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ABSTRACT

PERFORMANCE ANALYSIS OF CONCATENATED
CODING SCHEMES

Gün Akkor
M.S. in Electrical and Electronics Engineering 

Supervisor: Prof. Dr. Erdal Arikan 
June 1999

In this thesis we concentrate on finding tight upperbounds on the output error rate of 
concatenated coding systems with binary convolutional inner codes and Reed-Solomon 
outer codes. Performance of such a system can be estimated by first calculating the 
error rate of the inner code and then by evaluating the outer code performance. Two 
new methods are proposed to improve the classical union bound on convolutional codes. 
The methods provide better error estimates in the low signal-to-noise ratio (SNR) region 
where the union bound increases abruptly. An ideally-interleaved system performance 
is evaluated based on the convolutional code bit error rate estimates. Results show 
that having better estimates for the inner code performance improves the estimates on 
the overall system performance. For the analysis of a non-interleaved system, a new 
model based on a Markov Chain representation of the system is proposed. For this 
purpose, distribution of errors between the inner and outer decoding stages is obtained 
through simulation. Markov Chain parameters are determined from the error distri
bution and output error rate is obtained by analyzing the behavior of the model. The 
model estimates the actual behavior over a considerable SNR range. Extensive computer 
simulations are run to evaluate the accuracy of these methods.

Keywords: concatenated coding, performance analysis, union bound, non-interleaved 
systems.
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ÖZET

Gün Akkor
Elektrik ve Elektronik Mühendisliği Bölümü Yüksek Lisans 

Tez Yöneticisi: Prof. Dr. Erdal Arıkan 
Haziran 1999

Bu tezde konvolusyonel iç kodlama ve Reed-Solomon dış kodlama kullanan kademeli 
kodlama şekillerinin sistem çıkışındaki hata olasılıkları için üst sınır bulunması üzerinde 
durulmuştur. Bu tür sistemlerin performansı iç kodun hata olasılığının hesaplanması ve 
bunun dış kodun performansının hesaplanmasında kullanılması yolu ile tahmin edilebilir. 
Konvolusyonel kodların hata olasılıkları üzerindeki klasik üst sınırların iyileştirilmesi 
için iki yeni yöntem önerilmiştir. Bu yöntemler özellikle düşük sinyal-gürültü oran
larında hata olasılıklarını daha iyi tahmin etmektedir. Konvolusyonel kodların hata 
olasılık tahminleri kullanılarak bloklar arasındaki sembollerin ideal olarak düzenlendiği 
(interleaved) kademeli kodlama sisteminin performansı incelenmiştir. Sonuçlar iç kod
lama hata olasılığı üzerinde elde edilen daha iyi tahminlerin, tüm sistemin hata olasılığı 
üzerindeki tahminleri de iyileştirdiğini göstermiştir. Bloklar arasındaki sembollerin düzen
lenmediği (non-interleaved) kademeli kodlama sistemlerinin performansının incelenmesi 
için bir Markov Chain modeli önerilmiştir. Simülasyon yolu ile iç ve dış kodlama blokları 
arasındaki hata dağılımı elde edilmiştir. Bu dağılımdan yararlanılarak Markov modelinin 
parametreleri elde edilmiştir. Sistem çıkışındaki hata olasılıkları modelin davranışları in
celenerek elde edilmiştir. Model, geniş bir sinyal-gürültü oranı için sistem performansını 
doğru tahmin etmektedir. Metodlarm doğruluğunun kıyaslanması için tüm incelenen 
sistemlerin hata olasılıkları simülasyon yolu ile de elde edilmiştir.

Anahtar Kelimeler: kademeli kodlama, performans analizi, hata olasılıkları için üst 
sınırlar.
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Chapter 1

Introduction

Error control coding is an area of increasing importance in communication. This is 
partly because the data integrity is becoming increasingly important. There is downward 
pressure on the allowable error rates for communications and mass storage systems as 
bandwidths and volumes of data increase. In any system which handles large amount of 
data, uncorrected or undetected errors can degrade performance.

Just as important as the data integrity issue is the increasing realization that error 
control coding is a system design technique that can fundamentally change the trade-offs 
in a communications system design. Even if a communications system has no problem 
with the data quality, designers may consider discarding or downgrading the most expen
sive or troublesome elements while using the error control coding techniques to overcome 
the resulting loss in performance.

An oversimplified structure of a communications system is shown in Fig. 1.1. Data 
symbols generated by the source are encoded and then transmitted through the channel. 
Due to presence of noise, some of the symbols are received in error at the other end. 
Decoder processes the received data in an attempt to minimize the number of symbols 
in error. A natural measure of data integrity at the system output is the probability of 
symbol error, F«, which is the ratio of symbols in error to the overall number of trans
mitted symbols. Performance of a coding scheme can be evaluated based on the error 
rate at the output when all other system parameters (channel properties, transmitter 
power, etc.) are kept constant.



C h a n n e l

Figure 1.1: A communication system example

In system design, an estimate on the performance of a particular coding scheme is 
essential to decide on the system parameters. The most useful techniques for estimating 
the performance of a code are computer simulations and error bounds. The usefulness 
of computer simulation is limited by the long computational times that are required to 
get a good statistical sample (it may take several hours to get a single point). Bounds 
on the error performance, on the other hand, aim to find analytical models to the actual 
behavior. They require less computational effort, but may not be able to predict the 
behavior of the code over the full operation range, or may overestimate the actual error 
rate.

Problem of finding tight bounds on the error rate of different coding schemes is an 
active research area. The problem of interest in this thesis is to find tight bounds on 
the error performance of concatenated coding schemes. Most of today’s system appli
cations require low rates of error. This can be accomplished by imposing codes with 
longer block lengths and larger error-correcting capabilities. However, encoder/decoder 
complexity also increases placing a burden on implementation. In concatenated coding, 
this problem is overcame by utilizing multiple levels of coding where each stage has mod
erate complexity. In the next section, fundamental concepts of concatenated coding is 
discussed.

1.1 Fundamental Concepts of Concatenated Coding

When digital data are transmitted over a noisy channel, there is always a chance that 
the received data will contain errors. The user generally establishes an error rate below 
which the received data are usable. If the received data will not meet the error rate



requirement, error-correction can often be used to reduce errors to a level at which they 
can be tolerated. In recent years the use of error-correction coding for solving this type 
of problem has become widespread.

The utility of coding was first demonstrated by the appearance of Shannon’s classic 
paper [1]. In 1948 he proved that as long as the data source rate is less than the 
channel capacity, communication over a noise channel with an error probability as small 
as desired is possible with proper encoding and decoding. Essentially, Shannon’s work 
states that the signal power, channel noise, and available bandwidth set a limit only on 
the communication rate and not on the accuracy.

It soon became clear that the real limit on communication rate was set not by the 
channel capacity but by the cost of implementation of coding schemes. Cost constraints 
force communication at rates substantially below capacity. In recent years much research 
has been directed toward finding efficient and practical coding schemes for various types 
of noisy channel. Concatenated coding, which was first investigated by Forney [2], is a 
way of achieving low error probabilities using long block length (linear) codes at rates 
below capacity without requiring an impossibly complex decoder.

The basic idea behind concatenated coding is that the “encoder-channel-decoder” of 
a normal communication system can be viewed as a kind of superchannel for which an 
outer code can be employed (Figure 1.2). If length, dimension, and minimum Hamming 
distance for the inner and outer (block) codes are denoted by (ni, ki,d i) and (ri2, k2, ¿2), 
respectively, it is then well known that the corresponding concatenated code has length 
n =  niri2, dimension k =  kik2, and minimum Hamming distance d > d\d2 with equality 
if every nonzero codeword in the inner code has constant weight. Concatenation is then 
a technique for producing long codes from short codes. This property is particularly 
important for the receiver-side operation. Though shorter codes have weaker error cor
rection capabilities, they have simpler decoding mechanisms. Inner decoding and outer 
decoding are performed separately on the receiver side allowing the overall decoding 
complexity to remain moderate. On the other hand, decoding errors made by the inner 
decoder can be corrected by the outer decoder improving the overall performance.

Though numerous configurations are possible, concatenated coding systems with 
Reed-Solomon (RS) outer codes and binary convolutional inner codes are popular. Bi
nary convolutional codes work on binary (0 or 1) digits or bits. The encoder of such codes 
maps a binaxy input sequence into a binary output sequence. Binary convolutional codes 
are particularly effective in correcting uniformly distributed bit errors. However, closely



Figure 1.2: Concatenated coding system

spaced bit errors are decoded into an error burst due to presence of decoder memory. A 
detailed discussion on convolutional codes is presented in Chapter 2.

RS codes work on a higher alphabet of m-bit symbols. They map every k information 
symbols into a codeword of n =  2"^—1 symbols. Such a code can correct any t = {n—k)/2 
symbol errors in a n symbol codeword. Considering a bounded-distance-decoder (BDD) 
which corrects all error patterns of weight t or less and corrects no patterns of weight 
larger than t, probability of correct decoding for a (n, k) RS code is given by

(1.1)

where Pg is the probability of symbol error at the RS decoder input. When used in a 
concatenated scheme, k information symbols are coded into a n-symbol codeword by the 
RS encoder. Next, the convolutional encoder maps this nm-bit sequence into another 
binary sequence of n m /R  bits where R  is the rate of the convolutional code. RS codes 
are particularly effective in correcting the burst errors caused by the inner decoding if a 
binary error burst when grouped into symbols affect less than t symbols in a codeword. 
Properties of RS codes are further discussed in Chapter 4.

In cases where burst errors are a problem, one potential solution involves the utiliza
tion of a suitable interleaver/deinterleaver pair between the inner and outer stages. Using 
this approach, output sequence of outer encoder is interleaved prior to inner encoder at 
the transmitter side. The output sequence of the inner decoder is then deinterleaved 
prior to outer decoder at the receiver side. A system block diagram is shown in Fig. 1.3. 
An interleaver is a device that rearranges (or permutes) the ordering of a sequence of 
symbols in a deterministic manner. Associated with an interleaver is a deinterleaver 
that applies the inverse permutation to restore the sequence to its original ordering. 
When deinterleaving is applied on the receiver side, the burst errors caused by the inner
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Figure 1.3: An Interleaved System

decoding are distributed more uniformly prior to outer decoder increasing the overall 
probability of correct decoding.

Concatenated schemes are one of the most effective coding systems. In the next 
section, we state two basic problems of performance analysis of concatenated systems.

1.2 Problem Statement

In this thesis, we restrict our attention to two-stage concatenated schemes with rate-1/2 
binary convolutional inner codes, and RS outer codes. The performance of such a system 
based on a probability of symbol error measure can be calculated by first estimating the 
symbol error rate of the inner convolutional code and then by evaluating the error rate 
of the outer RS code. The probability of symbol error for a convolutional code can be 
upper bounded by using the well-known union bound and path enumeration techniques. 
This bound matches exact behavior at high signal-to-noise ratio (SNR) region, but is 
rather loose as we move to the low SNR region. This region is the target operational 
range for concatenated schemes. Therefore, if classical union bound is used to evaluate 
the inner code performance, the resulting bound will be loose in the range of interest. For 
a better estimate on the overall system performance, the classical union bound should 
be modified in the low SNR region.

There exists closed form expressions for calculating the probability of error at the 
RS decoder output based on the probability of error estimates at the input. But such 
expressions assume that the symbol errors at the decoder input are independent of each 
other. For the inner decoder operation this might be validated under the assumption 
that the channel is memoryless. However, convolutional codes have memory, and a single 
error appearing at the decoder input may propagate and form a burst of errors at the 
output. Consequently, the symbol errors at the RS decoder input are not independent of 
each other. The same expressions can be used under the assumption that interleaving/de
interleaving is applied between the stages. However, for non-interleaved cases, a model



that takes the bursty nature of errors into account should be devised.

1.3 Outline of the Work Done

In an attempt to improve the union bound on convolutional codes, we generalized the 
results of [3] for convolutional codes. In [3] an improved union bound for the binary 
input AWGN channel in terms of the weights of the codewords of a linear block code 
is presented. For the convolutional code case, we treated every path that diverges from 
the all-zero path at the origin and merges back at the j th  trellis stage as a codeword 
of length rij = 2j  for a rate-1/2 code. Paths of length Uj form a set, Sj, of codewords 
of equal length. The process of partitioning paths into codewords of equal length can 
go up to infinity, with increasing j . However, the probability that a path will stay 
diverged from the all-zero path for a large j  decreases. Therefore, we limit j  to be less 
than or equal to some constant Lj^ax- Every set Sj is then treated as a block code of 
blocklength Uj for which the arguments of [3] can be applied. The overall probability 
figure is obtained by summing the individual results. This method is applied to both 
a binary symmetric channel (BSC) with hard decision decoding and an AWGN channel 
with soft decision decoding. The method provides promising results. The results show 
2 to 10 fold improvement over the classical union bound.

The second approach to improve the union bound on convolutional codes calculates 
the probability of error as a sum of two terms. If a sequence of weight less than i is 
received, then we use the path enumerator polynomial to calculate the probability of 
error of this case. A sequence of weight less than i can be decoded into any path of 
weight df < d < 2{i — 1) by a maximum-likelihood (ML) decoder, where df is the free 
distance of the convolutional code. Therefore, only these terms of the path enumerator 
polynomial is used in the summation. If a sequence of weight larger than i is received, 
we assume that the decoder always makes an error and hence in this case the probability 
of error is equated to the probability of receiving such a path. The overall probability 
of error is given by the sum of the two cases. The value of i changes the contribution 
of the two cases. Therefore, we repeat the calculations for i running from \d f /2], which 
is the minimum number of channel errors that may cause the received sequence to be 
decoded into a wrong path, to [dma®/2] which is the number of channel errors that may 
cause the received sequence to be decoded into a path that is most far away from the



correct path assuming that we use a truncated code. Then, the minimum is chosen as 
the error probability. This approach provides improvement in the low SNR region. In 
the high SNR region the bound tends to converge to the classical union bound.

To deal with the non-interleaved cases, we run extensive computer simulations to 
obtain burst histograms for the convolutional code. Also, histograms for the distribution 
of waiting times between the occurrence of successive bursts are obtained. The results 
are used to set up a two state Markov Chain model; the states representing the events 
of a symbol being correct or erroneous. The steady state distribution of the Markov 
Chain is then used to calculate the probability of symbol error for the outer RS code. 
The model provides almost exact results over a considerable range of SNR values. At 
high SNR region, the results show deviation from the exact behavior as the assumption 
of geometrically distributed waiting times does not correctly model the system.

Finally, computer simulations are run for both a BSC with hard decision decoding 
and an AWGN channel with soft decision decoding. These data are used to evaluate 
the accuracy of the above methods. The details of all methods and their results are 
extensively discussed in Chapter 3 and Chapter 5.

1.4 Organization of the Thesis

The organization of the thesis is as follows. In the next chapter, following an overview of 
convolutional codes, a survey of results on convolutional code performance is presented. 
Chapter 3 includes a detailed discussion on the work done to improve the union bound 
at low SNR region and presents the results. In Chapter 4 RS code structure and its 
properties are presented and an ideally interleaved system performance is evaluated 
based on the results of Chapter 3. In Chapter 5 work done to model the bursty behavior 
of symbol errors at the RS decoder input is presented. Based on these results a non- 
interleaved system is investigated. In the final chapter an overall conclusion is presented 
and possible future work is discussed.



Chapter 2

Survey of Results on Convolutional 

Code Performance

In this chapter, an overview of convolutional code structure is presented. Following a 
discussion on weight distribution of convolutional codes, the classical union bound on 
probability of error is introduced. Finally, a survey of results on convolutional code 
performance is presented.

2.1 Binary Rate-1/2 Convolutional Codes

A constraint length K  convolutional encoder consists of a K-st&gQ shift register with the 
outputs of selected stages being added modulo-2 to form the encoded symbols. A simple 
example is the i? =  1/2 convolutional encoder shown in Fig. 2.1. Information symbols 
are shifted in at the left, and for each information symbol the outputs of the modulo-2 
adders provide two channel symbols. The connections between the shift register stages 
and the modulo-2 adders are conveniently described by generator polynomials. The 
polynomials g\{D) =  1 + D + and g^iD) =  1 -f- represent the upper and lower 
connections, respectively (the lowest-order coefficients represent the connections to the 
leftmost stages). The input information sequence can also be represented as a power



series I{D) =  ¿0 +  i^D +  ¿2-0  ̂+  ... ,  where ij is the information symbol (0 or 1) at the 
j th  symbol time. With this representation the outputs of the convolutional encoder can 
be described as a polynomial multiplication of the input sequence, I{D), and the code 
generators. For example, the output of the upper encoded channel sequence of Fig. 2.1 
can then be expressed as Ti{D) = I{D)gi{D), where the polynomial multiplication is 
carried out in GF(2).

1(D)
IN P U T

Figure 2.1; Encoder for a =  1/2, /(T =  3 convolutional code

It is possible to view the above convolutional encoder structure as a finite-state 
machine. The state of a convolutional encoder is determined by the most recent v =  K —1 
information symbols shifted into the encoder shift register. The state is assigned a 
number from 0 to 2*' — 1. The current state and the output of the encoder are always 
uniquely determined by the previous state and current input. A complete description of 
the encoder as far as the input and the resulting output are concerned can be obtained 
from a state diagram, as shown in Fig. 2.2 for the R = 1/ 2, v = 2 {K =  3) code. 
The symbol along the top of the transition line indicates the information symbol at

INFORMATION

Figure 2.2: State diagram for the R = 1/ 2, v = 2 convolutional code 

the encoder input that causes the transition and the symbols below the transition line



10

show the resulting channel symbols at the encoder output. Any sequence of information 
symbols dictates a path through the state diagram, and the channel symbols encountered 
along this path constitute the resulting encoded channel sequence.

Because of the topological equivalence between the state diagram of Fig. 2.2 and a 
signal flow graph [4], the properties and theory of signal flow graphs have been applied 
to the study of convolutional code structure and performance. The state diagram of a 
convolutional code can be alternatively viewed as in Fig. 2.3. This structure has been 
given the name trellis structure, and has proved to be useful in performance analysis as 
well as in the study of decoding algorithms.

TRELLIS
STAGE

TIME

Figure 2.3: Trellis diagram for the i? =  1/ 2, AT =  3 convolutional code

Decoding of convolutional codes can be accomplished by a maximum-likelihood de
coding algorithm known as Viterbi algorithm [5]. The Viterbi algorithm operates step 
by step, tracing through a trellis identical to that used by the encoder in an attempt 
to emulate the encoder’s behavior. At any time the decoder does not know which node 
the encoder reached and thus does not try to decode this node yet. Instead, given the 
received sequence, the decoder determines the distance between each such path and the 
received sequence. This distance is called the discrepancy of the path. If all paths in 
the set of most likely paths begin in the same way, the decoder knows how the decoder 
began.

Then in the next trellis stage , the decoder determines the most likely path to each 
of the new nodes of that stage. But to get to any of the new nodes the path must 
pass through one of the old nodes. One can get the candidate paths to a new node by 
extending to this new node each of the old paths that can be thus extended. The most 
likely path is found by adding the incremental discrepancy of each path extension to the 
discrepancy of the path to the old node. There are 2" such paths to each node, and the 
path with the smallest discrepancy is the most likely path to the new node. This process
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is repeated for each of the new nodes. At the end of the iteration, the decoder knows 
the most likely path to the each of the nodes in the new trellis stage.

Consider the set of surviving paths to the set of nodes at the jith trellis stage. One 
or more of the nodes of the first stage will be crossed by these paths. If all the paths 
cross through the same node at the first trellis stage, then regardless of which node the 
encoder visits at the j th  stage, decoder knows the most likely node it visited at the first 
stage. That is, the first information is known even though no decision can be made for 
the j th  stage. To build a Viterbi decoder, one must choose a decoding-window width 
W , usually several times as the constraint-length. At jth  stage, the decoder examines 
all surviving paths to see if they agree in the first branch. This branch defines a decoded 
information frame, which is passed out of the decoder. Next the decoder drops the first 
branch and takes a new frame of the received word for the next iteration. If again all 
surviving paths pass through the same node of the oldest surviving trellis stage, then 
this information frame is decoded.

The process continues in this way, decoding frames indefinitely. If W  is chosen long 
enough, then a well-defined decision will almost always be made at each stage. In some 
cases, the surviving paths might not all go through a common node, or may converge into 
a wrong node. In such cases a decoder failure or a decoding error occurs. If the errors 
occur randomly, with enough spacing in between, the decoding algorithm chooses the 
correct path with high probability. However, if errors occur in bursts, decoder algorithm 
may fail to decode to the correct path causing an error burst at the output.

The Viterbi algorithm and the trellis structure provides a framework for the calcula
tion of weight distributions and performance bounds using path enumeration techniques.

2.2 Weight Distribution of Convolutional Codes

Weight distribution of a code has particular importance for evaluating the performance 
of the code. Calculation of the weight distribution of convolutional codes requires the 
examination of the state diagram structure of Section 2.1. The weight of a convolutional 
codeword, infinitely long, is the number of nonzero components it has. If the code is 
simple enough for the trellis to be drawn, all of these parameters can be read from the 
trellis. For example, consider the R = 1/2, K  = 3 convolutional code which has the
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trellis structure shown in Fig. 2.3. Tracing the trellis it is found that there is a path 
of weight 5, that occupies three stages. This is also the free distance of the code. The 
free distance of a convolutional code is defined as the distance of the shortest path that 
diverges from the all-zero path at the origin and merges back at a later trellis stage. 
Looking further, there are two paths of weight 6, four paths of weight 7 and so on. In 
this way the number of paths of each weight can be enumerated, but this quickly becomes 
tedious. A more powerful approach uses the state diagram of the code and the theory 
of signal flow diagrams to determine the complete weight distribution [6].

D D

Figure 2.4; State and signal flow diagrams for the R = 1/2, K  = 3 convolutional code

In Fig. 2.4, the state diagram of Section 2.1 is redrawn. Note that the state labeled 
00 is drawn twice, once as input and one as output, because we are only interested in 
paths starting at 00 and ending at 00. Also each branch is attached a gain as power 
of a dummy variable D. The weight of a branch now appears as the power of D. The 
weight of a path is obtained by multiplying all the gains along the path. It is possible 
to compute the gain T{D) of the whole network between the input and the output by 
simultaneous solution of the following equations obtained from Fig. 2.4:

b

c

d

e

Dc + Dd

Dc Dd 

D '\ (2.1)
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Solution of these equations gives

e = 1 - 2D a. (2.2)

Thus the path enumerator is

TiD ) = ---------
 ̂ ’ I - 2 D

= +  . . .  +  + . . . . (2.3)

Comparing the expression in Eq. 2.3 with the trellis diagram of Fig. 2.3 one can verify 
that there are actually 2* paths of weight i +  5. The same technique can be used to 
count other properties of the code. Introducing two new dummy variables, L to count 
the number of trellis stages, and I  to count input ones, and solving as before,

D^L^I
T (D ,L ,I)  =

1 -  D L{1 +  L )I  
= D^L^I +  D ^ L \l  +  L)I^ +  + L f l ^

+ . . .  +  + . . . (2.4)

Thus, the path of weight 5 has a length of 3 and is caused by a single input bit equal 
to one. There are two paths of weight 6, each caused by two input ones; one path has 
length 5 and one has a length of 6. In this way the distance structure which is needed 
for bounding the probability of error can be fully determined.

2.3 Union Bound on Probability of Decoding Error

This technique can be used for any block or convolutional code with maximum-likelihood 
decoding. It is based on the following idea. If an event can be expressed as the union of 
several subevents, then the probability of that event is less than or equal to the sum of 
the probabilities of all subevents.

n-l
P(A) = P(Â  U ■ · ■ U ̂ - i)  ^ E

¿=0
(2.5)

This sum is obviously an over-bound since it counts the contribution due to overlapping 
events more than once.
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In the case of a linear block code, the probability of error can be computed by 
considering the effect of transmitting the all-zero codeword. An error will be made if the 
received sequence (the term ‘sequence’ is introduced here because in general a received 
sequence may not be equal to any of the valid codewords due to errors) is closer to one 
of the other codewords than it is to the all-zero word. Thus, the probability of error 
can be over-bounded as the sum of the probabilities of each of these individual error 
events. Define Aq as the event of transmitting the all-zero codeword and Bj as the event 
that distance between the received sequence and some codeword of weight j  is smaller 
than the distance between the received sequence and the all-zero codeword. Using this 
approach the probability of codeword error for a maximum-likelihood decoder is upper 
bounded by [7]

P y :< f2 ^jP(Bj/Ao), (2.6)
i=l

where Cj is the number of codewords of weight j . In a similar fashion the average bit 
error probability is upper bounded by

a  < E  fc jP iB j/A o ) ,
j=i

(2.7)

where r]oj is the average number of nonzero information bits associated with a codeword 
of weight j  and k is the number of information bits in a n bit codeword. The term rjoj/k 
can be very closely approximated hy j / n  [7]. P(Bj/Ao) for the case of a BSC with hard 
decision and cross-over probability of p, is given by

f  (¿+n (i)p*(l - p Y ~ \  j  odd
p , = p ( B , M o ) =   ̂ . . .  (2.8)

Eq. 2.8 can be upper-bounded by the Chernoff bound [8]

P, < [2\/p(l -  p)]’ (2.9)

For an AWGN channel, a similar expression can be given as below assuming white 
Gaussian noise with (two-sided) power spectral density Nq/2  and an energy of y/El per 
symbol with BPSK modulation [9].

Pi =  P(Bi/Ao) =  j e r f c ( ^ )  (2.10)

Eq. 2.10 can be approximated as [6]

(2.11)_iMa.Pj < e
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Ideas presented in this section can be directly applied to the computation of error 
probability for binary convolutional codes. There are, however, several possible defini
tions of error probability, and each must be handled slightly differently [10]. Without 
loss of generality, assume that the all-zero path is transmitted. This means that the 
path followed by the encoder is the horizontal path at the top of the trellis diagram 
(Fig. 2.3). The decoder does not know which path the encoder has followed, but will 
make a guess based on the received noisy version of the transmitted path. The path 
actually taken by the encoder is called the correct path and the path postulated by the 
decoder is called the decoder’s path. The decoder’s path can clearly be partitioned into 
a (possibly empty) set of correct path segments separated by a set of paths which lie 
entirely below the correct path expect for their end points (Fig. 2.5). These incorrect 
path segments are called error events.

d e c o d e r ’ s path

Figure 2.5: Some trellis paths

The first error event probability is defined as the probability that the decoder will be 
off the correct path at the origin. For a maximum-likelihood decoding algorithm, such 
as Viterbi algorithm, this is possible if a path of weight j ,  that diverges from the all-zero 
path at the origin, is closer to the received sequence than the all-zero path. If Pj denotes 
the probability of this event, then

Pj < 7 '̂ (2.12)

where 7 is a channel dependent parameter (see Eq.’s 2.9 and 2.11). Using union bound, 
probability of first error event is bounded by

3

(2.13)

where Cj is the number of paths of weight j  that diverge from the all-zero path at 
the origin. Since Cj are given by the coefficients of the path enumerator T{D) of the 
convolutional code, Eq. 2.13 can be written by [11]

Pe < T(7) (2.14)
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Another possible case of interest is the error event probability, Pg, which is the prob
ability that the decoder is off the correct path at the j th  trellis stage. This is just the 
probability that there is an error event hanging below the correct path at j th  stage 
(Fig. 2.6). By a reasoning similar to the derivation of Eq. 2.14, an upperbound on the

Figure 2.6: Some error events at j th  trellis stage

probability of error event is given by [11]

dT{D, L, I)
Pe < dL Drr7,L= 1,7=1

(2.15)

The decoder outputs information bits corresponding to its postulated path, and that 
even if it is on the wrong path, some of the individual bits will be “accidentally” right. 
Thus the bit error probability, Pb, will in general be less than the error event probability. 
Using a reasoning similar to that leading to Eq. 2.7, the following bound on Pb is obtained 
(111:

n  < 1 (2.16)
K dl D=7,L=1,7=1

for a rate-fc/n binary convolutional code. In both cases, 7 equals either Eq. 2.9 or 2.11 
depending on the channel.

2.4 Other Bounds on Probability of Error of 

Convolutional Codes

The ideas presented in the previous sections have been extended to tighter bounds on the 
error performance of various coding schemes. As we stated earlier, the performance of a 
concatenated code can be evaluated by first estimating the symbol error rate of the inner 
code and then calculating outer code performance. Therefore, the problem of computing
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the overall performance of a concatenated system is equivalent to finding good estimates 
for the inner convolutional code performance. In this respect, this section presents other 
research on finding improved bounds on error performance of convolutional codes.

In [12], tighter upper bounds on the error-event and bit error probabilities axe derived 
from Viterbi’s upper bounds for the case of a BSC with maximum-likelihood decoding. 
Prom Eq. 2.8, it is observed that P271 =  P2n-i, n = l , 2, —  Then,

P2n<
'2n — V

n
)—2n (2v® 2n (2.17)

Since the term in square brackets is monotonically decreasing,

2̂ua — 1''
P2n <

t'O
Tin

j 2~2no (2v^)2n

= r„ ,(2Vp)2n (2.18)

for n > no > 1. Finally since P2n =  p2n-i, n =  1>2, ..., Eq.’s 2.14 and 2.16 can be 
rewritten as,

Pe < r„ ,(  j[T(D ) +  T{-D )] + \ d [T(D) -  r ( - 0 ) ] ) c = ,^  (2.19)

n  < T „ (^ [ T (D , I)  +  T (-D ,  /)] +  \ d \T(D, N) -  T ( -D ,  M)l)s,=i,i,=2̂  (2.20)

respectively, where 2no is the index of the first even nonzero coefficient in T{D). The 
bound is evaluated for rate-1/2 code with generators polynomials 1 + D + D"̂  and 1 + D^. 
The comparison shows significant improvement over union bound.

Later in [13], a method for explicit evaluation of Viterbi’s union bound for a BSC 
with maximum-likelihood decoding is proposed. The method uses the observation that 
An =  A n-i, n =  1, 2, . . . .  Furthermore,

An+i = P 2 n - { \ - p ) (2 .21)

for n =  1, 2,3, . . . .  Combining these results, the generating function F  for the sequence 
Pi, P2, P3, . . .  can be written as follows

F{z) =  £  [1 -  (1  -  p) (1 -  4p«z^)-'/^ (2.22)
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Then, for evaluating the error-event probability, T(D)  is written as a rational function 
of the complex variable z which has the Taylor expansion

T(z) =  Y ,  hz" (2.23)
fc=l

around z = 0. Using partial fractions, T{z) can be decomposed into a polynomial t{z) 
and a sum of rational terms in z depending on the distinct zeros of T(z) and their 
multiplicities. It is shown that the latter term can be expressed as a sum of derivatives 
of F(z). Then the error-event probability is bounded by

P e < tiPi -t- Í2-f2 +  ·.. +  trPr + terms o f  F \ z )  (2.24)

where r  is the degree of t{z). The same approach is applicable to the explicit evaluation of 
the bit error probability if is expressed as a rational function in 2:. Comparison
with experimental results shows that the method provides an improvement over results 
of [5] and [12].

In [14], a method based on finite Markov chains is described to calculate the error- 
event probability of convolutional codes with maximum-likelihood decoding. Results are 
presented for short constraint length convolutional codes.

In [15], a new upper bound on error-event probability is proposed. Starting from 
the fact that Viterbi’s union bound is quite tight when there are few channel symbols 
in error (high signal-to-noise ratio) but rather loose when there are many errors, the 
error-event is separated into two disjoint events corresponding to few (F) and many (M) 
errors. Then for a BSC with maximum-likelihood decoding, probability of error-event, 
P[E] is given by,

P[E] = P[E/F]P[F] + P[E/M]P[M]

< P[E/F]P[F] + P[M]

= P[E, F] -f P[M] (2.25)

To obtain an upper bound on P[M] a random-walk argument is used. If a metric Sg is 
used when a channel error occurs and a metric Sg when the channel symbol is correctly 
received, then the cumulative metric along the correct path is a random walk with P[zi = 
Se] = p and P[zi = Sc] = {1 — p), where Zi form a sequence of statistically independent, 
identically distributed random variables. If Sk denote the cumulative metric for the first 
k channel symbols which have jk errors among them, then

— jk^e  “f" (^ jk)^c (2.26)
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Those error patterns for which Sk < —f  are said to have many errors. Based on a lemma 
given by Gallager [8], an upper bound on P[M] is given as

P[M] = P min Sk < - fk < 2~f (2.27)

where /  is a parameter to be chosen later. Similarly, those error patterns for which 
Sk > —f  said to have few errors. Equivalently,

jkSe + { k -  jk)sc > - / ,  for all k 

jk < +  k —̂ ^  =  rk, for all k
(2.28)

5c —5e

To upper bound P[E, F], first union bound is used to obtain,

k i
(2.29)

where Eki is the event that a path of length k and weight i is causing an error. A path 
has few channel errors only if it stays below the barrier in Fig. 2.7 for all k. If all paths

Figure 2.7: Barrier at rk which separates paths with many and few errors

of length k with jk < rk channel errors are counted, all paths with few channel errors 
together with the paths with many channel errors that take one or more detours above 
the barrier will be taken. Hence,

P[ Ek i , F]  < P[ Ek i , j k  < rk], (2.30)
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where

P[Ekh3k <Tk] = Y, ’̂'P[Eki/jk]·
Jk<rk

(2.31)

In [15], it is shown that starting from Eq. 2.31, P[E, F] is bounded by,

, //(ac-3e)

<PoQ'

where,

VP

P[E,F] < '‘^T{D,I)
\P o Q /

Po = <P
VP + Q 

qo = l - p o > q

(2.32)

(2.33)

(2.34)

for 0 < 7/ < 1. The new upper bound on error-event probability is obtained by combining 
Eq. 2.27 and Eq. 2.32,

P[E] <
\poq/

f/{Sc-3e]
T{D,I)  + 2-f (2.35)

The above bound is valid for all / .  The parameter /  is chosen so as to minimize the 
right handside of Eq. 2.35. Comparisons show that this bound is better than Viterbi’s 
bounds and bounds proposed in [12].

In [16], new upper and lower bounds and approximations on the sequence, event, 
first event, and bit-error probabilities of convolutional codes are presented. Each of 
these probabilities are precisely defined and the relationship between them described. 
Some of the new bounds are found to be very close to computer simulations at low 
signal-to-noise ratios. Also simple modifications to the traditional union upper bound 
are described for both hard- and soft-decision channels that allow better performance 
estimates to be made.

In [17], a Markovian technique is described to calculate the exact performance of a 
convolutional code with Viterbi decoding over binary symmetric channels. The Hamming 
distance dn between two sequences, defined as the number of bits in which they differ, 
is used as the decoding metric. denotes a received sequence of length N  time units. 
Viterbi algorithm at each node 7 of the trellis diagram chooses a maximum-likelihood 
path among the paths leading to that node and a metric is computed from the 
metrics at time unit — 1. For a maximum-likelihood path A!^,

(2.36)
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_jV
The relative metric, , at node 7 is obtained by subtracting the minimum metric 
among all nodes from

d !; = (2.37)

The metric vector at time unit N  is

(2.38)

where 2" is the number of states of the convolutional encoder. These internal states of 
the Viterbi decoder form the Markov chain, with the received symbol r  in the sequence 

at time N  determining the transitions from one state to another. For example, the 
Hamming distance between a branch label and a channel output is at most two for a 
rate-1/ 2, 2-state convolutional code with generator matrix [1, 1-l-D]. The possible metric 
vectors or states of the Markov chain are therefore (2,0), (1,0), (0,0), (0,1), (0,2). The 
transition probability matrix T for the resulting Markov chain can be easily formed by 
checking which received signals determine a transition from one metric vector to next. 
The conditional probability of this received signal defines the transition probability. The 
probability of bit error is computed from the steady-state behavior of the Markov chain.

At a given state of the Markov chain, the exact bit error probability for the current 
k information bits is computed by considering all future received sequences that stem 
from a particular decoded branch. Given metric state D and a received sequence of 
I branches, P {r \D )  = i fk  if z information bits are decoded incorrectly. Averaging over 
all metric states and received sequences, the probability of error can be expressed as

n = E  W i ’('-'.D)
D,r‘

(2.39)

where qj.i is the probability of receiving sequence r* and is the steady-state distribu
tion of the metric state D. It is understood that the received sequences in Eq. 2.39 are 
mutually disjoint and exhaust all possibilities that cause errors in the current time limit. 
The main problem encountered in calculating Eq. 2.39 is cataloging all possible future 
received sequences that cause information bits in a given time unit to be decoded incor
rectly. In [17], three different approaches are introduced to overcome this difficulty. This 
method has limitations due to the rapid increase in the number of Markov states as the 
constraint length increases. These problems are addressed in [17]. For short constraint 
length codes, calculations are compared to simulations which show acceptable accuracy.



Chapter 3

Improved Bounds on Convolutional 

Code Performance

Estimating the error performance of a concatenated coding scheme requires the evalua
tion of the error performance of the inner code. Union bound for convolutional codes, 
in its classical form given by Viterbi [11], is a well known approach to estimate the error 
performance, provided that the bit error rate (BER) at the ML decoder output is very 
low, for example, around 10'^  (for constraint lengths up to seven) or 10“® (for constraint 
lengths greater than seven). When convolutional codes are used as inner codes in con
catenated systems, however, the codes should be optimized for a BER of around 10“  ̂
to 10“® (the outer code takes this error rate and produces an output error rate of 10“® 
to 10“ °̂) [16]. Unfortunately, the accuracy of the union bound is limited in this latter 
range of operation (low SNR).

In this chapter, we propose two different methods for improving the union bound for 
binary convolutional codes. The first method is based on the ideas presented in [3] for 
linear block codes over a binary input AWGN channel. The results of [3] are extended 
to the convolutional codes over a BSC with hard decision decoding and an AWGN 
channel with soft decision decoding. In Section 3.1, this approach will be presented using 
a rate-1/ 2, constraint-length-3 convolutional code with the generator matrix g{D) = 
[1 + D D " ^ ] .  Results will be compared to classical union bound and to simulation 
data.

22
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The second method aims to improve the union bound in the low SNR region. In 
Section 3.3, a detailed analysis of this approach will be presented using the same exam
ple code. Results will be presented and be compared to classical union bound and to 
simulation data.

3.1 Improving Union Bound using Weight 

Distributions

We will first consider a linear block code of length n symbols over a binary input sym
metric channel with BPSK modulation and following properties :

1. A binary input alphabet X  =  {0, 1}.

2. An output alphabet Y  taking either continuous values with conditional probabil
ity density function Px{y) or discrete values with conditional probability Px{y), 
depending on the channel.

3. The symmetry condition Po{y) = Pi(-y)  or po{y) =  Pi{—y) holds for all outputs
y-

For such a code, all non-zero codewords can be grouped according to their weights d (or 
distance from the all-zero codeword) into subsets xa for dmin < d < dmax-

Then for a decoder which determines the most likely codeword according to some 
(optimum) metric on the received vector y, the word error probability given all-zero 
codeword xq was sent is equal to

d=dmax
Peo =  P[ U  ( 3.ny codeword in has metric > that of Xp )]

d=dmin
d~dmax

< P ( any codeword in Xd has metric > that of ^  )
d=dfnifi
d=dmax

=  E  Pm(d)
d—dmin

In [3], based on a result of [18], it is shown that

Pm{d) < exp[-nE{5)]

(3.1)

(3.2)
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where

=  max{-p[r(i) +  iln/i(p) +  (l-i)ln.9(p)]

-(1  -  p) ln[h(p) + p(p)]} (3.3)

Here δ = d/n, r{5) = (In AT^/n), and = Size of Subset χ^, and
poo

K p) = f  (3.4)
Joo

poo
y{p) =  / \ P o { y Y ^ ^ ^ ^ " ^ (3.5)

Joo

for the continuous output case, and

h(p) = +  (3.6)
y

M  = E I a ( y ) ‘' “ +‘’> + i'o (-!/)‘ “̂ +'’>]-'‘- ‘’>/’o(!/)"/<'+''> (3.7)

for the discrete output case. Eq. 3.1 results in a tighter union bound for linear block 
codes in terms of the weights of the codewords. Letting p =  1 in Eq. 3.3 results in the 
traditional union bound. Usually, the bit error probability is a more interesting measure 
on the performance. An upper bound on the bit error probability can be obtained, 
following the results of Section 2.3 and using Eq. 3.1, as

d—dmax
n< Σ -ί’Εθ('ί)

d=drr n (3.8)

This method can be modified for use with convolutional codes. An apparent problem 
is that convolutional codes have infinite length sequences or paths as codewords. To 
overcome this difficulty, first consider the path rji, which is the zth path that diverges 
from the all-zero path at the origin and merges back at the j th  trellis stage. Such a path 
has length Uj =  2j  bits for a rate-1/2 binary convolutional code. Let the distance of this 
path from the all-zero path be dji. We form a set Sj defined as

Sj = {paths rji of length Uj for i =  1, 2, . . . ,  M — 1 

and the all-zero path, rjo, of length Uj} (3.9)

where M  is the total number of such paths. An example of such paths is shown in 
Fig. 3.1 for the case of rate-1/2, constraint-length-3 code with generator matrix [1 -f 
D + D"^,! -(- D^]. The set S j  can now be considered as a block code of block length
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Figure 3.1: Paths forming the set 5'e, for j  = 6

Uj with M  codewords. The elements of the set Sq of Fig. 3.1 and their distances from 
the all-zero codeword are listed in Table 3.1. Note that the set contains two codewords 
of distance 7 and one codeword of distance 8. Then, the codewords in a set Sj can be 
further grouped into subsets xjd for dj^min < d < dj^max- With this grouping, the previous 
steps discussed for a linear block code can be directly applied to the set Sj. So, following

^6 codeword distance, d̂ i
6̂0 000000000000 —

6̂1 111000010111 7
6̂2 110101001011 7
6̂3 110110100111 8

Table 3.1: Codewords and their distances from the all-zero codeword

Eq. 3.1, one can obtain a probability of error figure, Pj êo for the set Sj. The minimum 
value of j  or the length of shortest path is a characteristic of the convolutional code 
and can be determined from its path enumerator polynomial T{D). On the other hand 
the path lengths, j ,  can be increased indefinitely. As j  increases, however, number of 
available paths increases very rapidly. Therefore, both the enumeration of the paths and 
the application of the algorithm become cumbersome. Since the probability of having a 
path that stays diverged for very large values of j  decreases rapidly, it should be possible 
to truncate the maximum path length at some value L^ax without affecting the accuracy 
of the bound significantly, provided that L^ax is large enough. Then, the overall figure 
for the probability of sequence error is obtained as

^max ^—̂j,Tnax
Peo < ^  ^  Pj,Eo{d)

j —̂min d=dĵ rnin
(3.10)
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where Pj,Eo{d) is calculated using Eq.’s 3.3-3.7. Similarly, for the bit error probability 
we obtain

Limax ^—̂j,max dn < E E -C,Eo(d)
3 — ̂ m i n  d —d j^ fn in  ^

Consider the path enumerator T{D, L) for the example code:

(3.11)

T(D,L)  =
1 -  D L (1 +  L)

= +  i f L '  (1 +  i )  + D'L^(l  +  L)‘
+ .. .  +  £>*+•¿” '=(1 + L)‘ + . . .

(3.12)

where powers of D keep track of the weights of the paths and powers of L denote the path 
lengths. We note that the shortest path for this code has a length of 3 branches, hence 
Lmin — 3. Before choosing a value for we consider a method that enumerates the 
number of paths that diverge from the all-zero path at the origin and merge at the jth  
trellis stage for j  > Lmin and their weights. Note that all the required information can be 
read from the path enumerator. However, it is difficult to calculate the path enumerator 
and obtain its series expansion by the methods of Section 2.2 for convolutional codes with 
large constraint lengths. It is easier to obtain a state transition matrix by examining the 
state diagram of the code, possibly by a computer program.

To demonstrate the basic idea, we will once again make use of our running example. 
However, the method is valid for all binary convolutional codes with non-recursive (no 
feedback from output) encoder structures. Following the labeling of Section 2.2, the state 
diagram for the example code is redrawn in Fig. 3.2. The corresponding state transition

Figure 3.2: State diagram for rate-1/2 constraint-length-3 code
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matrix is

T  =

L 0 D^L 0

D'^L 0 L 0

0 DL 0 DL

0 DL 0 DL

(3.13)

/
where the (¿,i)th entry denotes the transition from state i to state j .  Prom Fig. 3.1 and 
Fig. 3.2, we observe that once a path out of the 00 state is taken, then whatever the 
intermediate path is, there exists a single state from which it is possible to return to 00 
state, namely the 01 state with weight D'^L. This observation is true for all rate-1/2 
codes having a non-recursive encoder structure. The path definition we impose, requires 
that a path diverges from the all-zero path at the origin and then merges back at the j th  
trellis stage. Therefore, starting from the 00 state, the transitions dictated by any path 
in Sj should reach the 01 state after j  — 1 stages and should never visit the 00 state at 
any intermediate time. With these requirements, all transitions to the 00 are removed 
from the state transition matrix and then its (/ — l)th  power is calculated.

T- =

0 0 D'^L 0

0 0 L 0

0 DL 0 DL

0 DL 0 DL

\

(3.14)

/
The element of Tj denoted by Tj(00,01) has the complete list of the paths of our concern, 
only the final transition from state 01 to 00 is missing. This transition is common to all 
and its weight is known to be D'^L. Therefore, the paths forming the set Sj are given 
by the polynomial

Sj{D, L) = Tj{00,01)D‘̂L (3.15)

For example, to list the paths of S^, Tg is calculated. T6(00,01) in that case turns out 
to be

re(00,01) =  2D^L^ + (3.16)

Hence,
Se{D, L) =  2T>̂ L® -H (3.17)

Comparison with Table 3.1, shows that information on all paths has been obtained 
correctly. Using this methodology, it is possible to enumerate all paths of the sets Sj for 
j  ^  ^min·
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We are now left with the decision on how to choose L^ax- At high SNR, the probabil
ity of having a path that stays diverged from the all-zero path is very low and therefore, 
choosing a small value for L̂ ^ax will provide sufficient accuracy. For low SNR region, on 
the other hand, a much larger value should be used. In the application of the method, 
Lmax is increased until further contributions do not increase the accuracy over the SNR 
range of interest. As a criterion, the probability values can be calculated at L and 
L -t- AL. If the absolute difference between the probability values are below some desired 
precision, then L^ax is fixed at L.

3.2 Results and Discussions

In this section, results for the rate-1/ 2, constraint-length-3 code will be presented. Im
proved bound will be compared to simulations and to the classical union bound as given 
by Viterbi.

Simulations are performed using a Viterbi software decoder written in C language. 
Though the final program is extensively modified for use with different channel charac
teristics and with codes of different constraint length, the basic modules are based on 
Robert Morelos Zaragoza’s Viterbi decoder program [19].

It is usually difficult to get a good statistical sample especially for very low error rates. 
The experiments are performed over 10® —10® bits blocks and are repeated several times 
to ensure that the mean value lies in an acceptable confidence interval. For experiments 
of this section all data points, Xf lie in an interval of Axj =  O.Olxj with 95% probability.

First, a BSC with BPSK modulation will be considered. The crossover probability
in this case is given by ____

1
P =

iREt
N. ) (3.18)

where R  denotes the rate of the code and E i, /N q is the SNR at the system input. 
Therefore, in Eq. 3.6 and Eq. 3.7, To(l) =  P and Po(0) = q = 1 -  p.

For this case, experiments show that truncating the length of possible paths at L^ax =  
30 which is 10-times the constraint length provide sufficient accuracy. The maximization 
in Eq. 3.3 is performed numerically. In Fig. 3.3, the results are plotted for a range of SNR 
values and compared to classical union bound and to simulation data. Simulation data
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are obtained using Viterbi decoding with 1-bit quantization and hard decision decoding.

Figure 3.3: Probability of bit error for i? =  1/2, K  
modulation

=  3 code over BSC with BPSK

In Fig. 3.4, the relative change that would be obtained for L^ax — 35 is plotted over 
a range of SNR values. It is seen that the change in the 2-6.5dB. region is very small, 
and the results are exactly the same up to machine precision for SNR values larger than 
6.5dB. Therefore, truncation causes no significant error in estimations.

Next, an AWGN channel will be considered. For this case, po{y) in Eq. 3.4 and 
Eq. 3.5 is given by

1 (y -  ^ 2R E , I N , ) \
p . t e ) = ^ e x p ( ------------- j -----------1 (3.19)

In Fig. 3.5, results of this case are plotted and compared to classical union bound and to
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Figure 3.4: Difference that would result in calculations for Lmax =  35

simulation data. Simulation results are obtained by performing Viterbi decoding, with 
8-bit quantization and soft decision.

In calculations Lmax =  30 was chosen. In Fig. 3.6 relative difference obtained for 
Lmax = 35 is plotted to show that sufficient accuracy is reached. The results are exactly 
the same up to machine precision for SNR values larger than 4.0dB.

Prom the plots it is observed that, the method converges to the classical union bound 
for high SNR. This is reasonable since it is known that classical union bound provides 
a tight estimate in that region. For the low SNR region on the other hand, the method 
provides tighter estimates while the classical union bounds increases abruptly to values 
much larger than one.
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Figure 3.5: Probability of bit error for =  1/2, AT =  3 code over AWGN channel with 
BPSK modulation



32

Figure 3.6: Difference that would result in calculations for Lmax =  35
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3.3 Improving Union Bound by Partitioning

It is known that the classical union bound as given by Viterbi [11] becomes loose at low 
SNR values. In this section, a method for improving the union bound over the low SNR 
region will be presented.

We will first consider the maximum-likelihood decoding of a received sequence under 
the assumption that the all-zero path was transmitted. The received path will be decoded 
into a path of weight d if and only if it is closer to that path than to all-zero path. 
Therefore, the probability that the received path will be decoded into a path of weight 
d decreases for increasing d.

In Section 2.3, it was shown that the first error event probability is bounded by T(D) 
evaluated at P  =  7 where j  = 'I2y ^Po{y)Pi{y)· hi general,

T{D) = -l· + . . . (3.20)

where d/ is the free distance of the code. When evaluated at 7 , the value of P* which 
represents the probability that the received path will be decoded into a path of weight 
i decreases with increasing i. Typically, only the terms up to a certain power of P  
will dominate the sum T{'y) depending on the SNR. However, the number of paths of 
weight i given by the coefficient of P ' increases at the same time. Since the union bound 
calculates the error probability by summing over all paths, the contribution from terms 
with high powers of P  may become significant due to the multiplicity even though the 
individual probabilities are small.

We propose the following method for upper-bounding the probability of bit error. 
First of all, for all practical cases, it is difficult to obtain a closed form expression for 
T (P). Therefore, T{D) is represented by its polynomial expansion. Obviously, it is not 
possible to sum up infinitely many terms. Instead, T{D) is truncated at some sufficiently 
large degree d^ax (usually several times as the constraint length). As a result, union 
bound on first error event probability is given by

Pe < +  · · · +  Cd„ .7 (3.21)

Instead of calculating the error bound in this way, we partition it into two parts. If a 
sequence of weight less than i is received, then we use the path enumerator polynomial 
to calculate the probability of error. A sequence of weight less than i can be decoded 
into any path of weight d/ < d < 2(f -  1) by a ML decoder. Therefore, only these terms
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of the path enumerator polynomial is used in the summation. If a sequence of weight 
larger than i is received, we assume that the decoder always makes an error and hence in 
this case the probability of error is equated to the probability of receiving such a path. 
The overall probability of error is given by the sum of the two cases. The value of i 
changes the contribution of the two cases. Therefore, we repeat the calculations for i 
running from \d f /2 \, which is the minimum number of channel errors that may cause 
the received sequence to be decoded into a wrong path, to [dmai/2] which is the number 
of channel errors that may cause the received sequence to be decoded into a path that 
is most far away from the correct path assuming that we use a truncated code. Then, 
the minimum is chosen as the error probability.

Consider a BSC with a crossover probability of p. In this case the probability of 
receiving sequences of weight d > z is given by

dmax / ^
p ( d > i ) = Y :

d—i
jpd(i (3.22)

Hence the following minimization over i is performed;

dmax
Pe < min d"max\ / ( 1  -  pY ”'---'^ +  c^7“'} (3.23)

Similarly, the upper bound on bit error probability given by

dT(D, L, I)
P»< dl £)=7,L=1,/=1 = r'W

can be modified using the same algorithm. Let the truncated T'{D) be given by,

r ( D )  = +  c i , +  . . .  +

Then the following minimization over i is performed:

O \ 2(i-l)^max \

(3.24)

(3.25)

dmax __
Pb< min p '" “® Jp‘̂ ( l Y

fn . .  .rw ^  /  w=dfd^i
(3.26)

For AWGN channel, an equivalent expression for Eq. 3.22 can be derived assuming 
white Gaussian noise with (two-sided) power spectral density Nq/2 and an energy of y/El 
per bit. The condition of receiving a path of weight d > i i s  given by the probability

+  +  . . .  +  « ! „  > \ /« K } (3.27)



35

assuming BPSK with signal levels of Ni are Gaussian with density
A (̂0, Nq/ 2). Normalizing to obtain unity variance, probability of decoding error is given 
by

p { ^ 4  +  4  +  . . .  +  ^ L · .  > Æ }Nn
(3.28)

From probability theory, y =  + Z2 + .. . + has the following distribution

/7/2 \ ( 4max ) — \, . ?/e 2 ( 2 ) ^
M y )  = ' _  J,), . ! / > 0

Hence, the equivalent relation for Eq. 3.22 is given by the integral

P(d > i)  = / i ^ " °  S,(y)iy

(3.29)

(3.30)

Therefore, the method is directly applicable to AWGN case if Eq. 3.22 is replaced by
_ Eg

Eq. 3.30 and 7 =  6 '̂ ° is used.

3.4 Results and Discussions

In this section, results for the rate-1/2, constraint-length-3 code will be presented. Im
proved bound will be compared to simulations and to the classical union bound as given 
by Viterbi. Simulation data are obtained under the same conditions of the previous 
cases.

Application of the algorithm requires the truncation of polynomial representing the 
series expansion of the path enumerator. In the example cases, polynomial of T{D) 
is truncated at a degree dmax =  30. First a BSC with a crossover probability of p 
is considered. The probability of bit error is obtained following the discussions of the 
previous section and is plotted for a range of SNR values. In Fig. 3.7, results are compared 
to simulation data and classical union bound.

Next, an AWGN channel will be considered. For this case, the integral relation in 
Eq. 3.30 is evaluated. In Fig. 3.8, results are plotted over a range of SNR values.

Results show improvement in the low SNR region, where the union bound in its 
classical form becomes useless. One important consequence is that the bound in this 
form is always upper-bounded by one.
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Figure 3.7: Probability of bit error for R = 1/ 2, K  = 3 code over BSC with BPSK 
modulation

The methods of this chapter provide improvements over the classical union bound. It 
is important to get a tighter upper bound on the low SNR region since this is the range 
of interest in concatenated coding. In the next chapter, the results of this chapter will 
be used to evaluate the performance of an ideally interleaved concatenated scheme.
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Figure 3.8: Probability of bit error for R = 1/ 2, K  = 3 code over an AWGN channel



Chapter 4

Ideally Interleaved System  

Performance

In Chapter 3, methods were proposed to obtain a better estimate on the error perfor
mance of convolutional inner codes. This was critical because the estimated error rate at 
the convolutional decoder output was to be used as input to the RS decoder error rate 
calculation. First section of this chapter presents closed form expressions for the word, 
symbol and bit error rates of RS codes for known input symbol error rate. In the next 
section, performance of an ideally interleaved system with rate-1/2, constraint-length-7 
convolutional inner code and (255,223) RS outer code is evaluated.

4.1 Overview of Reed-Solomon Codes

Reed-Solomon codes are an important and popular subset of a more general class of 
block codes known as Bose-Chaudhuri-Hocquenghem (BCH) codes [20], [21]. Unlike 
the convolutional codes, structure of BCH codes has strong algebraic properties. For 
an Q! 6 GF{q^) and for any specified mo and do, the code generated by the generator 
polynomial g{x) is a BCH code if and only if g(x) is the polynomial of lowest degree 
over GF{q) for which a'^°, , . . .  ^oFo+do-^ ^re roots. The blocklength of the code

38
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is given by the order of a. It can be shown that the minimum distance of the code in 
this case turns out to be at least do, the designed distance. The generator polynomial of 
the code is given by

g{x) = LCM[f^Xx),  · · ·, fmo+do-2{x)], (4.1)

where fj{x) is the minimal polynomial of a^, and a  G GF{q^). Usually one desires a 
large block length and thus a  is chosen as an element with largest order, that is, as a 
primitive element. In this case, the blocklength is given hy n = — 1. Furthermore,
if irio is chosen to be equal to one, then dg = 2to + l holds, where to is the number of 
correctible errors.

Reed-Solomon codes are obtained by setting m = rrio — 1. Then for a primitive 
element a

n = q ^ - l  = q - l  (4.2)

The minimum polynomial of is simply (x — a^), and thus

g(x) = (x — a)(x — a^) . . . {x  — a^° )̂ (4.3)

This is always a polynomial of degree of do -1  =  2to- The resulting code with blocklength 
of n symbols has do — 1 parity symbols and has minimum distance do- Hence

n — A: =  do — 1 = 2io

is satisfied, where k is the number of information symbols.

(4.4)

The Reed-Solomon codes are optimum in the sense that they satisfy the Singleton 
bound with equality. If do =  2io +  1 is the designed distance of the code, then the 
minimum distance d* satisfies

d* > do =  2io +  1 =  n — A: -I-1 

But by the Singleton bound, for any linear code,

d* < n — A: -I-1

(4.5)

(4.6)

Hence d* =  n-A:-|-l, and d* = dg. Codes satisfying the Singleton bound with equality are 
called MDS codes. RS codes are MDS. This is an important property for the performance 
analysis of Reed-Solomon codes because it makes the explicit calculation of the weight 
distribution of the code possible.
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Calculating the weight distribution of a code is a difficult problem and is unsolved 
for most codes, but for the important case of Reed-Solomon codes (or any MDS code), 
an exact solution is known. If Ai denote the number of codewords of weight I in an (n, k) 
linear code, the (n +  1) dimensional vector with components ri; for i =  0, 1, . . . ,  n gives 
the complete weight distribution. Obviously, if the minimum distance is d*, then Ao = 1 
and A i , . . . ,  Ad--I are all zero. Ai for I > d* is given by [10]

n ~
Ai

"n l-d·

 ̂/  jf=0 \ J
l - d r - j (4.7)

4.1.1 Error Probability Calculation on Reed-Solom on Codes

In this section, closed form expressions for the word, symbol and bit error rates of Reed- 
Solomon (RS) codes are presented for known symbol error rate F, at the decoder input.

Consider a RS code over GF(q). This code has an alphabet size of g =  2™ for some 
integer m > 1 and its block size is n =  9 — 1. If the minimum distance is given by 
d* = 2t + l, then this code is able to correct any pattern of t symbol errors.

In this section, a symmetric 9-ary memoryless channel with conditional probabilities

1 -  Fj y = x

y ^ x

is assumed. Then, assuming a BDD the word error probability is given by

p{y/x) =
P s

n—l
(4.8)

(4.9)
i— 1-|-1

Under the worst case assumption that a received word with i symbol errors will be de
coded into a codeword at a distance i+ t  from the transmitted codeword, an upperbound 
on the symbol error probability can be calculated as

Ps,out< t
i= t+ i n

(4.10)

Finally, utilizing a factor of 1/2 to account for the average number of information bit 
errors per symbol error, the bit error rate at the RS decoder output may be estimated 
from the bound,

1 o _L / /n \
(4.11)
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The performance of a specific concatenation scheme can be determined by estimating P, 
for the particular inner code of interest and then evaluating through Eq. 4.11

4.2 Results on Ideally Interleaved System

In this section performance of an ideally interleaved system is considered. In this case, the 
bit errors at the convolutional decoder output are assumed to be independent. Therefore, 
the symbol error rate at the RS decoder input can be calculated directly by

/>. =  1 -  (1 -  P,)’ (4.12)

for a Reed-Solomon code over GF{2^)  which has m  bit symbols. Given the symbol error 
rate, Pg, the word, symbol and bit error rates at the system output can be calculated 
using Eq. 4.9-Eq. 4.11.

In this section, the bit error rate at the convolutional decoder output will be calculated 
using the improved techniques of Chapter 3. We will refer to the methods described in 
Section 3.1 and Section 3.3 as Bound-1 and Bound-2, respectively. In Table 4.1, bit 
error rates obtained through simulation, Bound-1, Bound-2, and classical union bound 
are listed for the rate-1/ 2, constraint-length-7 convolutional inner code over AWGN 
channel with soft decision decoding. In the calculation of classical union bound and 
Bound-2, referring to [22], following portion of the path enumerator is used,

dT{D,I)
T \ D )  =

dl /=1
= 36D̂ ° -I- 21ir>̂  ̂+ 1404£>̂ '‘ + 11633D^^ -|- 77433T>̂ ® -l· 502690T>''̂ " 

-̂3322763T>̂  ̂-h 212929101)̂ '* -H 1343663911T>̂ ® + ... (4.13)

Using the data of Table 4.1, Eq. 4.12 and Eq. 4.11 is used to calculate the bit error rate 
of the overall system. The results are plotted in Fig. 4.1 and compared to a bit error 
rate plot given in [22]

Next, the same system will be considered over a BSC with hard decision decoding. In 
Table 4.2, bit errors rates obtained through simulation, Bound-1, Bound-2, and classical 
union bound are listed for the rate-1/ 2, constraint-length-7 convolutional inner code.

Using the data of Table 4.2, Eq. 4.12 and Eq. 4.11 are used to calculate the bit 
error rate of the overall system. The results are plotted in Fig. 4.2. It is observed that
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E i, /Nq in dB. Simulation Bound1 Bound2 Union Bound
1.7 0.017832 0.402543 0.079796 0.899823
1.8 0.014577 0.260885 0.065036 0.611950
1.9 0.011841 0.167522 0.052691 0.414405
2.0 0.009537 0.106812 0.042436 0.279584
2.1 0.007644 0.067805 0.033974 0.188034
2.2 0.006073 0.042989 0.027042 0.126149
2.3 0.004647 0.027324 0.021402 0.084486
2.4 0.003750 0.017480 0.016844 0.056531
2.5 0.002920 0.011296 0.013185 0.037825
2.7 0.001730 0.004923 0.007953 0.016992
2.9 0.000967 0.002290 0.004705 0.007711
3.1 0.000527 0.001130 0.002734 0.003555
3.3 0.000286 0.000580 0.001561 0.001669

Table 4.1: Bit error rates at the RS decoder input for AWGN channel and soft decision 
decoding

Eb/No in dB. Simulation Bound1 Bound2 Union Bound
3.5 0.019946 0.747797 0.027643 2.725300
3.6 0.016832 0.519286 0.024305 1.900948
3.7 0.014116 0.357821 0.021289 1.319518
3.8 0.011831 0.244900 0.018574 0.911748
4.0 0.008181 0.112930 0.013967 0.429993
4.2 0.005537 0.051483 0.010329 0.200104
4.4 0.003691 0.023521 0.007505 0.092310
4.6 0.002409 0.010924 0.005355 0.042450
4.8 0.001546 0.005213 0.003749 0.019582
5.0 0.000973 0.002580 0.002573 0.009118
5.2 0.000601 0.001323 0.001702 0.004307
5.4 0.000364 0.000697 0.001070 0.002070

Table 4.2: Bit error rates at the RS decoder input for BSC channel and hard decision 
decoding
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Figure 4.1: Bit error probability of ideally interleaved concatenated system over AWGN 
channel with soft decision

using the improved estimates of Chapter 3 for the bit error rate at the RS decoder input 
provides a better estimate for the overall system performance. At high SNR, all bounds 
eventually converge to the bound obtained by utilizing the classical union bound
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Figure 4.2: Bit error probability of ideally interleaved concatenated system over BSC 
with hard decision



Chapter 5

Non-Interleaved System  

Performance

For ideally interleaved systems, bit errors at the RS decoder input are assumed to be 
independent. Hence, Eq. 4.12 is used to calculate the symbol error. However, for non- 
interleaved systems, bit errors at the RS decoder input are not independent due to 
convolutional decoder memory and Eq. 4.12 is generally not valid.

In this section, we propose a method to directly determine the symbol error rate at 
the system output of non-interleaved systems without referring to ideas of Section 4.1.

First, the distribution of the errors at the Viterbi decoder output is considered. We 
know that channel errors may be decoded into an error burst by the Viterbi decoder. 
Hence, individual errors in an error burst are highly dependent. We must capture this 
dependence to successfully analyze a non-interleaved system. This requires a burst def
inition. A possible definition is to call any sequence of binary digits that start and end 
with a ’1’ digit and is separated from other such sequences by at least g successive ’0’ 
digits as a burst. There are two disadvantages of this definition. The first one is its 
dependence on g. Changing the value of g would result in a different burst distribution 
for the same sequence. Secondly, bursts are defined in terras of the binary output of 
the Viterbi decoder. However, the RS decoder stage works on this output in terms of 
symbols. Therefore, the binary output of the Viterbi decoder is grouped into symbols.
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Then, assuming that all-zero message is transmitted, any L consecutive non-zero sym
bols is called a burst of length L (Fig. 5.1). With this definition extensive simulations 
are run to obtain burst histograms at the RS decoder input for a range of signal-to-noise 
ratios. Experiments are repeated several times to ensure the sample mean to lie in an 
acceptable confidence interval. The number of error free symbols between two succes
sive bursts is called the waiting time. The waiting time distribution is also obtained by 
running simulations.

Non-zero Symbols Zero Symbols

An error burst of 3 symbols a wait of 2 symbols

Figure 5.1: An example burst and wait structure

In Fig. 5.2 and Fig. 5.3 sample burst histograms for two different SNR values are 
plotted. The system considered employs a rate-1/ 2, constraint-length-7 convolutional 
inner code and a (255,223) RS code over G F(2®) for an AWGN channel with BPSK 
modulation. Viterbi decoding with soft decisions is performed at the inner decoder. 
Each RS symbol consists of 8-bit symbols.

From the graphs its is observed that the burst distributions can be approximated by 
a geometric distribution of the following form

P{L  =  m} =  p{\ -  pY^  ̂ , m = 1,2, . . .

where
p =

(5.1)

(5.2)

and L is the average burst length in symbols.

In Fig. 5.2 and Fig. 5.3 sample wait distributions are plotted for the same SNR values 
and system configuration. Wait distributions can also be approximated by a geometric 
distribution given by

P { W  =  k )  =  q ( \ - q f - ^  , ¿  =  1, 2, . . . (5.3)
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60 80 100 120 
Wait length, W in symbols

Figure 5.2: Burst and wait histograms for E^/Nq = 1.2dB.

where
(5.4)

and W  is the average wait length in symbols.

We adopt a two-state Markov Chain (MC) to represent the behavior of symbol errors 
at the RS decoder input. This MC representation is shown in Fig. 5.4. The state "0" 
represents the event of being in a waiting time and the state represents the event of 
being in a bursty region.

The state transition matrix of this Markov Chain is given by

P =
\ - q  q

P ^ - p  J
(5.5)
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Wait length, W in symbols

Figure 5.3: Burst and wait histograms for E^/Nq — 2.3dB. 

and has the steady-state distribution, tt, given by

7t‘F  =  7T (5.6)

where tt =  [tto, 7Ti]‘, and tto and tti are the steady state probabilities of being in the “0” 
and “1” states, respectively.

The symbol and word error probabilities at the decoder output can be obtained 
directly from the Markov Chain representation. Note that whenever a transition from 
the “0” to “1” state takes place, it initiates a symbol error. Any transition afterwards 
from “1” onto itself causes successive symbol errors. By keeping track of the state 
transitions, one can count the number of symbol errors. For this purpose, we introduce
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1-p

Figure 5.4: Markov Chain representation of symbol errors 

a dummy variable L to the state transition matrix of Eq. 5.5 in the following form:

P =
 ̂ 1 - q  qL 

\  P { i - p ) L )
(5.7)

Consider a t error correcting RS code with block length n. If the behavior of the 
symbol errors at the decoder input is given by the above Markov chain structure, then 
the word and symbol error probabilities for this code can be calculated by the following 
procedure. Let P'  be the nth power of P  in Eq. 5.7. Then, elements of P' are polynomials 
in L. Sum of the first row elements give all the possible error patterns as powers of the 
polynomial variable L and their probabilities as the polynomial coefficients assuming 
that the system was initially in the “0” state. For example, let the sum of the first row 
elements be denoted by.

Po =  P o o + P o i

=  Cq +  +  C2L'^ +  . . . +  CfiL·'' (5.8)

Then, L* for i =  0, 1, . . . ,  n denote the event of having i symbol errors in one codeword 
of n symbols and Cj denote the probability of having such a pattern. The same is true 
for the sum of the second row terms assuming that the system was initially at state “1” . 
If the code is t error correcting then all error patterns having t or fewer symbol errors 
will be corrected. Therefore, all terms of degree less than i +  1 are removed from the 
polynomials. If Pq denote the truncated form of Pq, it is given by.

Po ~  +  . . .  +  CnT"

With above definitions, the probability of word error is given by

Pw,out — '̂ oPo\l=̂  |i/=l

(5.9)

(5.10)
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E i /N q in dB.
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.1
2.2
2.3

2.50973
2.39737
2.33196
2.23887
2.17898
2.09512
2.04241

±AL
0.00724
0.00747
0.00815
0.00746
0.00741
0.01009
0.01297

1.97804
1.92306
1.86914
1.82067
1.77498
1.72612

0.00825
0.00578
0.00583
0.00342
0.00288
0.00195

W
19.44068
22.63018
25.30050
29.76649

± A W
0.01038
0.01881
0.02579

33.68965
40.28850
46.04570
54.29409
64.48241
76.66514
90.94357
107.05919
126.18502

0.01836
0.06362
0.15253
0.23528
0.18050
0.03363
0.16515
0.12123
0.14933
0.11852

Table 5.1: Mean burst and wait lengths in symbols for AWGN channel with soft decision 
decoding

Similarly, a bound on probability of symbol error can be obtained using Eq. 5.9 as

1p  <'
·*  SyO Ut —

' ^ P o \ (5.11)

We have applied this method to a non-interleaved concatenated system with a rate- 
1/2, constraint-length-7 convolutional inner code and a (255,223) RS outer code. First, 
the system performance over an AWGN channel is considered. In order to obtain burst 
and wait time histograms, extensive simulations are run using a Viterbi software decoder 
written in C language. This is the same program used in Chapter 3 with slight modifi
cations to count burst occurrences in terms of 8-bit symbols. Also a module is added to 
experimentally calculate the RS symbol and word error rates at the system output.

In Table 5.1 experimental data obtained for the system of our interest is listed for 
a range of SNR values. Sufficient experiments have been made to guarantee that the 
mean burst and wait time values lie in an interval of A L  and AW , respectively, with 
%95 probability. Using our model, word and symbol error probabilities are calculated. 
Results are tabulated in Table 5.2. In Table 5.3 corresponding simulation data are listed 
with their confidence intervals.

Data are plotted in Fig. 5.5. It is observed that calculated values closely follow the
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Eb/No in dB. TTo 7Tl P y jjO U t
p

SjOUt

1 .1 0 .8 8 5 6 6 0 .1 1 4 3 4 0 .9 2 4 1 3 0 .1 1 0 8 0

1 .2 0 .9 0 4 2 0 0 .0 9 5 8 0 0 .8 2 3 2 5 0 .0 8 7 2 4

1 .3 0 .9 1 5 6 1 0 .0 8 4 3 9 0 .7 2 0 2 8 0 .0 7 1 0 4

1 .4 0 .9 3 0 0 5 0 .0 6 9 9 5 0 .5 4 1 4 6 0 .0 4 9 1 2

1 .5 0 .9 3 9 2 5 0 .0 6 0 7 5 0 .4 0 6 6 1 0 .0 3 5 1 6

1 .6 0 .9 5 0 5 7 0 .0 4 9 4 3 0 .2 4 0 3 3 0 .0 1 9 7 0

1 .7 0 .9 5 7 5 3 0 .0 4 2 4 7 0 .1 5 1 4 8 0 .0 1 2 0 6

1 .8 0 .9 6 4 8 5 0 .0 3 5 1 5 0 .0 7 8 5 7 0 .0 0 6 0 8

1 .9 0 .9 7 1 0 4 0 .0 2 8 9 6 0 .0 3 7 2 4 0 .0 0 2 8 2

2 .0 0 .9 7 6 2 0 0 .0 2 3 8 0 0 .0 1 6 3 0 0 .0 0 1 2 1

2 .1 0 .9 8 0 3 7 0 .0 1 9 6 3 0 .0 0 6 8 6 0 .0 0 0 5 0

2 .2 0 .9 8 3 6 9 0 .0 1 6 3 1 0 .0 0 2 8 4 0 .0 0 0 2 1

2 .3 0 .9 8 6 5 1 0 .0 1 3 4 9 0 .0 0 1 0 9 0 .0 0 0 0 8

Table 5.2: Calculated word and symbol error probabilities at the system output for 
AWGN channel case

E b / N o  in dB. P UJjOUt ^ ^ P w jO U t P SyOUt i ^ ^ P 3yOUt

1 .1 0 .9 2 1 6 2 0 0 .0 0 2 4 9 0 0 .1 1 0 4 3 0 0 .0 0 0 4 2 0

1 .2 0 .8 2 0 1 0 0 0 .0 0 7 4 8 0 0 .0 8 6 7 8 0 0 .0 0 0 4 1 0

1 .3 0 .7 1 6 6 7 0 0 .0 0 4 0 8 0 0 .0 7 0 6 1 0 0 .0 0 0 4 3 0

1 .4 0 .5 3 8 8 1 0 0 .0 0 3 6 6 0 0 .0 4 8 7 5 0 0 .0 0 0 3 6 0

1 .5 0 .4 0 4 4 4 0 0 .0 0 3 3 0 0 0 .0 3 4 9 3 0 0 .0 0 0 3 0 0

1 .6 0 .2 3 9 3 3 0 0 .0 0 2 5 3 0 0 .0 1 9 5 6 0 0 .0 0 0 2 1 0

1 .7 0 .1 5 0 1 6 0 0 .0 0 2 4 6 0 0 .0 1 1 9 1 0 0 .0 0 0 1 9 0

1 .8 0 .0 7 5 9 8 0 0 .0 0 1 2 2 0 0 .0 0 5 8 5 0 0 .0 0 0 1 0 0

1 .9 0 .0 3 5 1 6 0 0 .0 0 8 8 6 0 0 .0 0 2 6 5 0 0 .0 0 0 0 7 0

2 .0 0 .0 1 4 3 2 0 0 .0 0 0 4 5 0 0 .0 0 1 0 6 0 0 .0 0 0 0 3 0

2 .1 0 .0 0 5 0 8 0 0 .0 0 0 1 6 0 0 .0 0 0 3 7 0 0 .0 0 0 0 1 0

2 .2 0 .0 0 1 6 8 0 0 .0 0 0 0 8 0 0 .0 0 0 1 2 0 0 .0 0 0 0 0 6

2 .3 0 .0 0 0 4 6 0 0 .0 0 0 0 0 2 0 .0 0 0 0 3 2 0 .0 0 0 0 0 2

Table 5.3: Simulation data for the word and symbol error probabilities at the system 
output



52

simulation results. The deviation at high SNR results from the fact that the geometric 
distribution model fails to correctly represent the error distribution at the RS decoder 
input. This is an expected outcome since at high SNR, symbol errors becomes inde
pendent of each other and hence distributed more uniformly. For high SNR values, the 
system performance resembles that of an interleaved system.

Figure 5.5: Word and symbol error probabilities for non-interleaved concatenated system 
over AWGN channel and soft decision

Next, a BSC with hard decision decoding will be considered. Similar to the previous 
case, extensive simulations are run to obtain burst and wait histograms at the Viterbi 
decoder output. The results are tabulated in Table 5.4. Using the same modeling, 
word and symbol error probabilities at the system output are obtained and tabulated in 
Table 5.5.
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El,/No in dB. L ± A L W ± A W
2.8 2.86325 0.01562 19.13397 0.09689
3.0 2.69665 0.01000 23.89189 0.02076
3.2 2.54389 0.01015 30.42012 0.05032
3.3 2.47844 0.00587 34.53128 0.03547
3.4 2.41326 0.01454 39.38995 0.19000
3.5 2.35788 0.01244 45.00660 0.20661
3.6 2.30210 0.00780 51.88436 0.07805
3.7 2.25012 0.00664 60.14580 0.05249
3.8 2.20275 0.00733 69.81994 0.10668
4.0 2.11480 0.00331 95.57575 0.10965
4.2 2.03820 0.00291 133.247084 0.11678
4.4 1.97282 0.00300 185.556340 0.13410

Table 5.4: Mean burst and wait lengths in symbols for BSC with hard decision decoding

Eb/No in dB. TTO 7Ti PJĴ OUt P 3,OUt
2.8 0.86984 0.13016 0.95644 0.12838
3.0 0.89858 0.10142 0.84296 0.09396
3.2 0.92283 0.07717 0.62339 0.06004
3.3 0.93033 0.06697 0.49311 0.04495
3.4 0.94227 0.05773 0.36482 0.03176
3.5 0.95022 0.04978 0.25612 0.02151
3.6 0.95752 0.04248 0.16639 0.01355
3.7 0.96394 0.03606 0.10139 0.00805
3.8 0.96942 0.03058 0.05910 0.00460
4.0 0.97835 0.02165 0.01720 0.00130
4.2 0.98493 0.01507 0.00432 0.00032
4.4 0.98948 0.01052 0.00106 0.00008

Table 5.5: Calculated word and symbol error probabilities at the system output for BSC 
case
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Eb/No in dB. PwyOUt ^^PwyOUt PsyOUt ^^P syO U t
2.8 0.964280 0.001726 0.128255 0.000325
3.0 0.857820 0.003523 0.094193 0.000493
3.2 0.636380 0.004436 0.060008 0.000446
3.3 0.499433 0.002448 0.044485 0.000233
3.4 0.362880 0.004330 0.030795 0.000369
3.5 0.245827 0.002501 0.020095 0.000208
3.6 0.152360 0.002000 0.012047 0.000162
3.7 0.085060 0.001403 0.006563 0.000110
3.8 0.045260 0.001045 0.003422 0.000079
4.0 0.009819 0.000139 0.000721 0.000010
4.2 0.001565 0.000063 0.000112 0.000004
4.4 0.000170 0.000023 0.000012 0.000002

Table 5.6: Simulation data for word and symbol error probabilities at the system output

In Table 5.6 corresponding simulation data are listed with their corresponding con
fidence intervals. Data are plotted in Fig. 5.6. Similar to the AWGN channel case, the 
model follows the simulation data closely but deviates slightly as moved to the high SNR
case.



55

Figure 5.6: Word and symbol error probabilities for non-interleaved concatenated system 
over BSC and hard decision decoding



Chapter 6

Concluding Remarks

Performance of a particular coding scheme can be evaluated based on the output error 
rate. Computer simulations are an important tool for error rate estimation. However, 
their use has always been limited by the computational cost of getting a reliable statisti
cal sample. Another possibility is to use error bounds to estimate the performance. Error 
bounds provide approximations to the exact behavior of the system through mathemat
ical models. Obviously, any useful bound should be as tight as possible on the actual 
system performance and remain computationally simple.

In this thesis, we have concentrated on finding tight upperbounds on the output 
error rate of concatenated coding systems with convolutional inner codes and RS outer 
codes. Performance of such a system can be estimated by first calculating the error 
rate of the inner code and then by evaluating the outer code performance. Therefore, 
we have investigated bounds on the error rate of convolutional codes. Union bound on 
convolutional codes given by [11] is a well-known technique to estimate the error rate. 
Though it provides a very tight estimate on the error rate at relatively high SNR values, 
it increases abruptly at low SNR values.

Two different methods are proposed to improve the union bound on convolutional 
codes. The first method modifies the ideas presented in [3] for use with convolutional 
codes. Performance of the algorithm is tested over an AWGN channel with soft decisions 
decoding and a BSC channel with hard decisions decoding. It considerably improves the 
classical union bound in the low SNR region. Comparison with simulations show that an

56
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order of magnitude improvement in the low SNR region is possible. At high SNR region 
the new bound converges to the classical union bound. Application of the algorithm 
requires the enumeration of the trellis paths. An effective approach based on calculation 
of successive powers of the state transition matrix of the code is proposed. The only 
difficulty is to decide on when to truncate the enumeration of the paths. The same 
problem exists in the calculation of the classical union bound when the transfer function 
of the code can not be obtained as a closed form expression. This is a highly code 
dependent decision. The only observation is that at high SNR region truncation at 
relatively short length paths is sufficient to get a good estimate since the probability 
that a path remain diverged from the all-zero path decreases in this region. However, 
for low SNR region longer path lengths are required.

The second approach aims to improve the classical union bound by avoiding the 
over counting of events with low occurrence probabilities. The method is tested over 
an AWGN channel with soft decisions decoding and a BSC channel with hard decisions 
decoding. It provides tight estimates in the low SNR region where the union bound 
mostly suffers from the over counting of events.

We have investigated the performance of an ideally interleaved system. Inner code 
performance is calculated using the the improved methods. Under the ideal interleaving 
assumption, bit error rate estimates at the convolutional decoder output are directly 
used to calculate the symbol error rate at the RS decoder input. The results show that 
having better estimates for the inner code performance directly effects the estimates 
on the overall system performance. The use of improved methods provide a two fold 
improvement over the SNR range when compared to estimates that use union bound to 
predict the inner code performance.

For the non-interleaved systems, bit error rates at the convolutional decoder output 
can not be used to compute the symbol error rate. Therefore we have proposed a 
new model for the analysis of non-interleaved systems. For this case, burst histograms 
should be obtained through simulation. Burst histograms are used to set up a Markov 
chain representation of the system. The results are very satisfactory. The model almost 
exactly represent the actual system performance over a considerable SNR range. The 
method shows deviation from the actual case as we move to high SNR region. This 
is because the underlying assumption of geometrically distributed error bursts fails to 
model the actual distribution. However, the methods proposed for the ideally interleaved 
system can be employed in the high SNR region as the errors become independent. The
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main drawback of this method is the requirement for simulation based burst histograms. 
They are effected by the problems common to all simulation the based data such as long 
computational times and statistical accuracy. Analysis of the state diagrams may help 
in finding mathematical models to represent the burst histograms. This may decrease 
the computational cost of the algorithm.
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