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ABSTRACT

INPUT SEQUENCE ESTIMATION AND BLIND
CHANNEL IDENTIFICATION IN HIF
COMMUNICATION

M. Khames Ben Hadj Miled
M.S. in Electrical and Electronics Engineering
Supervisor: Assist. Prof. Dr. Orhan Arikan
August 1999

Recent advances in blind channel equalization approaches and the availabil-
ity of fast processors have made it possible to communicate reliably over long
distances through HI' communication links. Current rescarch efforts locus on
the improvement of the performance of the communication systems which de-
grades significantly during the “bad tropospheric conditions” when the channel

characteristics show rapid variations.

In order to improve the performance of the HF communication links during
these conditions, algorithins thiat can identify and track the chauncl charac-
teristics are proposed in this thesis. Detailed simulation based comparisons
with the existing algorithms show that the proposed approaches siguificantly
improve the performance of the communication system and enable us to utilize

HF communication in bad conditions even at 10 dB SNR.
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OZET

GIRISI BILINMEYEN ILETISIM KANALLARININ HATASIZ
TANINMASI

M. Khames Ben Hadj Miled
Blektrik ve Itlektronik Mithendisligi Bolumu Yiuksek Lisans
Tez Yoneticisi: Yrd. Dog. Dr. Orhan Arikan
Agustos 1999

Gozii kapali olarak kanal denklestirme konusunda yakin zamanda geligtivilmisg
olan yeni yontemler hizli sayisal iglemciler sayesinde kullamilarak HF linkleri
tizerinden giivenilir gekilde haberlesmeyi olanakh kilmiglardir. Dvam etmekte
olan arastirmalr iletigim performansinin 6nemli dlgiide diistugii kanal karak-
teristiginin hizh degisim gosterdigi kotii atmosferik sartlarda artirilabilmesini
amaclamaktadir. Bu tezde HI" linkleri dizerinden yapilan iletigimin perfor-
mansini artirabilmek amaci ile HF kanalini tamyabilecek ve zaman icerisindeki
degigmini takip edebilecck yontemler Onerilmigtir. Var olan yontemler ile yapi-
lan benzetimlere dayah detayh kiyaslamalarda geligtirilen yontemlerin onemli
bir performans artirim saglayarak kotii atmosferik sartlarda 10 dB sinyal-

giiriiltii oraminda dahi iletigimi olanakli kildiklar gozlenmigtir.

Anahtar Kelimeler: Gozii kapah kanal tamnmasi, gozii kapali ters evrigim,

sistem taninnasi, kesirli 6rnekleme

v



ACKNOWLEDGMENTS

I would like to use this opportunity to express my deep gratitude to my supervi-
sor Assist. Prof. Dr. Orhan Arikan for his guidance, suggestions and invaluable

encouragement throughout the development of this thesis.

I would like to thank Prof. Dr. Inis Cetin and Assist. Prof. Dr. Murat Alanyal

for reading and commenting on the thesis.

[ express my special thanks to my family for their constant support, paticuce

and sincere love.

Finally, many thanks to all of my close friends.



Contents

1 INTRODUCTION 1
2 AN OVERVIEW OF HF COMMUNICATION 5
2.1 A Typical HF Communication System 5
2.2 A Model for the Communication System. . . . . . . .. ... .. 7

3 BLIND ESTIMATION OF INPUT SYMBOL SEQUENCE
AND IDENTIFICATION OF THE CHANNEL RESPONSE 10

3.1 Input Sequence Estimation . . . .. .00 o000 11

3.1.1 Estimation of Input Sequence in the Presence of a Chan-

nel Bstimabe . . o o o o o 12
3.2 DBlind Channel Identification . . . . . . . .. ... ... .. 15

3.2.1  Channel Identification in the Presence of Input Sequence

Estimate 17

vi



3.3 Proposed Algorithms and their Simulated Performances . . . . . 24

4 SIMULATION 32
5 CONCLUSIONS 35
APPENDICIS 41
A Noise Reduction Due to Fractional Sampling 41
B Convergence of Input Sequence Estimator 43
C Proof of Equation 3.12 45.

D Reduction in the Computational Cost of the Kalman Filter 47

vii



List of Figures

2.1

2.2

2.3

2.4

3.1

3.2

3.3

4.1

Surface 1onospheric layers’ model.

Difluscd ionospheric layers’ model.

Modecl of the communication system with fractional sampling.
Multi-channel filter model of the baseband equivalent ol the
communication system. .

Block diagram of the iterative solution.

Efficient implementation of the signal estimator.

Available samples of hygyz,, are shown with ‘o’. The required

samples of h; ,,, which are shown with -+, can be interpolated by

using a low order interpolator such as linear 3-point interpolator.

Normalized channel estimation error in the open-eye case with

rapid timec-variation and low SNR.

viii

12

14

33



4.2 Bit-crror and normalized channel estimation error for Algorithin

10 in the blind case with rapid time-variation and low SNR. 34

ix



List of Tables

3.1

3.2

3.3

34

3.6

3.7

3.8

Average logarithmic error (in dB), €4y, in the case of known

input sequence for algorithms 1, 2, 3, and 4.

Average logarithmic error (in dB), €4, in the case of unknown

input sequence for algorithms 1, 2, 3, and 4
Bit-crror rate for algorithins 1, 2, 3, and 4.

Average logarithmic error (in dB), ¢,,, in the case of known

input sequence for algorithms 5, 6, 7, and 8.

Average logarithmic error (in dB), €,,, in the case of un known

input sequence for algorithms 5, 6, 7, and 8.
Bit-crror rate for algorithms 5, 6, 7, and 8.

Average logarithmic error (in dB), ¢4, in the case of known

input sequence for algorithms 9, 10, 11, and 12.

Average logarithmic error (in dB), €,,, in the case of un known

input sequence for algorithms 9, 10, 11, and 12.

30

30

30

30

30

31

31

31



3.9 DBit-error rate for algorithms 9, 10, 11, and 12.

4.1 Average logarithmic error for algorithms in [1] and [2]

x1

31

33



To the spirit of my father .



Chapter 1

INTRODUCTION

Digital communication systems usually suffer from inter-symbol interference,
ISI. This phenomenon is known to be caused by the channel memory, which
spreads the transmitted symbols in time, or due to time-varying multi-paths.
To combat the lmitation in performance due to such factor, blind channel
equalizers are usually built within receivers. The blind equalization techniques
proposed in the literature, either perform direct equalization, which is the case
of decision feedback cqualizers, DFE, [3] [4], [5], or divide the problem into
blind channel identification , BCI, and blind signal estimation, BSE, [6], (7]
[8] [9] [10]. The channel identification is based either on statistical properties
of the received sequence [6], [9], or on subspace methods, mainly in the case
of multi-channel systems or fractionally spaced channels. In [10], a review,
describing the main ideas behind statistical and deterministic approaches in

BCI, is presented.



In this work, we address the problem of blind equalization for HIF channels.
These are mainly characterized by time varying paths and additive noise. The
time variation in the channel response leads to a degradation in the perfor-
mance of the equalizer as time progresses. As a result, a periodic transmission
of a training scquence is required, which means a poor management of the
channel bandwidth. Morcover, even with the use of such periodic sequences,

the equalizer may fail and result connection break-down in poor conditions.

Recent research in the subject, tried to come up with robust equaliz-
ers [2], [11], and to avoid training sequences [4]. Different approaches like
improvements of decision feed-back equalizers and adaptive algorithms were
proposed. A comnonly used technique is fractional sampling [10]. The latter
provides channel diversity which helps [or better tracking of the variation in the
channel impulse response. Moreover, with the use of an appropriate low-pass
filter, the fractionally spaced channels’ output noise will have a considerably

reduced variance.

In this thesis work, we propose distinct iterative approaches, assuming a
fractionally spaced model of the channel, that aim a robust HF channel equal-
ization. Starting with a training period, a reliable estimate of the channel can
be obtained. Then at cach iteration, we make use of the previous channel cs-
timate to predict the input symbols and then use them to update the channel
transfer [unction cstimate. To ensure the convergence of the equalizer over
a long period, we developed a I(-delayed input sequence estimator that mini-
mizes the cumulative mean square error over the last K output measurcments.

We also suggest different algorithms for the channel identification purposc.



The channel identifier consists of a cascade of two different blocks. The first
is a Kalman filter that makes use of the estimated input vector to provide an
estimate for the channel impulse response. The latter will be fed to a subspace
tracker to update an estimate for a basis of the channel subspace. Once a
reliable estimate is obtained, significant part of the noise can be climinated
through a projection. The described approach is based on the assumption that
the slowly time varying chanuoel belongs to a low-rank subspace. Based on
different descriptions of the problem, distinct channel identification methods

are developed.

Another relevant issue in HEF communication is the modeling of the HF
system. Any proposed model should reflect the physical characteristics of the
transmission medium. A simple and commonly used model, proposed in [12],
reflects the multi-path nature of the HI' channel and the randomness in path
delays and amplitude distortion. As a part of our contribution, we extend
the described model a more realistic one that takes into account the limited
bandwidth of the channel and the physical characteristics of the reflective iono-

spheric layers.

The proposcd approaches are sunulated for different noise realizations and
time-variation conditions. The performance of the channel ideutification algo-
rithms is tested in both, blind and open-eye, cases. In the case of known input
sequence, all the proposed algorithms show rapid convergence and relatively

small estimation error.

The organization of the thesis is as follows: First an overview of the HIEF
communication is given and the new HF system model is described. In Chapter

3, the problem formulation is presented. Then, a description of the input

3



sequence estimator is provided. The different channel identification methods
are explained and the algorithms are explicitly stated and compared in terms
of performance and computational cost. In Chapter 4, simulation results of the
best performing algorithms are shown and compared to the ones corresponding

to already existing approaches. Finally, the thesis is concluded.



Chapter 2

AN OVERVIEW OF HF
COMMUNICATION

2.1 A Typical HF Communication System

In HF communication, the transmission medium in between the transmiticr
and the receiver systems is the atimmosphere. Transmitted signals may follow
multiple paths as they are reflected by distinct ionospheric layers. A simple
model for such channcls was proposed in 1969 by Watterson [12], and exper-
imentally verified in 1970, [13]. The model represents cach signal path by a
delayed impulse, the magnitude of which changes in time to reflect the random
nature of the reflections in the ionosphere. In the Watterson model, surface
ionospheric layers are assumed to be as shown in Figure 2.1, and cach transmis-
sion path is represented by a single delayed impulse. As a result, the individual

reflections in ecach multi-path may cause amplitude distortion and delay but



do not change the shape of a the transmitted signals. Therefore, the bascbhand
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Figure 2.1: Surface ionospheric layers’ model.

channel I/O equation for the Watterson model can be written as;
Z Gi()z(t — s;) (2.1)

where G(f) models the time varying reflection and it is obtained by filtering

white noise with a Gaussian function.

An improvement of the Watterson model can e obtained by incorporating
diffuse reflective layers to the model (see Figure 2.2). This can be achieved
approximately by modeling the channel transfer function as a sum of shifted
Gaussian functions, each of which corresponding to a distinct transmission
path. The intuition hehind such a choice is the assumption that the reflection
points are independent and identically distributed in the space occupied by the

ionospheric layer. The improved baseband channel model becomes:

ZG’ Na () = fi(t — s3] (2.2)

where f;(t) = f— ()7,[)(5'—7";) and (*) denoting the convolution operation. By

choosing the shape: G;(¢) and v;, and location: s;, parameters of cach channel
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Figure 2.2: Diffused ionospheric layers’ model.

transfer function as time-varying, various important physical characteristics
of the HF channels such as the altitude and the thickness variations in the

reflective layers can be modeled.

2.2 A Model for the Communication System.

A typical HF communication vsystem with serial data-transmission can be mod-
eled as shown in Figme 23. The input data symbols x[n] are chosen from
a finite alphaljet. The transmission medium is the atmosphere, as previously
described, and y{t) and w{t) are, respectively, the received and additive noise
signals. Following the demodulator, the signal is low-pass filtered with a pass-
band equal to that of the input signal bandwidth. Then the output of the low-
pass filter is sampled with an over-sampling factor of M where T corresponds
to the ini)ut symbol duration. The channel transfer function is assumed to be

the cascade of the transmitter filter, the transmission medium, and the receiver

filter.
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Figure 2.3: Model of the communication systemn with fractional sampling.

The oversampling of the received signal, which is also called as fractional

sampling, results in channel diversity. In [14], it is shown that using [ractional

sampling, the communication system model becomes equivalent to a single-

input multiple-output, SIMO, system as shown in Figure 2.4. This technique

was extensively exploited in the literature, and the identifiability conditions

for fractionally spaced channel are considered in [15] and [16].

<

=

n,l

x[n]

hn,Z

hn,M

yl (n]

n
Y, [n]

n]
YM [

Figure 2.4: Multi-channel filter model of the baseband equivalent of the com-

munication system.



In Figure 2.3, the noise signal w(t) is low-pass filtered and then fractionally
sampled to get the noise sequences vi(n], 1 = 1,..., M, shown in Figure 2.4. In
Appendix A, we show that the low-pass filter, LPI, together with the fractional
sampling technique reduce the noise variance by a factor of 1/M. Moreover
the noise samples become correlated and the noise covariance matrix acquires
a special form that depends on the LPIF impulse response. Assuming a known
noise variance, the noise covariance matrix cau be precomputed. The required
noise statistics can be estimated during silent intervals, or even during data
transmission by computing spectral energy ol the demodulator output out of

the spectral support of the signal.

In this thesis we will address the following problem: given the output mea-
surements y;[n], 1 = 1,2,..., M, and the second order statistics of the additive
o

noise processes v;[n], obtain reliable estimates to the input sequence {x[n]}>2

and the channel transfer functions h;,,, (sce Figure 2.4) .

In the following chapter, this problem will be treated in detail and the

proposed algorithims will be presented.

9



Chapter 3

BLIND ESTIMATION OF
INPUT SYMBOL SEQUENCE
AND IDENTIFICATION OF
THE CHANNEL RESPONSE

In HEF commuuication, as in most of the communication systems, the ultimate
purpose is to be able to estimate the transmitted symbol sequence as reliable as
possible at the receiver. However, since the medium of transmission is the HI
tropospheric channel, the receiver has to provide estimates to the input sym-
bols in the absence of a precise channel transfer function. This problem is faced
also in the mobile communication systems and has been commonly referred to
as the problem of “ blind estimation of the input symbol sequence”. Another
important problem in the HE communication is the identification and tracking

of the time-varying HE channel response when the channel input sequence is

10



unknown. This latter problem is commounly referred to as “blind channel iden-
tification” and has found application in many other communication systers.
As it can be expected the blind channel identification and input sequence esti-
mation problems are very much related to cach other, and in most applications
a solution to onc of them requires a solution to the other one. Therefore in
the approaches proposed in this thesis, the problems of blind channel identifi-
cation and input symbol estimation ave iteratively solved by making use of the

solution to one to get a solution to the other.

3.1 Input Sequence Estimation

In this scction, we describe a method to estimate the input symbols when
they are chosen from a binary alphabet. Assuming that the individual channel
responses are of finite duvation: hy, = [h;n[0], by W [1], e i oL =177 jwhere
L is the channel order, the individual channel outputs can be written as:
yiln] = hy, %, + vin] (3.1)

where x,, = [z[n},2[n — 1], ......e. ,2{n — L + 1]}7 is the channel input vector.
Now, a precise statement of the problem can be given as:

estimate  x[n] € {FA}, for n>0

by using  yin] = ll;{'nx,,, +vi[n], forl <1< M.
As seen in the above formulation, the available measurements yi[n] depend on
on the unknowns of the problem: x, and h; , in the multiplicative form. Hence,
the input sequence cannot be reliably estimated by using efficient estimators

such as the Kalman filter.

11



In the following, we will provide alternative solution approaches where,
after obtaining an initial estimate to the channel by using a short training
period in which a known sequence is transmitted, the input sequence will be
estimated by using the estimated channel and then the channel estimate will
be updated by using the estimated input sequence. A block diagram for this
iterative solution technique is shown in Figure 3.1.

A
xll

Y . . =
n Input Symbol Sequence h N )
: Channel Identificr

Estimator ~

Figure 3.1: Block diagram of the iterative solution.

3.1.1 Estimation of Input Sequence in the Presence of

a Channel Estimate

In this scction, we will consider the estimation of the input sequence by as-
suming the availability of a reliable channel estimate h,. The statement of the
input sequence estimation problem becomes:

Given hy,, and the covariance of the zero-mean noise v;[n];
cstimate x[n] € {FA}, for n>0

by using  yin] = l&;;’:,,‘xn 4+ v[n], for 1 <4< M.

Many alternative estimation techniques arc available for the above problem.
Alternatives include Kalman filter and Viterbi algorithm [17]. In the following,

we will propose an cfficicnt but sub-optimal estimator for the input sequence

estimatioln.

12



Given the past input symbols x[n — 1],...,2[n — L+ 1], let x}, = [A 2[n —
1...zln—L+ 1" and x4 = [-A z[n—1]...z[n~ L+1]]7 be the two possible
vector values of x,, when z{n] is not known. Let fll,”_J, - ,l~1M,,,4_1, he the
last estimates of the sub-channels given by the channel identifier. The latters
can be taken as rcliable estimates of h;,,’s as far as the channel slow-variation

assumption holds. We define the estimate of x,, as:

M )
X, = argmin E (y,;[n] - 111.",”_|x;’,,) g=1,2. (3.2)
x'” .
Coi=l

Note that the estimate of z[n] can be extracted from x,,.

In the case where the sub-channels are not sensitive to the present input
symbol x[n], i.e, h;,[0] ~ 0, the output noise and the channels’ identifica-
tion error may drastically degrade the performance of the described estimator.

Hence, a more realistic goal would be to estimate z[n — K}, K < L, instead of

z[n], that is a K-delayced input decision.

Let x1, ¢ = 1,.. ., 2K+ he the possible vector values of x,, when only

the input symbols prior to z[n — K] arc known, i.c, x, = [A... A z[n - K —

1]...2[n — L+ 1]]*. The cstimate X,, is defined as:

MoK )
. ' we o] - Ny
Xy = 0'7'9“;,}}’ ] [7\7 ;_1 T ,;_0 (y,;[n - k] — h,-,m,_lx;’l_,c) }—-a ‘ cq=1,2,...,2"

(3.3)

In the last cost function, hy,-i, ¢ = 1,..., M, are uscd as estimates of
hin,. s Din_k. Such an approximation is justified by the chaunnel slow varia-

tion assumption and the reliable performance of the channel identifier.

By looking at the cost function, the algorithm seems to be computation-

ally exhaustive. However, under the condition that z[n] € {£A}, the terms

13



~'1" q (N s . o ) 3 I3 . . . . .
hi, X, x> Which involve most of the multiplications in the cost function, can
be seen as a summation of the terms +Ah, ,[0], £Ah;u[1], ..., 2 Ah ,[L — 1].
If we let,

" — 4. . .7 q

Cin—k = ‘I/,,[TL - A’J —h 1Xn—k> (3/1)

in—

then a simple nmplementation of the hardware responsible for calculating
(',‘Z’"_k’s would be as shown in the fignre below. Note that, the input sym-
bols transmitted prior to x[n-k] are assimed to be known because the estima-
tor should have decided on their values at previous iterations. With the de-
scribed implementation, the computational cost of the input symbol sequence

estimator can be reduced to ML + (I + 1)M instead of ML* + (K + 1)M

multiplications.

uncertain terms certain terms
AL [K+lk] |Ah  [K+2K] Al (L]
in-k i,n- i,n-k
+ 4 sign(x[n-K-k-1])  =ememmmmmeee sign(x[n-k-L+1])

)

yin-k] —D c

i,n-k

Figure 3.2: Efficient implementation of the signal estimator.

In Appendix B, the input sequence estimator is shown to converge to the
correct solution. However, the output noise and channel estimation crror may
result in wrong decisions. In order to avoid such events, K should be chosen
such that h; ,[/(] is as large as possible for i = 1,..., M. A safe choice would

be K > argmax; h;,[j] or even a close valuc would be fine.

14



3.2 Blind Channel Identification

The problem of blind channel identification has a variety of applications such as
blind equalization of communication systems, seismic data processing, speech
processing, and image restoration. In all these applications, the channel iden-
tification lielps overcoming a distortion phenomenon and estimating an origi-
nal signal. Ifurthermore, blind identification of tropospheric chanuels helps to

probe into the physical characteristics of the troposphere [18], [19].

In this section, we focus on the case of noisy and slowly time-varying chan-
nels.Such channcls are relevant, especially, in HF communications. The slow
time-variation is assuined within onc iteration. However, rapid variation is
allowed in the long term sens.IPirst attempts in blind equalization proposed
periodic transmission of training sequences to update the channel estimates in
equal time intervals [2]. Such approaches suffer an important loss in through-
put and the eflective channel rate may reduce to 50 % [10]. Current research
on this issuc aims at less or no use of training periods with negligible loss in the
performance ol the estimator. [4]. A commonly used method is the creation
of redundancy and channel diversity through the fractionally spaced channcl
implementation described in Fignre 2.4 [10]. However, even with fractional
sampling, the problem still requires robust algorithms with fast converging
rates in order to track the channel variation. As stated in [20], in the case of
a ten-tap-weight FIR channel, to achieve convergence some of the previously

proposed approaches may require more than 1000 training symbols.



Given the output measurements y;[n), i = 1,..., M, and the covariances of

the noise sequences v;[n];

estimate  hy, for n>0 and 1 <i< M
by using  yiln] = hl,x,+wvn], for 1<i< M.

Since both x,, and h;,, arc unknown, the channcels’ identification problem be-
comes a diflicult task. Most of the already proposed approaches assuine some

prior knowledge of the input sequence.

Different methods and techniques were exploited in the BCI problem. They
differ, mainly, according to the assumed prior knowledge about the input sc-
quence and the considered channel model. An important and commonly used
class of BCI approaches is known as the subspace methods. The idea cousists

of minimization of the following quadratic cost function [10],
h = arg 1l'ni191 h'’Qh, (3.5)
1€

where h is the channel impulse response, which is in subspace S. In one
avenue of approaches known as the cross relation [9], [10], the strong correla-
tion between chaunel output pairs is exploited. Alternatively in the subspace
approaches, the orthogonality property between the noise and the fraction-
ally spaced channel subspaces is exploited in the estimation of h [20]. These
methods, together with the least squares smoothing technique, assume no prior
knowledge about the input signal. In the case where the sccond order statistics
of the input sequence are known, the cyclostationarity property of the output
signal is exploited, cither in the time domain [6], [21], or in the frequency
domain [8)], to get an estimate of the channel transfer function. In all these

approaches, the subspace algorithms are applied on the output sequence y[nl.

16



Apart from the subspace methods, the maximum likelihood estimator and the
moment, matching techniques were also proposed as competing alternatives in

BCI problem.

In the presence of reliable estimates to the input, %,,, adaptive filters have
been used with considerable success as well [1], [2] [22], [23] . In [1], a modified
fast transversal filter is proposed and shown to achieve nice performance un-
der the assumption of corvect input decision. In [2], a set of efficient channel
estimators were developed based on a state space representation that describes
the channel as a lincar combination of the basis vectors spanning a subspace.
Although these algorithms do not assume the multi-channel model, their ex-
tension to the [ractionally spaced channel is straight forward. However, they
assume the periodic transmission of a training sequence. In the simulation
part, we'll use these last two approaches as reference methods because they

arc known to perform well in the casc of noisy time-varying channels.

In the next section we’ll propose a sct of new approaches to the channel

identification problem in the presence of an estimate of the input scquence.

3.2.1 Channel Identification in the Presence of Input
Sequence Estimate
In this section, we address the channel identification problem in the case of

available reliable input sequence estimate. In other words, given X, and the

received signals y;[n):

estimate  h;, for n>0 and 1<i<M

17



by using  yin] = XLy, 4w, for 1<i< M.

We will propose a spectrum of algorithms within this section. We present the
proposed approaches and put them in perspective with some of the alrcady

existing approaches to clarify the intuition behind our contribution.

In the proposed approaches, the time variation in the channel response
will be tracked by slowly rotating the basis vectors of the subspace S. Hence,
we are alter the tracking of the subspace basis which will help for a better
tracking ol the channel variation. Fivst, by using the available cstimates to
the input sequence z[n), an adaptive filter is used to get an estimate I, of the
oversampled channel response vector h,,. Second, a subspace tracker makes use
of this estimate to update the subspace basis. Finally a more refined estimate

h,, is obtaincd based on the updated subspace.

A formal description of the problem is a state-space representation with the

state cquation,

by, =h,_ + bn; (36)
where b, is a noise vector referring to the innovation in h,. The corresponding

measurement 1/0 equation becomes

Yn= Cnhn + va, (37)
where _ -
C;IL,()
"
c
Cn = I.L’I. (38)
i C;Ir.‘,M—I |
and
Pral ,Iv .
Crp = [ x[n] 07 x[n—1] zln—-L+1] 0 } (3.9)
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The zero vector separating cach two consccutive input symbols in C,0 has
length M — 1. The vectors ¢,;,% = 1,..., M are obtained by shifting the
vector €, 7 times to the right in a circular manner. In this way, the input
symbols in the i"* raw are multiplied by the tapweights corresponding to h;,

only. The output vector y, is defined as, y, = [y1{n] v2[n] ... yam[n]]*.

A robust estimator for Iy, is the Kalman filter which is the optimal least
mean square estimator [24]. However, the Kalman filter requires O(p?) number
of operation [or cach new h,, estimmate where p = M L. Therefore, for large p,

direct use of Kalman filter may be prohibitive.

To reduce the number of operations needed in the Kalman filter, we proposc
a simpler state-space representation. The idea consists of tracking by ,, where
[ = [1‘}], and approximating the other chanuel realizations with three-point
linear interpolations of hy,. This idca leads to the following representation of

the all other sub-channel responses as a function of hy,
hi, = A; by, , i=1,2,..., M. (3.10)

where A;’s are the appropriate linear interpolation operators. Thus, we only
need to obtain estimates for by, which can be achieved by using Kalman {ilter

in the following reduced state-space representation:

hl,n, = hl,n—l + dm (.))l l)

Yn = anhl,n + Vv e (?].2)

The vector d,, is a noise vector similar to b, with dimension M X 1 instead of

ML x 1, and 1, is a white noise vector that is incorporated to the measurement
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equation to partially compensate the approximation introduced by the inter-
polation relation in (3.10). The measurement errors, v,,, and the interpolation
errors, 7, are assumed to be independent. The modified measurement matrix

C,, has the following form:

C,= : (3.13)
x'"A
" A/I
In Appendix C, a derivation of equation (3.13) is given, and a simpler way of

computing C,, that avoids the vector multiplications, is presented.
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Figure 3.3: Available samples of hpyn arc shown with ‘o’. The required

samples of h; ,, which are shown with ‘+’, can be interpolated by using a low
order interpolator such as linear 3-point interpolator.
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A further simplification can be obtained by assuming all A; in (3.10) as
identity operators. In this case, the model will have equation (3.11) as its state

equation, whereas the output equation will be

Yn = Cnhl,n, + vy -+ M, (314)
where
"
x”.
C, = . (3.15)
xr

n

As shown in Appendix D, in this case the computational complexity of the
Kalman filter is O(L?) which is significantly less than O((LM)?) of the first
state space representation. [Further improvements in the processing speed can
be achicved through the systolic array implementation of the Kalman filter as

described in [25] and [20).
In all the previously described models, the innovation in the state vectors
is modeled as an additive white noise. This implics that its covariance matrix
— 2 S
Qd =0 IL, (31())

where ¢? is the noise variance. In [27], a better formulation of Qq is pro-
posed. The latter assumes a strong correlation between the innovation and the

estimated state vector. That is,

ki, O 0
o2 0 ko 0
_ (3.17)
R T
0 0 kr,

where kj = 1 (|lun-i[j — 1JI* + N1 [3]1? + [hin-1[j + 1}|*). In the first for-

mulation, where the state vector represents the oversampled channel impulse

21



response, j = 1,2,..., ML, the terms Ny, _1[j — 1] and hy,—;[j + 1] should be
replaced by iy, _1[j — M) and hy,—1[j + M], respectively. As it will be shown
through the simulations, this method helps to reduce the high frequency noise

in the estimates of the channel response.

The Kalman filter, although optimal in the MMSE scnse, provides noisy
estimates of the channel transfer [unction. To remove such a noise, we make use
of subspace tracking methods. In other words, under the slow time-variation
asswmption, the matrix H = [h,_y ... h,] is of low rank. Its column space
is the same as the one of HHY which is the channel covariance matrix over a
time interval of length N 4- 1. Hence by tracking the eigenspace of the channel
covariance matrix, basced on the estimates given by the Kalman filter, we can
remove most of the noise components. In the literature, various algorithins
that can accomplish suclt a task were proposed. Some of these are described
in [28], [29], [30], and [31]. The main issues about such algorithms arc numerical
stability; that is robustness to numerical crror buildup, and computational
complexity. In our approach, we chose the algorithm LORAI® 1 presented
in [31], which is a law rank adaptive filter. I'or our purpose, we are interested
in the Subspace Tracking Section only. This algorithm tracks the r dominant
eigenvalucs of the covariance matrix ® = E{l&n h%}, and their corresponding
eigenvectors. With an appropriate choice of 7, the effective dimension of the
subspace, most of the noise components can be eliminated from the signal.
That is, if

® = UDU" (3.18)
where U = [u, ... u,] is the matrix of cigenvectors and D = diag(A; ... A,) is

the diagonal matrix of the eigenvalucs. Assuming that A better approximant

22



to the covariance matrix of the signal of interest only would be;
T ;
¢, = U,D, U, (3.19)

where U, = [u;...u,] and D, = diag()\, ... ),) assuming that ); are indexcd
in decrcasing ovder. Since the channel is time-varying, its covariance malrix
should be time-dependent. For cach newly available /1, estimate, LORAI 1,

performs the following rank-one update of ®,,:

~rpy

P, =ad,_; -+ (1 - (.l/.)lAlnhn. (3.20)

To perform a slowly time-varying update of ®,, the exponential forgetting

factor or should be chosen close to but less than 1.

Once the eigenvalnes and cigenvectors are obtained, the channel impulse
response can be re-updated in two alternative ways. The first consists in pro-
jecting h,, on to the subspace of cigenvectors.

- TY,

h". - UHU” 117!.
In the second method we estimate h,,,h,’,, as follows;

-~ ~ 1
T _ a1
r,=hh =——(®,—-P,) (3.21)
1l -«

then extract h,, from the matrix T, as stated in the respective tabular form of

the algorithms.
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3.3 Proposed Algorithms and their Simulated

Performances

As previously described, the channel identification problemn can be formulated
in three diflerent state-space representations. Morcover, two different forms of
the innovation covariance matrix (3.16) and two distinct ways of rc-updating
the channel estimate based on the updated subspace are proposed (3.17). The

combinations of all these alternatives result in twelve different algorithms.

The algorithms 1, 2, 3, and 4, shown in Table 1, assume the state-space
representation described by the state equation (3.6) and the output equation
(3.7). In algorithms 1 and 2, the Kalman filter estimate of the chanuel is
projected on the updated subspace, whercas in algorithms 3 and 4, the final
estimate is obtained from I',, as described in last section of the Table 1. The
difference between algorithms 1 and 2, and similarly 3 and 4, is the form of the

innovation covariance matrix Qy,.

These four algorithms are compared through simulations over a one I-hit
binary sequence. The fractional sampling factor is chosen as M = 8. We
consider slow and rapid, in the long terin sens, time-variations: STV and RTV
respectively. Also, the signal to noisc ratio is chosen as 23 dB and 10 dB and
represented as HSNR and LSNR respectively. Furthermore, to investigate the
effect of blind sequence estimation on the performance of the blind channel
identification we perform the simulations with both estimated and exact input
sequences. In cach of these cases, the results are obtained over 10 independent

. . rm M ﬁ —hy, ar 1Q
realizations. The error measure is defined as e[n] = 20 log ]i—l—"—l and ¢, is

Ihn avy

the mean of €[n] in the steady state.
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According to the sitnulation results shown in Table 3.1, all of the first four
algorithms show good performance in the case of known input sequence. As
expected, the increase in time-variation or the decrease in the SNR result in a
larger channel estimation error. Bascd on the obtained results, the algorithms
2 and 4 outperform algorithms 1 aud 3 respectively. This fact implics that
defining the innovation covariance matrix as deseribed in equation ( 3.17) im-
proves the performance in the channel identilication. Similarly, algorithms 2
and 4 outperform algorithms 1 and 3 respectively in the rapid time variation
casc and the opposite becomes true when the channel exhibits slow variation.
This result, can be explained by the fact that the projection onto the subspace
acquires the algorithm a large memory of the past values and a reluctancy to
perform rapid updates. When the input scquence is unknown we notice an
increasc in the estimation crror. The latter is due to some bit uncertainties, in
the input vector, that effect the performance of the channel identifier. How-
ever, even with less reliable channel estimates, the input sequence estimator
is still capable of making the correct decision about the input symbols. Note
that, as Tables 3.2 and 3.3 show, only few decision errors occured in the case

where the channel is rapidly varying and having a low SNIRR.

The algorithms 5, 6, 7, and 8, shown in Table 2, assume the state space
representation that described by the equations ( 3.11) and ( 3.12). The differ-
ences between these algorithms are emphasized in Table 2. By examining the
Tables 3.4, 3.5 and 3.6, we can notice that algorithms 5 and 6 perform better
than algorithms 7 and 8 in the blind case and also when the time variation
is slow, whereas the last two algorithms exhibit better performance when the

input sequence is known and the channel is rapidly varying.



Algorithms 9, 10, 11, and 12 are stated in Table 3. As previously mentioned,
they approximate the sub-channels with a unique one. This assumption lcads
to a considerable reduction in the number of computations without degrading
the performance of the algorithms. In fact, {from the Tables 3.7, 3.8, and 3.9
we can sce that algorithms 10 and 12 can be considered as the best, in terms
of efliciency and computational cost, when the input sequence is known and
the channel is rapidly varying, whereas algorithms 9 and 10 outperform all the

others in the blind case or under the slow variation condition.
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Algorithm 1 Table 1: Algorithms 1, 2, 3, and 4

Initialization: )
Po,o = U(M'(h()) ) ho,() = E{ho}
I
Uy=| —~ ; @ =1; Ag=0; 0<a<l ;v
0
Input:
x, — form C,
Kalman Filter:
For Algorithm t & 3 do:
Qb =]
For Algorithm 2 & 4 do:
form Qy, as described in eq. ( 3.17).

Pn.,n,~1 = Pn,—l,n—], + Qb
Gn = Pn.,n,—lC;{(Cnpn,n—lC;]-L' + RU)_[
Pn.,n, (Il\/IL - GnCn)Pn,n—l

~

hn/n, = 1fln—l/n,—-l + Gn()’n - Cnﬁn-l/n-—l)

Input:
Zn = hn/n
Subspace Tracking Section:

Tn = U;’L‘—] Zy

A, = aA, 1On + (1—)zars
A, = U,D, QR factorization
e, = U U,

n—]

Updating the State Vector:
For Algorithm 1 & 2 do:

_ s
h, = U,U,z,

For Algorithm 3 & 4 do:

(I)n = AnU{L

Fn = 1__](;((1)71. - (I)n—])
(M, 7) = max(z,)

h,, = A—14-I‘,L(:,j)
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Algorithm 2 Table 2: Algorithms 5, 6, 7, and 8

Initialization: X
Poo = var(hyp) ; hop = E{h}
I
Uy=| —— ; ©=1; Ap=0,;0<a<l;r
0
Input:
X, — form é,,,
Kalman Filter:
For Algorithm 5 & 7 do:
Q(l =0l
For Algorithm 6 & 8 do:
form Qq as described in eq. ( 3.17).

Popn-y = Puino1+Qua
G, = P,,..CI(C,P,,.,.CT+R, +R,)""
Poy = (I = GuC)Py ey
fln./n, = ﬁn,sl/n.—-.l + G (yn — 611,ﬁ7z—1/n—1)

Input:
Zy = hn,/n,
Subspace Tracking Section:

Th = U;ly,‘_l Z,

An. = Ov'An,—.l@n,—l + (l —C\!)ZnT;{‘
A, = U,D, QR factorization
e, = U',| U,

n—1

Updating the State Vector:
For Algorithm 5 & 6 do:

ol . 'I‘,
hl,n. - Un,UnLn.

For Algorithm 7 & 8 do:

(I)n = A'nU;l),‘

Pn. = I_l_a((I)n - (bn——l)
(M,j7) = max(z,)

hl,n = %Pn(;y)
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Algorithm 3 Table 3:

Algorithms 9, 10, 11, and 12

Initialization:

Poo = var{hyy) ; lAl(),(, = FE{lyp}

I

Uy=]| —— ; ©=I1; Ay=0,; 0<a<l ;r

0
Input: .
X, — form C,,,
Kalman Filter:

For Algorithm 9 & 11 do:

Qu =0

For Algorithin 10 & 12 do:
form Qq as described in eq. ( 3.17).

Pn.,n,——l
Gn,
Pn,,n

= Pn—-l,n—-l + Qd
I)n,,n,—lC;IL'(CnPn.,n--] C;’; -+ Ru + R,;)"l
= (IL - GnCn)Pn,n——l

ﬁn,/n = 1A1n,—l/n,——] + Gn,(yn, - an.lAln,—l/n.—l)

Input:
2y, = hn./n.

Subspace Tracking Section:

Ty
A,
A,
©,

It
= U,_, 2,

. T
= alA,19,.; + (1 —a)z,7,

= U, D, QR factorization
= U;I,,‘_[ Un,

Updating the State Vector:
For Algorithm 9 & 10 do:

~ _ T
hl,n, — Un,UnLH,

For Algorithm 11 & 12 do:

(I)n, = An U1’l

Fn = 1__;‘0:((]:)71. - (I)n,—l)
(M, j) = max(z,)

hl,n = ﬁrn(:? 7)
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| STV/LSNR | STV/HSNR | RTV/LSNR, [ RTV/HSNR |

Algorithm 1 || -16.274 -23.120 -14.642 -20.754
Algorithmn 2 || -18.074 -25.618 -15.076 -22.002
Algorithm 3 || -15.934 -22.226 -14.800 -21.106
Algorithin 4 | -11.694 -24.534 -15.160 -22.514

Table 3.1: Average logarithmic error (in dB), €,,, in the case of known input
sequence for algorithms 1, 2, 3, and 4.

| | STV/LSNR | STV/HSNR | RTV/LSNR | RTV/HSNR |
Algorithun 1 || -14.238 -18.132 -6.030 -14.258
Algorithm 2 || -14.720 -18.543 -6.490 -18.586
Algorithm 3 || -12.431 -16.521 -5.000 -14.160
Algorithm 4 || -12.662 -16.012 -6.304 -12.566

Table 3.2: Average logarithmic error (in dB), €.y, in the case of unknown input
sequence for algorithms 1, 2, 3, and 4

[ | STV/LSNR | STV/HSNR ] RTV/LSNR | RTV/HSNR |
Algorithm 1 | 0 0 0.034 0
Algorithin 2 || 0 0 0.046 0
Algorithm 3 || 0 0 0.057 0
Algorithmn 4 || 0 0 0.014 0

Table 3.3: Bit-error rate for algorithms 1, 2, 3, and 4.

| ” STV/LSNR | STV/HSNIﬂ RTV/LSNR [ RTV/HSNR ]
Algorithm 5 || -18.458 -24.296 -16.928 -20.920
Algorithm 6 || -20.132 -13.184 -17.396 -21.806
Algorithm 7 | -17.774 -22.214 -17.728 -20.050
Algorithm 8 | -21.154 -25.156 -17.788 -23.276

Table 3.4: Average logarithinic ervor (in dB), €4y, in the case of known input
sequence for algorithins 5, 6, 7, and 8.

|

[ STV/LSNR [ STV/HSNR | RTV/LSNR | RIV/ISNR |

Algorithm 5 || -15.357 -18.327 -11.166 -16.000
Algorithm 6 || -15.447 -18.701 -12.574 -14.552
Algorithm 7 || -12.725 -17.328 -12.024 -16.246
Algorithm 8 || -13.013 -17.107 -10.742 -17.798

Table 3.5: Average logarithmic error (in dB),

sequence for algorithmns 5, 6, 7, and 8.
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| [ STV/LSNR | STV/HSNR | RTV/LSNR | RTV/HSNR |

Algorithm 5 || 0 0 0.0087 0
Algorithm 6 || 0 0 0.0011 0
Algorithm 7 | 0 0 0.0306 0
Algorithm 8 || 0 0 0.0077 0

Table 3.6: Bit-error rate [or algorithms 5, 6, 7, and 8.

| | STV/LSNR | STV/HSNR | RTV/LSNR. [ RTV/HSNR |
Algorithm 9 | -18.256 -23.756 -17.134 -21.054
Algorithm 10 | -20.280 -24.498 -17.252 -21.594
Algorithmn 11 || -18.880 -23.390 -17.440 -22.294
Algorithm 12 || -19.266 -24.318 -18.668 -22.930

Table 3.7: Average logarithmic error (in dB), ¢,,, in the case of known input
sequence for algorithms 9, 10, 11, and 12.

| | STV/LSNR | STV/HSNR. | RTV/LSNR | RTV/HSNR |
Algorithin 9 | -14.980 -18.737 -10.830 -17.902
Algorithm 10 || -15.872 -18952 -11.334 -19.162
Algorithm 11 || -11.378 -17.262 -9.117 -18.332
Algorithm 12 || -10.128 -17.023 -9.282 -18.944

Table 3.8: Average logarithmic error (in dB), €4y, in the case of un known input
sequence for algorithms 9, 10, 11, and 12.

| | STV/LSNR | STV/HSNR | RTV/LSNR | RTV/HISNR |
Algorithm 9 || 0 0 0 0
Algorithm 10 || 0 0 0.0022 0
Algorithm 11 || 0 0 0.061 0
Algorithm 12 || 0 0 0.56 0

Table 3.9: Bit-crror rate for algorithms 9, 10, 11, and 12.
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Chapter 4

SIMULATION

In this chapter, we simulate two already existing approaches and compare
them with the results found in the previous chapter. The reference algorithins
were proposed in {1] and [2]. The former describes the channel as a lincar
combination of a subspace basis. At each iteration, an iterative updating of the
channel aund the subspace is made. The sccond algorithm is a fast transversal

{ilter.

In the simulations, the channel transfer function is a sumination of three
shifted Guassian functions, each of which represents a distinct path. The chan-
nel order is 40 tapweights and the oversampling factor is 8. As in the previous

chapter, the algorithins are simulated over ten different realizations.

When the input sequence is known, the algorithm described in [1] fails
whenever the channel is rapidly varying or when the SNR is high. As shown in
Table 4.1, the average error is high indicating convergence difficulties. The fast

transversal filter described in [2], shows a smaller error. But when compared
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[ | STV/HSNR. | STV/LSNR [ RTV/HSNR | RTV/LSNR |
Algorithm in [1] || -17.4116 -4.841 -4.956 -4.841
Algorithm in [2] || -20.826 -7.610 -7.962 -7.352

Table 4.1: Average logarithmic error for algorithms in [1] and [2]

to our proposcd approaches, it has a relatively inferior performance. figure 4.1

tllustrates this fact.

In the blind case, both reference algorithins diverge and do not resist input
decision crrors, wheras our proposed approches are robust to such errors, (see
Iigure 4.2. These results clearly indicate the superior performance of our

algorithins in blind and open-cye conditions.
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Figure 4.1: Normalized channel estimation error in the open-eye case with
rapid time-variation and low SNR.
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Figure 4.2: Bit-crror and normalized channel estimation error for Algorithm
10 in the blind case with rapid time-variation and low SNR.
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Chapter 5

CONCLUSIONS

The problems of input sequence estimation and blind channel identification
in HF communication are investigated. In this thesis we developed a delayed
input sequence estimator. It minimizes the cumulative mean square error over
the last received signals. Morcover, different channel identification algorithins
arc proposcd. They make use of a two-step estimation method. First a I{alman
filter provides estimate to the channel transfer function. The latter is fed to a
subspace tracker that climinates the estimation noise. In this way we prevent

abrupt changes in the channel estimate.

The channel identification algorithms were simulated in both cases ol known
and unknown input sequence. The cstimation errors were found to be small
indicating a reliable identification. In the blind case, the channel identifiers, op-
erating together with the input sequence estimator, showed a robust behavior

in recovering from an input decision error. When compared to other existing



approaches, the proposed algorithms were superior. In bad tropospheric con-
ditions when the channel is rapidly varying, we are still able to estimate the

input sequence reliably even with 10 dB signal-to-noise ratio.
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APPENDIX A

Noise Reduction Due to

Fractional Sampling

In Figure 2.3, the received continuous signal y(t) has two components
y(t) = h(t) x z(t) + w(t) * frr(t)

where A(t) and frp(t) are, respectively, the channel and the LPF transfer
functions. The LPI pass-band is matched to the input symbol bandwidth of
[—fo, fo] with fo = 5. The resulting output noise sequence is v[n] = v[ni]
where

v(t) = w(t) * frp(t). (A.1)

The power spectrum of v(f) is :
' g e o if =2r<Q <27
Suu(]Q') = “:]LI’(/Q)[ ‘Sww(.]Q) =

0  eclsewhere
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Since V(t) is oversampled with a factor of M then,

1as2 4f = & -
G (fey— ) M oy I - Sw<
= vu(e )—

0 elsewhere

Hence the variance of the oversampled noise: o2 = E{|v[n]|*} = S, (e7%)

2
= Tw
M

which is M times smaller then the noise variance in the case of symbol rate

sampling is utilized.

The low-pass filtering operation in Eq. ( A.1) can be written in the following

discrete-time operator lorm:

£l

Vo = W, = F Wn,

7
for

(A.2)

where f; are the appropriately delayed and samnpled impulse response of the

low-pass filter. Now, the autocorrelation matrix of the fractional noise samples

can be written as :

R, = E{v,,,v;[l‘}

= E{Fw,w F'}

Fe{w,wiyrt

Since w,, is white

2T

u

R,=0

(A.3)

Since the impulse response of the LPF is known, this final form of the auto-

correlation matrix of v can be precomputed for computational savings.
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APPENDIX B

Convergence of Input Sequence

Estimator

Consider the cumulative crror term

M
by, = o K ) ZZ yiln — k) = hi _\xt_,)? (B.1)
i=1 k=1
Using Eq. ( 3.1), we can write
1 M K
1 I‘ . E
L, = l\f(m) ZZ(U [n — k] + h, ek Xn—k 1“, x?)¢ (B.2)
k=1
Since the noise is independent of the input sequence and the chanuel transfer
function,
1 M K
T )
E"» A/[ [X I—l ZZ 1)1[77 - 171 —kXn-k — 11,n lxgz L)z (B3)

For M (IS -+ 1) sufliciently large,

1\4_([(1—{-_1)_ Z Z(Ui[n, —k)* - ol~0 (B.4)



Let,

q — q
Xp—k = Xn—k + Enk (BS)

Note that the vectors EZ'_ ., Inay have non-zero values only for first K -1 entrics.

In case by, Zhin g, k=0,...,Kandi=1,..., M,

q R WA q :
X Zhy, el (1B.6)

n-—

Xn—k — hl

Ll
h 1,1 —

o
i,n-—k

If I is chosen as described in section 3.1.1, then the termn h'il'”,__k el . will take
large values for x! having crrors in the entries with indices larger than K — 1.
Hence such vectors won’t be chosen by the input sequence estimator, which

means no decision errvor will occur.

44



APPENDIX C

Proof of Equation 3.12

The output equation for fractionally spaced channel can be written as:

Yn = I'I,,,X,,, + Vv, (Cl)
where
h{,
H, = | : . (C.2)
lllrll\/'l,n,

If we approximate the different fractional channels by linear interpolations

of hy, where [ = %, we geb,

(AJ hl,n)T
X, + vy + n

Yn
(AM hl,n. )T



Fori=1,...,1

- -
L
M
1—i
= 0
A= | M
i 0 M M|
and fori=1,..., M
[ =i U4 0
MM
A=
Lti
0 M
1=
L M .

Note that A, = I. The corresponding output equation can be written as
oA T
b, Al Xy (A7x,)

yTL = -l- V", + 7771 = ‘l—ln’l + v”, + 7]77 (Cg)

h{}, Adsxn (ARxn)"
Now, by using Eq. ( C.3), we obtain Eq. ( 3.12):

Yn = énhn,l + VM (04)

Using the special forms of A;'s we get

- l+1 .. |—1
IA,' = ! A KA B - o <
x, A, i X, + i 0zn]...zln-L+2]]; 1<
and
xTA~:uxT+l—+—i['c[n—l] xn—L+1]0]); i>1
LA a5 T coi >

thus the rows of C,, arc linear combinations of x1, [0 z[n]...z[n — L -+ 2]] and

[z[n —1]...z[n - L-+1] 0]
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APPENDIX D

Reduction in the Computational

Cost of the Kalman Filter

Given the special form of the matrix C,, described in Eq. ( 3.15), we can write

P"',"r—lé;lr,‘ = [ Pn,n,—lxn Pn.,n—lxn. J (Dl)
and
1 1
anPn,n—l,a;l,,‘ = X;I,,‘Pn.,n—lxn . (DZ)
1 1

Since these matrix multiplications are involved in the computation of the
Kalman gain matrix G, we reduce the number of multiplications to L? in-
stead of L?.

Let A = x;',,'P,,,Y,,,,_,x,,, and a = [[f. . .[i]”'. Then the matrix inversion used in
computing G, can be done as follows:

R 'aa’R~!

- D.3
1+ a’R-1a (D3)

(671,]')7),,77.—16;11‘ + R)—]' = R—l -
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Since R~! 1s supposed to be known, then the last equation involves only K?
multiplications. Therefore, the computational cost of the I{alman filter he-

comes O(L?).
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