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ABSTRACT

EXACT BLIND CHANNEL ESTIMATOR

A. Kemal Özdemir

M.S. in Electrical and Electronics Engineering 

Supervisor: Assist. Prof. Dr. Orhan Arikan 

June 1998

Recently blind identification of single-input multiple-output (SIMO) FIR 

channels has received considerable attention. The obtained exact identifica

tion approaches place over-restrictive constraints on the channels. In this 

thesis least set of constraints on the channels are placed and the noise-free 

blind channel identification problem is solved in two stages: The identifica

tion of the uncommon zeros followed by the identification of the common zeros 

of the channels. The minimum number of samples required to identify the 

uncommon zeros is specified, and closed form solutions are obtained. Also a 

binary-tree algorithm is proposed for the computation of the uncommon zeros 

efficiently. Then the common zeros of the channels are identified by a novel 

pruning algorithm. Finally a simulation example is presented to illustrate these 

ideas.

Keywords: Blind channel identification, blind deconvolution, system identifi

cation, fractional sampling
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ÖZET

GİRİŞİ BİLİNMEYEN İLETİŞİM KANALLARININ HATASIZ

TANINMASI

A. Kemial Özdemir

Elektrik ve Elektronik Mühendisliği Bölümü Yüksek Lisans 

Tez Yöneticisi: Yrd. Doç. Dr. Orhan Arıkan 

Haziran 1998

Son zamanlarda tek girişli çok çıkışlı (SIMO) sonlu itmeli (FIR) süzgeçlerin 

gözü kapalı olarak tanınması sorunu büyük ilgi toplamaktadır. Yakın zamanda 

yapılan araştırmalar kanallar üzerinde çok fazla kısıt içermektedir. Bu tezde 

kanallar üzerinde en az sayıda kısıt kabul edilerek gürültüsüz gözü kapalı kanal 

kestirimi sorunu iki aşamalı olarak çözülmüştür: Çoklu kanalların ortak ol

mayan sıfırlarının kestirimi ve ortak olan sıfırlarının kestirimi. Ortak olmayan 

sıfırların kestirimi için gerekli en küçük örnek sayısı belirtilmiş ve kapalı biçimde 

çözümler elde edilmiştir. Bu sıfırların verimli bir şekilde hesaplanabilmesi için 

bir ikili ağaç algoritması önerilmiştir. Daha sonra kanalların ortak sıfırları yeni 

bir budama algoritması ile kestirilmiştir. Son olarak öğretici bir benzetim örneği 

ile bu düşünceler somutlaştırılmıştır.

Anahtar Kelimeler. Gözü kapalı kanal tanınması, gözü kapalı ters evrişirn, 

sistem tanınması, kesirli örnekleme
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Chapter 1

INTRODUCTION

The transmission of high speed data in a communication system is subject 

to channel distortion which is known as the inter-symbol interference (ISI). 

This ISI, if left uncompensated, leads to high error rates at the receiver. To 

combat with the ISI receivers are usually designed with some provisions of 

channel equalization and /  or identification. Traditionally in many applications 

a known training sequence of sufficiently long duration is transmitted through 

the channel. Since during the training period both the input and the output of 

the channel are known at the receiver, it is possible to adjust the parameters 

of the receiver by using a suitable adaptation algorithm. Once the channel 

is equalized or identified the receiver switches to the decision directed mode, 

i.e., the receiver uses its estimate (decision) of the input symbols based on the 

output of the equalizer. In these communication systems the transmission of 

the training sequence should be periodically repeated to avoid the propagation 

of the past decision errors into the future decisions. However this repeated 

transmission of a training sequence which does not convey any information is



a waste of the precious bandwidth which we might consider to use for some 

other purposes such as the error control coding.

There are practical situations [1] such as multi-point data networks, mobile 

communication systems and linear predictive deconvolution where the trans

mission of a training sequence is impossible, impractical or costly. Equalization 

or identification schemes based on the identification of the receiver parameters 

without the benefit of a training sequence are said to be blind, unsupervised 

or self recovering. In other words the objective of the blind algorithms is 

to identify the channel or the input to the channel using only the observed 

channel output and possibly some prior knowledge about the statistics of the 

input symbols. Beginning with the seminal paper of Sato [2] we may identify 

two broad family of algorithms in this subject: The symbol-spaced and the 

fractionally-spaced algorithms.

It is assumed that the input to the communication system is a discrete-time 

stationary sequence. If the received signal is sampled at the symbol rate*, it 

can be shown that the output of the sampler is also a discrete-time stationary 

sequence. It is well known that the second order statistics of the stationary 

received sequence provides information about the magnitude of the channel 

but not phase information. Therefore the symbol-spaced algorithms use the 

higher-order statistics (HOS) of the received sequence such as cumulants or 

polyspectra (the discrete-time fourier transform of cumulants) to retrieve the 

phase information. HOS-based algorithms can be analyzed in two categories 

depending on how these higher-order statistics are used in the algorithm.

*The rate at which input symbols are transmitted through the channel. It is also known 
cis the baud rate.



The algorithms which implicitly exploit the higher-order statistics of the 

received signal [2-5] are termed as implicit HOS-based algorithms. They try 

to minimize some non-linear cost function of the unknown equalizer or channel 

coefficients, because the minimization of this cost function leads to smaller ISl. 

Since the algorithm is blind the cost function depends on the received sequence 

but not on the input sequence. The cost function is usually minimized using 

a simple stochastic gradient descent type of algorithm. Although these algo

rithms are easy to implement they require long output sequences to reduce the 

fSI to reasonably low levels. Also the nonlinear cost functions to be minimized 

are usually multi-modal, thus these algorithms might stuck at one of the local 

minima of the cost function [6].

The algorithms which explicitly use the higher-order statistics of the re

ceived signal are termed as explicit HOS-based algorithms. These type of 

algorithms are generally reliable and effective but they are computationally in

tensive and they require large amount of data. In fact it has been shown that 

the sample size required to estimate the higher-order statistics of a stochastic 

process increases almost exponentially with the order of the statistics for a 

fixed variance and bias [7].

ft is known that if a digitally modulated stationary signal is sampled at 

a fraction of the symbol period, then the resulting sequence becomes cyclo- 

stationary. As it will be briefiy shown in Chapter 2, such a communication 

system can be modeled as a single-input multiple-output discrete-time multi

channel FIR filter as in Fig. 2.2. Recently Tong et. al. [8] has exploited this 

result to show that for a certain class of channels it is possible to identify this 

multi-channel filter upto a scalar multiplicative factor using only the second



order statistics of the received sequence. This type of algorithms which use 

only the second order statistics of the received signal are called as second order 

cyclostationary statics (SOCS) based algorithms. These algorithms converge 

faster than HOS-based algorithms. However they are applicable only under 

certain restrictions on the channel. If the channel does not comply with these 

restrictions, these algorithms fail to identify the channel even if the channel 

observations are free of noise.

In this thesis we present theoretical results on the exact estimation of the 

channel response based on the noise-free observation of the channel output 

sequence. Our purpose is to fully characterize what can be done with the least 

set of assumptions on the channel model. Also, discussions on how to extend 

the obtained results to the more realistic case of blind channel estimation based 

on noisy channel outputs are provided.

The organization of the thesis is as follows: First the multi-channel fil

ter model is introduced. In Chapter 3, formulation of the BCI problem for 

the noise-free case is presented. Then, an important result of this thesis is 

given in the form of a theorem which states the minimum number of required 

channel observations to identify the uncommon zeros of the sub-channels 

hi[n] , . . . ,  hM[n] shown in Fig. 2.2. After providing closed form estimators for 

these sub-channels under different constraints and proving their equivalence 

in the absence of noise disturbance an algorithm is proposed for the efficient 

computation of the sub-channels. In Chapter 4 the estimation of hc[n], the 

common part of the channels is investigated and the estimation of the input 

sequence a[n] is discussed. In Chapter 5 an instructive simulation is given and 

then the thesis is concluded.



Chapter 2

MODEL OF THE

COMMUNICATION SYSTEM

The block-diagram model of a serial transmission system is shown in F'ig. 2.1. 

In this figure {a[w]}^o input symbol sequence chosen from a finite al-

\)(t)

a[n] y(n T/M )

T/M

Figure 2.1: Model of the communication system.

phabet, y{t) is the received signal and T  is the symbol duration. The impulse 

response of the linear channel, h{t), is the cascade of the transmitter filter, 

transmission path and the receiver filter. We will assume that h{t) is of finite



duration:

h{t) -  O io r t ^ [ D T , { D  + Lh)T) , 

where D T  represents the transmission delay.

( 2 .1 )

Over-sampling of the channel output with a factor of M'  provides channel 

diversity. Consequently as shown in Appendix A, the system in Fig. 2.1 can 

be equivalently represented as a single-input M '-output discrete-time multi

channel FIR filter. In the following chapters, we investigate the exact identi

fication of either all or a subset of these channels. Without loss of generality, 

assuming that first M  < M'  of these channels are to be identified, the corre

sponding multi-channel model is shown in Fig. 2.2. In this figure the outputs 

of the multi-channel filter are the samples of the received signal y{t):

yi[n] = y{nT + ( ^ - l < i < M  . (2.2)

Figure 2.2: Multi-channel filter model.

The FIR filter hc[n] in Fig. 2.2 corresponds to the common zeros of the sub

channels. If the sub-channels share L\ common zeros, then the length of hc[n] 

is + 1 . If the sub-channels do not share any common zeros then hc[n] = i[n].



Since all the common zeros are placed in /ic[n], the filters /ii[n],. . . ,  do

not share any common zeros.

The only assumption we make about the model in Fig. 2.2 is that there is 

no channel noise: u, [n] = 0 for e =  1 ,. . . ,  M. Specifically, we state below some 

of the assumptions and/or constraints that are avoided in our work:

1. The knowledge of the exact channel order as in [8-12].

2. The constraints on the length of the channels and the number of the 

channels as in [13].

3. The assumption that the sub-channels do not share any common zeros 

(i.e., hc[n\ — ¿[n]) as in almost every second-order statistics based algo

rithm [9,12-14]. It has been shown that these algorithms lose their ro

bustness when this assumption is not true [15]. This is a severe limitation 

because there exists classes of multi-path communication systems [16,17] 

for which this assumption is not valid for any over-sampling factor M'.

4. The assumption that the number of sub-channels is the same as the 

over-sampling factor.

In Fig. 2.2 we allow the existence of possibly a non-zero delay > 0 as a 

consequence of (2.1). If at the receiver end the starting time of transmission is 

known, the delay D can be easily obtained from the observation time of first 

non-zero channel output. Otherwise, it is impossible to identify the value of 

D. As will be detailed, even if D is not known, the exact identification of the 

channels can be carried out.



In this thesis we propose a two stage procedure for the blind-channel- 

identification (BCI). In the first stage channels h\[n]^. . . ,  hM[n] are identified. 

Once, these channels are identified several of the existing algorithms in the 

literature [18] can be used to estimate the sequence Xc[n] in Fig. 2.2. Then in 

the second stage, the blind identification of hc{n] is carried out by using the 

estimated output of this filter Xc[n].



Chapter 3

BLIND IDENTIFICATION OF 

THE UNCOMMON ZEROS

In this chapter we set up the framework within which the channels 

[n],. . . ,  Am W are identified blindly by using outputs ?/i[n],. . .  ,?/A/[n]. As 

shown in Fig. 2.2, the output signals ?/i[n],. . .  are the responses of the

channels Ai[n],. . . ,  AA/[n] to the same input Xc[n]. Thus it can be conjectured 

that the input-output relationship between pairs of channels might produce 

sufficient information [12,19] to estimate the channels Ai[n],. . . ,  without 

any prior knowledge about the input Xc[n]. In this and the next section we will 

show that indeed this is the case.

For 1 < i < M, let gi[n] be an estimate of hi[n\. Here we assume that the 

assumed order ¿ 2  of the channel estimates is larger than or equal to L2 which 

is the largest order of the channels Aj[nj. Consider two arbitrary and distinct 

channels, say i and j ,  in Fig. 2.2. After filtering the outputs of these channels



with FIR filters gj[n] and gi[n] we generate the error signal eij[n] as shown in 

Fig. 3.1.

Figure 3.1: Generation of the error signal e,j[n] associated with the i*·** and 
sub-channels.

We will base the optimality of a set of channel estimates at the sampling 

index N  of the received data yi[n], I < i  < M, to the following cost function:

 ̂ M i-1

1W) = TT E  E  i ■ (3-1)
¿=1 j= l

where Jij{gi -,gj ] N)·, the cost function associated with channels i and is 

defined as:
N

^ij{gi ·) gj ) ^  ^   ̂^ y V - A ; I
A;=0
N

(3.2)

(3.3)= 7 ^  V  l^i ^Vj [fc] -  9j [A;] I ̂

where Qi and yi[k] are defined as:

^  qAU] (•'̂ •4)

= yi[k] yi[k -  1] · · · yi[k -  ¿ 2] (•4··̂ )

Cyj,N in (3.3) is a normalization constant defined as Cŵn = '^N-k and

Wk is a weighting sequence that satisfies

0 < u > i :< l  , 0 < k < N

10

(3.6)



We observe that if the channel estimates in Fig. 3.1 are replaced with true chan

nels, then the cost function in (3.1) becomes identically zero. In other words 

the true channel coefficients constitute one of the possibly many minimizers of 

(3.1).

By using (3.4) a more compact representation for the cost Ji^{g]N)  is 

obtained as:

' 1̂2(9 ‘i ^ )  — 9 ^  ^ y y [ ^ ] 9  1 (3-7)

where g is the concatenated channel vector estimates

T
9 = T* T T9i 92 ■■■9m

and the hermitian positive semidefinite matrix ilyy[iV] is

R,,[JV] =  F[1V] -  Q(1V] ,

(3.8)

(3.9)

where

and

P[AT] = 1
M

Ra[N]  0 

0 Ra[N]

0 0

0

0

M
R, [ N]  =

¿=1

^yi yi [-^] ^yMyi [-^]

= J i
^yi y2 [-^] ^yMy2 [-^]

^yi yM [-^] ^yiyM [-^] ^yM yM [-^]

11

(3.10)

(.3.11)

(3.12)



can be interpreted as the weighted cross-correlation matrix of the 

multi-channel filter outputs yi and yj :

1 ^
Cw,N

(3.13)
fc=o

In the following section we will characterize the minimizers of (3.7):

g = a.Tg imn Ryy[N]g  (3.14)
if

3.1 Characterization of the Minimizers of the 

Cost Function

In this section, we will present detailed properties of the optimal solutions 

to the channel identification problem. We begin with the following powerful 

theorem which states that the optimal solutions are the FIR filtered versions 

of the actual channel responses.

Theorem 1.

JL2is ;N) = 0 ^  gi[n] = /i.[n] * /[n] (3.15)

provided that

1) ¿>2 ^

2) TV > Z) + ¿2 H" Z<2

where f[n] is an arbitrary FIR filter of order at most L2 — Lz-

Proof of if part. gi[n] = hi[n] * f[n]
M i - l

f  -  hj *Vi* f\\w,N
i=l j=l

(3.16)

(3.17)

12



M ¿-1
= X ]  ^  IK^i * Vj — h j  * Ui) * f \\w ,N

¿=1 i=i
= 0 ,

where we defined the norm || · \\w,N as ||«||^,Af = ^/Cw,N E L o » « - i l “ WP· a  

Proof of only if part. [g ■, N) = 0 iov N  > D + L2 + L2 = D + Lr
M  1-1

^  ^  I\9i * V j  ~  9 j * yi\\w,N —  0 
¿=1 j = i

^  Ik' * Vj -  9j * yi\\w,N = 0 , V i j  

^  IK fl't  *  hj Pj *  / i t )  *  ^ c lIv K .A l ~  f i 1 ^ij · ( 3. 18)

To complete the proof of the theorem we will make use of several lemmas. In 

order not to break the continuity of the text, the proofs of the lemmas will be 

left to appendices.

Lemma 1. I f  IK̂rj· * hj — gj * hi) * Xc\\w,n ~   ̂ for N  > D -\- Lr then gi[n] * 

hj[n] —  gj[n] *  / i t [ n ]  =  0 V  n .

This lemma can be used in (3.18) to conclude the equality of gi[n] * hj[n] = 

9j[n] * hi[n] for all n. Hence, in the 2 -transform domain:

Gi{z)Hj{z) = Gj{z)Hi{z) . (3.19)

Since for i ^  y, Hi{z) and Hj{z) may have common zeros, let monic polynomial 

Hij{z) be the greatest common divisor of Hi(z) and Hj{z). Hence, H fz )  can 

be decomposed as:

Hi{z) = Hi,{z)Qi,,{z) (3.20)

where the quotient polynomial Qijj{z) is equal to Hi{z)lHij[z). Then, (3.19) 

can be written as:

G,(z)H.,(z)Q,ii(z) = G,(z)Hi,(z)Q,i,(z) . (3.21)

1 3



After cancellation of the Hij(z) we get;

Gi{z)Qj/.{z) = Gj{z)Qif,{z) . (3.22)

Since, Qj/i{z) and Qi/j{z) have no common zeros;

Qi/,{z)\Gi{z) , Vi,i . (3.23)

At this stage we use the following lemma:

Lemma 2. I f  Qi/j{z)\Gi{z) for all i , j  then Hi{z)\Gi{z) for all i.

Lemma 2 implies that Gi{z) can be factored as:

Gi{z) = Fi{z)Hi{z) . (3.24)

We complete the proof of the Theorem 1 using the following lemma:

Lemma 3. ¿̂(.2:) = Fj{z) for 1 < i , j  < M.

This completes the proof of Gi{z) = F[z)Hi{z) for all i. □

Theorem 1 states that the minimizers of (3.7) are FIR filtered versions of 

the actual /í¿[n]’s where the filter f[n] has length at most L2 — L2 + 1. In the 

following theorem, the solution space is further characterized.

Theorem 2. The set of vectors 9 = [  g j  ■ ■ ■ g ^  V  satisfies

(3.15) constitutes an + 1 dimensional vector space, where Lc = L2 — L2·

The proof of the theorem is based on the following lemma which will be 

used to construct a basis for the solution space. The proof of the lemma is 

given in Appendix E.

14



Lem m a 4. Any vector g in the solution space can he expressed as
Lc

9 = Y ^ f [ L c -  k]vk ,
k=Q

where Vk is related to the true channel coefficients as:

Vk = J ’̂ "at ”
1 T

/ if  0^ I ···

In (3.26) J  is a shifting matrix with I ’s on the lower sub-diagonal

0 0 ··· 0 0

1 0

J  = 0 1

0 0

and 0 is an Lc dimensional zero vector.

0 0 

0 0

1 0

(3.25)

(3.26)

(3.27)

Proof of Theorem 2. It is easy to see that the vector space assertion holds. In

deed if ) and ) pairs satisfy the relation (3.25) in Lemma 4,

then their linear combination ) + ) also satisfies it. The

rest of the theorem is proven by using the Lemma 4 to construct a basis for 

the solution space.

Based on Lemma 4 we conclude that {vq , . . . ,  vi^ } constitutes a spanning 

set for the solution space. Thus the dimension of the solution space is no larger 

then Zc + 1. We can show that it is exactly Lc + 1 by proving that Vk’s are 

linearly independent. Suppose that otiVi = 0. Then

Vo Vi V2

cto

ai

C(f

= 0 (3.28)

15



Without loss of generality it can be assumed that Uo[0] = /ii[0] is nonzero^ 

Hence, the above system of equations can be written as:

t̂ o[0] 0 0 0

X t̂ o[0] 0 0

X X uo[0] 0

X X X .. uo[0]

X X X X

«0

ai

OL f

= 0 (3.29)

which accepts the unique solution of ao = aj = · · · = = 0. Thus V{’s are

linearly independent. □

An important implication of this theorem is stated as:

Corollary 1. The matrix Ryy[N] has an Lc + I dimensional null-space.

In the next section we will show how the exact identification of 

/ii[n],. . . ,  hM[n] can be achieved from a given minimizer of (3.7).

3.2 Identification of . . . , from a

Minimizer of the Cost Function

Suppose that using some optimization algorithm we have computed a particular 

set of channel estimates ^i[n],. . .  that satisfies (3.15) for some nonzero

hSince /iAi[n] do not share any common zeros, the first coefficient of at least
one of these sub-channels should be non-zero.

16



f[n]. In the following by using the fact that hi[n],. . . ,  hM[n] do not share 

any common zeros, we will show how to exactly obtain hi[n],. . . ,  hM[n] from 

9i[n],.. ..,gM[n].

Let’s use the notation 2 { f }  to denote the zeros of an arbitrary FIR filter 

/ .  Then the zeros of gi[n\ are given as

Z{gi] = Z { f ] U Z { h , ]  . (3.30)

Since the common zeros of ^¿[^]’s are the zeros of the greatest common divisor 

of ^¿[n]’s, there exist many algorithms that can be used to obtain them [20]. 

Formally, these common zeros can be obtained as:

' '¿=1 Z { f } \ J Z { h i }  

= Z { f } y j [ r \ t ,Z { h , ] ]  

= Z { f ]  ,

(3.31)

(3.32)

(3.33)

where the fact that /ii[n],. . . ,  hM[n] do not share any common zeros is used in 

the last step. Hence, we showed that the common zeros of ^,[n]’s are the zeros 

of f[n\. Thus, we can compute /[n] upto a scaling factor. Finally hi[n] can be 

found in the ^-domain by polynomial division:

Hi{z) = Gi{z)lF{z) for ¿ = 1 , . . . , M . (3..34)

Since, f[n] is not identically zero, the above polynomial division is well defined.
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3.3 Constrained Minimization of the Cost 

Function

As detailed in the previous section, by starting with an order estimate L2 which 

is larger than the actual order L2 of channels /ii[n],. . . ,  /iivi[n], one can obtain a 

minimizer of the cost function from which the actual channels /ii[n],. . . ,  /im [w] 

are computed by first finding the greatest common divisor and then performing 

a polynomial division (3.34). Alternatively, by starting with L2 which is larger 

than ¿ 2, one can form iiyy[iV] by using (3.9). Then by using Corollary 1, ¿ 2  

can be obtained as:

¿2 = -¿2 — i/ + 1 , (3.35)

where 7/ is the dimension of the null-space of . Once the actual order

L2 is obtained, the minimization problem (3.14) is solved with ¿ 2  = L2. Since 

= L2 — L2 = 0, Theorem 1 states that any minimizer of Jl2{9 ; would 

be in the form

9i[n] = f[0]hi[n] , fore = l , . . . , M  (3.36)

where /[0] is an arbitrary constant. To avoid the undesired trivial solution 

/[0] = 0, we have to introduce some constraints into the minimization prob

lem. The constraints should be selected so that they do not alter the global 

minima of the cost function, but they avoid the above undesired solution. We 

will investigate the solution to the minimization problem under the following 

constraints:

(i) 11̂  IP =9^

(ii) ll^ilp = /if for some i
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(iii) g = a for some fixed vector c .

In the first two, constraints are placed on the energies of the sub-channels. 

The last one requires the specification of an arbitrary constant c . In the 

following, closed form solutions of these constrained minimization problems 

are obtained. Then in Section 3.4 we prove that the minimizers of (3.7) under 

the constraints (i)-(iii) are identical to the true channel within a multiplicative 

scale factor.

3.3.1 Energy Constraint 1

Let the eigen decomposition of Ryy be given as :̂
M (L2+1)

■̂ »1/ = ^   ̂ > A2 > · · · > Aa/(^2+i) > 0,

ll^i ||2 = 1 for 1 < i < M{L2 + 1) . (3.37)

It is well known that the minimizer of (3.7) under the total energy constraint 

is the eigenvector of Ryy corresponding to the smallest eigenvalue

9 = liqM(L2+i) · (3.38)

Since Lc = 0, the Corollary 1 states that Ryy has a 1-dimensional null space. 

Consequently the smallest eigenvalue of Ryy is 0 and its multiplicity is 1.

3.3.2 Energy Constraint 2

Without loss of generality we will assume that the energy constraint is imposed

only on to the first channel. Then the constrained optimization problem can 

^For notational convenience, the dependence on N is not shown explicitly.
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be restated as

s.t.

rnin Ryy g

\\9i \ ? = iA

(3.39)

(3.40)

We partition the matrix Ryy and the vector g as follows:

Ryy —

9 =

H ii R i2

R 21 R 22

T9i
-iT

T

(3.41)

(3.42)

where jRn = [Ra — Ry^yi )IM. Then the cost function becomes:

«/¿2(5^1 ~  9 ^  ^yy  9 (3.43)

— 9\ ^ 1 1  9i + 9\ ^ 1 2  5 R 21 9i + ^ 2 2  s

(3.44)

We form the lagrangian C

^ 9 i , s , A) = 1 *) + KlA. -  \\9i i n

and set the gradients of C with respect to g* and s* to zero:

R \ i  R i 2

R 21 R 22

(3.45)

9i = A 9i

s 0
(3.46)

In (3.46) R 22 cannot be singular, unless g = [0^ g j  ■ ■ ■ gj f  ]'̂  7  ̂ 0 is a 

minimizer of (3.7). However this requires = 0 or 1/1 [n] = 0 V n. In this

case the minimization problem should be solved under the constraint ||^i || = 0 . 

However the optimal solution to this constraint minimization problem accepts 

the trivial solution g = 0 . To avoid this undesired situation, the energy 

constraint is imposed on a sub-channel which does not have an identically zero
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output. Without loss of generality we assume that h\ ^  0. Therefore (3.46) 

can be equivalently expressed as

(R ll  — jRi 2 R 22 -^21 ) ^1 —

S =  ~ R -22 R -21 9 l

(3.47)

(3.48)

Since the hermitian matrix Ryy is nonnegative definite, its Schur comple

ment, jRii — R x2 R 22 -^ 2 1 , is also a nonnegative definite matrix [2 1 ]. Also A 

in (3.47) is an eigenvalue of the Schur complement and gi is the corresponding 

eigenvector. The ambiguity of which eigenvalue to choose is resolved once it is 

verified that the substitution of (3.47) and (3.48) into (3.44) yields the mini

mum of the cost function as A. Consequently we should choose A as the smallest 

eigenvalue. Thus, the following procedure provides the optimal solution:

1 . Find the smallest eigenvalue and the corresponding eigenvector of the 

Schur complement

2 . Normalize gi

3. Compute s

{ R l l  — R i 2 R22 ^ 2 1  )  ^ 1  —  A m in ^ i

9i -^fiig i/W gi

S — —R 22 ^ 2 1  9l

(3.49)

(3.50)

(.3.51)

Since the dimension of the eigenvalue problem in (3.49) is M  times smaller 

than that of in Section 3.3.1, computationally it is easier to obtain the solution 

under the second constraint than the first constraint.
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3.3.3 Constant Vector Constraint

We know that the unconstrained minimizer of (3.7) is in the null-space of Ryy. 

If the constant vector c used in this constraint is in the column-space of the 

hermitian matrix R y y , c G 1Z{Ryy), then g = 0 . Therefore the constraint 

minimization problem should be solved with a  = 0. However the minimizer of 

(3.7) under this constraint accepts the trivial solution g = 0 . To avoid this 

undesired situation we assume that c ^ 7Z(Ryy ).

We form the lagrangian C:

^ { 9 , A) = R y y  g + \*{oi - c ^  g )  + A(a* -  g “ c)  (3.52)

Setting the gradients of C with respect to g* and A* to zero we obtain the 

following set of equations in g and A:

R'yy 9 — Ac (3.53)

g = a . (3.54)

Since c ^ lZ{Ryy ), (3.53) is inconsistent unless A = 0 . If we set A = 0 , then 

(3.53) reads as

9 = , (3.55)

where ^  is an arbitrary complex constant and n  is a vector in the \-D  null- 

space of Ryy normalized to have unit norm. Using (3.54) to eliminate ¡5 we 

obtain the optimal solution as

a
9 = n

n (3.56)
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3.4 The Equivalence of the Constrained Solu

tions

When solving the constrained optimization problems we assumed that = L^, 

because we can find L2 using the dimension of the null-space of Ryy . On the 

other hand we know from Theorem 1 that if ¿ 2  = T2, then Jl2(9 ; Â ) = 0 if 

and only ii g is a non-zero multiple of the true channel vector:

9 = /[0]^ , /[0] e C . (3.57)

Therefore to prove that the minimizer of (3.7) under the constraints in Section 

3.3 is a non-zero multiple of the true channel, it is sufficient to show that the 

constrained solutions can be expressed as in (3.57). The following list provides 

the appropriate multiplicative constants / [ 0] for each of the optimal solutions:

1 . Under the energy constraint 1 , choose /[0] = pL/\\h || so that

9 = W II^II)^  · (3.58)

2 . Under the energy constraint 2, choose /[0] = n\l\\h \  || so that

9 = ID* · (3.59)

3. Under the constant vector constraint choose /[0] = a f c ^ h  so that

g = (a l c^h)h  . (3.60)

As shown in this section, any of the constraints in Section 3.3 can be used 

to obtain a non-zero multiple of the true channel when there is no noise in the 

channel output. However, in the presence of noise, the Theorem 1 does not hold
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and the minimization of (3.7) under different constraints in general produces 

different channel estimates. Currently we are working on the comparison of 

the channel estimates obtained under the above mentioned constraints when 

there is noise in the channel outputs.

3.5 A Binary-Tree Algorithm

As shown in the previous section, true channel coefficients can be obtained as 

the minimizers of (3.7) under the constraints in Section 3.3. Unfortunately, 

direct computation of the obtained closed form solutions are computationally 

intensive. For ¿ 2  = 7 /2, the direct implementation requires 0{M^L\-{· L\N)  

operations for estimation of all the sub-channels /ii[n],. . . ,  using N  con

secutive channel outputs. In this section we propose to use a binary-tree 

algorithm to reduce the required computational load to 0{M L\  + M L\N).

In order to motivate the idea behind the tree-based algorithm, we first 

investigate the application of the constrained minimization algorithms to only 

two arbitrary sub-channels. Suppose that we have the setup shown in Fig. 3.1 

and we want to minimize the weighted energy of e,j[„] denoted as Jij{gi ,gj ; N) 

in (3.3) using one of the constrained minimization algorithms of Section 3.3.

Using the notation in Section 3.1 we denote the common zeros between 

the and channels as Hij{z). Then Fig. 3.1 can be equivalently rep

resented as in Fig. 3.2 where the FIR filters Qi/j(z) = Hi{z)lHij{z) and 

Qj/i{z) = Hj{z)/Hij{z) in this latter figure are coprime. Therefore the esti

mation of the FIR filters in the dashed box in Fig. 3 .2  is a special case of the
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Xc[n]

Figure 3.2: The generation of the error signal tij[n\ associated with the and 
sub-channels.

M-channel blind identification problem with M  = 2. As it is implied by Theo

rem 1 , we can identify Qi/j(z) and Qj/i{z) using exactly Z2 +max{Tj/j, Lj/i} + l 

output samples where T./j is the order of the filter Qi/j{z) and Lj/j is the order 

of the filter Qj/i(z). The identification of Qi/j{z) and Qj/i{z), can be carried 

out by using any of the algorithms in Section 3.3. Since these filters do not 

share any common zeros, their common input u,j[n] can be recovered exactly 

by using the corresponding 2-channel deconvolution filter. This follows from 

the Bezout identity [22] which guarantees the existence of a pair of FIR decon

volution filters Eifj{z), Ej/i{z) of order ma,x{Li/j, Lj/t} such that

(3.61)

The deconvolution filters Eiij{z) and Ejii{z) can be computed by using the 

following partial fraction expansion:

1___________  ^  Ei/jjz) Ej/i(z)
Qiiji^)Qjiii^) Qj/ii^) Qi/A^)

(3.62)

In conclusion, once the FIR filters in the dashed box in Fig. 3 .2  and the 

FIR filters Ei/j(z) and Ejii{z) in (3.61) are computed the configuration in 

Fig. 3.3 provides the desired input sequence Uij[n]. This forms the basic idea
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u.|n] ujn] = u.|

The Deconvolution Filter

Figure 3.3: Estimation of the input sequence uq[n].

of the binary-tree algorithm which will be illustrated for M = 4 using the 

re-arranged multi-channel filter model in Fig. 3.4. In this figure the filters 

in the dashed boxes 1 , 2 and 3 are coprime (see the argument that leads to 

Fig. 3.2.). Therefore the above results derived for the 2-channel FIR filters 

can be used to identify the filters in the dashed boxes 1 and 2 and their inputs 

Ui2[ra] and U34[n]. Since the outputs of the coprime filters Hi2{z) and Hza{z) 

shown in Fig. 3.4 can be exactly identified, the above results for the 2-channel 

FIR filters can be used once more to identify these filters together with their 

common input Xc[n]. This completes the identification of the sub-channels 

Ai[n],...,/i4[n].
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y, [n]

y2W

yjLn]

y.[n]

Figure 3.4: The binary-tree representation of a 4 -channel FIR filter.
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Chapter 4

BLIND IDENTIFICATION OF 

THE COMMON ZEROS

In the previous chapter we have presented a method for blind identification 

of the sub-channels Ai[n],. . . ,  /imM  in Fig. 2.2 and their common input .Tcfn]. 

Thus the overall problem is reduced to the blind identification of the filter hc[n] 

in Fig. 2.2. In this chapter we give a solution to this problem.

We write the input-output relation of the filter hc[n] using the vec- 

tor/matrix notation^:

(4.1)

Xc[D] a[0] 0 0 /ic[0]

Xc[D +  1]
=

a[l] a[0] 0 hc[i]

Xc[D +  Li ] a[Li ]  a [ L i - \ ]  ··■· a[0] hc[L,]

®c,il A il

 ̂Using an over-estimate of does not change the results in this chapter. It only increases 
the computational load.
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In the above equation the vector Xc,Li has been computed as explained in the 

previous chapter. We also have the a priori information that the information 

symbols {a[0] , . . . ,  a[i/i]} which completely determine Ai^  are chosen from 

a finite alphabet A. If the size of this alphabet is J\i then there are only 

distinct and possible Ai^  matrices. Actually depending on the shape 

of the input symbol constellation this number can be somewhat reduced. For 

example, if the Binary Phase Shift Keying (BPSK) input symbol constellation 

is used then the alphabet is ^  = { —1,+1}. In this case it is not possible 

to distinguish the {Ai^ , h c ) pair from the {—Ai^ , —he) pair using only the 

blind techniques, because both of them satisfies (4.1). However such a constant 

phase ambiguity is acceptable in digital communications. In practice this phase 

ambiguity at the receiver can be removed by requiring that the first transmitted 

information symbol a[0] is always 1 .

The algorithm that we propose in this chapter first computes all possible 

channel estimates that can lead to the output sequence Xc[D]^. . . ,  Xc[D + L\\. 

For example, if is one of the possible Ai^  matrices then the corre

sponding channel estimate ĥ '°̂  is obtained by solving (4.1) using the forward- 

substitution:

Af>[01 = Xc[D]/aW[0]

1
'•‘‘VI =

n—1
a:,[n + Z )]-

1-1
for 1 < n < Li .

(4.2)

In the noise-free case the sequence Xc[n] can be computed exactly. Therefore 

one of the computed channel estimates, , should be the actual channel. 

The pruning algorithm given in the next page can be used to identify the 

actual channel among all those possible channel estimates. Basically at each
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sample index n, the algorithms discards the channel estimates which cannot

produce the most recent output sample X c [ n \ .  The algorithm terminates when

there remains only one channel estimate. After the correct channel is identified

using the pruning algorithm, the configuration in Fig. 4.1 provides a solution

for the input sequence a[n].

Algorithm 1 The pruning algorithm 
Initialization:

Define the current sample index n and the set of remaining channel estimates 
at the previous sample index:

n — D ~\~ L\ T 1

Pruning loop:
while size(«S(”"̂ )) > 1 do 

Set := .
Compute Xc[n] using the results in Chapter 3. 
for each channel estimate do

Compute and — D] as in Fig. 4.1.
if the residual error

|e<‘>[n|| = |o<‘'[n) -  8 <‘>[n -  D|| (4.3)

exceeds a threshold then
Set := -  { h p  } .

end if 
end for
Set n := n + 1 . 

end while

There exist some pathological cases such that the pruning algorithm does 

not terminate. In other words there may exist two or more input sequence- 

channel pairs such that they produce the same output X c [ n \ .  Actually this 

would always be the case if there were no constraints on the input sequence. 

But in the context of digital communications the samples of the input sequence 

(i.e., the information symbols) are chosen from a finite alphabet A  with M
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XcW a [n-D]

Figure 4.1: Identification of the common zeros.

elements. Unfortunately even under such a stringent constraint there exists 

such pathological cases. For example consider the following input sequence 

and channel pairs:

(α^[n],/¿cı[n]) = ((-l)"w[n],i[n] + ¿[n -  1]) (4.4)

(a2[n],/icjn]) = (u[n],6 [n] -  (Ç[n -  1]) . (4.5)

A straightforward calculation shows that Xcjn] = Xc2[>t] = <̂ [̂ ]· Thus knowing 

only the output sequence Xc[n] = <̂ [n] it is impossible to tell which input se

quence has been actually transmitted^. So this identifiability problem applies 

to all blind channel identification algorithms.

The above discussion proves the existence of input sequence-channel pairs 

which produce the same output. However in practice what is important is the 

probability of coming across to such pathological cases. Now we show that this 

probability is zero.

Theorem 3. Suppose that the output sequence Xc[n\ which is not identically 

zero is observed for n > 0. The vectors of filter coefficients

he — /ic[0] hc[l] ··· hc[Li (4.6)

^Notice that there was no identifiability problem in estimation of the uncommon zeros.
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which produce the output Xc[n] for a suitable input sequence a[n] are isolated 

points in Li + I dimensional space.

Proof. The proof is by contradiction. Let e > 0 be given. Then there exists 

Li + 1 dimensional vectors hci , hc^ such that

0 llh’ci h.c2 I I  ̂ 1 (4.7)

where the FIR filters /ici associated with these vectors produce the

same response Xc[n] to the input sequences^ ai[n], a2[n]:

X,{z) = z -^ A ,{ z)HcA^) = z->^A.i{z)H,,{z) .-D (4.8)

Let Hc^iz) = Hci(z) + 6Hc{z), ^ 2(2 ) = Ai(z) + 6A{z). Substituting these 

into (4.8) yields:

H ,,{z)8A { z ) p 8H,{z)A,{z) + 8H,{z)8A{z) = 0 . (4.9)

In this equation, Hc^{z) is fixed, 8A{z) is the 2 -transform of a sequence whose 

samples can take values only the in the set {—2 , —1,0 ,1 , 2 ), and 8Hc{z) is an 

arbitrary FIR filter. Let e —> 0 in (4.7). Then (4.9) reads as

Hc,{z)8A{z) = 0 . (4.10)

Since 8A{z) 7  ̂ 0 (because Hc^{z) ^  Hc2{z) in (4.8)), the above condition can 

be satisfied only if Hd{z) — 0. Then, it follows from (4.8) that Hc.^(z) = 0. /1 

contradiction. □

As a consequence of this theorem we conclude that the measure of such 

pathological input sequence-channel pairs is zero among all admissible pairs.

^For simplicity we assume that the input sequences are drawn from a BPSK symbol 
constellation.
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Therefore in practice the pruning algorithm always identifies hc[n] in a finite 

number of iterations. As shown in the next chapter when the common zeros 

are identifiable from Xc[n\ the pruning algorithms converges to the solution 

very fast. On the other hand if the identification of the common zeros is 

desired under all circumstances, then the transmission of a known initialization 

sequence of length Li + l should be tolerated so that (4.1) can be solved for the 

common zeros hc[n\. Note that unlike a training sequence which is transmitted 

periodically, the initialization is performed only once.
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Chapter 5

SIMULATION

In this chapter an illustrative simulation is presented to highlight the order 

of the operations used in BCI problem. Consider the 4-channel FIR system 

{M = M' = 4) with the pole-zero plots shown in Fig. 5.1. Each pair of 

channels in this figure share exactly 3 common finite zeros, where the two of 

these zeros are common to all of the 4 channels (i.e, Hfiz) = 1 + The

delay associated with a particular channel is given as the number of the zeros of 

that channel at infinity^, which can found in Fig. 5.1 as the difference between 

the number of poles at the origin and the number of finite zeros. For example 

the delay associated with the first channel is 1 0  — 6 =  4 samples. Similarly the 

delays associated with the other channels are 3, 2 and 3 samples respectively.

The FIR system with these pole-zero plots can be decomposed into a 

binary-tree structure as shown in Fig. 3.4. It is known that such a decompo

sition is always ambiguous upto constant scale factors. For example consider

^Except for this discussion, we will not discriminate between the finite zeros and the zeros 
at infinity (delays).
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multiplying all the filters in the dashed boxes 1 and 2 by a non-zero 7  G C and 

multiplying all the filters in the dashed box 3 by I / 7 . To remove this ambiguity 

we will scale the filters in Fig. 3.4 such that the first non-zero samples of the 

filters except for those at the leaves (dashed boxes 1 and 2 ) are always 1 .

The first box in Fig. 3.4 is the overall delay D — 2 oi the communication 

system which is defined as the minimum of the delays of each sub-channel. The 

filter Hc{z) = 1 + z~'  ̂ in this figure represents the common finite zeros to the 4 

channels, Hij{z), i j ,  denotes the zeros common to the and channels 

apart from those in z~^Hc{z) and finally Qijfizfi i ^  j ,  denotes the zeros of 

the channel which are not also in the channel. The importance of this 

representation is that the filters in a dashed box do not share any common zeros. 

For example the zeros common to and 2"*̂  channels are in z~^Hc{z)H\2{z) 

therefore Q\i2{z) and <5 2 / 1(2 ) cannot have any zeros in common.

In this simulation, the independent identically distributed input sequence 

a[n] is drawn from a BPSK symbol constellation, hence the causal input se

quence consists of - |- / - l ’s for n > 0 .

5.1 The Estimation of the Delay

The outputs ?/i[n],. . . ,  i/4[n] of the channels are shown in Fig. 5.2. We use 

this figure to identify the delays associated with the channels. For example we 

observe that yi[n] = 0 for n < 4 and yi[4] ^  0. Thus the delay associated with 

the first channel is 4 samples. With similar reasoning the delays associated with 

other channels are found as 3, 2 and 3 samples z'espectively. Finally we compute 

the common delay of the communication system a,s D — min{4,3,2,3} = 2.
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5.2 The Binary-tree Algorithm

The next step is the identification of the filters in the boxes labeled as 1, 2 and 

3 in Fig. 3.4 (the binary-tree of section 3.5). We will first estimate the leaves 

of the tree (boxes 2, 3) and finally the root (box 1). The following comments 

refer to the computation of the FIR filters Q\i2{z) and (^2/i(^) in box 1 and 

their common input Ui2[n\.

1) The data in Fig. 5.2 is used. Therefore N  = 20.

2) The filter orders are overestimated as L2 = 8.

3) The matrix f?j,y[Ar] in 13.9) is computed with M = 2 and Z2 = 8 using 

t/i[n] and j/2[n], 0 < n < iV. The singular values of ilyy[iV] are plotted 

in Fig. 5.3. Clearly 7/, the number of zero singular values, is 5.

4) The maximum of the orders of Q\f2{z) and Q2i\{z) is computed as L2 = 

¿ 2  — 77 + 1 = 4.

5) Ryy[N]  is recomputed using the true filter order L2 = 4. Any of the 

constrained minimization algorithms of Section 3.3 can be used to com

pute the estimates Qi/2{z) and Q2/i{z) from /2yy[iV]. In this example, 

Energy Constraint 1 is used to compute Qi/2{z) and (^2/1 (^) as:

Qi/2{z) = (-0.37403 -  0.13025i)gi/2(^) 

Q2/i{z) = (-0.37403 -  0.13025i)g2/i(-^) ·

(5.1)

(5.2)

6) The FIR deconvolution filters Eif2{z) and E2/i{z) are computed using 

(3.62). The output of the deconvolution filters is computed as (see
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Fig. 3.3)

ui2[n] = (-2.3844 + 0.83038;)ui2[n] , 0 < n < . (5.3)

Adapting the same steps to the 2 "̂* box, we identified the filters in the 2"*̂ 

box and their common input U34[ra] for 0 < n < A/̂  as

Q z I a { z ) =  ( -0 .2 4 9 2 7 ) (5 3 /4 (^ ) (5 .4 )

Q a! z { z ) =  ( - 0 .2 4 9 2 7 ) g 4 /3 ( ^ ) (5 .5 )

«34 [n] =  ( - 4 .0 1 1 7 ) w3 4 M  · (5 .6 )

At this point we know the output of the filters in the 3’’'* box, Ui2[n] and 

U34[n], for 0 < n < Â  which is sufficient to estimate Hi2{z) and H2,a{z). The 

estimates of these filters and their common input 0 < n < Â are found

as

Hu{z) = (0.064595 + 0.37838i)^i2 (2 ) 

= (-0.10080 + 0.60151i)/f34(-^) 

Xc[n] = (1.0871 +6.4872j)a:,[n] .

(5.7)

(5.8)

(5.9)

5.3 The Pruning Algorithm

The last problem is the identification of Hc{z) in Fig. 3.4 from its estimated 

output Xc[n]. This is accomplished using the pruning algorithm of Chapter 

4. In this example we overestimate the number of common zeros as L\ = 4. 

We note that for 0 < n < 4 there are only 32 possible input sequences 

half of which differ only in sign. Therefore there are effectively only 16 non
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trivially distinct input sequences. Since Xc\n]  ̂ the output of the filter Hc{z), 

has been already identified, we use (4.2) to compute the 16 channel estimates 

corresponding to each of the distinct input sequence Then for each

channel estimate we compute the residual error n > Z )  + Ti + l = 7,

defined in Chapter 4. The running energy of the residual errors

¿54") = ' (5.10)
j=0

for all the channel estimates are plotted in Fig. 5.4. In this figure we see 

that the energy of only one of the error sequences remains around at all

samples. Hence this channel is identified as the estimate of the common zeros,

Hc(z) = (1.0871 + 6.4872;)/i42) . (5.11)

The use of Hc{z) in Fig. 4.1 provides the estimate of the input sequence

a[n] — a[n] . (5.12)
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Figure 5.1: The pole-zero plots of the channels: (a) Channel 1, (b) Channel 2, 
(c) Channel 3, (d) Channel 4.
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Figure 5.2: The magnitudes of the outputs of the channels: (a) Channel 1, (b) 
Channel 2, (c) Channel 3, (d) Channel 4.
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Figure 5.3: The singular values.

Figure 5.4: The running energy of the error sequences associated with different 
channel estimates (identification of the common zeros).
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Chapter 6

CONCLUSIONS

The blind channel identification problem is investigated using the multi

channel filter model of the communication system. The main contribution 

of this thesis is to give the exact solution to this problem under the noise-free 

case virtually with the least set of constraints on the channel. Furthermore this 

is achieved based on a very short observation of the channel output sequence. 

This is an important result because the current algorithms in the literature 

are in general either fast converging to the solution but applicable to only a 

certain restricted class of channels (SOCS-based algorithms) or generally ap

plicable but computationally intensive and large amount of data demanding 

(HOS-based algorithms).

In this thesis the problem is divided into two sub-problems which are in

dependently formulated and solved: The identification of the uncommon zeros 

(i.e., hi[n],. . . ,  hM[n]) followed by the identification of the common zeros (i.e., 

hc[n]) in the multi-channel filter model. The first sub-problem is formulated
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in Chapter 3. In that chapter a cost function in terms of the sub-channels 

h\[n],. . .  ,hM[n] is derived and its minimizers are fully characterized with a 

powerful theorem. An important aspect of this theorem is that it also specifies 

the minimum number of samples required for the exact identification of the 

sub-channels . . . ,  upto a scalar multiplicative constant. Based on

this theorem several closed-form solutions are provided to estimate these sub

channels and the equivalence of these estimates under the noise-free case is 

proven. The investigation of the behavior of these closed-form solutions under 

the more realistic noisy channels is a future research topic. Finally a novel 

binary-tree algorithm is provided to estimate these channels in a computation

ally efficient way. The utilization of this structure in noisy channels is also a 

future research topic.

The solution to the second sub-problem, i.e., the identification of the filter 

hc[n] corresponding to the common zeros, is given in Chapter 4 based on a novel 

pruning algorithm. This algorithm first identifies all possible estimates of hc[n] 

based on first few samples of the output. This is achieved using the fact that the 

input symbols are not arbitrary but drawn from a known symbol constellation. 

The basic step of the algorithm is to eliminate the channel estimates which 

are inconsistent with the observation of the current output sample. If the BCI 

problem is solvable then the pruning algorithm always converges to the true 

solution in a finite number of steps. It is shown with simulation that this 

algorithm is practical for moderate orders of hc[n] and in practice it converges 

to the true solution very fast.
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APPENDIX A

Multi-channel Filter Model

The fact that the channel model in Fig. 2.1 can be represented as in Fig. 2.2 

is widely used in the current blind channel identification literature. Here we 

provide a proof of this result.

The filtered and noise corrupted received signal y{t) is given as
OO

2/(0 = Y ,  a[m\h{t — m T ) v { t )  , (A.l)
m=0

where h{t) is the baseband model of the channel defined in Chapter 2 and u(i) 

is the additive channel noise. The output of the sampler in Fig. 2.1 is the 

samples of y{t) taken at an M' times faster rate then the baud rate. It is given 

as
r p  ^  r r \  r j l

^  (A.2)
rp rp rp

771=0M "  ^   ̂ ‘  ̂ M' ' - M'771=0

Substituting k — nM' + (t — 1) into (A.3) it turns out that
rp OO rp rp

y{nT + { i - l ) — ) = Y a [ m ] h { { n - m ) T + { i - l ) — ) + v{nr + { i - l } — )
771=0

fori = l , . . . , M '  (A.3)
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If we use the following definitions

yi[n]
A

yinT  + ( * - 1 ) ^ 7 ) (A.4)

hi[n]
A K n T  + { i - l ) ^ ) (A.5)

Vi[n] A
v{nT + ( * - 1 ) ] ^ )  > (A.6)

then (A.3) simplifies to

yi[n] -  a[n\ * hi[n] + Vi[n] , for I = 1, . . . ,  M ' . (A.7)

The Fig. 2.2 directly follows from (A.7) where ^¿[u] is decomposed as

hi[n] =  6[n — D]* hc[n] * hi[n] . (A.8)
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APPENDIX B

Proof of Lemma 1

Let r[n\ be the filter defined as

r[n] = gi[n] * hj[n] -  gj[n] * hi[n] (B . l )

Since r[n] is constructed from causal FIR filters, it is itself a causal FIR filter 

with its support constrained into the interval 0 < n < Lr'·

r\n] = 0 , for n < 0 for n > Lr . (B.2)

We are given that e[n] = r[n] * = 0 for 0 < n < L> + Lr < A. We also

deduce from the presence of delay D in Fig. 2.2 that Xc[n] = 0 for n < D and 

Xc[D] = a[0]/ic[0] 7  ̂ 0. These require that

e[D] = r[0]a;c[-Ĉ ] = 0 r[0] -- 0 . (B.3)

Using the relation

1 ^  ̂
r [ n - D]  = -----^  V  r[n-k]xc[k]

Xc[L>\ ^k=D-\-l

(B.4)
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for n = Z) +  1, . . . ,  Z) + ¿r with the fact that r[0] =  0 it follows that r[n] = 0 

for 0 < n < Lr- Since this interval is the support of r[n] we conclude that 

r[n] = 0 for all n. □
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APPENDIX C

Proof of Lemma 2

To start with the proof of the lemma, let Zi be a set of touplets {(zik,7nik)} 

where Zik is the A;*'*’ zero of the Hi{z) with multiplicity > 1. Our conclusion 

will be based on the following claims which show that all the zeros of Hi(z) 

should be a zero of Gi{z).

Claim  1. For any Zik, there exists at least one jk such that Hiji^{z) does not 

accept Zik o,s its root.

Proof. Assume that for a particular Z(k, we do not have any Hij{z) which does 

not accept Zik as its root. Hence, Z(k is a common zero for all Hij{z), 1 < j  < M. 

Therefore, it is a common zero between Hi[z) and Hj{z) for 1 < j  < M.  This 

contradicts with the definition of Hf zys ,  since they are defined as polynomials 

which share no common zeros (Note that all the common zeros of the sub 

channels are represented with Hc{z) in Fig. 2.2.). □

By using this result, we can state and prove the following claim:
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Claim  2. Let Zik he the zero of Hi{z) with multiplicity rriik, then zik is a 

zero of Gi{z) with multiplicity larger than or equal to mik.

Proof. In Claim 1 we have proved that for any Zik, there exists a Hij^(z) such 

that Hiji^(z) does not accept Zik as its root. Hence, invoking (3.23) with i and 

jk we get:

Q i/M lG ii^ )  ■ (C.l)

Since Hi(z) = Hiji^(z)Qi/ji^{z), and Zik is not a root of Hij^{z), Zik is a root 

of Qiiii^iz) with multiplicity mik- Since Qijjjyz) divides Gi{z)., Zik should be a 

root of Gi{z) with multiplicity greater than or equal to mik. CD

Proof of Lemma 2. Claim 2 implies that all the roots of Hf z )  are also roots 

of Gi{z). Thus :

Hi{z)\Gi{z) (C.2)

This completes the proof of Lemma 2. □
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APPENDIX D

Proof of Lemma 3

If Fi{z)  ̂ Fj{z) for a particular i and j  pair, by using (3.19) we get:

Fi{z)Hi(z)Hj(z) = Fj{z)Hj{z)H,{z) (D.l)

which implies the equality of Fi(z) and Fj{z) at all z except at a discrete set 

of values where Hi{z)Hj(z) = 0. Since Fi(z) and Fj{z) are both analytic 

functions of z,

Fi{z) = Fj{z) for all 2: , (D-2)

completing the proof of the lemma. □
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APPENDIX E

Proof of Lemma 4

To prove the Lemma 4 it is convenient to express the convolution gi[n] — 

f[n] * hi[n\ using the matrix notation:

Qi = F  h i  , for 1 < ¿ < M , (E.l)

where the filter vectors g i , hi and the ( ¿ 2  + 1 )X(T2 + 1) dimensional convo

lution matrix F  are defined as
T

9i = '

hi =

^ m

F  = f [ L c

^¿[1] ·· ■ 9 i [ L 2] (E .2 )

T
(E .3 )

/ [ 0]

/ [ 1]

/ [ 0] (E .4 )

f [ L c ] / [ 1]

f [ L c ]
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We can write (E.l) as

9 \ F  A

9 2 =
B  F  A

9 M B  F  A

h ,

0

h 2 

0

0

hn4

0

(E.5)

or

9 = T  Vo , (E.6)

where ( ¿ 2  + l)X^c dimensional A  and B  matrices can be arbitrarily chosen, 

because they are multiplied with 0 ’s of Vo ■ If we choose A  and B  as the 

below toeplitz matrices

A  =

0 0 0 '  f [ L c ] /1 4  - 1) /[1]

0 / 1 4 )

0 0 0 ■·. ñ i ^ c  - 1 ]

/[0] 0 0 B  = 0 0 f [ L c \

/ [ 1] /[0]
0

0 0 0

. f [ L c  -  1] / [ 1] /[0] . 0 0 0

then ^  becomes a toeplitz matrix with f[Lc — i + 1] on the 1 < i < Lc, 

lower sub-diagonal. Therefore ^  can be written as

Lc

(E.7)
A;=0
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where J  is defined in (3.27). Substituting this into (E.6), (3.25) immediately 

follows. □
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