
,іВ ' ilS iH i

'i ?<:

Г
28S
^ с ж



A HYPERGRAPH-PARTITIONING  
BASED REM APPING MODEL FOR 

IMAGE-SPACE PARALLEL 
VOLUME RENDERING

A THESIS

SUBMITTED TO THE DEPARTMENT OF COMPUTER

ENGINEERING

AND THE INSTITUTE OF ENGINEERING AND SCIENCE 

OF BILKENT UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS 

FOR THE DEGREE OF 

MASTER OF SCIENCE

l)y

B e rk a iit  B a i i a  C a m b a z o g lu  

F o l)ru a iy , 2000



T
З Ь '

•съа
,ζίοοο

ç > Ö 5 1 1 4 6



I certify that I have read tliis thesis and that in my opinion it is fully adequate, 
in scope and in quality, as a thesis for the degree of Master of Science.

As.soc. Prof. Cev(/et Aykanat (Advisor)

I certify that I have read this thesis and that in my opinion it is fully adequate, 
in scope and in (luality, as a thesis for the degree of Master of Science.

I certify that I have read this thesis and that in my opinion it is fully adeciuate, 
in scope and in (|uality, as a thesis lor the degree of Master of Scicnice.

roI'LAtilla Giii soy

Approved for the Institute of Engineering and Science:

Prof. Melmiet Da;
Director of Institute of Engine^'ing and Science

11



ABSTRACT

A IIYPERGRAPII-PAR'rrnONING BASED REMAPPING MODEL FOR 
IMAGE-SPACE PARALLEL VOLUME RENDERING

Berkaiit Bcirla Cambazoglu 
M.S. in Computer Engineering 

Supervisor: Assoc. Prof. Cevclet Aykanat 
February, 2000

Ray-casting is a popular direct volume rendering teclinique, used to explore 
the content of .'ID data. Although tliis teclmique is capable of producing high 
quality visualizcvtions, its slowness prevents the interactive use. The major 
method to overcome this speed limitation is parallelization. In this work, we 
investigate the image-space parallelization of ray-casting for distributed mem
ory architectures, d'lie most important issues in image-space parallelization are 
load balancing and minimization of the data redistribution overhead introduced 
at successive visualization instances. Load balancing in volume rendering re- 
((uires the estimation of screen work load correctly. For this purj^ose, we tested 
three diiferent load assignment schemes. .Since the data u.sed in this work is 
made up of unstructured tetrahedral grids, clusters of data were used instead 
of individual cells, for eiliciency ])urposes. Two diiferent cluster-proces.sor di.s- 
tribution schemes are emi)lo3 'cd to see the effects of initial data distribution. 
The major contribution of the thesis comes at the hypergraph pcirtitioning 
model proposed as a.solution to the renurpping problem. For this purpose, ex
isting hy))ergraph partitioning tool PaToII is modified and u.sed as a one-phase 
remapiiing tool. The model is tested on a Pcirsytec CC system and satisfactory 
results are obtained. Compared to the two-phase jagged partitioning model, 
our work incurs less preprocessing overhead. At comparable load imba.la.nce 
values, our hyiiergraiih partitioning model requires 25% less total volume of 
communication than jagged partitioning on the average.

K eyw ords: image-space parallelization, ra.y-casting, unstructured grids, work 
load assignment, hypergraph partitioning, load balancing, remapping.

Ill



ÖZET

GÖRÜNTÜ-UZAYI PARALEL HACİM GÖRÜNTÜLEME İÇİN 
IlİPERÇİZGE BÖLÜMLEMEYE DAYALI YENİDEN EŞLEME MODELİ

Berkant Barla Cambazoğlu 
Bilgisayar Mühendisliği, Yüksek Lisans 

Tez Yöneticisi: Doç Dr. Cevdet Aykanat 
Şubat, 2000

Işın izleme, üç boyutlu verilerin incelenmesinde kullanılan, popüler bir doğ
rudan hacim görüntüleme tekniğidir. Bu teknik yüksek kalitede görüntüler 
üretebilecek kapasitede olmasına rağmen yavaşlığı birebir etkileşimli kulla
nımını engellemektedir. Bu hız sınırlamasını cişmanın en önemli yolu pa
ralelleştirmedir. Bu çalışmada, ışın izlemenin dağıtık bellekli mimarilerdeki 
görüntü-Lizayı paralelleştirmesi araştırılmıştır. Görüntü-uzayı paralelleştirme
deki en önemli konular yük dengeleme ve takip eden görüntüleme örneklerinde 
ortaya çıkan veri yeniden dağıtım yükünün en aza indirilmesidir. Hacim gö
rüntülemedeki yük dengeleme, ekran iş yükünün doğru olarak talıminini gerek
tirmektedir. Bu amaçla, üç değişik yük tahsis etme planı denenmiştir. Bu 
çalışmada kullanılan veriler düzensiz tetrahedral ızgaralardan oluştuğu için, 
verimlilik amacıyla bireysel veri hücreleri yerine veri grupları kullanılmıştır, 
ilk veri (lağılımınnı etkilerini görmek için iki farklı veri grubu-işlemci dağılım 
pla.nı kullanılmıştır. Çalışmanın en önemli katkısı yeniden eşleme problemi
ne bir çözüm olarak önerilen hiperçizge bölümleme modelidir. Bu amaçla, var 
olan hiperçizge ])arçalama aracı PaToH değiştirilerek tek Scifhalı yeniden eşleme 
aracı olarak kullanılmıştır. Model Parsytec CC sisteminde denenmiş ve tatmin 
edici sonuçlar elde edilmiştir. Önerilen yöntem iki sal'hah kesikli bölümleme 
modeline göre, daha az ön hazırlık yükü yaratmaktadır. Kıyaslanabilir yük 
dengesizliklerinde, önerilen hiperçizge modeli kesikli bölümleme modelinden 
ortalama %25 daha az toplam iletişim hacmi gerektirmektedir.

Anahtar Kelim eler: görüntü-uzayı paralelleştirme, ışın izleme, düzensiz ız
garalar, iş yükü tahsisi, hiperçizge bölümleme, yük dengeleme, yeniden eşleme.

IV



ACKNOWLEDGMENTS

I thank to my advisor Assoc. Prof. Cevdet Aykanat for his ideas, suggestions 
and help on this thesis. I also tliank Asst. Prof. Uğur Güdükbciy and Asst. 
Prof. Atilla Giirsoy for reading thesis. I express my endless thanks to my 
family and my friend Ayça Ozger for their support and patience.



Contents

1 Introduction 1

1.1 Terminology and (Jlassiiicatioii.......................................................... 1

1.2 Previous Work 5

1.3 Proposed W o r k ...................................................................................  (J

2 Ray-Casting 9

2.1 Basic Ra.y-('asting Algoriilnn 9

2.2 Data Siriicl.iir(\s Гог Unstructured G rids.........................................  11

2.3 Koyanuula’s A lgorithm ......................................................................  J3

2.3.1 [iitersection Test 11

2.3.2 R esam pling............................................................................. ]G

2.-1 Optimizations and Perform ance......................................................  18

3 Image-Space Parallelization 20

3.1 OS versus IS Parallelization 20

3.2 Clusterization......................................................................................  22

.3.2.1 Graph Partitioning................................................................ 2.3

vi



3.2.2 Weighting Sclicme 24

3.2.3 Additional Delta Structures 25

3.3 Load B alancing...................................................................................  25

3.3.1 Screen S ubdivision ................................................................  26

3.3.2 Woik Jjoad (Jalcnlation.......................................................... 28

3.4 Rejna.j)|)ing 30

4 Hypergraph Partitioning 32

4.1 Introduction.........................................................................................  32

4.2 Partitioning M ethods.......................................................................... 34

4.2.1 Iterative Improvement M eth od s.......................................... 34

1.2.2 Midtil('.v('l M ethods................................................................  36

5 A Remapping Model 40

5.1 Remapping by Ilypergraph Partitioning.......................................... 40

5.1.1 'fwo-Phase Hypergraph Partitioning M odel.......................  42

5.1.2 One-Phase IIyi)crgra.])h Partitioning M odel......................  43

5.2 Data Distrilrution................................................................................  45

5.3 Hypergraph versus Jagged Partitioning.......................................... 47

6 Implementation Details 52

6.1 Vi(iw Indepeiuk'iit Preprocessing......................................................  52

6.2 View Dependent Preprocessing 54

vii



C.2.1 Work Load Calculation...........................................................  54

6.2.2 Local Iljq^ergrapli Creation 55

6.2.3 Global llypergrapli Crea.tion................................................  55

6.2.4 liypcrgraph Partitioning....................................................... 55

6.3 Clirstcr M igration................................................................................  55

6.4 Local Riuulcring...................................................................................  56

7 Experimentixl Results 57

7.1 implementation Platform and Data Set.s U s e d .............................  57

7.2 View Independent Preprocessing......................................................  59

7.3 View Dependent Preproce.ssing 61

7.4 P('rformance.......................................................................................... 63

7.5 Comparison with Jagged Partitioning............................................. 64

8 Conclusion 69

8.1 Work Done 69

8.2 l''ntnre W ork.........................................................................................  70

A Ccilculation of Granuhxrity Formula 77

vm



List of Figures

J.l Grid types in 2D...................................................................................  2

1.2 llendering pij)elincs for distributed memory architectures............ 5

2.1 Ray casting. 10

2.2 Ray-casting for rnid-point sampling. . . 12

2..'1 l);rta. structures for tetrahedrivl unstructured data. 12

2.1 A Ccise wliere face soi tiiig fails............................................................  1.3

2.5 Ray bufTers contain the ray-segments generated for each [)ixel. . 14

2.0 Intersection test.

2.7 l·bκam|)le transfer functions. 17

3.1 l)a.ta.-pi'ocessor assignments in OS and IS parallelization..............21

3.2 (Jell clusterizati 23

3.3 Atlditioiial data structures used after clusterization. 26

3.4 ScrecMi subdivision teclmic|ues............................................................. 27

3.5 Effect of projection area on grid granularity....................................  28

3.6 Work load assignment schemes..........................................................  31

!X



4.1 Multilevel liyi^ergrai)!) bisection....................................................  37

5.1 Representing the interaction between OS and IS by an hypergraph. 41

5.2 The partitioning cost calculated by two-phase method may be
incorrect. 43

5.3 Special vertices are introduced into the hypergraph in one-plmse
model....................................................................................................... 44

5.4 Cluster distribution schemes..........................................................  46

5.5 K.endiired image of CC data set.....................................................  49

5.6 Example region-processor assignment in jagged partitioning. . . 50

5.7 Example region-processor assignment in hypergraph partitioning. 51

7.1 Load iinba.lances i a IIP and JP...................................................... 66

7.2 ] -̂e|)i-oces.sing overhead incurred in HP and JP. 67

7.J A compcirison of conmiunication volumes in HP and JP....... 68

A.I imposing g bj' g screen cells onto an n by n area. 77



List of Tables

1.1 Grid classification. 2

1.2 Pa.i‘alldizatioii of DVR. algortiliins. 6

3.1 Possible weighting schemes for the clusterization graph................  24

7.1 Some features of the data sets used................................................... 58

7.2 Al)l)r(wiatioiis used in tables...............................................................  59

7.3 [{esults ol)tained l)y assigning different cluster counts per |)ro-
cessor.......................................................................................................  60

7.4 Effects of all possible weighting schemes used in the clusteriza
tion graph...............................................................................................  60

7.5 lifleets of diffei’ent work load calcuhition schemes............................  61

7.6 Iml)alance values cuid communication ermounts ol)served. 62

7.7 Dissection of view dependent preprocessing time. 63

7.8 Si)eedup cuid efficienc}  ̂ values for different data sets and proces
sor numbers............................................................................................ 64

A.l Adaptive granularity calcuhition. 78

XI



List of Symbols and Abbreviations

DVR
ISP
OSP
IIP
JP

II
h f

ejj
ebf 
KL 
PM 
a, /i/, 7
R.
Gi

B,

O,

A.

%
■̂ ('ir
./■
Area{f)
N
Ttr

lir

l\c
Gc

Gy

Th

tit
Tvs

trs

T

: Direct, Volume Rendering.
Image-Space Parallelization.
0 1) ject-Sj)ace ParalIcl ization.
Il.ypergra.pli Partitioning 
Jagged Partitioning 
front-facing, 
back-facing, 
external front-fadng.
<;x t<M' n a.l 1) ack - fa(;i n g.
Kernighan-Lin liypergrapli partitioning heuristic. 
Fiduccia-Mattheyses hypergrapli partitioning heuristic. 
Scaling coefRcients in intersection test.
Red color component of ¿tli resampling point.
Gi'(;en color component of ¿th resamj)ling point.
Blue color component of ¿th resampling point.
Opacity component of ¿th resampling point.
Transfer function for component ;c, where x G 
Set of .//■faces.
Set, of eJJ faces.
A tetrahedral face.
l''unction which returns the area of lace ,/.
Number of nodes in the data.
Total time spent on node transformation.
Average time s]>ent to transform a single node, 
dotal time spent on scan conversion of Cj//’ faces.
Avei age scan convcnsion cost for a. |)ixel.
Number of intersections made by a ra.y shot from pixel {x ,y)· 
Total time spent on intersection test.
Average time spent on intersection test for an intersection. 
Total time spent on resami)ling.
Average resampling time of a point, 
dotal time s])ent on rendering.

Xll



G
V
£

Vi
Cij
'Wi
U)K!
c
Ci
s
Si
■>'i

K
P
P'

Pi
n

n '

V
V  
M

Vi

n-i

Pi
IT
IT'
e

li'v)
lfr{v)
Bp,{n)

M{S.)

<h
Si

Craph used in clusterization.
Set of vertices in G- 
Set of e<lges in G- 
itli vertex in set V.
Edge connecting vertices Vi and vj.

Weight of the vertex v¡ in set V.
W<'ight of the edge between vertices u,· and vj.

Set of data dusters.
•¿th cluster in set C.
Set of screen parts, 
ith screen part in set S.
¿th screen cell.
Number of processors used.
Set of processors used.
Set of processors to which a cluster will migrate.
¿th processor in set P.
Remapping hy])ergraph in two-phase model.
Remapping hy|)(Mgraph in one-phase nuxlel.

Sc;t of vei'tices in 'H.

Set of vertices in 'H'.

Set of nets in "W.
¿th vertex in a hj'pergraph.
¿th net in a. hypergra.])h.
¿th special vertex, representing Pi in 7i'.

Set of screen parts returned by hypergraph partitioning in two-phase model. 
Set of screen parts returned by hypergraph partitioning in one-phase model. 
Overall load imbalance value for a partition.
Set of exteriud nets which has a pin on a vertex in set V'.
Gain obtained by moving vertex v.
?-th level Gain obtained by moving vertex v.

Binding number ol net n.
Mapping función vvliich maps <5,· to Pj.
Degree of ¿th vertex in a hypergraph.
Size of ¿th net in a hypergraph.

Xlll



\i
, \ ( n )

Pins{iii,)

Ntts{'Vi)

B

X

y
z
Xi

Vi
Load{Ci)
L()ad{vi)
Cost[e,)

: Connectivity set of a net iii.
Connectivity of a net iii.

Cost of the partition II.
Operator which returns the set of vertices on wliicli ni has a pin. 
Operator which returns the set of nets which has a pin attached on vi 
Bipartite grapli used in the second phase of two-plnise model.
Set of i)rocessors in B.
Set of screen parts in B.

Set of edges in B.
vertex representing zth processor, in set X . 
vertex representing zth screen part, in set 3̂ .
Function tliat returns the rendering load of the cluster C,·.
Fimction that returns the rendering load of the screen cell vi.
Function that returns the migration cost of the cluster C{,

XIV



Chapter 1

Introduction

The huge im])rovements in computing capa))iliLies of luuxlware, and develop
ments on the visiuilization software allowed researchers, students and people 
from many different work areas to study the interiors of 3-dimensional data 
on their desktops. 'IcKhiy, volume visualizaiion stands as a. scicmce disci|)line, 
which is commonly used as a. tool to aid the research b}' letting the scientists 
to get a. visual grasp of the problem under investiga.tion. d’he main method 
for scientific volume visualization [36] is volume rendering. Tt finds applica
tion in various areas such as hydrodynamics, molecular biology, sysmology and 
nu'ti'orology.

1.1 Terminology and Classification

Volume rendering can be simply defined as the process of mapping a set of 
scalar, tensor or vector values defined in 3D to a 2D image screen. In order to 
iei)reseut these volumetric data sets, clifTerent kinds of grids are used. Grids, 
according to their structural properties, can be classified as in Table 1.1.

Irregular grids are the most interesting type of grids with the cvbility to rep
resent dis|)a.rate field data effectively. In rectilinear grids, non-unilbrm, axis- 
aligned rectangular prisms arc used as volumetric primitives (voxels). Curvilin
ear grids have the same topological structure with rectilinecir grids, but they are

1



c u  AFTER í. INTRODUCTION

Table 1.1. Grid classification.

G rids Primitives used
CJ artesian ax is-aligned, 

uniform cubes

Non-C!art(^sian

Regular axis-aligned,
uniform rectangular prisms

irregular

Rectilinear axis-aligned,
non-uniform rectangular prisms

Curvilinear non-axis-aligned, 
non-uniform hexahedra

Unstructured no implicit connectivity, 
polyhedra

warped from computational space to physical space. With the increase in the 
number of tools and methods for generating high qucility adaptive meshes, un
structured grids are also gaining more popularity. Unstructured grids contain 
polyhedra with no implicit connectivity infornuition. Volumetric primitives 
{cells) such as tetrahedra, hexaliedra, and prisms can be used in these grids. 
However, because any volume can be decomposed into tetrahedra, and they are 
easy to work with, in most cases tetrahedral cells are used to form unstructured 
grids. IHgure 1.1 shows 21) ecjuivalcnts of these grid types.

Carlcsian Regular Rcclilinear

Figure 1.1. Grid types in 2D.

d"wo basic categories can be considered for volume rendering algorithms [7]: 
Surface-based algorithms, whicli compute different levels of surfaces within a 
given volume, and direct volume rendering (DVR) algorithms, which display 
the integral densities along imaginary rays passed between the viewers eyes and 
the volume data. Surface based metliods are sometimes referred as indirect 
methods, since they try to extract an intermediate representation for the data 
set. Their mciin idea is to construct some level surfaces using the sample points 
with close density values, and represent them with a set of contiguous polygons, 

which will later be rendered in the standard graphics pipeline.



CIIAPTEli I. INTRODUCTION

Dc.s|)ile l,lic fact that surrac(;-I)ivsed algorithms arc fairly well suited for 
areas such as medical imaging, which requires specific tissue boundaries to be 
dis|)la.ycd, there are many other areas in which they cannot be utilized due to 
the problems associated with the computation of surface levels. In most data, 
sets, using artificial surfaces may result in highly non-linear discontinuities 
in the data and introduces artifacts in the rendered image. In other words, 
a sui'lace may not always rei)res(Mit the actual data structure correctly. To 
overcome this problem, direct volume rendering technicpies, which treat the 
volume data as a. whole, are emplo3 êd. DVR is a powerful tool for visualizing 
data, sets with complex structures defined on 3D grids.

The main DVR methods are ray-casting and data projection, which are 
sometimes referred as image-space a.nd object-space methods, respectively. Cell 
projection [12] and splatting [45] are the two examples of object-space methods. 
In cell piojection based DVR algoritlirns, the projection primitives (tricvngle, 
tetrahedra, or cube) must be sorted with respect to the viewing point, due to 
the usage ol tin; com|)osition lormula. based on color and opacity a.ccumulation 
at sam|)liug points. However, because of the ambiguities in the visibility or
dering [12] of projection primitives, the visualization process may yield a poor 
final rendering. Similar problems, which affect the image qualitjq arise in other 
object-spacc! methods, too. For example, in splatting algorithms, efl'ect extends 
of the rc'sa.mpling points should be approximated correctly.

Ra.,y-ca.sting [18, II], without anj' luisitation, can be said to be a very good 
candidate to produce high-quality, realistic images. This method works by 
shooting rays from the image ])lane into the volume data, and combining the 
color and opacity values calculated at resampling points throughout the data. 
Because ea.ch ray’s contribution to a pixel color is independent of all other 
ra.ys, ray-casting algorithms cannot utilize the object-space coherency well. As 
a. result, their elegancy comes at a cost.

The computational cost of DVR algorithms is affected by the huge amount 
of information to I)e processed in the data sets, and it prevents their wide- 
spread use. Although many optimization techniques cue known, speeds of 
DVR algorithms are still far from interactive response times. The CPU speeds 
at which the current |)rocessors operate is not the only limitation before direct



CIÎAPTEH L INTRODUCTION

volumes r(3Ji(leiTng. Limited amoımt of pĥ ŝiccil meınoıy in workstiitioiis can 

filso be a lx)Ul(3neck. Since some portions of the datci may not fit into main 

memory, it may be necessciry to access the data fi*om virtual mejriory resulting 

in a much slower data ciccess I’ate.

Parcdlelization of the existing DVR algorithms [46] is the main technique to 
ov(3rcome tlie sjxied limitations mentioned above. Considerable speedups can 
be gained through parallelization without trading the image quality for render
ing speed. Shared memory or distributed memory architectures can be used for 
parallelization. In shared memory parallel machines, ecich processor has access 
to a global memory via some interconnect or bus. The globed memory can 
b(3 a singl(3 module, or can l)e divided equally among processors. Processors 
communicate by using the bus, through read and write operations performed 
over memory locations in the global memory. Although it presents ease of 
])rogramming and flexildlity, shared memory architectures does not scale well, 
due to the bottlenecks occurred during memory access.

In distributed memory ¿irchitectures, each processor is given its own mem
ory, which is not directly accessible by other processors. If a processor needs 
data contained in the mejiioiy ol a remote processor, it sends ¿ 1 message ¿isking 
for the data and reti'ieves it Irom that processor through an interconnection 
network. As a result, the data access is not always uniform, ¿ind issues such 
as data distribution, coimnunication bcindwidth and network toi)ology gain 
im|)ortance.

Parall(4ization process can be carried out in 3D object domaiji or 2D screen 
domain, r(3sulting in object-space parallelization (OSP) and image space paral

lelization (ISP), respectively. In OSP, each processor is assigned a sub-volume 
of the data, and produces the partial color information for the final image by 
rendering its volumetric primitives. Ltvter, these partied results ¿ire merged ¿it 
¿ippropriate processors by a pixel merging step. Communication is needed to 
send the sub-results to their destination processors, where they will be com
bined to determine the iimil pixel colors. Hence, OSP is known ¿is a pixel-flow 
nudJiod.

ISP, on the other luind, is a d¿ıt¿ı-flow method. Inste¿ıd of sub-volumes,



an A PTim i . int iio d  i kjtion

f
Initial Data Local Pixel Pixel
Distribution Rendering Migration Merging

a) Object-space parallelization

b) Image-space parallelization

Figure 1.2. Rendering pipelines for distributed memory arcliitectures.

each processor is assigned a sub-region over the screen and is res])onsible for 
rendering that particular region. However, since a processor may not possess 
all the primitives necessary lor rendering its region, required sub-volumes £i.re 
retrieved Irom |)iocessors owning them, before the rendering process starts. 
I'̂ igure 1.2 dis|)lays the general rendering pipelines for OSP and ISP on dis
tributed uKiinory arcliitectures.

1.2 Previous Work

With the increase in their availability and decrease in their prices, massively 
|)arallel computers a.ie becoming more popular. In the last decade, many at
tempts were done to parallelize the existing DVR. a.lgorithms. However, most of 
these work dealt with the structured kind of data. Work on unstructured data 
took less attention. 'Γ¿d)le 1.2 displays the references to latest work on paral
lelization of DVR methods. The classification in that table is done according 
to the type of the architecture and the parallelization method used.

Although lots of research is carried out on volume visualization, it is still 
very diificult to establish the standards to compare the quality of the works 
done on volume rendering. Unfortunately, this becomes more apparent in



cn  AFTER. 1. INTRODUCTION

lable 1.2. Panil]elizcition of DVR algortihins.

OS Parallelization IS Pcirallelization
Shared
Memory

[44] [35]

Distributed
Memory

32]
[37]

[4] [29]

Special
Ilardwa

47 [48]

l)ara.llclization of DVR. methods, ddiere are rna.ny criteria such as data set size, 
execution speed, image quality, load balance, speedup, sccdability tliat can be 
used to cornpai'e work with the previous, similar works. This makes their 
COn 1 pari sou h aixler.

Considering the classification made in Section 1.1, our work can said to be 
the ))arallelization of ra.y-casting technique for distributed memory architec
tures. In our work, image-space decomposition was chosen for parallelization 
and th(i data used is of ty|)e tetrahedral unstructured grids.

There is little research done in this iirea. Hence, we compared our work with 
a similar algorithm, which irses jagged ])c\.rtitioning to divide the screen. Ja.gged 
partitioning is one of the best screen space subdivision algorithms. However, 
since it is mainly concentrated on the load balance between partitions, it lacks 
the i)ower to minimize the communication between partitions. At same load 
ba.lance, and preproce.ssing overheads we observed that the communication cost 
during the remapping phase, incurred by ja.gged partitioning can be up to 30% 
higher than the cost observed in our work.

1.3 Proposed Work

The lay-casting code we used is a slightly modified implementation of Koya- 
mada’s ray-casting algorithm [26]. This algorithm is a rather efficient algo- 
I’ithm, which makes use of both object-spcice coherency and inicige-space co

herency. Our main modification to this algorithm is the use of a higher level 

of volumetric data abstraction.



CHAPTER 1. INTRODUCTION

1 1 1  some cases, instead of working on individual tctraliedral cells we deal 
witli connected clusters of tetrahedral cells. Although introducing clusters may 
result in data reiilication during parallelization, this effect may be negligible if 
the number of clusters used is ke|)t high enough. Clusterization [9] simplifies 
the liousekeeping work, and decreases the number iterations in some loops. Its 
main use comes at the computation of the screen work load, i.e., the distribution 
of the cell liMidering costs over their ])rojection areas on the screen. In addition, 
this clusterization process is necessary to obtain the condensed hypergrai)h 
which will be used during the remapping step.

Tire fundamental problem in image-space based DVR metliods is that if 
a visualization parameter such as the viewpoint location or the viewing di
rection changes, the image on the screen should be wholly recom])uted. For 
image-space parallelization, this creates a j:)roblem known cis the remapping 
problem. During successive visualizations, the rendering costs of volumetric 
primitives distributed over screen pixels can largely change, resulting in severe 
load imbalances among the procès,sors. 'Phis necessitates the rnigraXion of some 
volume data, to other processors in order to ba.la.nce the load distrilnition. The 
aim of remapping step is both to obtain a good load balance by shifting data 
from heavily loa.ded processors to lightly loaded processors, and to minimize 
the communication overhead incurred by this data migration.

Our main contribution is at the ])roposed remapping model. In this work, 
remapping problem is formulated as a. hypergraph partitioning problem, so 
that the interaction between the object and image domains is represented by 
an hypergraph. A net in this h3q)ergraph stands for a cell cluster in the volume 
data, and its weight shows the migration cost of the cluster. Cells of the 
h3 'pei'gra.|)h represent the pixels over the screen. Each pixel’s rendering cost is 
assigned to its re])resentative cell.

'Pile tool used for hyi)ergra.ph partitioning is PaToII. In order to obtain a 
one-phase rema.pi)ing model, some modifications were done on the hypergraph 
model and PaToII, giving them the ability to treat some cells differently than 
the others. Some special cells are placed in the hypergraph to represent the 
])rocessors used during execution. A special vertex is connected to a net by a 
pin, if net’s cluster resided in the local memory of the proces.sor. Details of



this oiie-pliase model can l)c found in Chapter 5.

Tlie iini)lementation of our parallel rciy-casting algorithm is composed of 
four consecutive phases: View independent preprocessing, view dependent pre- 
])rocessing, cluster migration and I’endering. View independent preprocessing 
is performed just once at the beginning of each run. It includes some steps such 
as cell clusterization, initial data distribution, and disconnected cluster elim
ination. In view dependent ])reprocessing, some transformations are applied 
on the data, and also clusters are mapped to new processors through hyper
graph partitioning. In cluster migration step, communication is performed to 
send clusters to their new locations. An important fact is that the overhead 
incurred by these last two steps should be minimal, since they are executed at 
the beginning of every visualizcition instance. The final step is the rendering of 
the clusters locall}  ̂ by the processors. Because processors have all the clusters 
needed over their assigned screen regions, no global pixel merging is necessary.

с п л т т  1. intiioduction s

The organization ol the thesis is as follows: In Chapter 2, ray-casting ¿md 
our imphnueiitation of Koyamada’s algorithm were ex|)lained. Chapter 3 dis
cusses image-space parallelization issues. Cluipter 4 is an introduction to hy- 
pergra])h partitioning. Our remapping model and parallel ray-Ccisting imple
mentation were presented in Cliapter 5 and Chapter (i, respectively. Chapter 7 
gives some experimental results, and Chapter 8 concludes the thesis.



Chapter 2

Ray-Casting

Ray-casting is an image-space rendering method, in which some rays are shot 
from the observers eye (vietopoinl) into the volume data through tlie pixels 
over the image screen, and fiiud pixel colors are calculated using the color 
contributions of the sa.mple points over the ray. Sometimes, in the literature, 
tlu! t('rm ray-casting is used to rcifer to ray-tracing, although they are not the 
same. In ray-casting, oidy the shadow rays are considered, ignoring reflection 
rays cUkI transmission rays which are important in ray-tra.cing. Tims, ray
casting can lje said to be a simple form of traditional ray-tracing.

The next section describes the basic ray-casting algorithm. In the section 
following it, Koyamada’s ray-casting algorithm which works on unstructured 
grids is explained. This algorithm forms the basis for our ray-casting code. 
r<'inally, some optimizations done in ray-casting and the peiformance of our 
rendering algorithm is discussed.

2.1 Basic R a y -Casting Algorithm

Before the ray-casting algorithm has started, it is assumed that the scalar 
values on grid vertices and the vic.'wing orientation were already determined I)y 
the user. The viewing orientation is specified by the following three parameters: 
view-rcjcrence poini, view-direclion vector, and view-up vector, 'rogether with



CllAPTKli 2. RAY-CASTING 10

these thro;e parameters, image screen resolution parameter is used to transform 
the grid vertices, which are originally in world space coordínale (WSC) system, 
into normalized projeclion coordínale (NPC) system, which will be used in ray
casting. Also, some transfer functions, which will map the scalar values at 
resampling points into an RGB color tuple and an opacity value, were assigned 
previously.

In ray-casting we perform an image-order traversal over the screen pixels, 
and try to assign a final color value to each pixel. To find a pixel’s color, first, 
a ray is shot from the viewpoint into the volume data passing through that 
pixel (Figure 2.1). This ray is followed within the volume, and some sample 
valiK.'s are calculated at the resampling points along the ray at some regular 
intervals. If the resampling point is not exactly on a grid vertex, its Vcilue is 
approximated by interpolating the scalar values at some close grid vertices. 
Different sampling methods and interpolation techniques are discussed in the 
following .sections, in more detail.

Image Volume

Figure 2.1. Ray casting.

At each resampling point, tlie transfer functions are a]:>plied to the sample 
values found, and color and opacity contributions of resampling points are 
Ccdculated. Then, using a weigliting formula, these color and opacity values 
are accumulated into the final color value of the pixel, from which the ra.y 
was shot. The weighting formula is such that, the points closer to the pixel 
contribute more than the points far from the screen.

Tins sam[)ling step repeats until the ray reaches the end of the volume 
or the accumulated opacity reaches unity. At the end, the accumulated color 
tuple is multiplied by the partial opacity and the final color is stored for that



CIIAPTFJI 2. RAY-CASTING

pixel. The algoritlini continues by moving onto the next pixel, cincl performing 
¿ill the steps ¿ibove for this newly selected pixel.

2.2 Data Structures for Unstructured Grids

(ii'ids rcprcsentiiig voliinicl.ric data can be conslructed from differenl primitives 
sucli as rectangvdar prisms, hexahedron, tetraliedron, polyhedron or a. mixture 
of these. As we did in this work, mostly tetrahedral primitives are used in 
unstnictured grids. We refer to tetrahedral volume elements as cells here. All 
types of polyhedra can he converted into a set of tetrahedral cells through a 
process called tetrahcdralization. A points value inside a. tetrahedral cell can 
be interpolated directly, and the data distribution is linear in any direction 
inside the cell. Also, for this type of cells explicit connectivity structure is 
easier to be establislied.

A cell is made up ol lour planar, triangular faces and four corner points, 
called its vcrliccs. liacli vertex o( a cell is actually a. sample point with WSC 
values cuid an associated scalar value. The cell faces a.re classified as either 
internal or external. A common lace shared by two different cells is an internal 
face. If a. face is not shared by a iieighbor cell, it is an external face. We call a 
cell with no exteriurl faces as an internal cell. Otherwise, the cell has a.t least 
one external face, and it is called an external cell.

(Jell laces can cilso be classified according to the angle between their normal 
vectors and the view direction vector. If tluxse vectors are perpendicular to each 
other, then the lace is parallel to the ray casted. In case the angle is less than 
90", we call the face a front-facing (Jf) face. Otherwise, it is a back-facing (bf) 
face. An external .//face is named as an e//face. Similarly, an external. / / face 
is named as an ebf face. Finally, we use the sets iFfj and iFejj to denote the 
sets of .//and effaces, respectively (Figure 2.2).

Our tetrali('draJ c(dl data structure mainly contains two arrays: Nodes array, 
and Cells array. Size of the Nodes array is ecjual to the number of sampling 
points in the data. Each item of this array represents a single sampling point



CHAPTER 2. RAY-CASTING 12

l''igure 2.2. Ray-casting for unstructured grids with mid-point sampling.

and stores that points WSC, NPC values as well as the scalar va.lue iit that 
point. The scalar and coordinate values are stored as flocit numbers.

The second major array, namely the Cells array, is used to establish the 
connectivity l)(;tw('cn tin; cells, d'he number of items in this array equals to the 
tetiahedral cell count in the data.. In an arra.y item, for each face, the following 
information is stored: Nodes array indices of the four vertices forming the cell. 
Cells ariciy indices of the four neighl)or cells, and a number ra.nging fi’orn 0 to 
3 to distinguish the shared faces of the neighbor cells. For non-shared faces of 
external cells a sentinel value of -1 is used. The data structures used can be 
seen in Figure 2.3.

struct Node {
struct Point WSC; 
struct Point NPC; 
float scalar;

}

struct Point { 
float x; 
float y; 
float z;

}

struct Cell { 
iiit vert ices [4]; 
int neigliborCells[4]; 
int neiglıbor^aces[4];

}

Figure 2.3. Data structures for tetrahedral unstructured data.



CHAPTER 2. RAY-CASTING 13

2.3 Koyamada’s Algorithm

Koyamada’s algorillun is a ray-casting algorithm that works on unstructured 
grids and is a ratlier efficient algorithm. It both tries to use the image-space 
coherency existing on the screen and the object-space coherency within the 
data. Image-s))ace coherency is ex])loited during the scan conversion of effinces, 
in order to determine the first ray-cell intersections. Object-space coherency is 
utilized by means of the connectivity information between the cells. Moreover, 
the residts obtained from ray-face intersection is used for interpolation of scalar 
values making the interpolation operation very fast. Finally, due to the linear 
sampling method used, the resampling operations are very efficient.

Initial step taken in tlie algorithm is to scan convert the ejj faces and find 
the first ra.y-volume intersections. Because the volume or the sub-volumes used 
during parallelization may be non-convex, more than one riiy-segment may be 
generated for the same ])ixel. Due to the nature of the color composition for
mula., this ray-segments should be merged in a. sorted order. In the original 
algorithm, cj] fa.c<\s are sorted with respect to the 5: coordinate of their cen
troids, and scan converted in that order.

However, this is an ai)proximate ordering and may be wrong in some cases 
as shown in Figure 2.4. In that figure, although Ri should be traversed before 
/¿2 , II2 is proce.s.sed and composited first; since the centroid of KL, C*!, is sorted 
before the centroid of M¡V, Ĉ · Our im])lcmentation overcomes this problem, 
which may lower the image quality, by means of a ra.y bufl’er data structure. 
This data structure keeps a linked list for each pixel, and the list elements

Figure 2.4. A case where hvee sorting fails.



an A PTica 2. ra y-casting 14

contain composition infonnation (i.e. accnmnlated color and opacity) about 

the ra.y-segmcnts fired from that pixel (Figure 2.5). After all ray-segments
nrc; (’«ilrnlat(ul aiicl inwca tcjcl into  Uu^ir i'<\s[)(3c(.iv<i li.s(.H in Horl.iHl ordc.'r, a.m

mcrg(;d by a pixel merging ste]) in correct order.

Figure 2.5. Ray l;>uiFers contain the ray-segments generated for each pixel.

The ray segments are traversed until tliey exit at some point from an ebf 
face of the volume. When a ray enters a cell from a face it exits tl>e cell tlirough 
one ol that cells remaining three faces. This particulax exit face, and the exit 
point coordinates are iound by the intersection test. An exit point from a cell 
constitutes the entry j)oint to another cell, therefore just one intersection is 
performed per cell.

'I'he following snbsections discu.ss the two important steps of the algorithm, 
that is, the intersection test, and the resampling steps, which are performed in 
an interleaved manner.

2.3.1 Intersection Test

In Figure 2.6, we consider the intersection test of a ray with the ABC  face 
of a cell. Since x and y coordiruites for the exit point Q are already known 

— /2.,. and Qy = Ry)  ̂ the problem is to find the coordinate value. This 
is done by expressing A(^ as the summation of the two vectors whose directions 

are same with AD and

AQ =  cxJ b  -k p J d (2 .1)



CHAPTER 2. RAY-CASTING 15

Figure 2.6. Intersection test.

ller(i, fv and fi are tlie cociricients used for scaling. The e(|iiation al)ove can 
be rewritten in a inoie useiul matrix form as follows:

( 2 .2)

' B x -  /1 , Cx -  /u . 0 ■ a Rx -  Ax
B y - A y  C y - A y  0 X = Ry -  Ay
Bz -  Az Cz -  Az 0 _ . 7 . . Qz -  Az _

In Fquation 2.2, (/Ij,.,/ ! „ , /L )i (^i·, Gy, and {Cx,Cy,Cz) represent the 
coordinate values of /1, D c\.nd C points, respectively. By solving the ecpiations 
in the first and second lines of Equation 2.2, unknown a and /3 coefTicients in 
h'quation 2.1 can be calcidated. If one of the cv > 0, /? > 0, and 1 — a — /3 < 0 
conditions does not hold, then the ray does not intersect the face an another 
face is tested in the same marmei'. The 2  coordinate of the exit point Q can 
be calculated by sul)stituting the values found, into the Equation 2.3.

Q z  — T <̂ {Bz — Az) +  l^{Cz ~ Az)



CHAPTER 2. RAY-CASTING 16

2.3.2 Resampling

Next step in tlie algorithm is to find the scalar value at the exit point. That 
value is ap])roximated by the inter])ola.tion of the scalar values at some sampling 
points. Koyamada’s algorithm employs 2D inverse distance interpolation to 
calculate the scalar Qs at point Q.In our example, the scalar values Л,, /?j, 
and at facci coriuM's /1, В and C are interpolated for tins purpose. Tlie cv 
and fi coefficients found during the intersection test is used in the following 
i n t e r p о 1 a t i о n fo r 1 rnd a:

Q a  =  cx D s +  ¡З С з  +  (1 — q; — (2.4)

Using (P,,Pa) and (Q^^Qs) tuples, new scalars are calculated within the 
cell, by ID inverse distance inter])ola.tion, along the ra.y segment bounded by 
the P entry, and the Q exit points. The number of resampling points depends 
on the method used. li(|uidistance sampling, adaptive sampling, and mid-point 
sampling are the most common resainpling methods.

In ec|uidista.nce sampling, the distance between successive resampling points 
is constant and scalars ai'e calculated by ID inverse distance interpolation using 
entry and exit points. Ada]:)tive sampling takes the cell size variation into 
consideration and determines a different resampling distance for each cell. In 
mid-point scimpling resampling is done at the middle of the ray-segment. The 
method used in this work is mid-point sampling. It is both fast, since the 
resa.m|)ling is done just once for each cell, and is unaffected by the cell size 
variation in the volume. The scalar at the resampling point is calculated by 
the following simple formula, where M  rojpresents tlie resampling point:

Ps  +  Q s (2.5)

The scalar values obtained, are ma])ped into color and opacity values by 
transfer functions [24] A,·, where i € {r,g,b,o] ,  RGB color tuple determines 
the a])pearance of an ol)ject, and opacity is a property of the material which 
determines how much of the light is cdlowed through the object. By setting the 

transfer functions properly, some important features in the data and changes 
in the scalar values can be highlighted. Figure 2.7 shows two example transfer



CilAPTlCll 2. UAY-CASTING 17

Opacity Opacity

Scalar

Figure 2.7. Example transfer functions.

functions. In the first graph, a sinootli pcissage was supplied between opacities
of close scalar Vcilues. In the second graph, some features at specific scalar
value ranges were obscured by mapping those scalars to low opacit}^ values.

The last stc|), after the colors and opacities for particular resampling points 
are found is to composite them using the color and opacity composition for
mulas:

- 0 ,  +  A , ( A / , ) ( l - a · )  (2.(5)

Ri+i =  (RiOi +  Xr{M ,)K {A 'Q {i -  Oi))/Oi+i (2.7)

if'i+i =  (GiOi +  Xg{A'R)Xo{Ms){l — Oi))/Oi^i (2-8)

= {B ,0, + At(M ,)A,(M ,)(l -  0 .)) /0 .+ i (2.9)

1 1 1  Uie ec|iiations above, {Ri,Cn, Bi,Oi) and (/?,^.i, 0 ,+i) values
represent tlie color and opacity values composited before and after the resam- 
[iling |)oint M is reached, respectivel}c Also, the initial color and opacity values 
sliould 1)6 set as Oo =  0 , Bo — 0, Go =  0, and Bo =  0.

Finally, for each pixel the composited ray segments are collected in the ray 
buffers. If the ray shot from a pixel does not enter and exit the volume more 
than once, tlien there is just one ray segment in the buffer and its color is used 
to paint the ])ixel. Otherwise, the colors of the ray segments need compositing 
as it is done in the resampling points. In case no ray is fired from a pixel, a 
predetermined background color value is assigned to that pixel.



сил PTEll 2. RA Y-CASTING J8

2.4 Optimizations and Performance

One оГ the optimizcvUoiis of Koyamada’s algoritlmi is on the scalar value calcu
lation at tlie resampling points. Instead of making expensive 3D interpolations 
using the vertices of the tetrahedra, it performs a 2D inverse distance inter
polation followed by a ID inverse distance interpolation, which is much faster. 
Moreover, it makes use of the vector scaling coeilicients found in the intersec
tion test, dining tlie data interpoUition, cind decreases the processing amount 
for this stej). Our approcich of using mid-point sampling decreases the number 
of resampling points taken ¿ind ¿dso prevents resampling some parts of the data 
unnecessarily.

Conventional techniques perform three intersection tests per cell. However, 
Koyamada’s approach performs two tests per cell, on the ¿werage. This is 
beCfUise the exit point from a cell is used as the entry point to another cell. 
Ibnice obj(ict-space coherency is utilized.

In DVR methods, composition of the color and opacity can be done in back- 
to-front or front-to-back order. In object-space methods, which uses back-to- 
front order com|)osition, scientists have the chance to view the image forming 
on the screen in an animation-like manner. That is, intermediate steps of final 
image appearance am be watched. On the other hand, front-to-back order 
composition can make use of the early ray termination, liarly rciy termination 
is an optimization technique, which stops the resampling o[)ercition when the 
accumulated opacity along a my reaches unity.

d1i('i*e are some other optimization techniques such as |)ixel color interpo
lation over the image screen, but most of these techniques degrade the image 
quality. Since one of our aims is to produce high quality images, we preferred 
not to employ such optimization techniques in this work.

Performance of this algorithm is ¿iffected by four factors, tluit is, the times 
spent on node transformation, sccin conversion, intersection test, and resam
pling. Node transformation is necessary to bring the volume from WSC to 
NPC. If N  is the toted number of nodes in the data, ¿ind the time to transform



C']ÎA PTKR 2. RA Y-CASTINC! 19

a single |)oint, is Itr, it can be fommlated as:

Tir — N Itr (2 . 10)

Note that, 7),. is iiule])endent of the visualization instance. SccUi conversion 
cost on the other hand, is proportional to the sum of the areas of the e//faces, 
and can be affected by the viewing parameters. If Area is a function which 
returns the triangnlcU· area of a given face, and the average time spent on 
the scan conversion of a pixel, then 'l\c can be expressed as:

^  Area{J)l, ( 2 .11)

'Two other imi)ortant costs are tlie times spent on intersection tests (Tn), 
and resampling operations (T,.j). Assuming W, / / ,  I^y, tu, Irs variables repre
sent screen width, screen height, intersection count for a ra,y shot from (.r,?/) 
coordinate, average intersection time, and average resa.rn])ling time, respec
tively; 'I'u and I'rs can be calculated as follows:

a.-=lV !/= //

r .  = E  E  c . i , .
x = 0  y=0

(2 .1 2 )

x = w  y = II

=  t , y :  h , t „
o;=0 y=0

(2.1,1)

Note that, since we use mid-point sampling, the number of resampling 
l)oints is ecpial to the nnnd:)er of intersection tests made. Therefore, can 
be used as the number of resamplings made along a ray. Considering our 
experiments about the weights of these lour factors in the total execution time, 
the first two factors can simply be ignored. As a result, the computation time 
for the algorithm can be expressed by the following formida.:

x = W  y = H

T =  Tu + Tr, =  E  E  + trs)
x=0  y=0

(2.M)



Chapter 3

Image-Space Parallelization

Parallelization ol' ra.y-ccvsting can be clone in object-space or in image-space. 
The focus of this work is on imagospace parallelization. Load balance and 
remapping of data primitives to new processors gain importance in imagci-space 
parallelization. Tlierelorc, it is important to handle this problems accurately 
and efficiently.

Ne.xt section gives a brief com[)a.rison of OS and fS paralkdization. The sec
tion following it introduces our approach of using clusters instead of individual 
data primitive». Last two sections describe the load balance and remapping 
problems in IS parallelization.

3.1 OS versus IS Parallelization

In OS parallelization, decomposition is done in the object-space and some por
tions of the volume data are assigned to processors. The proccissors are respon
sible from rendering their own sub-volume. To obtain a load balance among 
the processors, the sub-volnmcs are determined such that tlieir computational 
costs are nearly equal. The number of sub-volumes assigned to a processor 
can be more than one. Previously, some techniques such as octree [16, 17], k-D 
tree [2, 61, 33, 37], and graph partitioning [9, 32] were employed to find the 
appro])i'iate data-processor assignments.

20



CUAPTFAl 3. IMAaK-SPACE PARALLELIZATION 21

a) OS Parallclizalion b) IS Parallclizalion

Figure 3.1. Datci-processor assignments in OS and IS parcillelization.

OS parallelization, since decomposition is done in the object-space, has the 
ability to establish a load bahince among the processors. Changing viewing 
parcuiieters do not disturb the existing load balance much. On the other hand, 
the need for compositing the ray-segments produced by the processors dur
ing their local rendering phase appears to be the major disadvantage of this 
method. I^specia.lly in unstructured grids, the number of ray-so^gments pro
duced can be quite high in number, and may cause excessive communication 
costs.

The other option for parallelization is IS parallelization. In this method, 
instead of creating chunks of data and assigning them, each processor is given a 
screen region and works only on the data whose projection fall onto that screen 
region. A processor is given all the primitives needed to render its region 
belorehand, ¿ind no global pixel merging operation is necessary. To divide 
the screen into sub-regions, techniques such as qitad trees  ̂ pariilioning^

recursive subdivision luid been used in the literature.

Load imbalance and communication costs during the data migration are the 
two important problems in IS parallelization, that will be discussed in more 
detail in the following sections. In DVR methods using unstructured data, 
the cell size variation is the basic recison for load imbalance, and remapping 
models can be used to ensure <an acceptcible load Imlance as well as minimizing 
the communication costs. Figure 3.1 displays dcita-processor ¿issignments in



CHAPTER 3. IMACE-SPACE PARALLELIZATION 22

OSP and ISP, in a simplistic nuumer.

Compared to the OS parallelization, IS parallelization produces faster code 
execution. It is shown in [13] that the communication required by IS par
allelization is usually higher than the one in OS parcillelization. This makes 
remapping more important for IS parallelization.

3.2 Clusterization

To obtain a good load balance in IS i)cirallelizatioii, it is necessary to know 
the work load distribution over the screen i)ixels. In other words, should 
be known at ecich pixel prior to rendering. If individual tetrcihedral cells ¿ire 
used during screen work locid ccilculations, the ¿imount of preprocessing over- 
hecid incurred ¿it e¿ıch visiuilization inst¿ınce ¡^¿ikes the model impr¿ıctical to 
use. Hence, in this work, a clustcriz¿ıtion step w¿ıs employed to decre¿ıse this 
|)rcprocessing overhe¿ıd.

In this ¿ıp])ro¿ıch, e¿ıch cluster contfiined ¿i number of cells. The b¿ısic ¿lim 
w¿ıs to create clusters with eqiuil cell rendering costs ¿ind with minim¿ıl suriace 
¿irea. Minimizing surlVice ¿irea le¿ıds to si)here-like cell clusters which in turn 
minimizes the inter¿ıction of the clusters with the screen. Therefore, both 
less scan-conversion is performed during work lo¿ıd c¿ılcul¿ıtion and a more 
contr¿ıcted hy])ergraph can be obtained ¿ind used during renuipping.

Since volumetric d¿ıt¿ı is mostly produced by engineering simuhitions on p¿ır- 
¿illel com])utei's, we ,sim])ly as,sumed that each processor acquired some chuuk 
of the volume delta previously. Instead oI using a global clustering scheme, we 
employed a local clustering scheme. Every processor worked on its initially 
assigned data in parallel to produce the cell clusters. This eliminated the cost 
that will be incurred b}̂  global clustering.



CliA PTI'm .1 IMAdE-SPACE PA RALLEIAZATION 23

3.2.1 Graph Partitioning

Graph partitioning is the method and state of the art METIS graph partition
ing tool is the tool we used to form the cell clusters. Graph partitioning is 
a technique for assigning some tasks to partitions so as to balance the load 
of partitions and minimize the interaction between partitions. It arises in a 
variety of computing problems, such as VLSI design, telephone network design, 
and s[)a.r,se gaussian elimination.

In our clusterization model, clusters correspond to partitions and cells corre
spond to tasks. We consider an undirected graph Q =  {V ,£ ,W v,W e) without 
loops and multiple edges. Here, vertex set V is the set of tetrahedral cells, 
and edge set £ is tlie set of faces connecting these cells. A cell V{ is said to 
be connected to another cell Vj by an edge e,j, if they share a common face. 
Vertex weights, Wy, represent the cell rendering costs, and edge weights, H :̂, 
corres|)onds to the amount of interaction between the cells.

Graph partitioning a set V ineans dividing it into P  disjoint, non-empty 
subsets whose unions form V:

C =  Cl U Gi  U C3 U . . .  U Cp (3.1)

'This partitioning is done considering a partitioning constraint and an op
timality condition. Firstly, the sums ol the weights kFc, of nodes u,· in each 
C,· should be approximately equal. This means that the rendering costs of 
the clusters are nearly equal. Secondly, the sum of the weights Ws' of edges

Telraheclral cells Graph representation

Figure 3.2. Gell clusterization using graph partitioning.



CHA PTER 3. IMAGE-SPACE PA RA LLELIZATION 24

tfii connecting the nodes in ditreient pcirtitions Ci and Cj sliould be minimized. 
This means that tlie total amount of interaction between clusters is mijiimized. 
Figure 3.2 shows this clusterization process.

The total number of clusters in the whole system can be chosen from the 
numbers between the number of processors, /v , and the number of cells in 
the data, |V|. Choosing the total cluster numl)er near |V| ma.y degrade the 
performance causing a huge hj'pergraph, and using a number near K  may 
degrade the quality of the load bahmce in rendering phase. Hence, we prefer 
to determine this number empirically. Chapter 7 discusses some results found 
on this problem.

3.2.2 Weighting Scheme

There are six possible weighting scheme combinations that can be used to 
determine the vertex and edge weights of the clusterization graph. These six 
[)ossibilities are shown in 'Table 3.1. 'The symbols CV, CA, FA denote the cell 
volume, c(ill area, and lace area., respectively. Unit cost scheme is represented 
by I.

For the edge weights it is more intuitive to u.se the FA scheme, since the total 
face area of a cluster better rei)i'esents that clusters interaction with the other 
clusters a.nd the screen. A cluster with large face areas has a higher chance 
to be hit by a ra.y. Using FA as edge weight produces spherical clusters which 
does not change their rendering loads by an important amount at different

Table 3.1. Possible weighting schemes for the clusterization graph.

Vertex weight Edge weight
1 1
1 FA

CA 1
CA FA
CV 1
CV FA



CHAPTER 3. IMACE-SPACE PA RA LLELIZATION 25

visualizations.

Also, we sot all vertex weights to 1 in the clusterization graph. This scheme 
pi’odnce.s clusters with equal cell size, and hence coinmnnication cost. The 
variation in the nniiiber of cells in clusters may be huge in CV and CA weighting 
schemes. Iixi)erimental results in Chapter 7 verifies our selection.

3.2.3 Additional Data Structures

Clustering the volume data requires the use of additional data structures. Each 
cluster is given a global identifier and a global ChsterMap array is crecited in 
every i)rocessor. This array is used to obtciin the cluster-processor mapping 
cind also to reach the data contciined within a cluster. Each element in this 
array niciintains pointer to the clusters local data, and a processor id showing 
tlie ])rocessor in which the cluster resides.

Processors keep only the data contained in their assigned clusters. Since 
each cluster stands as an entity that can be rendered independently, the data 
in the clusters are treated as local data. The Clusler data structure contains 
two arrays, namely local Nodes cind Cells arrays. Local indexing is utilized 
within these arrays.

Furthermore, the Cell data structure introduced in Cliapter 2 is modified 
such that now it includes information about the cluster identities, showing the 
neighl)or cluster for each face of a cell. Since a ray can leave a cluster from an 
tbficicc and enter into another cluster, it is necessary to know this new clusters 
identifier as a connectivity information. For internal faces the identifier of the 
cluster in which the face is located is assigned as the neighbor cluster identifier. 
These new and modified data structures are shown in Figure 3.3.

3.3 Load Balancing

Load balancing is one of the primary concerns in parallel applications. Without 
proper arrangement, an idle processor may drag the performance of the system



cu A PTER S. IMAGE-SPACE PA RA LIEUZATION 26

(lowiiwaid. Iii ])arallel volunu; rciideriiig, (.lie readeiing load sliared among tlie 
processors should be balanced.

In structured grids, load babuicing is a relatively simple task. However, the 
lack of a simple indexing scheme in unstructured grids makes visualization cal
culations on such grids very complex. Furthermore, unstructured grids contain 
data cells which are highly irregular in both size and shape. In a distributed 
comiMiting environment, irregularities in cell size and shajie make balanced 
load distribution very dilTicult.

3.3.1 Screen Subdivision

Since the aim in this work is image-space parallelization, the screen pixels and 
hence the load spread over them is tried to be equally shared among the pro
cessors. Previous work on screen space subdivision methods includes the use 
of quad-trees, recursive bisection and jagged partitioning. All these methods 
a.ie common in that they try to divide the screen into rectangular pieces and 
distiibutc these sciiicn regions to processors. Ilowev(!r, since the division lines 
separating the regions are alwa.ys para.llel to the coordinate axis these subdi
vision tcchiii(|U('s are not fh^xible enough and may not always produce |)crfect 
load balancing. Figure 3.4 displays these techniques on a screen with discre(,e 
load assignment.

The most flexible screen subdivision technique would be the one which 
makes the partition boundaries as flexible as possible, that is, sub-screen 
boundaries would be able to change to any shape. Unfortunately, this is not

struct Map { 
int procJd; 
Cluster *Clusters;

}

struct Cluster { 
Cell *Cells; 
Node *Nodes; 
int CellCount; 
int NodeCount;

}

struct Cell { 
int vertices[4]; 
int neighborCeIIs[4]; 
int neighboiFaces[4]; 
int neighborClusters[4];

}

Figure 3.3. Additional data structures u.sed after clusterization.



CIIAPTFAt 3. IMAGE-SPACE PARALLEUZATION 27

a) Screen load distribution

■
■

■

■
■

■

■

■

■
■

■
■

■

■
■

■

b) Quad-tree subdivision

■ ■ ■
■

■ . " ■ ....  ■

■
■

■
■

■

■
■

■

c) Jagged subdivison d) Recursive subdivision

Figure 3.4. Screen .subdivision techniques.

practical for two reasons: First, excessive amount of processing is needed to 
determine and manipulate the non-regular sub-screen boundaries, and second, 
the data, structures to rei)resent the boundaries would be too complex a.nd 
might require too much storage.

In this work, the screen is subdivided by an n by n cartesian grid forming 
sub-regions, and this sub-regions are assigned to j)rocessors for rendering. 

hVoin now on, we will refer to these screen sub-regions as screen cells. VVe 
repres('iit the .set of screen cells by S. An individual screen cell in this set is 
represented by vi.

Since the projection area of the volume occupying the screen changes with 
respect to the visualization parameters, our approach requires the estimation 
of the grid granularity. In onr work, the number of i>ixels in screen cells is



CIIA PTER 3. IMAGE-SPACE PARA LLELIZATION 28

a) Coarse-grain grid b) Fine-grain grid

l''igLire 3.5. liffect of projection area on grid granularity.

determined adaptively. This is done by keeping the number of occupied (having 
a locid) screen cells constant at every visualization instance. This also prevents 
the variation in view dependent preprocessing time. Figure 3.5 shows the grid 
gi-anularities for two different projection area size. Note that, the number of 
occupied regions is nearly the same in both cases in the figure.

Adjusting the grid granularity such that each screen cell will contain just 
one pixel results in the most flexible screen cell boundaries mentioned above. 
However, increasing view dependent preprocessing overhead makes this ap
proach iid’easible to use. On the contrary, it the number of screen celts is kept 
low, the solution space of the load l)alancing problem is reduced and satisfac
tory load balance values cannot be obtained. We used an engineering formula, 
which is explained in Chapter A, to determine the appropriate granularity of 
the grid in an adaptive manner.

3.3.2 Work Load Calculation

In image-space parallelization, screen subdivision is not enough by itself to ob
tain a good load bcilance. Also, the work load distributed over the pixels should 
be calculated correctly. The total work of rendering a cluster is approximated



СПА PTtm 3. ¡MAGE-SPACE PA НА LLELIZATION 29

1)у tile following formula:

LoudiC) -  ^  Area{f) (3.2)

In other words, the work for a cluster is equal to the sum of arecis of the 
faces in the cluster. Here, /h*ca is a function which returns the area of a given 
triangular fa.c(\ Tlu' calculatiul woi'k is distributed over the screen pixels (ov(3r 
th(i scr('(ui (Xills in case of a coarse' grain grid), by utilizing the projection area of 
the cluster, lii this work, we have tested three diiTerent work load assignment 
schemes, using different bounding boxes for the clusters.

1. Cluster Bounding Box: This is a rather rough estimation of the pixels 
affectexl by a cluster. The box suirounding the clusters projection area 
on the screen is found and ¿ill pixels in tluit box ¿ire ¿issigned the s¿ıme 
lo¿ıd value. The ¿issigned lô id per pixel is eqvuil to the ixitio of Load(C) 
to the bounding box area. In this method, iiuiny i)ixels with ¿ictiuil work 
\oax\ of zei*o is ¿issigned a lo¿ıd. Especi¿ılly, if the cluster is disconnected 
or has a. low concavity, work lo¿ıd distribution on the screen can l)e very 
])oor. On the other luind, since the cxilcuhition of cluster bounding box 
is a simple min-m¿ıx opeixition performed over the vertices of a cluster, 
this method is very last.

2. Cell Bounding Box: Inste¿ıd o( using the whole clusters bounding box, 
bounding boxes for all cJJ ftices are c¿ılcul¿ıted and a snuiller aifected 
region is lound. The total work ol the cluster is sh¿ıred among tliose 
pixels in the ¿lifected region. Comp¿ıred to the previous method, this 
method produces much better lo¿ıd distributions. Only problem arises 
with the f¿ıces luiving a thin, long sh¿ıpe. For cells with such properties, 
the l.)ounding boxes ¿ire too large ¿ind this incre¿ıses the amount of error 
imide.

3. Insidc-Oulsidc Test: Among these three methods, this is the one which 
produces most ¿iccurate load distributions. The effect ¿irea of the cluster 
is calculated by performing inside-outside test on each eJJ f¿ıce in the 
cluster. Tins test locates the pixels inside a trianguhir f¿ıce in ¿in ex¿ıct 
m ¿inner.



CIIA PTER 3. IMAGE-SPACE PA RA LLELIZATION 30

Figure 3.6 displays these three work load assignment methods. The accu- 
ra.cy of inside-outside test in loa.d distribution is not its only advantage. It also 
allows a correct topology for the hypergraph used in the rema.])ping stage to 
be established. This means reduction in the hypergraph partitioning overhead, 
and prevention of unnecessary communication during cluster migration.

3.4 Remapping

Load balancing by itself is not enough for a good parallelization. As the visual
ization parameters change, there occurs differences in load distributions on the 
screen. This requires the remapping of screen regions to processors, since each 
processor, now, holds unequal cunount oi rendering work. Also, since in image- 
space pariillelization a processor needs all the volume data above its assigned 
screen regions, it is necessaiy to exchange some clusters between processors. 
The amount of communication performed during cluster migration due to the 
remapping should be minimized.

'i'his remapping problem is an NP-hard problem for our case. There aie 
some heuristics giving suboptinud solutions, which are used to solve this prob
lem. In this work, we offer a hypergraph partitioning model as a .solution to 
this remapping problem. The details of our model can be found in a separate 
chevpter. Chapter 5, which we reserved for the explanation of the model.



CUAPTER 3. IMAClE-SPACE PARALLELIZATION 31

i\) Cluster’s projection area b) Cluster bounding box

c) Cell bounding box d) Inside-outside test

I I Region should have no load, and assigned no load.

Region should have no load, but assigned some load.

Region should have some load, and assigned some load.

Figure 3.6. Work locicl assignment schemes.



Chapter 4

Hypergraph Partitioning

Ilypergi’apli models lately began to attract interest in academia. With tire 
development of hypergra])!) partitioning tools which run faster and produce 
higher quality |)artitions; today, hypergraph partitioning was begun to be con
sidered as solution to many research problems. VLSI design, data mining, and 
in general, irroblems which reipiire both load balance and icmapping are the 
sample application areas for hypergraph partitioning.

Our work makes use of liypergraph paititioning, too. Next section intro
duces some basic concepts and notation in hypergraph partitioning. Following 
sections discuss iterative iind mnltilevel approaches targeting the hypergraph 
partitioning problem.

4.1 Introduction

A hypergraph =  (V ,W ) contains a set of vertices V and a set of nets A/". 
The nets ni in set M  are some subsets of the vertices in V. The set of vertices 
forming a net Ui, called its pins, is denoted as Pins(ni). The same operator 
can be used to represent the pins of a set of nets A/"h

Pins{Af') — [J Pins(ni) (4.1)

32



CHAPTER ■/. IIYPERGRAPII PARTITIONING 33

The nets connected to a vertex is found b}' the Nets operator, that is, 
Nels{vi) returns tlie nets n, sncli that w,· G Pins(nj). The size of a net rii is 
equal to the nnniber of its pins, and tlie degree of a vertex vj is equal to the 
number of nets it is connected to, that is, s,· - |Pnis(?ri)|, and dj =  
respectively. liach vertex ?;,■ € V has an assigned weight re,·. Similarly, each net 
n,· G Af has a cost ci.

For a partition fl =  {'Pi,'P-2 , · · · , ’Pa } fo Se a K-way partition for a hyper
graph Ti =  (V,yV^), the following three conditions must hold:

1. c  V, n  7  ̂ 0, f o r l <A: <yv^

2. u i i ,  n  = V

3. Vt nr, = 16, for 1 < k < l < K

A net is connected to a part, if it has at least one pin in that part of the 
partition. (Jonnectivity set. A, of a net ??,· is the set of parts to which 7?.,· is 
connected, (jonnectivity of a net, is equal to the size of its connectivit}' set, 
that is, \i — |A,|. A net with a. connectivity of 1 is called as an internal net. 
if Aj > 1, the net is an external net. An external net is said to be at cut. VVe 
denote the .set of exterucvl nets which has a pin on a vertex set V  by Me {V ).

d'he weight of a. part V,· is denoted l>y Wi and is equal to tlie sum of the 
vertex weights in [lart V,. To determine the overall load imbalance between 

the pai ts a. value of e is used.

Given all these definitions, K-way hypergrapli partitioning problem can 
be defined as finding a. partition II for a hypergraph H  =  (V ,5 ), such that 
the weight of each part is bounded, and a function defined over the nets is 
optimized. The first condition is called partitioning constraint. If W  is the 
sum of part weights, this condition can be formulated £is follows:

W l{tK ) < Wi < eW//{, for l < i <  K (4.2)

The requirement that a function is tried to be optimized, is referred as the 
|)artitioiiing objective. There are severivl objective functions developed and



CllAPTEll I. IlYPEIiailArH PAltrrnONING

used ill the literature. One of the most popular objective functions uses the 
cutnet metric. According to this metric cost of a partition is ecpial to the sum 

of the weights of external nets;

X ( n ) =  5 ;  Ci
n,6A/"£;(V)

(4.3)

Another widely used metric is the (A-1) connectivity metric. In this metric 
each net contributes Ct(A,· — 1) to the cost:

x ( n ) =  5 :  c , (A . - l )
n,GA/"i;(V)

(4.4)

4.2 Partitioning Methods

A nice survey by Alpert and Kahng [1] classifies the partitioning methods under 
fotir main categories; Move-based approaches, geometric representations, com
binatorial formulations, and clustering approaches. Among these, move-ba.sed 
ap|)roaches are the ones which attract the most attention in the literature. 
4'hey aie known to be the most successful ones in terms of both speed and 
solution (piality. The same survey mentions iterative improvement [10, 23], 
simulated annealing [25], and tabu search [13] as the methods used in move- 
based apjiroaclies. Since the partitioning tool used in this work is a multilevel 
hypergraph partitioning tool which makes use of iterative improvement meth
ods, in this .section, we concentrated only on these tj^pes of work.

The term bisection is used to mean a two-way partitioning of a liypergraph 
with load constraints on |)art weights. We used the term muUi-xoay parlilioninf] 
to refer the partitioning where the number of parts produced is more than two.

4.2.1 Iterative Improvement Methods

Iterative improvement methods uses greedy strategy. Given an initial feasible 
solution, they try to reach to a better solution by making changes on the current 
solution iteratively. Search for a solution stops when all neighbor solutions are



CIIA PTER ./, nYPERGRA PH PARTITIONING 35

worse tlian the current solution. Since the opercitions performed are simple 
vertex move or swap operations, these heuristics can easily get stuck in a local 
o|)tima. Tience, some extended data structures can he used to empower them 
with the capability to climb out of local optima.

One of the earliest bisection heuristic is the KL heuristic which was pro
posed 1)3̂ Kernighan and Lin [23]. This heuristic was originally for graphs and 
la.tcr extended to l)yi)ergraphs by Schweikert and Kerniglum [39]. In their al
gorithm, a series of passes is performed over the vertex set of the hypergraph, 
in which eveiy vertex is unlocked initially. During a pass an unlocked vertex in 
part Pi is swapped with an unlocked vertex belonging to part P2 . After a ver
tex is swapj)ed it is locked and cannot again be swapped within the same pass, 
'[’he vertices to be swapped are chosen such that the gain, e.g. the decrease 
in the bisection cost, is maximum. In order to climb local optima, swap gains 
with negative values are allowed. At each swap in a pass, cost of the current 
bisection is recorded. When idl vertices are swapped the pass ends, and the 
bi.section encountered with the lowest cost is returned as the solution of this 
pass. 'This bisection is u.sed as the initial solution in the following pass. The 
whole algorithm terminates when a pass fails to find a better solution than its 
initial solution. KL heuristic often lasts in a few pas.ses.

If n is the number of vertices, complexity of KL algorithm is 0(n^lg?i). Its 
usage may l)e limited, since it works on h3 'pergraphs liaving vertices with no 
weights. An improvement performed over KL is the FM heuristic introduced 
by Fiduccia and Mattheyses [10]. Execution time of their algorithm is linearly 
proportional to the number of pins in the hypergraph, that is, it has complexity 
0{p). In general, FM is very similar to KL. Main difference appears during the 
process performed to find a neighbor solution. In FM, instead of swapping with 
another one, a vertex is directly moved to the other part and gain calculations 
are done accordingly. The gain associated with moving a vertex v from P,,that 
is, 7 (n) is the following:

7(,.) =  |Vf;(Pi)l -  We{P. -  {-))l (4.5)

Since, vertices may have weights, care must be taken on the partitioning 

constraint. Moving a vertex to the other part can bring the heuristic to an



C IlA P T l·J¡í I. i i r r m a R A P i i  r A in m o N iN G 36

infeasible solution. As a ¡)rccaiition, the arrived solution is permitted to deviate 
from the exact bisection by the weight of the heaviest vertex. The remaining 
parts of FM are almost the same with KL. During a pass, the best solution 
observed is returned as an intermedicite solution, and the algorithm terminates 
when a pass fails to find a better solution than its starting solution.

Hagen et al. [14] have shown that in some cases there may be many vertices 
with eqiud move gains during an FM pass. This decreases the chance to choose 
the best vertex to be moved. Hence, it is a good idea to include a tie breaking 
mechanism in the heuristic. In order to break the ties, Krishnamurthy [27] 
suggested an improvement over FM by adding some lookahead capability. He 
uscxl a gain vector of size r for Ccich vertex, and kept the potential gains from 
feature moves up to the /*th move, in these vectors. When a tie occurs gain 
vectors are checked for higher gain levels until the tie is broken. The ?'tli level 
gain of moving v from 'Pi is calculated ¿is

7, (") = I {n e A/l'({·")). C'O = ^ >  0} I

-  I {■//. e  V z , . ( { W ), f^p.(n) > 0 , B-p,(n) = r -  i]

(4.6)

Bp^(n) is the binding nnmber defined by Krislinaniurthy. In Ccise 

tliere floes not exists ci locked vertex in tliis set, binding number is equal to 
the number of unlocked vertices in the set "P,· D Fins(n). Otlierwi.se, Bp^{n) is 
assigned infinity. To be more clear, his approach counts the number of vertices 
that must be moved from Pi in order remove n from the cut. Note that, for 
r — f , Equation 4.6 reduces to Equation 4.5. Krishnamurty’s approach is Uiter 
extended to multi-way hy])ergraph partitioning by Sanchis [38].

4.2.2 Multilevel Methods

Due to several reasons, the partitions produced by these iterative partitioning 
methods may be poor in terms of both partition quality and speed. Also, the 
quality of the partitions may be far from the best solution by a large margin, 
mediing the correct prediction of the resulting solution quality very difficult. 
Multilevel methods [6, 15, 21, 22] are proposed to enhance the existing iterative



ClIA PThm 4. II yri'lUaRA PH PA RTmONING :n

projected refined
partition

Uncoarsening,
Refinementc p

Initial Partitioning

Figure 4.1. Multilevel hypergraph bisection.

methods. IIMF'I'IS [19] ami Ibi'l'clf [5] are the two example partitioning tools, 
using this multilevel paradigm.

A multilevel bisection scheme is composed of three consecutive steps: Co
arsening, initial partitioning, and uncoarsening. In coarsening phase, highly 
interacting vertices of the liypergraph are grouped as multinodes, and a coarser 
hypergra.ph is constructed. Coarsening proceeds in a number of passes over 
the coarser hypergraphs, until the coarsest hypergraph with the desired vertex 
count is obtained. Initial partitioning phase tries to partition this coarsest 
hypergraph into two parts having equal sizes. In uncoarsening phase, these 
two parts are successively projected back on the previous finer hypergraphs. 
Figure 4.1 disi>lays a sample multilevel bisection process, composed of three 
coarsening and uncoarsening levels.

For multi-way partitioning recursive bisection can be used. In recursive 
bisection scheme, a. two-way bisection obtained from multilevel bisection is 
further partitioned in a recursive manner. It takes /(/2 A" bisection levels to 
partitioning a hypergraph into K  parts. Our work uses recursive bisection



C nA P 'm i 4. UYPEliGliAPU PARTITIONING 38

wliile partitioning tlie remapping liypergraph mentioned in Chapter 5.

4.2.2.1 Coarsening

Using the original hypergrapli 7i =  Ho =  (Vo, A/"o) a set of smaller hypergraphs 
H\ through H,n is constructed. Each level in coarsening takes the previous 
hypergrirph as input and produces a coarser hypergraph. In each coarser hy
pergraph there are fewer number of vertices. Also, an increase in the vertex 
degrees is observed.

Coarsening of a hypergraph is performed by clustering two or more vertices 
togetlier in the sa.me multinode. Clustering can be done by matching based 
or agglomerative techniques. In matching based clustering, each vertex in the 
hypergra.ph is visited in a random or predetermined order cind grouped with 
an unmatched vertex, marking the vertices in the group as matched. 7'he 
multinode created forms a single vertex in the succeeding coarser liypergraph. 
In agglomerative clustering more than two vertices can involve in the same 
multinode, and a. single vertex can join to a multinode. In the literature, there 
aie several metrics used for determining the vertex visit order, and finding the 
highly interacting vertices that should be grouped.

4.2.2.2 Initial Partitioning

In this phase, the coarsest hypergraph H,n is bisected into two nearly equal
sized parts, hor this purpose, PaToII hypergraph partitioning tool uses an 
algorithm called Creerly Hjqiergraph Crowing. In this algoritlirn, a cluster is 
grown around a randomly selected vertex by moving some vertices into the 
cluster. Vertices are moved into the cluster according to their gains starting 
from the vertex with the highest gain. Growth of the cluster stops when a fixed 
load bidance criteria between the two parts is satisfied. The vertices contained 
in the cluster are assigned to the first part, and the remaining vertices are 
assigned to the second part, giving a bisection of the coarsest hypergraph Hm-

Another approach, here, could be to partition Hm into K  parts directly,



CllAPTfCR 4. IIYPERGRAPII PARTITIONING 39

leading to a direct K-wa.y algorithm [20]. In this algorithm, K  parts can be 
obtained by coarsening the original hypergraph until li vertices are left in 
the coarsest hypergraph. Also, a recursive bisection algorithm can be used to 
compute the K  parts in the partition.

4.2.2.3 Uncoarsening

During the uncoarsening phase, each coarser hypergraph is projected back on 
the cori'esponding finer hypergraph in tlie previous level. Also, after finer 
hypergraphs are obtained, a refinement heuristic, similar to FM or KL is used 
to improve the partition quality of the current hypergraph. While minimizing 
the objective function, care is taken not to viohite the load constraint on the



Chapter 5

A Remapping Model

1 1 1  IS parallclizatioii, tlie load distribution and hence the computational struc
ture of the problem may vary largely with changing visualization parameters. 
The existing screen-i)rocessor and data-processor assignments may turn into 
poor map[)ings, disturbing the load balance, and hence increasing the execu
tion time.

'I'liis chapter is dedicated to a hypergraph partitioning model which is pro
posed as a solution to the remapping problem in IS parallelization. In the first 
section, some definitions are given and our two-phase and one-phase solutions 
to the problem are explained. Next section, discusses the effects of initial data 
distribution on remapping. Finally, a comparison of our model with jagged 
partitioning model is given.

5.1 Remapping by Hypergraph Partitioning

For our remapping model, we used the hypergraph Ti =  (V,A/") to represent 
the computational structure of the problem, and to establish the interaction 
between the ol)ject-space and image-space. The vertex set V in the hypergraph 
corresponds to the set of screen cells, <S. These cells are found during screen 
sub-division, by imposing a coarse grid on the screen, as explained in Chapter 3, 
and the}̂  correspond to the atomic tasks which are to be individuall}^ proce.ssed

40



CHAPTER 5. A  REMAPPING MODEL 41

3 3

3 4

4 2

Figure 5.1. Representing tire interaction Iretween OS and IS by an liypergraph.

and completed by a processor. The weight of a vertex is assigned such that it 
is equal to the rendering load of the pixels in the screen cell, whicli the vertex 
is representing. In other words, for each vertex u,·, lOi =  Load{vi).

Similarly, we use the nets in the hypergraph to represent the data clusters. 
From now on, we will use the words cluster and net interchangeably, to mean 
the same thing. As weight of a net, c,, the communication cost for a cluster, 
Cost(Ci) is assigned. Here, Cost is a function calculating the number of bytes 
transiiiitted, in order to send a clusters data and connectivity information frojii 
one processor to another. As a result, in tins model, minimizing the cut of the 
hypergraph corresponds to minimization of the total volume of communication. 
Pins of a net is used to mark the screen cells occupied by the projection area 
of the cluster that the net represents. VVe call a net, n,,·, with s,· =  1 a virtual 
net. Virtual nets appear in case a clusters area completely falls within the 
boundaries of a screen region. There may be a vertex, Vi, with d,· =  1, too. 
This is seen when just one clusters projection area occupies the screen cell. See 
Figure 5.1 for an example hypergraph.

Finally, two mapping functions M ,  and M  are needed. Ai is used to obtain 
the mapping between screen regions and the processors. In other words, Af (<S,) 
returns the processor Pj to which the screen region <5,· is assigned. M  is used



CHAPTER 5. A  REMAPPING MODEL 42

to find the iriappiiig between the clusters and processors. A4(Ci) returns the 
set of processors in which C,· will l)e replicated.

After these settings, remapping problem reduces to the problem of iindiug 
two mapping functions A4, yW, and obtaining a partition II =  {<Si,<S2 , · · · ,<S/v·), 
such that the returned screen regions are balanced and the cost of the cut, x(l 1), 
that is the total cluster migration cost is minimized. Note that, an external 
net, 71,·, contributes to the partitioning cost by c,-(A,· — 1). This is because, it is 
necessary to send 77,·, to all processors wliich Inul been assigned a screen region 
Si, such that 77,· hcis a pin on a vertex in that region. In other words, cluster 
Ci is replicated on all processors in the following set, P':

M{Ci) -  P' =  {Pj : 3vk,vk e Si,Vk C Pins{ui),Si G A,·, M(<5/) =  Pj} (.5.1)

It is clearly seen from Eqiuition 5.1 that A — I metric should be as the 
partitioning objective function. Using the cutnet metric results in an incorrect 
estimation of the actual cut cost, since it may be necessary to replicate a cluster 
in more than one processor.

5.1.1 Two-Phase Hypergraph Partitioning Model

As the name suggests, the two-phase model hypergraph model proceeds in 
two phases. In the first phase, hypergrapli partitioning is performed over the 
remapping hypergraph PC, and K screen regions are obtained. Tliese screen 
regions are used as input into the second pliiise, which produces the map[)iug 
function yVf. Without the second phase, that is, in the absence of a mapping 
function, each screen region Si may be assigned to a processor Pj arbitrarily.

Since making this assignment arbitrarily iiuiy create a poor matching in 
terms of communication overhead, we apply a bipartite graph matching algo
rithm in this step to find better screen-processor assignments. The K proces
sors used and the K screen regions produced by i)artitioning 11 form the partite 
nodes A’ and y  of the bipartite graph B =  {X .y ,Z ) .  In this graph, vertices .r; 

and Uj denote processor Pi and screen region Sj, respectively. An edge Zij is 

placed between two vertices .t,· and 7/,·, if there exists a cluster which is stored



CIIAPTEÜ 5. A  REMAPPING MODEL 43

Figure 5.2. The partitioning cost calculated tvvo-[)hase method jnay be 
incorrect.

by [)rocessor Pi, and if that clusters projection area falls onto the screen region 
Sj. The migration costs Ck of such clusters are summed and assigned as the 
weight of the edge that is, IT,·,.

After the bipartite graph is created, we use a maximum weight bipartite 
graph nicitching algorithm to find the region-processor mappings. The maj)- 
ping found is an optimal solution, and using this mapping together witli I'kiua- 
tion 5.1, A i can be calculated.

5.1.2 One-Phase Hypergraph Partitioning Model

The most important point ignored by the two-phase model is that each cluster 
is originally owned by a processor. We can prove that for some clusters, the 
cost added to the cut is in fact a wrong cost. Consider the cluster ??.,· shown 
in Figure 5.2. Assume that, ??.,■ has pins on parts S2 , S3 , S4, and M {Si) =  Pi, 
that is, <Si is assigned to Pi. Li this situation, the cluster-processor assignment 
before the remapping would gain importance. If C,· is kept in the memory 

of a processor other than Pi, the cost contributed to the cut would be 2c,·,



CHAPTER 5. A REMAPPING MODEL 44

Figure 5.3. Special vertices are introduced into the hypergra])li in one-phase 
model.

which is correct. However, if was kept in the memory of Pi, then the 
correct cost added to the cut should have been 3c,■. This is because none of the 
processors had the necessary cluster, and C,· should have been sent from Pi to 
all other processors. Two-phase model simj)ly ignores this fact, and in many 
cases calculates an incorrect x(Il).

In general, two-phase approaches tiy to solve the assignment prolrlem ind<,'- 
pendent of the partitioning problem. Solution space provided by j)artitioning 
phase to the assignment phase is rather restricted. Hence, it may not always 
be possible to find a high quality mapping in two-phase models.

To convert the two-phase model into a one-phase model, it is necessary to 
suppl}' the initial cluster-processor map|)ing to the model. In one-pha.se model 
we used a hyi^ergraph 7i' - (V',ÁÍ) with some vertices and pins added to the 
previous hypergi'ciph Tí. Vertex set of new hypergraph, V' is formed by adding 
K  special vertices, p,·, to the original vertex set, V. These special vertices 
represent the K  processors used, and they are assigned no weight. Also some 
new pins are added to the ])ins in the original hyi)crgra.ph. We use a new pin 
between a special vertex and a net, if the cluster that the net is representing 
resides in the memory of the processor that the special vertex represents. The 

example in Figure 5.2 is redisplayed for this new model, and two different initial 
cluster-processor assignments are shown, in Figure 5.3. The triangular node 
in the figure represents tlie special vertex used for Pi. 'I'he other three special



CHAPTER 5. A REMAPPING MODEL 45

vertices are not displayed for clarity.

This model is able to calcrdate the cost correctly for all possible partition
ings. After introducing special vertices, it is necessary to add a constraint such 
that eiicli special vertex is assigned to only one i>a.rt. 'I'liis constraint allows 
the model to find both the partitions and region-[U'ocessor mapping in just one 
phase.

in order to obtain this model, some modifications are performed over the 
PaToII hy])ergra.ph partitioning tool. Throughout the partitioning process, 
special vertices are treated differently than the others. In coarsening phase, 
matching of two special vertices is prevented. They were able to be involved in 
a supernode with ordinary vertices, but they are never grouped with anotln'r 
special vertex in the same supernode. A suj)ernode contaiiung a special vertex 
gained the special vertex status. During initial partitioning phase, each special 
vertex is assigned to a part, and locked there. As uncoarsening and refinement 
phases progress, these special vertices were not able to move to other parts.

After partitioning the hypergrapli TĈ  a partition IT is found. Using this 
partition, mapping function M. is calcuhited according to Equation 5.2:

yVi(<Sj) =  Pj 4=̂ pj G Si (5.2)

At the end. Equation 5.1 is used to determine the communication i)attern 
for sending data clusters between the processors, that is, M. is calculated.

5.2 Data Distribution

Initial data distribution is an important factor, affecting the quality of the 
remapping process. Current cluster-processor mapping determines the topol
ogy of the hypergraph used during remapping. Eor different cluster-processor 
assignment schemes, this results in different partitionings, and hence variations 
on the data communication cost. Moreover, cluster distribution can affect the 

amount of view-dependent preprocessing overhead. This is because the time 
spent on work load calculations is different for each cluster.



CHAPTER 5. A REMAPPING MODEL 46

After remapping, within the succeeding visualization instance, both the 
nuinbou' of clusters in each processor and clusters’ preprocessing costs change. 
Since the load balance constraint in remapping is only applied on the distri
bution of the screen load, there may be İmge variations in view dependent 
preprocessing costs, making it impractical to use. As a result, it seems very 
difficult to include an adaptive screen subdivision scheme, and cui adaptive 
data distribution scheme together, in image-space parallelization.

In this work, two different data distribution schemes were tested: Neighijor 
Cluster Assignment (NCA) scheme, and Scattered Cluster Assignment (SCA) 
scheme. Both of these schemes are static data distribution schemes, that is, 
data is distributed at the program startup. Although some clusters can be 
replicated in different processors, its first owner never changes.

• NCA scheme: In this scheme, all processors are given a set of neighbor 
clusters. The assignment of clusters to processors are static; that is, in 
each remapping step, this initial data distribution is used as the starting 
data-|)i'ocessor assignment. This scheme makes use of object-si)ace co
herency well. Also, two neighbor clusters have a higher chance of luıving 
a projection area on the same screen cells. Consequently, a better h}̂ - 
pergraph topology can be constructed, helping the minimization of the 
communication cost during hypergraph partitioning. If the successive vi
sualization instances contain many 1° rotation operations, NCA a.j)pears 
to be the best possible static data distribution scheme.

• SCA scheme: Generally, neighbor clusters contain cells with similar size

A data set with 6 clusters. Distribution ill NCA scheme Distribution in SCA scheme

Figure 5.4. Cluster distribution schemes.



CHAPTER 5. A  REMAPPING MODEL 4 7

and shape. Hence, in NCA scheme, each processor carries a set of clusters 
with nearly equal preprocessing costs. This creates a load imbalance in 
preprocessing step, increasing the execution time of this scheme. SCA 
scheme, on the other hand, tries to distribute the clusters as scattered 
as possible. Since processors had cells of varying sizes, much less pre
processing overhead is observed in this scheme. In case the visualization 
contains operations such as zooming to a particular region on the screen, 
this scheme is the most beneficial static data distribution scheme. Its 
onlj  ̂disadvantage is observed at the slight increase in the communication 
amount, due to the usage of a topologically more complicated hypergraph 
during the remapping phase.

Figure 5.4 displays these distribution schemes on an example, for 2 processor 
case, using a simplistic data set containing six clusters. Note the load imbalance 
in the NCA scheme due to the big variation in the tetrahedral cell sizes. In that 
figure, although both Pi, and P2 have 3 clusters, and 12 cells, the preprocessing 
performed by I\ is much greater than the one performed liy P2 .

5.3 Hypergraph versus Jagged Partitioning

Jagged partitioning (JP) is a two-phase partitioning model. For a K  =  pq 
processor decomposition, this method first divides the screen into p stripes 
in one dimension. Then, each stripe is further divided into q regions, in the 
unused dimension, independent of each other (see. Figure 3.4). The details of 
JP can be found in [28].

A rendered image of one of our data sets is displayed in 5.5. A quick com
parison of Figure 5.6 and Figure 5.7 reveals the superiority of our model to JP. 
Those figures display the region-processor assignments on tlie screen for four 
processors, that is, each figure denotes a single sub-region assigned to a pro
cessor. Note that the regions produced by our liypergraph partitioning model 
have much more flexible sub-screen boundaries tlian the the ones in JP model. 
Also, the assigned regions are not necessarily made up of a single connected 

component as in JP. In our particular example, some tiny regions are assigned



CHAPTER 5. A  REMAPPING MODEL -18

to each processor separately from a larger region. This is probably, because 
the clusters above those regions are owned by thes(i processors. Es[)ecially, iji 
SC A scheme, this allows a greater flexibility for remapping.

Moreover, JP model carries all characteristics of a two-j)hase model. As 
in our two-phase hj^iergraph model, bipartite gra])h matching is necessary in 
the second phase, to find the region-processor mappings so that better cluster- 
processor mappings will be obtixined. In other words, JP, by itself, is not 
capable of directly minimizing the redistribution communication costs of the 
clusters. Without the second phase, it primarily attacks the load balancing 
problem. Although, the solution found by the second phase is an optimal 
solution, it may not be that good, since the problem given to that phase has a 
rather restricted solution space.

One-phase hypergraph model, on the other hand, both balances the load 
and minimizes the migration costs at one single step. The experiments we 
conducted verifies the validity of our model. At similar load Iralaiice values, 
the communication incurred in the one-phase hypergraph model is 25% less 
thcxn the one in JP model, on the average.



CHAPTER 5 . Λ  REMAPPING MODEL 49

T
Figure 5.5. lleiiclercd image of (JC data set.



CHAPTER 5. A REMAPPING MODEL 50

Figure 5.6. Example region-proces.sor assigmneiit in jagged parlilioiiiiig.



CHAPTER 5. A  REMAPPING MODEL 51

Figure 5.7. Example region-processor assignment in hypergra|)h partitioning.



Chapter 6

Implementation Details

This chapter explains some details in our implementation which is mainly com
posed of four consecutive phases: View independent i)reprocessing, view de
pendent preprocessing, cluster migration, and local rendei ing.

6.1 View Independent Preprocessing

As the name suggests, this step performs all the work that does not depend on 
the visualization parameters, and it is executed just once at j)rogra.m stcutup. 
Our implementation assumes that the 3D volume data is stored in several 
chunks, and the number of data chunks is ecpial to the processors used in that 
particular run of the program. Since the data we used is usually produced by 
simulations performed on parallel machines, this assumption seems reasonable.

At the program startup, a master processors reads the whole data set from 
disk and sends a single data chunk to each processor. Each chunk contains 
equal amount of tetrahedral cell information, and the data in each processor 
is treated as processors’ local data. Every processor concurrently constructs 
the appropriate data structures mentioned in Chapter 2. For some external 
faces which are shared by two cells stored in dilTereiit processors, communica
tion is carried out among the processors in order to complete the connectivity 
information within the tetrahedral cells.

52



CHAPTER 6. IMPLEMENTATION DETAILS 53

Then, using connectivity data structures a local clusterization graph is cre
ated in each processor. These graphs are given as input into MICTIS graph 
partitioning tool, and as output, the partitions showing the appro|)riate clus
terization of the delta are obtained. Later, processors fill the additional data 
structures used to store the clusterization information, by inspecting the re
turned partitions.

Since the Grojedy Graph Growing algorithm is used within METIS, in most 
cases, clusters produced are made up of connected cells. However, there may 
be a lew disconnected clusters. Especially, for work load assignment schemes 
using bounding boxes, these disconnected clusters may cause wiong load dis
tributions due to the increase in the bounding boxes calculated. Moreover, 
they may cause an increase in the number of pins of the remapping hyper
graph, and hence, an increase in the duration of the hypergra.ph i)artitioning 
step. As a result, we prefer to eliminate the existing disconnected clusters at 
the cost of some additional view independent preprocessing overhead. For this 
purpose, we perform breadth first search on every cluster to see whetlier they 
are connected, and if a disconnected cluster is found it is .separated into its 
connected components. All the smaller components found in a processor a.re 
placed in a single, newly created cluster. This limits the error made in work 
load assignment step to a single cluster.

For NCA scheme, there is no need to a change on the current cluster- 
processor assignments, since the data chunks read for each processor from the 
disk is already made up of neighbor clusters. For SCA scheme we need to 
scevtter the clusters among processors. To do that we follow a method similar 
to bin packing. First, we calculate the sum of face areas for every cluster, and 
enter the cluster numbers into a list in decreasing order of their area sums. 
Then, starting from the top of the list, we begin to distribute the clusters. 
Map])ing decisions are made such that a cluster is given to the less heavily 

loaded processor in terms of face area sum of its stored clusters, at any time. 
Moreover, during this mapping a limit is applied on the number of clusters a 
processor can hold. Hence the number of cells in processors are also kept in 
bahuice.



CHAPrER 6. IMPLEMENTATION DETAILS 54

6.2 View Dependent Preprocessing

In every visualization instance, this pre])rocessing phase is repeated for the sake 
of tlie efficiency of code sections running in parallel. Hence, it is important 
to complete this phase as quick as possible. It mainly contains work load 
calculations, hypergrcipli creation, and hypergraph partitioning steps.

6.2.1 Work Load Calculation

Since we used an adaptive screen sub-division technique and imposed a grid 
on the actual screen, it is very important to adjust the granularity of this grid 
correctly. As a too fine-grain grid may create lots of vertices in the remapping 
hypergrapli, a too coarse-grain grid may result in a. liypcrgra[)h with a. few 
vertices. The first case results in a rather complicated hypergraph, which may 
decrease the ellicicnicy of partitioning heuristics used iu Pa'l'cll. The later case 
restricts the solution space of the problem, and proper load balance valiuis 
cannot be obtained.

Tlie granularity of the grid depends on the number of pixels occupied by 
the projection area of tlie volume, and the total screen cell count that we want 
to be produced. By screen cell we mean the screen cells with some associated 
rendering load. In our implementation we used numbers between 400 and 
500 for the total screen cell count. These upper and lower bounds are found 
empirically. There are g x g pixels in a single screen cell, and we calculate g 
using the formula in Equation 6.1, where A, and C denote the projection area 
of the volume on the screen, and the total number of screen cells, respectively 

(see Appendix A).

^/7{-2  +  J {C  - i ) A -  2C\/A -k 2C 
-----------------------

(6.i)

After the grid is imposed on tlie screen, we use one of the three methods 
mentioned in Chapter .3 to calculate tlie load distribution on the screen.



6.2.2 Local Hypergraph Creation

Wliile (.lie load distribiiUoii is calculalcd, the iii(.crcictioii be(.wcen (.lie data and 
the screen is cilso recorded. Some data structures are used to keep track of 
the coiiiiectivity between the clusters and tlie screen cells. In a sense, each 
processor constructs a hypergra})h in an intermediate data structure. Since 
each proc(\ssor has a subset of the wlioh' volimu', only tin' loca,l bypi'.rgra.plis 
can be constructed.

6.2.3 Global Hypergrapli Creation

After local Ii3q3ergraph creation, ecicli processor sends its li3 ]̂)ergraph to ¿ill 
other processors, tlnit is, an all to ¿ill l:>rocidccist operation is performed ¿imong 
the processors in order to obtciin the information necessary to construct a com
mon globed hypergraph. During this construction process, screen cells with no 
rendering locul are disceirded. This is because, vertices of the globed hypergreiph 
should be chosen from the loeided screen cells. Special processor vertices, nec
essary for tlie one-phcise remapping model ¿ire also added in this stej:).

6.2.4 Hypergraph Partitioning

In this phase, each processor executes PaTolI hypergraph partitioning tool 
sequentially, to partition the global hy])ergraph obtained in the previous step. 
In two-phase model, the resulting partition is given as input to our graph 
bipartitioning code, and there, the cluster-processor mappings are calculated. 
In one-phase model, this mapping is directly calculated by checking the special 
vertex locations in the partition, which was returned by PaToIl.

CHAPTER 6. IMPLEMENTATION DETAILS 55

6.3 Cluster Migration

The clusters, which are mapped to a din'erent processor l.han their current 
processor, are send to the j^rocessors the}'̂  are assigned to. This is done by



CHAPTER 6. IMPLEMENTATION DETAILS 5C

perlbnuing an all to all person all/.eel cominunication among tlie processors, 
cind replicating the data structures ol' the migrating clusters.

6.4 Local Rendering

After rema.pping, all processors receive the clusters necessary to render tlieir 
assigned screen regions. Since the current cluster-processor assignment in a 
processor results in a highly interacting set of neighbor clusters, clusters do 
not need to be rendered individually. Instead, ray entry points of the clusters 
which are closest to the screen are determined, and the rays shot from these 
points are followed throughout the volume. The ray entry points can be found 
by scan converting the set of T'e// faces stored in a. |)rocessor. A ray segment is 
generated for each pixel found during the scan conversion, excluding the pixels 
falling out of the processors’ screen regions.

Even if the cells traversed by a ray belong to dilfereiit local clusters, we can 
efficiently traverse the volume as in Koyamada’s original algorithm, by utilizing 
the additional data structures which store the connectivity information between 
the clusters. Also, note that, although clusterization process can create non
convexities within some clusters, this will not cause an increase in the number 
of ray-segments generated. This is because a processor had all the ncicessary 
clusters and traverses them as if traversing a single convex sub-volume.

For non-convex volumes, on the other hand, there is a possibility of having 
more than one ray-segment for the same pixel, which necessitates the use of 
ray-bulFcrs we mentioned in Chapter 2. In such volumes, the ray-segments 
generated for a screen pixel are inserted into the api)ro[)riatc slots in ray-buifers, 
in sorted order of their their exit 2 : coordinate values, including the color and 
opacity values associated with the ray-segments. When all ray-segments are 
traversed, the color and opacity values are retrieved from the ray-buifers and 
are composited using the standard comi)osition formulas. At this point, since 
processors have created just a sub-image of the assigned screen regions, a final 
all-to-one communication step is carried out, and the full image is generated 
in a single processor.



Chapter 7

Experimental Results

This chapter presents the results obtained from our experiments on three dif
ferent data, sets, using various parameters for visualization, partitioning and 
parallelization.

7.1 Implementation Platform and Data Sets 
Used

The work done in this thesis is implemented on a Parsytec’s CC-24 system. 
This machine is based on a distributed memory, MIMD, architecture. It has 
24 nodes, each of which is containing a 133 MIIz PowerPC 604 processor. The 
machine has 4 I/O  nodes with 128 MB of RAM, and 20 compute nodes with 
64 of MBytes of RAM. The two of the I/O nodes are also used as the entiy 
nodes to the system. All nodes are connected to each other via a high speed 
communication link. The peak performance of this link is 40 MB/s [30].

AIX is the oi:>eratiiig s}' ŝtem used on each node of the Parsytec CC system. 
On top of it. Embedded Parix (EPX) is used. It provides a set of functions 
for maniigement of the communication between the nodes [49]. For message 

passing purposes, we made use of EPX and Parallel Virtual Machine (PVM) 

libraries. The algorithms were coded in C programming language.

57



CHAPTER 7. EXPERIMENTAL RESULTS 58

Table 7.1. Some features of the data sets used.

Data Set #  of Nodes #  of Cells CSV
Blunt Fin 40,960 187,395 5..50
Combustion Chamber 47,025 215,040 0.42
Oxygen Post 109,744 513,375 4.26

As experimental volume data, we used three dilferent data sets [50]: Blunt 
Fin (BF), Combustion Chamber (CC), and Oxygen Post (OP). The.se data 
sets are the results of some computcitional lluid dynamic simulations. They 
were originally curvilinear in structure. We converted the fornicit of these data 
sets into unstructured data format, by appljdng a tetrahedraJization [11, 40] 
])rocess on the hexahedral cells of the original data, obtaining five tetrahedral 
cells per hexahedral cell.

Table 7.1 illustrates some features of the data sets used, in tluit table, the 
numl)cr of nodes and the number of cells in the data, sets are given. Also, a. 
CSV value is displayed per data set to represent the cell size variation within 
the cells of a data set. Higher CSV values imply a more irregular data set. 
Note that, the BF and OP data sets we used are rather irregular data sets.

The experiments are made using a. wide range of changing parameters. 
Image screens of size 400 x 400, 800 x 800, and 1200 x 1200 are used in final 
images. In all visualizations, we leaved a thin margin between the final image 
and the screen boundaries. Images are tried to be fit into the screen as much as 
possible. For such details of the secjuential visualization algoritlim refer to [3]. 
The abbreviations used in the tables of this chapter are listed in Table 7.2. 
All timings are in seconds, and communication volume is given in KBytes. 
Load imbalance values are measured as the ratio of the maximum number of 
samplings done by a processor to the average sampling count. Load imbalance 
values found in terms of local rendering times give very similar results. By 
communication volume, we only mean the communication performed in the 
cluster migration step, and used this words to mean that, throughout this 
chapter.



CHAPTER 7. EXPERIMENTAL RESULTS 59

Table 7.2. Abbreviations uscxJ in tables.

iminber of processors used
iiuiriber of cells in the reinappiiig liypergrapli
number of pins in tlie remapping hypergrapli
vertex weighting scheme
edge weighting scheme
load imbalance in the number of samplings per processor
total volume of communication performed in cluster migration
parallel rendering time
view dependent preprocessing time
work load calculation time
hypergraph formation time
hypergraph partitioning time
cluster migration time
local rendering time
sequential rendering time
speedup
eiliciency

7.2  View Independent Preprocessing

The clurcilioii of processors’ view dependent preprocessing phase, and the load 
imbalance in local rendering phase can be affected by the total number of clus
ters used. Table 7..3 displays the residts obtained by creating different number 
of clusters {C e  {50,100,200}) per processor (K  Ç (.1,8,12,10,20,2d}), ini
tially. Results are obtained by executing our implementation on all data sets 
over a screen of size 400 x 400 pixels. The code is executed 12 times per (C, K ) 
pair, with three different view points, and four different random seed values. 
The random seed used here and in the other runs is necessary to ol)tain more' 
accurate average values, since the partitioning heuristics in METIS and Pa- 
ToH both make use of some randomness at several j)laces where a selection is 
necessary, and hence may produce partitions of differing quality over a wide 
range.

Data iji Table 7.3 were calculated by averaging the results found. For easier 
comparison, 7p,e Vcilues arc normalized with respect to the lowest value in tlie



CHAPTER 7. EXPERIMENTAL RESULTS GO

Table 7.3. Results obtained by assigning dilFerent cluster counts per processor.

^  of clusters per processor
K 50 100 200

LI LI 7’-ip LI T,
4 3.367 1.742 1.940 1.947 1..345 2.360
8 4.589 1.158 3.689 1.327 3.201 1.567
12 5.891 1.027 4.258 1.271 4.299 1.417
IG 6.255 1.009 5.291 1.243 5.260 1.404
20 8.738 1.005 7.938 1.150 7.203 1.395
24 10.220 1.000 9.590 1.144 9.116 1.391

table. It can be seen from the table that rising C values increase the ])repro- 
cessing overhecid. Hence, too high values cannot l̂ e used for C. Otherwise, 
we may observe severe decreases in our speedup values. On the other hand, 
using too low C values may increase the load imbaiaiice among the processors. 
This is because, the lower C values cause larger cluster volumes, aiicl hence 
the error made during the work load assignment phase is high(;r. As a result, 
we preferred using an average number of 100 clusters per processor, which has 
reasonable load imbcilance and Tpre values. All the experiments following this 
are carried out with this fixed cluster per processor value.

Table 7.4 displays the effects of the various weighting schemes that can be 
used as edge and vertex weights on the clusterization graph. The experiments 
are performed over all data sets with a 400 x 400 screen, using 8 processors. 
Number of pins in the hypergraph, cut of the partition and the view dependent 
preprocessing time can be seen from the columns of the table, separately for

Table 7.4. Effects of all possible weighting scliemes used in the clusterization 
graph.

13 F CG OF
Wv P TVoC i p r a P TVoG 7’p r e 'I’VoG I p r e

1 1 9,609 17,261 1.216 9,083 21,022 1.260 7,939 42,102 1.855
1 FA 6,929 15,969 1.070 8,278 20,775 1.196 5,279 .38,244 1.604

CA 1 11,827 17,382 1.473 9,079 20,789 1.2.54 10,21.3 43,484 2.197
CA FA 8,65.3 16,.344 1.171 8,273 20,363 1.198 6,651 .39,547 1.858
GV 1 11,526 17,131 1..363 9,099 20,601 1.248 9,166 42,254 2.046
CV FA 8,120 16,037 1.126 8,290 20,907 1.977 6,228 38,314 1.731



си AFTER 7. EXPERIMENTAL RESULTS 61

Table 7.5. Efrect.s of cliffereiit work load calculation schemes.

LI TVoC T,lulc T,hp
1. 0 . Test .342 7,837 6.181 45,036 0.615 0.345
Cell B. B. 354 8,648 8.353 47,888 0.410 0.376
Cluster B. В 384 10,323 10.150 51,339 0.256 0.448
I'lxact 342 7,837 5.521 44,969 2.612 0.340

each data set.

VVe note that, for weighting schemes which assign unit cost to the edge 
weights, a more complicated hypergraph is created, that is, the number of pins 
ill the remapping hypergraph is higher than the ones in schemes which consider 
the face areas for edge weighting. This results iu heavier final partition cuts 
and also increases the duration of hypergraph partitioning step, meaning more 
preprocessing overhead. As seen in the table, schemes whicli assign FA as the 
edge weight can have almost 30% less pins in the remapping hypergraph than 
the unit cost schemes.

Among the remaining three schemes, (1,FA) scheme is .seen to be better 
than the others. Especially for BE and OP data sets, which have big cell size 
variations, it both results in better partitions of the remapping hypergraph, 
and is faster. These observations validates our choice of using (1,FA) weighting 
scheme in the clusterization graph.

7.3 View Dependent Preprocessing

In this section, lirst, we compared four dilferent work load calculation schenu's. 
Th ree of the.se schemes are cluster bounding box, cell bounding box and insidiv 
outside test schemes that we used in our implementation. The fourth one, that 
is, exact loa.d scheme is capable of calculating the exact load distribution on 
the screen by scan converting every face in the data, in other words, it uses 
individual cells instead of clusters during preprocessing phase. We included it 
here just for comparison purposes, since its execution time is not alfordable for 
a parallel application.



CHAPTER 7. EXPERIMENTAL RESULTS ()2

Tciblc 7.C. linbalciiice values and coinmiinication aiiiounts observed.

400 X 400 800 X 800
LI TVoC LI TVoC

BF 3.427 13506 1.646 12947
12 6.205 213.37 7.626 21606
20 12.825 24811 9.904 25370

CC 4 1.005 17002 1..383 17141
12 5.441 28314 5.739 29562
20 11.447 35142 11.678 34568

OP 4 2.347 30443 2.223 .30088
12 5.480 43196 5.794 44468
20 11.556 48212 10.191 49876

(Jolinniis of Table 7.5, from left to I’iglit, contain the ¿iverage values found, 
that is, cell and pin nunibers in the remapping h3 '])ergraph, load imbcilance, 
total volume of communication, work locid calculation time, and h3^pergrapli 
partitioning time. Runs are made on 16 processors, using OP data over a. 
400 X 400 image screen, with SCA distribution scheme. In order to see the 
effects of work load calculation schemes on the topology of the remapping 
hyi)ergraph, we vised a fixed screen granularity of 20 pixels per screen cell.

'The results verifies the importance of correctly establishing the remapping 
hypergraph topology. Notice the excess cells and ])ins introduced in the bound
ing box approximations. When these schemes are used, those additional screen 
cells cause extra overhead in the total volume of communication, and cause an 
increase in the hypergraph partitioning time due to the calculations pei fornied 
for tliese miscalculated cells and pins. Also, the difference in load imbalance 
values produced by the exact scheme and inside outside test scheme should be 
noted. Exact scheme seems to be better at calculating the work load. This 
is basicall}' because, in inside outside test scheme, each pixel under a clusters 
projection area is assigned the same cost, although the clusters may have unbal
anced cell distributions along the viewing direction. On the other liand, inside 
outside test runs approximately 4 times faster than the exact scheme, and pro
duces nearly the same timing result in hypergraph partitioning. Moreover, it 
provides a pretty good minimization of the total communication volume.

Table 7.6 displays the load imbalance values and total volume of commu

nication amount observed in our model for 400 x 400 and 800 x 800 screen 
sizes. As the number of processors increase, we note higher values in the table



CHAPTER 7. EXPERIMENTAL RESULTS G3

Tcible 7.7. Dissection of view dependent preprocessing time.
400 X 400 800 X 800 1200 X 1200

wlc T,III 7hji_ Tc. f wlc 7 ;/«/ lUL. 7cn 7', UlL· 7 ; 7 cn

BF
1.527
0.947
0.738
0.625
0.560
0.516

0.354
0.327
0.270
0.273
0.272
0.294

0.192
0.348
0.493
0.639
0.767
0.876

0.815
0.743
0.688
0.686
0.697
0.646

4.048
2.573
2.032
1.720
1.514
1.376

1.284
1.080
0.769
0.708
0.651
0.756

0.189
0.366
0.508
0.669
0.785
0.901

0.777
0.718
0.674
0.633
0.629
0.619

8.022
5.172
4.099
3.468
3.064
2.784

2.731 
2.297 
1.590 
1.434 
1.249 
1.278

0.187
0.346
0.504
0.645
0.758
0.869

0.765
0.686
0.630
0.609
0.614
0.620

CC

1.476
0.879
0.677
0.570
0.518
0.477

0.297
0.232
0.226
0.227
0.240
0.315

0.238
0.454
0.628
0.788
0.890
1.033

0.787
0.635
0.620
0.592
0.555
0.519

3.631
1.757
1.493
1.493 
1.345 
1.232

1.021
0.554
0.513
0.513
0.494
0.490

0.209
0.596
0.787
0.787
0.961
1.138

0.753
0.593
0.531
0.531
0.495
0.489

7.086
4.399
3.470
2.980
2.665
2.450

2.209
1.456
1.183
1.035
0.911
0.915

0.223
0.415
0.586
0.775
0.916
1.156

0.752
0.606
0.590
0.532
0.514
0.449

OP

2.052
1.196
0.903
0.742
0.645
0.588

0.213
0.175
0.187
0.193
0.206
0.226

0.106
0.198
0.291
0.389
0.462
0.545

1.972
1.839
1.773
1.703
1.656
1.582

3.798 
2.340 
1.872 
1.506 
1.320 
1.201

0.706
0.518
0.905
0.448
0.442
0.489

0.099
0.188
0.288
0.378
0.450
0.543

2.123 
1.911 
1.925 
1.838 
1.819 
1.747

6.575
4.107
3.232
2.742
2.432
2.212

1.649
1.114
1.157
1.061
1.000
0.990

0.106
0.194
0.290
0.383
0.469
0.558

2.022 
1.881 
1.801 
1.775 
1.779 
1.759

as expected. On the other hand, increasing image sizes do not affect LI and 
TVoC values much. This is because we keep the size of our hypergraph at 
the same level by decreasing the granuhirity of the grid imposed on the screen 
when tlie screen sizes got bigger. Hence tlie problem size remains the same for 
different screen sizes.

7.4 Performance

1 1 1  this section we analyze the execution times and performance of our al
gorithm. Table 7.7 presents dissection of 7],re hito T îc, Thf, Tkp, and T„n- 
Note that, since the cluster migration stop does not exist in sequential code, 
we consider Tea f's a prciirocessing cost here. VVe note that decreasiis
as the number of processors increase. 'I'liis is because work load calculation 
step is carried out by all processor on a part of the data in parallel. That is 
when the processor number increases the number of faces scan converted by 
a processor decreases. In BF data set, there occurs an interesting increase in 
Thj for K  =  24. The reason for this increase is the communication overhead 
during the construction of the the global remapping hypergraph. Also, a. no
ticeable increase occurs in the duration of the hyiiergraph partitioning phase. 

The additional nodes in the one-phase model’s hypergra])h cause this increase.



CIIAPTEll 7. EXPERIMENTAL RESULTS 64

Tcible 7.8. Speedup and eiiicicncy values for different data sets cind processor 
numbers.

400 X 400 800 :K 800 1200 X 1200
K 'J'sea ^ p a r S E 'i'seo Tjycir S E T seq 'i'var S E
4 28.95 3.78 94.5 112.54 3.82 95.5 254.22 3.85 96.2
8 16.32 6.70 83.7 58.24 7.39 92.3 132.01 7.43 92.8

BF 12 109.43 11.82 9.26 77.2 430.54 39.92 10.78 89.8 980.24 88.99 11.01 91.7
IG 9.80 11.17 69.8 31.67 13.59 84.9 70.92 13.82 86.3
20 7.89 13.86 65.2 27.19 15.83 79.1 60.60 16.17 80.8
24 7.64 14.43 60.1 25.12 17.14 71.4 53.15 18.44 76.8
4 32.23 3.85 96.3 126.57 3.93 98.5 281.67 3.97 99.2
8 17.73 7.03 87.8 65.82 7.56 94.5 145.73 7.69 96.1

CC 12 124.68 12.72 9.80 81.6 497.79 45.63 10.91 90.8 1120.41 100.39 11.16 93.0
16 10.26 12.14 75.8 35.59 13.98 87.3 77.86 14.39 89.9
20 8.80 14.16 70.8 29.66 16.78 83.9 64.31 17.42 87.1
24 7.95 15.68 65.3 25.81 19.28 80.3 55.40 20.22 84.2
4 44.52 3.83 95.7 166.56 3.92 98.0 398.645 3.96 99.0
8 24.06 7.08 88.5 86.84 7.52 94.0 204.15 7.73 96.7

OP 12 170.57 16.91 10.08 84.0 653.77 61.47 10.63 88.5 1579.97 14 1.35 11.17 93.0
16 13.47 12.66 79.1 47.89 13.64 85.2 1 13.21 13.95 87.2
20 11.84 14.40 72.0 39.87 16.39 81.9 92.58 17.06 85.3
24 10.39 16.40 68.3 35.62 18.35 76.4 80.89 19.53 81.3

Moreover, since this part is run sequentially, it prevents our i)arallelization 
from having higher speedup values.

Table 7.8 disphiys the speedup and efficiency values ol^tained for K  G 
{4,8,12,16, 20, 24], for all image sizes and datci sets. Obviously, as the screen 
sizes increase all sj)eedups and efriciencies in the table also increase. This is be
cause sequential parts of the code constitute a lesser portion of tlie total work 
for large image sizes. For 400 x 400 image size, low eihciency values are ob
served due to the sequenticilly running hypergraph partitioning code. For very 
small inuige sizes, Tkp Cciii even approach 7/,· resulting in rather poor speedup 
and efficiency values.

7.5 Comparison with Jagged Partitioning

Figures 7.i, 7.3 and 7.2 gives a brief comparison of our one-phase hypergrapli 
partitioning model (IIP)with jagged partitioning nrodel (JP) model. Tlie data, 
were collected using the OP data set over a screen of size 1200 x 1200. First 
graph displays a. comparison of load imbalance vcilues in these models for dif
ferent number of processors. For low processor numbers, HP has a good load 
imbalance. On the other hand, as the number of processors increase, it quickly 
begins to produce unbalanced partitions. JP has a lower imbalance increase



CHAPTER 7. EXPERIMENTAL RESULTS 65

rate for high iiuniber of processors.

As we can see from Figure 7.2, IIP incurs slightl}  ̂ less preprocessing over
head than JP. Tlie major difference is seen in tlie total volume of commu
nication perrormed in both schemes. IIP is much better at minimizing the 
communication volume. Especially, for increasing numl)cr of processors this 
becomes more ai)parent. At 24 processors, IIP performs approximately 30% 
less communication than JP.

In general, nt large inicige cind data sizes IIP outperforms JP, both in terms 
of speed and the minimization of communication volume. For siricdl scale data 
sets and image sizes, both models are preferable. In such problems, IIP pro
duces 10% less communication overhead on the average at comparable locid 
imbalance values.



CHAPTER 7. EXPERIMENTAL RESULTS 6 6

Load Imbalance

Figure 7.1. Load imbalances in IIP and JP.



CHAPTER 7. EXPERIMENTAL RESULTS 67

Preprocessing Overhead

Figure 7.2. Preproce.s.siiig overhead incurred in HP and JP.



CHAPTER 7. EXPERIMENTAL RESULTS 6 8

Total Volume of Communication

cn

c:i o 
>  
!—

0 8 12 16 
K

20 24 28

Figure 7.3. A comparison of communication volumes in IIP and .IP.



Chapter 8

Conclusion

This chapter presents our achievements in this work, and discusses some pos
sible improvements for future studies.

8.1 Work Done

1 1 1  this work, we mainly focused on the load balancing and remapping prol)- 
lems in image-space parallelization of DVR algorithms. To decrease the view 
dependent preprocessing overhead a clusterization scheme was performed in 
object-space. This simplified both house-keeping work and preprocessing, for 
the exchange of increased data replication. For load balancing, three different 
work load assignment schemes tested. Among those, inside-outside test which 
calculates the cluster pro jection area exactly, appeared to be the most valuable 
choice.

Furthermore, two different data distribution schemes tested. Compared to 
the SC A scheme, less communication overhead is observed in NCA scheme. 
However, since the neighbor clusters contained cells with similar sizes, there 
occurred load variations during the work load assignment phase. This increased 
the preprocessing overhead for the NCA scheme.

69



CHAFTER 8. CONCLUSION 70

As cl solution to the remapping problem, we proposed a one-phase hy
pergraph partitioning model. In this model, we represented the interaction 
between the object-space and image-space by a hypergraph. Partitioning this 
hypergra.ph produced screen-processor and data-processor mappings. For hy
pergraph j)artitioning, a modified version of PaToII hypergraph ])artitioniiig 
tool was used. Satisfactory Vcilues obtained for load imbalance, and remapping 
costs. At comparable load balance values, the total volume of communication 
performed in our model is 25% less than the total volume of communication in 
jciggcd partitioning, on the average.

8.2 Future Work

A nice feature of our work is that it is open to further irnproveiuents. As 
new heuristics found for hypergraph partitioning or existing hypergraph parti
tioning tools are improved, the solution quality of our work will also improve. 
We believe that a. possible improvement can be done on the execution time 
of our hypergraph partitioning code. Since we used the functions in PaTofI 
as external library functions, some code unrelated to our code may be exe
cuted, increasing the execution time of our implementation. A more specific 
hypergraph partitioning code could produce superior timing results.

At the time this work carried out, due to the lack of a K-way partitioning 
tool, we used a recursive bisection scheme in our piirtitionings. It is publicly 
cicce])ted thcit, direct K-way partitioning approaches are better at optimizing 
the global objective functions. Hence, we believe that using a. direct K-way 
partitioning scheme for partitioning the rema.pi)ing hypergraph in our work, we 
can produce better partitions, in terms of minimization of the communication 
cost.

Furthermore, we note that, hypergraph partitioning phase, which is run 
sequentially by each processor, is the limiting factor on the speed-up values. 
So, a parallel hypergrapli partitioning tool, which will probably be implemented 
in the feature, can eliminate this drawback of our implementation, resulting in 
much better speed-up values.



CHAPTERS. CONCLUSION 71

Finally, an interesting feature work would be to produce a similar work for 
object-space paicillelization. Our liypcrgraph partitioning model, with some 
minor changes can be ¿ipplied to object-space decomposition. In such a work, 
instead of minimizing the cluster migration overhead, pixel migration overhead 
can be tried to be minimized.



Bibliography

[1] С. J. Alpert, Л. В. Kahng, Recent Directions in Netlist Partitioning: Л 
Survey, VLSIJournal, 19(1-2):1-81, 1995.

[2] J. L. Bentley, Miilticlimensioiicil Binary Search Trees Used lor Associa
tive Searching, CommunicaLions of the ЛСМ, 18(8):509 517, 1975.

[.3] 11. Berk, Fast Direct Volume Rendering of Unstrucured Grids, MSc 
Thesis, Bilkent Universit}', Department of Computer Engineering, 1997.

[4] B. Corrie, P. Mackerras, Parallel Volume Rendering and Data Coher
ence, Proceedings of 199f  Symposium on Volume Visualization, 23 -26, 
1994.

[5] Ü. V. Çatalyürek, C. Aykana.1, PaToII: Partitioning Tool for llyirer- 
gra.phs, technical report, Depa.rtment of Computer Engineering, Bilkent 
University, 1999.

[6] U. V. Çatalyürek, C. Aykanat, Hypergraph-Partitioning Based Decom
position for Parallel Sparse-Matrix Vector Multiplication, IEEE Trans

actions on Parallel and Distributed Systems, 10:673-693, 1999.

[7] T. T. Elvins, A Survey of Algorithms for Volume Visualization, Com

puter Graphics (ACM Siggraph Quarterly), 26(3):194-201, 1992.

[8] T. T. Elvins, Volume Rendering on a Distributed Memory Parallel Com
puter, Proceedings of IEEE Visualization ’92, 93 -98, 1992.

[9] F. Fındık, Parallel Direct Volume Rendering of Unstructured Grids 

Based on Object-Space Decomposition, MSc Thesis, Bilkent University, 

Department of Computer Engineering, 1997.

72



BIBLIOGRAPHY 73

[10] С. М. Fiduccia, R. М. Mattlie3 'ses. A Linear Time Heuristic for Improv
ing Network Partitions. Proceedings of ACM/IEEE Design Automation 
Conferance, 175-181, 1982.

[11] M. P. Garrity, Ray-Tracing Irregular Volume Data, Computer Graphics, 
24(5):35-40, 1990.

[12] A. V. Celder, J. Wilhelms, Rapid Exploration of Curvilinear Grids Us
ing Direct Volume Rendering, Proceedings of IEEE Visualization ’93, 
70-77, 1993.

[13] F. Glover, Tabu search - part I, ORSA Journal on Computing, 1:190- 
206, 1989.

[14] L. W. Hagen, D. J. Huang, A. B. Kahng, On Implementation Choices 
for Iterative Improvement Partitioning Algorithms, IEEE Transactions 
on Computer-Aided Design, 1G( 10): 1199-1205, 1997.

[15] B. Hendrickson, R. Leland, A Multilevel Algorithm For Partitioning 
Graphs, technical report, Sandia National Laboratories, 1993.

[16] C. L. .Jackins, S. L. Tanimoto, Octrees and Their Use in Representing 
Three-Dimensional Objects, Computer Graphics and Image Processing, 
14(3):249-270, 1980.

[17] M. Levoy, Efficient Ray Tracing of Volume Data, ACM  7 ransactions on 
Graphics, 9(3):245-261, 1990.

[18] M. Levoy, Display of Surfaces from Volume Data., IEEE Computer 
Graphics and Implementations, 8(3):29 -37, 1988.

[19] G. Karypis, V. Kumar, R. Aggarwal, S. Shekhar, liMETlS: A Ну])('г- 
graph Partitioning Package, technical report. Department of Comput('r 
Science and Engineering, University of Minne.sota, Army HPC Research 
Center, Minneapolis, 1998.

[20] G. Karypis, B. Kumar, Multilevel K-way hypergraph partitioning, tech
nical report. University of Minnesota, Department of Comi)nter Science 
and Engineering, Army HPC Research Center, Minneapolis, 1998.



BIBLIOGRAPHY 74

[21] C. Karypis, R. Aggarwal, V. Kumar, S. Sliekhar, Multilevel Jlypergrciph 
Partitioning: Applications in VLSI domain, technical re|)ort, short vcm- 

sion in 34th Design Automation Conference, University of Minnesota., 
Department of Computer Science and Engineering, 1997.

[22] C. Karypis, V. Kumar, A Fast and flight Quality Multilevel Scheme for 
Partitioning Irregular Graphs, SIAM Journal on Scientific Coinputing, 
(submitted).

[23] B. W. Keruighan, S. Lin, An Ellicieut Heuristic Procedure for Parti
tioning Gra.phs, Udl Systems Technical Journal, 49(2):291-307, 1970.

[24] G. Kindlmann, W. Durkin, Semi-Automatic Generation of Transfer 
Functions for Direct Volume Rendering, Proceedings of 1998 Symposium, 
on Volume Visualization, 79 -86, 1998.

[2.5] S. Kirkpatrick, C. D. Gelatt, Jr., M. P. Vecchi, Optimization by Simu
lated Anneciling, Science, 220:671- 680, 1983.

[26] K. Koyamada, Fast Traversal of Irregular Volumes, Visual Computing, 
Integrating Computer Graphics with Computer Vision, 295-312, 1992.

[27] B. Krislmamurthy, An improved Min-Cut Algorithm for Partition
ing VLSI Networks, IEEE Transactions on Computers, 33(5):438-446, 
1984.

[28] H. Kutluca, Image-Space Decomposition Algorithms for Sort-First Par- 
cillel Volume Rendering of Unstructured Grids, MSc Thesis, Bilkent 
University, Department of Computer Engineering, 1997.

[29] H. Kutluca, T. M. Kurg, C. Aykanat, Image-Space Decomposition Algo
rithms for Sort-First Parallel Volume Rendering of Unstructured Grids, 
Journal of Supercomputing, 15:51-93, 2000.

[30] II. Kutluca, T. M. Kurg, C. Aykanat, Some Experiments with Com
munication on a Parsytec CC System, technical report. Department of 
Com])uter Engineering, Bilkent University, 1997.



BIDLIOGRAPHY 10

[31] K. Ma, J. Painter, C. Hansen, M. Krogh, A Data Distributed Paral
lel Algorithm for Ray-Traced Volume Rendering, ProceeÂings of 1993 
Parallel Rendering Syinposiuin, 15 -22, 1993.

[32] K. Ma, Parallel Volume Pay-Casting lor Unstructured-Crid Data, on 
Distributed-Mernory Multicomputers, Proceedings of 1995 Parallel lien- 
dering Syinposiuin, 23-30, 1995.

[33] K. Ma, T. W. Crockett, A Scalable Parallel Cell-Projection Volume 
Rendering Algorithm for Three-Dimensional Unstructured Data, Pro
ceedings of 1997 Parallel Rendering Symposium.  ̂ 95 -104, 1997.

[34] X. Mao, L. Hong, A. Kaufman, Splatting of Curvilinear Volumes, Pro
ceedings of IEEE Visualizaiion '95, 61 68, 1995.

[35] .J. Nieh, M. Levoy, Volume Rendering on Scalable Shared-Memory 
MIMD architectures. Proceedings of 1992 Workshop on Volume Visual
izaiion, 17-24, 1992.

[36] C. M. Nielson, K. Voegclc, An Annotated Bibliography of Scientific 
Visualization. Part 2, The Journal of Visualization and Computer An

imation, 2:2-8, 1991.

[37] .J. S. Rowlan, G. E. Lent, N. Cokhale, S. Bradshaw, A distributed. 
Parallel, Interactive Volume Rendering Package, Proceedings of IEEE 
Visualization ’9f, 21-30, 1994.

[38] L. A. Sanchis, Multiple-Way Network Partitioning, IEEE Transactions 
on Computers, 38(1):62-81, 1989.

[39] D. G. Schweikert, B. W. Kernighan, A Pro))cr Model for the I’artitioning 
of Electrical Circuits, Proceedings of ACM/IEEE Design Automation 
Conferance, 57-62, 1972.

[40] P. Shirley, A. Tuchman, A Polygonal Approximation to Direct Scalar 
Volume Rendering, Computer Craphics, 24(5):63 70, 1990.

[41] 11. Shu, A Fast Ray Casting Algorithm Using Adaptive Isotriaiigular 
Subdivision, Proceedings of IEEE Visualization ’91, 232-237, 1991.



BIBLIOGRAPHY 7G

[42] C. T. Silva, J. S. B. Mitchell, P. L. Williams, Au Exact Interactive Time 
Visibility Ordering Algorithm for Polyhedral Cell Complexes, Proceed

ings of 1998 Symposium on Volume Visualization, 87-94, 1998.

[48] C. Ί.\ Silva, A. E. Kaufman, Parallel Performance Measures for Volume 
Ray Casting, Proceedings of IEEE Visualization ’9Jj, 19G-20‘3, 1994.

[44] .1. Wilhelms, A. V. Gelder, P. Tarantino, .1. Cibbs, Hierarchical and Par- 
allclizable Direct Volume Rendering for Irregular and Multiple Crids, 
Proceedings of IEEE Visualization ’96, .57 -64, 1996.

[45] P. L. Williams, interactive Splattiiig of Nonrectilinear Volumes, Pro
ceedings of IEEE Visualization ’92, .‘37-44, 1992.

[46] C. M. Wittenbrink, Survey of Parallel Volume Rendering Algorithms, 
Parallel and Distributed Processing Techniques and Applications, 1.329- 
1336, Las Vegas, NV, 1998.

[47] C. M. Wittenbrink, Irregular Crid Volume Rendering with Composition 
Networks, Proceedings of SPIE Visual Data Exploration and Analysis 
1'̂ , SISE's Electronic Imaging ‘98, 250 260, 1998.

[48] T. S. Yoo, U. Neumann, II. Fuchs, S. M. Pizer, T. Cullip, .1. Rhoades, 
R. Whitaker, Achieving Direct Volume Visualization with Interactive 
Semantic Region Selection, Proceedings of IEEE Visualization ’91, 58 - 
65, 1991.

[49] Par.sytec GmbH, Germany, Embedded Parix (EPX) version 1.9.2 User's 
Guide and Programmers Reference Manual, 1996.

[50] http:// WWW. lias.nasa.gov/Sol'twarc/DataSets/

http://WWW.lias.nasa.gov/Sol'twarc/DataSets/


Appendix A

Calculation of Granularity 
Formula

We cipproximate the projection area of a 3D volume on the screen by a square 
containing n X n pixels, and try to divide the projection area into screen cells 
coiitaiuiiig g x g pixels. This can be done using ^  screen cells, at the best case.

+ + 4 screen cells (see Figure A .l).At the worst case, it requires

___I

---- 1
___I

n by n area & 
g by g screen cell

best case 
division

worst case 
division

Figure A. l. Imposing g by g screen cells onto an n by n area.

We calculate the average of these two numbers, and equalize it to a fixed 

total screen cell number, (7, that we want to produce. This results in the 
following second order equation:

(2 -  C )g^  +  (471 -  8)(/ +  27?/ -  47?. +  4 =  0 (A.l)



APPENDIX A. CALCULATION OF C11ANVI,ARITY FORMULA 78

Table A .l. Adaptive granularity calculation.

screen size 400 X 400 800 X 800 1200 X 1200
c 400 400 400
9 15 31 46
C' 401 375 388
error 0.25 6.25 3.00

Solving this eciucition for g yields the root in Equation A.2. Note that, we 
have substituted, n =  \/A and = A into that equation.

9 =
\ /I  -  2 + \J{C -1)A -2C \/7S. +  2C

C - 2
(A.2)

Despite tlie fa.ct that this foniiula is just an approximation, and tlie pro
jection areas on the screen are usuall}  ̂ non-square, complex regions, the foj*- 
mula produces j)retty good results. Table A.l displays tliese results for a fixed 
C =  400 value. C' corresponds to the actual number of screen cells found after 
the grid is imposed on the screen. Note the linear increase in g with increasing 
screen size.


