-
28S

N COK

JAB'ilISIiHI



A HYPERGRAPH-PARTITIONING
BASED REMAPPING MODEL FOR
IMAGE-SPACE PARALLEL
VOLUME RENDERING

A THESIS
SUBMITTED TO THE DEPARTMENT OIF COMPUTER
ENGINEERING
AND THE INSTITUTE OF ENGINEERING AND SCIENCE
OF BILKENT UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR TIE DEGREE OF

MASTER OF SCIENCE

by
Berkant Barla Cambazoglu

IFebruary, 2000






I certify that I have rcad this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master ol Science.

/

Assoc. Prof. Cevdet Aykanat (Advisor)

[ certily that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis [or the degree of Master of Science.

A ‘
Asst. Drof. UgurGiidikbay

[ certify that I'have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis [or the degree of Master of Science.

Asst. ProfUAtilla CiirsGy

Approved for the Institute of IEngincering and Science:

Y%

Prol. Mehmet Bcﬂ
Director of Institute of Enginecring and Science

i



ABSTRACT

A ITYPERGRAPH-PARTITIONING BASED REMAPPING MODEL IFOR
IMAGE-SPACE PARALLEL VOLUME RENDERING

Berkant Barla Cambazoglu
M.S. in Computer I'ngineering
Supervisor: Assoc. Prof. Cevdet Aykanat

FFebruary, 2000

Ray-casting is a popular direct volume rendering technique, used to explore
the content of 31 data. Although this technique is capable of producing high
qualily visualizations, its slowness prevents the interactive use. The major
method to overcome this speed limitation is parallelization. In this work, we
investigate the image-space parallelization of ray-casting for distributed mem-
ory architectures. The most important issues in image-space parallelization are
load balancing and minimization ol the data redistribution overhead introduced
al successive visualization instances. Load balancing in volume rendering ve-
quires the estimation of screen work load correctly. For this purpose, we tested
three different load assignment schemes. Since the data used in this work is
made up of unstructured tetrahedral grids, clusters of data were used instead
of individual cells, for efliciency purposes. Two different cluster-processor dis-
tribution schemes are employed to see the eflects of initial data distribution.
The major contribution of the thesis comes at the hypergraph partitioning
model proposed as a solution to the remapping problem. Tor this purpose, ex-
isting hypergraph partitioning tool PaToll is modified and used as a one-phase
remapping tool. The model is tested on a Parsytec CC system and satisfactory
results are oblained. Compared to the two-phase jagged partitioning model,
our work incurs less preprocessing overhead. At comparable load imbalance
values, our hypergraph partitioning model requires 25% less total volume ol

communication than jagged partitioning on the average.

Keywords: image-space parallelization, ray-casting, unstructured grids, work

load assignment, hypergraph partitioning, load balancing, remapping.
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OZET

GORUNTU-UZAYI PARALEL ITACIM GORUNTULEME iGIN
HIPERCIZGE BOLUMLEMEYE DAYALI YENIDEN ESLEME MODELI

Berkant Barla Cambazoglu
Bilgisayar Mihendisligi, Yiksek Lisans
Tez Yoneticisi: Dog¢ Dr. Cevdel Aykanat
Subat, 2000

[sin izleme, ti¢ boyutlu verilerin incelenmesinde kullanilan, popiler bir dog-
rudan hacim gérintiileme teknigidir. Bu teknik yikscek kalitede gorantiler
uretebilecek kapasitede olmasma ragmen yavaghgr birebir etkilesimli kulla-
nmimum engellemektedir.  Bu hiz smirlamasini agmanin en 6nemli yolu pa-
ralellegtirmedir. Bu caligmada, 15m izlemenin dagitik bellekli mimarilerdeki
goriintii-uzayr paralellegtirmesi aragtirihmgtic. Gériinti-uzayr paralellegtirme-
deki en 6nemli konular yik dengeleme ve takip eden gorintilleme érneklerinde
ortaya ¢ikan veri yeniden dagitim yikinin en aza indivilmesidir. Hacim go-
riintilemedeki yiitk dengeleme, ekran ig yikiintin dogru olarak tahminini gerck-
tirmektedir. Bu amacgla, ti¢ degigik yiik tahsis ctine plam denenmigtiv. Bu
calisgmada kullamlan veriler duzensiz tetrahedral i1zgaralardan olugtugu igin,
verimlilik amaciyla bireysel veri hiicreleri yerine veri gruplart kullamilmigtir.
Ik veri dagilimimin etkilerini gérmek igin iki farkh veri grubu-iglemci dagilim
plam kullamlmmgtie. Gahigmani en onemli katkisi yeniden egleme problemi-
ne bir ¢6ztim olarak énerilen hipergizge boliimleme modelidir. Bu amacla, var
olan hipergizge par¢alama araci PaToll degigtirilerek tek safhah yeniden egleme
araci olarak kullanilmigtir. Model Parsytec CC sisteminde denenmig ve tatmin
edici sonuclar elde edilmigtir. Onerilen yontem iki safthali kesikli holiimleme
modcline gore, daha az 6n hazirhk yiki yaratmaktadir. Kiyaslanabiliv yik
dengesizliklerinde, énerilen hiper¢izge modeli kesikli boliimleme modelinden

ortalama %25 daha az toplam iletigim hacmi gerektirmektedir.

Anahtar Kelimeler: goriintii-uzay paralellegtirme, 19m izleme, dizensiz 1z-

garalar, ig ylikii tahsisi, hipergizge bélimleme, yiik dengeleme, yeniden egleme.
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Chapter 1

Introduction

The huge improvements in computing capabilities of hardware, and develop-
ments on the visualization soltware allowed researchers, students and people
[rom many different work arcas to study the interiors of 3-dimensional data
on their desktops. Today, volume visualization stands as a science discipline,
which is commonly used as a tool to aid the rescarch by letting the scientists
to gel a visual grasp of the problem under investigation. The main method
for scientific volume visualization [36] is wolume rendering. Tt finds applica-
tion in various arcas such as hydrodynamics, molecular biology, sysimology and

meteorology.

1.1 Terminology and Classification

Volume rendering can be simply delined as the process ol mapping a set of
scalar, tensor or vector values defined in 3D to a 2D image screen. In order to
represent, these volumetric data sets, different kinds of grids are used. Grids,

according to their structural properties, can be classified as in Table 1.1.

Irregular grids are the most interesting type of grids with the ability to rep-
resent disparate field data effectively. In rectilinear grids, non-uniform, axis-
aligned rectangular prisms are used as volumetric primitives (vowels). Curvilin-

car grids have the same topological structure with rectilincar grids, but they are
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Table 1.1. Grid classification.

Primitives used

[ Grids
Cartesian axis-aligned,

uniform cubes

Regular axis-aligned,

uniform rectangular prisms
Rectilinear axis-aligned,

non-uniform rectangular prisms
Noun-Cartesian | Trregular | Curvilinear non-axis-aligned,
non-uniform hexahedra
Unstructured | no implicit connectivity,
polyhedra

warped from computational space to physical space. With the increase in the
number of tools and methods for generating high quality adaptive meshes, un-
structured grids are also gaining more popularity. Unstructured grids contain
polyhedra with no implicit connectivity information. Volumetric primitives
(cells) such as tetrahedra, hexahedra, and prisms can be used in these grids.
HHowever, because any volunie can be decomposed into tetrahedra, and they are
casy Lo work with, in most cases tetrahedral cells are used to form unstructured

grids. Iigure 1.1 shows 2D equivalents of these grid types.

Carlesian Regular Rectilinear Curvilincar Unstructured
Iigure 1.1. Grid types in 2D.

Two basic categories can be considered [or volume rendering algorithms [7):
Surface-based algorithms, which compute different levels of surfaces within a
given volume, and direct volume rendering (DVR) algorithms, which display
the integral densities along imaginary rays passed between the viewers eyes and
the volume data. Surface based methods are sometimes referred as indirect
methods, since they try to extract an intermediate representation for the data
set. Their main idea is to construct some level surfaces using the sample points
with close density values, and represent them with a set of contiguous polygons,

which will later be rendered in the standard graphics pipeline.
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Despite the fact that surface-based algorithims are fairly well suited for
arcas such as medical imaging, which requires specilic tissue boundaries to be
displayed, there are many other areas in which they cannot be utilized due to
the problems associated with the computation of surface levels. In most data
sels, using artificial surlaces may result in highly non-lincar discontinuities
in the data and introduces artilacts in the rendered image. In other words,
a surface may not always represent the actual data structure correctly. ‘To
overcome this problem, direct volume rendering techniques, which treat the
volume data as a whole, are employed. DVIR is a power[ul tool [or visualizing

data sets with complex structures defined on 3D grids.

The main DVR methods are ray-casting and dala projecltion, which are
sometimes reflerred as image-space and object-space methods, respectively. Cell
projection [12] and splatting [45] are the two examples of object-space methods.
In cell projection based DVR algorithms, the projection primitives (triangle,
tetrahedra, or cube) must be sorted with respect to the viewing point, due Lo
the usage of the composition formula based on color and opacity accumulation
al sampling points. However, hecause of the ambiguities in the visibility or-
dering [12] of projection primitives, the visualization process may yield a poor
final rendering. Similar problems, which aflect the image quality, arise in other
ohject-space methods, too. For example, in splatting algorithis, elfect extends

of the resampling points should be approximated correctly.

Ray-casting [18, 41], without any hesitation, can he said to he a very good
candidate to produce high-quality, realistic images. This method works by
shooting rays from the image plane into the volume data, and combining the
color and opacity values calculated at resampling points throughout the data.
Because cach ray’s contribution to a pixel color is independent of all other
rays, ray-casting algorithms cannot utilize the object-space coherency well. As

a result, their elegancy comes at a cost.

The computational cost of DVR algorithms is aflected by the huge amount
of information to be processed in the data sets, and it prevents their wide-
spread use.  Although many optimization techniques are known, speeds of
DVR algorithms are still far from interactive response times. The CPU speeds

al. which the current processors operate is not the only limitation hefore direct



CHAPTER . INTRODUCTION 4

volume rendering. Limited amount ol physical memory in workstations can
also be a bottleneck. Since some portions of the data may not (it into main
memory, it may be necessary o access the data [rom virtual memory resulting

i a much slower data access rate.

Parallelization of the existing DVR algorithms [46] is the main technique to
overcome the speed limitations mentioned above. Considerable speedups can
be gained through parallelization without trading the image quality for render-
ing speed. Shared memory or distributed memory architectures can be used for
parallelization. In shared memory parallel machines, each processor has access
to a global memory via some interconnect or bus. The global memory can
be a single module, or can be divided equally among processors. Drocessors
communicate by using the bus, through read and write operations performed
over memory locations in the global memory. Although it presents ease of
programming and flexibility, shared memory architectures does not scale well,

due to the bottlenecks occurred during memory access.

[n distributed memory architectures, each processor is given its own mem-
ory, which is not directly accessible by other processors. Il a processor needs
dala contained in the memory of a remote processor, it sends a message asking
for the data and retrieves it from that processor through an inlerconnection
network. As a result, the data access is not always uniform, and issues such
as data distribution, communication bandwidth and network topology gain

importance.

Parallelization process can be carried out in 3 object domain or 2D screen
domain, resulting in object-space pavallelizalion (OSP) and image space paral-
lelization (ISP), respectively. In OSP, each processor is assigned a sub-volume
of the data, and produces the partial color information for the final image by
rendering its volumetric primitives. Later, these partial results are merged at
appropriate processors by a pixel merging step. Communication is needed to
send the sub-results to their destination processors, where they will be com-
bined to determine the final pixel colors. Ilence, OSP is known as a pixel-flow

method.

ISP, on the other hand, is a data-flow method. Instead of sub-volumes,
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Initial Data I Local I Pixel I Pixel
Distribution Rendering Migration Merging

a) Object-space parallelization

Y

Initial Data | gy | Remapping [ g | Data g | Local

Distribution Migration Rendering

b) Image-space parallelization

IFigure 1.2. Rendering pipelines for distributed memory architectures.

each processor is assigned a sub-region over the screen and is responsible [or
rendering that particular region. Ilowever, since a processor may not possess
all the primitives necessary for rendering its region, required sub-volumes are
retrieved [rom processors owning them, before the rendering process starts.
IFigure 1.2 displays the general rendering pipelines for OSP and ISP on dis-

tributed memory architectures.

1.2 Previous Work

With the increase in their availability and decrease in their prices, massively
parallel computers are becoming more popular. In the last decade, many at-
tempts were done to parallelize the existing DVR algorithms. Ifowever, most of
these work dealt with the structured kind of data. Work on unstructured data
took less attention. Table 1.2 displays the references to latest work on paral-
lelization of DVR methods. The classification in that table is done according

to the type ol the architecture and the parallelization method used.

Although lots of research is carried out on volume visualization, it is still
very difficult to establish the standards to compare the quality of the works

done on volume rendering.  Unlortunately, this becomes more apparent in
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Table 1.2. Parallelization of DVR algortihins.

0OS Parallelization | IS Parallelization
Shared [44] [35]
Memory
Distributed | [8] [32] [1] [29]
Memory [33] [37]
Special [47] (48]
Hardware

parallelization of DVR methods. There are many criteria such as data set size,
excculion speed, image quality, load balance, speedup, scalability that can be
used to compare a work with the previous, similar works. This makes their

comparison harder.

Considering the classification made in Section 1.1, our work can said to be
the parallelization of ray-casting technique for distributed memory architec-
tures. In our work, image-space decomposition was chosen for parallelization

and the data used is of type tetrahedral unstructured grids.

There is little rescarch done in this area. Hence, we compared our work with
a similar algorithm, which uses jagged partitioning to divide the screen. Jagged
partitioning is one ol the best screen space subdivision algorithins. However,
since it is mainly concentrated on the load balance hetween partitions, it lacks
the power to minimize the communication between partitions. Al same load
halance, and preprocessing overheads we observed that the communication cost
during the remapping phase, incurred by jagged partitioning can be up to 30%

higher than the cost observed in our work.

1.3 Proposed Work

The ray-casting code we used is a slightly modified implementation of Koya-
mada’s ray-casting algorithm [26]. This algorithm is a rather eflicient algo-
rithm, which makes use of both object-space coherency and image-space co-
herency. Our main modification to this algorithm is the use of a higher level

of volumetric data abstraction.
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In some cases, instecad ol working on individual tetrahedral cells we deal
with connected clusters of tetrahedral cells. Although introducing clusters may
result in data replication during parallelization, this effect may be negligible if
the number of clusters used is kept high enough. Clusterization [9] simplifies
the housckeeping work, and decreases the number iterations in some loops. Its
main usc comes al the computation of the screen work load, i.c., the distribution
ol the cell rendering costs over their projection arcas on the screen. In addition,
this clusterization process is necessary to obtain the condensed hypergraph

which will be used during the remapping step.

The fundamental problem in image-space based DVR methods is that if
a visualization parameter such as the viewpoint location or the viewing di-
rection changes, the image on the screen should be wholly recomputed. For
image-space parallelization, this creates a problem known as the remapping
problem. During successive visualizations, the rendering costs of volumetric
primitives distributed over screen pixels can largely change, resulting in severe
load imbalances among the processors. This necessitates the migration of some
volume data to other processors in order to balance the load distribution. The
aim ol remapping step is both to obtain a good load balance by shifting data
from heavily loaded processors to lightly loaded processors, and to minimize

the communication overhead incurred by this data migration.

Our main contribution is al the proposed remapping model. In this work,
remapping problem is formulated as a hypergraph partitioning problem, so
that the interaction hetween the object and image domains is represented by
an hypergraph. A net in this hypergraph stands for a cell cluster in the volume
data, and its weight shows the migration cost ol the cluster. Cells of the
hypergraph represent the pixels over the sereen. lach pixel’s rendering cost is

assigned to its representative cell.

The tool used for hypergraph partitioning is PaToll. In order to obtain a
one-phase remapping model, some modilications were done on the hypergraph
model and PaToll, giving them the ability to treat some cells differently than
the others. Some special cells are placed in the hypergraph to represent the
processors uscd during execution. A special vertex is connected to a net by a

pin, if net’s cluster resided in the local memory of the processor. Details of
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this one-phase model can he found in Chapter 5.

The implementation of our parallel ray-casting algorithm is composed of
four consecutive phases: View independent preprocessing, view dependent pre-
processing, cluster migration and rendering. View independent preprocessing
is performed just once at the beginning of each run. It includes some steps such
as cell clusterization, initial data distribution, and disconnected cluster elim-
ination. In view dependent preprocessing, some transformations are applied
on the data, and also clusters arc mapped to new processors through hyper-
graph partitioning. In cluster migration step, communication is performed to
send clusters to their new locations. An important fact is that the overhead
incurred by these last two steps should he minimal, since they are executed at
the beginning ol every visualization instance. The final step is the rendering of
the clusters locally by the processors. Because processors have all the clusters

needed over their assigned screen regions, no global pixel merging is necessary.

The organization of the thesis is as follows: In Chapter 2, ray-casting and
our implementation of Koyamada’s algorithm were explained. Chapter 3 dis-
cusses image-space parallelization issues. Chapter 4 is an introduction to hy-
pergraph partitioning. Our remapping model and parallel ray-casting imple-
mentation were presented in Chapter 5 and Chapter 6, respectively. Chapter 7

gives some experimental results, and Chapter 8 concludes the thesis.



Chapter 2

Ray-Casting

Ray-casting is an image-space rendering method, in which some rays are shot
from the observers cye (viewpoinl) into the volume data through the pixels
over the image screen, and final pixel colors are calculated using the color
contributions of the sample points over the ray. Sometimes, in the literature,
the term ray-casting is used to reler to ray-tracing, although they are not the
same. In ray-casting, only the shadow rays are considered, ignoring reflection
rays and transmission rays which are important in ray-tracing. Thus, ray-

casting can be said to be a simple form of traditional ray-tracing.

The next section describes the basic ray-casting algorithin. In the section
following it, Koyamada’s ray-casting algorithm which works on unstructured
grids is explained. This algorithm forms the basis for our ray-casting code.
FFinally, some optimizations done in ray-casting and the performance of our

rendering algorithm is discussed.

2.1 Basic Ray-Casting Algorithm

Before the ray-casting algorithm has started, it is assumed that the scalar
values on grid vertices and the viewing orientation were already determined by
the user. The viewing orientation is specified by the following three parameters:

view-reference poind, view-divection veclor, and view-up veclor. Together with

9
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these three parameters, image screen resolution parameter is used to transform
the grid vertices, which are originally in world space coordinale (WSC) system,
into normalized projection coordinale (NPC) system, which will be used in ray-
casting. Also, some transfer functions, which will map the scalar values at
resampling points into an RGIB color tuple and an opacity value, were assigned

previously.

[n ray-casting we perform an image-order traversal over the screen pixels,
and try to assign a final color value to each pixel. To find a pixel’s color, first,
a ray is shot from the viewpoint into the volume data passing through that
pixel (FFigure 2.1). This ray is followed within the volume, and some sample
values arc calculated at the resampling points along the ray at some regular
intervals. If the resampling point is not exactly on a grid vertex, its value is
approximated by interpolating the scalar values at some close grid vertices.
Different sampling methods and interpolation techniques are discussed in the
following scections, in more detail.

Image
screen

Volume

View-up View dircction
vector vector

N

Viewpoint

Resampling
Target pixel point

Figure 2.1. Ray casting.

Al cach resampling point, the transfer functions are applied to the sample
values found, and color and opacity contributions of resampling points are
calculated. Then, using a weighting formula, these color and opacity values
are accumulated into the final color value of the pixel, from which the ray
was shot. The weighting formula is such that, the points closer to the pixel

contribute more than the points far from the screen.

I'his sampling step repeats until the ray reaches the end ol the volume
or the accumulaled opacity reaches unity. At the end, the accumulated color

tuple is multiplied by the partial opacity and the final color is stored for that
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pixel. The algorithm continues by moving onto the next pixel, and performing

all the steps above for this newly selected pixel.

2.2 Data Structures for Unstructured Grids

Grids representing volumetric data can be constructed from different primitives
such as rectangular prisms, hexahedron, tetrahedron, polyhedron or a mixture
ol these. As we did in this work, mostly tetrahedral primitives are used in
unstructured grids. We refer to tetrahedral volume elements as cells here. All
types ol polyhedra can be converted into a set ol tetrahedral cells through a
process called tetrahedralization. A points value inside a tetrahedral cell can
be interpolated directly, and the data distribution is linear in any direction
inside the cell.  Also, for this type of cells explicit connectivity structure is

casier to be established.

A cell is made up of four planar, triangular faces and four corner points,
called its vertices. Fach vertex ol a cell is actually a sample point with WSC
values and an associated scalar value. The cell faces are classified as either
internal or external. A common face shared by two different cells is an internal
face. If a face is not shared by a neighbor cell, it is an external face. We call a
cell with no external laces as an internal cell. Otherwise, the cell has at least

one external lace, and it is called an external cell.

Cell faces can also be classified according to the angle between their normal
vectors and the view direction vector. If those vectors are perpendicular to each
other, then the face is parallel to the ray casted. In case the angle is less than
90°, we call the face a front-facing (f) face. Otherwise, it is a back-lacing (b))
[ace. An external [J face is named as an ¢ff face. Similarly, an external [ face
is named as an ebf face. IFinally, we use the sets Fj; and Foyp to denote the

sets of [f and eff faces, respectively (Figure 2.2).

Our tetrahedral cell data stricture mainly contains two arrays: Nodes arvay,
and Cells array. Size of the Nodes array is equal to the number ol sampling

points in the data. Each item of this array represents a single sampling point
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sample point ff face bf face

a tetrahedral cell

ray

resampling point

internal face
screen
internal cell external cell

Iligure 2.2. Ray-casting for unstructured grids with mid-point sampling.

and stores that points WSC, NPC values as well as the scalar value at that

point. The scalar and coordinate values are stored as float numbers.

The second major array, namely the Cells array, is used to establish the
conneclivity between the cells. The number of items in this array equals to the
tetrahedral cell count in the data. In an array item, for cach face, the following
information is stored: Nodes array indices of the four vertices forming the cell,
Cells array indices ol the four neighbor cells, and a number ranging from 0 to
3 to distinguish the shared faces of the neighbor cells. For non-shared faces of
external cells a sentinel value of -1 is used. The data structures used can be

seen in Figure 2.3.

struct Node { struct Point { struct Cell {
struct Point WSC; float x; int vertices[4];
struct Point NPC; float y; int neighborCells[4];
float scalar; (loat z; int neighborFaces[4];

} } }

Figure 2.3. Data structures for tetrahedral unstructured data.
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2.3 Koyamada’s Algorithm

Koyamada’s algorithm is a ray-casting algorithm that works on unstructured
grids and is a rather efficient algorithm. It both tries to use the image-space
coherency existing on the screen and the object-space coherency within the
data. Image-space coherency is exploited during the scan conversion of ¢ff faces,
in order to determine the first ray-cell intersections. Object-space coherency is
utilized by means ol the connectivity information between the cells. Moreover,
the results obtained from ray-face intersection is used for interpolation of scalar
values making the interpolation operation very fast. I'inally, due to the linear

sampling method used, the resampling operations are very eflicient.

Initial step taken in the algorithm is to scan convert the eff faces and find
the first ray-volume intersections. Because the volume or the sub-volumes used
during parallelization may be non-convex, more than one ray-segment may bhe
generated for the same pixel. Due to the nature of the color composition for-
mula, this ray-scgments should be merged in a sorted order. In the original
algorithm, ¢ff faces are sorted with respect to the z coordinate of their cen-

troids, and scan converted in that order.

[Towever, this is an approximate ordering and may be wrong in some cases
as shown in Figure 2.4. In that figure, although R, should be traversed hefore
Ry, Iy is processed and composited first; since the centroid of KT, Cy, is sorted
before the centroid of ATN, Cy. Our implementation overcomes this problem,
which may lower the image quality, by means of a ray bufler data structure.

This data structure keeps a linked list for each pixel, and the list elements

Iigure 2.4. A case where face sorting [lails.
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contain composition information (i.e. accumulated color and opacity) about

the ray-segments fired from that pixel (Figure 2.5). Alter all ray-segments

are calenlated and inserted into their respective lists in sorted order, they are

merged by a pixel merging step in correct order.

R B oY

P P R vV

b k) R & vV

P -

3 P, R, R, R, —\—

Figure 2.5. Ray buffers contain the ray-segments generated for each pixel.

The ray segments are traversed until they cxit at some point [rom an ¢bf
face of the volume. When a ray enters a cell [rom a face it exits the cell through
one ol that cells remaining three [aces. This particular exit face, and the exit
point coordinates are found by the intersection test. An exit point from a cell
constitutes the entry point to another cell, therefore just one intersection is

performed per cell.

The following subscctions discuss the two important steps of the algorithm,
that is, the intersection test, and the resampling steps, which are performed in

an interleaved manner.

2.3.1 Intersection Test

In Figure 2.6, we consider the intersection test of a ray with the ABC [ace
ol a cell. Since 2 and y coordinates for the exit point  are already known
(Qr = Ry and Q, = R,), the problem is to find the @, coordinate value. This
is done by expressing /l—(} as the summation of the two vectors whose directions

—
are same with AD and /ﬁ

/l—(é = aAD + ﬂm (2.1)
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screen

IMigure 2.6. Intersection test.

llere, o and 3 are the coellicients used for scaling. The equation above can

be rewritien in a more useful matrix form as follows:

Bar - Au; (71, - A:v 0 « Rx — /l:u
B,—A, Cy—Ay 0| X B1=]R—4A, (2.2)
B.—A, C,—A, 0 5 0, — A,

In Lquation 2.2, (A, Ay, As), (Be, By, B.), and (Cy, Cy, C,) represent the
coordinate values of A, B and C points, respectively. By solving the equations
in the first and second lines of Equation 2.2, unknown « and f coeflicients in
Fquation 2.1 can be calculated. If one of the « >0, 8>0,and 1 —a— <0
conditions does not. hold, then the ray does not intersect the face an another
face is tested in the same manner. The z coordinate of the exit point @ can

be calculated by substituting the values found, into the Iquation 2.3.

Qz = Az + a(-BZ - AZ) + :B(Oz - Az) (2‘j)
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2.3.2 Resampling

Next step in the algorithm is to find the scalar value at the exit point. That
value is approximated by the interpolation of the scalar values at some sampling
points. Koyamada’s algorithm employs 2D inverse distance interpolation to
calculate the scalar O, at point Q.In our example, the scalar values A,, B,
and 'y al face corners A, 13 and C are interpolated for this purpose. The «
and 4 coeflicients found during the intersection test is used in the following

interpolation formula:

Qs = aB, + BC + (1 —a — )4, (2.4)

Using (P, ;) and (Q., Q) tuples, new scalars are calculated within the
cell, by 1D inverse distance interpolation, along the ray segment hounded by
the P entry, and the @ exit points. The number of resampling points depends
on the method used. Iquidistance sampling, adaptive sampling, and mid-point

sampling are the most common resampling methods.

In equidistance sampling, the distance between successive resampling points
is constant and scalars are calculated by ID inverse distance interpolation using
entry and exit points. Adaptive sampling takes the cell size variation into
consideration and determines a diflerent resampling distance for cach cell. In
mid-point sampling resampling is done at the middle ol the ray-segment. The
method used in this work is mid-point sampling. It is both fast, since the
resampling is done just once for each cell, and is unallected by the cell size
variation in the volume. The scalar at the resampling point is calculated by
the following simple formula, where M represents the resampling point:

P+ Q,
M, = L0 (2.5)

The scalar values obtained, are mapped into color and opacity values by
transfer functions [24] A;, where ¢ € {r,g,b,0}. RGB color tuple determines
the appearance ol an object, and opacity is a property ol the material which
determines how much ol the light is allowed through the object. By setting the
transfer functions properly, some important features in the data and changes

in the scalar values can be highlighted. Figure 2.7 shows two example transfer
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Opacity Opacity

0

min max
Scalar Scalar

[igure 2.7. Example transler [unctions.
g

functions. In the first graph, a smooth passage was supplied between opacities
ol close scalar values. In the sccond graph, some [eatures at specific scalar

value ranges were obscured by mapping those scalars to low opacity values.

The last step, alter the colors and opacities for particular resampling points
are found is to composite them using the color and opacity composition [or-

mulas:

Q%]
fon

Oipr = O + A (M,)(1 = O)
Ripr = (RO; + A (M)A (M) (1 — 0;))/Oisa
Glipr = (Gi0; + Ag(MO)A (M) (1 = 0,))/Oigy
Biyi = (Bi0; + (M)A (M) (1 = 0,))/Oi

O]
o0

S
<

—_ —~~ —~~ —~
t Lo

-3 )

~— ~— ~— ~—

In the equations above, (R, Gi, Bi, O;) and (Riyy, Gigr, Biy1, Oiqr) values
represent the color and opacity values composited before and after the resam-
pling point, M is reached, respectively. Also, the initial color and opacity valucs

should be set as Oy =0, By =0, Go =0, and By = 0.

Finally, for cach pixel the composited ray scgments are collected in the ray
buffers. If the ray shot [rom a pixel does not enter and exit the volume more
than once, then there is just one ray segment in the buffer and its color is used
to paint the pixel. Otherwise, the colors of the ray segments need compositing
as it is done in the resampling points. In case no ray is fired from a pixcl, a

predetermined background color value is assigned to that pixel.
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2.4 Optimizations and Performance

Oue ol the optimizations ol Koyamada’s algorithm is on the scalar value calcu-
lation at the resampling points. Instead of making expensive 3D interpolations
using the vertices of the tetrahedra, it performs a 2D inverse distance inter-
polation followed by a ID inverse distance interpolation, which is much faster.
Moreover, it makes use of the vector scaling cocllicients found in the intersec-
tion test, during the data interpolation, and decreases the processing amount
[or this step. Our approach ol using mid-point sampling decreases the number
of resampling points taken and also prevents resampling some parts of the data

unnecessarily.

Conventional techniques perform three intersection tests per cell. However,
Koyamada’s approach performs two tests per cell, on the average. This is
because the exit point from a cell is used as the entry point to another cell.

llence object-space coherency is utilized.

In DVR methods, composition of the color and opacily can be done in back-
to-front or front-to-back order. In object-space methods, which uses back-to-
front order composition, scientists have the chance to view the image forming
on the screen in an animation-like manner. That is, intermediate steps of final
image appearance can be watched. On the other hand, front-to-back order
composition can make use of the carly ray termination. Farly ray termination
is an oplimization technique, which stops the resampling operation when the

accumulated opacity along a ray reaches unity.

There are some other optimization techniques such as pixel color interpo-
lation over the image screen, but most ol these techniques degrade the image
quality. Since one of our aims is to produce high quality images, we preferrved

not. Lo employ such optimization techniques in this work.

Performance of this algorithm is aflected by four lactors, that is, the times
spent on node translormation, scan conversion, intersection test, and resam-
pling. Node transformation is necessary to bring the volume from WSC to

NPC. If N is the total number of nodes in the data, and the time to transform
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a single point is {4, it can be formulated as:

T“- = Nl’tr (2]0)

Note that, Ty, is independent of the visualization instance. Scan conversion
cost on the other hand, is proportional to the sum of the arcas ol the ¢ff [aces,
and can be allected by the viewing parameters. I Area is a function which
returns the triangnlar arca ol a given flace, and Ly is the average time spent on

the scan conversion ol a pixel, then Ty, can be expressed as:

Ty = Z Area( f)tse (2.11)

JEFyy

I'wo other important costs are the times spent on intersection tests (73),
and resampling operations (T.;). Assuming W, II, I, ti, .5 variables repre-
sent screen width, sereen height, intersection count for a ray shot from (z,y)
coordinate, average intersection time, and average resampling time, respec-
tively; 15 and 1,4 can be calculated as follows:

a=W y=H

Tu= 3 S Loyl (2.12)

rx=0 y=0

e=W y=H

Trs= D> > Lyl (2.13)

r=0 y=0

Note that, since we use mid-point sampling, the number ol resampling
points is equal to the number of intersection tests made. Therefore, I, can
be used as the number of resamplings made along a ray. Considering our
experiments about the weights of these [our factors in the total execution time,
the first two factors can simply be ignored. As a result, the computation time
for the algorithm can be expressed by the following lormula:

=W y=H

T=1 i+ 7113 = Z Z -[:cy(t'it + trs) (21[1)

=0 y=0



Chapter 3

Image-Space Parallelization

Parallelization ol ray-casting can be done in object-space or in image-space.
The focus ol this work is on image-space parallelization. Load balance and
remapping of data primitives to new processors gain importance in image-space
parallelization. Therelore, it is important to handle this problems accurately

and elliciently.

Next section gives a briefl comparison of OS and IS parallelization. The sec-
tion [ollowing it introduces our approach of using clusters instead ol individual
data primitives. Last two sections describe the load balance and remapping

problems in IS parallelization.

3.1 OS versus IS Parallelization

In OS parallelization, decomposition is done in the object-space and some por-
tions of the volume data are assigned to processors. The processors are respon-
sible from rendering their own sub-volume. To obtain a load balance among
the processors, the sub-volumes are determined such that their computational
costs are nearly equal. The number of sub-volumes assigned to a processor
can he more than one. Previously, some techniques such as octree [16, 17], k-D
tree [2, 31, 33, 37], and graph partitioning [9, 32] were employed to find the

appropriale data-processor assignments.

20
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screen

a) OS Parallclization b) IS Parallelization

[Figure 3.1. Data-processor assignments in OS and IS parallelization.

OS parallelization, since decomposition is done in the object-space, has the
ability to establish a load balance among the processors. Changing viewing
parameters do not disturl the existing load balance much. On the other hand,
the need for compositing the ray-segments produced by the processors dur-
ing their local rendering phase appears to be the major disadvantage of this
mecthod.  Especially in unstructured grids, the number of ray-scgments pro-
duced can he quite high in number, and may cause excessive communication

costs.

The other option for parallclization is IS parallelization. In this method,
instead of creating chunks of data and assigning them, each processor is given a
screen region and works only on the data whose projection [all onto that screen
region. A processor is given all the primitives needed to render ils region
belorehand, and no global pixel merging operation is necessary. To divide
the screen into sub-regions, techniques such as quad trees, jagged partitioning,

recursive subdivision had been used in the literature.

Load imbalance and communicalion costs during the data migration are the
two important problems in IS parallelization, that will be discussed in more
detail in the following sections. In DVR methods using unstructured data,
the cell size variation is the basic reason for load imbalance, and remapping
models can be used to ensure an acceptable load balance as well as minimizing

the communication costs. IFigure 3.1 displays data-processor assignments in
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OSP and ISP, in a simplistic manner.

Compared to the OS parallelization, IS parallelization produces faster code
execution. It is shown in [13] that the communication required by IS par-
allelization is usually higher than the one in OS parallelization. This makes

remapping more important for IS parallelization.

3.2 Clusterization

To obtain a good load balance in IS parallelization, it is necessary to know
the work load distribution over the screen pixels. In other words, I, should
be known at each pixel prior to rendering. If individual tetrahedral cells are
used during screen work load calculations, the amount of preprocessing over-
head incurred at cach visualization instance makes the model impractical to
use. Ilence, in this work, a clusterization step was employed to decrease this

preprocessing overhead.

In this approach, each cluster contained a number of cells. The basic aim
was Lo create clusters with equal cell rendering costs and with minimal surface
arca. Minimizing surface arca leads to sphere-like cell clusters which in turn
minimizes the interaction of the clusters with the screen. Therefore, hoth
less scan-conversion is performed during work load calculation and a more

contracted hypergraph can be obtained and used during remapping.

Since volumetric data is mostly produced by engineering simulations on par-
allel computers, we simply assumed that each processor acquired some chunk
of the volume dala previously. Instead of using a global clustering scheme, we

. N n N vy . LS
employed a local clustering scheme. Ivery processor worked on its initially
assigned dala in parallel to produce the cell clusters. This climinated the cost

that will be incurred by global clustering.
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3.2.1 Graph Partitioning

Graph partitioning is the mmethod and state ol the art METIS graph partition-
ing tool is the tool we used to form the cell clusters. Graph partitioning is
a technique for assigning some tasks to partitions so as to balance the load
of partitions and minimize the interaction between partitions. It arises in a
varicly of computing problems, such as VLSI design, telephione network design,

and sparse gaussian elimination.

In our clusterization model, clusters correspond to partitions and cells corre-
spond to tasks. We consider an undirected graph G = (V, €, Wy, We) without
loops and multiple edges. Ilere, vertex set V is the set of tetrahedral cells,
and edge set £ is the set of faces connecting these cells. A cell v; is said to
be connected to another cell v; by an edge e, if they share a common face.
Vertex weights, Wy, represent the cell rendering costs, and edge weights, We,

corresponds to the amount of interaction bhetween the cells.

Graph partitioning a set V means dividing it into P disjoint, non-empty

subsets whose unions form V:

C=CUC,UC U...UCp (3.1)

This partitioning is done considering a partitioning constraint and an op-
timality condition. Pirstly, the sums ol the weights We, of nodes v; in cach
Ci should be approximately equal. This means that the rendering costs of

the clusters are necarly equal. Secondly, the sum of the weights We: of edges

Tetrahedral cells Graph representation Clusters

Figure 3.2. Cell clusterization using graph partitioning.
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ex connecting the nodes in dillerent partitions C; and C; should be minimized.
This means that the total amount of interaction between clusters is minimized.

[Figure 3.2 shows this clusterization process.

The total number of clusters in the whole system can be chosen [rom the
numbers between the number of processors, Iy, and the number of cells in
the data, |V|. Choosing the total cluster number near |V| may degrade the
performance causing a huge hypergraph, and using a number near K may
degrade the quality ol the load balauce in rendering phase. Ilence, we prefer
to determine this number empirically. Chapter 7 discusses some results found

on this problem.

3.2.2 Weighting Scheme

There are six possible weighting scheme combinations that can be used lo
determine the vertex and edge weights of the clusterization graph. These six
possibilitics are shown in Table 3.1. The symbols CV, CA, IFA denote the cell
volume, cell arca, and face arca, respectively. Unit cost scheme is represented

by I.

For the edge weights it is more intuitive to use the A scheme, since the total
face arca of a cluster better represents that clusters interaction with the other
clusters and the screen. A cluster with large face arecas has a higher chance
to be hit by a ray. Using IFA as edge weight produces spherical clusters which

does not change their rendering loads by an important amount at different

Table 3.1. Possible weighting schemes for the clusterization graph.

Vertex weight | [idge weight
1 1
1 A
CA 1
CA IFA
Cv 1
Cv I'A
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visualizations.

Also, we sel all vertex weights to | in the clusterization graph. This scheme
produces clusters with equal cell size, and hence communication cost. The
variation in the number of cells in clusters may be huge in CV and CA weighting

schemes. Bxperimental results in Chapler 7 verifies our selection.

3.2.3 Additional Data Structures

Clustering the volume data requires the use of additional data structures. Each
cluster is given a global identifier and a global ClusterMap array is created in
every processor. T'his array is used to obtain the cluster-processor mapping
and also to reach the data contained within a cluster. Fach clement in this
array maintains a pointer to the clusters local data, and a processor id showing

the processor in which the cluster resides.

Processors keep only the data contained in their assigned clusters. Since
cach cluster stands as an entity that can be rendered independently, the data
in the clusters are treated as local data. The Cluster data structure contains
two arrays, namely local Nodes and Cells arrays. local indexing is utilized

within these arrays.

Furthermore, the Cell data structure introduced in Chapter 2 is modified
such that now it includes information about the cluster identitics, showing the
neighbor cluster for each face of a cell. Since a ray can leave a cluster from an
¢bf face and enter into another cluster, it is necessary to know this new clusters
identifier as a connectivity information. [or internal faces the identifier of the
cluster in which the face is located is assigned as the neighbor cluster identifier.

These new and modified data structures are shown in Figure 3.3.

3.3 Load Balancing

Load balancing is one of the primary concerns in parallel applications. Without

proper arrangement, an idle processor may drag the performance of the system
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downward. In parallel volume rendering, the reudering load shared among the

processors should be balanced.

In structured grids, load balancing is a relatively simple task. ITowever, the
lack of a simple indexing scheme in unstructured grids makes visualization cal-
culations on such grids very complex. FFurthermore, unstructured grids contain
data cells which are highly irregular in both size and shape. In a distributed
computing environment, irrcgularitics in cell size and shape make balanced

load distribution very diflicult.

3.3.1 Screen Subdivision

Since the aim in this work is image-space parallelization, the screen pixels and
hence the load spread over them is tried to be equally shared among the pro-
cessors. Previous work on screen space subdivision methods includes the use
of quad-trees, recursive bisection and jagged partitioning. All these methods
are common in that they try to divide the screen into rectangular pieces and
distribute these sereen regions to processors. IHowever, since the division lines
separating the regions are always parallel to the coordinate axis these subdi-
vision techniques are not flexible enough and may not always produce perlect
load balancing. IMigure 3.4 displays these techniques on a screen with discrete
load assignment.

The most flexible screen subdivision technique would be the one which

makes the partition boundaries as flexible as possible, that is, sub-screen

boundaries would be able to change to any shape. Unfortunately, this is not

struct Map { struct Cluster { struct Cell {
int proc_id; Cell *Cells; int vertices[1];
Cluster *Clusters; Node *Nodes; int neighborCells[4];
} int CellCount; int neighborlfaces[4];
int NodeCount; int neighborClusters[4];

} }

Iigure 3.3. Additional data structures used after clusterization.
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Figure 3.4. Screen subdivision techniques.

practical for two reasons: Iirst, excessive amount ol processing is needed to
determine and manipulate the non-regular sub-screen houndaries, and second,

the data structures to represent the boundaries would be too complex and

might require too much storage.

In this work, the screen is subdivided by an n by n cartesian grid forming
n? sub-regions, and this sub-regions arc assigned to processors for rendering.
From now on, we will refer to these screen sub-regions as screen cells. We

represent the set of sereen cells by S An individual screen cell in this set is
represented by r;.
Since the projection area of the volume occupying the screen changes with

respect to the visualization parameters, our approach requires the estimation

of the grid granularity. In our work, the number of pixels in screen cells is
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a) Coarse-grain grid b) Fine-grain grid

I"igLire 3.5. liffect of projection area on grid granularity.

determined adaptively. This is done by keeping the number of occupied (having
a locid) screen cells constant at every visualization instance. This also prevents
the variation in view dependent preprocessing time. Figure 3.5 shows the grid
gi-anularities for two different projection area size. Note that, the number of

occupied regions is nearly the same in both cases in the figure.

Adjusting the grid granularity such that each screen cell will contain just
one pixel results in the most flexible screen cell boundaries mentioned above.
However, increasing view dependent preprocessing overhead makes this ap-
proach iideasible to use. On the contrary, it the number of screen celts is kept
low, the solution space of the load l)alancing problem is reduced and satisfac-
tory load balance values cannot be obtained. We used an engineering formula,
which is explained in Chapter A, to determine the appropriate granularity of

the grid in an adaptive manner.

3.3.2 Work Load Calculation

In image-space parallelization, screen subdivision is not enough by itself to ob-
tain agood load bcilance. Also, the work load distributed over the pixels should

be calculated correctly. The total work of rendering a cluster is approximated
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by the following formula:

Load(C) = Y Area()) (3.2)

JEF

In other words, the work for a cluster is equal to the sum of areas of the [f
faces in the cluster. Here, Arca is a function which returns the area of a given
triangnlar face. The calculated work is distributed over the screen pixels (over
the screen cells in case of a coarse grain grid), by utilizing the projection arca ol
the cluster. In this work, we have tested three different work load assignment

schemes, using different bounding boxes for the clusters.

I. Cluster Bounding Bowx: This is a rather rough estimation of the pixels
allected by a cluster. The box surrounding the clusters projection arca
on the screen is found and all pixels in that box are assigned the same
load value. The assigned load per pixel is equal to the ratio of Load(C)
to the bounding hox arca. In this method, many pixels with actual work
load of zero is assigned a load. Lspecially, if the cluster is disconnected
or has a low concavity, work load distribution on the screen can be very
poor. On the other hand, since the calculation of cluster bounding hox
is a simple min-max operation performed over the vertices of a cluster,

this method is very last.

2. Cell Bounding Box: Instead ol using the whole clusters hounding box,
bounding hoxes for all ¢ff faces are calculated and a smaller affected
region is found. The total work of the cluster is shared among those
pixels in the affected region. Compared to the previous method, this
method produces much betier load distributions. Only problem arises
with the faces having a thin, long shape. For cells with such propertics,
the bounding boxes are too large and this increases the amount of error

made.

3. Inside-Outside Tesl: Among these three methods, this is the one which
produces most accurate load distributions. The effect area of the cluster
is calculated by performing inside-outside test on each eff lace in the
cluster. This test locates the pixels inside a triangular face in an exact

manhcer.
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Figure 3.6 displays these threc work load assignment methods. The accu-
racy ol inside-outside test in load distribution is not its only advantage. It also
allows a correct topology for the hypergraph used in the remapping stage to
be established. This means reduction in the hypergraph partitioning overhead,

and prevention of unneccessary communication during cluster migration.

3.4 Remapping

Load balancing by itsell is not enough for a good parallelization. As the visual-
ization parameters change, there occurs dillerences in load distributions on the
screen. This requires the remapping of screen regions to processors, since cach
processor, now, holds uncqual amount of rendering work. Also, since in image-
space parallelization a processor needs all the volume data above its assigned
screen regions, it is necessary to exchange some clusters between processors.
The amount of communication performed during cluster migration due to the

remapping should be minimized.

This remapping problem is an NP-hard problem for our case. There are
some heuristics giving suboptimal solutions, which are used to solve this prob-
lem. In this work, we offer a hypergraph partitioning model as a solution to
this remapping problem. The details of our model can be found in a separate

chapter, Chapter 5, which we reserved for the explanation of the model.
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i\) Cluster's projection area b) Cluster bounding box

C) Cell bounding box d) Inside-outside test

I I Region should have no load, and assigned no load.
Region should have no load, but assigned some load.

Region should have some load, and assigned some load

Figure 3.6. Work locicl assignment schemes.
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Chapter 4
Hypergraph Partitioning

Illypergraph models lately began to attract interest in academia. With the
development ol hypergraph partitioning tools which run faster and produce
higher quality partitions; today, hypergraph partitioning was begun to be con-
sidered as solution to many rescarch problems. VLSI design, data mining, and
in general, problems which require both load balance and remapping are the

sample application areas for hypergraph partitioning.

Our work makes use of hypergraph partitioning, too. Next section intro-
duces some basic concepts and notation in hypergraph partitioning. I'ollowing
sections discuss iterative and multilevel approaches targeting the hypergraph

partitioning problem.

4.1 Introduction

A hypergraph H = (V,N) contains a set of vertices V and a set of nets V.
The nets n; in set A are some subsets of the vertices in V. The set of vertices
forming a net n;, called its pins, is denoted as Pins(n;). The same operator
can be used to represent the pins of a set of nets V'

Pins(N') = | J Pins(n;) (4.1)
n,EN'!
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The nets connected to a vertex is found by the Nels operator, that is,
Nels(v;) returns the nets nj such that v; € Pins(n;). The size of a net n; is
equal to the number of its pins, and the degree of a vertex v; is equal to the
number of nets it is connected to, that is, s; = |Pins(n;)|, and d; = [Nets(v;)|,
respectively. Fach vertex v; € V has an assigned weight w;. Similarly, each net

n; € N has a cosl ¢;.

For a partition TT = {Py, Py, ..., Px} to be a K-way partition for a hyper-

graph H = (V, V), the lollowing three conditions must hold:

. P CV, P #0, for 1l <k<K

2. Uisy P =V
3. PP =10, forl <b<I<K

A net is connected to a part, if it has at least one pin in that part of the
partition. Connectivity set, A, ol a nel n; is the set of parts to which n; is
connected. Connectivity of a net, ny, is equal to the size ol its connectivity set,
that is, A; = |A;]. A net with a connectivity of 1 is called as an internal net.
[l X; > 1, the net is an external net. An external net is said to be at cut. We

denote the set of external nets which has a pin on a vertex set V' by Ng(V').

The weight of a part V; is denoted by W; and is equal to the sum of the
vertex weights in part V;. To determine the overall load imbalance between

the parts a value of € is used.

Given all these definitions, -way hypergraph partitioning problem can
be defined as finding a partition II for a hypergraph H = (V,£), such that
the weight of each part is bounded, and a function defined over the nets is
optimized. The first condition is called partitioning constraint. I[ W is the

sum ol part weights, this condition can be formulated as follows:

W/(eK) < W; < eW/K, for 1 <1 <K (4.2)

The requirement that a function is tried to be optimized, is referred as the

partitioning objective. There are several objective functions developed and
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used in the literature. One of the most popular objective functions uses the
cutnet metric. According to this metric cost of a partition is equal to the sum
ol the weights of external nets:

(M= 3 « (4.3)

n ENg(V)

Another widely used metric is the (A-1) connectivity metric. In this metric
each nct contributes ¢;(A; — 1) to the cost:

x(M= > -1 (4.4)

n;€ENg(V)

4.2 Partitioning Methods

A nice survey by Alpert and Kahng [1] classifies the partitioning methods under
lour main categories: Move-based approaches, gecometric representations, com-
binatorial formulations, and clustering approaches. Among these, move-based
approaches are the ones which attract the most attention in the literature.
They are known to be the most successful ones in terms of both speed and
solution quality. The same survey mentions iterative improvement [10, 23],
simulated annealing [25], and tabu search [13] as the methods used in move-
based approaches. Since the partitioning tool used in this work is a multilevel
hypergraph partitioning tool which makes use ol iterative improvement meth-

ods, in this section, we concentrated only on these types of work.

The term bisection is used to mean a two-way partitioning of a hypergraph
with load constraints on part weights. We used the term multi-way partitioning

to refer the partitioning where the number of parts produced is more than two.

4.2.1 Iterative Improvement Methods

[terative improvement methods uses greedy strategy. Given an initial feasible
solution, they try to recach to a better solution by making changes on the current

solution iteratively. Search for a solution stops when all neighbor solutions. are
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worse than the current solution. Since the operalions performed are simple
vertex move or swap operations, these heuristics can easily get stuck in a local
oplima. Ilence, some extended data structures can be used to empower them

with the capability to climb out of local optima.

One of the earliest bisection heuristic is the KL heuristic which was pro-
posed by Kernighan and Lin [23]. This heuristic was originally for graphs and
later extended to hypergraphs by Schweikert and Kernighan [39]. In their al-
gorithm, a series of passes is performed over the vertex set of the hypergraph,
in which every vertex is unlocked initially. During a pass an unlocked vertex in
part Py is swapped with an unlocked vertex belonging to part I%. Alter a ver-
tex is swapped it is locked and cannot again be swapped within the same pass.
The vertices to be swapped are chosen such that the gain, e.g. the decrease
in the bisection cost, is maximum. In order to climb local optima, swap gains
with negative values are allowed. At each swap in a pass, cost of the current
bisection is recorded. When all vertices are swapped the pass ends, and the
bisection encountered with the lowest cost is returned as the solution of this
pass. T'his bisection is used as the initial solution in the following pass. The
whole algorithm terminates when a pass lails to find a better solution than its

initial solution. KI heuristic often lasts in a few passes.

[ 1 is the number of vertices, complexity of KL algorithm is O(n?lgn). Its
usage may be limited, since it works on hypergraphs having vertices with no
weights. An improvement performed over KL is the I'M heuristic introduced
by Fiduccia and Mattheyses [10]. Execution time of their algorithm is linearly
proportional to the number of pins in the hypergraph, that is, it has complexity
O(p). In general, FM is very similar to KL. Main difference appears during the
process performed to find a neighbor solution. In I'M, instead of swapping with
another one, a vertex is directly moved to the other part and gain calculations
are done accordingly. The gain associated with moving a vertex v from P that

is, 7(v) is the following:

v(v) = Ne(P)| = INe(P: = {v})] (4.5)

Since, vertices may have weights, care must be taken on the partitioning

constraint. Moving a vertex to the other part can bring the heuristic to an
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infeasible solution. As a precaution, the arrived solution is permitted to deviate
from the exact bisection by the weight of the heaviest vertex. The remaining
parts of I'M are almost the same with KL. During a pass, the best solution
observed is returned as an intermediate solution, and the algorithm terminates

when a pass fails to find a better solution than its starting solution.

[Magen et al. [14] have shown that in some cases there may be many vertices
with equal move gains during an I'M pass. This decreascs the chance to choose
the best vertex to be moved. Ilence, it is a good idea to include a tie breaking
mechanism in the heuristic. In order to break the ties, Krishnamurthy [27]
suggested an improvement over I'M by adding some lookahead capability. He
used a gain vector of size » for each vertex, and kept the potential gains from
feature moves up to the »th move, in these vectors. When a tie occurs gain
vectors are checked for higher gain levels until the tic is broken. The rth level

gain of moving v from P, is calculated as
¥ (v) = | {n € Nu({v}), Bp,(n) =r, Bp,(n) > 0} | (4.6)

~ | {n € Nu({v}), Bp,(n) > 0, Bpy(n) = r — 1} |

[lere, Bp,(n) is the binding number defined by Krishnamurthy. In case
there does not exists a locked vertex in this set, binding number is equal to
the number of unlocked vertices in the set P; N Pins(n). Otherwise, Bp,(n) is
assigned infinity. To be more clear, his approach counts the number of vertices
that must be moved from P; in order remove n from the cut. Note that, {or
r = I, Iiquation 4.6 reduces to Iquation 4.5. Krishnamurty’s approach is later

extended to multi-way hypergraph partitioning by Sanchis [38].

4.2.2 Multilevel Methods

Due to several reasons, the partitions produced by these iterative partitioning
methods may be poor in terms ol both partition quality and speed. Also, the
quality of the partitions may be far {rom the best solution by a large margin,
making the correct prediction of the resulting solution quality very difficult.

Multilevel methods [6, 15, 21, 22] are proposed to enhance the existing iterative
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projected refined
partition partition

/

H H,

Uncoarsening,
Refinement

Coarsening @

Initial Partitioning

Figure 4.1. Multilevel hypergraph bisection.

methods. TIMETIS [19] and Pa'Toll [5] are the two example partitioning tools,

using this multilevel paradigm.
g I

A multilevel bisection scheme is composed of three consecutive steps: Co-
arsening, initial partitioning, and uncoarsening. In coarsening phase, highly
interacting vertices of the hypergraph are grouped as multinodes, and a coarser
hypergraph is constructed. Coarsening proceeds in a number of passes over
the coarser hypergraphs, until the coarsest hypergraph with the desired vertex
count is obtained. Initial partitioning phase tries to partition this coarsest
hypergraph into two parts having equal sizes. In uncoarsening phase, these
two parts are successively projected back on the previous finer hypergraphs.
[ligure 4.1 displays a sample multilevel bisection process, composed of three

coarsening and uncoarsening levels.

For mulli-way partitioning recursive bisection can be used. In recursive
bisection scheme, a two-way Dbisection obtained from multilevel bisection is
further partitioned in a recursive manner. It takes lgo X' bisection levels to

partitioning a hypergraph into K parts. Our work uses recursive bisection
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while partitioning the remapping hypergraph mentioned in Chapter 5.

4.2.2.1 Coarsening

Using the original hypergraph H = Hy = (Vo, My) a set of smaller hypergraphs
H, through H,, is constructed. [ach level in coarsening takes the previous
hypergraph as input and produces a coarser hypergraph. In each coarser hy-
pergraph there are fewer number of vertices. Also, an increase in the vertex

degrees is observed.

Coarsening of a hypergraph is performed by clustering two or more vertices
together in the same multinode. Clustering can be done by matching based
or agglomerative techniques. In matching based clustering, each vertex in the
hypergraph is visited in a random or predetermined order and grouped with
an unmatched vertex, marking the vertices in the group as matched. The
multinode created forms a single vertex in the succeeding coarser hypergraph.
In agglomeralive clustering more than two vertices can involve in the same
multinode, and a single vertex can join to a multinode. In the literature, there
are several metrics used for determining the vertex visit order, and finding the

highly interacting vertices that should be grouped.

4.2.2.2 Initial Partitioning

In this phase, the coarsest hypergraph H,, is bisected into two nearly equal-
sized parts. Tor this purpose, PaToll hypergraph partitioning tool uses an
algorithm called Greedy Hypergraph Growing. In this algorithm, a cluster is
grown around a randomly selected vertex by moving some vertices into the
cluster. Vertices are moved into the cluster according to their gains starting
[rom the vertex with the highest gain. Growth of the cluster stops when a fixed
load balance criteria between the two parts is satisfied. The vertices contained
i the cluster are assigned to the first part, and the remaining vertices are

assigned to the second part, giving a bisection of the coarsest hypergraph H,,.

Another approach, here, could be to partition H,, into K parts directly,
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leading to a direct K-way algorithm [20]. In this algorithm, K parts can be
obtained by coarsening the original hypergraph until A vertices are lelt in
the coarsest hypergraph. Also, a recursive hisection algorithm can be used to

compute the I parts in the partition.

4.2.2.3 Uncoarsening

During the uncoarsening phase, cach coarser hypergraph is projected back on
the corresponding liner hypergraph in the previous level. Also, after finer
hypergraphs are obtained, a refinement heuristic, similar to I'M or KL is used
to improve the partition quality of the current hypergraph. While minimizing
the objective function, care is taken not to violate the load constraint on the

parts.



Chapter 5
A Remapping Model

In IS parallelization, the load distribution and hence the computational struc-
ture of the problem may vary largely with changing visualization parameters.
The existing screen-processor and data-processor assignments may turn into
poor mappings, disturbing the load balance, and hence increasing the execu-

tion time.

This chapter is dedicated to a hypergraph partitioning model which is pro-
posed as a solution to the remapping problem in IS parallclization. In the first
section, some definitions are given and our two-phase and one-phase solutions
to the problem are explained. Next section, discusses the ellects of initial data
distribution on remapping. TFinally, a comparison of our model with jagged

partitioning model is given.

5.1 Remapping by Hypergraph Partitioning

For our remapping model, we used the hypergraph H = (V, V) to represent
the computational structure of the problem, and to establish the interaction
between the object-space and image-space. The vertex set V in the hypergraph
corresponds to the set of screen cells, §. These cells are found during screen
sub-division, by imposing a coarse grid on the screen, as explained in Chapter 3,

and they correspond to the atomic tasks which are to be individually processed

40
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Figure 5.1. Representing tire interaction Iretween OS and IS by an liypergraph.

and completed by a processor. The weight of a vertex is assigned such that it
is equal to the rendering load of the pixels in the screen cell, whicli the vertex

is representing. In other words, for each vertex u,, IQ = Load{vi).

Similarly, we use the nets in the hypergraph to represent the data clusters.
From now on, we will use the words cluster and net interchangeably, to mean
the same thing. As weight of a net, c¢,, the communication cost for a cluster,
Cost(Ci) is assigned. Here, Cost is a function calculating the number of bytes
transiiiitted, in order to send a clusters data and connectivity information frojii
one processor to another. As a result, in tins model, minimizing the cut of the
hypergraph corresponds to minimization of the total volume of communication.
Pins of a net is used to mark the screen cells occupied by the projection area
of the cluster that the net represents. We call a net, n,, with s- = 1 a virtual
net. Virtual nets appear in case a clusters area completely falls within the
boundaries of a screen region. There may be a vertex, Vi, with d- = 1, too.

This is seen when just one clusters projection area occupies the screen cell. See

Figure 5.1 for an example hypergraph.

Finally, two mapping functions M, and M are needed. Ai is used to obtain
the mapping between screen regions and the processors. In other words, Af (<S)

returns the processor Pj to which the screen region <& is assigned. M is used
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to find the mapping between the clusters and processors. M(C;) returns the

set ol processors in which C; will be replicated.

Alter these settings, remapping problem reduces to the problem of finding
two mapping functions M, M, and obtaining a partition 11 = {51,852, Sk},
such that the returned screen regions are balanced and the cost of the cut, x(11),
that is the total cluster inigration cost is minimized. Note that, an external
net, n;, contributes to the partitioning cost by ¢;(A; — 1). This is because, it is
necessary to send n;, to all processors which had been assigned a screen region
Si, such that n; has a pin on a vertex in that region. In other words, cluster

C; is replicated on all processors in the following set, P':

M(C) = P = {P;: v, o € Sty € Pins(n:), S € Ay, M(S)) = P} (5.1)

It is clearly scen from Lquation 5.1 that A — I metric should be as the
partitioning objective [unction. Using the cutnet metric results in an incorrect,
estimation of the actual cut cost, since it inay be necessary to replicate a cluster

in more than one processor.

5.1.1 Two-Phase Hypergraph Partitioning Model

As the name suggests, the two-phase model hypergraph model proceeds in
two phases. In the first phase, hypergraph partitioning is performed over the
remapping hypergraph H, and K screen regions are obtained. These screcn
regions are used as input into the second phase, which produces the mapping
function M. Without the second phase, thal is, in the absence of a mapping

function, cach screen vegion S; may be assigned to a processor I’ arbitrarily.

Since making this assignment arbitrarily may create a poor matching in
terms of communication overhead, we apply a bipartite graph matching algo-
rithm in this step to find better screen-processor assignments. The K proces-
sors used and the K screen regions produced by partitioning 11 forin the partite
nodes A and Y ol the bipartite graph B = (.Y, Z). Iu this graph, vertices x;
and y; denote processor F; and screen region Sj, respectively. An edge z;; is

placed between two vertices @; and y;, il there exists a cluster which is stored
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Figure 5.2. The partitioning cost calculated by two-phase method may be
A 1 Y

incorrect.

by processor 1%, and if that clusters projection arca lalls onto the screen region
S;. The migration costs ¢ of such clusters are summed and assigned as the

weight ol the edge z;;, that is, W;;.

Alter the bipartite graph is created, we use a maximum weight bipartite
graph matching algorithm to find the region-processor mappings. The map-
ping found is an optimal solution, and using this mapping together with ISqua-

tion 5.1, M can be calculated.

5.1.2 One-Phase Hypergraph Partitioning Model

The most important point ignored by the two-phase model is that each cluster
is originally owned by a processor. We can prove that for some clusters, the
cost added to the cut is in fact a wrong cost. Consider the cluster n; shown
in Figure 5.2. Assume that, n; has pius on parts Sy, S3, S4, and M(S;) = Iy,
that is, S; is assigned to P;. In this situation, the cluster-processor assignment
before the remapping would gain importance. If C; is kept in the memory

of a processor other than P, the cost contributed to the cut would be 2¢;,
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IMigure 5.3. Special vertices are introduced into the hypergraph in one-phase

model.

which is correct. Ilowever, il C; was kept in the memory of Py, then the
correct cost added to the cut should have been 3¢;. This ts because none of the
processors had the necessary cluster, and C; should have been sent from Py to
all other processors. T'wo-phase model simply ignores this fact, and in many

cases calculates an incorrect y(11).

In general, two-phase approaches try to solve the assignment problem inde-
pendent of the partitioning problem. Solution space provided by partitioning
phase to the assignment phase is rather restricted. Ience, it may not always

be possible to find a high quality mapping in two-phase models.

To convert the two-phase model into a onc-phase model, it is necessary Lo
supply the initial cluster-processor mapping to the model. In one-phase model
we used a hypergraph H' = (V', V') with some vertices and pins added to the
previous hypergraph H. Vertex set ol new hypergraph, V' is forimed by adding
K special vertices, p;, to the original vertex sct, V. These special vertices
represent the I processors used, and they are assigned no weight. Also some
new pins are added to the pins in the original hypergraph. We use a new pin
between a special vertex and a nct, if the cluster that the net is representing
resides in the memory of the processor that the special vertex represents. T'he
example in Figure 5.2 is redisplayed [or this new model, and two diflerent initial
cluster-processor assignments are shown, in Figure 5.3. The triangular node

in the figurce represents the special vertex used for . The other three special
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vertices are not displayed for clarity.

This model is able to calculate the cost correctly for all possible partition-
ings. Alter introducing special vertices, it is necessary to add a constraint such
that each special vertex is assigned to only one part. This constraint allows
the model to find both the partitions and region-processor mapping in just one

phase.

[n order to obtain this model, some modifications are performed over the
PaToll hypergraph partitioning tool. Throughout the partitioning process,
special vertices are treated differently than the others. In coarsening phase,
matching of two special vertices is prevented. They were able to be involved in
a supernode with ordinary vertices, but they are never grouped with another
special vertex in the same supernode. A supernode containing a special vertex
gained the special vertex status. During initial partitioning phase, cach special
vertex is assigned to a part, and locked there. As uncoarsening and refinement

phases progress, these special vertices were not able to move to other parts.

After partitioning the hypergraph H’, a partition 1’ is found. Using this

partition, mapping function M is calculated according to liquation 5.2:

./\/l(S,) =& P; € Si (5.2)

At the end, Equation 5.1 is used to determine the communication patiern

for sending data clusters between the processors, that is, M is calculated.

5.2 Data Distribution

Initial data distribution is an important factor, aflecting the quality of the
remapping process. Current cluster-processor mapping determines the topol-
ogy of the hypergraph used during remapping. Ior diflerent cluster-processor
assignment schemes, this results in different partitionings, and hence variations
on the data communication cost. Morcover, cluster distribution can allect the
amount of view-dependent preprocessing overhead. This is because the time

spent on work load calculations is different for each cluster.
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After remapping, within the succeeding visualization instance, both the
nuinbou' of clusters in each processor and clusters’ preprocessing costs change.
Since the load balance constraint in remapping is only applied on the distri-
bution of the screen load, there may be imge variations in view dependent
preprocessing costs, making it impractical to use. As a result, it seems very

difficult to include an adaptive screen subdivision scheme, and cui adaptive

data distribution scheme together, in image-space parallelization.

In this work, two different data distribution schemes were tested: Neighijor
Cluster Assignment (NCA) scheme, and Scattered Cluster Assignment (SCA)
scheme. Both of these schemes are static data distribution schemes, that is,
data is distributed at the program startup. Although some clusters can be

replicated in different processors, its first owner never changes.

= NCA scheme: In this scheme, all processors are given a set of neighbor
clusters. The assignment of clusters to processors are static; that is, in
each remapping step, this initial data distribution is used as the starting
data-|)i'ocessor assignment. This scheme makes use of object-si)ace co-
herency well. Also, two neighbor clusters have a higher chance of luiving
a projection area on the same screen cells. Consequently, a better h™
pergraph topology can be constructed, helping the minimization of the
communication cost during hypergraph partitioning. If the successive vi-
sualization instances contain many 1° rotation operations, NCA a.j)pears

to be the best possible static data distribution scheme.

e SCA scheme: Generally, neighbor clusters contain cells with similar size

A data set with 6 clusters. Distribution ill NCA scheme Distribution in SCA scheme

Figure 5.4. Cluster distribution schemes.
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and shape. Hence, in NCA scheme, each processor carries a set of clusters
with nearly equal preprocessing costs. This creates a load imbalance in
preprocessing step, increasing the execution time of this scheme. SCA
scheme, on the other hand, tries to distribute the clusters as scattered
as possible. Since processors had cells of varying sizes, much less pre-
processing overhead is observed in this scheme. In case the visualization
contains operations such as zooming to a particular region on the screen,
this scheme is the most beneficial static data distribution scheme. Its
only disadvantage is observed at the slight increase in the communication
amount, due to the usage of a topologically more complicated hypergraph

during the remapping phase.

Figure 5.4 displays these distribution schemes on an example, for 2 processor
case, using a simplistic data set containing six clusters. Note the load imbalance
in the NCA scheme due to the big variation in the tetrahedral cell sizes. In that
figure, although both P, and P, have 3 clusters, and 12 cells, the preprocessing

performed by Py is much greater than the one performed by P,.

5.3 Hypergraph versus Jagged Partitioning

Jagged partitioning (JP) is a two-phase partitioning modecl. lor a K = pg
processor decomposition, this method first divides the screen into p stripes
in one dimension. Then, each stripe is further divided into g regions, in the
unused dimension, independent of each other (see. Figure 3.4). The details of

JP can be found in [28].

A rendered image of one of our data sets is displayed in 5.5. A quick com-
parison of IMigure 5.6 and Figure 5.7 reveals the superiority ol our model to JI.
Those figures display the region-processor assignments on the screen for four
processors, that is, each figure denotes a single sub-region assigned to a pro-
cessor. Note that the regions produced by our hypergraph partitioning model
have much more flexible sub-screen boundaries than the the ones in JP model.
Also, the assigned regions are not necessarily made up of a single connected

component as in JP. In our particular example, some tiny regions are assigned
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to each processor separately from a larger region. This is probably, because
the clusters above those regions are owned by these processors. lspecially, in

SCA scheine, this allows a greater [lexibility [or remapping.

Moreover, JP model carries all characteristics of a two-phase model. As
in our two-phase hypergraph model, bipartite graph matching is necessary in
the second phase, to find the region-processor mappings so that better cluster-
processor mappings will be obtained. In other words, JP, by itself, is not
capable of directly minimizing the redistribution communication costs of the
clusters. Without the second phase, it primarily attacks the load balancing
problem. Althougl, the solution found by the second phase is an optimal
solution, it may not be that good, since the problem given to that phase has a

rather restricted solution space.

One-phase hypergraph model, on the other hand, both balances the load
and minimizes the migration costs at one single step. T'he experiments we
conducted verifies the validity of our model. At similar load balance values,
the communication incurred in the one-phase hypergraph model is 25% less

thaun the one in JP model, on the average.
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T
Figure 5.5. lleiiclercd image of (JC data set.
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Figure 5.6. Example region-proces.sor assigmneiit in jagged parlilioiiiiig.
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Figure 5.7. Example region-processor assignment in hypergra])h partitioning.
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Chapter 6
Implementation Details

This chapter explains some details in our implementation which is mainly com-
vosed of four consecutive phases: View independent preprocessing, view de-
1 &

pendent preprocessing, cluster migration, and local rendering.

6.1 View Independent Preprocessing

As the name suggests, this step performs all the work that does not depend on
the visualization parameters, and it is exccuted just once at progran startup.
Our mnplementation assumes that the 3D volume data is stored in several
chunks, and the number of data chunks is equal to the processors used in that
particular run of the program. Since the data we used is usually produced by

simulations performed on parallel machines, this assumption seeins rcasonable.

At the program startup, a master processors rcads the whole data set [rom
disk and sends a single data chunk to each processor. Each chunk contains
equal amount of tetrahedral cell information, and the data in each processor
is treated as processors’ local data. LEvery processor concurrently constructs
the appropriate data structures mentioned in Chapter 2. For some external
faces which are shared by two cells stored in different processors, communica-
tion is carried out among the processors in order to complete the connectivity

information within the tetrahedral cells.

92
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Then, using connectivity data structures a local clusterization graph is cre-
ated in each processor. These graphs are given as input into MIETIS graph
partitioning tool, and as output, the partitions showing the appropriate clus-
terization of the data are obtained. Later, processors [ill the additional data
structures used to store the clusterization information, by inspecting the re-

turned partitions.

Since the Greedy Graph Growing algorithm is used within MISTILS, in most
cases, clusters produced are made up of connected cells. However, there may
be a [ew disconnected clusters. Especially, [or work load assignment schemes
using bounding boxes, these disconnected clusters may cause wrong load dis-
tributions due to the increase in the bounding boxes calculated. Moreover,
they may cause an increase in the number of pins of the remapping hyper-
graph, and hence, an increase in the duration of the hypergraph partitioning
step. As a result, we preler to eliminate the existing disconnected clusters at
the cost of some additional view independent preprocessing overhead. Tor this
purpose, we perlorm breadth first search on every cluster to sce whether they
are connectled, and if a disconunected cluster is found it is separated into its
connected components. All the smaller components found in a processor arc
placed in a single, newly created cluster. This limits the error made in work

load assignment step to a single cluster.

IFor NCA scheme, there is no need to a change on the current cluster-
processor assignments, since the data chunks read for cach processor from the
disk is already made up of neighbor clusters. I'or SCA scheme we need to
scatter the clusters among processors. Lo do that we follow a method similar
to bin packing. First, we calculate the sum of [ace arcas {or every cluster, and
enter the cluster numbers into a list in decreasing order of their arca sums.
Then, starting [rom the top of the list, we begin to distribute the clusters.
Mapping decisions are made such that a cluster is given to the less heavily
loaded processor in terms of face arca sum of its stored clusters, at any time.
Moreover, during this mapping a limit is applied on the number of clusters a
processor can hold. Ilence the number of cells in processors are also kept in

halance.
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6.2 View Dependent Preprocessing

In every visualization instance, this preprocessing phase is repeated for the sake
of the clliciency ol code sections running in parallel. Ilence, it is important
to complete this phase as quick as possible. 1t mainly contains work load

calculations, hypergraph creation, and hypergraph partitioning steps.

6.2.1 Work Load Calculation

Since we used an adaptive screen sub-division technique and imposed a grid
on the actual screen, it is very important to adjust the granularity of this grid
correctly. As a too line-grain grid may create lots of vertices in the remapping
hypergraph, a too coarse-grain grid may result in a hypergraph with a lew
vertices. The [irst case results in a vather complicated hypergraph, which may
decrease the efliciency of partitioning heuristics used in Pa’l'oll. The later case
restricts the solution space of the problem, and proper load halance values

cannotl be obtained.

The granularity of the grid depends on the number of pixels occupied by
the projection area of the volume, and the total screen cell count that we want
to be produced. By screen cell we mean the screen cells with some associated
rendering load. In our implementation we used numbers between 400 and
500 for the total screen cell count. These upper and lower bounds are found
empirically. There are g x ¢ pixels in a single screen cell, and we calculate g
using the formula in Equation 6.1, where A, and C' denote the projection area
of the volume on the screen, and the total number of screen cells, respectively

(sce Appendix A).

VA =24 /(C - 1)A-20VA+2C

After the grid is imposed on the screen, we use one of the three methods

mentioned in Chapter 3 to calculate the load distribution on the screen.
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6.2.2 Local Hypergraph Creation

While the load distribution is calculated, the interaction between the data and
the screen is also recorded. Some data structures are used to keep track of
the connectivity between the clusters and the screen cells. In a sense, cach
processor constructs a hypergraph in an intermediate data structure. Since
each processor has a subsct of the whole volume, only the local hypergraphs

can be constructed.

6.2.3 Global Hypergraph Creation

Alter local hypergraph creation, each processor sends its hypergraph to all
other processors, that is, an all to all broadcast operation is performed among
the processors in order to obtain the information necessary to construct a com-
mon global hypergraph. During this construction process, screen cells with no
rendering load are discarded. This is because, vertices of the global hypergraph
should be chosen from the loaded screen cells. Special processor vertices, nec-

essary for the one-phase remapping model are also added in this step.

6.2.4 Hypergraph Partitioning

In this phase, each processor executes PaToll hypergraph partitioning tool
sequentially, to partition the global hypergraph obtained in the previous step.
In two-phase model, the resulting partition is given as input to our graph
bipartitioning code, and there, the cluster-processor mappings arc calculated.
In one-phase model, this mapping is directly calculated by checking the special

vertex locations in the partition, which was returned by Paloll.

6.3 Cluster Migration

The clusters, which are mapped to a diflerent processor than their current

processor, are send to the processors they are assigned to. This is done by
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performing an all to all personalized communication among the processors,

and replicating the data structures of the migrating clusters.

6.4 Local Rendering

After remapping, all processors receive the clusters necessary to render their
assigned screen regions.  Since the current cluster-processor assignment in a
processor results in a highly interacting set ol neighbor clusters, clusters do
not need to be rendered individually. Instead, ray entry points of the clusters
which are closest to the screen are determined, and the rays shot [rom these
points are lollowed throughout the volume. The ray entry points can be found
by scan converting the set of Iy [aces stored in a processor. A ray segment is
gencrated for cach pixel found during the scan conversion, excluding the pixels

falling out of the processors’ screen regions.

Even if the cells traversed by a ray belong to different local clusters, we can
efliciently traverse the volume as in Koyamada’s original algorithm, by utilizing
the additional data structures which store the connectivity information between
the clusters. Also, note that, although clusterization process can create non-
convexities within some clusters, this will not cause an increase in the number
of ray-segments generated. This is because a processor had all the necessary

clusters and traverses thein as il traversing a single convex sub-volume.

IFor non-convex volumes, on the other hand, there is a possibility of having
more than one ray-segment for the same pixel, which necessitates the use of
ray-bullers we mentioned in Chapter 2. In such volumes, the ray-segments
generated for a screen pixel are inserted into the appropriate slots in ray-bullers,
in sorted order of their their exit z coordinate values, including the color and
opacity values associated with the ray-segments. When all ray-segments are
traversed, the color and opacity values are retrieved from the ray-buflers and
are composited using the standard composition formulas. At this point, since
processors have created just a sub-image of the assigned screen regions, a final
all-to-one communication step is carried out, and the full image is generated

in a single processor.



Chapter 7
Experimental Results

This chapter presents the results obtained {rom our experiments on three dif-
[erent data sets, using various parameters for visualization, partitioning and

parallelization.

7.1 Implementation Platform and Data Sets

Used

The work done in this thesis is implemented on a Parsytec’s CC-24 system.
This machine is based on a distributed memory, MIMD, architecture. It has
24 nodes, cach of which is containing a 133 MIlz PowerPC 604 processor. T'he
machine has 4 I/O nodes with 128 MDB of RAM, and 20 compute nodes with
64 of MBytes of RAM. The two of the I/O nodes are also used as the entry
nodes to the system. All nodes are connected to each other via a high speed

communication link. The peak performance of this link is 40 MB/s [30].

AIX is the operating system used on each node of the Parsytec CC systeni.
On top of it, Embedded Parix (EPX) is used. It provides a set of functions
for management of the communication between the nodes [49]. For message
passing purposes, we made use of EPX and Parallel Virtual Machine (PVM)

libraries. The algorithms were coded in C programming language.
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S

Table 7.1. Some features of the data sets used.

[ Data Set ” # of Nodes | # of Cells I sV I
Blunt I'in 40,960 187,395 | 5.50
Combustion Chamber 47,025 215,040 0.42
Oxygen Post 109,714 513,375 4.26

As experimental volume data, we used three different data sets [50]: Blunt
Fin (BF), Combustion Chamber (CC), and Oxygen Post (OP). These data
sels are the results of some computational {luid dynamic simulations. They
were originally curvilinear in structure. We converted the [ormat of these data
sets into unstructured data format, by applying a tetrahedralization {11, 40}
process on the hexahedral cells of the original data, obtaining five tetrahedral

cells per hexahedral cell.

Table 7.1 illustrates some features of the data sets used. In that table, the
nwmber of nodes and the number of cells in the data sets are given. Also, a
CSV value is displayed per data set to represent the cell size variation within
the cells of a data set. Higher CSV values imply a more irregular data set.

Note that, the BI'" and OP data sels we used are rather irregular data sets.

The experiments are made using a wide range ol changing parameters.
Image screens of size 400 x 400, 800 x 800, and 1200 x 1200 are used in final
images. In all visualizations, we lecaved a thin margin between the final image
and the screen boundaries. Images are tried to be fit into the screen as much as
possible. I'or such details of the sequential visualization algorithm refer to [3].
The abbreviations used in the tables of this chapter are listed in Table 7.2.
All timings are in seconds, and communication volume is given in KBytes.
Load imbalance values are measured as the ratio of the maximuwm number of
samplings done by a processor to the average sampling count. Load imbalance
values found in terms of local rendering times give very similar results. By
communication volume, we only mean the communication performed in the

cluster migration step, and used this words to mean that, throughout this

chapter.
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Table 7.2. Abbreviations used in tables.

KK number ol processors used

c number of cells in the remapping hypergraph

P number of pins in the remapping hypergraph

Wy vertex weighting scheine

Wg edge weighting scheme

LI load imbalance in the number of samplings per processor
TVoC | total volume of communication performed in cluster migration
Toar parallel rendering time

Tore view dependent preprocessing time

Twtc work load calculation time

Thy hypergraph formation time

Thp hypergraph partitioning time

Tom cluster migration time

T, local rendering time

Tseq sequential rendering time

) speedup

I cfliciency

7.2 View Independent Preprocessing

The duration of processors’ view dependent preprocessing phase, and the load
imbalance in local rendering phase can be allected by the total number of clus-
ters used. Table 7.3 displays the results obtained by creating different number
of clusters (C' € {50,100,200}) per processor (I € {1,8,12,16,20,24}), ini-
tially. Results are obtained by executing our implementation on all data sets
over a screen of size 400 x 400 pixels. The code is executed 12 times per (C, I)
pair, with three different view points, and four different random seed values.
The random seed used here and in the other runs is necessary to obtain more
accurate average values, since the partitioning heuristics in MIETIS and Pa-
Toll both make use of some randomness at several places where a sclection is

necessary, and hence may produce partitions of diflering quality over a wide

range.

Data in Table 7.3 were calculated by averaging the results found. [For easier

comparison, Ty values arc normalized with respect to the lowest value in the
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Table 7.3. Results obtained by assigning diflerent cluster counts per processor.

# of clusters per processor

K 50 100 200

LI T, L1 1, LI 1,
4 | 3367 L7421 1940 1.947 | 1.345  2.360
8 | 4.589 1.158 | 3.689 1.327 | 3.201 1.567
12 5891  1.027 [ 4.258 1.271 | 4.299 1417
16 { 6.255 1.009 | 5.291 1.243 | 5.260 1.404
20 | 8.738 1.005 | 7.938 1.150 | 7.203 1.395
241 10.220 1.000 | 9.590 1.144 | 9.116 1.391

table. It can be secen from the table that rising C' values increase the prepro-
cessing overhead. Ilence, too high values cannot be used lor C'. Otherwise,
we may observe severe decreases in our speedup values. On the other hand,
using too low € values may increase the load imbalance among the processors.
This is because, the lower €' values cause larger cluster volumes, and hence
the error made during the work load assignment phase is higher. As a result,
we prelerred using an average number of 100 clusters per processor, which has
reasonable load imbalance and 7). values. All the experiments following this

are carried out with this fixed cluster per processor value.

Table 7.4 displays the eflects of the various weighting schemes that can be
used as edge and vertex weights on the clusterization graph. The experiments
are perlormed over all data sets with a 400 x 400 screen, using 8 processors.
Number of pins in the hypergraph, cut of the partition and the view dependent

preprocessing time can be seen from the columns of the table, separately for

Table 7.4. Iflects of all possible weighting schemes used in the clusterization

graph.

Bl cC or

Wy | Wg P TVoC | 1pre P TVoC | Tpre p TVoC | Tpre
1 1 9,609 | 17,261 | 1.216 | 9,083 | 21,022 | 1.260 | 7,939 | 42,102 [ 1.855
1 FA | 6,929 | 15,969 [ 1.070 | 8,278 | 20,775 | 1.196 | 5,279 | 38,244 | 1.604

CA | 11,827 | 17,382 | 1.473 | 9,079 | 20,789 | 1.254 | 10,213 | 43,484 |} 2.197

CA | FA | 8,653 | 16,344 | 1.171 | 8,273 | 20,363 | 1.198 | 6,651 | 39,547 | 1.858

Ccv | 11,526 | 17,131 | 1.363 | 9,099 | 20,601 | 1.248 | 9,166 | 42,254 | 2.016

CV | FA | 8,120 [ 16,037 { 1.126 | 8,290 | 20,907 | 1.977 | 6,228 | 38,314 | 1.731
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Table 7.5. Ellects of different work load calculation schemes.

c P L1 TVoC | Tyic Thy
1. O. Test 342 | 7,837 | 6.181 | 45,036 | 0.615 | 0.345
Cell B. B. 354 | 8,648 | 8.353 [ 47,888 { 0.410 | 0.376
Cluster B. B | 384 | 10,323 | 10.150 | 51,339 { 0.256 | 0.418
Ioxact 342 7,837 | 5.521 | 44,969 | 2.612 | 0.310

cach data sct.

We note that, for weighting schemes which assign unit cost to the edge
weights, a more complicated hypergraph is created, that is, the number of pins
in the remapping hypergraph is higher than the ones in schemes which consider
the face arcas for edge weighting. This results in heavier final partition cuts
and also increases the duration ol hypergraph partitioning step, meaning more
preprocessing overhead. As seen in the table, schemes which assign A as the
edge weight can have almost 30% less pins in the remapping hypergraph than

the unit cost schemes.

Among the remaining three schemes, (1,I’A) scheme is seen to be better
than the others. Ispecially for BI' and OP data sets, which have big cell size
variations, it both results in better partitions of the remapping hypergraph,
and is faster. These observations validates our choice of using (1,I°A) weighting

scheme in the clusterization graph.

7.3 View Dependent Preprocessing

In this section, first, we compared [our dillerent work load calculation schemes.
Three ol these schemes are cluster hounding box, cell hounding box and inside-
outside test schemes that we used in our implementation. The fourth one, that
is, exact load scheme is capable of calculating the exact load distribution on
the screen by scan converling every face in the data. In other words, it uses
individual cells instead of clusters during preprocessing phase. We included it
here just for comparison purposes, since its execution time is not affordable for

a parallel application.
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Table 7.6. Imbalauce values and commmunication amounts observed.

400 x 100 800 x 800
L1 TVoC LI TVoC
BEF | 4 3.427 13506 1.646 12947
12 6.205 21337 7.626 21606
20 | 12.825 24811 9.904 25370
CC | 4 1.005 17002 1.383 17141
12 5.441 28314 5.739 29562
20 [ 11.447 35142 | 11.678 34568
OP | 4 2.347 30443 2.223 30088
12 5.180 43196 5,794 14468
20 | 11.556 48212 | 10.191 49876

Colummns of Table 7.5, from left to right, contain the average values found,
that is, cell and pin numbers in the remapping hypergraph, load imbalance,
total volume ol communication, work load calculation time, and hypergraph
partitioning time. Runs are made on 16 processors, using O data over a
400 x 400 image screen, with SCA distribution scheme. In order to see the
ellects of work load calculation schemes on the topology of the remapping

hypergraph, we used a fixed screen granularity ol 20 pixels per screen cell.

The vesults verifies the importance ol correctly establishing the remapping
hypergraph topology. Notice the excess cells and pins introduced in the bound-
ing box approximations. When these schemes are used, those additional screen
cells cause extra overhead in the total voluine ol communication, and cause an
increase in the hypergraph partitioning time due to the calculations performed
for these miscalculated cells and pins. Also, the difference in load imbalance
values produced by the exact scheme and inside outside test scheme should be
noted. Ixact scheme seems to be better at calculating the work load. This
is basically because, in inside outside test scheine, cach pixel under a clusters
projection area is assigned the same cost, although the clusters may have unbal-
anced cell distributions along the viewing direction. On the other hand, inside
outside lest runs approximately 4 times [aster than the exact scheme, and pro-
duces nearly the sane timing result in hypergraph partitioning. Moreover, it

provides a pretty good minimization of the total communication volume,

Table 7.6 displays the load imbalance values and total volume of commu-
nication amount observed in our model for 400 x 400 and 800 x 800 screen

sizes. As the number of processors incrcase, we note higher values in the table
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Table 7.7. Dissection ol view dependent preprocessing time.

4100 x 400 800 x 800 1200 x 1200
Twie Th_{ Thp Tem Twte Thj Thp Tem Twte Thf Thp T
1.527 0.354 0.192 0.815 | 4.018 1.284 0.189 0.777 | 8.022 2.731 0.187 0.765
0.947  0.327  0.348 0.743 | 2.573 1.080 0.366 0.718 | 5.172 2.297 0.346 0.686G
BIF 0.738 0.270  0.493  0.688 { 2.032 0.769 0.508 0.671 | 1.099 1.590 0.504 0.630
0.625 0.273 0.639 0.686 1.720 0.708 0.669 0.633 | 3.168 1.434  0.645 0.609
0.560 0.272 0.767 0.697 | 1.514 0.651 0.785  0.629 | 3.064 1.249  0.758 0.614
0.516 0.294 0.876 0.646 1.376  0.756 0.901 0.619 | 2.784 1.278 0.869 0.620
1,476 0.297 0.238 0.787 | 3.631 1.021 0.209 0.753 { 7.086 2.209 0.223 0.752
0.879 0.232 0.1514 0.635 1.757 0.554  0.596  0.593 | 4.399 1.456  0.415 0.606
cC 0.677 0.226 0.628 0620 | 1.493 0.513 0.787 0.531 3.470 1.183 0.586 0.590
0.570 0.227 0.788 0.592 1.493 0.513 0.787 0.531 2.980 1.035 0.775 0.532
0.518 0.240 0.890 0.555 1.345 0.494 0961 0.495 | 2.665 0.911 0.916  0.514
0.477 0.315 1.033 0.519 | 1.232 0.490 1.138 0.489 | 2.450 0.915 1.156  0.449
2.052 0.213 0.106 1972 | 3.798 0.706 0.099 2.123 | 6.575 1.649 0.106  2.022
1.196  0.175 0.198 1.839 | 2.340 0.518 0.188 1.911 1.107 1.114  0.194 1.881
OoP 0.903 0.187 0.291 1.773 1.872 0.905 0.288 1.925 | 3.232 1.157  0.290 1.804

0.742 0.193 0.389 1.703 [ 1.506 0.448 0.378 1.838 | 2.742 1.061 0.383 1.77
0.645 0.206 0.162 1.656 [ 1.320 0.1442 0450 1819 | 2.432 1.000 0.469 1.779
0.588 0.226 0.545 1.582 | 1.201 0.489 0.543 1.747 | 2.212 0990 0.558 1.759

as expected. On the other hand, increasing image sizes do not aflect L1 and
TVoC values much. This is because we keep the size of our hypergraph at
the same level by decreasing the granularity of the grid imposed on the screen
when the screen sizes got bigger. ence the problem size remains the same for

different screen sizes.

7.4 Performance

In this section we analyze the execution times and performance of our al-
gorithm. Table 7.7 presents dissection of Ty into Tie, Thyy Thp, and Tp,.
Note that, since the cluster migration step does not exist in sequential code,
we consider T, as a preprocessing cost here. We note that 1., decreases
as the number of processors increase. This is because work load calculation
step is carried out by all processor on a part of the data in parallel. That is
when the processor number increases the number of faces scan converted by
a processor decreases. In BI' data set, there occurs an interesting increase in
Thy for I = 24. The reason for this increase is the communication overhead
during the construction of the the global remapping hypergraph. Also, a no-
ticeable increase occurs in the duration of the hypergraph partitioning phase.

The additional nodes in the one-phase model’s hypergraph cause this increase.
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Table 7.8. Speedup and eflicicncy values for different data sets and processor

numbers.

400 x 400 800 x 800 1200 x 1200
K Taeq Tpar S E Tseq Tpar S E Taeq Tpar S E
4 28.95 3.78 94.5 112.54 3.82 95.5 254.22 3.85 96.2
8 16.32 6.70 83.7 58.24 7.29 92.3 132.01 7.43 92.8
BF 12 109.43 11.82 9.26 77.2 130.54 39.92 10.78 89.8 980.24 88.99 11.01 91.7
16 9.80 11.17 69.8 31.67 13.59 84.9 70.92 13.82 8G.3
20 7.89 13.86 65.2 27.19 15.83 79.1 60.60 16.17 80.8
24 7.64 14.43 60.1 25.12 17.11 714 53.15 18.44 76.8
4 32.23 3.85 96.3 126.57 3.93 98.% 281.67 3.97 99.2
8 17.73 7.03 87.8 65.82 7.%6 94.5 145.73 7.69 96.1
ccC 12 124.68 12.72 9.80 81.6 497.79 45.63 10.91 20.8 1120.11 100.39 11.16 93.0
16 10.26 12.14 75.8 35.59 13.98 87.3 77.86 14.39 89.9
20 8.80 14.16 70.8 29.66 16.78 83.9 64.31 17.42 87.1
24 7.95 15.68 65.3 25.81 19.28 80.3 55.40 20.22 84.2
1 14.52 3.83 95.7 166.56 3.92 98.0 398.645 3.96 99.0
8 24.06 7.08 88.5 86.84 7.52 94.0 204.15 7.73 96.7
or 12 170.57 16.91 10.08 84.0 653.77 61.47 10.63 88.5 1570.97 141.35 11.17 93.0
16 13.47 12.66 79.1 47.R9O 13.64 85.2 113.21 13.95 87.2
20 11.84 14.40 72.0 39.87 16.39 81.0 92.58 17.00 85.3
24 10.39 16.40 ¢8.3 35.62 18.35 76.4 80.89 19.53 81.3

Moreover, since this part is run sequentially, it prevents our parallelization

from having higher speedup values.

Table 7.8 displays the speedup and elliciency values obtained for K €
{4,8,12,16,20,24}, for all image sizes and dala sets. Obviously, as the screen
sizes increase all speedups and efficiencies in the table also increase. This is be-
cause sequential parts of the code constitute a lesser portion of the total work
for large 1mage sizes. I'or 400 x 400 image size, low eflliciency values are obh-
served due to the sequentially running hypergraph partitioning code. For very
small image sizes, 1), can even approach 1j, resulting in rather poor speedup

and efliciency values.

7.5 Comparison with Jagged Partitioning

Figures 7.1, 7.3 and 7.2 gives a briel comparison of our one-phase hypergraph
partitioning model (IIP)with jagged partitioning model (JP) model. The data
were collected using the OP data set over a screen of size 1200 x 1200. I%irst
graph displays a comparison of load imbalance values in these models for dif-
ferent number of processors. For low processor numbers, HP has a good load
imbalance. On the other hand, as the number of processors increase, it quickly

begins to produce unbalanced partitions. JP has a lower imbalance increase
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rate for high number of processors.

As we can see from Figure 7.2, HP incurs slightly less preprocessing over-
head than JP. The major diflerence is seen in the total volume of cominu-
nication performed in both schemes. I is much better at minimizing the
communication volume. Especially, for increasing number ol processors this
becomes more apparcent. At 21 processors, I performs approximately 30%

less communication than JI.

In general, at large image and data sizes 1P outperforms JP, both in terms
ol speed and the minimization of communication volume. Lor small scale data
scts and image sizes, both models are preferable. In such problems, P pro-
duces 10% less communication overhead on the average at comparable load

imbalance values.
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Load Imbalance

Figure 7.1. Load imbalances in IIP and JP.
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Preprocessing Overhead

Figure 7.2. Preproce.s.siiig overhead incurred in HP and JP.
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Total Volume of Communication

Figure 7.3. A comparison of communication volumes in IIP and .IP.
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Chapter 8

Conclusion

This chapter presents our achievements in this work, and discusses some pos-

sible improvements for future studies.

8.1 Work Done

In this work, we mainly focused on the load balancing and remapping prob-
lems in image-space parallelization of DVR algorithms. To decrease the view
dependent preprocessing overhead a clusterization scheme was performed in
object-space. This simplified both house-keeping work and preprocessing, for
the exchange of increased data veplication. Ior load balancing, three different
work load assignment schemes tested. Among those, inside-outside test which
calculates the cluster projection area exactly, appeared to be the most valuable

choice.

FFurthermore, two different data distribution schemes tested. Compared to
the SCA scheme, less communication overhead is observed in NCA scheme.
lHowever, since the neighbor clusters contained cells with similar sizes, there
occurred load variations during the work load assignment phase. This increased

the preprocessing overhead for the NCA scheme.
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As a solution to the remapping problem, we proposed a one-phase hy-
pergraph partitioning model. In this model, we represented the interaction
between the object-space and inage-space by a hypergraph. Partitioning this
hypergraph produced screen-processor and data-processor mappings. For hy-
pergraph partitioning, a modified version of PaToll hypergraph partitioning
tool was used. Satisfactory values obtained for load imbalance, and remapping
costs. At comparable load balance values, the total volume ol communication
performed in our model is 25% less than the total volume of communication in

jagged partitioning, on the average.

8.2 Future Work

A nice leature of our work is that it is open to [urther improvements. As
new heuristics found [or hypergraph partitioning or existing hypergraph parti-
tioning tools are improved, the solution quality of our work will also improve.
We believe that a possible improvement can be done on the execution time
ol our hypergraph partitioning code. Since we used the functions in Pa'loll
as cxternal library [unctions, some code unrclated to our code may be exe-
cuted, increasing the execution time of our implementation. A more specific

hypergraph partitioning code could produce superior timing results.

At the time this work carried out, due to the lack of a [(-way partitioning
tool, we used a recursive bisection scheme in our partitionings. 14 is publicly
accepted that, divect K-way partitioning approaches are better at optimizing
the global objective functions. Hence, we believe that using a direct K-way
partitioning scheme for partitioning the remapping hypergraph in our work, we
can produce better partitions, in terms of minimization of the communication

cost.

IFurthermore, we note that, hypergraph partitioning phase, which is run
sequentially by each processor, is the limiting factor on the speed-up values.
So, a parallel hypergraph partitioning tool, which will probably be implemented
in the [eature, can eliminate this drawback of our implementation, resulting in

much better speed-up values.
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[Minally, an interesting feature work would be to produce a similar work for
object-space parallelization. Our hypergraph partitioning model, with some
minor changes can be applied to object-space decomposition. In such a work,
instead of minimizing the cluster migration overhead, pixel migration overhead

can be tried to be minimized.
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Appendix A

Calculation of Granularity

Formula

We approximale the projection arca ol a 3D volume on the screen by a square
containing n x n pixels, and try to divide the projection arca into screen cells
5 . . . L2 ) P M 71,2
containing ¢ x g pixels. This can be done using 'z screen cells, al the best case.
. . —2)2 An— ’ .
At the worst case, it requires W20 4 408 4 4 gereen cells (sce Iigure A.l).
g g
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Iligure A.1. Imposing g by g screen cells onto an n by n arca.

We calculate the average of these two numbers, and equalize it to a fixed
lotal screen cell number hat we wai roduce.  This results in the
total cell number, C, that we want to produ

following second order equation:

(2—C)g*+ (An —8)g+2n* —dn+4 =10 (A.1)
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Table A.1. Adaptive granularity calculation.

I screen size “ 400 x 400 | 800 x 800 l 1200 x 1200 I

C 400 400 400
p 5 31 16

c’ 401 375 388
error (%) 0.25 6.25 3.00

Solving this equation for ¢ yields the root in Equation A.2. Note that, we

have substituted, n = VA and n? = A into thal equation.

_ VA=24/(C - 1)A—2CVA+2C

Despite the fact that this formula is just an approximation, and the pro-
jection arcas on the screen are usually non-square, complex regions, the for-
mula produces pretty good results. Table A.l displays these results for a fixed
C = 400 value. C’ corresponds to the actual number of screen cells found after
the grid is imposed on the screen. Note the linear increase in g with increasing

screen size.



