-dimensional case we first decompose f(z,y) into harmonics,
fla,y) = / F(og,0,) exp(i2mo,x) exp(i2no,y) do, do,. (6.24)

We proceed by writing an expression for the perspective projection of a two-
dimensional harmonic exp[i2nd,z] exp[i27G,y]:
o 2 N z,(1 — 3k) N K>
eXp 1275 5T .
(1—-r)z2,  (1-k)Pzp (1-—k)

Do
L z1-36)  &°

25'¢ — O 1 L - I l
X exp [ S AN <(1 — )33 + (1 — k"3 * (1- “')3>]

2 2
: @ z,(1 -3k) 3k*—3k+1
X eXp |127 7Y ( —— L + =2 + . )J , (6.25)
[ P2, (1 - k) z,(1 - k) (k—1)3 ‘
where again the binomial approximation has been employed and x = 7—;1—” and
K = m Close examination of (6.25) reveals that we have the product of a one-

dimensional chirp in the 2, direction and a scaled harmonic in the y, dircction
whose scaling factor depends on x,,. We are going to approximate the perspective
projection by using one-dimensional shifts and one-dimensional fractional Fourier
transforms followed by scaling. We claim that the two-dimensional perspective

projection of a signal can be obtained from, or modeled by, the following steps:

1. Shiflt the signal by Z in the negative z direction and by &, in the negative
o, direction. This translates the Wigner distribution of the signal to the

origin of the space-frequency plane.

2. Take the one-dimensional fractional Fourier transforms in the variable x

F (7 3 T4 35 R
2”‘”73(2”‘;%0) — (lzy.,yiz”y , treating y as a parameter.
“po™0 0

This rotates the Wigner distributions by an angle ar /2.

with order o = =2 arctan
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3. Shift the result by :—i‘% in the positive z direction and by

[ Folitmo)*  (E4+Ay)a,
Ty 0 Ayla?

] in the positive o, direction.

4. Scale cach horizontal line of the perspective projection by

- s, zp(1=3k) 362 -3K41
[UZ‘/ <:::2 (]I—r.',)“ + :1:;,(1—-“:)3 + h(_n—l,;3 >] ’

po

The mathematical combination of the above steps yields the two-dimensional
perspective projection of a two-dimensional harmonic, given by equation (6.25).
Multiplying this with F'(o,, 0,) and integrating over o, and o, yiclds the desired
approximate expression for the perspective projection of f(x,y), which is the
mathematical expression of the four steps outlined above. An example is given in
Figure 6.7, where the fractional Fourier transform-based result shown in part ¢ is
scen to be a reasonable approximation of the actual perspective projection shown

in part b.

6.4 Error Analysis

In this section, we examine the conditions under which the fractional Fourier
transform approximation to the perspective projection is valid. We first examine
the modifications the Wigner distribution undergoes corresponding to the
approximation. Since we know that the approximation can he decomposed into
the four steps given in Section 6.3, it is an easy matter to find the resulting changes
in the Wigner distribution. To ecstimate the error inherent in our approximation,
we will think of the original Wigner distribution as consisting of horizontal strips
of narrow frequency components. The major approximation we make is to replace
the fractional orders required by these different frequency components by a single
order corresponding to the central frequency. To determine the error introduced
by this approximation, we will determine how the highest and lowest frequency
strips would be mapped had their individual frequencies been used instead of

the center frequency. Let us assume that most of the energy of the Wigner

41



@

®)

# # . . . . . . « «

H ks ) K KK

(©)

-BmW*%.%t«W%WNW
*'VV-U"W%V»VRH".

VWWNAD WANTA
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distribution of a signal is concentrated in a rectangular region in the space-
frequency plane (Figure 6.8a). Part b of the same figure shows the Wigner
distribution corresponding to the fractional Fourier approximation (solid lines).
The dashed lines, on the other hand, show the Wigner contour obtained by using
the individual frequencies for the highest and lowest frequency strips.

Our error criteria will be the deviations of the corners of the two superimposed
Wigner contours in Figure 6.8b. There will be one spatial deviation and one
frequency deviation for cach of the four corners of the contours. We will normalize
the spatial deviation by Az and the frequency deviations by Ao, and take the
maximum of the resulting eight normalized deviations as our final cirror measure.

Expression for the eight normalized deviations are given below:

AO':,; . O — Qy . Q¢ + 1 i @+ 0\ ]
Cup—left,space — Az s ———2 cos ——2 + L_o sin 5 ,
AUJ: e G — Qy . Qe + Oy 1 - o, +
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Txy X ]
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L e — oy (e Az Y. + o,
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Figure 6.8: (a) Wigner distribution of the original signal. (b) Comparison of
Wigner distributions underlying error analysis.
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Figure 6.9: The dark regions represent the parameter combinations whose
normalized error is less than 10%. See text for explanation.

To reduce the number of parameters by one, we have expressed the above results

so that all free parameters appear divided by xq.

It does not seem possible to analytically derive conclusions using these
formulae so that we will resort to numerically obtained plots. The approximation
will be assumed to be acceptable if the maximum normalized error is less than
10%. The above given expressions give the error as a function of six variables:
X0,XP,,,X,(7.j;» AX, However, normalizing all variables by tq, the number of
variables can l)e reduced to five. Figure 6.9 shows the region where the maximum
normaliz(!(l error is less than 10% as darker regions, whereas the lighter regions are
where tlui error is large. The horizontal axis in each of the 75 plots represents the
value of Ax/xo and the vertical axis represents Aox/xq. Both of these variables
range from 10'/*’ to lo™*“/* in these log-log plots.

Each member of the 5 x5 matrices of plots corresponds to different
values of x/xo (horizontal) G« xq (vertical). The five separate values of x/xq
are 10“/NN 109 1O, 10N, 10" and the five separate values of Gx/x( are
[O“ AN 107/, 10NN, 10N, 10N The three groups of 25 plots each correspond
to different values of the center of projection. Figure 6.9a: Xp,/xn = 0.1,

Figure 6.9b: Xpo/xn = 1, Figure 6.9c: Xpo/xo = 10.
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This set of plots covering a broad range of the parameter values allows us to
determine whether the approximation developed is acceptable for a certain range
of parameters. Generally speaking, we have larger acceptable regions for larger
values of 5,. Not surprisingly, the approximation is strained as Az and Ao,
increase, i.e. as the space-bandwidth product of the signal increascs.

In this chapter, we examined perspective projections in the space-frequency
plane and showed how to approximate the perspective projection in terms of the
fractional Fourier transform. Our main motivation was that the fractional Fourier
transform approximately captures the essence of the warping characteristic of
perspective projections. We observed that perspective projection approximately
maps harmonic components into chirps and therefore can be modeled in terms
of the fractional Fourier transform. We saw that the substance of perspective
projection is essentially to effect a rotation in the space-frequency plane. However,
this rotation is enacted on the space-frequency content of the signal referred
to the origin of the space-frequency plane. Elementary numerical examples for
both one-dimensional signals and two-dimensional images are presented. The
errors associated with the approximation and the region of validity with respect
to the approximations involved are numerically discussed. In natural scenes,
it is more typical to encounter periodic or nearly periodic patterns as opposed
to chirp-like patterns. If such assumptions can be quantified and posed into a
form of constraints, then it may be possible to estimate the transform order and
center of projection associated with a perspective image and recover the original

undistorted image.
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Chapter 7
Conclusions and Future Work

The fractional Fourier transform is a generalization of the ordinary Fourier
transform and therefore supersedes the ordinary Fourier transform. With the
extra parameter that the fractional Fourier transform provides, any application
where ordinary Fourier transform is used, is a potential application arca where
the fractional Fourier transform can yield improvements. In this thesis, we have
illustrated some of these applications.

In Chapter 3, we have presented a simple and effective way of optimizing the
orders in fractional Fourier domain based multi-channel filtering configurations.
Until now, the orders had mostly been chosen uniformly since there was no simple
way of solving the nonlinear problem of optimizing over the orders. The method
we proposcd is more likely to be useful when confronted with low-cost, rather than
high-accuracy applications, because larger improvements are obtained when the
use of a smaller number of filters is desired. Future work might include extending
the method to the multi-stage case, which poses a number of challenges, and to
more gencral filtering circuits. Also, another interesting direction of research is
the selection of filtering configurations for a given specific application.

We have used the fractional Fourier transform based filtering configurations

in image representation and compression in Chapter 4. In its present form, the
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proposed idea does not yield better results than presently available compression
algorithms. However, we emphasize that the results presented reflect the
performance of the basic method in its rawest and barest form. The information
contained in the image is distributed to the different domains in an unequal
way, making some domains more dispensable than others in representing the
image. Exploring and exploiting these issues seem potentially rewarding. Further
refinement and development of the method and its combination and joint use
with other techniques may lead to full-fledged compression algorithms with better
performance. (One way of generalizing the method, which can lead to potentially
higher compression ratios with similar errors is to employ filtering circuits based
on linear canonical transforms, rather than fractional Fourier transtorms [50].)

A chapter is devoted to the continuous fractional Fourier domain decomposi-
tion. A future work would be the linear canonical domain decomposition (LCDD)
based on linear canonical transforms [50].

In Chapter 6, we have examined perspective projections in the space-
frequency plane and showed how to approximate the perspective projection in
terms of the fractional Fourier transform. Our main motivation was that the
fractional Fourier transform approximately captures the essence of the warping
characteristic of perspective projections. We observed that perspective projection
approximately maps harmonic components into chirps and therefore can be
modeled in terms of the fractional Fourier transform. We saw that the substance
of perspective projection is essentially to effect a rotation in the space-frequency
plane. Elcmentary numerical examples for both one-dimensional signals and two-
dimensional images are presented. The errors associated with the approximation
and the region of validity with respect to the approximations involved are

numerically discussed.
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Future work in this arca might include the extension of the analysis to wide-
band signals by using multiple orders. Another promising direction is to optimize
over the single order used in approximating the narrow-band signals’ perspective
projections rather than simply using the order corresponding to the central
frequency.

Some part of this thesis was previously presented. Optimization of orders
which is explained in Chapter 3 is presented in [54]. Image representation and
compression introduced in Chapter 4 can be found in [55]. Continuous fractional
Fourier transform is previously presented in [25] and analysis of perspective

projections in the space-frequency plane is published previously in [56].
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