
P l i l i§ Л й Й ' І І Ш Ш І І І i ?

й ^ KÎi P]Ş Й; А
■rf(¿ vïv .d? 4 ’·< - »*■

a ̂ ^
'_ A. я '̂"'ά \J t ùlÿ <*' M* ;^4 ;

Tí ? í ' í % ÿi 7 ; Λ ‘ ! ji,ú. vf* Î1 ,■· > '■> X·. 'ЛЧ■í*' Д:̂
«·>* « · <̂̂1* w >¿ MiJ W '̂4I(■, Чи»‘ ^

1л к (t ̂ xwl«' ái

¡••f· ií >·\<, .sí
•чУ «̂'•«.■rfUV· ·*.■.> i« MhJİf Щ

'■·:-.; .r» -·'.■■ i-Vv. '> ; . ; . 7̂ ..'‘·

■ .·'..'■ 7.,'̂ · - . ■ '.·*·;.■

S! ̂'"í· ' í V“ ■■?:t.« *, ‘,1V.; J

<,*'*

«. -777: í-V̂.···· '.. i. ·<■ .·ί<· .· ■' ■· ¿...;· ‘■•' .-■ т̂і>

 ̂ ·■*: : :; 'O.

PARALLELIZATION OF

HIERARCHICAL RADIOSITY ALGORITHMS
ON DISTRIBUTED MEMORY COMPUTERS

A THESIS

S U B M IT T E D T O T H E D E P A R T M E N T OF C O M P U T E R

E N G IN E E R IN G A N D IN F O R M A T IO N S C IE N C E

A N D T H E I N S T I T U T E O F E N G IN E E R IN G A N D S C IE N C E

O F B IL K E N T U N I V E R S IT Y

IN P A R T IA L F U L F IL L M E N T O F T H E R E Q U IR E M E N T S

F O R T H E D E G R E E O F

M A S T E R O F S C IE N C E

By
Ahmet Reşat Şireli

January, 1999

Ίιί)3?’

-Μ y «I /ή- > У.

'■ 5 S f

,: ' Γ
Ö

11

I certify that I have read this thesis and that in my opin
ion it is fully adequate, in scope and in quality, as a thesis
for the degree of Master of Science.

S ^ J rh rL ·
Asst. Prof. Attil§ Giirsoy (supervisor)

I certify that I hcive read this thesis and that in my opin
ion it is fully adequate, in scope and in quality, as a thesis
for the degree of Master of Science.

Assoc, ^ ’of. Cevdet Ayktinat

I certify that I have read this thesis and that in my opin
ion it is fully adequate, in scope and in quality, as a thesis
for the degree of Master of Science.

gur Güdükbay

Approved for the Institute of Engineering and Science:

Prof. Mehmet ti^a.y
Director of Institute of Engineering and Science

ABSTRACT

PARALLELIZATION OF
HIERARCHICAL RADIOSITY ALGORITHMS
ON DISTRIBUTED MEMORY COMPUTERS

Ahmet Reşat Şireli
M.S. in Computer Engineering and Information Science

Supervisor: Asst. Prof. Attila Giirsoy
.lanuary 1999

Computing distribution of light in a given environment is an important prob
lem in computer-aided photo-realistic image generation. Radiosity method has
been proposed to address this problem which requires an enormous amount of
calculation and memory. Hierarchical radiosity method is a recent cipproach
that reduces these computational requirements by careful error analysis. It
has its idea from the solution methods of N-body problems. Although hier
archical approach has greatly reduced the amount of calculations, satisfactory
results still cannot be obtained in terms of processing time. Exploiting paral
lelism is a practical way to I'educe the computation time further. In this thesis,
we have designed and implemented a parallel hierarchical radiosity algorithm
for distributed memory computers. Due to its highly irregular computational
structure, hierarchical radiosity algorithms do not yield easily to paralleliza
tion on distributed memory machines. Dynamically changing computational
patterns of the algorithm cause severe load imbcilances. Therefore, we have
developed a dynamic load balancing technique for the parallel hierarchical ra
diosity calculation.

Keywords: Realistic Image Genercition, Parallel Hiei'circhical Radiosity, Dy

namic Load Balancing.

m

ÖZET

DAĞITIK BELLEKLİ BİLGİSAYARLARDA
SIRADÜZENSEL IŞIMA ALGORİTMALARININ

PARALELLEŞTİRİLMESİ

Ahmet Reşat Şireli
Bilgisayar ve Enformatik Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Yard. Doç. Dr. Attila Gürsoy
Ocak 1999

Işığın verilen ortam içerisinde dağılımını hesaplamak bilgisayar destekli gerçeğe
uygun görüntü üretiminde önemli bir problemdir. Işıma metodu, bu aşırı
bir miktarda hesap ve hafıza gerektiren problemin çözümü için önerilmiştir.
Sıradüzensel ışıma metodu, bu işlemsel gereksinimleri dikkatli hata analizi
sonucu azciltan nihai yaklaşımlardan biridir. Fikrini N-gövde probleminin çözüm
metodlarmdan almıştır. Sıradüzensel yaklaşım izlemlerin miktarını büyük ölçüde
azaltmış olmasına rağmen, zaman bakımından tatminkar sonuçlar hala elde
edilememektedir. Paralellikten faydalanmak işlemsel sürenin daha da azaltılması
için pratik bir metoddur. Bu tezde, dağıtık bellekli bilgisayarlar için bir paralel
sıradüzensel ışıma algoritması tasarladık ve uyguladık. Aşırı düzensiz işlemsel
yapısı yüzünden sıradüzensel ışıma algoritmaları dağıtık bellekli bilgisayarlar
üzerinde paralelleştirilmesi kolay olmamaktadır. Algoritmanın dinamik olarak
değişen işlemsel örüntüleri birçok yük dengesizliklerine sebej) olmaktadır. Bu
yüzden paralel sıradüzensel ışıma algoritmamız için bir dinamik yük dengeleme
tekniği de geliştirdik.

Anahtar sözcükler: Gerçeğe Uygun Görüntü Üretimi, Paralel Sıradüzensel

Işıma, Dinamik Yük Dengeleme.

IV

ACKNOW LEDGMENTS

First and foremost, I would like to express my deejDest thanks and gratitude to
my advisor Asst. Prof. Attila Giirsoy for his patient supervision of this thesis.

I am grateful to Assoc. Prof. Cevdet Aykanat and Asst. Prof. Uğur
Güdükbay for reading the thesis and for their instructive comments. I would
like to acknowledge the financial support of TÜBİTAK under the grant EEEAG-
247.

Special thanks go also to Asst. Prof. Uğur Güdükbay for providing the
substance of this research work and to Assoc. Prof. Cevdet Aykanat for
permitting us to use the machine Parsytec CC (through ITDC 204-82166 and
TÜBİTAK EEEAG-160).

I would also like to thank my family for their encouragement; my sister
Filiz, my friends Önder, Seher and Yücel for their moral support; and finally
all other friends who contributed this study.

To my family, to infinity and beyond

VI

Contents

1 Introduction 1

2 Asynchronous Message Handling 4

2.1 Asynchronous Message Handling............... 4

2.2 Converse and Its Machine Interface.. 6

2.3 The Underlying System, Parsytec C C ... 7

2.4 Implementation... 8

2.4.1 A-.sender 1-receiver Version... 10

2.4.2 A-sender A-receiver V e rs io n .. 12

2.5 Performance Evaluation 12

2.5.1 Communication via R in g ... 13

2.5.2 K-to-all Broadcast Com m unication................................... 13

2.6 Conclusion... 14

3 Hierarchical Radiosity 16

3.1 Radiosity 16

3.1.1 Form Factor C alculation... 19

vii

3.1.2 Visibility Calculation... 21

3.1.3 The Ambient T e r m .. 23

3.2 Hierarchical Radiosity 24

3.2.1 Hierarchical Radiosity vs. O th e rs 25

3.3 Design of An Object-Oriented Hierarchical Radiosity Program . 27

3.3.1 Algorithm of Hierarchical R adiosity.................................... 29

3.4 Further Improvements on Radiosity Process 36

4 Parallelization of Hierarchical Radiosity 37

4.1 Introduction.. 37

4.2 Characteristics of Radiosity D a t a ... 37

4.3 Previous Work 38

4.4 The Underlying System... 40

4.5 Design .. 41

4.5.1 Dynamic Load Balancing and Patch Migration 47

4.5.2 Subdivision Depth L im it ... 48

4.5.3 Visibility Calculation... 48

4.5.4 Message-Driven E xecution ... 49

4.5.5 A lgorithm .. 49

4.5.6 Object Oriented Design 50

4.5.7 Flow of the A lgorith m .. 54

4.6 Performance Considerations... 60

CONTENTS viii

4.6.1 Load B alancing... 61

4.6.2 Load Estimation 62

4.6.3 Initial D istribution .. 64

4.6.4 Patch Migration... 66

5 Performance Evaluation 75

5.1 The Input S cen es.. 75

5.2 Impact of Load Estimation Methods 77

5.3 Impact of Initial Patch Distribution... 77

5.4 Impact of Dynamic Load Balancing.................................... 81

5.5 Impact of Patch Subdivision Depth Lim it....................................... 81

6 Conclusions and Future Work 89

CONTENTS ix

List of Figures

2.1 Port environment.. 8

2.2 Communication model of Al-sender 1-receiver version.................... 10

.3.1 Surface types.. 18

3.2 Form factor geometry. 20

3.3 Sample hierarchical interactions... 2-5

3.4 Sample interactions of progressive radiosity. 26

3..5 Rays fired from a quadrilateral to a triangle to detect occlusion. 32

3.6 Subdivision of a quadrilateral and a triangle.................................... 3.5

4.1 Evaluating an interaction on a processor which does not own
any of the interacting patches... 42

4.2 Evaluating an interaction on both of the processors which own
the interacting patches... 43

4.3 Evaluating an interaction on one of the processor which owns
any of the interacting patches... 43

4.4 Interactions across processors.. 44

4.5 Interactions using proxy patches. 45

4.6 Interactions using proxy manager.. 47

4.7 Base and inherited classes for patches and proxies......................... 50

4.8 Parts of a global id. consisted of 4 bytes.. 51

4.9 Indexing strategy of all of the existing patches.................................. 52

4.10 Work flow in an iteration (without migration)................................ 55

4.11 Patch migration. 66

4.12 Subpatch migration. 67

4.13 Moving interactions of a migrated patch.. 69

4.14 Subpatch migration problem. 73

5.1 Scene 1, wireframe picture.. 85

5.2 Scene 2, wireframe picture.. 86

5.3 Scene 3, wireframe picture... 86

5.4 Scene 4, wireframe picture... 87

5.5 Scene 1, shaded image.. 87

5.6 Scene 4, shaded image.. 88

LIST OF FIGURES xi

List of Tables

2.1 Timings for ring program (in msec).. 14

2.2 Timings for k-to-all broadcast (for k==n, in m.sec).......................... 15

4.1 Sample execution results for one of the processors. 62

5.1 Scenes used in performance studies (results are for one processor). 77

5.2 Comparison of load estimation methods (input order patch di,s-
tributing method) (p; according to patch number, i: according
to interaction number, f: according to the presented formula). 78

5.3 Comparison of load estimation methods (octree-based patch dis
tribution) (p: according to patch number, i: according to inter
action number, f: according to the presented formula). 78

5.4 Timings for sample runs of different patch distribution methods. 79

5.5 Communication volumes for sample runs for different patch se
lection methods.. 80

5.6 Statistics for runs including migration with random patch dis-
tribution(*: no migration required, **: migration failed within
given limits). 82

5.7 Statistics for runs including migration with input order patch
distribution (*: no migration required.)... 83

xn

LIST OF TABLES xni

5.8 Statistics for runs including migration with octree-based patch
distribution (*: no migration required)... 84

5.9 Statistics for sample runs with different subdivision depth limits
(for two processors). 85

Chapter 1

Introduction

Photo-realistic image generation is a difficult and time-consuming problem of
computer graphics. Difficulty arises because of the necessity of sirtiulating the
real-world lighting events with considering all the possible physical effects. For
mulation may not be enough to express events completely. Time-consuming
property is due to its enormous amount of calculation requirement which is
reversely proportional with the quality of image. While wishing to develop a
real-time interactive image generator, we still have to wait for minutes even
for simple scenes. Despite of all these negative factors, it still preserves its
attractiveness for the researchers. Combined with animation, image genera
tion is a very promising subject that has too many application cxreas such as
simulating, training, design and manufacturing, telecommunications, medicine,
information visualization. Although it may seem as a very difficult problem
today, technological improvements will never stop and one day we will be able
to use it in our daily life.

An important problem in achieving realistic image generation is computing
the distribution of light in an environment. Radiosity approach has been pro
posed to solve this problem [GTGB84] whose principles are based on a research
area of thermodynamics, heat transfer. Instead of heat transfer, we consider
energy transfer between surfaces, in radiosity method. The method requires
all of the surfaces in scene to exchange light energy according to some configu
ration factors. Calculation of these configuration factors is the most important

1

and time-consuming part of racliosity method.

Hierarchical radiosity is a recent approacli that reduces computational re-
cjuirements by careful error analysis. It has its idea from the solution methods
of N-body problems. N-body solution methods appro.xirnate the interactions
between well separated groups of objects by a single interaction. Consecpiently
many expensive calculations that have little effect on the accurcicy of the solu
tion can be avoided. Hierarchical radiosity applies this approach by eliminating
the interactions of surfaces that do not effect the accuracy of the overall solu
tion. Criterion of efficiency of an interaction is the radiant flux carried by it.
As stated in [CW9.3], hierarchical technicjues reduce the complexity of radiosity
computations from O(n^) to 0{n-\-k^), where k is the number of input surfaces,
and n is the total number of resultant elements in an environment (n k).

Although hierarchical approach has greatly reduced the amount of calcu
lations, satisfactory results still cannot be obtained in terms of time. As we
mentioned in the beginning, none of the methods can achieve image production
in a reasonable time with a reasonable accuracy yet. Parallel processing is one
of the most practical ways to reduce the computation time further. Due to its
highly irregular computational structure, hierarchical radiosity algorithms do
not yield easily to parallelization on distributed memory machines. In this the
sis, we investigate the feasibility of parallel processing for hierarchical radiosity.
This work consists of three main parts:

• design of a parallel algorithm and dynamic load balancing mechanisms for
radiosity,

• design and implementation of a parallel object-oriented program, and

• performance study and impact of various design decisions.

CHAPTER 1. INTRODUCTION 2

The parallel algorithm is based on the sequential hierarchical radiosity algo
rithm presented in [HSA91]. The algorithm we proposed can also be extended
to the recent improvements on this field, such as clustering, lazy linking etc.
The object-oriented implementation has been done using Charm-f-(- program
ming environment. CharmT+ is a parallel object-oriented language developed

at UIUC [KK93]. As part of this thesis work, we also ported Charm++ to
the Parsytec CC ̂ distributed memory machine to conduct the performance
studies.

The thesis is organized as follows. Section 2 presents a study on asyn
chronous message handling strategies. First, we make cin overview of asyn
chronous rnessage handling strategies, and then present a study about porting
Charm-t--|-/Converse to Parsytec multicomputer [ACSG98]. The objective of
this study is to investigate performance of the system that we are going to use
for the rest of the study.

Section 3 gives a description of the radiosity problem and the hierarchical
model. Concepts of the problem and solution methods are discussed briefly.
We also present a design of sequential version of the hierarchical radiosity
algorithm including some implementation issues. This study is performed in
order to separate the issues related with parallelization as much as possible.

Section 4 discusses parallelization of the hierarchical radiosity algorithm in
detail. After an overview of related work, we explain and discuss our design
and implementation issues. We also discuss performance issues such as load
balancing, at the end of the section.

In Section 5, this work is evaluated with performance results. Timings are
presented for sample scenes and impacts of some design decisions on perfor
mance are analyzed.

The thesis finishes by concluding the studies in the last section. Including
the critique of our implementation, future work is also provided. The goals
met are stated, those unmet are discussed.

CHAPTER 1. INTRODUCTION 3

 ̂Parsytec CC is a registered trademark of Parsytec, Inc.

Chapter 2

Asynchronous Message
Handling

In this chapter, we make an overview of asynchronous message handling strate
gies and present a study about porting Charm-f-j-, which is a parallel object-
oriented language, to Parsytec multicomputer. Porting Charm-|--f- to a new
machine requires reimplementation of some parts of its machine dependent
layer. This machine layer in Charm-t--)- belongs to a component called Con
verse (an interoperable framework for parallel programming). Therefore, we
have implemented machine dependent layer of Converse for the Parsytec com
puter.

The motivation behind this work is to use advantages of Charm-|--j- pro
gramming environment not only for the parallel implementation of hierarchical
radiosity, but also for other applications that might be developed later. The
details of this port and the advantages of Charm-b-f environment is discussed
in the following sections.

2.1 Asynchronous Message Handling

The major source of performance degradation in message passing parallel com
puters is the delays due to communication which is an inevitable requirement.

CHAPTER 2. ASYNCHRONOUS MESSAGE HANDLING

These delays are not only due to latencies in the communication network. A
significant portion of it is due to software overhead to handle sending and re
ceiving messages from user level to the hardware level. Due to its unavoidable
and unnegligible impact on performance, parallel system designers spend great
efforts to build systems which minimize rnesscige processing overhead, in ad
dition to hardware improvements. Asynchronous message handling is such a
study which aims to reduce this delay by handling messages efficiently at the
receiving side. This is achieved by overlapping communication with computa
tion and providing an efficient mechanism to handle the incoming message.

Asynchronous message handling is useful in irregular applications in which
sending and receiving of messages are performed in a non-deterministic order.
This is frequently the case in applications of parallel object-oriented systems.
Processes in such systems do not operate in a synchronized manner and there
fore cannot know when to expect incoming messages. It is possible to receive
messages synchronously by regularly polling the network, however achieving
good performance with a polling-based approach is not easy [LBB97]. Another
way is using interrupts to deliver the incoming message. However, as discussed
in [LBB97], polling network is much cheaper than using interrupts.

In contrast to message passing, in asynchronous message handling model
message reception results in invocation of a function, which is called mes
sage handler. Expressiveness of the message handler is an important factor in
achieving good performance. There are several asynchronous message handling
systems developed (e.g. [ECGS92], [PLC95]) and they vary in the way the han
dlers are executed, the expressiveness of the model etc. Less expressive models
restrict functions of a message handler in order to be more efficient, whereas
more expressive models do not put restrictions on message handlers in order
to be more expressive. The less the expressiveness, the more the efficiency is.

Active messages model [ECGS92] is an example of restrictive model. It
restricts blocking of message handlers. Also, message handlers cannot allo
cate memory or initiate communications to other processors. Because message
handlers do not have their own execution context. Thei'efore, there is no a
different stack, no thread definition and no thread switching. Although these

features make the model very effective, they significantly cornpliccite program
ming. Other mechanisms include single-tlireaded upcall and pop-up threads,
which disallow all blocking by letting message handlers use locks to synchronize
their shared-data accesses.

Asynchronous message handling deals with only reducing the software over
head of sending and receiving a messcige. However, the physical reality dictates
that accessing a remote information will always be slower than accessing the lo
cal one. Hence, in addition to reducing the delays, overlapping these delays due
to remote data access with useful computation is also important for improving
performance of parallel systems. Message driven execution is a promising model
in this sense [KG95]. In message driven execution, there are many objects per
processor. When a message arrives for an object, the object is eventually ac
tivated with the message. Although message driven execution sounds similar
to asynchronous message handling, it requires a scheduler. In asynchronous
message handling the invocation of handlers is not under the control of user
and they lack user level scheduler. Converse [KB.JK96] is one of the early im
plementations of a parallel programming system that combines scheduler with
asynchronous message handling. A brief information about Converse is given
in the next section.

In the rest of the chapter, we will discuss porting Converse to Parsytec CC
parallel computer.

CHAPTER 2. ASYNCHRONOUS MESSAGE HANDLING 6

2.2 Converse and Its Machine Interface

Generally speaking, Converse is a library of subroutines for parallel processing.
In contrast to traditional receive based message passing. Converse [KBJK96]
is a message-driven parallel programming language which combines user level
scheduler with asynchronous message handling.

Converse is a portable language which has been implemented on various
machines such as Origin 2000, IBM SP3, CM5, Cray T3E etc. Converse Ma
chine Interface (CMI) contiiins functions which must be implemented to port

Converse to a parallel computer. The CMI module is responsible for process
creation and coordination cit the communication and some other utilities such
as timers required for portability. TIk; functions contained in CMI ciin be
grouped under the following headers:

• Message sending functions: CmiSyncSendO, CmiAsyncSendO and
their variants.

• Message broadcasting functions: CmiSyncBroadcast (),
CmiAsyncBroadcast 0 and their variants.

• Initialization/termination functions: Converselnit (), ConverseExit ()

• Neighbor determination functions: CmiMyModeO, CmiMumNodesO,
CmiMyRankO, CmiRankOf () and a few more.

• Memory allocation/free functions: CmiAllocO, CmiFreeO, CmiSizeO

• Handler related functions: CmiSetHandlerO, CmiGetHandlerO,
CmiGetHandlerFunctionO

In this work, we consider minimal interface of the message sending functions.
Complete information about the CMI functions is available in [CON96].

CHAPTER 2. ASYNCHRONOUS MESSAGE HANDLING 7

2.3 The Underlying System, Parsytec CC

The Parsytec CC system is a parallel computer manufactured by Parsytec
GbmH in Aachen, Germany. It is based on distributed memory MIMD archi
tecture. All nodes of Parsytec CC system run the AIX operating system with
EPX, Embedded Parix on top. EPX provides set of functions to build and to
use a communication network and to define suitable routines managing data
operations.

There are three types of communication available in EPX. These are namely
synchronous virtual link bound communication, synchronous random commu
nication cuid asynchronous link bound communication. PVM is also available
in the system.

CHAPTER 2. ASYNCHRONOUS MESSAGE HANDLING

Figure 2.1: Port environment.

2.4 Implementation

Porting Converse to Parsytec was a study of bridging the gap between CMI
and EPX (see Figure 2.1). We implemented the CMI machine interface on top
of EPX, which is the native message passing library of Parsytec CC machine.
However, the functionality of EPX message passing primitives is not sufficient
to express all the CMI primitives directly. One of the problems is that syn
chronous message passing functions of EPX blocks the caller until the tail of
message enters the network. In Converse, however, the control must return to
the caller just after the send function call. Asynchronous primitives of EPX
are not compatible with CMI asynchronous functions either. The problem is
that in EPX a sender processor cannot detect whether a particular message is
reached the destination or not, during cisynchronous communication. Rather,
it can only check if there exists any message on the link that the message is
sent through. Another problem is about the size of messages that are to be
transmitted. EPX receive primitives require size of messages in advance. But
EPX does not support functions to evaluate the size of the incoming message,
rather it is maintained by the programmer. On the other hand Converse does
not know which message is going to be received next. Therefore we developed
an efficient mechanism to receive arbitrary size messages.

To overcome problems related with asynchronous message sending and re
ceiving, we have designed-a layer containing threads and message queues. That
is on each processor, the main thread (the process) executes the scheduler of

Converse. The messages are sent and received by separate threads which are
responsible for communication, within the process. These threads perform
message passing by calling EPX functions. So there are sender and recei\er
threads. A receiver thread checks the incoming transmission links with which
it’s associated, and as it detects a message on any of those links, it receives the
message using RecvLinkO primitive and appends it into the receive queue of
its owner processor. When a messcige is detected in receive queue, it is picked
up rapidly by the scheduler using CmiGetNonLocalO function and associated
hcindler function is invoked with necessary parameter that is with the message
itself. Sender threads are responsible for sending messages which are picked
up from send queues, to related processors. Respectively when a message is
detected in any send queue, it is transmitted into the network using EPX
SendLinkO primitive.

We had some alternatives for the number of sender and receiver threads.
These were:

• 1-sender 1-receiver

• A-sender 1-receiver

• 1-sender A-receiver

• A-sender A-receiver

CHAPTER 2. ASYNCHRONOUS MESSAGE HANDLING 9

where A is number of nodes - 1 . We found it better to use A send queues and
A sender threads, which each thread associated with a separate message queue
and a processor, in order to avoid contention on queues on concurrent send
requests to different target processors. For the receiving threads, however, we
needed to maintain a single queue for incoming messages to keep the First-
In-First-Out (FIFO) order. Using one receive thread results better than using
A number of receive threads, since in the latter case the threads will waste
CPU time sharing the single receive queue. The one-and-only receive thread
uses the SelectListO function of EPX in order to wait messages from all
transmission links. In order to make comparison, we also implemented the A
receiver version. The versions are discussed in the next sections.

CHAPTER 2. ASYNCHRONOUS MESSACE HANDLINC 10

Figure 2.2: Communication model of A'^sender 1-
receiver version.

For message size problem, we developed an efficient mechanism to receive
arbitrary size messages by defining a standard message size SIZE. The mech
anism works as follows: The messages that are less than SIZE bytes are sent
directly without an extra work. Longer messages are sliced into 2 -parts. Size
information is appended to the last 10 bytes of the first part and totally SIZE-(-l
bytes are sent in the first communication. The rest of the message is sent in
the second communication as a whole. When the receiver receives a message
with size of 1 to SIZE bytes, it understands that the whole message has been
received. If the message is SIZE+1 bytes, it reads the size information from
the last of 10 bytes of the message, allocates that much buffer, copies the first
part of the message to this buffer and receives the rest of the message to be
placed next to the first part in the buffer.

2.4.1 iV-sender 1-receiver Version

The first step to implement an EPX program is to select an appropriate topol
ogy. Converse is a system which requires direct communication between any
two nodes. EPX’s virtual topology library supports clique topology which satis
fies this requirement. However, we observed that creating completely connected
topology explicitly with CreateLinkO function, gives better performance in
terms of communication speed. And also the function S e le c tL is tO we used
requires links to be created explicitly.

CFIAPTER 2. ASYNCHRONOUS MESSAGE HANDLING

The communication model is seen on F'iguro 2.2. The model is valid ior
every pair of nodes. Each node hcis N sender tlireads and N send queues each
associated with a particular processor. The receive thread and the receive
queue is only one in each node.

In order to prevent the sender threads to be active and using CPU while
there is no message to be sent, we used semaphore mechanism. The idle threads
wait in a lock to acquire a semaphore which will be released when there is a
message to be sent. Also, exclusive usage of message queues are provided by
semaphores.

The function we used to decrease the number of I’eceiver threads is the
SelectListO call, which provides receiving message from any node. It returns
the identifier of the node which tries to send a message to that node. A receiver
thread waits for new messages to be received fi’om any processor by calling this
function. As soon as the arrival of a message, the thread appends the message
to the tail of message queue.

A sender thread waits for the messages to be sent in a blocked position.
It tries to acquire a semaphore which will be released when a new message
is appended to its message queue. When it acquires the semaphore, it takes
the appended message from the queue and send it. The sender threads are
used only for asynchronous send requests. To speed up the communication,
synchronous send requests are performed by directly calling SendLinkO func
tion of EPX. These two different approaches may lead a change in the order
of messages. In order to preserve the order, the synchronous send requests are
performed only after providing that there are no messages to be sent waiting
in the queues.

Let’s see how a send request is performed, on the nodes presented in the
Figure 2.2. Node A wants to send a message to node B using asynchronous
communication. It appends the message to the message queue, sendQueueB
and releases semaphoreB to activate senderThreadB which waits as having been
blocked. The call returns immediately with the pointer of queue element where
the message is kept. By the help of this pointer, it can be checked whether the
communication is done or not. SenderThreadB picks up the message from its

CHAPTER 2. ASYNCHRONOUS MESSAGE HANDLING 12

queue immediately and invokes a send call to node JJ. Receiver Thread receives
the message rapidly and appends it to the recvQueue. As soon as the com
munication is completed, the message is retnoved from the message queue. At
the end, the scheduler of node B calls CmiGetMonLocal() , picks up a message
from the received message queue recvQueue and processes it.

Broadcast operation is also realized by threads. The message is appended
to all of the message queues of the sender threads one by one. For synchronous
broadcast operation, we wait for the end of all sending operations. However, for
asynchronous type, we return the control to the caller procedure immediately.
Sender threads pick up the message rapidly and try to send them to all other
nodes of the system. In asynchronous broadcast operation, we have a chance
to overlap computation and communication, since there is no a blocking type
operation.

2.4.2 iV^sender iV-receiver Version

Different from the 1-receiver version, there are receiver threads in each node.
This version is implemented to compare the overhead of using more receiver
threads with using SelectListO call. In this version no SelectListO is
called since there are already N receiver threads instead of that call. Since
all the receiver threads uses only one message queue, accesses to this queue is
restricted. Mutual exclusion is provided by semaphore mechanism.

2.5 Performance Evaluation

In order to measure and compare performances of the asynchronous message
handling (Converse) and the message passing libraries which are available on
Parsytec CC system, namely EPX [EPX95] and PVM [GBD+94], we conducted
a performance study. The study included a simple ring communication algo
rithm for measuring message latency as observed by the programmer, and the

k-to-all broadcast algorithm. Message-driven execution has advantages if mul
tiple messages arrive in an unpredictable order and if they can be processed

CHAPTER 2. ASYNCHRONOUS MESSAGE HANDLING i;}

not in a strict order. K-to-all broadccist wlierc! multiple messages arrive in an
unpredictable order demonstrates this advantage. The algorithms have been
implemented using EPX, PVM, and Converse systems as efficient as possible
for each case.

2.5.1 Communication via Ring

In the ring program, the processors are connected such that they form a ring
topology, and they pass messages from their predecessors to their successors.
When the processor that has sent the message first, receives the rnesscxge from
its predecessor, the ring computation finishes. The communication is regular in
the sense that there is only one message and each processor knows from where
to receive and to where to send the message. Table 2.1 shows the round-trip
time for messages of different length for Converse, PVM and EPX versions of
ring. The EPX version is slightly faster than PVM and Converse ones because
Converse and PVM runtime systems are built on EPX and the difference is
the software overhead introduced by Converse and PVM systems. However, as
the messages get larger. Converse results start becoming better than PVM and
get closer to EPX results. So, Converse incurs negligible overhead for having
the capability of asynchronous message handling. The next example, k-to-all
broadcast shows a significant performance improvement in case of handling
multiple messages.

2.5.2 K-to-all Broadcast Communication

In k-to-all broadcast, k processors simultaneously perform a one-to-all broad
cast of m-word messages. The broadcast operation is implemented by forming
a spanning tree covering all the processors where the root node is the initiator
of the broadcast. Table 2.2 shows the completion time of k-to-cxll broadcast. In
this case, there are multiple broadcast operations going on concurrently. There
fore, in the EPX and PVM version, these messages are handled in a fixed order
however in Converse version the messages trigger the appropriate operations
as they arrive. As shown in the figure, the Converse version is significantly

CHAPTER 2. ASYNCHRONOUS MESSAGE HANDLING 14

Table 2.1; Timings for ring program (in msec).
message

size
processor

#
A -̂sender

^receiver
A -̂sender

{-receiver
PVM EPX

64
bytes

2

16

1.73
3.55
7.21

14.66

1.73 1.68
3.56 3.39
7.25 6.61

15.08 13.39

0.81
1.18
2.41
4.88

64
Kbytes

16

9.84
19.64
39.19
79.02

9.84 11.13
19.70 20.78
39.42 40.64
79.50 81.22

7.13
13.69
27.53
54.66

512
Kbytes

16

54.9
109.3
217.7
437.1

55.0 69.5
109.7 136.3
219.2 262.4
438.1 530.7

52.3
102.9
206.9
409.6

faster than the corresponding message passing implementations.

Another point that can be observed easily is the difference in the timings
of the two Converse versions. The difference observed in 64 byte message is
due to the overhead of S e le c tL is tO command used in the 1-receiver version.
However for larger messages, this overhead decreases relatively and 1-receiver
version becomes the fastest.

2.6 Conclusion

In this chapter, we discussed asynchronous message handling approach and
described an efficient layer for porting Converse to Parsytec CC distributed
memory machine. Although, we ported Converse on top of Parsytec’s native
message passing layer, the performance results show that Converse performs
equally with native message passing on simple (synchronous communication)
algorithms and outperforms on algorithms that involve asynchronous commu
nication. Note that no computational task is included in the test programs
between communications, which can obviously increase the efficiency of Con
verse.

CHAPTER 2. ASYNCHRONOUS MESSAGE HANDLING 15

Table 2.2; Timings for k-to-all broadcast (for k=n, in msec).
message

size
processor

#
A -̂sender

A -̂receiver
A'̂ .sender

1-receiver
PVM EPX

64
bytes

2 1.5 1.5 1.5 0.8
4 4.8 5.5 4.7 3.1
8 11.1 18.9 15.0 11.8

16 24.7 48.5 .33.7 25.7
64

Kbytes
2 8.4 8.3 10.3 8.9
4 33.1 29.7 41.4 35.4
8 90.3 86.1 161.2 146.1

16 255.5 2.35.9 403.5 369.2
512

Kbytes
2 48 48 66 65
4 175 161 293 262
8 583 467 1079 1114

16 1726 1544 2771 2797

Implementing CMI using a high level message passing library prohibited us
to achieve better performance. If the Converse could be implemented on top
of hardware using machine primitives and assembler, it would surely perform
better.

Chapter 3

Hierarchical Radiosity

This section introduces the radiosity approach and hierarchical radiosity algo
rithm. We present the concept of the approach and discuss existing solutions
and algorithms. We also present a sample design for an implementation of a
hierarchical radiosity algorithm. While writing this section, we preferred not
to deal with details of the problem and implementation since plenty of them
can be found in the literature.

3.1 Radiosity

Radiosity is a method to produce realistic computer generated images via sim
ulating the distribution of light in an environment. It was introduced to the
field of computer graphics by Goral et al. [GTGB84].

The method is mainly based on the idea of heat transfer which is a research
area of thermal engineers. Instead of heat transfer, we consider energy transfer
between surfaces in the radiosity method. Each surface in a scene absorbs and
radiates energy. The energy, which was emitted by the light sources at the
beginning, is distributed throughout the scene by energy transfers of surfaces
and an equilibrium point is reached. Till reaching the equilibrium point, all
surfaces interact with each other and transfer energy. The radiosity method
formulates these interactions, builds an equation system simulating balancing

16

CHAPTER 3. HIERARCHICAL RADIOSITY 17

of the energy and finds resultant energies for each surlace.

Assuming all surfaces have a constant radiosity and reflectance over their
own surfcice, the radiosity equation is formulated as follows tor a. surface i
[GTGB84]:

Bi — Ei + Pi ^ Fij Bj
i=i

(1)

where Bi is the radiosity, Ei is the emissivity and pi is the reflectivity of surface
f, Fij is the form fcictor between surfaces i and j, and n is the number of
elements in the scene. This formulation tells us that radiosity of a surface is its
self emission plus the radiosity due to all other surfaces’ emissions. Since this
equation exists for all elements in the scene, they can be combined to obtain a
linear system of equations.

l - p x F u -p i F u

—P2F21 1 — P2F22

P n F P n F rn2

—P\Fin
—p2F2n

1 P nF nr

' Bx ' ■ Ex '

B2 E2

Br̂ _
. .

(2)

The values of pi and Ei terms are constant and known in advance. The
Fij values are calculated via some techniques explained in the next sections,
independent of this equation. The remaining Bi terms are the only unknowns
of this equation system.

This equation system may be solved in 0{N^) time with Gaussian elim
ination method. It is clear that this cannot be an acceptable solution even
for simple scenes. Fortunately, the system is diagonally dominant [CW93] and
iterative methods such as the Gauss-Seidel or the Jacobi method can be used
to solve the system faster. As a property of iterative methods, intermediate
solutions can be obtained in early stages of the solution process.

Another major approach to the physical modeling of illumination is ray
tracing which is based on the idea of tracing the light rays from eyes of the
observer through the scene. In ray tracing, for each pixel on the image plane.

CHAPTER 3. HIERARCHICAL RADIOSITY 18

light ray

\
light ray

ideal diffuse reflector
Figure 3.1: Surface type,s.

a ray is shot and traversed by reflections cind refractions among the objects
in the scene. It inherently provides point-sampled infornicition which rnfikes it
high quality but an expensive method.

All surfaces are assumed to be idecil diffuse reflectors (Lambertian surfaces)
in the radiosity method (see Figure 3.1). This restricts its usability, because
not all of the real world entities have this type of surfaces. On the other hand,
the ray tracing method works solely with mirror-like surfaces. Fortunately,
hybrid algorithms ([She94], [SP89]) have been developed which combine these
two methods to make it available to process scenes composed of both surface
types.

In contrast to view-dependent characteristic of ray-tracing, radiosity is a
view-independent technique. Intensities of each surface in the scene are cal
culated for once at first, and can be used further with any position of camera
or viewpoint. This is a very important feature of radiosity which makes pre
processing of radiosities possible. That is, radiosity computations can be done
off-line and the results can be used further to render the image using the graph
ics pipeline.

All parts of the radiosity solution process deal with polygonal surfaces.
Therefore, data of the scene to be rendered must be formatted as 3-dimensional
coordinates of polygonal surfaces. A surface which is not planar such as sphere
must be expressed with smaller polygons. At this point, shading algorithms
help us to render non-planar surfaces realistically.

In the next sections, we discuss two fundamental issues of radiosity method,
namely form factor and visibility factor calculations. In order to solve the
Equation 1 we have to calculate these configuration factors in an efficient way.

CHAPTER 3. HIERARCHICAL RADIOSITY 19

Overall perforriiance of racliosity solution [)rocess liighly depends on the meth
ods we choose for calculation of these factors.

3.1.1 Form Factor Calculation

The form factor is the fraction of the energy leaving one patch which lands
onto another patch, to the energy leaving the first patch. From a differential
area dAi to a differential area clAj it is formulated as;

^ cosdiCosOi , ,
F d i d j = ----- _ „ 27T7,2 (3)

where 6i is the angle between the surface normal at dAi and the vector from
dAi to vector dAj ̂ and r is the distance between the tv/o areas. The terms are
illustrated in Pdgure 3.2. Integrating Equation 3, we get form factor from a
finite area dAi to a differential area dAj\

“ Ja

cosOiCOsOj , ,
--------5— -dAj

A, 'Krf· (4)

We get the form factor from Ai to Aj by averaging the form factor from Ai
to Aj at each point of Aj ̂ i.e. we integrate Equation 4 and divide by the area
of Aj:

'̂■ = W a.
C O S $ { C O s 0 j

Trr;
dAjdAi (5)

Solving this double area integral analytically is a complex and costly oper
ation [She94]. In the next two sections two numerical methods for computing

form factors will be discussed. The hemicube method [SH89] computes the
form factors from a differential area to a finite area, whereas the ray-tracing
method [WEH89] computes form factors from a finite area to a differential
area.

Here are some properties of form factor:

CHAPTER 3. HIERARCHICAL RADIOSITY 20

• Due to energy conservation rule, sum of the form factors from a patch is
equal to unity in an enclosed environment. Eî = 1

• Reciprocity principle Fij = Fji * Aj/Ai

• If the surface is convex, Fa = 0, i.e. a surface cannot absorb the light it
emits, directly.

• Occlusion reduces the form factor of patches. For example, the form factor
of invisible patches is 0. The effect of occlusion on form factor is shown
in the formula (Hij is the visibility factor).

coseiCos^ ^ ^ ^ d A ^ c iA ·
irr- (6)

Hemicube Method

In an attempt to calculate form factor, the hemicube method was introduced
by Nusselt [SH89]. In this method, a half cube is placed onto the center of the
source patch and all other patches are projected onto the faces of this cube.
Each pixel is associated with one patch. If two patches are both projected onto
the same pixel, the nearest one is associated with the pixel. This operation
requires implementation of visibility tests, clipping, projection and z-buffering
algorithms.

The form factor associated with a patch projected onto the hemicube is the
sum of the form factors at all of the pixels associated with that patch. The

CHAPTER 3. HIERARCHICAL RADIOSITY 21

resulting form factors calculated with n hernicube give us a row ot the racliosity
matrix.

Speed of the hemicube computation nuiy be dramatically accelerated if hard
ware z-bufFering is available and scene is completely polygonal. In addition,
due to functional similarity of rendering process and hemicube method, exist
ing rendering code can be used for hemicube computation. A disadvantage of
this method is that, it suffers from aliasing problems [She94].

Ray-tracing Methods

These methods are based on firing sample rays between the two patches and av
eraging their individual results. Two of them are disc approximation [WEH89]
and Monte Carlo integration [CW93] methods. Disc approximation method as
sumes the source patch as a disc and sufficiently far away from the destination
patch. Only one ray is fired, and form factor is calculated. It is a cheap method
but fails when the patches are near especially in corners. Analytical extensions
are used for these cases. Monte Carlo integration method uses more I’ays and
selects the points of these rays randomly. The result is an approximated value
of form factor.

Curved surfaces can also be handled in ray-tracing methods. However the
hemicube method is restricted to polygonal objects. Another advantage is that
accuracy and speed can be controlled by changing the number of sample points.

3.1.2 Visibility Calculation

Visibility factor calculation is one of the most time consuming phases of ra-
diosity process. Whatever the method we choose for the radiosity problem, we
cannot avoid calculation of the visibility factor between all surfaces in a scene.
This factor has an impact on the form factor value. Elimination of invisible
parts of two patches decreases the form factor between them.

Ray tracing techniques' are mostly used methods to evaluate the visibility

CHAPTER 3. HIERARCHICAL RADIOSiTY ·)■)

term. We obtain cin estimation of the term l)y firing a number of rays between
two patches and counting the rays which do not intersect with another patcli.
Clearly, accuracy can be adjusted by changing number of the sample rays.
We can use common rays with form factor calculation. Note that hemicube
method already includes visibility factor calculation inherently and does not
need to recalcuhite this factor.

Some acceleration techniques have been suggested in order to speed up
the ray tracing process ([Sam90b], [Sam90a]). These techniques are based on
spatial subdivision of environment into cells. Spatial subdivision structures
reduce the number of ray-surface intersection tests. The approach which must
be followed during subdivision highly depends on the distribution of patches
in the environment.

Although it is costly to detect occlusion, it decreases the number of interac
tions which must be computed. Moreover, by exploiting visibility and spatial
coherences, the cost of visibility factor computations can be significantly de
creased.

Uniform subdivision

This method uniformly subdivides the space containing the environment into
a grid of cells. These cells are equal sized and each keeps the list of objects
contained in it. The main advantage of this type subdivision is that it lets fast
traversal algorithms to be constructed to trace the path of a ray through the
grid. Although it is very easy to built and maintain, it is inefficient for most
cases. The distribution of objects in the environment must also be uniform to
balance the object load of cells. Otherwise, due to unnecessary or insufficient
divisions, performance loss can be observed.

Octree

Different from uniformly subdivision, this method aims to balance the object
load of cells by adaptively subdividing. The whole environment is the root cell

CHAPTER 3. HIERARCHICAL RADIOSiTY ■2.·}

of the octree. Each cell is permitted to be subdivided uniformly into 8 cells if
it contains more than some number of objects. Subdivision is performed re
cursively. The resultant structure is a hierarchical tree of octree cells. Pointers
to the objects can be kept at the relevant cell or only at the leaf cells.

During constructing octree, it is possible to have large cells that contain only
a few small objects. Many rays may enter this region, which do not intersect
the object. Although this increases the cost of trcicing path of ci. ray inside the
octree, it is still an efficient model. It is easy to build and rmiintain an octree.
Also fast traversal algorithms can be developed to trace path of rays.

The depth of octree is an important parameter for the performance. By
changing the maximum number of objects that a cell can contain, the depth
can be adjusted to get the highest performcince.

BSP tree

BSP tree (Binary Space Partitioning tree) method is the most efficient one
among the listed methods, which aims to subdivide the space in the most
economical way. Each cell is subdivided into 2 subparts by a separator plane
each time. The decision of subdivision of a cell is given after finding the correct
separator plane. The correctness criterion is leaving same amount of objects at
each subparts. The resultant structure is non-uniformly sized cells, each with
more or less same number of objects.

Although BSP tree is an efficient method, it tends to be more complicated to
build and maintain, in contrast to the other methods. The traversal algorithms
are also not as efficient as others. Another disadvantage of BSP tree is dividing
the space into 2 parts. The depth of BSP tree may be three times bigger than
the octree depth for the same scene.

CHAPTER 3. HIERARCHICAL RADIOSITY 24

3.1.3 The Ambient Term

In order to avoid getting ci dark eiiviroiiiuent at the early stages ol radiosity
computation, an ambient term is added to the radiosity of cdl surfaces. Thus
viewing initially dark environments becomes possible. As the radiosity solution
converges, this term decreases. Ambient term has no effect on the solution
process. It is used only for disphiying purposes.

3.2 Hierarchical Radiosity

Hierarchical radiosity is a method proposed to solve the radiosity problem [HSA91].
The idea used in hierarchical radiosity is borrowed from the N-body problem.
In the N-body problem, each of the n particles in an environment exerts a force
on all the other n - 1 particles in that environment, implying pairs of
interactions. The fast algorithms which can compute all the forces in less than
quadratic time are based on two key ideas;

• Numerical calculations are subject to error. Hence, results need only be
calculated to within the given precision. •

• A group of bodies can be approximated by a single particle if they are
positioned sufficiently far away from the body at which their force is being
evaluated.

Radiosity and N-body problems share many similarities;

• There are lAlLAl pairs of interactions in both problems (without occlu
sion).

• The fall off factor is ^ for both gravitational or electromagnetic forces
and the magnitude of The form factor (/' is the distance between parti-

cles/patches).

CHAPTER 3. HIERARCHICAL RADIOSITY 25

• According to the Newton’s third law, gravitational forces are equal and
opposite, and, according to the reciprocity principle, form factors between
two polygons are related.

• Polygons/bodies can have interaction with each other at different hierar
chy levels.

However, certain differences do exist between the two algorithms. One of
them is that the force of gravity is not effected by occlusion whereas for vis
ibility calculations of radiosity problem occlusion is an important problem.
Another difference exists during the process of hierarchy construction. N-body
algorithms group particles together, whereas the radiosity algorithm subdivides
initial polygons.

Figure 3.3 represents sample interactions at different hierarchy levels. Patch
A is relatively far from patches B and C and so the radiant flux between itself
and the other patches is low. Therefore, the error factor in evaluating the
radiant flux will be negligible and the patch A is permitted interact with the
patches B and C at the coarsest level.

However the patches B and C are near and the radiant flux among them is
more than some threshold value. This makes the error factor in evaluating the
flux considerably high enough to effect the accuracy of the flux value. In order

to decrease the error factor, patch B is divided into subpatches and patch C is
permitted to interact with the subpatches instead of B. As the surface area of
patch B ’s subpatches is 1/4 of patch B, the flux will be lower. However, the
flux may still be bigger than the threshold. In such cases, we should subdivide

CHAPTER 3. HIERARCHICAL RADIOSITY 26

the patches till the error factor becomes trivial.

3.2.1 Hierarchical Radiosity vs. Others

As mentioned before, radiosity method has costly operations which make it un
usable even for simple scenes. To overcome this problem, different approaches
have been proposed. Progressive radiosity and hierarchical radiosity is two of
these methods which greatly speed up the computation of I'cidiosity.

Progressive radiosity is based on shooting light from the brightest surface
to the environment, iteratively. Shooting is the process of distributing the
light energy of a patch out to the rest of the environment. One iteration
of progressive radiosity includes choosing the patch with the highest ‘unshot’
light energy and shooting this energy to the other patches. Since most of the
important energy transfers takes place within the first few iterations, useful
results can be generated at the early stages of solution process. Also the matrix
system converges faster than the conventional solution. Its another advantage
is that storage is only 0{N) since configuration factors are discarded after they
are used.

Figure 3.4 represents patch interactions in the same environment presented
in Figure 3.3, which are created according to the progressive radiosity approach.
The major drawback of progressive radiosity algorithm is its need of pre-meshed
initial geometry. As a rule,_patches cannot be subdivided during the solution
process. However, the rendering program recjuires small sized patches which do
not carry important amount of energy so as not to cause visual artifacts in the

CHAPTER 3. HIERARCHICAL RADIOSITY 27

final image. This requires the patches forming the scene to be sufficiently sub
divided into subpatches to a very fine resolution in cixlvance. Obviously this will
cause too many initial patches and the algoritlim will waste time for handling
trivial interactions of these trivial patcluis. Hierarchical rcidiosity algorithm
has been developed just to overcome this problem. A hierarchical algorithm
starts with undivided patches and subdivides them dynamically only when
necessary. Therefore, hierarchical radiosity does not create or waste time with
those trivial interactions. This can be observed in Figure 3.3 and Figure 3.4.
Hierarchical radiosity creates 6 interactions whereas progressive radiosity cre
ates 9 interactions. Time and space is saved by ignoring trivial interactions
since the accuracy gained by computing them is negligible. As a result of this
approach, we can say that hierarchical radiosity works most efficiently for the
cases that initial patches are refined into large number of subpatches and less
efficiently for the environments with complex initial geometry.

On the other hand, the hierarchical approach has storage problem. Each
patch in the scene has to keep its own interaction list including pointers to
other patches and configuration factors. This totally makes O(N^) cost. This
is a very prohibitive factor for its usability, because even simple scenes can in
clude more than a thousand patches after subdivisions. Fortunately clustering
techniques ([SAG94], [Sil94], [SDS95]) overcome this problem by reducing the
number of elements in interaction lists.

Due to its relative simplicity, progressive radiosity is probably the most
implemented radiosity algorithm. Hierarchical radiosity is complex and still
improving. Studies exist which combine the best sides of these techniques to
get better results [HSD94].

CHAPTER 3. HIERARCHICAL RADIOSITY 2S

3.3 Design of An Object-Oriented Hierarchi
cal Radiosity Program

We designed and implemented an object-oriented sequential hierarchical ra
diosity program in C-t--b language, and a simple polygon renderer program us
ing OpenGL^ library. Some details of radiosity implementation are described
below.

The program is mainly ba.sed on the algorithm presented in the paper [HSA91].
We used Gauss-Seidel iterative approach to solve the radiosity ec[uation (Ecjua-
tion 1). Form factor and visibility factors are calculated using ray-tracing
techniques. Different from our reference algorithm, we preferred to implement
octree structure to speed up visibility calculations, instead of BSP -tree. It is
easier and cheaper to implement an octree structure. In addition, hierarchi
cal radiosity deals with relatively small amount of initial data and there is no
memory problem for the tree structure. Also the overhead of BSP tree’s more
complex traversal algorithms might bring extra costs.

This design has been implemented to ease our parallelization study. We
tried to develop reusable and independent components as much as possible so
as to be able to integrate them to our parallel model without a problem.

The model consists of the following objects and the main program:

• Vertex is a point in 3-dimensional space.
REALTYPE x ,y ,z ;

Polygon is a convex planar geometric shape with 3 or 4 vertices.
Vertex v e r te x [4] ;
Vertex normal;
REALTYPE area;

Patch is a Polygon associated with radiosity functions

^OpenGL i.s a registered trademark of Silicon Graphics Inter.

CHAPTER 3. HIERARCHICAL· RADIOSITY 2!)

Polygon* polygon;

PatchList* in te r a c tio n L is t ;

REALTYPE B, E, rho;

Patch* parent, * c h ild [4] ;

• Octree is a voxel expressed with only 2 vertices.

Vertex v e r te x [2] ;

Octree* parent, * c h i ld [8] ;

PolygonList* p olygon L ist;

• Algorithm is the main program tiuit manages the objects and radiosity

functions.

The Vertex, Polygon and Octree objects are general purpose pbjects in

dependent of the radiosity process. Polygons are surfaces of the objects in the

environment. The Patch object is a Polygon associated with attributes and

functions related with the radiosity process. These attributes are emissivity,

reflectivity, and radiosity values, pointer to interaction list and quadtree point

ers. Interaction list is a linked list to keep the pointers to the patches those

are fully or partially visible by the list owner patch. Also, relevant information

such as configuration factors is stored in this list. Quadtree pointers are used

to maintain the hierarchy of patches. Root is always one of the initial patches

and the rest of the tree is composed of subpatches of the root patch.

3.3.1 Algorithm of Hierarchical Radiosity

The program we built is based on the algorithm given in the paper [HSA91].
Basic steps of a hierarchical radiosity program;

1. B uilding environm ent
read polygons
in sert polygons to o ctree
f o r a l l polygons, p

fo r a l l other polygons, q
i f p and q fa ce each other

CHAPTER 3. HIERARCHICAL RADIOSITY 30

add both polygons to the set o f in te ra ctin g elements
o f each other

2. Solving radiosity equation
while ra d io s ity is not converged

fo r each polygon, p
gather radiance o f p from i t s in te ra ctin g polygons

3. R endering polygons

gathering radiance, p
fo r a l l polygons in p 's in te ra ction l i s t , q

compute form fa c to r and v i s i b i l i t y fa c to r o f p and q
i f refinement required

re fin e the polygon with b igger area
update in te ra ction l i s t s

e ls e add the con tribu tion o f polygon q to ra d io s ity o f p
(/*push and pull the radiosity*/)
i f p is le a f

add p 's em ittance to ra d io s ity
e lse

gather radiance from a l l ch ildren o f p, re cu rs iv e ly
add th e ir r a d io s it ie s to p 's ra d io s ity , with respect to th e ir areas

Solving Radiosity Equation

As mentioned before, the radiosity equation (Equation 2) can be solved ef
ficiently using iterative methods. In our program, vve selected Gauss-Seidel
method to implement. An algorithm has been given in the previous section.
It is physically equivalent to successively gathering incoming light. In each
iteration of the algorithm, radiosity is gathered at each element and pushed
down to its children. Once the leaves of the tree are reached, the element’s
emittance is added, and the radiosities with respect to their areas are passed to
upwards. An iteration for an element results by calculating its total radiosity

CHAPTER 3. HIERARCHICAL RADIOSITY 31

(both gathered and emitted).

Form Factor Calculation

In the program we used disk approximation method [CCVVG88] (Equation 7),
which assumes the source polygon as a disk and sufficiently far away from the
receiver polygon.

p _ ^ ’ '^ d 'k C 'O s O iC O s O k

where k is an index of the grid cells. See Fdgure 3.2 for other terms.

(7)

In order to increase the accuracy of the factor, both polygons are divided
into 4x4 grid and rays are fired from the centers of source subpolygons to
the centers of receiver subpolygons randomly. Disk approximation formula is
applied to all rays and the result is evaluated after adding them up. We used
the rays which are already calculated by the visibility process. That is, the rays
which do not intersect with any other polygons are taken into consideration
in the form factor calculation. Thus, by merging visibility and form factor
calculations as in the hemicube method, process is accelerated and time is
saved.

The disk approximation method fails when source patch’s area is large rel
ative to the distance. In such cases, either analytical methods are used or the
source patch is subdivided till the ratio of area and distance gets normal.

Visibility Factor Calculation

In order to calculate mutual visibility factor, two visibility tests are applied to
each interacting element.

1. Do the polygons face each other? (Only two polygons are considered in
this test.)

CHAPTER 3. HIERARCHICAL RADIOSITY 32

Figure 3.5: Ray.s fired from a quadrilateral to a triangle
to detect occlusion.

2. How much of each polygon is visible from the other polygon given the
environment? (All of the other polygons must be considered in this test.)

The first visibility test is achieved by some geometry functions. For the
second visibility test, each surface is subdivided into a 2-dimensional 4x4 grid.
The grids of both surfaces are matched randomly and rays are fired between
them. This is a common method which gives a correct estimation for the visi
bility factor. If needed, accuracy can be increased by subdividing the surfaces
into more cells.

In order to reduce number of the polygons which must be checked for second
visibility test, spatial coherence is exploited. The space is subdivided into
volumes (voxels) adaptively using an octree structure, until satisfying bounds
of some cost function. In our implementation, the cost function is defined as
the number of polygons intersecting the volume. An upperbound has been
defined also such as 10 polygons per volume.

Polygons are refined during radiosity computations according to an oracle
function which is explained in Refinement part of Section 3.3.1. As a result of
refinement, new interactions are introduced to the radiosity system which must
be processed. Visibility factors are not necessarily computed for every newly
created interaction, since we can exploit visibility coherence. If two patches
become totally visible, there is no need for further visibility tests between
them or between their children. In the same way, if two subpatches become
totally invisible relative to each other, then the refinement between them can
be immediately terminated. On the other hand, our calculation is based on

CHAPTER 3. HIERARCHICAL RADIOSITY 33

approximation and if we want to get correct re.sults in all Ccises, we must give
a bound on area and do not inherit visibility factor for big patches.

Octree

All initial polygons are inserted into the octree at the initializcition phase, in
order to build the octree structure. Octree is built lor only once and used for
visibility calculations further. List of pointers to polygons are contained only
at the leaf nodes of octree.

While in.serting a polygon into the octree, first the smallest voxel that in
cludes the polygon is found quickly. Then, by traversing the subtree of this
voxel, link of the polygon is added to all of the leaf voxels which intersect with
the polygon. In order to determine whether a voxel intersects with a polygon,
four tests are applied one by one:

1. Is there any vertex of the polygon inside the voxel?
(Yes: intersects. No: next test)

2. Do all of the vertices of the voxel not lay on the same side of the polygon?
(Yes: next test. No: not intersects)

3. Does any of the edges of the voxel intersect with the polygon?
(Yes: intersects. No: next test)

4. Does any of the edges of the polygon intersect with the voxel surfaces?
(Yes: intersects. No: not intersects)

The first two tests are simpler and cheaper than the other tests. For most
of the polygons, applying one of the first two tests is enough to get the correct
result. The third and the fourth tests are needed infrequently and do not effect
the overall performance. After finding a voxel, a cost function is called, which
counts the total number of polygons with which the voxel intersects. If the
cost function does not permit the insertion of the polygon to the current voxel,
the overloaded voxel is subdivided and all of its polygons are transferred to its
children. Thus after all, the environment is subdivided adaptively.

CHAPTER 3. HIERARCHICAL RADIOSITY

In order to use octree voxels in the visibility calculcvtions, cui efficient ray
tracing function must be iniplernented. The strategy vve followed in the pro
gram is as follows: In order to trace n ray, first of all, we find the voxel which
the source vertex is in. For each polygon associated with the voxel, we perform
ray-polygon intersection algorithm. If there is cin intersection, which means
an intervening polygon is encountered, we terminate trcicing the current ray.
If there is no intersection then we must find the next voxel which the ray is
going to visit. After finding the intersection point of ray and voxel, the neigh
bor voxel which includes this intersection point is computed lastly. Finding
nearest common ancestor is a well known method for finding neighbor of a
voxel [Sam90b]. This operation is performed until the voxel that the ray ends
is visited or encountering an intervening polygon.

A polygon that appears in more than one voxel may be subject to be retested
for intersection with the same ray. In order to prevent this, each ray stores a
unique tag and this tag is associated with the polygon after the intersection
test is performed on it. Therefore, further attempts to test intersection on the
same polygons are avoided.

Refinement

Refinement of a polygon is necessary when the accuracy cannot be satisfied
at the current interaction level. In such a case, one of the polygons must
be subdivided into subpolygons and radiosity operations must be performed
between them. Decision of the patch to be subdivided is given according to
the largeness of the surface areas of interacting patches. If patch Ai is larger
than Aj, then the patch with bigger area, A{ is subdivided and the interaction
lists are adapted accordingly. The patch Aj is deleted from the interaction list
of Ai and is inserted in the interaction lists of the children of A,.

The refinement based only on the form factors produces unnecessary sub
division for particular orientations? (e.g., around the corners, where the poly
gons meet and have higher form factors). The BF refinement method [HSA91],
which we have chosen to implement for the program, focuses on subdivision of
polygons that contain a high level of illumination.

CHAPTER 3. HIERARCHICAL RADIOSITY 35

Figure 3.6: Subdivision of a quadrilateral and a triangle.

Polygons with 4 vertices (quadrilaterals) are divided into 2 subpolygons with
3 vertices (triangles), whereas triangles are divided into 4 subtriangles. This is
due to the fact that it is more practical to manipulate triangles. The program
supports both type of polygons, but after refinement quadrilaterals become
triangles. We observed that the geometry algorithms written for quadrilaterals
are derived by just performing the algorithms written for triangles twice.

Figure 3.6 shows regular subdivisions of a quadrilateral and a triangle. Al
though we used regular subdivision for our system, especially subdivisions
along shadow boundaries require irregular subdivisions for a better result. This
is a trade-oif between time and quality.

Push-and-Pull Phase

As shown in the algorithm, after finishing gathering radiance operation of a
patch and all of its subpatches, we push and pull the radiosities of those patches.
This operation is a redistribution of radiosity collected by different hierarchy
levels of the patch.

Push and pull phase consists of top-down and bottom-up traversals for each
quadtree. In the top-down traversal, the contributions of parent nodes are
transferred to their children. In bottom-up traversal, conversely, the contribu
tions of children are transferred to their parents with respect to their area. As
a result, consistency of radiance values of patches at different hierarchy levels
is preserved.

CHAPTER 3. HIERARCHICAL RADIOSITY ;}6

Multigridding

Multigriclding is a technique to speed up the convergence of radiosity solution
system by letting the interactions remain at coarser levels as much as possible.
This is incorporated into the algorithm by starting with a high error tolerance
for interaction refinements and decreasing it cit some rate after each iteration.
Therefore, first iterations which finer level interactions do not necessarily have
to exist, can be performed cheaply.

3.4 Further Improvements on Radiosity Pro
cess

Many improvements have been introduced to the computer society in the last
decade, such as lazy linking [HSD94], clustering [SAG94] [Sil94] [SDS95], bidi
rectional radiosity [DBSW97], importance-driven model [SAS92], discontinuity
meshes [LTG92] [LTG93], hybrid algorithms [She94] [SP89].

Lazy linking is a strategy to reduce the initial linking cost by delaying the
creation of insignificant links. The effect of this ignored interactions is then
approximated using an ambient light term when the solution is displayed. This
method enables a radiosity solution to be calculated in a shorter amount of
time.

Clustering is a method to group nearby polygons into object hierarchies
for the purpose of evaluating their energy exchanges with distant objects. In
this method, instead of many trivial interactions, sufficiently distant objects
perform group interaction. It does not only speed up the computations but
decreases the storage requirements as well. As a result, simulating the radiosity
of very complex scenes becomes possible.

Importance-driven radiosity focuses computation on the parts of a scene
that has more effect on a particular image. It is only applicable to the wavelet
radiosity methods.

CHAPTER 3. HIERARCHICAL RADIOSITY 37

Discontinuity meshing attempts to model shadows accurately by creating
meshes at shadow boundaries. Although the method eliminates visual artifacts
caused by the shadow boundaries, it is computationally expensive and complex
to implement.

Hybrid algorithms have been developed to calculate the illumination of en
vironments consisting both specular and diffuse type of objects.

Chapter 4

Parallelization of Hierarchical
Radiosity

4.1 Introduction

The motivation behind this work is to investigate the feasibility of parallel pro
cessing so as to produce a fast radiosity solver. High speed and low storage are
the only two things that radiosity problem is in need of. Exploiting parallelism
is one of the practical ways of addressing these problems.

This chapter presents detailed information about our parallelization study of
hierarchical radiosity algorithm. First, we provide an overview of parallelism in
hierarchical radiosity method. Then, we explain our design and implementation
issues. In the last section, we discuss some issues related with high performance
such as load balancing.

4.2 Characteristics of Radiosity Data

Inputs of radiosity process are the polygons which represent the surfaces of
objects in a scene. All the objects are assumed to have diffuse reflector surfaces.
In our algorithm, we used polygons with 3 or 4 vertices.

38

The objective of hierarchical radiosity algorithiu is to evaluate the interiic-
tions of polygons in terms of light energy and calculate final intensity of ecich
polygon. Two patches are said to be interacting it they are completely or par
tially visible to each other. Such patches must keep information about each
other so as to evaluate this interaction. This makes the patches dependent to
each other. Each patch maintains a list of pointers to its interacting patches.
This dependence introduces new difficulties to the parallelization studies.

As an important property of the algorithm, the patches are subdivided dur
ing the solution process. Evaluation of an interaction may result in such a
subdivision. Refinement of an interaction is applied when the radiant flux be
tween the patches is big enough to effect the accuracy of resultant radiosity.
After refinement, the old interaction is removed and new interactions from the
undivided patch to the subpatches of the divided patch, which must also be
evaluated, are established. As a result, the data to be processed dynamically
grows and achieving good load balance becomes more difficult. On the other
hand, progressive radiosity deals with only static data. Instead of dynami
cally subdividing, in progressive radiosity, patches are subdivided in advance.
However, it suffers from overhead of manipulating big amount of data.

The data used in hierarchical radiosity is not meshed in advance, in contrast
to progressive radiosity. Because, hierarchical radiosity approach works most
efficiently for the cases that initial patches are refined into large number of
subpatches. Such scenes produce very few interactions relative to the progres
sive radiosity. Also, it is less efficient for the environments with complex initial
geometry. The overhead of hierarchical approach may cause bad performance
for such environments.

CHAPTER 4. PARALLELIZATION OF HIERARCHICAL RADIOSITY 39

4.3 Previous Work

Parallelization of hierarchical radiosity on distributed memory computers is
not easy due to its prohibitive characteristics of input data, as explained in the
previous section. There is no efficient methods that been developed so far in
this field. Most of the existing studies are on shared memory machines which

CHAPTER 4. PARALLELIZATION OF HIERARCHICAL RADIOSTTY 40

are generally based on management of a task pool [PRR96], [VTJ95], [RS97],

[SHT+95].

Richard and Singh state the difficulty of predicting the amount of work asso
ciated with a patch or interaction in their paper [RS97]. They use distributed
task queues and permit task stealing to achieve load balance among processors
dynamically. Their study also involves specular radiosity in addition to diffuse
one. Specular radiosity changes some characteristics of the program such as
high percentage of the visibility calculations. While the diffuse program spends
90% of its execution time computing visibility, the specular-fdiffuse program
spends 68% of its execution time gathering specular radiosity and 6% comput
ing visibility. Their speed up of the specular-|-diffuse program is 26.3 on 32
processors. They note that the major reason for the loss in speed up is the
synchronization overhead.

Singh et al. presented a parallel hierarchical radiosity algorithm on a cache-
coherent shared address space multiprocessor [SHT'^95]. They use a distributed
task-queuing mechanism to reduce contentions. Therefore, a cost estimation
function is needed to partition the tasks among processors. Task stealing is
allowed to preserve balance of processor loads. The gained speed up is almost
same as the study in [RS97].

Distributed memory implementations have not produced satisfactory results
as others so far. This comment is explicitly stated by most of the researchers
studying on this subject. Moreover in [SGL94], it is mentioned that they
abandoned their parallelization project because of not being worthwhile, after
getting 11-fold speed ups on 32 processors.

Garmann et al. presented a parallelization study on CM-5, which is a
MIMD-type multicomputer [GBM94]. Their speed up shows the difficulty of
parallel processing for hierarchical radiosity algorithm, only 8.4 on 64 proces
sors. Garmann’s approach to the algorithm was manipulation of a huge graph.

In [FY97], Feng and Yang claim that they have developed an efficient imple
mentation. Their study is based on CV-sets for visibility computations. The
scene is partitioned into cells and all polygons visible by a cell are kept in the

CV-set of that cell. This notion helps to assign the scene data to processors
with a good initial load balance. Initial distribution is done by estimating
the load of patches. His load estimation function depends only on the area of
patches. As we discussed in Section 5.2 patch area is not sufficient for an ac
curate load estimation. They presented performance results of complex (large)
scenes up to 8 processors. However their input sceties are composed of fairly in
dependent subscenes which are slightly interacting with eiich other. Therefore
CV-set approach assigns each subscene to a different processor which results
in good speed ups. However, CV-set approach will not handle dynamically
changing load balance for arbitrary input scenes.

On the other hand, progressive radiosity is more suitable for parallelization
because of its static data. Many studies exist which include efficient meth
ods [SWPW95], [CA093], [AC096], [SSV95], [GRS95]. Most of the solutions
are based on parallel ray tracing for the computation of the form factors and
visibility rates. The distribution algorithm is straightforward, each processor
gets an equal number of patches. Since data is constant, static load balancing
produces very efficient solutions. Parallelization of gathering radiosity is also
investigated in the literature [KA097].

CHAPTER 4. PARALLELIZATION OF HIERARCHICAL RADIOSTTY 41

4.4 The Underlying System

The implementation has been done on Charm+-b system. Charm-1-+ is a par
allel object-oriented programming language. Charm-|--f allows us to define
parallel objects (called chares) and it supports dynamic creation of these par
allel objects. Different from the conventional message-passing style, Charm++
provides message-driven execution. Methods of remote parallel objects can be
invoked asynchronously. That is, whenever a message arrives for an object,
the method specified by the message is scheduled for execution immediately.
Hence, the message-driven execution helps to overlap idle times of processors
by executing methods in any order. More information about Charm-j-+ and
message-driven execution can be found in [CHRM97] and [KG95].

In our implementation, we particularly made extensive use of “branched

office chares” (BOCs) of Chariri++ language. A BOC is a parallel object
replicated at every processor (branches). One of the usages of BOC’s is to per
form collective opercitions effectively. Each brcinch Ccin handle local operations
in a processor and then branches communicate with each other to complete
the collective operation.

Another importcint property of Charm+-|- language is its portability. We
had chances to run our program on different machines such as network of work
stations and Parsytec. The performance results are obtained from Parsytec
machine which has 24 processing nodes. It is a MIMD machine and has a
high-speed bandwidths among nodes. More information can be found in Sec
tion 2.3 and manual [EPX95].

4.5 Design

CHAPTER 4. PARALLELIZATION OF HIERARCHICAL RADIOSITY 42

The radiosity algorithm is based on the original hierarchical radiosity algorithm
presented in the paper [HSA91]. We have also presented the sequential version
of this algorithm in the previous chapter. Parallel version has been developed
over this sequential version.

Developing parallel programs always requires a careful analysis of data and
task flow. As it is mentioned earlier, hierarchical radiosity is an iterative algo
rithm. It has strong computational and data dependencies both within an iter
ation and between successive iterations. Parallelism within an iteration should
be investigated individually while considering the dependencies between succes
sive iterations. The conventional parallelization approach for MIMD computers
creates tasks with minimum dependencies and distributes them to processors
equally as much as possible. The processors execute these tasks concurrently
with local information. Inevitably, the dependencies of tasks cause the pro
cessors to synchronize with each other and transfer data. The processors also
follow either static or dynamic strategies in order to preserve their load balance.

In this section, we will discuss the following design issues:

CHAPTER 4. PARALLELIZATION OF HIERARCHICAL RADIOSITY 43

patch i on processor A

send patch i

patch j on processor B

update patch i

send patch j

interaction i-j
interaction j-i

send results

update patch j

Figure 4.1: Evaluating an interaction on a processor
which does not own any of the interacting patches.

• how we partition patches across processors and map computations (patch
interactions) to processors,

• how we deal with communication,

• how we deal with the dynamically changing load balance as the patches
get refined, and

• how we hide the difficulties of parallelization and communication from the
computational algorithm.

In the radiosity process, the unit work is the evaluation of an interaction
which is established between any two mutually visible patches. In order to
evaluate an interaction on a processor, we need the data of the interacting
patches. After completing the interaction, the data of both patches need to be
updated.

We can map an interaction to any processor. However, if its interacting
patches are not owned by the local processor, then, the interaction must request
its data from owner processors. When data arrives, interaction is evaluated and
the results are sent back to owner processors. To reduce the communication, we
need to map interactions to processors which own the patches. As illustrated
in Figure 4.1, mapping an interaction to a different processor (which does not
own any of the interacting patches) might be necessitated due to load balancing
requirement. Therefore, it is still an option in the design phase.

CHAPTER 4. PARALLEUZATION OF IHERARCHICAL RADIOSITY 44

patch i on processor A

send patch i

interaction i-j

send result

patch j on processor B

send patch j

interaction j-i

send result

update patch i update patch j

Figure 4.2: Evaluating an interaction on both of the
processors which own the interacting patches.

patch i on processor A patch j on processor B

Figure 4.3: Evaluating an interaction on one of the pro
cessor which owns any of the interacting patches.

We can map interactions to the processors which own the interacting patches.
If both patches of an interaction are on the same processor, then we can map
the interaction to that processor. However, if one of the patches is on a different
processor, we execute interactions (i-j and j-i interactions) on both processors.
For patch-f and patch-j, we can map interaction i-j to processor-patch-f (pro
cessor that owns patch-«) and interaction j-i to processor-patch-j as shown in
Figure 4.2. So it requires total 4 messages and each processor can evaluate
interaction i-j and j-i in parallel.

If we map both interactions i-j and j-i to one processor, either processor-
patch-« or processor-patch-ji, then the number of messages will be two and

CHAPTER 4. PARALLELIZATION OF HIERARCHICAL RADIOSITY 45

processor A processor B

Figure 4.4: Interactions across processors.

both interactions will be evaluated on one processor one after the other (see
Figure 4.3).

Since there are many interactions in the radiosity calculations that can keep
processors busy, we decided to map interactions i-j and j-i to one processor
(i.e, evaluating interactions i-j and j-i on the same processor will still provide
enough parallelism) to reduce communication cost. But, how will pi'ocessor-
patch-·/ and processor-patch-j decide which one will evaluate the interactions?
Making this decision dynamically is again attractive from load balancing point
of view, however, it will cause communication between processors. Instead, a
static decision scheme which eliminates communication has been used. Both
interactions between patch-f and patch-j are assigned to the processor who
owns the patch with larger area. The rationale behind this is that, the larger
patch will most likely be divided into smaller subpatches and interactions can
be pushed down more easily. This will be clear, later, as we discuss the parallel
algorithm.

Patches are partitioned across processors and interactions are mapped to
processors according the formula above. Later, in Section 4.6.1, we will discuss
how patches are assigned to processors in order to balance the computational
load and reduce communication. Before that we want to look at the com
munication patterns and improve the design with techniques orthogonal to

CHAPTER 4. PARALLELIZATION OF HIERARCHICAL RADIOSITY 46

2-1

processor A processor B

Figure 4.5: Interactions using proxy patches.

mapping.

Since the interaction pattern is quite irregular, whatever the mapping is,
there will always be many across-processor interactions. If we design our soft
ware such that each interaction object responsible for gathering the data that
it needs, this will result in multiple messages for the same patch data. As can
be seen in Figure 4.4, for example, the data of patch-4 from processor-B is sent
to interactions 2-1, 3-1 and 4-Í-

What we need is to send the patch-f data in a single message and allow
interactions 2-1, 3-1 and 4-1 use the same data. Interaction objects can do this
by communicating with each other, and figure out which ones need the same
data etc. But this will result in inefficient and complex code for interaction
objects. In order to simplify the design of interaction calculations (i.e., free
them from parallelization issues and let them do only calculations) and also
reduce the number of messages, we propose to represent patches in remote
processors by a special object called proxy patches [KSB‘'’98]. A proxy patch
is a representative of a patch at a different processor. We keep the incoming
guest patches’ data in a proxy structure. In Figure 4.5 we can see a sample
usage of proxy patch. To evaluate interactions 2-1, 3-1 and 4-U processor B
sends the proxy of patch-f to processor A. Here are the advantages of using
such a structure:

Proxies provide that there is at most one representative of each patch

in a processor. There may be too many local pcitches in a processor
requesting the same remote patch to evaluate their interaction. Instead oi
fetching the remote patch at each time when a local patch requests it, the
remote patch is fetched once and used for further requests. Also instead
of updating proxy’s original patch after every evaluation, this is done at
the end for only once.

• Proxies provide the radiosity functions to operate as if all of the patches
are local. A proxy patch carry enough information to be treated as a local
patch by radiosity functions. That is, the radiosity functions execute the
same instructions for patches without considering whether it is proxy or
not. This flexibility greatly removes complexity of radiosity functions.

• In our design, proxies are not requested since they know where to go.
Each patch knows from which processors it is going to be requested in
advance and sends its proxy to these processors without waiting a request.
Proxies go and replace into these processors and wait to be processed. By
skipping the request phase, the overhead of sending/receiving proxies is
greatly minimized.

• Using proxies also decreases volume of communication between processors.
Static parts of the proxy data are transferred only once to the relevant
processors at its first visit. These data occupy the reserved memory area
of a proxy and used within the rest of the solution process. As a result,
while sending proxy data, we transfer only its updated data fields, such
as radiance.

CHAPTER 4. PARALLELIZATION OF HIERARCHICAL RADIOSITY 47

Without proxies, the code will be much more complicated. In order to eval
uate an interaction of a patch, its processor would have to send a request to the
owner processor of its interacting patch. This method has been implemented
in Garmann’s study [GBM94] where the speed up is very low. It is clear that
many patches will be remote as the processor number increases. If we send
requests for every remote patches, we waste too much time for communication
and cannot get scalable timings.

If we let each patch to update its proxies, then there will be communication
for each of them. Instead, all the updates of proxies between any two processors

CHAPTER 4. PARALLELIZATION OF HIERARCHICAL RADIOSITY 48

^ : Communication without proxy manager

------ o : Communication with proxy manager

Figure 4.6: Interactions using proxy manager.

can be handled together. This requires a communication mechanism which
gathers the data of all patches on a processor and distributes them to only the
processors that need them. We can use BOC parallel objects of the Charm++
language to implement this communication mechanism easily. This branched
object (proxy manager) deals with update of proxy patches by establishing
communication with other processors’ proxy managers.

The use of proxy manager is illustrated in Figure 4.6. Instead of individual
communication of patch objects, proxy manager collects all these requests and
perform only one communication.

4.5.1 Dynamic Load Balancing and Patch Migration

Evaluation of interactions causes changes in the structure of patches, such as
removing pointers from interaction list, adding new pointers to interaction list,
subdivision, etc. Subdivision of patches increases the amount of interactions
that should be evaluated. This means the load of such processors increases
proportional to the rate of subdivision, resulting load imbalance between pro
cessors. This load imbalance is inevitable since we do not know which patch
will subdivide how many times in advance. In such cases, a load balancing

algorithm must deal with this problem I)y rebalancing the locid during the ex

ecution. In order to do this, we should be able to detect load imbalance and

move some patches from highly loaded processors to less loaded ones. In Sec

tion 4.6.4 we explain the design and implementation of the patch migration

algorithm in detail.

CHAPTER 4. PARALLELIZATION OF HIERARCHICAL RADIOSITY 49

4.5.2 Subdivision Depth Limit

Different from the sequential version, we had to restrict subdivision of patches
within an iteration. As we have said, in order to evaluate an interaction, it is
required that the interacting patches’ data are locally present. If we do not
limit subdivisions, then we have to transfer proxy patches together with all
of its existing subpatches. This will obviously increase communication volume
very much. Also, since we cannot guarantee that an interaction will refine
within the current iteration, it would be useless to send all of those data in
most cases. To get a reasonable solution, we transfer proxy patches together
with their subtree up to a level and restrict these patches to be subdivided at
most this limit times.

4.5.3 Visibility Calculation

The input geometry of hierarchical radiosity, in contrast to progressive radios-
ity, consists of unmeshed polygons. That is, it has much smaller number of
polygons than the final geometry has. Therefore, we can replicate the initial
input geometry on every processor to perform the visibility calculations. This
does not bring a significant overhead.

However, other unhierarchical parallel radiosity approaches suffer from global
visibility calculations. Since the input geometry is quite large and distributed
to processors, polygon-polygon visibility tests cannot be performed locally. For
most of the ray-polygon intersection tests, the processors require to establish
communication, which obviously decreases the overall performance.

4.5.4 Message-Driven Execution

Our scheme also employs message-driven execution. In message-driven style,
each processor manipulates a bunch of objects or processes. These objects
or processes communicate with each other via sending messciges. There is a
message pool which is maintained by the scheduler of the processor for this
aim. The scheduler is a utility of Charm++/Converse system which provides
message-driven execution model and ability to invoke methods of remote C + +
objects. Whenever the processor is idle, the scheduler picks up a message from
the pool and invokes the requested object with the message.

4.5.5 Algorithm

CHAPTER 4. PARALLELIZATION OF HIERARCHICAL RADIOSITY 50

Algorithm roughly involves the following steps:

1. in it ia l linking & distribution

2. until convergence

(a) send patch data, update proxy data
perform radiosity computation

(b) send proxy data, update patch data

(c) push & pull phase

(d) broadcast radiosity and load information
i f not converged, balance load

i . i f required, perform migration

As we have said, each patch is assigned to and located in only one proces
sor. In order to provide all the patches locally present during the computation
phase, processors send data of their patches and update data of other proces
sors’ proxy patches. The updated proxy patches are then posted to their owner
processors to preserve their consistency. This is the reason of sending and re
ceiving data of patches at the beginning and end of each iteration. Transferring
data of patches and proxy patches are undertaken by proxy manager, whereas
computational tasks are handled by patch manager.

CHAPTER 4. PARALLELIZATION OF HIERARCHICAL RADIOSITY 51

B Patch

Figure 4.7: Base and inherited classes for patches and
proxies.

Details of algorithm and a work flow schema are presented in the next
sections.

4.5.6 Object Oriented Design

The model is derived from the design of the sequential algorithm. Vertex,
Polygon, Octnode and Octree objects are just the same objects of the sequen
tial version (see Section 3.3). Different from the sequential version, we are
forced to define different classes for local patches and proxy patches. Although
they have almost same data fields, local patches and proxy patches should be
handled differently on some events (subdivision, indexing etc.). We defined a
base class BPatch for these classes (see Figure 4.7). We put similar things into
this class, and specific things into their own class. Flexibility of using base
class greatly removed complexity of using different classes. PatchManager and
ProxyManager classes are the branched office chares created by the Charm
system one in each processor, which are charged for management of local and
proxy patches.

• BPatch: Base class for Patch and Proxy objects.
Polygon* polygon;

PatchList* migratedlnteractionsList;
REALTYPE oldB, newB, rho;

Patch* parent, *ch ild [4];
int globalld, localld ;
int* locallds;

CHAPTER 4. PARALLELIZATiON OF HIERARCHICAL RADIOSITY .52

8 2 2 0 1 1

flag for general use

level > mLevel ? 1:0

id. of its root patch

level

hierarchy information
(which child of patches in mLevel)

Figure 4.8: Parts of a global id. consisted of 4 bytes.

Different from the sequential version, BPatch class has local/global id.s
and a new interaction list. Global id. (globalld) is used to keep hierarchy
information for subpatches, up to some level. Its parts can be seen in the
Figure 4.8 (mLevel is the maximum level of a patch selected to migrate).
Global id. is also used to determine the owner processor of the patch.
Local id.s (localld , locallds) are used for direct accesses. Every patch
keeps information of its local id.s at all processors. The new interaction
list, migratedInteractionsList, is used in case of migration to keep
track of the interactions that are moved together with the migrated patch.

— Patch: This is the class of local patches.
REALTYPE E;

PatchList* interactionList;
int interactingProcs;

Besides the inherited data from BPatch class, Patch class keeps an

interaction list, emissivity and interacting processors information. In

teraction list is same as the one used in sequential version, and only

present for Patch class, in teract ingProcs is an integer but used as

a bit-array. As we have mentioned before, a patch knows from which

processors it will be requested in advance and sends proxies to there,

in teract ingProcs is used to keep these processors.

Proxy: This is the class of proxies of remote patches.
int homeld;
int LUIN;

A proxy keeps information about its local id. (homeld) at its home
processor. Note that, locallds array is null for proxies unless there is

CHAPTER 4. PARALLELIZATION OF HIERARCHICAL RADIOSITY 53

2 level indexing with patches array

(allocated if necessary)

Figure 4.9: Indexing strategy of all of the existing
patches.

migration in the current processor. LUIN is the last iteration number

that the proxy data is updated. This is used to understand whether

the proxy data should be sent to its home or not at the end of iter

ations. If its data is not modified in the current iteration, we do not

need to spend time to send it. It obviously decreases the volume of

communication.

• PatchManager: As its name implies, this class is responsible to manage
the patch data in each processor. This task involves performing necessary
radiosity calculations on this class. As a result of solving radiosity system,
patch intensities are calculated and patches become ready to be rendered.
PatchManager works in coordination with ProxyManager. During its ex
ecution, PatchManager deals with only computational part of algorithm.

BPatch* patches [] [] ;

BPatch* localRootPatches[] ;
int totalPatch;

Octree* octree;
REALTYPE newRad, oldRad;

int loadTreinsferMatrixCMAXPROC] [MAXPROC] ;

int mLevel, pLevel; int iterationNo; . . .

CHAPTER 4. PARALLELIZATION OF HIERARCHICAL RADIOSITY 54

Patches are stored in the memory locations allocated by PatchManager.
Their indexing is also done by this manager. It is not possible to allocate
a fixed size of memoiy for patches since they dynamically increase during
execution. Dynamic memory allocation can prevent indexing patches for
accessing them directly. VVe built a 2-level indexing strategy, by which di
rect accessing is provided and memory is used economically. The first level
is the master level and points to the second level index arrays. The sec
ond level index arrays point to patches and are allocated when necessary.
Figure 4.9 illustrates how this indexing is achieved. localR ootPatches
array points to root patches that are local in current processor. Another
method for accessing patches might be based on hashing. Although it
is easy to implement and removes all complexity of indexing, it is not a
measurable method. We have too many accesses to the patches during
process and not so patient to tolerate the overhead of hashing.

Load transfer matrix keeps track of migration operation: from_ which pro
cessor to which, and how much load must be migrated. mLevel is the
maximum level of a patch selected to migrate. Proxies come/go with at
most pLevel level subtree data.

• ProxyManager: ProxyManager is responsible to manage proxies in each
processor. It establishes communication with other processors and ex
changes proxy information. Such requests are made by PatchManager.
Data of proxies are packed to send and unpacked when received,

char* queue [] ;
in t queueSize, queueCounter; . . .

Queues are used to store messages that are going to be sent. These mes
sages are the proxies which have to be packed into a contiguous memory
area in order to be sent. In a processor, each queue is associated with a
separate processor.

Main: It provides necessary information to the PatchManager’s of each
processor to start the radiosity process. The Main object is single for all
processors.

CHAPTER 4. PARALLELIZATION OF HIERARCHICAL RADIOSITY 55

4.5.7 Flow of the Algorithm

The program starts with the execution of the main object which is single for all
processors. The main object reads input geometry from disk and broadcasts
this information to all processors’ patch manager. Then it waits for the solution
to render the image, in sleep mode.

Receiving the patch data, patch managers do some necessary operations to
start gathering radiance process. First the octree is constructed with the input
data. Since it is a fast and low storage operation, all the processors do the
same things and construct the same octree. Then we need to establish links
between interacting patches. To do this, we perform visibility test to all of the
possible patch pairs and create links among the patches which are visible to
each other. We give the ownership of the link to the patch with bigger area
than its interacting patch. The aim is to increase the possibility of providing
the patches to subdivide locally. Interactions are processed on the processor
of the patch which has the interaction. If the interaction is to be subdivided,
we always choose the bigger one which we also want to be local, to subdivide.
Dividing proxy patches increases volume of communication between processors.

After building interaction lists, we require to assign the input patches to
processors as a rule of parallel processing. If we aim to assign equal loads,
we have to develop a mechanism to estimate loads of patches. To do this, we
execute one iteration of radiosity algorithm locally and without refinement to
see the properties of patches’ interaction lists in a little bit more detail. Since
we neglect the refinement part, it does not take too much time. After finishing
this step, we choose the input patches in a manner that we discuss in the load
balancing section (e.g. random, input order) and assign them to processors by
equalizing their loads.

Which patch belongs to which processor information is kept on a table
instead of on patches. Migration operation changes processors of patches.
In such a case, updating the table is enough to indicate this change. Since
migration is permitted for patches up to some level, table keeps information
only for that much level. Therefore we not only gain from time but spend less

memory with this table structure as well.

CHAPTER 4. PARALLELIZATION OF HIERARCHICAL RADIOSITY 56

Figure 4.10: Work flow in an iteration (without migra
tion).

After assigning the patches to processors using a load balancing technique,
we start to perform radiosity computations. The work flow is simulated in
Figure 4.10. Four basic parts take place in an iteration.

CHAPTER 4. PARALLELIZATION OF HIERARCHICAL RADIOSITY 57

• step (a): Send data of patches - Update data of proxy patches

In order to evaluate an interaction, processor of its owner patch must pro
vide the other patch to be present locally. Since each patch is assigned
to and located in only one processor, the processor of the owner patch
must communicate and fetch other patch’s data to perform the interac
tion evaluation operation. This step involves this communication. For
the evaluation of all interactions, each processor sends its local patches to
other processors which need them. Since each patch knows which proces
sors need its data, there is no a ’request’ ing patch phase. Receiving the
patches, the processors start to perform radiosity computations on them.

As illustrated in Figure 4.10-a, patch manager triggers proxy manager to
send the patch data, with a message. Then proxy manager establishes
communication with other processors and transfers the local patch data.
While trying to send the data, the proxy manager may of course receive
data posted from other processors for the same aim. In such a case, patch
manager detects interactions related with the coming data and creates
tasks to evaluate them.

The sent data of a patch must be sufficient for the operations that will take
place in current iteration. By taking into account that interactions may
refine, we have to send patches with their subtree data up to a level (see
Section 4.5.2). We have called this level limit as pLevel in the previous
section. Thus while sending a patch’s data, we pack its subpatches’ data
up to a level and send it. Packing is required to get a contiguous memory
area. This is handled by proxy managers. The receiver proxy manager
unpacks the message and update data of proxies accordingly.

• step (a): Evaluate interactions

This step is executed'concurrently with the previous step. While patch
managers evaluate existing interactions, proxy managers send/receivedata

CHAPTER 4. PARALLELIZATION OF HIERARCHICAL RADIOSTTY 58

of patch/proxy if necessary. Corrirnunication and computation are over
lapped here.

Interaction evaluation function is an entry function of patch manager.
That is, in order to request evaluation of an interaction, a message must
be sent to patch manager. There is a queue for messages waiting to be
processed. The sent message is added to this queue and processed when
its order comes. This queue is managed by the scheduler of Charm system.
All of the interaction evaluation operations in this step are requested by
sending messages to the patch manager.

While evaluating interactions, proxy patches and local patches are con
sidered same. Radiosity functions accept both of them since they have
enough information provided by patch and proxy managers. However, in
case of migration, we may fail to subdivide some patches. This case is
explained in further sections.

As discussed in Section 4.5.2, there is a limit on the subdivision depth of
patches. Therefore, while evaluating interactions, it is possible that some
interactions cannot be refined within the current iteration.

• step (b): Send data of necessary proxies to update - Update data
of my patches

After evaluating all the interactions related with the proxy patches, their
updated data have to be sent to their home processors. Thus the gathered
radiosity of all proxy patches are contributed to their original patch. Also
hierarchy information is updated for patches that are subdivided at remote
processors.

While sending proxy patches, only the ones who have gathered radiosity
in the current iteration are chosen. Other proxies need not to be sent. The
information sent is only the id. of the patch and its gathered radiosity
value. In order to get a contiguous memory area, these data are packed
by proxy manager. The receiver proxy manager unpacks the message
and updates the radiosity values of its local patches according to this
information.

As seen from the Figure 4.10-b, the patch manager triggers the proxy
manager to pack and send the proxy patch data, with a message. To go

CHAPTER 4. PARALLELIZATION OF HIERARCHICAL RADIOSTTY 59

on the next phase a processor waits till getting message from all of the
processors to which it has sent proxy patches in step a. This synchro
nization is a kind of barrier. Processor cannot continue its e.xecution with
push & pull phase, since the unreceived messages can include gathered ra-
diosity values of patches that cire not contributed to the original patch yet.
Synchronization is also required at the end of iteration for load balancing
and convergence test.

There we need another synchronization for this operation. A processor
cannot process the coming information of proxy patches without finishing
evaluation of its all interactions. Because, this may effect the consistency
of interactions those yet not pi'ocessed. These early arrived messages are
queued, and processed only after the last interaction is evaluated. Note
that, this does not create a problem for the sender processor.

• step (c): Push L· pull phase

Parallelization of push & pull operation is relatively easy, since most of
the action is performed with local data. The patches having all the sub
patches locally present can perform push & pull operations independently.
However, some patches may have their subpatches at a remote processor
as a result of migration. In order to perform push & pull operation on such
patches, we have to communicate these two processors and make them to
transfer the required data. This phase is simulated in Figure 4.10-c.

There are three types of root patches according to the locality of their
subpatches:

— Root patch with completely local subpatches: As explained above,
it has no dependence to any other patches, so it can push and pull
radiosity directly as in the sequential program.

— Root patch with some migrated subpatches: Push L· pull operation
of this type patches depends on their migrated subpatches. First,
the root patch starts to push the radiosity. When it encounters a
migrated subpatch, it sends a message including the pushed I'adiosity
value of the migrated subpatch to its owner processor. The root
patch continues to push the radiosity without waiting since it does
not require a response to finish the push operation. After finishing the

CHAPTER 4. PARALLELIZATION OF HIERARCHICAL RADIOSITY 60

push operation, it waits responses in a queue till getting all ot them.
The operations taking place in the other processor are explained in
the next item. As soon as a response arrives, relevant subpatch’s
pulled radiosity value is updated. After getting all the responses, the
root patch performs pull operation locally, using the pulled radiosity
values for migrated subpatches.

— Migrated subpatch with remote ancestor patches: These are the sub
patches of the patches explained in the previous item. Since their
parents are remote, they cannot start push operation independently.
They wait messages including their pushed radiosity value, from their
parent’s owner processor. As soon cis they receive this message, they
perform push L· pull operation independently and send the pulled
radiosity value of root subpatches to their parents.

In order to accelerate this step, first the second type patches start to
perform push operations and send requests to their migrated subpatches.
These patches will wait responses in a queue. The third type patches
perform push and pull operation whenever they receive message from their
parents. The least priority belongs to the first type patches since their
work is trivial. They perform push L· pull operation when processor is
idle.

Push & pull operation is free of deadlock, since the requests are not depen
dent to each other. Each processor deals with different patches. Another
subject worth to mention is the synchronization of processors for this op
eration. The processors are already synchronized in the previous step and
therefore it does not cause an important latency.

The speed of this step is relatively fast. All the patches in the environ
ment push and pull the radiosity, giving order 0{N) for computational
complexity. Communication is required infrequently and produces negli
gible overhead.

• step (d): 1. Radiosity and load reduction

The radiosity computations of an iteration finish by push & pull phase.
Processors prepare themselves for the next iteration if there is. To un
derstand whether the radiosity system is converged or not, all processors

broadcast the total radiosity value of their patches. This is sirnuhited in
Figure 4.10-d. Change rate of this total radiosity value is a criterion for
the convergence test.

Dynamic load balancing requires global communication. Load of each
processor should be calculated by estimation and this information must
be broadcasted. After all, each processor compares the loads and gives
load transfer decision if there is a significant load imbalance among them.
This step is explained in Section 4.6.1 in details.

• step (d) 2. If not converged, balance load

If the processors give load transfer decision as a result of significant load
imbalance, all of them enter migration step. They construct a load trans
fer matrix which shows from which processor to which processor and how
much load will be transferred. According to this matrix, overloaded pro
cessors select their suitable patches and migrate them to thé less loaded
ones. This operation is explained in Section 4.6.4 in details.

CHAPTER 4. PARALLELIZATION OF HIERARCHICAL RADIOSITY 61

4.6 Performance Considerations

Performance of a parallel program greatly depends on the efficiency of its load
balancing strategy. In order to produce scalable parallel applications, special
care must be taken in the process of load balancing. In our program, we
investigated the efficiency of some load balancing strategies and observed their
performance for various input data.

Other factors effecting the execution time of a radiosity solution system;

• lower bound on the area of patches (quality of the image),

• maximum polygon number of an octree voxel,

• initial value used for multigridding and its decreasing rate,

• number of rays used Tor visibility and form factor calculations, and

• size of cache used for the rays mentioned above.

CHAPTER 4. PARALLELIZATION OF HIERARCHICAL RADIOSITY 62

4.6.1 Load Balancing

The objective of load balancing algorithms is to distribute the existing work
eciucdly to each processor so ¿is to minimize their idle times. Using a good
strategy facilitates developing applications scalable in terms of memory and
speed. If we want to exploit parallelism, simple or complex, we have to follow
a load balancing strategy.

Load balancing strategies can be either static or dynamic type. In static
load balancing, we give the decision of load distribution at the beginning of
program and do not request a change further. If we can estimate the loads of
processors accurately and guarantee the continuity of their balance during ex
ecution, we can use this type of strategy. This is mostly true for the programs
with static works that have predictable running times and do not introduce
new jobs to the system. However, it will be insufficient to consider only ini
tial distribution, when we have dynamically changing data and processes. In
such cases, we are forced to revise the load distribution and perhaps give a
rearrangement decision of loads, like job transferring. This is dynamic load
balancing and is implemented for processes whose loads are changing dynami
cally. We should consider to transfer some of the tasks of overloaded processors
to processors with less loads to balance the load during execution. Initial as
signment is still very important, because a good initial assignment can decrease
the necessity to dynamic balancing. Although dynamic balancing algorithms
are not implemented as easy as static type, and have more overheads such
as detecting imbalance, transferring load, they play a great role in producing
scalable applications.

Hierarchical radiosity is a very dynamic program where the memory require
ments and work load are continuously increasing during its execution. We can
observe this dynamic property on a sample run results table Table 4.1 obviously
from the changes in every iteration. As the interactions are refined, we see that
the number of patches and proxies gets bigger and bigger. Newly introduced
interactions cause an increase in the amount of form factor and visibility calcu

lations. By changing some factors listed under the previous title, we may get
different timings and results from the Table 4.1 but the same solution. These

CHAPTER 4. PARALLELIZATION OF HIERARCHICAL RADIOSITY 63

Table 4.1; Sample execution re,sult.s for one of the processors.

iteration total ^ total # total # of total
of patches of proxies interactions time
1 137 169 1214 2.4
2 729 363 2630 4.6
3 1235 435 4340 7.0
4 1267 617 6101 11.0
5 1363 1125 9381 17.0
6 1591 1825 15233 25.8
7 1857 2081 22876 39.6
8 2051 2235 384.34 62.3

are the reasons that make load balancing and therefore parallelization difficult.
Therefore we have implemented both static and dynamic load balancing to get
a better performance.

4.6.2 Load Estimation

To implement a load balancing algorithm, we should estimate the computa
tional load of processors. Since we distribute patches to processors and interac
tions are associated with patches, we can find load of a processor by summing
the computational load caused by all patches on that processor. A trivial
approach is to count the number of patches. This method assumes that all
patches have uniform and constant computational load. However depending
on the interactions that a patch is involved the amount of load might change.

A better approach would be the number of interactions. Load of a patch
is estimated as the number of interactions in its interaction list. This method
assumes all interactions are equal loaded. This is obviously not correct. For
example, an interaction with a light source cannot be considered as ecpial to
an interaction with a dark, small and far patch. Light source interactions have
great potential of refinement, in contrast to other interactions. However, this
method is efficient for scenes composed of almost equally loaded patches. With
considering randomness during distribution of patches, it becomes possible to

CHAPTER 4. PARALLELIZATION OF IHERARCHICAL RADIOSTTY 64

obtain good results.

To make a better estimation, we should examine all of the possible factors.
Load of a patch depends on the following criteria:

• its area,

• its radiance at that moment, and

• its interacting patches’

— mutual visibility rate,

— area, and

— radiance at that moment.

Area is important since the patches are subdivided according to their areas
during execution. Subdivision of a triangular patch introduces 4 new interac
tions that should also be evaluated. Subdividing can be performed to a patch
while the newly created subpatches have area bigger than some threshold Ag.
Maximum number of subpatches that a triangular patch can have is calculated
as follows:

int maxP(REALTYPE area, REALTYPE Ag) {
int i ;

for (i= l ; area>Ae; area /= 4, i += 4 * i) ;
return i ;

}

By the help of this function, upper bound to the number of interactions

caused by a patch can be formulated as follows:

i n t e r a c t i o n s i

èoundj· = maxP(areai, Ae) ^ maxP(areaj, Ag) (1)
j

This formulation is true for the cases where all patches are visible and carry

at least an amount of radiance more than threshold, leading refinement of all its

interactions. However, this is not true for most of the interactions. Only light
source interactions can cause such a full refinement. We use another function
called avgP() by changing the parameters of maxP() function to get a reason
able estimation (e.g., by considering a probability factor, we may multiply i
with a smaller number instead of 4).

Occlusion prevents interactions to be establislied or be refined at some point.
Visibility factor can be used to adjust the calculated bound. Patches with a
small visibility rate are not expected to have much interaction. Interactions of
fully visible patches have a great potential of refinement. However, no visibility
calculation is required after refinement of these interactions since all of them
are already expected to be fully visible. In the same way, partially visible
interactions with high visibility rate are expected to be refined to create fully
visible interactions. As a result, we can say that high and low visibility rates
do not contribute too much work to the system.

Subdivision is performed if the radiance carried by the interaction is more
than some threshold. After each subdivision, the patches get smaller and
become less radiative. This decreases the probability of a further subdivision.

After incorporating these ideas to the estimation bound, our estimation
function becomes:

CHAPTER 4. PARALLELIZATION OE HIERARCHICAL RADIOSITY 65

i n t e r a c t i o n s i

esili = avgP(areai, Ae) ^ avgP(areaj, A«) * Fi(Visi_j) * p2(Bi, Bj)
3

(2)

4.6.3 Initial Distribution

Initial distribution, as we have previously mentioned, is very important for
both static and dynamic load balancing. In our implementation, to get a better
estimation, we performed some computations at the beginning. After building
interaction lists, we executed one iteration of radiosity algorithm locally and
without refinement to see the properties of patches’ interaction lists in a little

bit more detail. These properties include the visibility and form factor of

interactions and first gathered radiance. Since we neglected refinement part,
it does not take too much time. After finishing this step, we choose the input
patches with some order and assign them to processors by equalizing their
loads.

The order of selection of the input patches is also a lactor worth to consider
for the efficiency of initial distribution. Three alternatives exist on this subject:

• Randomly: Patches are assigned to processors randomly. Randomness
may produce equality, however nearby objects which have bigger interac
tion, possibly place in different processors increasing the dependency of
processors to each other.

• Octree-based: Nearby objects are forced to place in same processors. Since
nearby objects have more interaction rather than far ones, the dependen
cies between processors are expected to be lower. The octree structure
built for visibility calculations can be used to detect nearby patches. The
criterion of octree-based distribution is only the distance of patches and
this may not be a sufficient factor in terms of interaction value.

• In input order: Input order distribution is a kind of spatial distribution as
octree-based approach. If the order has a meaning, patches of same objects
are expected to be defined successively. Also, different from octree-based
distribution, not only near but also interacting objects are highly expected
to be defined successively. For example, if we have a scene with 2 rooms,
we usually define the objects in one room first, then define the objects
in other room. Thus, objects in one room will possibly be assigned to
same pi’ocessor. However, in octree-based distribution, room boundaries
are not taken into account. Even there is a wall between them, objects of
different rooms may be assigned to same processor just because they are
near in octree-based approach.

Note that, if the order does not have a meaning, input order distribution
may result worse than random distribution, since we are restricted to
select always the next patch in the order when distributing them.

CHAPTER 4. PARALLELIZATION OF HIERARCHICAL RADIOSTTY 66

Random and input order distribution greatly depend on how we gave order

CHAPTER 4. PARALLELIZATION OF HIERARCHICAL RADIOS TTY 67

to input patches. That is, by changing the order of input patches, we can get
different performance results for the same scene. This may give us the best
performance as well as the worst one.

There is one thing worth to say about the effect of interacting patches’
distance on the load of patches. Evaluating interactions of far pbjects must
not be expected to be cheaper than evaluating interactions of near objects, in
terms of time. Although far objects have small form factors, calculating their
visibility factor takes more time compared to the interactions of nearer objects.
Because, there will be more candidates of intervening objects and more octree
cells to check for far objects. This is an important feature that increases the
efficiency of the random selection method.

Comparisons of these methods are presented in the next chapter together
with performance results.

4.6.4 Patch Migration

Strictly speaking, migration is the process of moving a patch from one pro
cessor to another together with its required data. Figure 4.11 and Figure 4.12
illustrate this operation. The aim of migrating a patch is to balance the load of
processors by transferring jobs originating from the patch. It is an inevitable
operation when dynamic load balancing is considered. If there is significant
load imbalance between processors, then the overloaded processors must get

rid of them by transferring to the idle ones.

Handling migration is not simple. Some questions arise here which must be

CHAPTER 4. PARALLELIZATION OF HIERARCHICAL RADIOSTTY 68

source proc. destination proc.

Figure 4.12: Subpatch migration.

carefully considered during the design of the migration operation:

• When to migrate? Decision of migration should be given only if there is a
significant load imbalance between processors. Since the load calculation
is based on estimations, an error rate should be considered to decide the
level of imbalance. Otherwise, we might be transferring data through the
wrong direction!

• Which to migrate? How many to migrate? We should estimate load of
each patch and choose the appropriate one(s) to send in order to minimize
the overhead of migration. Subpatch migration (Figure 4.12) must also be
allowed since we may encounter difficulties during selecting the patches to
be migrated, especially when the number of processors is relatively more
than the number of input patches.

• How to migrate? Migration is not performed simply by directly transfer
ring patch and interaction list information. As we have explained before,
in order to ease and speed up accesses, processor dependent local id.s are
used for patches. Therefore, in order to migrate a patch with its inter
action list information correctly, we should provide id.s of both patches
and interactions local to the processor to be migrated. Also migration of
subpatches creates dependencies between sender and receiver processors,
which can cause delays on some radiosity computations.

• Where to migrate? Overloaded processors must transfer their load to less
loaded processors but a heuristic way must be developed to give decision

of which processors should send load to which processors. In order to
decrease the overhead caused by migration, this decision is expected to
minimize the dependencies between processors.

In our design, migration is performed within a single step separate from
radiosity computations. Migration operation starts with detecting significant
load imbalance between processors. Each [>rocessor knows the loads of other
processors and decides whether if it sends load, receives load or does nothing.
The processors that will transfer their loads, select their the most appropriate
patch(es) and send them to less loaded ones. Besides patch migration, subpatch
migration is also allowed so as not to restrict patch selection algorithm. But
patch migration is preferred due to the reasons explained later.

After choosing the suitable patches, they are migrated to their new owner
processor without their interaction lists. The interaction lists cannot be mi
grated directly since they carry localized information. The processor directs
these interactions to the processor that the chosen patch is migrated to and in
teraction lists are reconstructed in the new owner processor. In order to inform
other processors about this migration operation, messages are broadcasted by
the new owner processor. All processors start next iteration with normal ex
ecution, as if there was no migration. However, subpatch migration may lead
some problems which are explained later.

CHAPTER 4. PARy\LLELIZATION OF HfERARCHlCAL RADIOSITY 69

Let’s see how a migration is performed in details:

Migration decision is given by load balance algorithm which is executed at
the beginning of wanted iteration of radiosity solution process. The output of
the load balance detection algorithm is a matrix showing from which processor
to which processor and how many load should be transferred. This is a global
information since all the processors have the same input to the load balance
program. But after getting this matrix, the processors return to their private
tasks. According to this matrix, a processor can be any of these types: either a
source processor for migration, a destination processor for migration or none.
The source processors select appropriate patch or patches to send to destination
processors and inform the other processors about the migration operation. The
destination processors receive the selected patches and locate them into new
memory areas.

In order to perform load transmission, the source processor selects appro

priate patch or patches according to their loads and the load supposed to be

CHAPTER 4. PARALLELIZATION OF IIIERARCHICAL RADIOSITY 70

migration of

transferred. The patch whose load is the nearest one to the required load is
selected each time till the remaining required load becomes 0 or a negligible
value. It is preferred to minimize the number of patches to migrate by selecting
the most appropriate ones. However it is mostly the case that more than one
patch are selected to migrate from any processor to any processor.

After selecting the patches to be migrated, the source processor packs and
sends their data. The destination processors take these data, unpack them
and return local id.s for all patches to the source processor immediately. This
information will help the source processor to direct the interactions related
with the migrated patches easily.

Note that the source processor does not send interaction lists of migrated
patches in this step. Migration is not a simple operation. Because the infor
mation carried on a patch to be migrated is required to be validated by the
processor that it will migrate to. Since the interactions are localized by proxies,
transferring them will require special care.

Interactions are handled at source processors after receiving all proxy patches
which are candidates of migrated patches’ interacting patches, fi’om every other
processors. At this point, patch managers of the source processors check all

the interactions of migrated patches and direct them to the new processor by

revising some interaction information. Let’s e.xplaiti it with an example illus
trated in Figure 4.I.3. Patch A will migrate from processor 5 to processor D,
and patch B and proxy patch C is in the interaction list of patch /1. Patch
manager of processor S tells patch B and proxy C to go to the processor D
in the next iteration, find patch A there and add themselves to its interaction
list. The next iteration, patch B and proxy C will go to the processor D from
their owner processors, find patch A immediately with its local id., and add
themselves to its interaction list. So that these two interactions will be eval
uated in that iteration without any loss. Then the program will continue its
execution in the same way as if the patch is not migrated.

Impacts of a migration operation on source, destination and other processors
are obviously different. Here are the roles of these processors during a migration
operation;

• Step (1): Common step

— Each processor has an array including loads of all processors. They
construct the same load transfer matrix by executing the same deci
sion mechanism with same inputs. According to this matrix, proces
sors are either source, destination processors for migration, or none
of them.

CHAPTER 4. PARALLELIZATION OF HIERARCHICAL RADIOSITY 71

Step (2): For source processors

— Find suitable patch or patches to transfer according to the load trans
fer matrix.

— Send all of the selected patches’ and their subpatches’ data to the
destination processors. These data do not include their interaction
lists.

— Receive local id.s from destination processors of the migrated patches.
These information will help us to direct the interactions of the mi

grated patches.

— Send migrated patches to other processors to inform them about the

migration operation.

— Send required patches to other source processors, so that the source
processors will direct interactions of their migrated patches.

— Receive proxies from the rest of the system.

— Direct interactions of migrated pcitches by deleting the old one and
creating a new interaction with new information. The newly created
interactions are kept in migrated interactions list.

• Step (2): For destination processors

— Receive patches from source processors which are determined by load
transfer matrix. For the first time visitors allocate new memory, for
other patches convert their old proxy information into local patch
type.

— Send new local id.s information to the source processor of migrated
patches.

— Send all required patches to source processors, so that the source
processors will direct interactions of their migrated patches.

CHAPTER 4. PARALLELIZATION OF HIERARCHICAL RADIOSITY 72

Step (2): For other processors

- Send all required patches to source processors, so that the source
processors will direct interactions of their migrated patches.

Step (3): Common step

— Receive patches from all source processors, update migration infor
mation.

- Send all changed proxies to their owner processors.

— In the next iteration, the migrated interaction lists will be included
in packed patch data, so that the interaction lists of recent migrated
patches will be reconstructed without loss.

CHAPTER 4. PARALLELIZATION OF HiERARCl-HCAL RADIOSTTY 73

D iscussion

Migration step is a conimunication step wliicli does not include any rcidios-
ity computations. The source processors do the major part of migration, by
sending migrated patches to destination processors and dealing with their in
teraction lists.

The main reason for separating this operation from radiosity computations
is maintaining highly localized data. All patches and their interaction lists keep
pointers to memory areas local to the processor that they are belong to. It is
clear that using these pointers in the processor where the patch will migrate
to, does not make any sense. Although this makes migration difficult, we get
its profit in other steps very much.

As an alternative to the separate step migration method, we can also per
form migration operations concurrent wdth an ordinary iteration of radiosity
computations. In such a case, it would not be easy to handle transferring in
teraction lists. Remote patches, in the interaction list of migrated patch will
come to the source processor as proxy patches. After all these patches place
in the source processor, it becomes possible to send them to the destination
processor as interactions of migrated patch. In order to solve the local index
problem, all proxies bring also their index local to the destination processor, at
the beginning of the step. There is no a big problem so far. If the local patches
or proxy patches have valid local id.s for destination processor (i.e., they have
visited the destination processor at least once before), local indexing does not
create problem. However, for the first time visitors, new memory locations
are allocated in the destination processor and this may threat consistency of
these patches. Same patch can be transferred to the destination processor from
different processors. In each transfer, destination processor allocates different
memory locations for the same proxy patch resulting inconsistency for it. To
overcome this problem, either we can direct these interactions to destination
processor as our current method which may lead delayings for that interaction,
or find out if the current "patch is visited the destination processor at the same
iteration by searching the newly created patches array. Directing interactions

CHAPTER 4. PARALLELIZATION OF HIERARCHICAL RADIOS TTY 71

patch A interaction patch B

migrated
subpatch

Figure 4.14; Subpatch migration problem.

cause postponing evaluation of them to next iteration. Since we perform ra-
diosity computations in the current iteration, delaying some interactions would
cause late convergence. Searching array whenever we encounter a first visitor
patch is the only way to overcome this invalid local id. problem. Programming
this method tends to be very complicated and may produce erroneous results
if we take the obligation of transferring patch with their subtree up to a level
into account.

Due to performance considerations, we also have to restrict selection of
appropriate patches to migrate. If a subpatch is migrated once, its subpatches
are not permitted to migrate in further iterations. Such an operation may cause
long waits especially in the push & pull phase which may require a varying size
of ring communication.

In order to increase the alternatives when selecting appropriate patches
to migrate, source processors are permitted to choose subpatches. This is
very important especially for the cases where there are less input patches with
respect to processors. Therefore, processors can migrate subpatches up to a
level, without deforming hierarchy of its tree.

Subpatch migration creates dependencies between source and destination
processors during radiosity computations. This dependency is both in the
gathering radiosity operation and in the push & pull phase. After subpatch
migration, parent and child become located at different processors. While eval
uating interactions of parent patch, the interaction may subject to be refined.
Refinement of an interaction causes passing the interaction to the children of
the owner patch. If one of the children does not exist because of migration, we
fail to evaluate the interaction in the current processor. This case is presented

in the Figure 4.14. Patch A owns the interaction, and refinement of this inter
action causes the migrated subpatch to own the refined interaction. Migrated
subpatch is no more a local pritch and cannot behave like a local patch. It is
located at another processor and may not have up-to-date inlormation in the
current processor. The interciction between migrated subpatch and patch B
causes problem at this point. To overcome this problem: •

• Migrated subpatches always send proxies to their original processors, and
keep their data up-to-date.

CHAPTER 4. PARALLELIZATION OF HIERARCHICAL RADIOSTTY 75

• Proxies are allowed to own and evaluate interactions.

Chapter 5

Performance Evaluation

This chapter presents results of performance studies conducted to understand
the impact of various design and implementation decisions on the performance.
These decisions include load estimation methods, initial patch distribution,
subdivision depth limit and patch migration. The results are obtained by sev
eral runs for various input scenes on the Parsytec distributed memory machine.

Unless stated otherwise, all time values are in seconds and all size values
are in bytes.

5.1 The Input Scenes

Hierarchical radiosity algorithms cannot use models which have been prepared
for other radiosity algorithms. Because, hierarchical radiosity algorithms work
with models which consist of undivided surface patches. However, for exam
ple progressive radiosity algorithms require all input patches to be divided in
advance into fine resolutions. Their models consist of too many subdivided
patches, and are useless for hierarchical radiosity. In hierarchical approach,
the input patches are accepted as undivided and divided during radiosity cal
culations dynamically.

We used 4 different input scenes during our performance study which have

76

CHAPTER 5. PERFORMANCE EVALUATION 77

been prepared according to liierarchical a[)proach. Their cliaracteristic.s are
listed below:

• Scene 1: (see Figure 5.1 and Figure 5.5) The scene has 30 input patches.
There is a box which has a rectangular trapezoid prism and a triangu
lar prism inside. Since the patches are relatively snuill sized and less in
amount, we have not much computation to account for parallelization.

• Scene 2: (see Figure 5.2) The scene has 216 input patches. It represents
an office with some furniture. An important characteristic of the scene
is that, visibility rates of patches are relatively high. This increases the
amount of interactions between patches. Another important feature is its
irregularity in terms of surface sizes. Small numbered large patches create
problems during initial distribution since they have a great potential of
interaction with the rest of the objects in the scene.

• Scene 3: (see Figure 5.3) There are 174 input patches in this scene. A
house plan with 8 rooms is represented. Although the scene has less input
patches, it has more detail and requires more effort to be rendered than
Scene 2. Not most of the patches can see each other due to walls. Since
the amount of big patches is relatively much than available processors, its
initial distribution is easier than Scene 2.

• Scene 4: (see Figure 5.4 and Figure 5.6) There are 252 input patches in
this scene. It has same plan with Scene 3 with some extra furnitures. Due
to these newly added objects, it requires the longest time to be rendered.

In Table 5.1, some statistical information about scenes are presented. Values
are obtained by running the program sequentially. Note that parallel running
changes only the time values. As seen from the table, number of final patches
are very big with respect to the number of input patches. This observation
shows the attractiveness of hierarchical method beside the other methods.
Also, number of interactions are very low if it is compared with the square
of final patches count which is equal to the number of potential interactions.
Convergence rate is the change percentage of patch radiosities in the current
iteration.

CHAPTER 5. PERFORMANCE EVALUATION 78

Table 5.1: Scenes used in perforiruince studies (results are tor one processor).

Scenes input
patches

final
patches

total in
teraction

conver
gence rate

iter
ation

preproc.
time

comput.
time

Scene 1 30 4677 90891 0.007 10 0..5s 57.8s
Scene 2 216 6610 187818 0.016 9.5s 171.8s
Scene 3 174 13608 348508 0.006 4.8s 198.0s
Scene 4 252 14170 350622 0.006 13.5s 213.3s

5.2 Impact of Load Estimation Methods

The Table 5.2 and Table 5.3 show timings for various load estimation methods
discussed in Section 5.2. For each load estimation method, we ran the program
on different number of processors for each input scene and measure the execu
tion time. Table 5.2 shows the timings where the patches are distributed by
the input order method. As discussed in the Section 5.2 number of patches as
an estimation for processor load is observed to be inferior than others. Partic
ularly for Scene 2, distributing equal number of patches to processors performs
very poorly because probably large patches were assigned to the same proces
sor. However, number of interactions method or the load formula method do
not threat patches equally and more intelligent decisions can be done based on
the work to be done. The results show that the latter two methods perform
much better than the naive number of patches method and our load estima
tion formula seems to be superior among all. Table 5.3 shows the timings of
the same experiment for the octree-based distribution. Again the results are
similar to the previous experiment.

5.3 Impact of Initial Patch Distribution

In this part, we compared three different patch distribution methods which

are explained in Section 4.6.3. They are namely random, input order and
octree-based distribution. Table 5.4 shows timings and Table 5.5 shows com

munication volumes of sample runs.

CHAPTER 5. PERFORMANCE EVALUATION 79

Table 5.2: Comparison of load estirnafion met,hods (input order patch dis
tributing method) (p: according to [)atch number, i: according to interaction
number, f; according to the presented formuhi).

Scenes Seq. time # p P i f
Scene 1 57.8 2 58.2 34.9 35.2

4 35.3 20.0 17.5

Scene 2 171.8
2 177.3 172.9 141.9
4 173.6 1.58.4 80.8
8 177.3 94.0 61.2

16 176.7 61.0 60.7

Scene 3 198.0
2 129.0 119.0 117.3
4 90.5 67.8 60.0
8 60.6 .50.0 .39.6

16 46.4 31.2 34.0

Table 5.3: Comparison of load estimation methods (octree-based patch distri
bution) (p: according to patch number, i: according to interaction number, f:
according to the presented formula).

Scenes Seq. time # p P i f
Scene 1 57.8 2 40.6 .35.0 .34.8

4 25.8 21.3 21.3

Scene 2 171.8
2 96.6 94.9 113.4
4 63.6 61.8 77.4
8 60.4 60.2 60.4

16 60.7 61.6 61.2

Scene 3 198.0
2 114.9 121.4 116.7
4 69.2 64.9 60.7
8 65.7 44.1 40.5

16 49.0 .34.8 29.2

CHAPTER 5. PERFORMANCE EVA L UATION 80

Table 5.4: Timings for scimple runs of different patch distribution methods.

Scenes Secj. time # P random input order octree-based

Scene 1 57.8
16
24

34.2
18.7
15.9
17.3
18.0

34.8
17.5
15.8
17.5
18.8

34.2
21.0
16.0
17.7
18.8

125.8
62.8

Scene 2 171.8 59.8
16
24

60.6
61.6

139.7
79.4
60.7
60.2
61.7

110.8
76.6
60.0
60.0
62.0

Scene 3 198.0
16
24

106.1
61.3
41.7
32.9
25.3

114.5
59.5
39.1
34.0
25.8

116.7
60.7
40.5
29.2
25.5

117.4
70.6

Scene 4 213.3 48.2
16 31.0
24 30.9

134.3
66.8
41.5
30.0
31.5

126.8
65.0
39.5
28.9
28.6

If we look at the speed up of any distribution method we observe that up
to four processors, reasonable speed ups were obtained. After four processors,
there is no significant improvement in execution time for Scene 1 and Scene 2
is observed. This is because there are not enough number of patches at the
beginning of the execution to load processors. However, as patches are divided
into smaller patches, the load can be balanced at later steps by dynamic load
mechanism which will be discussed in the next section.

We observe also that none of the initial distribution methods is superior to
any other one. This result is due to highly irregular structure of the compu
tations. A static distribution based on initial information of the patches does
not guarantee load balance throughout the execution.

Random distribution is slightly worse than others. Because it creates more
communication as shown in Table 5.5.

CHAPTER 5. PEFiFORMANCE EVALUATION 81

Table 5.5: Communication volumes for sample runs for different patch selection
methods.

Scenes # p random input order octree-based

Scene 1

2 495K 503K 408K
4 1013K 984K 963K
8 1.338K 1268K 1.357K

16 1537K 1380K 145 IK
24 1544K 1433K 1494K

Scene 2

2 657K 572K 654K
4 1537K 1367K 1372K
8 2349K 2300K 2304K

16 3085K 2865K 2857K
24 3407K 3059K 3046K

Scene .3

2 1367K 41.5K 470K
4 2282K 943K 143 IK
8 3533K 2662K 2549K

16 5003K 4300K 423 IK
24 5644K 5132K 5152K

Scene 4

2 1399K 218K 518K
4 2728K 1165K 1620K
8 3924K 2550K 3035K

16 5677K 4783K 4883K
24 6517K 5947K 604 IK

CHAPTER 5. PERFORMANCE EVALUATION 82

5.4 Impact of Dynamic Load Balancing

We conducted experiments with dyncvrnic load balancing. In these experiments
after a number of iterations the program enters into migration step to rebalance
the load of the processors by moving patches from overloaded processors (as
explained in Section 4.6.4).

Table 5.6, Table 5.7 and Table 5.8 compares the performance results for
initial distribution and dynamic load balancing schemes. Especially from the
timings of Scene 1 and Scene 2, we observe that static load balancing does
not produce scalable results as the processor number inci’eases. However with
dynamic load balancing, consistent improvements in execution time is observed
as the number of processors increases. For example as seen from Table 5.6 for
Scene 4 10.6 speed up is obtained in 24 processors. The results show the
necessity and the efficiency of patch migration operation.

5.5 Impact of Patch Subdivision Depth Limit

One of the design decisions of our parallel algorithm was to put a limit on
patch subdivision (see Section 4.5.2).

Table 5.9 shows timings for different level subdivision limit 1 to 4. If the
limit is i we let the patches to subdivide into at most i level subdivisions
within a single iteration. Fourth column is the ratio of the last iteration’s total
radiosity to the previous iteration’s total radiosity. It is a kind of convergence
speed.

According to results summarized in the table, selecting a high limit does not
produce better results, instead increases communication volume. Note that the
subdivision depth limit is also the depth limit of proxy transfer. Therefore, in
high depth limits, proxy patches are transferred with bigger subtree for nothing.
Also selecting limit as 1 is very restrictive and decreases the convergence speed.
Therefore we selected the limit as 2 for the performance studies presented in

this chapter.

CHAPTER 5. PERFORMANCE EVAUJATION 83

Table 5.6; Statistics for runs including migration with random patch distribu-
tion(*: no migration recpiired, **: migration fciiled within given limits).

Scenes Seq.
time

p # time without
migration

time with
migration

comm.
volume

max. migra
tion level

Scene 1 57.8

2 34.2 31.9 469K 2
4 18.7 18.1 1127K 3
8 15.9 11.3 2029K 3

16 17.3 8.9 3435K 4
24 18.0 **18.0

Scene 2 171.8

2 125.8 96.6 737K 1
4 62.8 61.6 1608K 1
8 59.8 35.3 3131K 3

16 60.6 22.9 4960K 3
24 61.6 18.9 6356K 4

Scene 3 198.0

2 106.1 *106.1
4 61.3 *61.3
8 41.7 40.1 •3912K 2

16 32.9 23.5 5911K 3
24 25.3 19.4 7396K 3

Scene 4

2 117.4 116.4 1399K 1
4 70.6 68.4 2796K 1

213.3 8 48.2 42.9 4234K 1
16 31.0 27.0 625 IK 1
24 30.9 20.3 8504K 3

CHAPTER 5. PERFORMANCE EVALUATION 84

Table 5.7; Statistics for runs including migration with input order patch dis
tribution (*: no migration required.)

Scenes Seq.
time

p # time without
migration

time with
migration

comm.
volume

max. migra
tion level

Scene 1 57.8

2 34.8 31.3 .55 IK 2
4 17.5 17.4 1033K 3
8 15.8 11.4 1954K 3

16 17.5 8.8 3177K 3
24 18.8 8.9 4529K 4

Scene 2 171.8

2 1.39.7 113.8 694K 1
4 79.4 59.8 1584K 1
8 60.7 34.7 2910K 3

16 60.2 24.0 4783K 3
24 61.7 18.8 6056K 4

Scene 3 198.0

2 114.5 *114.5
4 59.5 *59.5
8 39.1 .38.4 2834K 1

16 34.0 22.5 4982K 3
24 25.8 19.6 7077K 3

Scene 4

2 134.3 *134.3
4 66.8 *66.8

213.3 8 41.5 *41.5
16 .30.0 24.7 5801K 2
24 31.5 21.8 8100K 2

CHAPTER 5. PERFORMANCE EVALUATION

Table 5.8: Statistics for runs including migration with octree-based patch dis
tribution (*: no migration recpiired).

Scenes Seep
time

p # time without
migration

time with
migration

comm.
volume

max. migra
tion level

Scene 1 57.8

2 34.2 33.3 535K 1
4 21.0 17.8 1120K 2
8 16.0 11.9 1909K 4

16 17.7 9.2 3343K 4
24 18.8 9.3 4647K 4

Scene 2 171.8

2 110.8 96.9 672K 1
4 76.6 55.0 1622K 2
8 60.0 35.5 2876K 3

16 60.0 24.1 4988K 4
24 62.0 18.9 6380K 4

Scene .3 198.0

2 116.7 *116.7
4 60.7 *60.7
8 40.5 35.5 2972K 3

16 29.2 23.3 5218K 3
24 25.5 19.0 6943K 3

Scene 4

2 126.8 *126.8
4 65.0 *65.0

213.3 8 39.5 35.5 3292K 2
16 28.9 26.1 5308K 2
24 28.6 22.1 8442K 4

CHAPTER 5. PERFORMANCE EVALUATION 86

Table 5.9: Statistics for sample runs with clilFerent subdivision depth limits
(for two processors).

Scenes depth
limit

time rad. change
ratio

of inter
actions

comm.
volume

Scene 1 1 32.0 0.0070 86405 264K
2 35.3 0.0076 90891 467K
3 35.5 0.0077 92409 .507K
4 35.6 0.0077 92430 538K

Scene 2 1 106.3 0.0151 17.5032 415K
2 112.3 0.0162 187818 654K
3 114.5 0.0169 192.569 747K
4 116.8 0.0169 192.584 785K

Scene 3 1 108.2 0.0065 3412.59 327K
2 117.3 0.0065 348508 • 470K
3 119.2 0.0065 349338 682K
4 119.2 0.0065 349341 1070K

Figure 5.1: Scene 1, wireframe picture.

CHAPTER 5. PERFORMANCE E Wl L UAVION 87

Figure 5.2: Scene 2, wireframe picture.

CHAPTER 5. PERFORMANCE EVALUATION 88

Figure 5.4: Scene 4, wireframe picture.

Figure 5.5: Scene 1, shaded image.

CHAPTER 5. PERFORMANCE EVALUATION 89

Figure 5.6: Scene 4, shaded image.

Chapter 6

Conclusions and Future Work

In this thesis, we have investigated parallelism for hierarchical radiosity al
gorithms on distributed memory computers. We have designed and imple-
iTiented ci parallel hierarchical radiosity algorithm using message driven libi'ciry
of Charrn-|--)-. In order to make Charm-|--|- available on our ¡parallel machine
Parsytec, we ported it by rewriting its machine interface modules with EPX,
Parsytec’s native message-passing library. Then we have conducted a perfor-
nicince study to measure the efficiency of our parallelization scheme. This is
the summary of our work presented in this thesis.

It is always difficult to develop parallel applications. Special care must be
taken when designing issues related with parallelization such as initial load
distribution, synchronization, scheduling, load balancing, data transfer policy.
Sometimes it may be very difficult for the application to be scalable even with
a good design, if the data manipulated is changing dynamically. This property
causes load imbalances between processors during execution and processors are
forced to balance their load dynamically. Unfortunately this is the case for hi
erarchical radiosity approach. Different from most of the parallel applications,
hierarchical radiosity deals with dynamically growing data and this makes it
difficult to parallelize. This was the major problem that we encountered during
our parallelization study. Some of the other problems are stated in Section 4.2.

In order to give a fair decision for the initial distribution of patches, we

90

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 91

have developed a mechanism to estimate load of each patch. Estimation based
on only interaction numbers and estimation based on formula were observed
to be efficient. Patches are distributed to processors in different ways, either
randomly or octree-based or in input order. Although none of them is observed
to be superior to others, differences of their performance results cire worth to
consider.

Using proxy patches as repi’esentatives of remote patches is an important
decision of our design. The advantages gained by this idea are: a) Communi
cation volume is decreased since a proxy is sent only once for all its interacting
patches, b) Consistency of remote patches is preserved since there is at most
one proxy for a patch at each processor, c) It is provided that the radiosity
functions operate as if all the patches are local, d) And requesting step for
remote patches is removed since they know which processor needs its data. We
have assigned managers responsible for proxy patches and local jDatches to ease
their manipulation.

As seen from the static load balancing results, we were forced to perform
a dynamic load balancing strategy. Due to its importance for parallelism, we
have spent greatest effort on this part. The strategy we followed for dynamic
load balancing is migrating the patches and their interactions from overloaded
processors to less loaded ones. This opei’cition is performed when a significant
load imbalance between processors is detected. After detecting imbalance, all
of the processors enter load balancing phase instead of ordinary iterations.
After migrating patches and their interactions, processors return their normal
execution with their changed data. Necessity and efficiency of patch migration
operation can easily be observed from performance results.

For the radiosity to be usable in commercial applications, still too much
work needs to be done besides parallelization. There are several areas which
are open to further research. •

• Clustering is a must for radiosity algorithms. It is an extension of hierar
chical approach and more close to N-body cilgorithms.

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 92

• Hierarchical radiosity can be investigated to integrate with progressive ra-
diosity method to exploit its advantages especially for parallel processing. •

• For a better image quality, shadow boundaries must be handled separately
as in discontinuity meshes. Also, both of the diffuse reflector and mirror
like surfaces must be handled together.

Bibliography

[AC096] C. Aykanat, T. Capin, and B. Ozguc. A parallel progressive ra-
diosity algorithm based on patch data circulation. Computers &
Graphics, 20(2):307-324, 1996.

[ACSG98] M. Atun, I. Cengiz, R. Sireli, and A. Gursoy. Implementation
of Converse interoperable programming environment on Parsytec
CC multicomputers. In Advances in Computer and Information
Sciences’98, lOS/Ohmsa, pa.ges 367-374, Oct 1998.

[CA093] T. Capin, C. Aykanat, and B. Ozguc. Progressive refinement ra-
diosity on ring-connected multicomputers. In Proceedings of IEEE
1993 Parallel Rendering Symposium, ACM SIGGRAPH, pages 71-
76, 1993.

[CCWG88] M. F. Cohen, S. E. Chen, J. R. Walhice, and D. P. Greenberg. A
progressive refinement approach to fast radiosity image genei'cition.
Computer Graphics, 22(4);75-84, Aug 1988.

[CHRM97] Charm+P Programming Manual, 1997. Department of CS, Uni
versity of Illinos at Urbana-Carnpciign.

[CON96] Converse Programming Manual, 1996. Department of CS, Univer
sity of Illinos at Urbana-Campaign.

[CW93] M. F. Cohen and J. R. Wallace. Radiosity and Realistic Image
Synthesis. Academic Press, NY, 1993.

[DBSW97] Ph. Dutre, Ph. Bekciert, F. Suykens, and Y. D. Willems. Bidi
rectional radiosity. In 8th Eurographics Workshop on Rendering,
1997.

93

BIBLIOGRAPHY 94

[ECGS92] T. V. Eicken, D. Culler, S. Goldstein, and K. Schauser. Active
messages: A mechanism for integrated communication and com
putation. In Proceedings of 19th Ann. InVl Syrnp. Computer Ar
chitectures, pages 256-266, 1992.

[EPX] Embedded Parix, Software Documentation. Parsytec GbmH.

[EY97] C-C. Feng and S-N. Yang. A parallel hiercirchical radios! ty algo
rithm for complex scenes. In IEEE Parallel Rendering Symposium,
pages 71-77, 1997.

[GBD+94] A. Geist, A. Beguelin, .1. Dongarra, R. Manchek W. .Rang, and
V. Sunderam. PVM 3 User’s Guide and Reference Manual. OAK
Ridge National Laboratory, Knoxville, TN, 1994.

[GBM94] R. Garrnann, C-A. Bohn, and H. Muller. Parallel hierarchical ra-
diosity on the CM-5. Technical Report 557, Department of Com
puter Science, Dortmund University, 1994.

[GRS95] P. Guitton, J. Roman, and G. Subrenat. Implementation results
and analysis of a parallel progressive radiosity. In IFIEE Parallel
Rendering Symposium, pages .31-38, 1995.

[GTGB84] C. M. Goral, K. E. Torrance, D. P. Greenberg, and B. Battciile.
Modeling the interaction of light between diffuse surfaces. Com
puter Graphics, 18(3):213-222, .Jul 1984.

[HSA91] P. Hanrahan, D. Salzman, and L. Aupperle. A rapid hierarchical
radiosity algorithm. Computer Graphics, 25(4):197-206, Jul 1991.

[HSD94] N. Holzschuch, F. Sillion, and G. Drettakis. An efficient progres
sive refinement strategy for hierarchical radiosity. In Fifth Euro
graphics Workshop on Rendering, ACM SIGGRAPH, Darmstadt,
Germany, Jun 1994.

[KA097] T. M. Kurc, C. Aykanat, and B. Ozguc. A parallel scaled
conjugate-gradient algorithm for the solution phase of gathering
radiosity on hypercubes. The Visual Computer, 13:1-19, 1997.

BIBLIOGRAPHY 95

[KBJK96] L. V. Kale, M. Bhandarkar, N. .Jagathesan, and S. Krishnan. Con
verse: An interoperable framework for ¡parallel programming. In
Proceedings of IPPS’96, pages 212-217, 1996.

[KG95] L. V. Kale and A. Gursoy. Reuse and efficiency with message-
driven libraries. In Proceedings of 7th SIAM Conference on Parallel
Processing for Scientific Computing, ¡aages 738-743, 1995.

[KK93] L. V. Kale and S. Krishnan. Charm-)--!-: A portable concurrent
object oriented system based on C-f--|-. In Proceedings of the Con
ference on Object Oriented Programming Systems, Languages and
Applications, ACM Sigplan Notes, pages 91-108, Sep-Oct 1993.

[KSB'*'98] L. V. Kale, R. Skeel, M. Bhandarkar, R. Brunner, A. Gur
soy, N. Krawetz, J. Phillips, A. Shinozaki, K. Varadarajan, and
K. Schulten. NAMD2 : Greater scalability for parallel molecular
dynamics. Journal of Computational Physics, 1998.

[LBB97] K. Langendoen, R. Bhoedjang, and H. Bal. Models for asyn
chronous message handling. IEEE Concurrency, pages 28-38, Apr
1997.

[LTG92] D. Lischinski, F. Tampieri, and D. P. Greenberg. Discontinuity
meshing for accurate radiosity. IEEE Computer Graphics and Ap
plications, 12(6):25-39, Nov 1992.

[LTG93] D. Lischinski, F. Tampieri, and D. P. Greenberg. Combining hier-
circhical radiosity and discontinuity meshing. In Computer Graph
ics Proceedings, ACM SIGGRAPH, pages 199-208, Aug 1993.

[PLC95] S. Pakin, M. Lauria, and A. Chien. High performance messag
ing on workstations: Illinois Fast Messages (FM) for Myrinet. In
Proceedings of Supercomputing’95 (CD-ROM), 1995.

[PRR96] A. Podehl, T. Räuber, and G. Runger. Scalability and granularity
issues of the hierarchical radiosity method. In Euro-Par Vol. I,
pages 789-798, 1996.

BIBLIOGRAPHY 96

[RS97] J. Richard and J. Pal Singh. Parallel hierarchical computation of
specular radiosity. In James Painter, Gordon Stoll, and Kwan-Liu
Ma, editors, IEEE Parallel Rendering Symposmm ̂ pages 59-70.
IEEE, Nov 1997. ISBN 1-58113-010-4.

[SAG94] B. Smits, J. Arvo, and D. P. Greenberg. A clustering algorithm
for radiosity in complex environments. In Computer Graphics Pro
ceedings, ACM SIGGRAPH, pages 435-442, Jul 1994.

[Sarn90a] H. Samet. Applications of Spatial Data Structures. Addison-
Wesley, Reading, 1990.

[Sam90b] H. Samet. The Design and Analysis of Spatial Data Structures.
Addison-Wesley, Reading, 1990.

[SAS92] B. Smits, J. Arvo, and D. Salesin. An importance-driven radiosity
algorithm. Computer Graphics, 26(2);27.3-282, Jul 1992.

[SDS95] F. Sillion, G. Drettakis, and C. Soler. A clustering algorithm for
radiance calculation in general environments. In Pat Hanrahan and
W. Purgathofer, editors. Rendering Techniques ‘95, pages 196-205.
Springer, NY, 1995.

[SGL94] J. P. Singh, A. Gupta, and M. Levoy. Parallel visualization algo
rithms: Performance and architectural implications. IEEE Com
puter, 27(7):45-55, Jul 1994.

[SH89] R. Siegel and J. R. Howell. Thermal Radiation Heat Transfer.
Hemisphere Publishing Corporation, Washington D.C., 1989.

[She94] G. Shea. Riidiosity rendering with specular shading. Master’s
thesis, Kansas University, May 1994.

[SHT"''95] J. P. Singh, C. Holt, T. Totsuka, A. Gupta, and J. Hennessy. Load
balancing and data locality in adaj^tive hierarchical N-body meth
ods: Bcirnes-hut, fast multipole, and radiosity. Journal of Parallel
and Distributed Computing, 27:118-141, Jun 1995.

BIBLIOGRAPHY 97

[SP89]

[Sil94] F. Sillion. Clustering and volume scattering for hierarchical radios-
ity calculations. In Fifth Eurographics Workshop on Rendering ̂
pages 105-117, Darmstadt, Germany, .Jun 1994.

F. Sillion and C. Puech. A general two-pass method integrating
specular and diffuse reflection. Computer Graphics ̂ 23(3):335-344,
1989.

W. Sturzlinger, G. Schaufier, and J. Volkert. Load balancing for
a parallel radiosity algorithm. In High Performance Computing
Symposium 95, pages 217-228, Jul 1995.

[SWPW95] D. Stuttai'd, A. Worrall, D. Paddon, and C. Willis. A radiosity
system for real time photo-reiilism. In Computer Graphics: Devel
opments in Virtual Environments, ACM SIGGRAPH, pages 71-81,
Jun 1995.

[VC95] G. Vinod and V. Chaudhary. Parallel hierarchical radiosity algo
rithms : Cctse study on a DSM-COMA architecture. In Inti Conf.
on Parallel and Distributed Computing Systems, ISCA, Sept 1995.

[WEH89] J. R. Wallace, K. A. Elmquist, and E. A. Haines. A ray trcicing
algorithm for progressive radiosity. Computer Graphics, 23(3):315-
324, Jul 1989.

