

PROGRAMMING SMP CLUSTERS: NODE-LEVEL
OBJECT GROUPS AND THEIR USE IN A

FRAMEWORK FOR NBODY APPLICATIONS

A THESIS

SUBMITTED TO THE DEPARTMENT OF COMPUTER

e n g in e e r in g a n d in f o r m a t io n SCIENCE

AND THE INSTITUTE OF ENGINEERING AND SCIENCE

OF BILKENT UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF
MASTER OF SCIENCE

By
İlker Cengiz

September, 1999

¿ í; 4 94 4 3
¿Ifi

l i S

■ c u y

ÍSSi

I certify that I have read this thesis and that in my opin
ion it is fully adequate, in scope and in qucility, as a thesis
for the degree of Master of Science.

Asst. Prof. Atti^ . Güreoy (Sl̂ jervisor.

I certify that I have read this thesis and that in my opin
ion it is fully adequate, in scope and in quality, as a thesis
for the degree of Master of Science.

As.s6c. Prof. Özgür Ulli

I certify that I have read this thesis and that in my opin
ion it is fully adequate, in scope and in quality, as a thesis

Approved for the Institute of Engineering and Science:

rof. Mehn̂ (jCT Baray
Director of institute of Engineering and Science

ABSTRACT

PROGRAMMING SMP GLUSTERS;
NODE-LEVEL OBJECT GROUPS and

THEIR USE IN A FRAMEWORK FOR NBODY APPLICATIONS

İlker Cengiz
M.S· in Computer Engineering and Information Science

Supervisor: Asst. Prof. Attila Giirsoy
September 1999

Symmetric Multiprocessor (SMP) cluster architectures emerge as a cheaper but
powerful way of building parallel programming platforms. Providing mecha
nisms, layers of abstraction, or libraries gaining the power of SMP clusters is
a challenging field of research. Viewing an SMP architecture as an array of
processors would be insufficient, since such a model ignores essential possible
gains over performance. We have stressed on reusable patterns or libraries
for collective communication and computations that can be used commonly
in parallel applications within a parallel programming environment utilized
for SMP clusters. We introduce node-level replicated objects, since replicated
objects provide a versatile abstraction that can be used to implement static
load-balancing, local services such as memory management, distributed data
structures, and inter-module interfaces. This work was motivated while we
were developing parallel object-oriented hierarchical Nbody cipplications with
Charm-f-f·. We discuss common paradigms that we came across in those appli
cations and present a framework for their implementation on SMP clusters. If
the bodies that an interaction needs are local then that interaction can be com
pleted without any communication. Otherwise, the data of the remote bodies
must be brought, and after the interaction calculation, the remote body data
must be updated. Parallel object-oriented design of this framework hides com
munication details of bringing remote bodies from programmer and presents
an interface to develop and e.xperirnent with nbody algorithms.

Keywords·. SMP C
NBody Methods.

ters, Parallel Object-Oriented programming. Hierarchical

111

ÖZET

BAKIŞIMLI ÇOKLU-İŞLEMCİ ÖBEKLERİNİ PROGRAMLAMMv
DÜĞÜM SEVİYESİNDE DALLI NESNELER ve

SIRADÜZENSEL ÇOKLU-ETKİLEŞİM YÖNTEMLERİ İÇİN
TASARLANAN BİR ÇATI

İlker Cengiz
Bilgisayar ve Enformatik Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Yard. Doç. Dr. Attila Gürsoy
Eylül 1999

Bakı.'jirnlı Çoklu işlemciye (SMP) sahip iş istasyonları üretmeye yönelik eğilim
bu tür iş istasyonlarini hızlı ağlarla birbirine bağlayarak ucuz ama güçlü koşut
programlama platiormları oluşturma yönündeki araştırmaları arttırmaktadır.
Bu tür platformları oluşturmanın yanı sıra, programcıların SMP öbeklerinin
vaadettiği güçten yararlanmalarını sağlayacak farklı düzeylerde soyuthımalar,
mekanizmalar ve yordam kütüphaneleri sunabilmek te başhbaşına bir araştırma
konusudur. Bir SMP mimarisini işlemciler dizisi olarak görmek yetersiz bir
yaklaşım olacaktır, çünkü böyle bir model başarım açısından olası faydaları
gözardı etmektedir. SMP öbekleri için yazılan koşut programlarda ortak olarak
kullanılabilecek iletişim ve hesaplama örüntülerini içeren yeniden kullanılabilir
yordam kütüphaneleri üzerinde çalıştık. Durağcin yük dengelemede, bellek
yönetiminde, dağıtık veri yapıları ve modüller arası arayüzler oluşturmada
kullanılabilen dallı nesneleri SMP öbekleri için düğüm seviyesinde yeniden
tanımladık. Bu çalışmada Chcirm++ koşut nesneye-yönelik programlama dili
ile koşut sıradüzensel çoklu-etkileşim uygulamaları geliştirirken karşılaştığımız
ortak kavramları tartıştık ve bu tür uygulamaları SMP öbeklerinden faydala
narak geliştirmek, deneysel amaçlarla kullanabilmek için bir çatı tanımladık.
Bu tür yöntemlerde ortak olarak etkileşime konu olan iki parçacık eğer ayni
adres uzayında ise düğümler arası herhangi bir iletişim gerekmez. Ancak ak
sine iki parçacık farklı adres uzaylarında ise etkileşimin hesâplanabilmesi için

ıv

parçacıkların etkileşimle ilgili verilerinin birbirlerinin adres uzaylarına getir
ilmesi gerekir ki bu da SMP düğümleri arası ağ üzerinden yapılan iletişim de
mektir. Sunduğumuz çatı ve çoklu-etkileşim uygulamci arayüzü koşut nesneye-
yönelik tasarımı ile programcının iletişim ile ilgili detaylardan soyutlanarak
deneysel amaçlı hızlı uygulama geliştirmesine yardımcı olcicaktır.

Anahtar sözcükler: SMP Öbekleri, Koşut Nesneye Yönelik Programlama, Çoklu-

Etkileşim Yöntemleri.

ACKNOWLEDGMENTS

First and foremost, I would like to express my deepest thanks and gratitude to
my advisor Asst. Prol. Attila Giirsoy for his patient supervision of this thesis.

1 am grateful to Assoc. Prof. Özgür Ulusoy and Asst. Prof. Ilyas Çiçekli
for reading the thesis and for their instructive comments. I would like to
acknowledge the financial support of TÜBİTAK under the grant EEEACJ-247.

I would also like to thank my parents and my sister Arzu for their encourage
ment; my friends Emek, Murat, limit, and Zeynep for their moral support; our
department’s administrative stuff especially Nihan for their help; Mr. Leslie
Greengard for supplying his code; all other friends who contributed this study;
and finally PC game producers for their games that helped me to have fun
during the long lasting nights of thesis work.

To my lovely, the-one-and-the-only parents
Fahriinnisa and Siileyman Cengiz,

VI

Contents

1 Introduction 1

2 Programming using Charm++ 4

2.1 Converse.. 4

2.2 C h a rn i+ + ... -5

2.2.1 Message Handling... 7

2.3 Programming using Non-Translator version of Charrn+4- 9

3 Effective Programming of SMP Clusters 13

3.1 Motivation... 11

3.2 Modifying Converse Runtime 1-3

3.2.1 Shared-Address Space 16

3.2.2 Node Level Message Queue 16

3.3 Moving from Converse to Charm-f-|- 17

3.4 Node-Level Object Groups - The NLBOC Pattern...................... 18

3.4.1 Implementation of N L B O C s.. 19

3.4.2 Ticket A lgorithm ... 23

vii

3.5 Performance.. 25

3.5.1 Ring of N odes.. 25

3.5.2 Broadcast, a collective communication prim itive............. 27

3.5.3 Simple Particle interaction... 28

4 A Framework for NBody Algorithms on SMP Clusters 30

4.1 NBody Problem .. 30

4.2 Algorithms and Related Data Structures...................................... 31

4.2.1 Barnes-Hut 31

4.2.2 Fast Multipole Algorithm (FMA) 33

4.2.3 Other variants.. 34

4.2.4 Spatial tree structures 35

4.3 Parallelization of Hierarchical Algorithms... 36

4.3.1 Spatial Partitioning... 36

4.3.2 Tree Partitioning... 37

4.4 The Framework... 38

4.4.1 Previous Work 40

4.4.2 Providing an Interface for such Libraries 45

4.4.3 Object Oriented Design 47

4.5 Using the Framework : A case study, the Barnes-Hut algorithm 57

4.6 Application

4.7 Usage and Preliminary Results... 59

CONTENTS viii

CONTENTS

5 Conclusion

IX

62

List of Figures

2.1 Charm++ message and chare class definition syntcix. 6

2.2 Chann++ branched chare class (BOC) definition synta.x............. 7

2.3 Converse level message handling. 8

2.4 NonTranslator Charm++ message and chare class definition
syntax.. 9

2.5 NonTranslator Charm++ branched chare class (BOC) dehnition
syntax.. 10

2.6 Hello Universe program using NonTranslator Charm++. 11

2.7 Hello Universe program using NonTranslator Charm++ (cont’d). 12

3.1 A sample sequential C + + object to share. 19

3.2 NodeBOC class interface... - 20

3.3 Macros associated with shared object operations. 21

3.4 Simplified sample class A derived from NodeBOC......................... 22

3.5 Efficient implementation of NLBOC. 23

3.6 NodeBOC interface after Ticket Algorithm. 24

3.7 Simplified BOC class used in Ring example, which employs float
ing policy for communication-processor selection. 26

X

LIST OF FIGURES XI

4.1 Node level object groups and proxies

4.2 Interface calls of DPMTA library

4.3 Selected interface calls of M-Tree.

4.4 A sample Barnes-Hut implementation using MTree.

4.5 Interface routines to the library.............

39

40

43

44

47

4.6 1024 bodies in (a) Uniform Sphere (b) Plummer distribution. . . 60

List of Tables

3.1 Timings for queuing strategy (in millisecs) on a node of two
processors. Each request tcikes O(lV^) time, and two requests in
a node are not e.xecuted concurrently(synchronization needed). . 25

3.2 Timings for Ring of Nodes (in millisecs) on one 2-processor and
two single-processor nodes... 27

3.3 Timings for Broadcast (in millisecs) on a 2-processor SMP node. 28

3.4 Timings for simple particle interaction (in secs) on a 2-node SMP
node. T l is completion time gathered from BOC version. T2
is completion time of NLBOC version through use of node-level
messages. 29

xn

Chapter 1

Introduction

“There is nothing more difficult to take in hand, more perilous to conduct, or
more uncertain in its success than to take the lead in the introduction of a new
order of things. - Niccolo Machiavelli”

Symmetric Multiprocessor (SMP) platforms are going towards being a gen
eral interest in research. As workstations having multiprocessor architectures
with shared-memory appear on market, it becomes attractive to built larger
multiproce.ssor systems by connecting such workstations. Taking SMP nodes
as basis and building clusters of them leads a new way of thinking in par
allel computing research. Modeling cluster of n k-way SMP nodes as a flat
network of nk processors would not be sufficient to extract possible gains of
that architecture. Shared-memory structure of an SMP node and the availabil
ity of dynamic load balancing for processors within a node are points worth to
take into account in designing software systems for SMP clusters. Both shared-
memory and distributed-memory paradigms apply in such systems. Proce.ssors
within the same node (SMP node) share memory, while the nodes within the
same system are subject of distributed memory programming.

The simplest programming model for SMP clusters is treating an SMP clus
ter as a flat network of processors and using message-pa.ssing or distributed
memory paradigms. However this model causes the interactions between com
putations within a single node to go through the message passing layer, and

Chapter 1. Introduction

the program will experience message passing overhead. This overhead can
be bypassed using the fact that the SiVIP node allows sharing of memory at
hardware level and computations within node can interact using shared mem
ory model to deliver better performance. In this case an SMP node will use
message pa..ssing layer only for interactions with other nodes. Such hybrid pro
gramming approaches have been proposed to program SMP clusters [2] [25],
which have modeled SMP cluster as a network of nodes, in which an applica
tion is developed with the distributed memory approach where'nodes exchcinge
mess¿rges, but within a node the application employs a multi-threaded model
to take advantage of multiple proces.sors and shared address space.

Parallel object oriented languages encapsulates message-passing and multi
threading in the object based model. Charm-f--)- [16] [5] system, developed
at UIUC, is such a message-driven object-based parallel programming envi
ronment. Charm++ as a concurrent object-oriented language, built on top of
Converse [6] runtime, is promising for irregular parallel applications, where
modularity and encapsulation provide help for programmers to design and
implement complex data and parallelism structures [14] [4]. Moreover its
message-driven nature allows overlapping communication with computation.

Converse runtime, so does Charm+-t-, provides each processor with a private
memory segment, even memory is physically shared among processors within
an SMP node. Due to this fact advantages of having shared-memory can not
be extracted, which is believed to be an essential fault for SMP programming.
Moreover since each processor owns its address spcice, we do not have the
opportunity to have shared parallel objects, which is desired to built a work-
pool of tasks that can be executed by any of the idle processors in a node. If
we can have work-pool model employed in SMP programming, dynamic load
balancing will happen to be achieved. Messaging in Converse environment is
based on pe-to-pe communication, all message send and broadcast routines
address single processors, therefore there can not be inter-node communication

in a cluster of nodes in means of a software layer.

In order to have Charm-|--b to support these new circhitectures, efficient
and elegant mechanisms should be added to its runtime. Our emphasis is on
reusable patterns or libraries for collective communication and computations

Chapter 1. Introduction

that can be used commonly in parallel applications. And we introduce node
level object groups to perform such operations efficiently on SMP clusters.
Replicated objects are known to provide a versatile abstraction that can be used
to implement static load-balancing, local services such as memory management,
distributed data structures, and inter-module interfaces [18].

The thesis is organized as follows. Chapter 2 introduces the Charm-f-h par
allel programming environment, and presents a brief information on progrcun-
rning using C'harm+-|-. Underlying mechanisms of Charm-f-J-, as scheduler and
message handling are explained in this chapter.

Chapter 3 presents our understanding of effective SMP cluster programming.
In this chapter with an overview of previous work, we explain and discuss our
design and decisions about the mechanisms and programming constructs to
implement, followed by sample applications, and performance considerations.

In Chapter 4 after an overview of general issues about NBody problem,
related data structures, and algorithms, we discuss and present a framework
for NBody algorithms to have them utilized to run on SMP clusters and hide
away the communication detciils.

The thesis finishes by concluding the studies in the last chapter. Including
the critic|ue of our design and implementation. The goals that are met are
stated, and those left as future work are discussed.

Chapter 2

Programming using Charm-|—h

Parallel object oriented languages encapsulates message-passing and multi
threading in the object based model. Charm-|--|- [16] [5] system, developed
at UIUC, is such a message-driven object-based parallel programming environ
ment. The Charm-)--|- environment is built on top of an interoperóible parallel
runtime system called Converse [15] [6]. Charm+-|- as a concurrent object-
oriented language is promising for irregular parallel applications, where modu
larity and encapsulation provide help for programmers to design and implement
comple.K data and parallelism structures [14] [4]. Moreover its message-driven
nature allows overlapping communication with computation. Replicated ob
jects are known to provide a versatile abstraction that can be used to implement
static load-balancing, local services such as memory management, distributed
data structures, and inter-module interfaces [18].

In rest of the chapter, we provide vital information about Chcirm-|--|- pro
gramming environment. Converse runtime system, and simple programming
examples.

2.1 Converse

Converse is designed to form a framework lor other parallel programming
paradigms to be employed in a system. Its runtime includes components tor

communication, scheduling, and load-balancing. In each processing node a
scheduler is maintained, which is a thread executing an infinite loop. Pro
grammer should explicitly associate each message a handler function. When
a message is received, it is stored in the incoming messages queue of the re
ceiver processor. Converse scheduler then dispatches the message by invoking
its handler function, whose knowledge is extracted from the message itself.
The designed nature of Converse causes it to be not suitable lor program
ming, instead it is a lower layer to serve for an exact parallel programming
language/paradigm. Further details on Converse programming framework can
be found at h ttp ://ch a rm .cs .u iu c .ed u .

Chapter 2. Programming using Charm++ 5

2.2 CharmH— \-

Charm-|--1-, is a portable object-oriented parallel programming language. Its
syntax is similar to that of C-f-f, with extensions for concurrent objects. Mul
tiple inheritance, and overloading features of C -f+ are extended for concur
rent objects, while operations and manipulations on concurrent objects are
restricted to satisfy parallel execution needs. There are five categories ol ob

jects in Charm-f+:

• Sequential objects (same as C+-(- objects)

• Messages (communication objects)

• Chares (concurrent objects)

• Branched Chares (grouped concurrent objects)

• Shared objects (specific information sharing abstractions)

Messages are the communication objects of Charm-t- + , which have specific
definition syntax since they are an extension for C + + (Figure 2.1). On a shared
memory system, a message can store pointers as data members, tlowever
on message-passing systems, a pointer is not valid across distributed ciddiess
spaces. So the whole memory field pointed by the pointer must be packed in

http://charm.cs.uiuc.edu

a continuous space to eliminate explicit pointers. This brings the perching and
unpacking of messages containing pointers, where pack and unpack functions
are associated with the message type. It is user’s responsibility to provide
these two methods for a particular message type. The invocation of pack and
unpack methods is directed by the runtime system in case they are needed.
Concurrent objects have methods that lets them to receive messages. .Such
methods are called entry points that define the code to execute when a message
is received. Entry point invocation is performed as passing a message pointer
to that particular method.

Chapter 2. Programming using Charm + + Q

message messagename {
List of data members

}

chare class classname [: superclass name(s)]{
private;

entry: entrypointname(messagename*)
{ cTT code

}

Figure 2.1: Charm++ message and chare class definition syntax.

The basic unit of parallelism in Charm++ is the chare, which infact is
similcir to a process, or a task. At runtime active chares may send messages to
each other, where the runtime is free to schedule them in any wa.y. Method of
a chare that can be invoked asynchronously with sending a message it.

A Branched Office Chare (BOC) is an object with a branch on every pro
cessor; all of the branches answer to the same name. Branched chares can
have public data and function members as well as private and members and
entry points. One can call public functions of the local branch of a BOC, send
a message to a particular branch of the BOC, or broadcast the message to
all of its branches. BOCs provide a versatile abstraction that can be used to
implement static load-balancing, local .services such as memory management,
distributed data structures, and inter-module interfaces.

Chcipter 2. Programming using Chcirm + +

branched chare class classname [: superclass narne(s)] {
private:

public:

entry:

}

entrypointnamefmessagename*)
{ C + + code };

Figure 2.2: Charm++ branched chare class (BOC) definition syntax.

2.2.1 Message Handling

The version of Converse we are working on is utilized for processing nodes
having more than one processor. If the source and destination processors of
a message are lying in the same node, it is inserted to the incoming-message
queue of destination processor. .Since memory is shared between such pro
cessors, the operation is a single memory-write. Otherwise, which means if
source and destination processors are from two different processing nodes, the
message is sent using UDP datagrams. Low-level datagrams are transmitted
node-to-node (as opposed to pe-to-pe), but still an SMP node is handled as a
network of processors, corresponding to network of single-processor worksta
tions. Therefore concept of node-to-node messaging is not supported.

.Sender scheduler wraps the message with additional system handler function
and user handler function information prior to sending, where system level
handlers are routines each specicilized for a type of message in kernel. They
process the message, and adjust system variables, for example there is handler
for chare creation request messages, and one for ordinciry user messages. On
receive messages are inserted in the local queue of the destination processor of
the node. As scheduler detects the existence of a message in its queue, triggers
the handler function of the message with the message as a parameter to the

function (Figure 2.3).

Chapter 2. Programming using Charm + +

network

Figure 2.3: Converse level message handling.

Chapter 2. Programming using Charm + -h

class messagename : public comrri_object {
List of data members

}

class classname : public chare [,superclass uame(s)] {
private:

public:

}

void entrypointname(messagename*
{ C + + code };

Figure 2.4: NonTranslator Chcirm++ message and chare class definition syn
tax.

2.3 Programming using Non-Translator ver
sion of Charm-j—f-

A Charm++ program contains modules, each defined in a separate file. A
module may contain live type of objects mentioned above. The user’s code is
written is C + + , and interfaces with the Charm++ .system. A translator that
is managing Charm++ constructs is used to generate ordinary C ++ code that
needs to be compiled with user’s code.

There is an alternating way for programming using Charm++, which e.x-
cludes the translator, and uses Charm++ as a library linked to C ++ programs.
When passed from Charm++ to non-translator version, synta.x for class defi
nitions change a bit,(see Figures 2.4 2.5). Superclass cornm^object is base for
user message classes, as chare for chares, and groxipniember for BOCs. Using
NT-Charm++ requires creating interface file for each module. The interlace
file is processed by a tool, that generates two header files per module. These
two files must be included in user’s C + + source files.

Programming with non-translator Charm+-1- is demonstrated in Figure 2.6.
Module main contains a special chare named main, which should have a method

with a reserved name main. Main chare has one copy over the whole system,
and is executed on a system selected processor. Since the execution ol the

Chapter 2. Programming using Charm++ 10

class classname : public groupmember [, superclass name(s)] {
private;

public:

}

void entrypointncurie(messagename*
{ c+ -f code };

Figure 2.5: NonTranslator Charm++ branched chare class (BOC) definition
syntax.

program starts from this entry, typically initializations, and object creations are
performed within its block. HelloBOC is a branched chare class. In main, an
instance (infact as many instances as the number of processors) is instantiated
with the call new_group. This call gets the class name and a messcige pointer
as parameters. The message is copied on each processor, which means the
constructor entry of HelloBOC is invoked with same values in. .Since InitlVIsg
class contains an integer array, appropriate pack and unpack routines should
be provided. Then main chare broadcasts a messcige to all chares of that
instance to have them say “Hello” . The order of which processor sciys hello is
not predefined by any means. As the message arrives, runtime system picks
and schedules the reciuest on each processor independently, as dictated with
the message-driven nature of Charm+-|-.

The ciuiescence mechanism is useful where the user can not foresee when
the program is going to be cjuiescent. To set the method to be invoked on
quiescence, CStartQuiescence runtime call is used.

Chapter 2. Programming using Charm++ 11

M O D U L E JunkMsg
Interface File JunkMsg.ci
message JunkMsg;
Source File JunkMsg.C
^include “ckclefs.h”
^include “chare.h”
^include “c++interface.h”
class JunkMsg : public comrn_object { public:

int junk;
};

M O D U L E HelloBOG
Interface File Hello.ci
packedmessage InitMsg;
extern message JunkMsg;
groupmember HelloBOC {

entry HelloBOC(InitMsg *);
entry sayHello(JunkMsg *);

}
SourceFile HelloBOC.C
f^include “ckdefs.h”
^include “chare.h”
^include “c++interface.h”
T^include “JunkMsg.h”
^include “HelloBOC.top.h”
#include “HelloBOC.h”

class InitMsg : public comm_object { public:
int numParts;
int* parts;
void* pack(int *length)

{ }
void unpack (void* in)

{ }
};

class HelloBOC : public groupmember {
private:

public:
HelloBOC(lnitMsg* rnsg)

{ initializations as an ordinary constructor }
sayHeIIo(JunklVl.sg* msg) {

CPrintf(“HeIIo Universe from pe %d” ,ClVlyPe()); }
}:

Figure 2.6: Hello Universe program using NonTranslator Charm-b + .

Chapter 2. Programming using Charm++ 12

M O D U L E main
Interface File main.ci
Source File main.C
^include “chkdefs.h”
^include “chare.li”
^include “c++intei'face.li”
T^include “.JunkMsg.h”
:?^include “mclin.top.h”
class main : public chare {
private:

public:

void main(int agrc, char** argv) {
InitMsg* initmsg = new (MsgIndex(InitMsg))InitMsg;
initmsg-¿numParts = 5;
initmsg-¿parts = new int[5];
GroupIdType helloID = new_group(HelloBOC,initmsg);
.JunkMsg* hellomsg = new (MsgIndex(JunkMsg))JunkMsg;
CBroadcastMsgBranch(HelloBOC,sayHello, hellomsg,helloID);
CS tar tQuiescence(GetEntryP tr(main,quiescence),mainhandle);

}:
void quiescence(.JunkMsg* msg) {

CPrintf(“ Quiescence Reached ”);
GharniExit();
delete msg;

};

:ji înclude “rnain.bot.h”

output when executed on a 2 processor system:
Hello Universe from pe 0
Hello Universe from pe 1
Quiescence Reached

*can not make an assumption in order that processors say hello!

Figure 2.7: Hello Universe program using NonTranslator Charm+-t- (cont’d).

Chapter 3

Effective Programming of SMP
Clusters

“Give me where to stand, and I shall move the world - Archimedes”

Trend towards producing workstations which have multiprocessors (SMPs),
increases research endeavors to built cheaper but powerful parallel program
ming platforms through connecting such workstations. Besides building such
platforms, providing mechanisms, layers of abstraction, or libraries to enable
programmers to gain the power of SMP clusters is another challenging field of
research. Viewing an SMP architecture as an array of processors would be in
sufficient, since such a model ignores essential possible gains over performance.
In this chapter we have stressed on reusable patterns or libraries for collective
communication and computations that can be used commonly in parallel appli
cations within a parallel programming environment utilized for SMP clusters.
We introduce node-level objects groups, since such objects provide a versatile
abstraction that can be used to implement static load-balancing, loccd services
such as memory management, distributed data structures, and inter-modide

interfaces [18].

13

Chapter 3. Effective Programming of SMP Clusters 14

3.1 Motivation

As workstations having multiprocessor architectures with shared-memory ap
pear on market, it becomes attractive to build larger meichines by connecting
such workstations (SMP) by fast networks. Taking SMP nodes as basis and
building clusters of them leads a new way of thinking. Modeling cluster of n k-
way SMPs as a flat network ol nk processors would not be sufficient to extract
possible gains of that architecture. The main advantage of an SMP cluster is
sharing the memory within a node, if the SMP cluster is viewed as a collection
of single processor systems then the interactions between computations within
a single node will go through the message passing layer (which supports com
munication between processors) and the parallel program will experience all
the message passing overhead.

This overhead within a node is unnecessary because the SMP node allows
sharing of memory at the hardware level and computations can interact us
ing shared memory model (in which a better performance is expected). This
overhead will be significant particularly for irregular an dynamic computations
where shared memory programming much more easier to implement such cases.

A programming system where a cluster of n k-way SMPs are modeled as
a collection of n nodes with appropriate support for expressing parallelism
within a node will result in better performance, in this case, computations
within an SMP node now coordinate their actions through the shared memory,
and only for interactions with other nodes will use the message passing layer.
A number of such hybrid models combining explicit message passing and multi
threading are present in the literature. Bader et.al [2] presented a kernel of
communication primitives with layers of abstractions to program clusters of
SMP nodes. Their kernel combines shared-memory and distributed memory
programming using threads and MPI-like message passing paradigm. The need
for a hybrid model is also addressed by Tanaka et.al [25] in a previous work.
Their model utilizes multi-threaded programming (Solaris threads) lor intrci-
node part of SMP programming. For inter-node part of programming they
have offered remote memory operations in conjunction with message passing,
to overcome mutual exclusion on buffers and message copying overheads of

Chapter 3. Effective Programming of SMP Clusters 15

message passing.

In this work, we want to support SMP clusters within an object based
langucige environment, namely Charm+ + . The current implementation of
Charm++ (version 4.0), parallel objects are assigned to processors and each
processor (Unix process) has its own distinct address space. Such a model pro
hibits us to exploit the features of SMP clusters: that is parallel objects within
the same SMP node can’t share memory. And also, an idle processor cannot
execute a parallel object assigned to a different processor within the same node.
What we need is node level parallel objects, in addition to processor level ones
and some abstractions with efficient implementations to allow us:

• ability to share the memory across objects on the same SMP node,

• ability to run a method of a parallel object by any proce,ssor,

• a framework which will support remote-object accesses easily and collec
tive operations efficiently.

In this chapter, we will describe mechanisms (within Charm++ program
ming framework) to support SMP clusters. First, we will discuss how we can
allow objects to share memory (using threads) and how an idle processor within
a node can invoke parallel objects within the same node (Node Level Message
Queue). More importantly, we will introduce Node Level Object Groups for
effective implementation of collective operations across nodes.

3.2 Modifying Converse Runtime

Charm+d- is built on top of Converse runtime, which serves as a lower layer tor
parallel programming paradigms and languages. In order to have Charrn-f-b
supporting SMP nodes in means of ability to share memory within a node,
and ability to let any idle processor to invoke parallel objects within that node,
Converse runtime should be modified. This section presents those modifications
to Converse lâ êr of our programming environment.

Chapter 3. Effective Programming of SMP Clusters 16

3.2.1 Shared-Address Space

In network of processors model employed by Converse runtime, memory can
not be shared within a node. Assuming that the underlying operating system
provides threads to gain access to those multiple processor of an SMP node, an
interface layer is served in Converse runtime. This layer contains routines to
start the threads, routines to access thread specific state, and routines to con
trol mutual exclusion between them. If one process is created in each node and
each scheduler is run by a thread, provided by the operating system, within the
same address space, then parallel objects that are mapped to different proces
sors can access each other within the SMP node directly. In a k-processor node,
there will be k-threads each running Converse scheduler, and communication
thread to handle incoming message from the network.

3.2.2 Node Level Message Queue

Even this configuration does not let a pai'allel object in an address space to be
executed by any of the schedulers of the node, a desired case when we want to
have node-level-shared parallel objects. As we have stated in Section 2.2.1 a
message sent to a parallel object will be inserted to the queue of the scheduler
owning that object. And only the scheduler which owns that queue can process
this message even though some of the other schedulers might be idle in the
same SMP node. This fact lead to create and use another message queue that
will be shared between all processors of a node. VVe call this new queue as
node-level message queue(NLQ). Defining node-level messages, messages that
can be directed to a node instead of a processor, is the next step through our
aim. Upon recieval a node-level message will be inserted into the NLQ by
the communication thread. When we have the Converse scheduler modified to
check both its own message queue and NLQ, we provide a node-level messa.ge to
be picked up by any scheduler. There is a decision to be taken here cis; whether
a scheduler checks its own queue then NLQ or vice versa. Currently the shared
queue is checked at first hand, cause we believe the node-level messages have
higher priority when compared to standard messages. In accordance to message
handling style of Converse runtime, we have added a new system level handler

Chapters. Effective Programming of SMP Clusters 17

function utilized for handling node level messages. As a message is detected
in NLQ, the receiving scheduler will invoke this new system handler that will
trigger message associated user handler function upon processing and adjusting
system variables.

In order to enable programmer to use node-level messages, we added two new
functions to Converse kernel; CmiSendNodeMsg and CmiBroadcastModeMsg.
The first call sends a node-level message to a user-specified destination node.
On recieval the message is inserted in the NLQ, so that it is available lor
the Schedulers. The latter call is used to broadcast a unicjue message to all
nodes within the system. Again the message is inserted in NLQs of receiver
nodes. There are two more optionally added functions in Converse kernel;
CmiBroadcastlnModeMsg, to broadcast a uniciue message in the caller pro
cessor’s owner node except the caller, and CmiBroadcastAllInNodeMsg, to
broadcast a unique message in the caller processor’s node including the caller.

As a summary of all, our modified Converse is able to support node-level
messaging thr'ough shared message ciueue, and such messages can be picked up
by any idle scheduler of the receiver node.

3.3 Moving from Converse to Charm ++

Now our Converse is able to run on SMP nodes, and we have node-level mes
sages. However we have work to do, so that the underlying mechcinisms of
Converse becomes usable by Charm++. First to look at is the new concept of
node-level messages. According to the path a message traverses, a node-level
message will be passed to Charm++ runtime by Converse layer. VVe introduce
a new system-level handler function to process only node-level messages, which
will be triggered instead of the standard one. This handler function works in
same manner; it sets the handler for the message, and inserts it to queue. The
queue mentioned here should not be the scheduler’s own queue as opposed by
unmodified version of Charm-|--|-, same arguments we have mentioned for Con
verse also applies here. In such a design a message will be tied to the processor,
whose Converse scheduler retrieves message in Converse level. But we want the

message to be available for any of the inner-node processors in Charm-|--b level.
So a node-level message queue for Charrn-bd- is needed. Instead of creating a
new message queue and bothering with modifications on schedulers and cause
cpu-time to be wasted by schedulers checking one more queue, the NLQ created
for Converse level is used again. Since schedulers already check these queues,
we don’t need anything more, recall from Section 2.2 that Charm-|--|- and Con
verse use the same scheduler code. When the Charm-1-q- scheduler detects this
me.ssage, it will extract the user-defined entry method pointer from the mes
sage and trigger it with the message as a parameter. Finally for Charm-|--1-, the
system calls corresponding to those of Converse are added to Charm kernel.
CSendNode(CmiSenclNode), CBroadcastNode(CrniBroadcastNode), CBroad-
castlnNode (CmiBroadcastInNode), and finally CBroadcastAllInNode (Cmi-
BroadcastAllInNode), are representatives of Converse functions, when moved
to Charm-b-f.

As inner-node memory sharing is available we can now look for the ability
to share parallel objects in nodes.

Chapter 3. Effective Programming of SMP Clusters 18

3.4 Node-Level Object Groups - The NLBOC
Pattern

A BOC is a group of chares that has a branch/repre,sentative on each processor,
with each branch having its own data members. Branched chares can be used
to implement data-parallel operations, which ¿ire common in irregular parallel
applications. Messages can be broadcasted to all branches of a branched chare
as well as sent to a particular branch. There can be many instances corre
sponding to branched chare type: each instance has a different handle and its

set of branches on all processors.

The effective use of branched chares in data-parallel operations, and us
ability in irregular parallel algorithms brought a new concept; Node-Level
Branched Chares - NLBOC [14]. A NLBOC is a group ol chares that has
a branch on each node. Having an instance of an NLBOC means there exists

Chapter 3. Effective Programming of SMP Clusters 19

class obj : public gen_shared_object{
private:

public;
o b j () ;

met hod 1 (par am 1);
method'2(param2);

Figure 3.1: A sample sequential C ++ object to share.

a representative on each node, such that these representatives can be reached
just by using the NLBOC handle. Communication can take place between
the branches of an NLBOC. Moreover NLBOCs may used to encapsulate node
level shared objects, a node level shared object is an object that is shared
among all processors in a node. Suppose we have a sequential object having
two methods, as shown in Figure 3.1. Shared Object must be derived from
the base class gen_shared_obj ect to enable type casting in implementation.
There is no other restriction on the design and implementation of this class,
unless it is a legal C + + class. We want it to be shared in a SMP node, such
that each processor in that node may access it, moreover may execute any of
its methods.

To satisfy such a request, shared object may be encapsulated within a NL
BOC object, which will serve as an interface for initialization and method
e.xecution of it. During our implementation of NLBOC’s, we have covered this
concept and provided an interface.

3.4.1 Implementation of NLBOCs

Instead of modifying Charm++ language, we preferred to implement NLBOC,
using standard BOC class and inheritance. We have developed a base class,
ModeBOC as seen in Figure 3.2, which can be used by Charm++ programs.
NodeBOC base class is derived from Charm++ BOC class grouprnember. Thus

Chapter 3. Effective Programming of SMP Clusters 20

class NodeBOC ; public groupmember {
private:

void *shared_obj;

protected:
void initSharedObject(object *,callbackfn*);
void exec(...);

public:
NodeBOCO;

}

Figure 3.2: NodeBOC class interface.

when a NodeBOC object is instantiated, Charm++ runtime creates a branch
on each processor. But this time all branches in a node act as a single instance
of NodeBOC.

NodeBOC class maintains reference named shared_obj ect, so that it is
possible to encapsulate a shared object within a node. Classes derived from
NodeBOC must call initsharedObject method to have this reference set. In a
node the branch mapped to processor ranking zero is responsible for initializa
tion of locally shared references. The shared object is created by that branch,
and reference for this object is broadcasted in node, so that each branch has
the reference. Programmer does not need to bother about this process, as he
doesn’t need to know whether the reference is set in ecich branch of a node. The
method exec provides the programmer with the facility to call any method of
the shared object. It is possible to make direct calls to shared object without
using exec method, but since the global-in-node reference can not be guciran-
teed to be set, this type of action is not advised. Passing the method pointer
and parameters for shared object’s desired method to exec method means hav
ing that particular method executed. Currently only one parameter may be
passed to the shared object, and since this parameter is of void pointer type,
appropriate cast must be performed in the methods of the shared object. Using
structs may be an answer in increasing the number of parameters to pass in
shared object’s methods. In fact that’s how the parameter passing is perlormed

Chapter 3. Effective Programming of SMP Clusters 21

Macro Explanation

Shared-Object Jnit(...)

Shared-Object Jnit2(...)

StartExec(...)

StartExec2(...)

Start initialization of shared object. Processor
ranking 0 in each node crates an object of speci
fied type, then broadcasts the pointer in its node.
Receiving processors e.xecute the callback function
to set the reference.

Works same as the one above. But this
macro lets to pass parameters for the con
structor of shared object.

Deposits the recpiest to execute the specified
method of shared object. There is no synchro
nization check in this execution.

Same as the one above, but does not let concur
rent execution of the specified method. If ticket
is not available, the request is enqueued in Node-
BOC queue.

Figure 3.3; Macros associated with shared object operations.

in Charm+-f messages: enclosing many variables.

Our sample class A derived from NodeBOC base, has methods method 1 and
method2 which can considered to be interfaces for methods of shared object
class, illustrated in Figure 3.4. To hide the detciils in initialization and method
invocation of shared object, we have provided two macros, see Figure 3.3.

Assume a node-level messcige is directed to class A for methodl, which in
fact stands for a request for execution of methodl of shared object. Here raises
a question of which of the processors in a node should execute the methods ol
this shared-object in a node. Any of the processors may handle the messages
directed to this shared object. That means when a message is detected in NLQ
by one of the schedulers, it will be picked up and associated method will be
triggered. If a second message is detected during this period, and handled by
one of the other schedulers, two processors will then be executing the same
object’s method(s). This ca,se is new for Charm+ + , since it does not ¿lilow
intra-object parallelism. However with SMP support, more thcin one method

Chapter 3. Effective Programming of SMP Clusters 99

class A ; public NocleBOC {
private:

obj ^object;
public:

void A (){

Shared_Object_Init(obj,&A::fn);
}
void methodl(MSG *msg){

extract parameters from msg and produce param
StartExec(obj,&object::methocll,(void*)param);

}
void method2(MSG *msg){

extract parameters from msg and produce param
StartExec(obj,&object::methocl2,(void*)param);

void fn(void* ref){
object = (obj*)ref;

}

Figure 3.4: Simplified sample class A derived from NodeBOC.

Chapter 3. Effective Programming of SMP Clusters 23

of an object can potentially be invoked at the same time. With NLBOC’s intra
object parallelism, programmer may need to deal with synchronized access to
shared data with locks etc. Many applications might need a NLBOC where
only one method can be executed at a given time. NLBOCs should provide
synchronization when desired by the programmer. We have implemented a
ticket-based algorithm, to solve the problem of synchronization (illustrated in
Figure 3.5.

Figure 3.5: Efficient implementation of NLBOC.

3.4.2 Ticket Algorithm

This algorithm is provided with a queue, NLBOC-Queue maintained in Node-
BOC base class, see Figure 3.6. There is a ticket per NLBOC branch in each
address space. This ticket is created by branch on zero ranking processor in a
node and broadcasted to others in that node in constructor of NodeBOC class.
In case that synchronization is required, to execute a method of the shared
branch object, this ticket is needed. After owning the ticket only the processor-
can execute any method of shared branch object. If any of shared-object’s
methods is beiirg executed, then the recpiest for ticket will fail. The NLBOC-
Queue is designed for failed requests to store the message of the request in.
When ticket holder releases the ticket, it sends a specific node message named
token to its node directed to ticketReleased method, which means ’’ ticket

Chapter 3. Effective Programming of SMP Cluster•:s 24

class NodeBOC : public groupmember {
private:

TICKET nicket;
NLBOCQ *waiting_msgs;
void *shared_obj;
int tryTicket();
void releaseTicket();
void enqueueMsg(msg);
void *dequeue();

protected:
void initSliaredObject(object *,callbackfn*);
void exec(...);
void exec2(...);
voi d tieket Released (token);

public:
NodeBOC'O;

}

Figure 3.6: NodeBOC interface after Ticket Algorithm.

is released, check if there is any message left in our queue” .

To clarify the distinction for synchronized execution NodeBOC class is sup
plied with one more method exec2 in ciddition to normal execution method
exec.

Then methocl2 of class A may be modified as shown below to ensure that
method2 of shared object will not be executed concurrently in a node.

void method2(MSG *msg)
extract parameters from msg and produce param2
exec2(&obj::methocl2, param2);

In this algorithm using a ticket provides mutual exclusion and a queue
keeps non-handled messages for future use. We might have such messages

Chapter 3. Effective Programming of SMP Clusters 9fi

requests Scheduler Queue Node-Level Queue Local Queue
100 564 562 340
500 2778 2876 1700
1000 5600 5828 3488
1500 8310 8710 5102
2000 10980 11580 6780

TaiDle 3.1: Timings for queuing strategy (in inillisecs) on a node of two pro-
ces.sors.· Each request takes 0(7V^) time, and two requests in a node are not
executed concurrently (synchronization needed).

inserted back in receiver scheduler’s queue or NLQ, to ensui’e that they will
be handled. But this approach will cause schedulers to poll for same messages
repeatedly until they can be handled. To demonstrate the performance gained
via inner-node shared queue, we have compared performances of three different
NodeBOC implementations: one having inner-node queue, one using NLQ,
and last one using scheduler queue for keeping waiting messages. Table 3.1
illustrates results of this comparison. We are currently using this local queue
for other purposes such as keeping messages directed to shared object if the
shared object reference is not set yet on arrival of message.

3.5 Performance

We have conducted experimental applications to ensure about the usage and
performance of our design and implementation of SMP support and NodeBOC

base class.

3.5.1 Ring of Nodes

Scheduling communication on an SMP node is a point worth to take into ac
count when designing applications for SMP Clusters. Several research activity
is going on in this field. Work propo.sed in [8] addresses two policies lor schedul
ing communication in an SMP node: fixed , where one processor is dedicated

Chapter 3. Effective Programming of SMP Clusters 26

class RingBOC : public groupmember {
private:

public:
RingBOC(...) ;
RingTurnfRingMsg* msg) {

process the msg
CBrociclcastinNocle(RingBOC,RingTurn,msg,thisgroup,CMyNocle());
CSenclNodeMsgBranch(RingBOC,RingTurn,msg, thisgroup,nextnocle);

}
}

Figure 3.7: Simplified BOC class used in Ring example, which employs floating
policy for communication-processor selection.

for communication in a node, and flo a t in g , where all processors alternately
act as communication processor. The decision for choosing a policy is closely
related with the application to be implemented.

In this particular experiment we compared the two policies when the appli
cation is the well-known ring operation, see Figure 3.7. Node-level messages
allows us to implement floating policy as a softwcire protocol, as well as fixed
policy with standard messages of Charm-|-+. A ring is intended to turn between
nodes of an SMP cluster. A BOC object is created upon stcirting execution,
and the flow of ring is achieved between branches of that object. The hrst ap
proach achieves fixed policy using standard message send calls ol Charm-f-h,
where processor ranking zero in a node will always receive and forward the
message to next node’s processor that has rank zero. The second approach
employs floating policy, where any of the processors in a node receives the
message, then forwards to next node using node-level message send calls. An
other implementation of both approaches includes dummy work assigned to
processors in a random manner independent of the ring turning. Results lor

this experiment are illustrated in Table 3.2.

Chcipter 3. Effective Progvcimming of SMP Clusters

msg size(bytes) fixed floating fixecl+clumrny VV. floating+dumrny VV.
iO O 20 55 880 837.5

1000 75 60 1026.6 940
5000 850 730 1660 1700
10000 1270 1640 2520 2310

Table 3.2: Timings for Ring of Nodes (in millisecs) on one 2-processor and two
single-processor nodes.

3.5.2 Broadcast, a collective communication primitive

NLBOCs can be used to implement efficient collective operations on SMP clus
ters. These include broadcast, reduction, and gatlier/scatter type collective
communications. VVe have chosen broadcast operation for our experiments.

Broadcast operation can be optimized to take advantage of shared memory
within SMP nodes. Across SMP nodes, a spanning-tree based algorithm can
be used. In a k-processor SMP node, however, instead of k branches, only
one NLBOC can handle work to be done. If the broadcasted data is read-only
and large-sized, then by keeping one copy within the NLBOC and distributing
pointers to the shared area to the objects that are the recipients of the broad
casted data can deliver better performance over ordinary broadcast operation.
Table 3.3 shows results towards developing efficient collective operations for
SMP clusters. The promising results encourage us in developing libraries or
reusable patterns for implementing such algorithms and operations on SMP

clusters.

The idea of providing an effective broadcast operation for SMP cluster pro
gramming may be e.xtended to other communication operations, such as re
duction. For the ca.se of reduction operation, which involves processors within
the system, optimizations Ccin be achieved. In first phase of the operation, re
duction takes place in each node on a selected processor within that particuhir
node. Then the second phase will be executing reduction with the selected
proc:essors ot all nodes involved. Hire final results may be broadcasted in each
single node without overhead of inter-node communication.

Chapter 3. Effective Programming of SMP dusters 28

msg size(bytes) BOC based broadcast NLBOC based broadcast
1000 6.68 0.94
5000 29.14 24.4

10000 .56.85 45.57
20000 113.35 93.15

Table 3.3: Timings for Broadcast (in millisecs) on a 2-processor SMP node.

3.5.3 Simple Particle Interaction

Since our implementation of node-level messages allows any processor of node
to pick up the message directed to the node it belongs, we have the potential to
achieve dynamic load-balancing. If tasks mapped to a SMP node are atomic,
then they can be shared between the processors of that particular node. An
idle processor will detect any message on NLQ, and by picking it up will per
form the requested task. In this experiment a simple application is carried out
to simulate particle interactions due to gravitational force. Our application
employs two level quadratic division of particle space. Each level-1 cell is then
assigned to one processor. Number of particles in each cell may not be same
for all cells, so loads of each processor may vary. An interaction manager ob
ject directs the processors through simulation ol intei’cictions between particles.
Interaction between particles belonging to non-neighbor level-2 cells is appro.x-
imated, which means particles that are far Irorn a particle are thought to be
just one virtual particle repre.senting all of them. The atomic job is performing
calculations for a level-2 cell bcisicly.

O b ject m odel em ployed Each level-2 cell is a .sequential C -f+ object.
Each processing node employs a special com pute-object, that provides an
interface to perform computations on cells. Cornpute-object in a node is shared
between the processors of that node via use of a NLBOC object. Passing the
reference for a cell to the compute-object is enough to have appropriate method
of that cell to be called. Normal version is implemented using a BOC, each
processor performs the computations for all of its level-2 cells without using
the shared memory facility. On the other hand in SMP version processors
in a node may share the computation of cells assigned to processors ol that

Chapter 3. Effective Programming of SMP Clusters 29

particles on pO # particles on pi T1 T2
200 250 499.7 391.9
200 300 783.5 558.4

Table 3.4: Timings for simple particle interaction (in secs) on a 2-node SMP
node. T1 is completion time gathered from BOC version. T2 is completion
time of NLBOC version through use of node-level messages.

node. Only one compute-object is employed in each node, and proce.s,sors in
that node have the reference for the compute-object. Since level-2 cells of two
same-node processors lie in shared-memory, compute-object can access all cells
in a node. This means work assigned to processors of a node may be shared.
In our experiment we have changed load ratios of processors to observe the
ability to share work Table 3.4.

Chapter 4

A Framework for NBody
Algorithms on SMP Clusters

“Artificial life is about finding a computer code that is only a few lines long
and that takes a thousand years to run - Rudy Rucker”

4.1 NBody Problem

The nbody problem is the problem of simulating the movement of a number
of bodies under the influence of gravitational, electrostatic, or other type of
force. The force acting on a single body arises due to its interaction with all
other bodies in the system. The simulation proceeds over time steps, each time
computing the net effect on every body and thereby updating its attributes.
.An exact formulation of this problem therefore requires calculation of rr inter
actions between each pair of particles. Typical simulations comprise of millions
of particles. Clearly, it is not feasible to compute interactions for such values

of n.

The n-body simulation problem, also referred as to as the many-body prob
lem finds extensive applications in various engineering and scientific domains.
Important cipplications of this problem are in astrophysical simulations, elec
tromagnetic scattering, molecular biology, and even radiosity.

30

Chapter 4. A Framework for nbody Algorithms on SMP Clusters 31

4.2 Algorithms and Related Data Structures

Many approximate algorithms have been developed to reduce the complexity
of this problem. The basic idea behind these algorithms is to approximate
the force exerted on a body by a sufficiently far away cluster of bodies with
computing an interaction between the body and the center of mass (or some
other approximation) of the cluster. Most of this algorithms are based on
hierarchical representation of the domain using spatial tree data structures.
The leaf nodes consist of aggregates of particles. Each node in the tree contains
a series representation of the effect of the particles contained in the subtree
rooted at that node. As bodies are grouped into clusters by the tree data
structure, the interaction between leaf boxes, inner boxes, and bodies needs to
interact with each other. A separation condition usually called as Multipole
Acceptance Criteria (MAC) determines whether a cluster is sufficiently far
away. Selection of appropriate MAC is critical to controlling the error in the
simulation. Methods in this class include those of Appel [1] [7], Barnes-Hut
[3], and Greengard-Rokhlin [13] [12] [11].

4.2.1 Barnes-Hut

The Barnes-Hut algorithm, based on a previous one by .A..Appel in 1985, was
proposed in 1986. Being one of the first algorithms in the field, it has been
studied by many researchers. It addresses far field force in divide-and-conciuer
way.

Barnes-Hut cilgorithm is one of the most popular methods due to its simplic
ity. Although its computational complexity of 0{nlogn) is more than that of
the Fast Multipole Method, which is 0 (n), the associated constants are smellier
for the Bariies-Hut method particularly lor simulations in three dimensions. It
uses quad-tree to store particle information in 2D, as opposed with oct-tree in
3D. The tree stands for the hierarchical representation ol the global domain
of all particles in the system. At the coarsest level root oI the tree stands lor
the computational domain. Tree partitions the mass distribution of localized
regions so that when calculating force on a given particle, tree regions near are

Chapter 4. A Framework for nhody Algorithms on SMP Clusters 32

detailly explored, cind each distant region is treated as single virtual particle.

A cell is considered to be well-separcited from a particle if

D size of box
r distance from particle to center of mass of box

is smaller than a parameter 9, which controls accuracy.

Serial Barnes-Hut Algorithm;

1. Built tree corresponding to domain
At first step the tree is built, which means an hierarchy of boxes refining
computational domain into smaller regions is created. Refinement level
/ + 1 is obtained by subdividing each box at level / into two equal parts in
each direction (4 for quad-tree, and 8 for oct-tree). Subdivision continues
till each subcell has at most one particle. This property requires large
amount of auxiliary storage.

2. Upward pass
The tree is traversed in post-order, so that child cells of a cell are processed
before it. The information of pcirticles lying in the subtree rooted in an
inner cell are reflected in that cell as center of mass and total mass.

3. Force Computation
For each particle, or say leaf node, the tree is traversed to compute forces
acting on that particle, due to others in the system. If the cell lies within
the region defined by 0, then is said to be a near cell, and its child cells are
traversed. Otherwise, the cell is thought to be a representative for subtree
rooted at it, and is treated as a single virtual particle having mass of the
total mass of particles lying in that subtree, and position of the center of
mass due to particles in that subtree.

4. Update
Due to the forces computed in previous step, attributes of particles are

updated, and time step is advanced.

Barnes-Hut is effectively used for galaxy simulations in astrophysics. It is
not as accurate as FMA, but simpler to implement.

Chaptev 4. A Framework for nhody Algorithms on SMP Clusters 33

A number ot variants oi the original Barnes-Hut algorithm hcive been im
plemented, such as by Barnes that allow better vectorization of the code at the
cost ot higher floating point operation counts. Salmon and Warren analyzed
the pertormance ot Barnes-Hut algorithm, and proved that its worst case er
rors can be quite large for its original 0 criterion. They have defined a different
method for deciding interacting cells. Using moments of the mass distribution
within each cell provides better worst error case results for the same amount
of computation.

4.2.2 Fast Multipole Algorithm (FM A)

FMA uses an octtree similar to that of the Barnes-Hut algorithm, except that
leaf cells are permitted to contain a number of particles where this value is
less than a constant m. The non-adaptive version builds a balanced tree, un
like Barnes-Hut. In the Barnes-Hut algorithm, interactions between bodies and
sufficiently far away clusters are used to reduce the number of interactions from
0{n^) to 0[nlogn) in the uniform case. FMA goes one step further by allowing
interactions between two clusters. The effect of particles in a cell is reflected as
a Taylor series called multipole expansion of that cell. Upon the tree construc
tion, multipole expansions of leaf cell computed, then in a buttom-up manner
tree is traversed, and multipole expansions of parent cells are constructed by
shifting and adding the expcinsions of its children. After the tree is built, it
has up-down pass in which the local expansion of the parent cell is shifted to
the center of each child, and added to the multipole expansions of the cells in
the child’s interaction list, to form its local expansion. The number of terms
in the multipole expansions control the accuracy of the algorithm. FM.A has
four different type of interactions, which ¿ire executed depending on certain
conditions about the relative size and location of the two interacting nodes in
the tree. Primary difference between the FMA and the Barnes-Hut lies in the
tact that the Barnes-Hut algorithm computes particle-cell interactions, whereas
the FMA computes cell-cell interactions, means reducing complexity. In tact
it can be said tlmt Barnes-FIut is a viiriant of FMA with order-0 multipole
expcinsions. That is to sa.y it uses monopole (center ot mass) ¿ipproximation.

Chapter 4. A Framework for nhody Algorithms on SMP Clusters 34

4.2.3 Other variants

Several other researchers have implemented various n-bocly algorithms either
from scratch or from existing algorithms. Among those most known ones are
PMTA and Anderson’s method.

• Parallel Multipole Tree Algorithm (PMTA) PMTA is a hybrid method
of Barnes-Hut and FMA algorithms. It uses a rule similar to that of
Barnes-Hut to determine well-separatedness of two cell. Two cells are
said to be well-separated from each other if the size of the bigger cell
divided by the distance between two cells is less than the parameter a,
which corresponds to 6 of Barnes-Hut. The tree is built as in Bariies-
Hut method, but a cell is recursively subdivided until it contains no more
than m particles , instead of one particle as in the case of the Barnes-Hut
algorithm. During traversal of tree top-down for each leaf cell, if a cell is
found to be well-separated from the leaf cell, its multipole expansion is
translated into a local expansion about the center of the leaf cell, and the
rest of the subtree below that cell is not visited. All the local expansions
are added and the gradient is found to get the force due to the far far field
on every particle in the leaf. The particles in the leaf cell interact directly
with the particles in all cells that are not well separated from it. The
number of terms p and the separation parameter a can be both varied
to control accurcicy. A theoretical error bound for this algorithm is not
known.

• Anderson’s Method (FMA without multipoles) The only difference be
tween FMA and Anderson’s Method is in the way they approximate the
force field of a cluster of bodies. While FMA uses Taylor and Laurent
expansions in 2D and expansions based on spherical harmonics in 31),
Anderson’s Method is based on Poisson’s formula. This makes it easier
to implement, while it appears to be still unclear which method gives the
better accuracy/performance trade-off.

Chapter 4. A Framework for nbody Algorithms on SMP Clusters 35

4.2.4 Spatial tree structures

The original Barnes-Hut and FMA make use of quadtree to represent the hier
archy of the computational domain. Some researchers goes beyond this trivial
representation especicilly when it is the parallelization of the algorithm they
are studying.

• Quadtree (Octtree in 3D)
The quadtree begins with a square in the plane, that is the root of the tree.
This large square is broken into four smaller squares of half the perimeter
and a quarter the are each. Each child can recursively divided into 4
subsquares till a predefined depth is reached. For non-adaptive methods
this threshold for depth of the tree is employed, however adaptive methods
recursively subdivide each non-empty cell till each leaf cell has at most m
bodies, m is 1 for Barnes-Hut. The idea of using adaptive quadtree arises
from the non-uniformity of the problem domain.

• Binary Tree
Sanjeev et.al [19] proposed their modified FMA, which irses a binary tree
produced by Orthogonal Recursive Bisection method, instead of regular
FMA quadtree. The change in spatial representation of domain requires
devising a new MAC, since the resulting cells of binary tree are not cubical
anymore. A disadvantage of binary tree is its depth against octtree.

• Linear Array
Hashed Octtree [22] proposed by Warren and Salmon, is a linear represen
tation of the regular octtree. Key values are generated for par tides/cells
using their coordinate data. A hash function used to map this key values
on the linear array. Conflicts in addressing the array are managed using
linked lists. Infact this representation is developed for parallel implemen
tations rather than serial algorithms.

Chapter 4. A Framework for nbody Algorithms on SMP Clusters 36

4.3 Parallelization of Hierarchical Algorithms

Hierarchical n-body methods are that based on a insight look into the nature
of body interactions, are being used to solve a wide variety of scientific and en
gineering problems. Such applications, however, typically have characteristics
that make it challenging to partition and schedule them for effective paral
lel performance. In particular, the workload distribution and communication
patterns are both nonuniform and also subject to change as the computation
proceeds. -This complicates the intention to provide load-balancing and data
locality. Hierarchical radiosity [24] as an example is the most challenging ap
plication due to its nature causing it impossible to decide a static mapping of
bodies among processing units.

Warren and Salmon proposed a fast message-passing implementation of the
Barnes-Hut algorithm [26]. They have used ORB, which is described in section
4.3.1, partitioning technique to obtain both load-balcincing and data locality.
They propose the use of locally essential trees to obtain a purely sender-driven
protocol for replicating nodes that are acces.sed by several processors during
the force computation phase. This approach was refined by Liu and Bhatt [20]
in their optimized implementation on the CM--5 machine.

In a later Barnes-Hut implementation [22], Warren and Salmon used a
partitioning scheme based on space-filling curves of Morton ordering, cind a
distributed tree structure in order to achieve more flexibility in terms ol ap
plication domains and MAC. A similar scheme is used in the shared-memory
implementation by Singh et.al [23], who also performs a comparative study of
several partitioning and load-balancing schemes.

4.3.1 Spatial Partitioning

The partitioning methods based on decomposing the space are classified as

spatial techniques.

• Geometric/Uniform Partitioning
This method uniformly subdivides the space into two equal sized subspaces
in each dimension as it is for the regular Barnes-Hut and FMA trees.
These subdomains keep the list of objects lying in their volumes. The
main advantage of this kind of subdivision is that it lets fast traversal
algorithms to be constructed to trace the tree. If the distribution of bodies
is uniform, this simple approach may perform better than some advanced
methods [10]. This partitioning of space directly fits into both Barnes-Hut
and FMA, since the subspaces also correspond to cells of the octtree.

• Orthogonal Recursive Bisection (ORB)
In each iteration the space is divided into two ¿dmost equal spaces in means
of associated work estimate, which can be based on some kind of sampling
or gathered after one iteration of the simulation. This subdivision process
goes until a specified threshold value of number of subspaces is reached.
Although it is an efficient method that preserves physical locality in prob
lem domain, it tends to be complicated to built and maintain. Unlike
geometric partitioning ORB has problems when applied to FMA, since
this time the subdomain borders may not fit the octtree cells, which may
cause some cells to be partitioned among processing nodes. Singh pro
posed a modified ORB for FMA that preserves the cell structure, while
claiming that even this kind of additions to ORB may not be enough for
FMA. In their work Sanjeev et.al uses the tree structures proposed by
ORB, and they have changed the original idea of FMA about the spatial
tree to generate. Their tree representation is a binary tree, which in tact
is formed by ORB routine.

Chapter 4. A Framework for nhocly Algorithms on SMP Clusters 37

4.3.2 Tree Partitioning

• Costzones
This technique developed for shared-memory architectures, benefits from
the fact that the octtree already represents the spatial distribution. This
idea led them to partition the tree instead of the space directly. With
a subcell numbering scheme, they laid out the tree in two-dimensional
plane. Each inner cell has an idea of the cost of the bodies under it. Using

Chapter 4. A Framework for nhody Algorithms on SMP Clusters 38

this knowledge partitioning which preserves locality while providing load
balancing is tried be achieved. The globally shared tree is partitioned
top down.

• VVS

This technique may be called as a variation of costzones applied to dis
tributed memory architectures. Since there is no globally shared tree in
such architectures, the tree is partitioned bottom-up, using the associated
cost- values.

4.4 The Framework

“You know you have achieved perfection in design not when you have nothing
more to add, but when you have nothing more to take away - ?”

This work was motivated while we were developing parallel object-oriented
hierarchical nbody applications with Charm+d-. In this section, we will briefly
discuss the common paradigm that we came across in those applications and the
motivation behind developing a framework to exploit the features of the SMP
clusters. [24] presented a pai'allel object-oriented approach for hierarchical
radiosity on distributed architectures is presented. The mciin focus was to
develop a framework such that the deta,ils of parallelization are hidden from
the computational algorithm. The framework uses the idea of proxy objects,
that are representative of remote objects.

With proxy patches, local representative of a remote patch, the design of
the computational parts of the radiosity algorithm are greatly simplified, since
they are freed from how the patches are distributed or when they migrate from
one processor to another due to dynamic load balancing. As shown in Fig
ure 4.1, interaction objects has no idea if the patches they are deeding with
are local or remote. However, there must be an efficient mechanism, a proxy-
patch manager, which maintains proxy patches at required processors. The
proxy manager is replicated on each node, cuid makes sure that proxy objects
are created at the node where they cire needed, and the manager exchanges

Chapter 4. A Framework for nbody Algorithms on SMP Clusters 39

SMP Node SMP Node

Figure 4.1; Node level object groups and proxies

information with other replicas to maintain consistency of the proxies. .Sec
ondly, the calculation objects can be run immediately whenever the patches
they need are ready to be used.

If the underlying machine is an SMP cluster, and if the programming model
treiits the cluster as a network of processors, we end up using the it ineffi
ciently. First of all, if an interaction needs a body assigned to a different
processor within the same node, a proxy of the body need to be maintained at
the processor where the interaction is calculated. However, on cin SMP node,
bodies can be accessed directly if they are in the same address spcice. Sec
ondly, since interactions are assigned to processors, an idle processor cannot
calculate another ready interaction which might be waiting for its processor to
become idle. Using an object-based programming environment which supports
a network of processors prohibits us to exploit these features. What we need
is node level parallel objects, in addition to processor level ones.

Our research through supporting SMP clusters in programming as means
of utilized reusable patterns got along together with providing a frame that

covers

distributed tree construction that includes bringing remote data in case
of need for computation (proxy model).

Chapter 4. A Framework for nbody Algorithms on SMP Clusters 40

routine explanation
PMTAinit

PMTAregister

PMTAforce

PMTAresize
PMTAvirial
PMTAexit

Initializes the slave processing and creates various inter
nal data structures. It recjuires initial application tind
system parameters.
Performs registration of any slave processes that wish to
make calls to PMTAforce(). No parameters at all.
Performs the force calculations on an array of particle
information. Number of particles and an array of parti
cle information is passed cis parameters for this function.
Returns resulting force and potential values as arrays.
Resizes the simulation cube.
Returns virial pressure tensor and potential.
This rputine should be called once by each process that
called PMTAregister.___________________________________

Figure 4.2: Interface calls of DPMTA library

• hiding communication details

• running on SMP clusters

availability for different applications of nbody problem

4.4.1 Previous Work

Distributed Parallel Multipole Tree Algorithm (DPMTA) Library

The purpose of DPMTA [21] is to provide user applications with a fle.xible
implementation of numerous multipole algorithms to compute N-body inter
actions for a variety of system sizes and particle configurations. It is the dis
tributed version of PMTA algorithm mentioned in Section 4.2.3. The DPMTA
code is written using PVM distributed computing tool-set and runs on a variety
of platforms. Interface calls of DPMTA library are listed in Figure 4.2.

DPMTA designers tried to keep the programmer’s interlace to the DPMTA
procedures as simple as possible. To this end, DPMT.A provides lour basic
routines that perform initialization (2 routines), force calculation, and process
cleanup. The particle data are supplied cis simple arrays of floating point values
which specify position and charge (or mass) for ccich particle. I he DPMI A

Chapter 4. A Framework for nbody Algorithms on SMP Clusters 41

implementation makes no assumptions about the nature of the data beyond
these values.

In order to support the integration of DPMTA into e.xisting codes, two
calling structures are provided.

• The first structure provides for passing all data to DPMTA from a single
process. DPMTA will distribute the data among its processes, compute
the resulting forces and potentials, collect the data, and return the results
bcick' to the calling process in a single array. This method provides a
simple means to integrate DPMTA with existing serial codes, which can
make sense when the N-body solve is the dominant time-consuming step
of a program.

• DPMTA can also be called from an existing distributed application. Sev
eral processes may call DPMTA with each providing a subset of the parti
cles and their associated data. DPMTA will redistribute the data among
its own processes, compute the resulting forces find potentials, collect the
results, and for each application process return only the results for the par
ticles originally sent from that process. DPMTA makes no assumptions
about how the data is partitioned across the calling processes. While this
may result in some degradation of performance due to the overhead of
particle redistribution, it vastly simplifies the application interface.

As with many other multipole codes, DPMTA decomposes the simulation
space into an octtree representation. In the DPMTA implementation, the
octtree structure is stored as a linear array and is addressed using the rapid in
dexing scheme of Warren and Salmon. Cells and their accompanying data are
assigned to individual processes. All multipole and force calculations tor an in
dividual cell are accumulated by the process to which that cell is assigned. Cells
are evenly distributed among the processors in spatially contiguous groups. In
addition, the simulation space is ec|ually divided among the processes, inde

pendent of the particle distribution.

Cha.pter 4. A Framework for nhody Algorithms on SMP Clusters 42

M-Tree: A Parallel Abstract Data Type for Block-Irregular Adaptive
Applications

M- Tree [2 (] is an hierarchical abstract data structure used to org'anized block-
irregular computations generated by recursive domain-decomposition. It cap
tures both the data structures and computatioiral structures that are common
to many adaptive problems. The M-Tree data structure itself is defined as
below:

struct MeshTree {
int status;
struct Region domain;
struct MeighborTree*=t! nbTree;
struct MeshTree* parent;
MeshTree new level[rx][ry][rz];
ModeType* vdata;

}

Each node represents a region of the domain and its subtrees are subregions
overlaying the region of the parent node. A tree is called a quadtree when
R.x=Ry=2 and R z=l. So the structure above may be regarded as a general
ization of quadtree that is gathered by recursive decomposition of space.

M-Tree is implemented as a C library based on MPI for messaging. Com
monly used computation and communication patterns are tried to be extracted
from particle-based problems. The set of functions covered by M-Tree are listed
in Figure 4.3.

To use M-Tree, user needs to supply his own node data details, with func
tions to be executed to performs computations needed for any particular N-
body problem. Some of the functions need communication stencils to be de
scribed by user also. As a last note on M-Tree; in order to provide efficient
access to randomized tree nodes, a hashing scheme is used.

Chapter 4. A Framework for nhody Algorithms on SMP Clusters 43

routine explanation
MTJnit

MT_Map_Lecif
MT-iVlap-Level

MT -Red lice JLeaf
MT_Reduce_Level

M T _B cas t -Leaf
MT-B cas t-Le vel

MT-Up-Pass

MT-Down-Pass

MT-Adaptive
MT-Gather

uses userdefined partition operation to distribute global
data to initialize MTree.
applies userdefined operation to each leaf node in parallel,
applies Liserdefmed operation to each node on a given
level in parallel.
performs reduction for all leaf nodes in parallel,
performs reduction for all nodes on a given level in par
allel.
performs broadcast to all leaf nodes in parallel,
performs broadcast to all nodes on a given level in par
allel.
traverses tree from bottom up and applies userdefined
operations to nodes.
traverses tree from top down and applies userdefined op
erations to nodes,
updates tree as required.
collects elements into userspecified data structure.

Figure 4.3: Selected interface calls of M-Tree.

Comparison and Discussion

FMA and Barnes-Hut are the most popular hierarchical tree algorithms that
are drawing attention in field of particle-based applications. Providing a li
brary for such common algorithms with a simple-to-use interlace may assist in
developing larger applications such that namd [17], where electrostatic force
computation is just a part of many other computations.

A library implementation for a class of problem.s is difficult in the sense
that, common properties/patterns of such problems are needed to be extracted.
Such properties should be used to define appropriate interlaces that will lorm
up a frame. A library as a framework demands implementation of application-
specific data types, and functions, which may be a problem for the user in case
that the library is needed just as a part of a large application as mentioned
above for namd‘2. This may cause the user to loose interest lor using such a
library, since details of implementation have to be dealt with. To avoid such
user-oriented problems, implementation of particular applications as Barnes-
Hut, and FMA may be included as layers above the abstract layer ol the library.
See Figure 4.4 for a simplified Barnes-Hut implementation.

Chapter 4. A Framework for nbody Algorithms on SMP Clusters 44

... set up initial globcil-particles global-domain ...
fo r (ite r= 0 ; iter<MAXITER; iter++) {

Init(global-particles, global-domain, partitionFM);
UpwardPass(centermassFN);
ApplyLeaf (calculate_accelerationFM) ;
ApplyLeaf(updatebodyFM) ;
Gather(global-particles, global-domain);

}

Figure 4.4: A sample Barnes-Hut implementation using MTree.

Parameters for library routines contain user-implemented functions. VVe
have to predefine the pararneters/parameter-skeletons for user-defined func
tions. Let’s take updatebodyFM of Figure 4.4 as an example which is a pa
rameter for ApplyLeaf routine. There may be a predefined signature for that
leaf-level function as it must take a parameter of node type pointer. This func
tion then may update necassary fields of each particle that is covered by a leaf
node, which is passed as a parameter.

DPMTA library may have a benefit over a FMA implementation using a
generic library, in the sense that it specializes in the field. It provides a care
ful analysis of that particular algorithm. Integrating DPlVITA to a particu
lar application is not a big deal, since it is available for central-demand and
distributed-demand applications, and it has 4 main routines to use. The pa
rameters for these routines are strictly defined, and.user does need to deal with
the library but just calling routines.

Trying to keep everything general may cause to miss optimization options of
particular applications. On the other hand, a po,ssible generalization of particle
based problems, may lead to an important step in such a challenging research
field. Moreover such a library will surely provide an open environment that is
flexible for particular applications and experimental study.

Chapter 4. A Framework for nbody Algorithms on SMP Clusters 45

4.4.2 Providing an Interface for such Libraries

There are two possible interfaces that can be employed in such libraries. The
first one is to supply an interface for the simulation steps as DMPTA does. This
interface does not let the user to change any implemented part of the library
unless a careful analyze through the source code is performed. The second
one is to give access to low level functions, such that user specified or say
implemented functions will be executed on the data structures supplied by the
library. This latter approach is flexible since the tree is built and maintained by
the library, and user just needs to change the functions to change the simulation
from, say, gravitational force computation to electrostatics. We take the idea
employed in second approach one step further, so that user will supply his tree
representation, domain decomposition strategy, as well as application specific
body and cell informations. The spirit of Charm++ dictates the asynchronous
communication, so with an interface similar to MTree needs more to be done
in our work. For example letting the user know that his specified computation
functions is executed on all processors. This means that return functions are
needed for library calls, so that user can view the flow as steps are accomplished.
Another possibility may be hardwiring all simulation steps into the library.
For example all nbody methods includes a bottom-up tree traversal after it is
built, to initialize the cell data such as center of mass. If we provide a routine
BottomUp(function to execute on cells), instead of reciuiring user’s care for
checking the completion of function, the library will guarantee to not to start
the next step until BottomUp() finishes. But such an implementation will need
careful analysis of in-library parallelization, between library steps that all need
user-implemented functions, which is difiicult to achieve.

Our Interface

The interface is formed up of 4 routines (Figure 4.5). The initialization routine
Liblnit() must be called from one process among the ones that will join into
simulation by supplying particles. This routine takes just one parameter ol

type:

Chapter 4. A Framework for nhocly Algorithms on S M P Clusters 46

LiblnitStruct {

int numnodes;
int* nodes;
int numsources;

}

Within use from an application there may be cases where user does not want
to have all nodes in the system to involve in the simulation. To ensure such
a need LiblnitStruct has two variables: numnodes is the number of nodes that
user wants in the simulation, and nodes is an integer array which holds ids of
the nodes that will participate in simulation.

In order to integrate the simulation into e.\isting codes, two calling struc
tures are provided; just one processor submits the particles that are subject
to simulation, and for the other more than one processors may send particles.
We have chosen to gather cill particles in a centrcil proces.sor prior to process
ing. And this decision recjuires the library to know the number of distributed
processes thcit will supply particles. The final variable numsources is used for
getting the number of processors that will supply particles in the simulation. In
order to have particles involved in simulation, the distributed processes should
call LibParticles() routine. This routine packs particles of a process and then
sends them to the central processor. Only numsources number of processors
should call this routine.

Liblterate() routine should be called by all processes involved in simulation,
and it provides a defined number of steps to be advanced prior to returning
results to the specified return function. The type of this user-defined func
tion is restricted as to be void Functionnamefint number_of-particles,
Particle* particles) The pattern imposed hei'e lor returning particles ¿li
ter iteration is a result of asynchronous nature of Charm-}--!-.

Chapter 4. A Framework for nhody Algorithms on SMP Clusters 47

routine explanation

Liblnit(initclata) initializes the library. The initialization includes
building local trees, performing bottom-up pass,
and remote domain test.

LibParticles(Particle*, int) Processes call this function to deploy their parti
cles to the simulation space.

Liblterate(retfn) Iterates simulation one step, and returns the par
ticles to the return function specified with retfn .
All processes that supplied particles should call
this function. If the initialization phase of simu
lation is not completed, SMPNodeManager does
not iterate while ensuring to invoke this iterate
request as soon as the initialization is complete.

LibKillO Only one process should call this function to kill
library processes prior to quitting from applica
tion.

Figure 4.5: Interface routines to the library.

4.4.3 Object Oriented Design

Starting from bodies we present the essential classes of our object oriented
design in this section. The next section will be based on infornicition provided
here.

Particle {
Vector pos; / / position in space
int nid; / / owner processor of the particle
BaseParticleInfo* info; / / application specific info

}

Particle object has position property that is common to different type ot
bodies in nbody simulations. There may be cases that each node supplies its
particles to the simulation. Therefore each particle’s owner’s id is kept with it
to provide a safe return back alter the simulation step(s). The interesting point

Chapter 4. A Framework for nhody Algorithms on SMP Clusters."S 48

about the particles is to supply their appliccition dependent information, such
as mass tor gravitational force simulations. Application specific properties of a
particle are enclosed in an object derived from B aseP articleIn f o class. This
base lets to keep a pointer in particle object, and essential just for type Ccisting.

Cell {

Vector center; / / position of center in space
Vector size; / / size of cell
BaseCellInfo* info; / / application specific info
Cell* parent;
Cell* C h ild s ;

ParticleArray* particles;

}

The provided cell class is designed to reflect properties of orthogonal cells.
Since such a cell needs not to be cubical, it is provided with a s ize property.
The concept of keeping application specific information of cells is managed via
pointers to information objects. This time the base informcition class is not
trivial as it was so for the particle objects. If the bodies that an interaction
object needs are local (i.e. within the same processor where interaction is
calculated) then the interaction can be completed without any communication.
Otherwise, the data of the remote bodies must be brought, and then after the
interaction calculation, the remote body data must be updated.

BaseLocal Cellinfo : public BaseCellInfo {
virtual void BottomUpPass(Cell*) = 0;
virtual void Pack(PackedCellInfo*) = 0;

}
BaseRemoteCelllnfo : public BaseCellInfo {

virtual BaseRemoteCelllnf0* Unpack(PackedCellInfo)

}

= 0 ;

Chapter 4. A Framework for nbody Algorithms on SMP Clusters 49

Our intention of using proxy pattern throughout the simulation, drives the class
hierarchy providing classes for both local and proxy cells. BaseLocalCellInf o
cind BaseRemoteCellInfo classes arise from this fact. Both these two base
classes are also derived from the BaseCellInfo class. Pack and unpack meth
ods are required for communication. As we have stated in Section Charm-f-i-,
message that are leaving an address spcice should not contain pointers. Such
message classes should supply pack and unpack methods. Our message clas.s
can pack cells but the cell info packing needs assist from the user, since it’s
a user-defined class. Similarly this dependence to user executes for unpacking
a packed-cell. As will be mentioned later, these are the only communication
related details that user should involve.

Cellinfo AbstractFactory {
virtual BaseLocalCellinfo* LocalinfoInstanceO = 0;
virtual BaseRemoteCellInf0* RemoteinfoInstanceO = 0;

}

In library code it can be decided where to use which object with associated
cell, but creating instances is not possible since C+-|- does not let class con
structors to be virtual. To reach local and remote cell instances when needed,
the Abstract Factory pattern [9] is employed. The concrete class derived from
Cellinf oAbstractFactory class should have two methods; one returning local
cell info and the other returning remote cell info object.

BaseTree {
Cell* root; / / each tree has a root
int childpercell; / / number of child cells per cell
virtual void InsertCell(Cell& cell) = 0;
virtual ParticleLinkedList* Particles(int*) = 0;

virtual CellArray* LeafCellsO = 0;
virtual int NumChildPerCellO = 0;

}

Chapter 4. A Framework for nhocly Algorithms on SMP Clusters 50

BaseTree class serves as an interface that should be implemented in concrete
tree classes. Deriving the tree structure is a case of matter as long as the
interlace is fulfilled. The idea behind this base class is to have a fle.xible en
vironment for the spatial representation of the computational domain, which
permits using OctTree, Binary Tree, etc.

B a s e T r e e C o n s t r u c t o r {

B a s e T r e e * C o n s t r u c t T r e e (d o m a i n) ;

}

Since the inner structure of the derived class can not be known in library
code, the tree can not be built in library routines. The following class solves
this problem of building trees of user defined concrete classes. Since it is the
user providing the derived tree class, then he should provide the necessary
knowledge for constructing it.

B a s e S p a c e {

P a r t i c l e L i s t * p a r t i c l e s ;

B a s e S p a c e * s u b s p a c e s ;

i n t n u m S u b s p a c e s P e r S p a c e ;

}

Repre.sentation of the .space is a decision directly effecting tree construction and
spa.tial partitioning patterns. B a s e S p a c e has particles, since the computational
domain is itself simply a space instance. As we have chosen spatial partitioning
as our strategy, each space instance needs pointers to its subspaces.

S p a t i a l P a r t i t i o n i n g S t r a t e g y {

v i r t u a l P a r t i t i o n (B a s e S p a c e * d o m a i n) = 0 ;

v i r t u a l B a s e S p a c e * P a r t i t i o n 4 N o d e (i n t n o d e)

)

= 0 ;

Chapter 4. A Framework for nhody Algorithms on SMP Cluster! 5i

During the design of the framework, we had to make a decision in choosing
the partitioning technique to use. Parallelization of tree partitioning is a prob
lem since we do not want to make assumptions about the concrete tree class
provided by the user. Moreover, the nature of tree partitioning may cause
a parent and its child cells to be distributed over many processors. VV.S is a
good e.xample for tree partitioning techniques on distributed architectures. It
is obvious that, if a tree structure which uses pointers for accessing subtrees
will cause problems, since pointers will loose their meaning across address
spiices. In their work, VVS solved this problem by changing the tree represen
tation resulting in a linear distributed array, which they call Hashed OctTree
[22]. Such an alternative that is dictating its tree structure is not desircible
for a general purpose framework. Having this fact in mind we have provided
S p a t i a l P a r t i t i o n i n g S t r a t e g y base class to user, which is an abstract class
defining an interface for its descendant classes.

C o m p u t e O b j e c t {

v i r t u a l C o m p u t e f v o i d * , v o i d *) = 0 ;

}

C o m p u t e O b j e c t absti'cict class is designed to enable user to plug his computa
tion functions into the library. Nbody algorithms computes at most 3 interac
tions in type: particle-particle, particle-cell, cell-cell. It the application to be
created using the library employs two of them as Barnes-Hut does, two classes
should be derived from the base, each dedicated lor one type of interaction.
Parameters passed to Compute method are in void"̂ type, in order to avoid
any difficulties while trying to distinguish between 3 type ol interactions. Ihis
lets as to supply just one base class for all computation objects.

L i b r a r y {

v i r t u a l C e l l i n f o A b s t a c t F a c t o r y * C e l l i n f o F a c t o r y () = 0 ;

v i r t u a l B a s e T r e e C o n s t r u c t o r * T r e e C o n s t r u c t o r () = 0 ;

v i r t u a l S p a t i a l P a r t i t i o n S t r a t e g y * P a r t i t i o n S t r a t e g y () = 0 ;

v i r t u a l B a s e S p a c e * D o m a i n I n s t a n c e (P a r t i c l e L i n k e d L i s t *) = 0 ;

v i r t u a l v o i d P a c k S p a c e (P a c k e d S p a c e *) = 0 ;

v i r t u a l v o i d U n p a c k S p a c e (B a s e S p a c e * , P a c k e d S p a c e *) = 0 ;

v i r t u a l C e l l A r r a y * M A C T r e e S p a c e (B a s e T r e e * , B a s e S p a c e *) = 0 ;

v i r t u a l b o o l M A C (P a r t i c l e * , C e l l *) = 0 ;

v i r t u a l v o i d P a c k C e l l I n f o (B a s e C e l l I n f o * , P a c k e d C e l l) = 0 ;

v i r t u a l B a s e P a r t i c l e I n f o * P a r t i c l e i n f o (P a c k e d P a r t i c l e I n f o) = 0 ;

v i r t u a l v o i d P a c k P a r t i c l e I n f o (B a s e P a r t i c l e I n f o * , P a c k e d P a r t i c l e) =0 ;

v i r t u a l C o m p u t e O b j e c t * P P C o m p u t e O b j e c t O = 0 ;

v i r t u a l C o m p u t e O b j e c t * P C C o m p u t e O b j e c t () = 0 ;

v i r t u a l C o m p u t e O b j e c t * C C C o m p u t e O b j e c t O = 0 ;

Chapter 4. A Framework for nbody Algorithms on SMP Clusters 52

Among all the presented classes, this is maybe the most important one, since
this class serves as a gateway between abstract library layer and user-defined
discrete classes. Instantiating just one object of this type, infact of derived class
type, provides access to specialized objects and methods through the whole
simulation. In-library objects that has something to do with user objects,
has a pointer for Library instance. Through u.se of this instance requirements
occurred for accessing concrete classes ol user are fulfilled. Library is a base
class that forces its descendants to provide methods that give access to user-

coded classes.

Parallel Objects and Flow of Simulation

SMPNodeManager
SMPNodeManager is the heart of the simulation, which itself is a grouped

object derived from NodeBOC.

S M P Wo d e M a n a g e r : p u b l i c N o d e B O C {

S M P N o d e * m y n o d e ;

L i b r a r y * l i b r a r y ;

}

Chapter 4. A Framework for nhody Algorithms on SMP Clusters 53

The data that we need to share among processors of a node is enclosed in
S M P No d e object, which is a node-level shared object.

S M P No d e : p u b l i c g e n _ s h a r e d _ o b j e c t {

B a s e S p a c e * G l o b a l D o m a i n ;

i n t n u m L o c a l D o m a i n s ;

B a s e S p a c e * L o c a l D o m a i n s [] ;

i n t n u m R e m o t e D o m a i n s ;

B a s e S p a c e * R e m o t e D o m a i n s [] ;

B a s e T r e e * L o c a l T r e e s [] ;

B a s e T r e e * R e m o t e T r e e s [] ;

}

Tree of subspaces resulting from the domain decomposition is used as the
globally shcired part of the global tree, which is not built infact but local trees of
nodes comprise the global tree. This shared part of the global tree makes sense
in computation since we are freed from communication to receive upper part oF
the tree while traversing for computation. This global domain representation
in a node does not contain particles in the doniciin, except for local doiiiciins
that are assigned to particular node. Also having remote domains in each node
lets us to achieve sender-initiated communication for creating prox} ̂ cells.

SMPNodeManager has an Library object, that will provide it ¿recess to user-
defined concrete classes during execution.

RemoteCellManager

R e m o t e C e l l M a n a g e r : p u b l i c N o d e B O C {

S e n d Q u e u e e * s e n d Q ;

i n t n u m R e m o t e D o m a i n s ;

B a s e T r e e * R e m o t e T r e e s [] ;

}

Chapter 4. A Framework for nhocly Algorithms on SMP Clusters 54

The sender-initiated communication piittern is executed by SMPNodeMcin-
ager in co-operation with RernoteCellManager. The deposited cells are kept
in the SendQueue of this manager, and just as the deposit is complete, Re-
moteCellManciger branches starts inter-node communication. SendQueue is
the node-level shared object of this NLBOC class. Receiving RemoteCellMan-
ager unpacks cells and inserts them in remote trees for further use during
computation.

ComputeManager

C o m p u t e M a n a g e r : p u b l i c N o d e B O C {

C o m p u t e O b j e c t * p p C o m p u t e ;

C o m p u t e O b j e c t * p c C o m p u t e ;

C o m p u t e O b j e c t * c c C o m p u t e ;

}

Computational structure of nbody applications requires particle-particle, particle
cell and cell-cell interactions to be computed. ComputeManager forms an in
terface between representation of domain and computcition. It does not update
particle or cell properties, rather through computation objects required calcu
lations are performed.

When a request for computation of an interaction is received by Compute
Manager, it just invokes the associated computation object.

Flow of Simulation
It is the SMPNodeManager that drives these steps in simulation. During the
simulation SMPNodeManager co-operates with both RemoteCellMcinager to
send cells to remote nodes and ComputeManager to perform required calcula
tions. NLQs of SMPNodeManager, RemoteCellManager, and ComputeMan
ager virtually forms a work-pool in each node, which is filled with atomic tasks
that are infact node-level messages sent to parallel objects. Since any ol the
idle processors in a node may pick a node-level message, these messages lonri

a shared work-pool.

Chapter 4. A Framework For nbody Algorithms on SMP Clusters

Spatial partitioning takes place as a first step of the whole execution. Since
central-processor manages this step, all particles are submitted to it, and as
particles are received in that processor the computational domain is formed
and partitioned. Then ecich node is assigned with a number of subdomains
according to the user implemented partitioning strategy. The partitioning info
sent to nodes contains the knowledge of remote and local domains tor each
particular node. To avoid all particles to be sent to all nodes, only subdomains
local to a node carry the list of pcirticles while being transmitted to it by the
central processor.

When partitioning is complete, all SMP nodes joined to the simulation re
ceive this partition information with subspaces assigned to it. Then in each
node; for each local subdomain a corresponding local tree needs to be built,
after performing bottom-up pass on that tree, it is tested against remote do
mains to decide which cells of it to send to the owners node of that domains.
Upon completion of this sender-initiated communication, the environment will
be ready for computation phase of the simulation.

During inititialization phase, as the nodes receive the spatial partitioning
info, w'ork-pool in the node starts to be filled with tasks. It is a known fact that
these tacks must be atomic so that they can be independently executed. Since
subdomains are subject to the tree construction, and each node is expected
to have a number of subdomains assigned, we can claim that building tree
of a local subdomain is an atomic task. This approach allows all processors
in node to join in tree building provided that the partitioning scheme assigns
subdomains in accordance to the number of processors within a node.

Once a local tree is built, it should be traversed from leaf cells to the root,
in bottom-up manner to set the appro.ximated representation ot bodies lying
in the subtrees rooted at each cell, the representations are center ol mass cind
total mass for gravitational Barnes-Hut for e.xample. Traversing a local tree is
independent from other processes, so it can be placed in the work-pool. The
processor that picks this task from the pool, pertorms the bottom-up pass.
A tree construction and a bottom-up pass can be executed concurrently lor

different trees.

Chapter 4. A Framework for nbody Algorithms on SMP Chisteri 56

As a local tree is traversed, it can now be tested against remote domains.
Since each node knows the global partitioning, and which subdoain belongs
to which remote node, sender-initiated communication can be used to pro
hibit request-send pattern, which will produce extra communication. Testing
a local tree against a remote domciin is achieved using the user-defined MAC-
CellSpace() method, which returns the list of cells need to be sent to the owner
of the remote domain. This process itself another atomic task, which can be
thrown into the work-pool. As can be guessed, while tree building, and traver
sals continue remote domain test on built and traversed trees can take in place
concurrently with other tasks. When a processor tests a tree with a remote
domain, it gathers a list of cells to send. SMPNodeManager deposits this list
of cells are deposited to RemoteCellManager, where they are all enqueued.
As being a node-level grouped object RemoteCellManager has a branch on
each node, and provides inter-node communication via these branches. The
aim of enquing cell lists is to avoid from disadvantages of a number of com
munication for a few number of data. When the test and deposit e.xecution
completes, RernoteCellManagers are triggered to send deposited cells to the
intended destination nodes. Instead of sending all data of cells, just compu
tationally required portions of them are sent. Moreover all cells deposited for
a target node, are packed together and send at once. When the branch of
RemoteCellManager of the target node receives the cells, it unpacks them to
form remote tree representations made up of proxy cells. Once all send-receive
of cells is accomplished, the initialization phase is said to be done.

If the Libiterate routine is called by application, as described in Section
4.4.2, the computational phase of the simuhition starts. SMPNodeMcinager
branches initiates the computations on local tree cells. As an interaction is
formed, SMPNodeManager triggers the ComputeManager to perform the com
putation required by that particular interaction. Since each interaction can be
computed independently, the work-pool of node is now filled with the interac
tions prepared to be computed. All processors in a node will take place in this

computation by picking interactions Irom the pool.

Chapter 4. A Framework for nbody Algorithms on SMP Clusters 'Oi

4.5 Using the Framework : A case study, the
Barnes-Hut algorithm

"Anyone who uses the phrase ’ccisy as taking candy from baby’ has never tried
taking candy from a baby - Unknown”

4.6 Application

In order to demonstrate the usability of our framework we have implemented
Barnes-Hut algorithm to compute gravitational force among astrophysical bod
ies. With a careful examination of original Barnes-Hut code, we have extracted
the properties and method implementations for user-defined classes. .Acting as
a user, we hcive provided all required classes, and tested the library on our only
.SMP machine.

Deriving classes for Barnes-Hut Algorithm
A complete listing of required concrete classes: Particleinfo, LocalCellInfo
(packed info), RemoteCellInfo (packed info), CellInfoFactory, Tree, TreeCon-
structor, Space (packed space), Spatial partitioning strategy, Compute Objects,
Library object. Among these only packed info structs are communication re
lated. As mentioned in Chapter 2, messages needs to be packed and unpacked.
Since cell info classes are not known from the library point of view, user should
supply the pack structs.

• Particleinfo
Particles, or say bodies, have mass, velocity, acceleration, and potential
attributes in gravitationcil force computation. One can ask about the force
being exerted on a single particle. In this computation we will use a phys
ical fact that the gradient of potenticil gives the force. Since calculation
of potential on pi due to p2 is easier than calculating force that is not

scalar as potential.

• Cellinfo
LocalCellInfo and RemoteCellInfo distinction has nothing to do in this

Chapter 4. A Framework for nbody Algorithms on SMP Clusters 58

application, since center of mass and total mass values are common to all
inner cells, whether local or proxy.

• Tree and Its Constructor
Being devoted to original Barnes-Hut implementation, we use octtree as
our tree object. This decision affects cells such that each cell has at most
8 child cells.

• Space and Spatial Partitioning Technique
Kumar et.al. [10] proposed a simple spatial partitioning technique for
their Barnes-Hut implementation, which can be extended for use with
FMA type of algorithms. Recursively subdividing the computational do
main using geometric center until a threshold value is reached for depth
of division, produces a tree structure describing the domain. The depth
of this space-tree can be decided according to the uniformity of bodies
existing in the domain. This structure is used in mapping the subspaces
to processors, or nodes for our work. Using geometric coordinates in di
vision lets each subspace infact correspond to a subtree for the oct tree
used in Barnes-Hut. Using this structure as a globally shared part of the
global tree reduces the overhead in accessing this part of the tree during
computation. This is especially essential for Barnes-Hut algorithm since
the global tree needs to be traversed for each leaf cell in order to compute
forces acting on a single body. Moreover advanced load-balancing tech
niques such as costzones proposed by Singh et.al. [23] may be applied in
mapping the subspaces to processing units.

ORB can also be replaced with geometric partitioning if we have an ap
propriate interface for space and partitioning classes. •

• Compute Objects
There are two interaction types in Barnes-Hut algorithm; particle-particle
and particle-cell. Therefore supplying two computation object BHPP-
Compute cincl BHPCCompute with Compute methods implemented as

algorithm dictates, is enough for us.

• Library
BHLibrciry class derived from Library, supports cdl required methods ol

Chapter 4. A Framework for nbody Algorithms on SMP Clusters 59

its interface. While employing original 9 criterion as our iVI.A.C, we have
also implemented the required MAC function that will operate on cell and
space pairs. Recall that this function of Library class is required to satisfy
sender-initiated communiccition. That is when comparing a local cell with
respect to a remote space, we assumed the worst case to be true; there is
a particle in space at the point that is closest of all for the examined cell.
If the original MAC is satisfied for the cell and assumed particle, the cell
is decided to be sent to the node that is owner of that remote space.

4.7 Usage and Preliminary Results

Processor having id zero is set as the central processor in the simulation. And
it is the only processor that is submitting particles. As Liblnit() is called,
the library is set up and as the ptirticles are deposited initialization phase
starts. The last call Libiterate is queued till the initialization ends. The return
function is m a i n i t e r a t e and it loops over time steps calling Libiterate again
and again. Since the interface is simple to use, creating such an application
is not a big deal. But rather it may be annoying to supply required concrete
classes.

v o i d m a i n (i n t a r g c , c h a r * * a r g v) {

r e a d i n p a r t i c l e d a t a f r o m i n p u t f i l e

L i b l n i t (. .) ;

L i b P a r t i c l e s (. . .) ;

L i b i t e r a t e (1 , & m a i n i t e r a t e) ;

}
v o i d m a i n i t e r a t e (i n t n p a r t s , P a r t i c l e * p a r t i c l e s) {

w h i l e (t n o w < t s t o p) {

u p d a t e p a r t i c l e p o s i t i o n s a nd v e l o c i t y ;

L i b l t e r a t e f l , & m a i n i t e r a t e) ;

a d v a n c e t i m e ;

}

}

Chapter 4. A Framework for nbody Algorithms on SMP Clusters 60

• i . · · · · . : ·. ·

* u . · . · ·<

X , . . / * * * . · · . * · · · . · - ·

(a) (b)

Figure 4.6: 1024 bodies in (a) Uniform Sphere (b) Plummer distribution.

We have currently one SMP node with 2 processors at hand. The per
formance tests managed using Charm-|—t- environment property of starting as
many processes as wanted on a processing node. If the number of processes
exceeds the number of processors in the node, then more than one process may
be assigned to each processor. To not to enforce the physical limitation of our
SMP node, we simulated a two-node cluster each having two processors on it.
For the alternative architecture usage of our machine, 4 single-processor nodes
each with its own memory segment are simulated. Since all processes are run
ning in physically same memory, we had a memory bottleneck for testing with
large number of bodies. Moreover, since there was not an actual network but
the memory, differences between array of processors and cluster of nodes are
minimized. So the performance study may not be very reasonable, since we
couldn’t test the application on a real cluster of SMP nodes.

We have used two different test input models for the distribution of particles
in the space; uniform sphere Figure 4.6-a and plummer distribution Figure 4.6-
b. For uniform sphere with 100 particles SMP execution completes in 4.52
seconds, where it is 5.13 seconds for array of processors execution. And when
we increase number of particles in sphere to be 250, SMP run takes 8.47 seconds.

Chapter 4. A Framework For nbody Algorithms on SMP Clusters 61

while the other takes 8.77 seconds. Plummer distribution with 100 particles
running on SMP clusters takes -3.96 seconds, and running on processor arriry
completes in 4.3 seconds. Finally for 2.50 particles distributed in Plummer
model, execution times are 8.8 and 8.93 respectively for SMP and processor
array configurations. We see slight performance gain, but, again these are
preliminai’y results and performance tunning in both nbody frame and possibly
in NLBOC implementation will be needed.

Chapter 5

Conclusion

“Even if you persuade me, you won’t persuade me - Aristophanes”

A programming model which treats n node ¿-way SMP clusters as a network
of nk processors might prevent us to extract maximum performance from SMP
clusters. In this thesis, we studied programming mechanisms, in an object ori
ented programming environment, that will allow us to exploit features of SMP
nodes: (a) sharing physical memory within a node , (b) and dynamic load
balancing within a node. We introduced Node Level Object Groups (NLBOC)
to implement collective operations such as broadcast, ring communication, and
reduction NLBOCs allows interactions within a node to be done through the
shared objects and allows any idle processor to invoke methods of shared ob
jects at the node level. The communication across branches at different nodes
are automatically handled by asynchronous method invocations.^

For many parallel applications, interactions with shared objects often re
quires exclusive accesses. .A common way to enforce exclusive method invo
cation is to use locks. When a processor picks a message for a shared object
and finds that the object is locked (that is, another method is already being
executed by some other processor within the node), the message C cin be put
back in the node level message queue to be processed later. However, other idle
processors Ccin keep selecting and and putting back the message in the message
queue which results in loss of useful processor time. We have developed an

62

Chapter 5. Conclusion 63

algorithm to prevent such cases. Each NLBOC is augmented with a private
message queue. If a processor finds the NLBOC locked, then, it enqueues the
message into the NLBOC message queue. When the execution of the method
(which is holding the lock) is finished, a control message put back into the
node level message queue. This mechanism greatly reduced the conflict on the
shared message queue.

We have also emphasized other reusable patterns or libraries for collective
communications and computations that can be used in many parallel algo
rithms.. We designed an object oriented framework to support fast algorithms
for nbody problem. The framework hides details of communication from the
programmer and allows the programmer to exploit SMP clusters. The use of
advantages of SMP nodes (mentioned above) has been achieved by NLBOC
abstraction.

In this thesis, we set out a way to program SMP clusters effectively. Our
future work includes improvement on the performance issues and implement
more libraries for common parallel computations. We believe that the node
level object groups will be widely used to implement such libraries for SMP
clusters.

Bibliography

[1] A. W. Appel. An efficient program for many-body simulation. SIAM
Journal of Computing^ 1985.

[2] David A. Bader and Joseph Jaja. Simple: A methodology for program
ming high performance algorithms on clusters of symmetric multiproces
sors (snips). Technical report, UMIACS, May 1997.

[3] J. Barnes and P. Hut. A hierarchical o(nlogn) force calculation algorithm.
Nature, 1986.

[4] A. .A. Chien, J. Dolby, B. Ganguly, V. Karamcheti, and X. Zhang. Evalu
ating high level parallel programming support for irregular applications in
icc+-t-. Department of CS, University of Illinois at Urbana-Champaign.

[5] Department of CS, University of Illinois at Urbana-Champaign. Charm++
Programming Manual, 1996.

[6] Department of CS, University of Illinois at Urbana-Champcxign. Converse
Programming Manual, 1996.

[7] K. Esselink. The order of appel’s algorithm. Information Processing Let

ters, 41:141-147, 1992.'

[8] Babak Falsafi and David A. Wood. Scheduling communiccition on an snip
node parallel machine. In Proceedings of the 3rd International Symposium
on High Performance Computer Architecture, Feb 1-5 1997.

[9] Eric Gamma, Richard Helm, Ralph Johnson, and John Vlissides. De

sign Patterns: Elements of Reusable Object-Oriented Software. Addison-

Wesley, 1995.

64

BIBLIOGRAPHY 65

[10] A. Grama, V. Kumar, and A. Sameh. Scalable parallel formulations of the
barnes-hut method for n-body simulations. In Supercomputing’94 Proceed
ings, 1994.

[11] L. Greengard. The rapid evaluation of potential fields in particle systems.
ACM Press, 1987.

[12] L. Greengard and W. Gropp. A parallel version of the fast multipole
method. Parallel Processing for Scientific Computing, pages 213-222,
1987.

[13] L. Greengard and V. Rokhlin. A fast algorithm for particle simulations.
Comp. Physics, 73:325-348, 1987.

[14] A. Gursoy and I. Cengiz. Mechanisms for programming smp clusters.
In Proceedings of International Conference on Parallel and Distributed
Techniques and Applications, .luly 1999.

[15] L. V. Kale, M. Bhandarkar, N. Jagathesan, and S. Krishnan. Converse:
An interoperable framework for parallel programming. In Proceedings of
IPPS’96, pages 212-217, 1996.

[16] L. V. Kale and S. Krishnan. Charm++: A portable concurrent object-
oriented system based on C + + . In Proceedings of the Conference on Object
Oriented Programming Systems, Languages and Applications, ACM Sig-
plan Notes, pages 91-108, Sep-Oct 1993.

[17] L. V. Kale, R. Skeel, M. Bhandarkar, R. Brunner, A. Gursoy, N. Krawetz,
.J. Phillips, A. Shinozaki, K. Varadarajan, and K. Shulten. Namd2 :
Greater scalability fro parallel molecular dynamics. .Journal of Compu

tational Physics, 1998.

[18] L.V. Kale and A. Gursoy. Modularity, reuse and efficiency with message-
driven libraries. In Proceedings of 7th SIAM Conference on Parallel Pro

cessing for Scientific Computing, pages 738-743, 1995.

[19] .S. Krishnan and L.V. Kale. A parallel adaptive last multipole algorithm
for n-body problems. In Proceedings of the Sjth International Conference
on Parallel Processing, pages 46-51, August 1995.

BIBLIOGRAPHY 66

[20] P. Liu and S. N. Bliatt. Experiences with parallel n-body simulations. In
6th Annual ACM SPAA’94, pages 122-131, 1994.

[21] William T. Rankin and .Jonh A. Board jr. A portable distributed im
plementation of the pai’allel multipole tree algorithm. Technical report,
Department of Electrical Engineering, Duke University, 1995.

[22] W. Salmon and J. Salmon. A parallel hashed oct tree n-body algorithm.
In Proceedings of Supercomputing Conference, 1993.

[23] J. P. Singh, C. Holt, T. Totsuka, A. Gupta, and J. Hennessy. Load balanc
ing and data locality in adaptive hierarchical n-body methods; Barnes-hut,
fast multipole, and radiosity. Journal of Parallel and Distributed Comput

ing, 27:118-141, .Jun 1995.

[24] Resat Sireli. Parallelization of hierarchical radiosity algorithms on dis
tributed memory computers. Master’s thesis. Department of Computer
Engineering and Information Science, Bilkent University, January 1999.

[2-5] Y. Tanaka, M. Matsuda, M. Ando, K. Kubota, and M. Sato. Compas: A
Pentium pro pc-based smp cluster and its experience. In IPPS Workshop
on PC-NOW’98, volume 1388, pages 486-497. Springer-Verlag, 1998.

[26] M. Warren and J. Salmon. Astrophysical n-body simulations using hierar
chical tree data structures. In Proceedings of Supercomputing Conference,
1992.

[27] Q. Wu, A. J. Field, and P. H. J. Kelly. M-tree: A parallel abstract data
type for block-irregular adaptive applications. In Euro Par’97 Parallel Pro

cessing, 1997.

