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ABSTRACT

WEINGARTEN SURFACES ARISING FROM
SOLITON THEORY

Ozgiir Ceyhan
M. S. in Mathematics
Advisor: Prof. Dr. Metin Gurses
August, 1999

In this work we presented a method for constructing surfaces in R? associ-
ated with the symmetries of Gauss-Mainardi-Codazzi equations. We show that
among these surfaces the sphere has a unique role. Under constant gauge trans-
formations all integrable equations are mapped to a sphere. Furthermore we
prove that all compact surfaces generated by symmetries of the sine-Gordon
equation are homeomorphic to sphere. We also construct some Weingarten
surfaces arising from the deformations of sine-Gordon, sinh-Gordon, nonlinear

Schrodinger and modified Korteweg-de Vries equations.

Keywords and Phrases: Solitons, integrable surfaces, Weingarten surfaces.
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OZET

SOLITON TEORISINDEN TURETILEN
WEINGARTEN YUZEYLER{

(")zgiir Ceyhan
Matematik Bolumi Yuksek Lisans
Danigsman: Prof. Dr. Metin Giirses

Agustos, 1999

Bu c¢alismada Gauss-Mainardi-Codazzi denklemlerinin simetrileri ile
bagintili R3 teki ylizeyleri tiretmek igin bir yontem verildi. Bu ylizeyler
arasinda kirenin 6zel bir yeri oldugu belirlendi. Tim entegre edilebilir
denklemlerin sabit ayar donigiimlerinden elde edilen ylizeylerin kiire oldugu
kamitlandi. Ayrica sine-Gordon denkleminin simetrileri kullanilarak turetilen
tim kompakt ytizeylerin kiireye homeomorfik oldugu gosterildi. Sine-Gordon,
sinh-Gordon, dogrusal olmayan Schrédinger ve degigik Korteweg-de Vries den-

klemlerinin simetrileri ile bagintili bazi Weingarten yuzeyleri verildi.

Anahtar Kelimeler ve [fadeler: Solitonlar, entegre edilebilir ytuzeyler, Wein-

garten yuzeyleri.
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Chapter 1

Introduction

The latter period of the nineteenth century and the early part of this century
saw a great deal of activity in the study of special classes of surfaces in three
dimensional Euclidean space (see, e.g. [27]-[31]). Typical examples include
minimal surfaces, surfaces of constant mean curvature and surfaces of constant
Gaussian curvature. Gauss equations that describe surfaces in three dimen-
sional space have been studied in detail from various points of view. One of
the classical problems of differential geometry was the study of the connections
between geometry of submanifolds and nonlinear partial differential equations
(PDEs). Probably sine-Gordon and Liouville equations are the best known
examples. They describe minimal and pseudospherical surfaces respectively.
They arise as the compatibility condition of the Gauss-Weingarten equations
of a surface under a suitable parametrization. At that time many features of

integrability of the sine-Gordon, Liouville and some other integrable equations

were discovered.

On the other hand, the works of Kruskal-Zabursky, Lax, AKNS, Zakharov-
Shabat,... introduced a technique (inverse spectral transform) for solving non-
linear PDEs, in the 1960’s (see, e.g. [21]-[25]). This method allows one to
solve a number of nonlinear PDEs. Nonlinear PDEs integrable by the inverse
spectral transformation possess some remarkable properties such as soliton so-

lutions, an infinite number of conservation laws, infinite symmetry groups,

special Hamiltonian structures,...



A key element of the inverse spectral transformation method is the repre-

sentation (Lax representation) of the nonlinear PDE
Ui — Uy + [U,Us) =0
as a compatibility condition of certain system of linear equations
¢,=U,®, k=12

Lax representation has a transparent geometrical interpretation. We may
identify these equations with Gauss-Mainardi-Codazzi (GMC) equations repre-
sented as the compatibility condition of linear equations for the moving frame
(Gauss-Weingarten equations). Due to the analogy between GMC and Lax
equations, for a long time, surface theory was used as a source of integrable
equations (see e.g [8]-[20]). In the last decade, the attitude is to use soliton

theory in understanding some local and global properties of surfaces, (e.g. {1]-
(14]).

In this work we investigate the relationship between the generalized symme-
tries and the associated surfaces in R®. In chapter 2, readers are reminded of the
basic notions and equations of differential geometry of surfaces. Sym’s formula-
tion of soliton surfaces and its recent generalization given by Fokas and Gelfand
are presented in the first section of chapter 3. In the next section, a general
method of constructing immersion functions by using the symmetries of GMC
equations is discussed. In following sections of chapter 3, some local and global
properties of particular surfaces are described. We show that surface associated
with constant gauge transformation is a sphere and investigate the symmetry
surfaces of the sine-Gordon equation. We show that compact, connected, ori-
ented sine-Gordon surfaces are homeomorphic to sphere. In last chapter, we
constructed several Weingarten surfaces arising from the symmetries of the
sine-Gordon, sinh-Gordon, nonlinear Schrondinger and modified Korteweg-de
Vries equations. In Appendix, Gauss-Mainardi-Codazzi-Ricci equations are
given for higher dimensional embedded or immersed manifolds of arbitrary

codimensions.



Chapter 2

Surfaces in R3

In this chapter we shall give a brief survey of two dimensional surfaces immersed
in R% For the Gauss-Mainardi-Codazzi equations, we use the corresponding

equations given in Appendix D for dimension m = 2. For further details of

two dimensional surfaces see [33, 34].

2.1 Elements of the Theory of Surfaces

Our interest is now directed toward some elementary concepts of surfaces im-

mersed in R3.

Definition 2.1 Let M C R® be a surface, with the inclusion map F : U C
R? — R® . Then the first fundamental form (or equivalently induced metric g)

is F* < .,. > where < .,.> is the usual inner product on R>.

We write the first fundamental form tensor on M as
(d51)2 = gpdz’ ® dz' 4 2g12dz’ @ dz? + ggpdz® ® dz?,
where we define functions g¢;;, %,7 = 1,2 directly by using the local coordinates
(z1,2?) of U C R? with F: U — R®
3F 9F >

9ii = < 550 g7
= <F,F;>, 1,j=12

w



In the sequel we shall use lower indices ”,i” for the differentiation with respect

to the coordinate z°.

We next deal with the properties of the Gauss map v : M — S?, namely
a unit normal differentiable vector field, which can at least be defined in a
neighborhood of each point p € M. (M is assumed to be orientable)

Definition 2.2 In terms of v, the second fundamental form Q on M is defined

as

Q(p)(X,Y) = <_dV(X))Y>P
= < —u(X),Y >,.

In particular, by considering an immersion F' : U — R3, for U C R? the second
fundamental form can be defined directly on U in terms of local coordinates

by

bi]‘ =< —l/,,',F,j >=<V, Fﬂ'j > .

Definition 2.3 Let the matriz S with the coefficients b;- = g'*by; represent
the ”shape operator”. Figenvalues ky and ky of S, are defined as the principle

curvatures and then Gauss curvature I and mean curvature H are defined as

K = d&t(S) '——‘klkz,
H = t'I'(S) = kl + ]{32.

Definition 2.4 If there exists a function f such that f(K,H) = 0 (or equiv-
alently f(lcl,kz) = 0) then the corresponding surface is called a Weingarten

surface.

2.2 Gauss and Mainardi-Codazzi Equations

Let F': U C R? - M C R3 be a local parametrization . Then it is possible to

assign a trihedron to every point p € M given by the vectors F;, Fy and v.



We may express motion of this frame along M by the Gauss and Weingarten

equations

Fij = Fij’k-l—bij,I/ (2.1)

)

Vi = ghjbijF.,h ) h7i7j7k:1a2) (22)

]

where summation over repeated indices is assumed.

The above set of partial differential equations are integrable if certain compat-
ibility conditions are satisfied. Setting Fijx = Fir; and assuming the linear

independence of F1, I3 and v, we get:

Lemma 2.5 Integrability conditions of (2.1) and (2.2) reduce to set of equa-

tions:

* J

bik,j — bijx + Cibrj — Tiibpe = 0. (2.4)
Proof: m=2 case of theorem (A.3), (A.4) and lemma (A.6). O
Right hand side of the equation (2.3) is the Riemann curvature tensor. Then

R1212 = bllb22 - bleIZ7

is the Gauss equation for surfaces in R®. Hence that intrinsically defined Gauss
curvature K is given by (see [32, 33]):

_ <R(E1,E2)E2,E1 > _ b11b22 — b12b12
<F,F1><F3,Fa>—-<F,Fa>* gu1ga — g12012

K

and if we take a look at equation (2.4), it reduces to the following set of
equations

b1z — b2 + F{lzbhl - F;llbhz =

> (2.5)
baay — b212 + Lh,bny — b, = 0, '

which are called Mainardi-Codazzi equations. The integrability conditions

vi; = v are satisfied automatically by the Mainardi-Codazzi equations.

Example 1: (Surfaces of Revolution) Let M C R® be the sct obtained by
rotating a regular plane curve C about an axis in the plane which does not

meet the curve; let the zz plane be the plane of curve the C' and the z axis be

5



the rotation axis. Let C' be parametrized by a(z) = (¢(z),0,v¥(z)). We can
compute the Christoffel symbols for a surface of revolution parametrized by:

F(a',2?) = (¢(z*)cosz', ¢(z%)sinz', 9(2?)) , d(z?) # 0.
Since
g =8(z")?, g2 =0, gaz = ¢(z*)® + ¥(2”)?,

we obtain the Christoffel symbols to be:

r = O,Ffi:—ﬁ_(é—w,
t, = % rh=o

If we let z2 be the arclength parameter of the curve (i.e. (¢')* + (¢')? = 1),

then the Gauss and mean curvatures are given by

—é/-l ,(,[)I + ¢(¢I¢Il _ ¢/I¢I)
¢ ¢

and the Gauss equation (2.3) reduces to

]__
K = , H=2

"+ K¢ =0.

Mainardi-Codazzi equations (2.5) are identically satisfied.



Chapter 3

Soliton Surfaces

It is well a known fact that existence of Lax pair for a differential equation
entails existence of infinitely many symmetries. The symmetry group of system
of PDEs is the group of transformations that map solutions of the system to
other solutions. Here in this chapter we shall present an explicit formulation of
the immersion functions that associated with each symmetry of a given soliton

equation.

3.1 Surfaces Immersed in R? as Surfaces in Lie

Algebras

Our goal in this section is to reformulate the classical theory of surfaces in a
form familiar to the soliton theory, which makes an application of the analytical

methods of this theory to integrable cases possible.

Formulas for the moving frames associated with integrable equations can
be integrated. This issue was first suggested by A. Sym [8]-[14] and generalized
by Fokas and Gel’fand [2], Fokas, Gel’fand, Finkel, Liu [3] and Ciedlinski [6].

This approaches were applied to several soliton equations [1]-[14].

In section (3.1.1), the moving frame for a general surface is described in
terms of su(2) algebra. In the sections (3.1.2) and (3.1.3), Sym, Fokas-Gel’fand,

and Ciesliniski approaches are presented.



3.1.1 Immersions in R3

Let F': U C R? > M C R3 be an immersion and v(z', %) be the unit normal
field along M. Then F, Fy and v define a basis in R3. As we have seen in
previous chapter, the motion of this basis on M is characterized by Gauss-
Weingarten equations (2.1), (2.2). Now let us consider following orthonormal

basis

_gufFa—g12F;

€32
V911 ’ gudet(g)

ey =
Let us consider this moving frame on M in 3 x 3 matrix form ET = (ey, €3, 1).
Then the Gauss-Weingarten equations for the frame F become
Er=ME , k=1,2, (3.1)
and Gauss-Mainardi-Codazzi equations are
Az — Az,; + [A1, A2} = 0, (3.2)

where the matrices £ and Ag, ¥ = 1,2 have value in SO(3) and so(3) re-
spectively. It is convenient to use the isomorphism so(3) ~ su(2) to rewrite
equation (3.1) in terms 2 x 2 complex matrices. Let ®(z',z?) be an SU(2)

valued function, then we can write these matrices explicitly as follows

¢, = U, k=1,2 (3.3)
where
1 fox D
=—| = k=12
Uk 2 (ﬂk —‘ak) ) y &y
and

o [lxy/det(g) B, = guba — grabix  thix
k = —-—-——— 9 k — - .
n \V9ndet(g) vIn

We rewrite the compatibility conditions given by (3.2) as

UI,Z - U2,1 - [Ul, Uz] = 0 (34)

Finally we summarize the result given in above arguments with following the-

orcim.



Theorem 3.1 [2] Let Uy = Uy(z',2?) € su(2),k = 1,2 be differentiable func-
tions of x',z* in some neighborhood of R%. Assume that each Uy, satisfy (3.4)
then equations (3.3) define a 2-dimensional surface ® € SU(2).

Remark 3.2 In the context of integrable systems equation (3.3) is known as
the Laz equation and equation (8.4) as the zero curvature condition. How-
ever, in order to apply inverse spectral transform one needs to insert a spectral

parameter in (8.3), In the following sections we shall consider such cases.

3.1.2 Soliton Surfaces Aﬁproach

An interesting connection between classical geometry of surfaces and the sym-

metries of soliton equations is first given by Sym in [8]-[14].

Theorem 3.3 [8] Let Uy = Uy(z!, 2% ) € su(2),k = 1,2 be differentiable
functions of x',z% and \ which satisfy (3.3) and (8.4). Assume that Gauss-
Mainardi-Codazzi equations (3.4) are independent of . Then

oU;
= 127K k = 1 2 .
Fr=29 3 P, , (3.5)
define a tangent space and
0o
=07+ 3.6
F=29 i +C (3.6)

defines an explicit immersion function of the surface associated with the A

translation symmetry of equation the (3.4) where C' is constant su(2) matriz.

Proof: We define an SU(2) valued function by F(z,)) = ®(z, A)®(z, )

which is known as the Pohlmeyer transformation. The equation (3.3) yields

Fio =07z, o) [Uka(z, A) (A = Xo) + -+ -]®(, Ao) I (3.7)
whose integrability conditions of equation (3.7) (i.e. F,kl = F,lk) are
((P_lUk,)\‘I)),z = ((I)_IU[,,\(I))JC. (3.8)

The equation (3.8) implies, the existence of an su(2) valued function F' =

F(z, ) such that
Fp= (I)_lUk,A(I) , k=1,2.
9



The equation (3.5) can be integrated to get
F=0"'9,+C,

where C' is a constant su(2) matrix.Adding term C is equivalent to a rigid
motion. Hence we may take C = 0. The equation (3.6) is interpreted as a
coordinate representation of the A family of the surfaces in su(2). The Gauss-

Weingarten equations are equivalent to
Fra= 0" (Ui + [Ukp, Ul))®

and the Gauss-Mainardi-Codazzi equations (F i = F ji)

(U2 = U1+ [U1,U2])y =0

are identically satisfied by virtue of (3.4). O

By using the scalar product on su(2)

1
< A,B>= —itrace(AB) , Al =< A A >, (3.9)

induced metric g;; =< F;, F; >=< U;,U;» >, 1,7 = 1,2 on the surface is
defined. And the frame on the surface (F, F3,v) is determined by the normal

vector

3.1.3 The Fokas-Gelfand Approach

Now we will give the generalization of Sym’s formula orginally formulated in

[2].

Theorem 3.4 [2] Let Uy = Ux(z',2% X) € su(2),k = 1,2 be differentiable
functions of z',2% and \ which satisfy (3.3) and (3.4). Assume that the equa-
tion (8.4) is independent of A. Consider lhe function F € su(2) implicitly

given by
Fp=90"49, k=1,2 (3.10)

where Ay € su(2), k = 1,2. Then F defines a surfaces in su(2) iff the equations
(8.10) are compatible i.e.

A1,2—Az,1+[A],U2]+[U1,A2] :0 (31].)
is satisfied.

10



Corollary 3.5 Let us define a frame on the surface which satisfies the condi-
tions of theorem (3.4), i.e.

El = (D_IA1¢ y .F'z = ‘I>_1A2(I> , V= (I)_IA;}(D

where

[Ah AZ]

Ay = ———
> Ay Al

Then the first and second fundamenta:l forms can be expressed explicitly as

(ds1)® = < Ay, Ay > (dz!)? 42 < Ay, Ay > dztda?
+ < Aj, Az > (dz?)?,
(d811)2 = < A1,1 + [Al, U]],Ag > (d$1)2 (312)

+ 2< Arg+ [Ar, U], As > da'da?
+ < Az’z + [Az, Uz], A3 > (d.’llz)z.

The theorem (3.4) characterizes surfaces in terms of an arbitrary
parametrization.  The classical formulations of well known geometrical
parametrizations can be obtain as particular cases of this theorem. An ex-

ample of this theorem is given below.

Theorem 3.6 [2] Let 0;,5 =1,2,3 denote the Pauli spin matrices

() e 3) ) e
Consider an arbitrary immersion function I' in R3 implicitly defined by
Fi=—i0""0,® , Fy=—i® '(bioy + by02)®, a #0, by #0,
where
® ) = Ui(a', 2%, )0, k=1,2

are compatible (i.e. satisfy equation (3.3)). Then the functions

.3
U(z', 2%, X) ——;—Z (', 2%, Moy , k=1,2 (3.14)

a=1



are defined by

3 l da Bbl

U= ((?a:z 5;:-‘)’

U2 = —(ble—szll), (3.15)
3 _ ab 6()2

U, = (b1 8:1:2 bla " b28 1).

The first and second fundamental forms of the surface are

(ds1)? = a?(dzl)? + 2abydz'da? + ((by)? + (bs)?)(de?)?,

. 3.16
(dsrr)? = aUf(dz')? + 2aU2dz'dz? + (b, U2 — bU)(dz?)?. (3.16)

This surface is unique up to a rigid motion in space. The Gauss and mean

curvatures are

]{z_(gli)JrU_lz(blUl]—aUzl) , H:U_12+b1U11—aU2‘.

a a ab, a ab,

(3.17)

A frame on this surface is given by F1,F5 and v = —i® " 103®.

Proof: These results follow from theorem (3.4) with the choices A; =

—iaoy, Ay = —1(b1oy + b203), and then the equation (3.11) become
GU22 + b2U11 - b]Ulz = 0 3 b1'1 + sz? —_ a,2 = 0 ) 62,1 + Cl(jii - b1U13 = 0

Solving these for U2, UZ and U] we obtain equation (3.15). Using the results
of corollary (3.5) we find equations (3.16) and (3.17). O

Example 1:(Parametric Lines of Curvature) [2] Letting b, = U = 0, and in-

U2 Ul . . .
L h= - the Gauss-Mainardi-Codazzi

troducing the notations b = by, f = =L, ,

equations (3.4) become

0 ,1 0a 0 ,10b

axz(za:ﬁ) + (?:1:1(;81:‘ ) +abfh =0,
J 0b
ozl (b )'_ (9:1: 07
aa
O (ap) -t =0

The first and second fundamental forms are
(ds1)? = a®(da')? + b*(dz?)? , (dsp)? = a*f(dz")* + b2h(dz?)>.
12



A frame on this surface is determined by
F‘,l = —iq)_laal(l) ’ Ez = —i(I)—ZbUz® , V= -7:@_10'3(1).
The Gauss and mean curvatures of this surface are

K=fh , H=f+h

3.2 A Generalized Immersion Function

An important step in applying the outlined method in section (3.1.3) is to solve

the following problem:

For a given differential equation in the form (3.4) with the Laz pair (3.3) find a
class of functions Ay, Az for which one can construct explicitly the immersion

function F' and hence an associated surface in R3,

One of the solutions of this problem is given in section (3.1.2) via Sym (or
Sym-Tafel) formula (2.3.5) and (2.3.6). A generalization of Sym’s formula was
given by Fokas and Gelfand in [2]. A further generalization of this formula can
be found in [3] and [6].

Proposition 3.7 Suppose that ® is a SU(2) valued solution of Laz equations
(8.8) for a given differential equation (3.4). Let 6 be an operator representing

the infinitesimal transformations. Then the equations (3.10) with
Ar = 6U; + ([6zk,5]@)(1)_1, k=1,2 (3.18)
are compatible and F is given explicity by

F =®150. (3.19)

Proof: The compatibility conditions can be easily verified taking into account
that (I),k = U, ((I)_l)’k = —®~1U; and Uk, — U[yk + [Uk,UIJ =0fork,l=1,2.

Differentiating F' we obtain the above expression for A;, A;. O

All known symmetries of an integrable equation can be considered as par-

ticular cases of the §. Ior instance § = 0,1 is the infinitesimal generator of

13



the symmetry corresponding to translation along z! direction. A nontrivial

example is § = R where R is the recursion operator for (3.4) (if it exists).
Let us reformulate the proposition in a detailed way for the case in which

the equation (3.4) reduce to a single partial differential equation.

Definition 3.8 The Frechet derivative of the differential function U[0] in the
direction of ¢, denoted by U'(9), is

3}
! —_—T7
U'(9) = 5 U8 +edl| _,
where € is a real parameter.
Theorem 3.9 [3] Let Uy, k = 1,2 be parametrized by A and the scalar function

0(u,v), where the compatibility equation (3.4) reduces to a single PDE of 0(u,v)
independent of A. Define Ay = Ar(z!, 2%, A) € su(2) by

oU, oM , ,
Ap = o=+ op + MU + U(4) , k=1,2, (3.20)

where a(X) is an arbilrary scalar function of A\, M(z',z* ) € su(2) is an
arbitrary function of ', 2% A, the scalar ¢(u,v) is a symmetry of the equation
(8.4) and prime denoles Fréchet differentiation . Then there exists a family
of surfaces with immersions F(z' 2% \) € su(2) in terms of Ay, Ay and ®.
Furthermore, F is given up to an additive constant C()) € su(2) by

o®

F =07 oy + M+ ¥(3)). (3.21)

Proof: Theorem (3.9) is a special case of lemma (3.7) where [0, 6] = 0. It
can be verified directly if Uy, k = 1,2 satisfy the equation (3.3) and if ¢ is a
symmetry of an integrable nonlinear PDE satisfied by 8, then the functions
Ak, k = 1,2 are defined by the equations (3.20). This implies the existence of

the immersion function F'.

It is possible to establish this result avoiding most of the computations.
Extending the definition of a symmetry from scalar functions to functions in
Lie algebras, it follows that the pair A;, A, is a symmetry of the pair Uy, Us.
Indeed replacing Uy by Ui + €A for k = 1,2, the O(e) term of the resulting
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equation is (3.10). Thus finding a pair Az, k = 1,2 is equivalent to finding a
symmetry for the pair Uy, k = 1,2. The pair A,, Az defined by equation (3.20)

corresponds to three different types of symmetries:

(i) The integrable equation (3.4) is independent of A, thus A translation is
a trivial symmetry for this equation. This yields ,
Uy
a——
ox’

where a = a()) is an arbitrary function of .

Ay = k=12

i1} Equation (3.4) is invariant under the gauge transformation ® — S®
q gaug

and

Ug — SULS™T + ﬁis—‘ , k=1,2. (3.22)
ozFk
Letting S = [ + eM, where I denotes the identity matrix, the expression in

(3.22) become,

oM
Uk—>Uk+€( -I-[M U;,])-i—O( ) k=1,2.

Ock

Thus

oM
A = ak+[MUk] k—12

(iii) Let ¢ be a symmetry of the equation of (3.4). Then Frechet differenti-

ation gives
Ur — Ur(0 + €8) = Up + cUj(¢) + O(€%), k=1,2
which implies:
A =Ul(¢), k=1,2.

Linear combination of the above three symmetries gives rise to equations

(3.20).0

Example 2: (Theorem (1.2) in [2]) Let
M = fi(z',2*)Uy + fu(z',2*)Uz + Mo

where My € su(2) is a constant matrix and (), f1(z!, 22), fa(z', %) are scalar

functions with the arguments indicated. Then equations (2.3.20) become

Ul (?fl 1 8f2

Av = o) Fr+ g f‘ o U

15



oU.
52 + fs (Mo, Uil + Uy (9),

ou, 0 aUu, 0
A = @) G U g U

o gon + f (Mo, Us] + UL(4),

+/f2

and immersion function takes the form

0
_ a—1
F=9a (a——a)\

P

+ f10.P + f,0,2D + Moy® + <I>’(¢)) .
Example 3: (Parallel Surfaces) if F in su(2) is parallel to F' then F — F =
av = a®' A3®, where v is the unit normal vector (i.e. < Az, A3 >= 1) to the
surface F' (also to £ ) and a is a constant (distance between surfaces). One can
easily observe that parallel surfaces can be given by virtue of the generalized

immersion function. It is enough to set M and ¢ = 0 and

F=0"%0 |, av=a® "A30 = & ' M,®

Remark 3.10 In sections (3.1) and (3.2) we have considered surfaces in R®
as surfaces in su(2) algebra. The whole approach for immersions of dimension
dim M > 2 becomes considerably more difficult. But the notion given in propo-
sition (8.7) can be extended to immersions into a lie algebra g (let dim g = m)

of higher codimension. Let
(I>,k=Uk<I),k:1,---,n<m (3.23)

denote the system of equations where Ui(z, ) are smooth functions of A and
coordinates x = (a',---,2"). The functions ® take values in a semisimple
matriz group G and Uy € g, the lie algebra of G. The integrability conditions

of this overdetermined system of equations require that
Uk,I—U11k+[Uk,U1] =0, k<l=1,---,n (3.24)

Equations (3.23) can be interpreted as defining a G-valued connection (G repre-
sentation of Gauss-Weingarten equations (A.4) and (A.5)) with equation (3.24)

(Gauss-Mainardi-Codazzi-Ricci equations in this representation).

We now need a prescription for constructing an immersion F' associted with

the symmetry of (3.24) . Introduce an arbitrary variation 6. The from (3.23)

we get
(5‘1)),k =6U® + Uréd
16



and consequently
(D'6®) 1 = 1 (6U} + [0k, é))@
so that there ezists a function F : R™ — g such that
Fy = 075U, ®
and
F=0"104+C, Ceg.

Notice that C = C())is arbitrary in this last equation. For this matriz group
G we calculate the geometrical quantities by using nondegenerate invariant bi-

linear form < .,. >:gxg— R
g =< Fp, Fy >=< U, 0U; >, k,l=1,---,n
and by introducing normal vector fields v., r=n+1,---,m = dim G
B =< —Ui8U + 6Us; + U Uy, v, >

This formulation gives whole algorithm for constructing the soliton immersions:

(i) Find a soliton system with Lax represenntation (3.23) for which n <
dim g.

(i1) Construct an orthonormal basis for g.

(i1i) Construct a function ' : R™ — g from a variation § : G — T'G which

defines a canonical map G — g under left translation.

This approach is similar to the one developed by Sym (Sym considered only
the immersed submanifold with dimension 2), and the recent work of Dodd gives

this construction for arbitrary dimension and codimension, [5].

3.3 Immersions Associated With The Symme-
tries of The Integrable Gauss-Mainardi-

Codazzi Equations

The theorem (3.9) provides an algorithmic approach to construct the surface

by starting from a suitable Lax pair. We shall apply this technique to construct

17



surfaces associated with the constant gauge transformation for arbitrary Lax

equations and associated with symmetries of the Sine-Gordon equation

3.3.1 Immersions Associated With the Constant Gauge

Transformations

Now let us work out the surfaces generated by the constant SU(2) rotations of

®, i.e. by a constant su(2) matrix My

Theorem 3.11 [1] Let Ay = [Mo,Ux],k = 1,2 , where My € su(2) is a

constant matriz. Then K = IVIoF and H = '_ﬂzﬁ , where ¢ = +£1 and

|Mo| = /< Mo, Mo >. Hence all such deformed surfaces are spheres with

radii |Mo| where the immersion function is
F = (I)_l M() (I)
Proof: Let U, = % S Ufo, for k = 1,2 be any Lax pair and M, =

%2321 m® o, be a constant su(2) matrix, where o4, j = 1,2,3 denotes Pauli

spin matrices. Since [0, 0g] = 2t€4p,0,, we have
z o 18
Ak = [Mo,Uk] = ——560,[37 m Uk Oy
To calculate the normal vector field v = @1 A3®, we need [A;, A,)
3 5 UC n UE
[A1, A2] = =5 €apy €as¢ €ngp m” Uy m” Uz oy

7
= -3 (8p56c — 8a¢ 645) €nep m® U m” U o,

= ™M
since
€nth mb Uf m” Ug o¢ = (< Uy [Mo, Mo} >) Uy = 0
and
—%engc md US m" Usos = —4(< Mo, [Us, Un] >) M. (3.25)
Letting € = ﬁ, we find .
Ay = m My, (3.26)

18



hence
< A1,1, A3 >=< A1,27A3 >=< Az,z,A(g >= 0 (327)

Using these equations it follows that

dij = _U‘;—ol%' (3.28)

Hence S = A I , where I is the identity matrix. Thus
K = det(S) = ﬁ, (3.29)
_Hztdsp:—ﬁir (3.30)

claim follows. O

This result is quite interesting. Lax pair is arbitrary so that under the rigid

SU(2) rotations all integrable equations are mapped into a sphere.

3.3.2 Immersions Associated With The Sine-Gordon

Equation

Both in the classical differential geometry and integrable nonlinear partial dif-

ferential equations, sine-Gordon equation for smooth function 0(z', z?)
9%0
O0z10x?

is of special interest. The Gauss-Mainardi-Codazzi system of any pseudospher-

ical surface endowed with the so-called asymptotic coordinates reduces to the

= sin, (3.31)

sine-Gordon equation.

The Lax pair for the sine-Gordon equation is given by (3.3) with

U, = %(—0,1 o+ Ao3), Uy = %(sin foy — cos boy), (3.32)

where 6(z',2%) € R and X is an arbitrary constant. Let ¢ be a symmetry of

equation (3.31), i.e. let ¢ be a solution of

0%

5;1"8—‘—1:—2‘ = ( CO8 0 (333)
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There exists infinitely many explicit solutions of equation (3.33) in terms of ¢
and its higher derivatives. The first few are (see [26])
3 6%

0
01,0, 9111+ 0222+—— : (3.34)

starting from the third one all such solutlons are called the generalized sym-
metries of (3.31). Then for each ¢ theorem (3.9) (with @ = 0, M = 0) implies

a surface constructed by
: 0 '
A = ~3 a(p o1, Ay = zAgo(cosﬁaz + sin § o3). (3.35)

We now study the surfaces corresponding to these generalized symmetries.

Lemma 3.12 [3] Let M be the surface generated by a generalized symmetry
of the sine-Gordon equation. That is, let M be the surface generated by Upand
Ak, k = 1,2 defined by equations (3.32) and (8.35) respectively. The first and
second fundamental forms, the Gaussian and the mean curvatures of this sur-

face
F = 071 ®(y) (3.36)

are given by

ds¥, = %()\tp,] 51r10( ')’ + i (d:t: )?),
1{:4)\20,25in0 M= (cp102+(p91n0) (3.38)
PP PP

Proof: Applying corollary (3.5) to the frame defined by (3.35) we get

2
g = <ALA >= %a
g2 = <A, A> =0,
%%
g22 = < Az,Az > = m‘,
and
Ay 1sinf
bn = <A+ [A1,Uh], As > = '('012—
b]z = < A1,2 + [Al,Uz],Ag >=1
©0 2
byo = < Azs+[A2,Us],As> = N

20



where
Az = —i (sinfo; — cos bo3)

Using the equation (3.37) the Gauss and mean curvatures (3.38) are obtained
directly. O

An immediate corollary of the above lemma is:

Corollary 3.13 [1] Let M be the particular surface defined in the above lemma

corresponding to ¢ = 0 ,. Then this surface is the sphere with

1, . 62
ds? = Z(sz 6 (dz')* + )‘—’j (dz?)?),
2 A NURLITEY,
dsj, = i(sm 0 (dz') —|—X’2—(da: ),

K=4)% | H=4\ (3.39)

We now present a global result regarding the above surfaces.

Theorem 3.14 [1] Let M be the surface defined in lemma (3.12) in terms
of a generalized symmetry of the sine-Gordon equation. If M is a compact,

connected and oriented surface then it is homeomorphic to a sphere.

Proof: All compact, connected and oriented surfaces with the same Euler-
Poincare characteristics are homeomorphic, [34]. For compact surfaces the

Euler-Poincare characteristics x is given by Gauss-Bonnet theorem

1
X=5- //S v/ det(g) K dz' dz?. (3.40)
Since det(g) = %Zl, then the integrand y/det(g) K simply becomes

vdet(g) K = X0 ,sind. (3.41)

Hence yx is independent of symmetry ¢

Y= % / /S 0., sin 0 dz do?. (3.42)
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This proves that x has the same value for all generalized symmetries and
hence for all sine-Gordon deformed surfaces. Thus in order to calculate x it
is enough to choose the simplest case. According to the Corollary (3.13) the
choice ¢ = 0, leads to a sphere with radius 5 where x = 2. In this example
since curvature density have the same form with eqn. (3.41), then x > 0 for
all compact sine-Gordon symmetry surfaces. Hence (with orientation) all de-
formed surfaces have the Euler-Poincare characteristics x = 2. Therefore they

are all homeomorphic to a sphere. This completes the proof of the theorem.O

Remark 3.15 Consider the case, immersion (3.36) is smooth, in the preceding
theorem. Since continuous and smooth categories are same for two dimensional
manifolds, then compact, connected and oriented surfaces associated with the
symmetries of sine-Gordon equation are diffeomorphic to sphere. If there are

any such surfaces other than the sphere with K > 0 then they must be ovaloids.

Solitonic solutions of the sine-Gordon equation satisfy the rapidly decaying
conditions , §(to0) =0, 6 1(+oo0) = 0, 0 (Foo) = 0,.... Then for such a case

we have the following lemma

Lemma 3.16 [I] Let M be the surface defined in Lemma (3.12). Suppose
that this surface is non-compact. If the associated solution 0(z',z?) of the

sine-Gordon equation salisfies the conditions that 0,01,0,, ... lend to zero as

/_ ” /_ ~ \Jdet(g) K dz'dz? = 0. (3.43)

z! — oo then

Proof: (6,)*|2 tends to zero as ¢;,¢; — =00 so (3.43) does.O

We now consider a different class of immersed surfaces which are also con-

structed from solutions of the sine-Gordon equation such as

oo

_ -1
F =4 TR

Lemma 3.17 [1] Let M be the surface constructed by Uy, k = 1,2 which are
given by the equation (3.32) and by Ay = p%ﬁ, k = 1,2 where u depends on A.

Then M is a surface of constant negative curvalure.
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Proof: Frame on M is defined by

?

A] = 5”0'37
_ TR,
Ay = 3% (sin oz — cos 8o3),
As = +ioy. (3.44)

Corollary (3.5) allows us to calculate the geometrical quantities given above.
This surface has the following fundamental forms and curvatures

2

dsf = () + & cos0da' de? + 5 (4,
ds%l = :t‘f sin 0 dz! dz?,

2
K=-2 1=+ cou0).
p w

Corollary 3.18 [1] Let 8 be a rapidly decaying solution of the sine-Gordon
equation and M be the surface defined in lemma (3.17). Then

T[T det(g) K da' da? = 0.
Ll

Proof: This is a consequence of

Vdet(g) K = —sind = —0 4,.

We now consider yet different class of immersions associated with solutions
of the sine-Gordon equation, in the form
F =& (uo + ‘-2’101)¢
Lemma 3.19 [I] Let M be the surface constructed by Uy, k = 1,2 which are
defined by equation (3.32) and, by Ay = u%h—l—%[al, Url, k= 1,2 with p = Ap.
Then
2 _ P’ 2 N2 9 o 12, 1 2\2
ds7 = 5()\ (dz')* — 2 sinfdz’ dz” + F(d:c )),
1
ds?; = ’5’ [\* (da')? — 2(sin 0 + cos 0) dz' dz” + 5 (d=”)",
23



2 2 2
K=-—tanf , H=-—-tand.
p p p

The curvature density \/det(g) K has a form similar to the one in corollary
(3.18). Thus \/det(g) K = —sinf = —0 ;5.

Proof: Frame on M defined by

1
A = 3 A p (o2 + a3),
A, = % § ((cos 8 + sin ) o3 + (cos 8 — sin 0)a3),
A3 = 7;0'1.

Then claim follows by using corollary (3.5).0

The following corollary of the Lemma (3.19) is for the solitonic solutions of

the sine-Gordon equation

Corollary 3.20 [1] Let § be a rapidly decaying solution of the sine-Gordon
equation and M be the surface defined in lemma (3.19). Then

/_°° /_m \Jdet(g) K dada® = 0. (3.45)
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Chapter 4

Weingarten Surfaces

In this chapter, making use of the generalized immersion function established
in chapter 3, we shall construct Weingarten surfaces arising from some other

nonlinear partial differential equations. The classical description of Weingarten

surfaces is studied in [35].

4.1 Linear Weingarten Surfaces

In this section we will study equations on which the surfaces associated with

their symmetries hold a relation

FK,H =aK+BH+vy=0.

4.1.1 The Sine-Gordon Equation

Now start from the Lax representation of sine-Gordon equation given in equa-
tion (3.32):

U] = 1 (-—01 a1 + )\0’3) y U2 = L(sin()az — COS 00’3).
2 ’ 2)
Lemma 4.1 [1] Let M be the surface constructed from Uy and U, defined by
equations (8.32) and from Ay = p%%h + 1.gl[al,Uk], k =1,2. This surface whose

immersion funclion is given as
i
F = &7 (uoy+ -2’3 o) @,
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satisfies the following Weingarten relation
(LW +XpHK +2pXN H 44X =0. (4.1)

and it is parallel to a space of negative constant curvature. The distance between

these surfaces is E.

Proof: Weingarten relation (4.1) can be directly verified with a tedious calcu-

lation.

Let Ko and Hy be the Gaussian and mean curvatures of a surface M, with

constant curvature Ky and let M be parallel to My then

_ K 0 - H—-—aK
C1-2aH+a*K"’ o= 1-2aH+4+a%*K

Ko (4.2)

where a is a constant [34]. Hence comparing the first equation above and (4.1)
we find that
16 A?
a=L2  Kp=——t .
3p2 + 4/12
Thus M is parallel to a surface M, with negative constant curvature and % is

the distance between the surfaces.O

We have the following corollary to the lemma (4.1).

Corollary 4.2 The surfaces equidistant to pseudospherical surfaces are lin-
ear Weingaten surfaces and according to lemma (4.1) in a certain coordinate

system all such surfaces can be characterized by the sine-Gordon equation.

4.1.2 The Sinh-Gordon Equation

The sinh-Gordon equation defined by
1

4(f1§e20 —e ) =0 (4.3)

011+ 02+

where 0(z',z%) € R and Hy # 0 is real constant. This equation usually associ-
ated with surfaces of the constant mean curvature Hy. In what follows we will

show that this equation can also be used to construct several other classes of

interesting surfaces.
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Lemma 4.3 Let 0(z',2%) € R be a solution of the sinh-Gordon equation (4.3),
where Hy # 0 is a real constant. Define Uy, Ay € su(2), k = 1,2, by

Uy = %[cos A(Hoe? + e7%)oy — sin \(Hoe® — e7%)oq + 28 503,

08 4.4

Uy = —Z%[sin M Hoef + 6“9)01 + cos AM(Hoe® — e‘a)az + 20 103], (4.4)
oU, ip

Ak = Z/LW + —2—[0'3,Uk] N k= 1,2 (45)

where p and p are real constants. Then the associated surface M with the

immersion function
F o= ! (2#3,\—%%1)0'3)(1)
satisfies the following Weingarten relation
(P*—4p*) K +2pH +4=0. (4.6)

There are some particular limiting cases. If p = £2u, S is a surface of constant

mean curvature

16 72
__ _ 1 - e HI-1
- 2“ ’ H = a0 K = 4u? H2 €40
46 rr2
. 1 . et H:—1
= —2u , H= il K = _._9__4#2

If p=0, S is a surface of constant positive Gaussian curvature,

I |
K =%,

_ (2 Hoze‘w-}-l
H = (,u)ng“g—l

If u =0, S s sphere.

Proof: Direct application of the theorem (3.9) and corollary (3.5) gives the
stated result. The surface M associated with the symmetry given in (4.5) has

the following fundamental forms and curvatures

1
gu = T (PH2p+p)+ (p—20))" +
4 Hy (4% — p?) sin® X e?),
Ho (4p* — p?) sin 2
g1z = )
8
1
922 = g2t (e*H3(2u +p) — (p— 2)]" —

4 Ho (4u® — p?) sin® X %)
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—HZe¥ (p+2p) —p+2u — 2p Ho cos 2) €2

bll =

’

8 e%f
p Hy sin 2\
b =
—HZe* (p+2p) — p+ 2u + 2p Hy cos 2X
by = )
8 ¢20
402 _
K:44026H01 2,
" Hg(2p +p)* — (214 = p)
g o= g S Hu+p)+(2p—p)

eVHE(2u +p)? — (2p - p)¥
and satisfies the following Weingarten relation given in (4.6). By arguments
similar to the ones used in proving lemma (4.3), it can be shown that this
surface is parallel to surface whose curvature is

16
16p2 — 3p?

constant. Distance between surfaces are a = f.D

1(0 =

Corollary 4.4 The surfaces equidistant to constant curvature surfaces are lin-
ear Weingaten surfaces and according to lemma (4.83), in a certain coordinate

system all such surfaces can be characterized by sinh-Gordon equation.

In the case of Hy = 0 the sinh-Gordon equation has some particular ge-
ometric interpretation. The sinh-Gordon equation reduces to the Liouville
equation

0’11 + 0,22 - 26_20 =0. (47)

We have the following lemma:

Lemma 4.5 Let 0(z',z*) € R be a solution of the Liowville equation (4.7).
Dcfine Uy, Ag, k = 1,2 by
U, = i(e—o cos Aoy + e ?sin Aoy + 20, 03),
?

U, = —Z(e_o sin Aoy —e P cos Aoy + 20, 03),

where Ag, k = 1,2 are given in (4.5) with p # £2u. The associated surface S

has the following fundamental forms and curvatures

4
K = —
(2u — p)?
H = __*
2u—p
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Thus for any p,p with p # 2u, S is a sphere.

Proof: Direct result of theorems (3.9),(3.4) and corollary (3.5) with symmetry
given in (4.5)).0

4.2 Nonlinear Weingarten Surfaces

4.2.1 The Nonlinear Schrodinger Equation

The nonlinear Schrodinger equation is an equation for a complex function
(!, z?).

e =P + 2%
Letting ¥(u,v) = r(u,v) + t3(u, v), the real valued functions r and s satisfy

re = su+2s(r’+s?), 4.8)
s2 = —rq —2r(rt+s?).

'

The associated matrices Uy, k = 1,2 defining NLS’s Lax pair are given by

U o= —2) 2(s —r)
VT2 2(s +4r) 2) ’

(4.9)
U = ; —4X? + 2(r? + §%) v — 1y
L 2 v, + vy 4D\t —2(r2 4+ sh) )’
where
v =2r1+4Xs , vy = =237+ 4Ar. (4.10)

Lemma 4.6 Let U,k = 1,2 be defined by equations (4.9), where r and s
satisfy the integrable nonlinear equations defined by (4.8), and vy, v, be defined
by (4.10). Let Ay be defined by A, = p %_%h, k =1,2, where p is a real constant,

r.e. let

. . _8) Auls — i
A=t (T0) 4ot B Auls “")) L (411)
2 0 2u 2 \4pu(s +r) 8Au
Then geometrical quantities of the surface M with the immersion function
0o
— -17=
F = ud® £
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associated with the Uy, Ay, k = 1,2 are

ds} = p?[(dze' — 4\ dz?)? + 442 (dz?)?],

dsi; = —2pqldz’ — (=41 + 2))da?]® + 24 g.11(dz?)?,
- 9,11
K = —_——
Hq
g — fu—4 (p1+2X%) —44°
: 2pq? '

which can be expressed in terms of the new variables
T=g¢qcos¢, s=gsing,
In terms of these variables the NLS (4.8) become

— -9 3 2
992 g — 2¢° + q95, (4.12)
q:2 qo11+2¢194.

Proof: Use frame defined by (4.11) and corollary (3.5).0

In particular if ¢ = va?, ¢ = q(z') , where v is a real constant, then ¢(z')

satisfies

¢ = —-2¢° - vq. (4.13)

Lemma 4.7 Let Uy, Ax, k = 1,2 be defined by the equations (4.9), and (4.11)
where r = q(z!)sin(vz?), s = q(z') cos(vz?), \, v, are constants and q(z')
satisfies (4.13). Then the associated surface S is a Weingarten surface which

satisfies the relation

2uPH? (WP K —v) = (Bu® K + 4 X\ —2v)*,

If v = —4)?% the above Weingarten relation becomes quadratic,
2 4)?
K--H+4+-"—=0.
9 + 9u?

4.2.2 The mKdV Equation

Let p(z!, 2?) satisfy the so called modified Korteweg-de Vries equation

3
p2=pan+ 5 PP pa- (4.14)
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The associated matricesUg, k = 1,2 which define its Lax pair are given by

Y
hos 5(—/) —A>’

. (4.15)
U, — ; —%—{-)\3 v — 1y
] v1 + 104 A2 y3 )0
2
where .
v =pn+ % ~Xp  ve=—Ap,. (4.16)

Lemma 4.8 Let Ui,k = 1,2 be defined by the equations ({.15), where
p(z',2?) € R satisfies the mKdV equation (4.14) and vi,v, be defined by the
equation (4.16). Let Ag,k = 1,2 be defined by Ar = p %\h,k = 1,2, where p is

a real constant, i.e. let

: 0
sl
0 —u
2 (4.17)
A - i =B 4+ 3uX® =2pdp +ipp,
P or\oudp—ippy B -3uA? )T

The geometrical quantities of the surface M associated with the Uy, Ax, k = 1,2,

0P
F = (I)_I ey
)\
are given by
K = ,‘_2(72%—2,;2)2 [46° p 111 — 407 p panr — 4p*(p11)°
+ap P o — 4N p° p i + 4% pux — Py + 8p* PP, (4.18)

H = oo paapre [—ppmun+papan =3 ppn
—p° pa1 + 222 p% — 3p? p — 4X% p? — 4X? p?],

ds?t = £ [(dz' + 1 (p* — 6X?)dz?)? + (p} + 4)? p?) (da?)?),
dsi; = G,?I‘.H_/,\\g_,,z‘)ﬂi [—p® (dz)* + (=2pp11 + P,21 +2)2 p? — p%) d:c‘dmz4 19)
+1(—4ppan +4pp pinn + 1202 pp 11 — 80°p11—
4/\2[)’21 — 6p p2 — AN p? 4 4N2 i — 2°) (dz?)?

Proof: Direct result of equation (4.17) and corollary (3.4). O

A particular reduction of the above surface M is a Weingarten surface with

a complicated Weingarten relation.
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Corollary 4.9 Let Uy, k = 1,2 be defined by the equations (4.15), where A, 1, o
are constants and suppose as a particular case, that p(z',z?) = p(z' + az?)

satisfies
3

pl=ap— % (4.20)
Then the associated surface M is a Weingarten surface satisfying the relation

B2 H? p? (4o +4X%) — p*]° = 1612 p*—
602 (o + 4X2) — 8A? (a + 4X2))?,

16 A2 o+ 4)2
2 = 4 + 402 I .
pr=Mat )+ = ey

It is interesting that using a different Lax pair for equation (4.20) it is

(4.21)

where

possible to obtain a Weingarten surface simpler than the above one in (4.21)

Lemma 4.10 Let Uy, k = 1,2 defined by

A -
“o= %(—p —i)’

”2—2—(a+a)\-l-)\2) (a+X)p—1p,
Casirti Vo)
where A\, a are constants and p satisfy the equation (4.20). Let Ax,k = 1,2 be
defined by Ay = ,u%f*, i.e. let

(4.22)

Up = —

IS

. 0
A z ,
o (0 —u)
(4.23)
A o= i (—(a#+2M) Ko )
: ’ pp ap+2uX)
This surface M with the immersion function
od
= p @' — 4.24
Fo=p@ o5 (4.24)
is a Weingarten surface satisfying the relation
2u® H? (1 K + 4a) = 3> K +4)* + 8a)*. (4.25)
In the special case a = \? the relation becomes
oul H? = 9[u® K + 4)%). (4.26)
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Proof: The geometrical quantities of the surface M associated with the
Uy, Ak, k = 1,2 are given by

2 1
K=—[p"-2a], H=—[3p%+2()\% — a)],
ﬂf_,,[p ] M,[P ( )]

2 _
dsj =

& [(da! + (a+2)) da?)? + p? (dz?)?),
ds?, = &£
II 2

[dz' + (o + A) dz?]* + 2 (p? — 20a) (dz?)?.
by using corollary (3.5).0
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Chapter 5

Conclusion

In this work we presented a procedure of the construction of surfaces in R? as-
sociated with the symmetries of integrable nonlinear partial differential equa-
tions within the framework of surfaces on Lie groups and on Lie algebras. We
applied this method to some well-known integrable equations and obtained
several symmetry surfaces. In particular we investigated some global proper-
ties of surfaces arisen from constant gauge transformation and symmetries of
sine-Gordon equation. We showed that under rigid SU(2) rotations all inte-
grable equations are mapped to sphere. In the case of sine-Gordon equation,
we proved that all compact sine-Gordon symmetry surfaces are homeomorphic
to sphere. Besides we have constructed several Weingarten surfaces associated
with symmetries of some soliton equations. We found some explicit linear and
nonlinear Weingarten surfaces generated by the symmetries of sine-Gordon,
sinh-Gordon, mKdV and nonlinear Schrodinger equations. Some characteriza-

tion results are given for linear Weingarten surfaces.

However, many questions remain open and deserve further investigation.
The logical continuation seems to consider the equations whose Lax pair is
given on other Lie algebras e.g. su(1,1), sl5(R). Another interesting problem
is the characterization of nonlinear Weingarten surfaces by the symmetries of

soliton equations. These questions are being pursued further.

34



Appendix A

Fundamental Equations for
Submanifolds

In this appendix we begin by considering higher dimensional embedded or

immersed manifolds, of higher codimensions. For interested readers we refer

to [32, 33).

A.1 Fundamental Equations for Submanifolds

Let F': M™ — N™ be an immersion of an m-dimensional Riemannian manifold
(M, F*g") into an n-dimensional Riemannian manifold (N,g¢"). For every
p € M, we have T,N = T,M & T,M~, and we use this decomposition to define
two projections, T : T,N — T,M and L : T,N — T,M*t. [(TM) and T(TM*)
are the setls of tangent and normal vector fields respectively. For vector fields
X,Y € I(TM) and ¢ € I(TM*) we write

VXY = T(VRY)+ L(VXY),

V¢ = T(Vxé) + LV,
where V¥ denotes the connection in N. TVY and LV induces connections
on TM and on TM*, denoted as VY and Dy respectively. And we will denote
Ag(X) = =T(VXE).

(A.1)

Definition A.1 The second fundamental form tensor of M is s(X,Y) =
L(VRY). If we choose vpyr,...yvn € T(TM?L) such that < v,,v, >= €,
where €,, = 46,, defined in a neighborhood of a point p € U C M, we define
n — m real valued second fundamental forms Q" by

AUX,Y) =< VI v, >=< s(X,Y), v, > . (A.2)
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Definition A.2 Connection D defined above is called the normal connection.
So we introduce the normal fundamental forms 32, by

Bi(X) =< Vv, v, >=< Dxv,,v, > . (A.3)

With notation that we have just introduced , we may rewrite decompositions

given in equations (A.1)

VRY = T(VRY)+s(X,Y), (A.4)
VXE = A(X)+ Dxé, (A.5)

which are called the Gauss formula and the Weingarten equations respectively.

Theorem A.3 Let M™ be a submanifold of the Riemannian manifold N™, for
X,Y,Z and W are tangent fields along M, we have the Gauss equation

< RN(X,Y)Z,W > — < RM(X,Y)Z,W > (A6)
=<s(X,2),s(Y,W) > — <s(X,W),s(Y,Z) >.
Proof: We have
VAVYZ = VYVY Z + s(X, VM Z) + VE(s(Y, 2)),
similarly
VIVRZ = VUV Z + s(Y, V¥ Z) + VY (s(X, Z)),
as well as
VixnZ = VigknZ +s([X,Y], 2).

Substituting last three equations and noting that W is orthogonal to any term

s(.,.), we obtain

< RN(X,Y)Z,W >=< RM(X,Y)Z,W >
+ < VQ(S(Y, Z)) - V)A’/(S(X> Z)))W >

On the other hand, since < s(Y,Z), W >= 0 we have
0=X <s(Y,2),W >=< V¥s(Y,2),W > + < s(Y, Z),s(X, W) > .

Desired result is obtained by substituting the last equation and the similar

expression with X and Y interchanged. O
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Theorem A.4 Let M be a submanifold of a Riemannian manifold N. Let
v, € T(TM*) where r = m + 1,..,n with corresponding " and pr. Then for
all tangent fields X,Y,Z along M, we have Mainardi-Codazzi equations

< RN(X,Y)Z, v, >=(VYO)Y,Z)— (V¥O)(X,Z)

+ eV, 2)BUX) - o(X, 2)gi(w)). AT

Proof: Since D is the connection on the normal bundle of M we get
Dx(s(Y, 2) = X(@'(Y, 2))v, + Q' Dy,
moreover
s(VRY,2) + s(Y,V¥Z) = *(VHY, Z)v, + (Y V¥, Z)v,.
Then these two equation give

Dx(s(Y,Z2) — s(V¥Y,Z)- s(Y,V¥2)
= (V¥Q)Y, Z)+ Q*(Y, Z)Dxvs,,
and hence
<Dx(s(Y,Z) — s(VXY,Z)—s(Y,V¥Z),v, >
= (VEO)Y, 2) + e(Q(Y, 2) B4 X).
Finally there is a similar equation by interchanging X and Y. After the substi-
tution LRN(X,Y)Z = Dx(s(Y,Z)—s(VHY, Z)~s(Y,V¥Z)— (Dy(s(X, Z)—
s(VMX,Z)— s(X,V¥Z)), we obtain the Mainardi-Codazzi equations. O

Before introducing the Ricci equations, we introduce one more operation.
Given tangent fields X and Y along M and a basis Uy,..,U,, such that <

Ui, U; >= ¢g" = +6;;, we set
O« (X, Y) = g7 (X, U)Q (Y, U;).

Theorem A.5 Let M be a submanifold of N. If v, € D(TM?*) where r =
m+1,..,n with corresponding ¥ and f3;, then for all XY € I'(TM), we have

the Ricci equations
< RN(X, Y, v, >= 0« Q(X,Y) - Q"+ (Y, X) (A.8)
HVHB)(Y) — (VY B)(X) + en(B(X)BHY) ~ B (V) B (X))- '
Proof: By using the Gauss formula and Weingarten equations
VEIVYE = —VXAL(Y) — s(X, A¢(Y)) ~ Apye(X) + Dx Dy,
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we get the normal components

L(VEVYE) = —s(X, Ae(Y)) + Dx Dy,
L(VYVYE) = —s(Y, A¢(X)) + Dy Dxé,

and
LV} )¢ = Dix i
Thus we obtain
LRM(X,Y)¢ = Ro(X, V)6 + s(A¢(X),Y) — s(Ac(¥), X),

where Rp denotes the curvature of the normal connection. Now if Uy, .., U, is

a given basis of T, M
A, (X) =X, U)U;,
and
<$(A,(X),Y), v, >= 0 xQ(X,Y),
we also have

< DxDyv,,vs >= X(B:(Y) — enSHX)BL(Y),
< -D[X,Y]V'r) vy >= ﬂ:(vj)‘(/fy) - ﬁ:(vl}’wX)

Using the above equations we obtain the Ricci equations. O

We have seen that the Gauss and Mainardi-Codazzi equations are precisely
the integrability conditions of the Gauss formula.The integrability conditions of
the Weingarten equations lead to two sets of equations. One set reduces to the
Mainardi-Codazzi equations, the other set is the Ricci equations. Therefore

three fundamental equations give the complete set of equations for smooth

imimersions.

A.2 Gauss, Mainardi-Codazzi and Ricci Equa-
tions in Local Coordinates

We shall rewrite Gauss, Mainardi-Codazzi and Ricci equations in terms of a
basis [32] :
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Let M be an immersed submanifold in N. We consider a coordinate system

y',..,y™ on a neighborhood of U C N, with the metric
<. .>N= gg;,dy“ ® dy”,
and let z!,.., 2™ be the coordinates on M, with

<.,. >M: gz];/jd:vz ® d.’II],

When we consider the local parametrization of M as y* = y*(2!,..,2™). 9; for

¢ =1,..,m is the corresponding basis of T, M.

gNysyl = g,

where y% denotes the covariant differentiation of y* with respect to z'.

To write the Gauss, Mainardi-Codazzi and Ricci equations, all we need is to
write )" and 3] in terms of the local coordinates. For the local parametrization

y* = y*(z',..,2™) of M, we can write the basis of T,M in terms of coordinates

of N as 0; = y$0» . Then we have
V505 = (y3; + Tooyiy5) Oa,
and definition of Q)" gives

Q= 0(8;,0;) =< VYo;,v > (A.9)

o

= NP (y% + T8, Y5Y7) Oa-
Now we have

Vv = (v8 + Do, vPy5)Oa-

pa

Similarly normal fundamental forms can be written in terms of local coordi-

nates
B = ﬂ:(a,) =< Vla\:l/r,lls > (A ]0)
= gl (vi 4 o vy?)Oa. |

Now we can write all fundamental equations of immersed manifolds Let
X=0;=y30,Y =0, = yg-ag, 7 = Ok = yt0y, and W = §; = y30s, then we

have the following lemma

39



Lemma A.6 In local coordinates the Gauss-Mainardi-Codazzi-Ricci equations
are respectively given by

Raﬁ'yﬁy yjy k?/z = Rzl"jdkl + frs(ﬂfk ;l - :lnjk)v (A-ll)

and if v, = V)0, and v, = V205, we get Mainardi-Codazzi and Ricci equations

as follows

Raﬁ'y5y y yk’/ = ]kz th]+e"‘3( ]kﬂn s T]-')7 (A12)

Ry 595 y i = g0 07,8, )+
« * A.13
7']7. 161'13 + Cth(ﬂtz —-ﬁt] ) ( )

A.3 Immersions 1nto Constant Curvature
Spaces

It is useful to examine the form which our fundamental equations take when
the ambient space N has constant curvature Ko. For the case Ky > 0 the
manifold N is just the n-sphere of radius ﬁ . For Ky < 0, we obtain an

analogous submanifold n + 1 dimensional Euclidean space E™*! by considering

a pseudo-Riemannian metric on E™"!. Ky = 0 is trivially E™.

In each case mentioned above, curvature tensor RY of N satisfies
N -
< RN (8., 05)8y, 85 >= Ko(gh595, — 98,955);
where 0y, dg, 0y, 05 are the basis element of T, N

Now Gauss, Mainardi-Codazzi and Ricci equations can be simplified by
using this restriction on RY. They take the form
the Gauss equations

N N\ o T ()S
Ko(go’ng& — gaqgﬁs)y:iygylyz = Rz]kl + € (3,07 — Q0%).

the Mainardi-Codazzi equations

]"0(92,59;;7 gmgﬁs)y Y.j JL'/ = Q - fk:]‘ + GTS(Q;k:B.:i - 0 :j)'

the Ricci equations

Ko(92s9p, — 92,985 ySyv7 vy = g% (U035 — Q5805+
. rt]+6th(ﬂt1 T 16:_1 :Lz)

Tin
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respectively.

As a final remark we can write fundamental equations of immersion of M

into N = E™ i.e. curvature tensor RV = 0, take the form
the Gauss equations

RMlcl + €5 (53,805 — Q58,) = 0.

)

the Mainardi-Codazzi equations

Wi — Vg + €rs (D505 — QB;) = 0.

the Ricct equations
97 (805 — ) + Bl — Bl + eth(ﬁ:iﬂfj - ﬁzjﬁfi) =0.

respectively.

A.4 TImmersions of Hypersurfaces

Let us consider a more specific situation where M™ is a hypesurface in N™*1,
that is, a submanifold of codimension 1. In the case of hypersurfaces we can

locally choose a unit normal vector field v on a neighborhood of p € U C M.

Then Weingarten equations reduce to
N _ Ny «_ .
< Vxr,Y >=— <y, VyY >=<1,5(X,Y) >,
and since < v, Y >= 0 and < v,v >= 1 along M,we have

0 = X<vY>=<ViY >+<y,VIY >,

0 = X<wvv>=2<Viyv>.
Hence
D)(l/ = 0,
s(X,Y) = QX,Y)y,

or equivalently normal fundamental form f5}} vanishes. We can compute
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the Gauss equations

N 8 § M
Raﬂqaygy:jylya = Rijkl + €rs(Q:'k ;z - :IQ;k)'

and the Mainardi-Codazzi equations

N o, B v § _ Or r
ch,@'y&y:iy:jy:kur = 3k T ke

The Ricci equations are trivial if M is a hypersurface. And finally if we let N

have zero constant curvature, then equations simply become
the Gauss equation

RM + €,(Q5.05 — O %) = 0.

] J

and the Mainardi-Codazzi equations
T o7
ki = i

respectively.
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