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ABSTRACT

SCHEDULING WITH TOOL CHANGES TO MINIMIZE 
TOTAL COMPLETION TIME

Evrim Didem Güneş 
M.S. in Industrial Engineering 

Supervisor: Asst. Prof. M. Selim Aktürk 
December, 1998

In the literature, scheduling models do not consider the unavailability 
of tools. The tool management literature separately considers tool loading 
problem when tool changes are due to part mix. However in manufacturing 
settings tools are changed more often due to tool wear. In this research, the 
problem of scheduling a set of jobs to minimize total completion time on a 
single CNC machine is considered where the cutting tool is subject to wear.

We show that this problem is NP-hard in the strong sense. We discuss the 
behavior of SPT heuristic and show that its worst case performance ratio is 
bounded above by a constant. A pseudo-polynomial dynamic programming 
formulation is provided to solve the problem optimally. Furthermore, heuristic 
algorithms are developed including dispatching heuristics and local search 
algorithms. It is observed that the performance of SPT rule gets worse as 
the tool change time increases and tool life decreases. The best improvement 
over the SPT rule’s performance is achieved by the proposed genetic algorithm 
with problem space search.

Key words: Scheduling, Completion Time, Tool Management, Heuristics
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ÖZET

KESİCİ uç DEĞİŞİMİ DURUMUNDA TOPLAM İŞ BİTİM 
ZAMANINI ENAZLAMAK İÇİN ÇİZELGELEME

Evrim Didem Güneş
Endüstri Mühendisliği Bölümü Yüksek Lisans 
Tez Yöneticisi: Yrd. Doç. M. Selim Aktürk 

Aralık, 1998

Literatürdeki çizelgeleme modellerinde kesici uç kullanımında kısıt yoktur. 
Kesici uç işletim sistemi literatürü uç değişimi parça sırasına bağlı olduğunda 
kesici uç yükleme problemini ayrıca ele alır. Fakat üretim koşullarında kesici 
uçlar daha cok aşınmaya bağlı olarak değiştirilir. Bu çalışmada, kesici ucun 
aşınmaya maruz kaldığı tek bir CNC makinasinda bir grup işin toplam iş bitim 
zamanını enazlamak üzere çizelgelenmesi problemi ele alınmıştır.

Bu problemin kuvvetli anlamda NP-zor olduğu ve en kısa işlem süresi (EIS) 
kuralının en kötü durum performans oranının üstten bir sabitle sınırlı olduğu 
gösterilmiştir. Problemi eniyileyerek çözmek için bir sahte polinom dinamik 
programlama formülasyonu verilmiştir. Ayrıca, bazı hızlı sezgisel algoritmalar 
ve yerel tarama algoritmaları geliştirilmiştir. EIS kuralının performansının 
uç değiştirme zamani arttıkça ve uç kullanım ömrü azaldıkça kötüye gittiği 
gözlenmiştir. EIS kuralı üzerine en çok gelişmeyi problem uzayı taraması 
kullanan genetik algoritma sağlamiştır.

Anahtar sözcükler·. Çizelgeleme, İş Bitim Zamanı, Kesici Uç işletim Sistemi, 
Sezgisel Yöntemler.
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Chapter 1

Introduction

Scheduling has been an attractive field for researchers for a long time. It 
deserves this attention since scheduling is an important part of strategic 

planning in industry and has significant impact on all economic activities. The 
term scheduling can be defined as “the process of organizing, choosing and 
timing resource usage to carry out all activities/tasks necessary to produce the 
desired outputs at desired times, while satisfying a large number of time and 
relationship constraints among the activities and resources” [22]. In short, it is 
the allocation of scarce resources over time to a collection of tasks. Scheduling 

decisions in manufacturing organizations are associated with many cost terms. 
These are mainly related with customer satisfaction, such as tardiness costs, 
or investments into system resources as flowtime costs.

The manufacturing organizations have been using flexible manufacturing 
systems (FMSs) widely in recent years in order to be able to meet the diversified 

customer needs and compete in today’s world market. An FMS is mainly 
defined as a system dealing with high level distribution data processing and 
automated material flow using computer controlled machines, assembly cells, 
industrial robots, inspection machines and so on, together with computer 

integrated material handling and storage systems. Basically, it is a group 
of CNC machine tools interconnected by a material handling system and 
controlled by a computer system.

1
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Tool management is the most dynamic and critical facility in FMSs and 
requires keen attention. The cutting tools used in FMSs are subject to wear 
and they have relatively short tool lives in the planning horizon. Moreover, the 
tool holding capacity of FMSs is limited, so the machine may not be able to 
carry all the required tools to complete the jobs. For this reason, one main task 
to accomplish for tool management is to find a scheduling strategy to account 
for tool availability and tool changes.

Scheduling activities are done considering different goals. Sometimes the 
customer satisfaction in terms of meeting the deadline is taken into account, 
which is reflected as the tardiness cost in the objective function of the 
scheduling problem. Another cost measure is the time a job spends in the 
system, defined as the fiowtime of the job. Flowtime cost is related with 
the investment into system resources and is reflected as the work in process 
inventories in the system. Minimizing the total flowtime is an important 
goal for scheduling activities considering the importance of maintaining low 
inventory levels for manufacturing firms.

In this study, a single CNC machine is considered, being a part of a 
flexible manufacturing system, and the scheduling problem with the objective 
of minimizing total flowtime is studied while also focusing on the tool 
management issue to cope with the tool changes due to tool wear. The existing 
studies in the literature ignore the interaction between the scheduling decisions 
and the tool change requirements due to tool wear. In the tool management 
literature, the tool changes are generally considered to be due to part mix, 
that is, due to different tooling requirements of the parts. The cost terms 
which are directly related with scheduling decisions such as flowtime of jobs 
are not included in the objective function. On the other side, the scheduling 

literature also does not consider the tool change requirements. There are few 
studies considering the resource unavailability, but they consider the resources 
as machines, and the unavailability is limited to occur for one time only.

As a result, the scheduling problem with tool changes due to tool wear 

is an untouched topic in the literature. In this study, we aim to show the



validity of this problem and try to find solution methods to fill in this gap 
in the literature. We study the simplest case of the joint tool management 
and scheduling problem in order to provide some insights to find a solution 
for the more general cases. The problem we consider is characterized by the 
following conditions: There are n jobs with predetermined processing times. 
There is ample tool of single type, which has a constant tool life and constant 
tool changing time. When the tool life is over, the tool has to be changed. 
We assume that a manufacturing operation cannot be interrupted for a tool 
change due to surface finish requirements.

At the beginning, we analyze the complexity of this problem and show that 
it is strongly NP-hard. Afterwards, we investigate the behavior of the well 
known shortest processing time (SPT) heuristic for this problem and show 
that its worst case performance is bounded above by a constant. Then, we 
discuss some conditions which would guarantee optimality of SPT rule.

Since our problem is NP-hard, it is justified to solve it by heuristic 
approaches. In this study, we provide a dynamic programming algorithm which 
is shown to be pseudo-polynomial. Furthermore, we develop several heuristic 
algorithms including dispatching heuristics and local search algorithms. We 
test the performance of the proposed algorithms on a set of randomly generated 
problems and discuss the results. We show that an improvement over the 
performance of the SPT heuristic is provided with the proposed algorithms.

We will also elaborate on an extension of this problem in order to provide 
insights for a possible future research. We consider to incorporate the 
determination of the machining parameters which would affect the processing 
times and the tool life into the scheduling problem with tool changes. This time 
the objective function would also include the manufacturing costs in addition 
to the flowtime cost.

CHAPTER 1. INTRODUCTION 3

The remainder of the thesis can be outlined as follows. In the following 

chapter, we give a short review of the literature on the scheduling problems with 
an availability constraint and tool management studies along with some studies 
on bin packing problem, which is related with our problem in some aspects. We
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define the underlying assumptions, and give a list of notation in Chapter 3. In 
this chapter, we also discuss the characteristics of the problem and analyze the 
performance of the SPT heuristic for our problem providing some examples of 
interesting instances. We also investigate the worst case performance of SPT, 
and the conditions for optimality of this heuristic in this chapter. In Chapter 4, 
we explain the pseudo-polynomial dynamic programming formulation and the 
proposed heuristic algorithms in detail. Then, we illustrate these algorithms 
on a numerical example. In Chapter 5, we discuss the computational analysis 
done with these algorithms. The discussion on a possible extension of this 
problem is given in Chapter 6. Finally in Chapter 7, the concluding remarks 
of this study is provided with some suggestions for future research.



Chapter 2

Literature Review

Research on manufacturing has been traditionally done in separate veins for 
tool management issues and scheduling problems. In both fields, extensive 
research has been done for modeling the systems, and developing control 
methods. However, the interaction between these two levels of manufacturing 
decision processes has not been addressed by the researchers.

Scheduling can be defined as the allocation of scarce resources over time 
to a collection of tasks. It is a decision-making process that exists in most 
manufacturing systems, and also in most information-processing environments 
which plays a crucial role in strategic planning. For this reason it has attracted 
the attention of researchers since the beginning of this century, with the work of 
Henry Gantt and other pioneers. Since than, considerable amount of theoretical 
work has been done concerning various different models. An excellent overview 
of deterministic scheduling can be found in the textbook by Baker [7]. A recent 

book by Pinedo [24] deals with both deterministic and stochastic models with 
applications to real world problems.

There are many costs to the system associated with the scheduling decisions. 
Among them the most commons are cost of completing the tasks after the 

due date, which is called the tardiness cost, and cost of tasks waiting to be 

completed, called the flowtime cost. Flowtime of a job is the time it spends
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in the system. The cost of flowtime involves the investment into system 
resources, and is reflected as the inventory levels in the system. Especially with 
the emergence of new paradigms in production systems such as just in time 
philosophy, minimizing the inventory levels in the manufacturing environment 
gained importance. Consequently, the scheduling objective corresponding to 
this goal is minimizing the total flowtime. In this study, our objective will be 
minimizing the total flowtime.

Although the variety of different models studied in scheduling theory lies 
in a big range, there are still some deficiencies in the literature. The resources 
in scheduling theory are mostly considered as the machines, without referring 
to the tooling level. As discussed in Lee et al. [21] and Pinedo [24], most 
theoretical models do not take the unavailability of resources into account. It 
is usually assumed that the machine is available at all times. However in the 
real world, machines are usually not continuously available. Certainly, this 
observation is valid for the machine tools, and the unavailability of tools is a 
more common situation since the tools actually have short lives with respect 
to the planning horizon, as reported by Gray et al. [13].

In the literature, there are no studies considering the tool life and tool 
change time requirement due to tool wear, and incorporating them with 
scheduling objectives. However, there are some studies done in recent years 
considering the unavailability of machines. These problems have similar 
characteristics with the scheduling with tool changes problem.

The research on scheduling with availability constraint is mostly focused on 
machine breakdowns and maintenance intervals. The most common objective 
is minimizing the total flowtime. Adiri et al. [1] considered flowtime scheduling 
problem when machine faces breakdowns at stochastic time epochs, and repair 
time is also stochastic. The processing times are assumed constant. They have 

provided the NP completeness result of the problem, and showed that SPT 
minimizes expected total flowtime when times to breakdown are exponential. 
In the case of single breakdown and concave distribution function of the time 
to breakdown, they have again showed the stochastic optimality of SPT. They
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have also analyzed the single deterministic breakdown case, and found a worst 
case performance bound for SPT heuristic, which was 5/4.

Lee and Liman [17] have also studied the same problem, but considered 
only deterministic single scheduled maintenance case. In this study, they have 
given a simpler proof of NP completeness, and found a better bound for SPT, 
being 9/7. They have also shown that this bound is tight.

There are also some studies on flowshop and parallel machine scheduling 
with an availability constraint. Lee and Liman [18] considered two machines 
in parallel scheduling problem of minimizing the total completion time where 
one machine is available all the time and the other machine is available from 
time zero up to a fixed point in time. They have given NP-completeness proof 
for the problem, and provided a pseudo-polynomial dynamic programming 
algorithm. Moreover, in this study, a heuristic is proposed which is based on 
a slight modification of SPT rule considering the capacity of the machine with 

availability constraint. This heuristic is shown to have an error bound of 0.50.

Lee [19] studied minimizing the makespan in the two-machine flowshop 
scheduling problem. The availability constraint applies for one of the machines. 
The NP hardness proof is done and a pseudo-polynomial dynamic programming 
formulation is provided in this study. In addition, he provides two heuristics 

with an error bound analysis, for problems with availability constraint on the 
first machine, and on the second machine.

In a companion paper, Lee [20] discusses the machine scheduling with an 
availability constraint in more detail. He analyses the problem for different 
performance measures such as makespan, total weighted completion time, 

tardiness, and number of tardy jobs, and for different machine environments 
such as single machine, parallel machines, and two machine flowshop. In each 
case, the complexity issue is discussed, and either a polynomial algorithm is 
provided, or the NP hardness proof is done. In case of NP completeness of the 
problem, pseudo-polynomial dynamic programming algorithms are developed 

to solve it optimally, and/or a heuristic with an error bound analysis is 
provided. In this study, two different cases are considered, which are resumable.



and nonresumable cases. A job is called resumable if it can be interrupted in 
case of an unavailability, and can be continued after machine is available again. 
In nonresumable case, the job has to be restarted rather than continue. The 
nonresumable case is similar to the tool change problem, since for surface finish 
quality considerations, we do not let the process on a job to be interrupted, 
and continued after a tool change.

However, all these studies assume a single breakdown or maintenance 
interval. But, in the scheduling problem with tool changes this is not a realistic 
assumption and we can have several tool changes in a given time period due 
to relatively short tool lives.

There is an increasing need for manufacturing industries to achieve diverse, 
small lot production to be able to compete in today’s world market. Numerical 
control (NC) is a form of programmable automation, designed to accommodate 
variations in product configurations. Principal applications of NC are in low 
and medium volume stations, primarily in a batch production mode. The 
results of a U.S. Census Bureau survey of nearly 10,000 manufacturing firms 
in 1990 offered insights into use of 17 manufacturing technologies, such as 
CAD/CAE, robots. NC machine tools was the most widely used manufacturing 

technology, with 41.5% of the respondents indicating its use. Machinery 
production statistics released by the Japanese Ministry of International Trade 
and Industry showed that the number of NC machine tools produced in 
Japan was equal to 61,695 in 1990, which made more than 75% of total 
machine production shares (Asai and Takashima [4]). Furthermore, one of 
the major components of a flexible manufacturing system (FMS) is computer 
numerical control machine tools. An FMS is usually defined as a group of CNC 
machine tools interconnected by a material handling system and controlled by 
a computer system. In view of the high investment and operating costs of the 
CNC machines and hence of FMSs, attention should be paid to their effective 
utilization.

CHAPTER 2. LITERATURE REVIEW  8

Tool management is another area of research which has been extensively 
studied for nearly a hundred years, since Taylor [29] first recognized that



the machining conditions should be optimized to minimize the machining 
cost. There’s a great deal of work in the area of optimizing machining 
processes, such as Ermer [10], Hitomi [14] and Gopalakrishnan and Al- 
Khayyal [12]. Extensive modeling efforts have been devoted to capturing the 
relationship between machining parameters (e.g., cutting speed, feed rates, 
etc.), quality requirements (e.g., surface finish), time to complete the job, and 
the tooling cost. These relationships have been well developed for a wide 
variety of machining activities. However, in most of the studies the tool 
change requirement due to tool wear and its contribution to cost has not been 
considered. Akturk and Avci [2] proposed a new solution methodology to 
solve the machining conditions optimization and tool allocation from among 
alternative tools simultaneously, taking the tool wear and tool replacing times 
into consideration. However, in this study the objective is to minimize the 
total production cost, and any traditional scheduling objective is not included 
in the cost calculation.

Gray et al. [13] and Veeramani et al. [31] give extensive surveys on the 
tool management issues in automated manufacturing systems, and emphasize 
that the lack of tool management considerations has resulted in the poor 
performance of these systems. Kouvelis [16] report that the tooling cost 
accounts for 25% to 30% of both fixed and variable cost of production.

CHAPTER 2. LITERATURE REVIEW  9

According to Gray et al. [13] the tool management problem can be 
examined as tool-level, machine-level, and system-level issues. At the machine 
level, the tool management problem which is defined as the loading problem 
by Stecke [25] is, “the problem of allocating tools to the machine and 
simultaneously sequencing the parts to be processed so as to optimize some 
measure of production performance” . Since machine flexibility is a direct 
consequence of the tool magazine capacity, planning models especially take 
into account the limitation of tool magazine, and the necessity of tool 
changes because of this limitation. Stecke [25] formulates this problem 
as a nonlinear mixed-integer programming problem and solves it through 

linearization techniques.
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A general overview of problems studied and the solution methods proposed 
for tool management issues can be found in Crama [9]. In this research, the 
existing models on single machine, flow shop, parallel machine and robotic flow 
shop are discussed and some mathematical models are proposed for modeling 
tool loading problem. Various objectives are studied for one machine tool 
loading problem, such as minimizing the number of tool switches and number 
of switching instants, maximizing the number of parts without tool switches 
etc. as stated by Crama [9].

These models are mostly motivated from the industrial experience that 
time needed for tool interchanging is significant compared to processing times, 
as stated by Tang and Denardo [27]. And thus, from scheduling perspective, 
assuming that tool change time is too large that it dominates the processing 
times, they have tried to minimize the number of tool switches. They have 
studied a single machine case with given tool requirements, where tool changes 
are required due to part mix. They have provided heuristic algorithms for job 
scheduling in this environment, and an optimal procedure, namely the common 
sense rule Keep Tool Needed Soon(KTNS) for a fixed job sequence. They have 
also studied the case of parallel tool switchings in a companion paper [28], 
and this time the objective was chosen as minimizing the number of switching 
instants.

Crama et al. [8] have also studied the tool loading problem. They have 
proposed several heuristics including construction and improvement strategies, 
and done computational studies. They have also stated the NP hardness 
result for the problem. Tool loading problem is generally modeled as traveling 
salesman problem and TSP heuristics are widely utilized by the researchers, 
taking the estimate of maximum number of tool switches between two jobs as 
the length of the arc joining them.

In all these studies mentioned, all tool changes are considered due to part 
mix, that is, different parts require different tools, and since the tool magazine 
capacity is limited, it cannot hold all the necessary tools for completing all the 
jobs. The processing times and tool lives are assumed to be constant, ignoring
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the fact that tool wear, consequently the tool replacement frequency is directly 
related with the machining conditions selection. Moreover, in the multiple 
operations case, the tool replacements due to tool wear can have significant 
impact on total cost of production and throughput of parts as shown by Tetzlaff 
[30]. Gray et. al. [13] reported that tools are changed ten times more often 
due to tool wear than due to part mix because of relatively short tool lives of 
many turning tools.

In the tool management literature, as briefly summarized above, the 
scheduling problem with a traditional scheduling cost measure such as flowtime, 
tardiness etc. is not considered. The tool replacements are considered to be due 
to part mix, ignoring tool life restrictions, and tool change times are assumed 
to be so large that the number of tool replacements are tried to be minimized in 
most of the studies. However, with the new technology, in CNC machines tool 
change times are considerably reduced, so the processing times are not always 
dominated. For this reason, while scheduling a given set of jobs, considering 
only the tool change constraint would not result in good solutions with respect 
to the job attributes, such as flow times.

In the problem of scheduling with tool changes, there are two sources of 
input to the cost function. One is just the increase in fiowtime of jobs by the 
total time spent for processing times up to that job (which is the classical total 
flowtime cost), and the other one is the increase in flowtime as a consequence 
of tool change times spent up to that job. When the tool change time is long, 
minimizing the number of tool changes done gains importance, although we 
are not saying that it minimizes the overall objective. From this aspect, our 
problem is similar to the famous bin packing problem, which is stated as: given 
a list of L =  ( « 1 , 0 2 ,..., o„) of real numbers in (0,1], place the elements of L into 
a minimum number L* of “bins” so that no bin contains numbers whose sum 
exceeds 1. This problem is especially used to model several practical problems 
in computer science and is well studied in the literature. Since bin packing 
problem is NP complete (Garey and Johnson [11]), the heuristic procedures 
and their worst case performances are widely investigated in the literature.
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One of the pioneering studies in bin packing problem is done by Johnson et 
al. [15]. They have analyzed four heuristic algorithms, namely first-fit (FF), 
best fit (BF), first-fit-decreasing (FFD), and best-fit-decreasing (BFD). The 
first fit rule assigns each successive element into the first available bin of the 
sequence into which it will fit. The best fit algorithm places each
successive piece into the leftmost bin, for which the remaining unused capacity 
is the least. FFD and BFD are the applications of FF and BF respectively, 
after ordering the elements in nonincreasing order of their sizes. In this study, 
the worst case asymptotic performance bound for each of these algorithms, 
together with examples for worst instances are given. They have found that 
the first two heuristics, FF and BF have the same performance bound, 
where BFD and FFD have the performance ratio as H

Another algorithm, called next-fit-decreasing is studied by Baker and 
Coffman [5]. The next-fit rule is applied by placing as many pieces into bin 
Bi as can be done, then passing to next bin and placing as many possible into 
that bin, and continuing this way, without turning back to a bin even if it has 
enough capacity. Next-fit-decreasing (NFD) is the variation of this rule with 
a preordering of elements in nonincreasing order of sizes. In this study, the 
asymptotic bound for NFD rule is given as 1.691, and an example is provided 
showing the tightness of bound.

A recent study on bin-packing problem, done by Anily et al. [3], gives 
a brief overview on the heuristics for classical bin packing problem and 
their performances, and provides absolute performance bounds for next-fit- 
decreasing and next-fit-increasing heuristics, which are both equal to 1.75. 
Furthermore, they analyze the problem in case of more general cost structures, 
when the cost of a bin is a monotone and concave function of the number of 
items assigned to it. They show that NF, FF, BF, FFD, and BFD have neither 
finite absolute performance ratios, nor asymptotic performance ratios for the 
bin packing problem with general cost structures. Furthermore, they prove 
that the next-fit-increasing heuristic has an absolute worst case performance 

bound of no more than 1.75, and an asymptotic worst-case bound of 1.691 for 
any monotone and concave cost function.
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In conclusion, in the existing literature, tool management issues and 
scheduling issues are considered separately, and the interaction between them 
is ignored. In this study, they will tried to be handled together. I tried to solve 
the simplest case of the joint tool management and scheduling problem, with 
a single tool and constant processing times, hoping to provide some insights to 
the characteristics of this problem to be a first step in search of solutions for 
more generalized cases.



Chapter 3

Problem Statement

Scheduling is an important part of strategic planning in industry, since it 
can have a significant impact on all economic activities. There are various 
costs associated with scheduling decisions. Scheduling activities are done 
considering different objectives according to the relative importance of these 
costs. Flowtime is the time a job spends in the system. Total flowtime is 
the sum of flowtimes of all the jobs. The costs associated with this objective 
are primarily the investments in system resources, reflected by the work-in­
process inventories. The objective of scheduling to minimize total flow time is 
to maintain low inventory levels, which has been one of the key objectives in 
manufacturing organizations especially after the recognition of importance of 
“zero inventory” philosophy.

Flexible manufacturing systems (FMSs) have been widely used in manu­
facturing industries to cope with increasing competition. Tool management is 

the most dynamic and critical facility in FMSs and requires keen attention. 
Lack of attention to tooling issues in FMSs can affect all systems performance, 
since tool management is directly related with product design options, machine 
loading, job batching and capacity scheduling decisions. Automated machine 
tools have to be changed during production since they are subject to wear, 
and manufacturing processes are frequently interrupted for tool change due to 
tool wear compared to changes due to part mix. As explained in the previous

14
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chapter, in the literature there are no studies considering scheduling decisions 
in a manufacturing environment, where tool change due to tool wear occurs. 
This study aims to contribute to filling this gap in the literature.

The organization of this chapter is as follows. In §2.1 the definition of 
problem and underlying assumptions will be given. In §2.2 the structural 
properties of the problem will be explained, and some further analysis will be 
done concerning the complexity issues and performance of SPT heuristic for 
this problem. Finally, in §2.3 a brief summary will be done.

3.1 Problem Definition and Assumptions

In this study, our aim is to solve the scheduling problem with an availability 
constraint in an automated machining environment to minimize total flow time. 

The assumptions about the operating policy and the characteristics of the 
system considered in this study are as follows:

• There is a single machine which is continuously available.

• There are n jobs ready at time zero.

• The processing times of jobs are constant and known apriori.

• There is one type of tool used in this machine with a known, constant 
tool life.

• There is no limit on the amount of tool available.

• When the tool life ends (tool is worn out) tool has to be taken off the 
machine, and a new one has to be placed. The time spent for this process, 

i.e. tool change time, is constant.

• We do not allow a tool change during a manufacturing operation to 

achieve the desired surface finish quality.
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Under these assumptions, we wish to find a schedule that minimizes the 
total flow time of jobs.

The notation used throughout the thesis is as follows:

Tl : Tool life

Tc: Tool change time

Pi'. Processing time of job i

P[ij: Processing time of job at position i

Cf. Completion time (flowtime) of job i

tj\ Sum of processing times of jobs using jth  tool

m: Number of tools used in the optimal schedule

d: Number of tools used in the SPT schedule

9: The fraction of number of tools used in SPT schedule to the number of 
tools used in the optimal schedule i.e. d = 6m, where  ̂ >  1

S: The SPT schedule

S*: The optimal schedule

7/J: Number of jobs finished using jth  tool in schedule a 

k: Number of jobs finished using the first tool in SPT schedule {k = pf) 

K<j\ Number of tools used by schedule a 

Za: The total flow time of schedule a

: The total flow time of schedule a without considering the tool change
times

C2 '· The contribution of tool change times to the flowtime of schedule a
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p: Performance ratio of SPT schedule over optimal schedule

3.2 Characteristics of the Problem

Minimizing the total flowtime is one of the basic objectives studied in the 
scheduling literature. There is a well known dispatching rule, namely the 
shortest processing time (SPT), which gives an optimal sequence for 1|| 
problem. However, the structure of the problem changes dramatically when 
we consider tool changes.

/ / a
t block 2 t block 3 t block 4

Tc Tc Tc

block 1

Figure 3.1: Representation of a schedule as blocks of jobs

If we consider the jobs sharing the same tool as a block, a schedule can 
be viewed as blocks of jobs separated by tool changes (see Figure 3.1). This 
representation would be helpful to gain more insight into the problem structure. 
Note that, the length of blocks do not have to be same. This is because, when 
we cannot assign more jobs to a tool although the tool life has not flnished, 
there is no meaning in waiting till the end of tool life to make the tool change. 
So, in such cases, the tool is immediately replaced by a new one, and the block 
length shows the used portion of the tool. This property of the tool change 
problem is another point that makes it different from the existing models. In 
models of scheduled maintenance (see [19], [20], [17], [18] for examples) the 
unused capacity of the machine is counted as wasted time which is added to 
the flowtime of the latter jobs. However for the tool change problem this is not 

the case.

With this representation, we can consider the blocks as job strings which 
must be processed together, and has length tj+Tc. Then we know the following
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structural properties of the problem from the scheduling literature [6 ];

• If jobs q and r are within the same block, then
q precedes r if p, <  ·

• Furthermore, for blocks i and j:  
i precedes j  if ii±2!£ < £diZ£

Thus we conjecture that, in an optimal schedule, blocks should be in non­
increasing order of the number of jobs they have, and the jobs in a block must 
be in SPT order.

The total flowtime of such a sequence of jobs has two main parts, the first 
part shows the total flowtime without tool changes, and the second part is 
added as the increase in flowtime as a result of tool changes. When we ignore 
the tool changes, the total flowtime of a schedule cr is equal to:

CT =  ¿ ( «  -  9 +  1)P[9]
9=1

When we introduce the tool changes into the picture, we have to add the 
contribution of tool changes to the objective function, which can be written as:

c ’2 =  E y  -  i)ri’ Tc
j=l

This follows from the fact that before each job using the jth  tool, ( j — 1 ) 
tool changes would have been done, and this would increase each such job ’s 
completion time by Tc.

Then total flow time of a schedule a is:

z, = Cl + Cl = '£ (n -q  + 1)P[„ +  E y  -
9=1 j= l

These two parts of the objective function are conflicting in terms of the 
requirements to be minimized. In order to minimize C f , we should apply SPT,
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that is, the shorter jobs should be put in earlier blocks, and longer jobs be 
remained for the later blocks. In an SPT schedule, the number of jobs in the 
blocks, 7/j ’s are in non-increasing order of j ,  since we can assign less number 
of jobs to a block if their processing times are long. And for some instances 
this may increase the number of tools used, under-utilizing the tool life in 
later blocks. On the other hand, for C2 to be minimized, the number of blocks 
should be decreased, and this can be done only if some larger jobs are scheduled 
early so as to maintain balance in the later ones. From this aspect, problem 
is similar to bin-packing problem, but certainly not equivalent. Especially as 
Tc gets larger, this conflict between cost components makes the problem more 
diiflcult to solve.

Having defined some basic properties of the problem, we can analyze it 
in more detail. In the following sections, the complexity issues, and the 
performance of SPT heuristic for this problem will be discussed.

3.2.1 Complexity of the Problem

Although flowtime problem is very easily solved optimally by the SPT rule, 
when there are tool changes the problem becomes NP-hard in the strong sense. 
The proof will be done by transforming the 3-partition problem, which is a well- 
known NP-hard problem [11], into our problem, scheduling with tool changes. 
So, first we should state the 3 -partition problem:

Given 3m integers { ai, 0 2 ,· · ·  ,a 3m } such that a, =  mB and j  < 
ttq < Y , can this set be partitioned into m 3-tuples such that Ŷ aq = B for 
each 3 -tuple?

The following theorem shows that tool change problem is NP-hard.

Theorem 3.1: 1 /tool change/X^Ct is strongly NP-hard.

Proof: Let (P) denote the problem of scheduling with tool changes. Create
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an instance of (P) such that;

n =  3m
Pq =  Ctq, let 0 1 ^ 0 2 · · ·^  0 3^
Tl ^ B

n

^  ~  9 +  l)ön-g+l
9=1

Tc = C »  A

It was shown that for any schedule cr,

AV
<̂7 =  C f + C2 =  X ](n  -  9 -  l)i?JTc

9 j = i

Q uestion: Does there exist a schedule with total completion time, J2g- =lC'9 <

If 3 -partition has a solution the answer is YES.
If 3 -partition exists

3m(m — 1)
=

Then,
J=i

C*9 =  -  9 +  1)P[9] +  E ( *  -
g=i g=i i=l

-A . i\ 3m(m - 1 )^
-  “  9 +  1)P[9] H--------- 2------- ^

< M i: ; - , i j g

Thus, the answer to question is yes.

If partition does not have a solution, the answer is NO.
If 3-partition does not exists, any schedule will have to use m +  / (/ > 0) tools 
and for I <  i <  m -f- /, 0 < 7/j <  3 will be true.

Let Ai =  3 — Tji for I <  z <  m. Then we know that Aj > 0 for at least one 
i-i 1  <  « <  m . Moreover, rji =  3m. Thus
m m-\-l

+  S  »7.· =  3m
¿ = 1 ¿=771 + 1

771+/ m m m m

^  T]i =  3 m  =  =  S ( 3  -  Vi)
¿ZZ771 + 1 ¿ = 1 ¿ = 1 ¿=1 ¿=1
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i
I

¿ = 1
^  Vm+i — (*)

4=1

For any schedule consider the second part of the flowtime value:
m-\-l m m-\-l

[ ¿ ( * - 1 )77,·+ { i - l )r j i ]C
2=1 2=1 2=m+l

m m+/
=  E ( *  -  1)(3 -  A,·) +  £  (i -  l)r]i]C

2=1 2=m+l
m m I

=  [3 -  1) -  -  l)A i +  X ](m  +  i -  l)rj^+i]C
2 =  1 2 =  1 2 =  1

=  [
3m(m — 1)

-  £ ( *  -  l)A i +  m +  ¿ ( 7· -  l)i;^+i]C7
2 = 1 2 = 1 2 = 1

3 m(m — 1 )^  , NA  ̂ ·,----- r---- - C  + [ m j ^  rj^+i -  -  l)Ai + -  l)j]m+i]C
4=1
m

2 = 1 2 =  1
‘\m (m  — 11 '
-------T------- C +  [m ^  A* -  ¿ ( 7  -  l)A j +  ¿ ( 7  -  l)rj^j^i]C (using (*) )

2 = 1 2 = 1 2 = 1
3m(m — 1)

C +  i +  l)A i +  — V)rjjn-\-i\C
4 = 1 2 = 1

Clearly, the term within the braces is >  1 . Hence, for any schedule, C2 > 
+  C. Thus,

¿ c ,>  3"‘(’! - !)<? + c
9=1 ^

Since C > >  A , we conclude

¿ c . >  3'” ( ' ; - i ) c + y t
9=1 ^

Thus, the answer to question is NO. Hence it is shown that, even for the special 
case, the problem is reduced to another problem that is known to be strongly 
NP-hard, namely 3-partition problem. This proves the strong NP-Hardness of 
our problem. □

Furthermore, even when we fix the number of tools that can be used as a 
constant, the problem still remains NP-hard. This is shown by the following 

theorem.

Theorem 3.2: 1/tool change-limited tools/X^C, is NP-hard.
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Proof: Proof will be done by using a reduction from the partition problem. 
Partition problem is stated as follows:

Given a set y4 =  can we partition A into subsets Ai, and A2

such that =  T,ieA2 ?

This problem is well known to be NP-Hard [1 1 ].

Create an instance of our problem such that:

m = 2 (number of tools) 

n =  number of jobs

Pq = <lq

1
T L = ^ T ,a .

In this instance, it is obvious that there exists a feasible schedule if and only 
if partition problem has a solution. Therefore, answering the question if there 
is a feasible schedule with 2 tools is NP-Hard. Since even the feasibility check 
is NP-hard, the problem is NP-hard as well. □

Thus we have shown that tool change problem is NP-hard, even when the 
number of tools is fixed, and as low as 2 .

3.2.2 Performance of SPT Heuristic

As mentioned before, for the classical flowtime problem, SPT is a very powerful 
rule. And, when Tc 0 , it is obvious that SPT would be optimal, since then 
the problem would reduce to the classical 11| E  C'i problem. However, for our 
problem, depending on the magnitude of Tc value, it may not perform as well. 
We can illustrate this with an example:

Let n =  5 , Tl =  6 , and Tc =  2 . And let the pg values for 5 jobs given as 

1 , 2 , 2 ,3 ,4 . The SPT schedule would be as follows with respect to the processing
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times:

1 2 2 T c 3 T c  4

where T c  represents a tool change at that point. So, SPT schedule requires 2  

tool changes, and the total flowtime for this schedule equals 3 5 .

On the other hand, the optimal schedule would be:

1  2 3 T c 2 4

with total flowtime equal to 34.

Now, let Tc =  0.5 for the same example. This time, Zs =  30.5, where 
flowtime of the second schedule (which was optimal for Tc =  2) becomes 31.

As the above example suggests, the performance of the SPT heuristic 
changes with different Tc values. Intuitively, for small values of Tc, SPT 
should perform well, whereas it may lose power as Tc value increases. In order 
to understand if this intuition makes sense, we have made some experiments on 
small problem instances for which we can And the optimal objective function 
value. Different problems are solved for all possible cases with n =  8 ,12,16 
and ^  =  0.1,1,10. For each of these 8 cases except n =  16, 4 problems with 
Ks =  3 and four having Ks =  4 are solved by SPT and compared with the 
optimal result. For 16 jobs we were not able to find the optimal solution when 

Ks =  4 in four hours of CPU time, so we have only considered Ks =  3. The 
results are summarized in Table 3.1. For each combination of n and ^  values, 
the minimum percent deviation (MinPD), average percent deviation (APD) 
and maximum percent deviation (MaxPD) of the results obtained by SPT rule 
from the optimal objective function value are presented in this table.

As we can see from these results, performance of the SPT rule gets worse 
for our problem as tool change time increases. When the ^  value is small (as
0.1), SPT is optimal most of the time, especially for the small problem sizes 
SPT rule dominates. Intuitively, one thinks that as Tc oo, the problem 
can be seen as a bin packing problem, so as to minimize the number of tool 
changes needed, since this time Tc value would dominate. However, although
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Tc/Tl =  0.1 Tc/Tl =  1 Tc/T l = 10
n MinPD APD MaxPD MinPD APD MaxPD MinPD APD MaxPD
8 0.00 0.00 0.00 0.00 1.2869 6.2500 0.00 3.8193 16.1591
12 0.00 0.00 0.00 0.00 1.2374 4.3564 0.00 5.5632 17.0616
16 0.00 0.0444 0.1776 0.00 2.0224 4.5399 0.00 5.8903 11.9041

Table 3.1: Comparison of SPT performance with optimal values

this observation is logical, the optimal bin packing solution for tool change 
problem does not always give the optimal flowtime objective.

Moreover, when Tc —> oo, the performance of SPT heuristic for our problem 
does not coincide with its performance for the bin packing problem. The worst 
instance that SPT rule can behave for the bin packing problem is given by 
Johnson et al. [15]. This example is presented below and the ratio of C2 

values for optimal bin packing solution and SPT solution is calculated. Note 

that as Tc —>· 0 0 , C ·̂

Let Tl be 101 and Tc —> 0 0 . We have five job types with the following 
processing times pi, and number of jobs Sk for job type k\

type A Pi -  51 =  1 0

type B Pi =  34 5B =  1 0

type C Pi - 16 Sc = 3

type D Pi =  10 s d  = 7

type E Pi =  6 s e  = 7

The optimal bin packing solution will use 10 tools with the following 

allocation of jobs to tools:

Tools 1  -  7: (E  D B A)

Tools 8 -  10: (C B A)
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This sequence has the C2 value equal to 156Tc.

The SPT sequence will use 17 tools with the following allocation:

Tool 1: {E E E E E E E D D D D D)

Tool 2 : {D D C C C)

Tools 3 - 7 :  (B B )

Tools 8 -  17: {A)

This sequence has C2 value equal to 160Tc.

As we see in this example even if the bin packing solution of the SPT rule 
has a performance ratio of =  1 .7 , its performance for our problem approaches

to =  1-025.

Furthermore, we can provide an instance where SPT schedule is better 
than the optimal bin packing solution, even when Tc approaches to infinity. 
Consider the following example:

Consider an instance where Tc —> 0 0 , Tl =  1, and there are four job types 
with the following processing times p,, and number of jobs Sk for job type k:

type A -> Pi =  1  +  e

type B ^  Pi = \ - e

type C ^  Pi = \ - c

=  6

SB = 2

Sc =  3

type D Pi =  i  -  e sd =  4

The optimal bin packing solution uses 3 tools ordering the jobs as: 

D D D D A A T c C C C A A T c B B A A

and will give C2 =  13Tc.
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However, SPT rule would result in the following order:

D D D D C C C B B T c A A T c A A T c A A

with - l2Tc.

This shows an instance where SPT schedule can still be better than bin 
packing solution even if Tc —> oo. Since there is no tool change before the 
first block, and SPT fills all the small jobs to the first block, the effect of tool 
changes on flow time of the jobs is reduced although it requires one more tool 
change to complete the jobs.

In the worst example we could find for the performance of SPT rule for
q S

our problem when Tc ^  oo, the ratio was 1.5. This instance is illustrated 
below:

Let n =  6 , Tl =  10 and processing times of jobs be given as 1 , 2, 3, 5, 6 , 6 . 
Then, if a job is represented by its processing time, the SPT sequence and the 
optimal sequence are as follows:

SPT: 1  2  3 Tc 5 Tc 6 Tc 6

Optimal: 2 3 5 Tc 1  6 Tc 6

The performance ratio of SPT would be =  1.5. This is the worst
instance we have found for the performance of SPT rule when Tc approaches 
to infinity.

Having seen that SPT maintains its power for some instances, even when 

Tc is too large for SPT to be optimum, it can be expected that there is a 
bound on the worst case performance of SPT heuristic. So, the question is, 
how bad can SPT behave in the worst case, even when Tc value approaches to 
infinity? It turns out that, the performance ratio of SPT is bounded above by 
a constant, which will be proved after stating some properties needed in the 

proof:
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1 . We stated before that, in an optimal schedule, blocks should be in non­
increasing order of the number of jobs they have, and within a block jobs 
are sorted in SPT order.

2 . We know that the following relation holds between n and m:

P̂minn > m >
T l

where pmin is the minimum processing time value. 
Then i f n —̂ o o = ^ m —»^oo also holds.

Having stated the necessary structural properties, we can investigate the worst 
case behavior of SPT heuristic.

In order to remind the notation and clarify the steps to be taken in the proof, 
let us rewrite the cost components and the expression for the performance ratio 
once more. We define the cost components as follows:

C'r =  -  9 +  1 )PM
q=l

CJ =  E ( i  -  iW jTc

Then the total flowtime is:
z ,  =  Cl +  Cl

Thus the performance ratio is:

Z s  c f  + E&,(< -  l yr i f l -T c
f> =

Zs- c r  + E f j :  {i -  lurVTo

We know that as Tc 0 ,

When Tc —+ oo ,

c r

We are trying to prove that this ratio is bounded by a constant. First of 

all we have made an observation:
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Assuming that SPT schedule is not the optimal one, it must use more tools 
than the optimal schedule. Because, SPT minimizes Ci, and if there were equal 
tools in S and S*, it would also minimize C2 , since the //¡’s are non-increasing 
in i, and as i increases, the effect of rji on C2 also increases. Hence, if there 
were equal number of tools in S and S*, S would be optimal.

So, based on the above observation, we can say that the part of for 
i < Ks· is less than C f , i.e. if we define,

Cf = (7 + A

where

c = i 2 ( i - \ ) r , f T ,
¿= 1

A =  i f  ( i - ! ) > ) №  =  ¿ ( A f s - + .■ -
i—1

and
D =  K$ — Ks·

Then C < Cf* . This means, we can write Cf* =  0(7, where 0 > 1  

Consequently, the performance ratio would be as follows:

. , c !
c r

C !  _  (7 -h A
rS· ~ ns·C/0 Uo

c f
e +  A

■  C f
1  A  

=  +
0 C f

_  1  Ef=ı(AV+г^-l)>7£.■^.^Γe

 ̂ E £ T ( ^ - i ) 0 f r c

Since r/f , 1 ;

1   ̂ ~  <  -  -I-  ̂ )̂Vks*+i

^ E l r { i - i ) v r T c

 ̂ 0 E& i‘ ( * - i ) 0 f
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1 , vf<s>+i +  « -  1 )

^  ^ , Vks*+i i — 1 )
-  O'^

^ 0  +

0 h i s ^ + i Z t { { i - i )

EF=i{Ks*+i-l)
04>zl\'{i -1 )

DKs· +  D{D -  l ) /2  
e<!>{Ks*{Ks* -  1)12)

2DKs· + D ^ -D  
9cf>{Kl, -  Ks*)

(since 7/f >  i /f  )

We can find a bound on D using the bounds for bin packing problem. 
When we make the SPT order, the bin-packing aspect of the problem, which 
determines the number of tools used, is solved by NFI (next fit increasing) 
method. This means, starting with item 1 place it in bin 1. When packing 
item ji, put it in the highest indexed nonempty bin if possible, otherwise, place 
it in a new bin. The items are packed in the order of increasing sizes. SPT 
order exactly applies this method, when allocating tools to jobs. So, we can 
use the absolute bound for NFI (=  1.75) given by Anily et al. [3] in order to 
find a bound for Ks- Actually, the optimal schedule may not minimize number 
of tools, the optimal result of bin packing problem is a lower bound for Ks*· 
So, we can say;

Ks
Ks*

<  1.75

then

D = K s -  Ks* < 0.75Ks*

So, putting (0.75.A'5·) instead of D in the last line of the previous equations, 
we get.

C ! ^  1 2.0625/^1. -  0 .7 5 / 1:5 .
c f -  Ks·)

where  ̂ > 1, and (¡>>1.

This is the final form of the bound we get, which is in fact a loose one. It
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seems that when Ks* =  2, p < 4.375. As Ks* increases this value decreases, 
and when Ks* oo, p <  3.0625. Hence, we conclude that the performance 
ratio for SPT is absolutely less than 4.375.

3.2.3 Conditions for optimality of SPT

As mentioned before, it is obvious that when Tc =  0 , the SPT rule gives an 
optimal sequence. We searched for other conditions which guarantee optimality 
of SPT schedule even when Tc —»· oo. Among them some are trivial such as:

In this case, any non-SPT schedule would be worse than SPT schedule 
since the number of tools used cannot be decreased. If p, > only 
one job can be assigned to a tool. If there are more than one jobs such 
that pq = 'LL·̂  3 p'p schedule would assign them to one tool, whereas a 

non-SPT schedule may miss this opportunity. Hence, we conclude that 
in this case SPT rule gives the optimal schedule independent of Tc value.

• Ks <  2

In this case, Ks· <  2  must also hold. Because, SPT sequence already has 
the maximum number of jobs in the first block (hence minimum in the 
second block, which contribute to C^), and if 2  tools are enough, there 
will be no decrease in by using one more tool in order to allocate at 
least as many jobs as . Since we know that SPT also minimizes 
we conclude that SPT schedule is optimum in this case.

In addition to these, we can find a bound on Tc below for which the SPT 
rule gives an optimal sequence.

To find a maximum Tc value below for which the SPT schedule will be 
optimal, we have considered an approach of comparing the cost components 
of the SPT schedule with any other non-SPT schedule. Here the absolute 
bound for worst case performance of SPT, found as 4.375, is used which is the
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only absolute bound we have. We did not use the asymptotic value of 3.0625, 
because the value obtained at the end of these computations is asymptotically 
going to zero.

To find a. Tc value, a;, below for which SPT is optimal may have two 
meanings:

1 ) if Tc < a; = >  SPT is optimum
2 ) if SPT is optimum Tc < x

What we are looking for is the first one. So, we must find a minimum value 
for the right hand side of the equation ( 1 ) (whereas a maximum value would 
be needed for the second part). Below is the calculations for the first part.

Factoring out the Tc value from C2 , we redefine the cost components with 
a slight modification as follows:

Cl =  -  9 +  1 )P[,:9]

Then total flow time is:

CJ = E (i -  l)-vt
i=l

Z =  Y^C^ =  Ci +  C2.Tc

Assume that there exists a schedule other than SPT schedule, which gives 
the optimal objective value. In this case, for SPT schedule to be optimal the 
following must hold:

S is optimal C f +  C^Tc < C f  +  C f T c

[ c ! -  c f )T c  < c f  -  cf

T c <
c f  -  c f
/̂ S nS* 
^ 2  “  ^ 2

( 1)
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C f  -  C f  ̂ 4.375(Cf* -  C f )
^9 ^9

>

3.375C2^
4.375A'„i„

>

3.375E & ( i  -  1 ) . ,?
4.375AL.

3.375E&,(!-l).>)i
4.375AL„

3.376i,f/lfs(/is -  l)/2
2.59A',.„

,| (7 f|  -  /is )

(since C2 /C2 " < 4.375)

(2)

(since T}2 > r]f,Vi > 1 )

(3)

where A^j„=minimum difference in processing times of given jobs (greater 
than zero).

While writing Equation (2) we tried to find the minimum possible deviation 
of the total flow time of a non-SPT schedule from an SPT schedule. If only 
the two adjacent jobs with minimum difference in processing times (not equal 
to zero) are interchanged, the minimum deviation would occur. It can be 
calculated as:

(n -  /)pJ+ij + { n - l -  l)pg -  [(n-  l)pfî  + (n-  / -  l)p̂ +i]] = pf+q - p| =

where / shows the rank of the jobs with minimum difference in processing times. 
Then, from (1) and (3) we can say that if

2 .59AL,:„T c <-  „.srjUKl -  Ks)

then SPT schedule is optimum.

3.3 Summary

In this chapter, after giving the definition of our problem together with the 
underlying assumptions, the characteristics of the problem has been analyzed.
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It was shown that the problem is NP-hard even when the number of tools 
is limited, and in the general case, when there is no limit on the number of 
tools, the problem becomes strongly NP-hard. Furthermore, the behavior of 
SPT heuristic, which is very powerful for the scheduling problem with the 
same objective when there are no tool changes, is investigated. Some example 
instances are provided to illustrate the different possible results in performance 
of SPT for this problem. Then, it was shown that the worst case performance 
of the SPT heuristic is bounded above by a constant, which is asymptotically 
equal to 3.0625, and absolutely equal to 4.375. Using the information we 
have about the characteristics of SPT heuristic, finally, some conditions which 
assures optimality of SPT rule are given. These cases are as follows:

• K s <  2

• Tc < 2.59AP ,
vi{Kl-Ks)

In the next chapter, the algorithms proposed for solution of this problem 
will be explained.



Chapter 4

The Algorithms

In the previous chapter, the problem is defined with some further analysis 
in order to understand its characteristics. We have shown that problem of 
flowtime scheduling with tool changes is strongly NP-hard when there is no 
limit on the number of tools used. Moreover, the problem turns out to be NP- 
hard even when the number of tools is fixed. For this reason, no algorithm can 
be proposed for solving the problem optimally in polynomial time. Hence, it is 

justifiable to try heuristic methods to solve our problem. We have analyzed the 
performance of the SPT heuristic, which first comes to mind for the flowtime 
scheduling problem, in the previous chapter. It was shown to have a constant 
worst case performance bound.

The problem is NP-hard when tool number is fixed, so a pseudo-polynomial 
dynamic programming formulation will be given for this case. In addition, 

several heuristic procedures will be developed which are expected to perform 
better than SPT. Among them, there are static and dynamic dispatching rules, 
a single-pass procedure and two local search algorithms. In this chapter, the 
solution procedures including the above mentioned algorithms will be defined. 

In §4.1 the dynamic programming formulation will be given. In §4 . 2  the 
proposed heuristic methods will be explained in detail. Finally in section §4.3, 
the algorithms will be illustrated on an example problem.

34
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4.1 Dynamic Programming Algorithm

Dynamic programming is basically a complete enumeration scheme which 
attempts to minimize the amount of computation to be done, with a divide- 
and-conquer approach. The approach solves a series of subproblems, depending 
on the choice of forward or backward programming, until it finds the optimal 
solution to the original problem. For each subproblem the optimal solution and 
its contribution to the objective function are determined. The solution to the 
subproblem is found by utilizing all the information obtained before solving 
the previous subproblems.

To solve the scheduling problem with tool changes we have developed a 
forward dynamic programming formulation. For the general case, when tool

to Ks,number is not fixed, this algorithm can be applied for m =  [—
optimal being the minimum value obtained from those calculations. There is 

no need to carry on calculations beyond m =  Ks, because no optimal schedule 
will use more tools than SPT does.

For a given number of tools denoted as m, the algorithm is as follows:

Reindex the jobs in SPT order. At stage k, when we are scheduling job k, 
define:

tj =  total processing time assigned to the jth  tool

T]j =  the number of jobs on tool j

fkih, =  Minimum E , Cg realizable at stage k

Initial conditions are given as:

/ o ( 0 , - - - , 0 ; 0 , - - - , 0 ) = 0

fo{ti,··· ,tm;vu··· ,Vm) =  oo foT U ^  0 and//i 0
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The recursive function of dynamic programming is given below:

■ ■ ■ ) tjn'i f}\i' ' ' 1 f)m) — Hlini<j<,n[/fc_i(ii, · · · ,tj — p ,̂ · · · , tm] Vli ' ' ' tVj ~  1) ' ' ' > Vm)

+ Ei=i ti +  (i — l)Tc +  YCt=j+l ViPk]

For any stage A:, the feasibility requirements for a state are as follows:

(1) Pk ^ tj < TL and I < Tjj < k

(2) E ”=i <,■ =  EjL. Pi

(3) T .% ,n ,= k

If a state (ii, ■ ■ · · ■ ■, pm) is infeasible, then set:

‘ ‘ ' 1 Pm) — OO

Optimal solution is min / „ ( i i , · · ·, ; 7/1 , · · ·, ) over all ( ,  · · ·, , · · ·, i/m) ·
If this is equal to infinity, we conclude that given problem is infeasible.

This algorithm considers assigning job k to feasible tools at stage k.
For each possible assignment, state of former case is found as —

Pki" ■ 1 tm\V1 1"  ‘ iPj ~  1) ■ · ·) Pm)·, and the increase in the objective value with 
this assignment is added to the objective value of the former case. Thus, after 
trying all possible tools for kth job, the minimum objective value realizable at 
stage k is found.

Since memory is very critical for the success of any dynamic programming 
algorithm, we employ a base representation for the states in order to save from 
memory space. Actually, each state is represented by two vectors of length 
m, the total processing time assigned to tools and the number of jobs on the 
tools. In order to decrease the need for memory space, we can represent each 
of these vectors by an integer, considering the vector as the equivalent of this 

number in base TL and pf respectively. For example let m be 3. Then, a state 

{ti,t2,t3',Pi-,P2,P3) is represented by {t,T)) where 
t =  T L%  +  TLH2 +  T L %  and
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7] = nmax°rii +  nmax '̂q  ̂ +  nmax'^Tjs
where nmax is equal to 7 /f , that is the maximum number of jobs that can be 
processed with a tool.

Thus every state can be represented by a unique pair of numbers (t,T}) 
instead of two m vectors, which would be helpful in implementation of the 
algorithm.

L em m a 4.1: The proposed dynamic programming algorithm is pseudo­
polynomial with complexity

P roo f: Consider stage k of the algorithm. For each possible state in this 
stage, m alternatives are compared depending upon which tool the kth job is 
scheduled on. A state is described by total processing time on tool j  for all 
j  =  1- ■ - m and total number of jobs on tool j  iov j  =  1- ■■ m. The number of 
possible states for an alternative at this stage is found as follows:

m k
number of possible states= n  ■ n

j=l i=l
subject to:

m k
=  ¿ P i

j=l i=l
m

¿ P j  =  k
j=i

It is known from optimal subdivision problem’s solution that the given

andPqnumber of possible states takes its maximum value when tj =  -
m

Tjj =  A, Hence, the maximum possible number of states for an alternative at 
stage k is found as:

^Ylq=l Pq  ̂  ̂\m
m

Letting k be n, this value is bounded by

/ Pq \m _ / ^ 'jm
m
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Then, the total computations at stage k for m alternatives is bounded by

. ( - r
m m

Since there are n stages, the overall computations are bounded by;

n · m · . ( — I'"
m m

This is pseudo-polynomial when m is fixed.□

Using this dynamic programming algorithm we can find an optimal solution. 
However it requires so much computation time even for small problem sizes so 
it would not be useful for practical purposes. We have developed some heuristic 
methods to solve the problem, and decided to use the dynamic programming 
solution as a benchmark when possible.

4.2 Heuristic Algorithms

As mentioned before, NP-completeness of the problem justifies heuristic 
approaches, which would provide good solutions with reasonable computation 
times. We have basically worked on three different types of heuristic methods 
for the tool change problem. The first approach is using dispatching heuristics. 
These procedures are simple ones that are easy to understand and implement, 
second approach is a construction algorithm. Finally, we develop two local 
search algorithms, which would search over the space using some defined rules 
while trying to improve the initial solution. In this section these algorithms 
will be discussed. Throughout this section, the terms “block” and “tool” are 
used interchangeably, referring to the block representation of the tool change 
problem.

In all the heuristic algorithms we have developed, the first sequence found 

by applying the particular algorithm is a temporary one, which basically shows 
the assignments of jobs to blocks. On this sequence, some minor reprocessing 
must be done. This is a consequence of the information about the properties
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of an optimal schedule we stated in the previous chapter. Having known 
these properties, we first determine the sequence using the rule and do the 
assignments to tools. Afterwards, we resort the blocks, and jobs in a block, to 
fit to those properties explained in §2.2. We can briefly restate these properties 
as, “jobs sharing the same tool should be in SPT order” , and “the tools should 
be ordered in nonincreasing order of the number of jobs using it” . Throughout 
the section, this issue is referred as “checking the structural properties, then 
reordering the jobs and blocks if necessary” , as the last step of all the algorithms 
proposed.

4.2.1 Dispatching Heuristics

Dispatching rules can be classified as static and dynamic rules. Static rules are 
the ones that are not time dependent. They are just a function of the problem 

data, and the order of jobs can be determined by applying the rule once, at 
the beginning. Dynamic rules are time dependent, hence they must be revised 
every time a job is scheduled. In this section, we will present four dispatching 
heuristics, namely shortest processing time, first fit decreasing, modified first 
fit decreasing and expected gain index. The first two are well known rules for 
other problems, whereas the last two are developed primarily for tool change 
problem.

Shortest Processing Time (SPT)

Shortest processing time (SPT) is one of the oldest, and best known dispatching 
rules in the scheduling theory. It gives an optimal sequence for the total 

flowtime problem, 1|| Y^Cj . But as discussed in the previous chapter, for tool 
change problem, it may not perform as well, while minimizing the first part 
of the objective function. On the other hand, SPT has a constant worst case 
performance ratio for our problem, and depending on the problem parameters 

it may perform quite well. The other heuristic algorithms are proposed in order 

to improve over the performance of the SPT rule.
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SPT is the easiest rule to apply, only thing to be done is to order the jobs 
in nondecreasing order of their processing times. Then, without changing the 
sequence, jobs are assigned to tools to determine the times of tool changes. 
Note that, the resulting sequence would not need resorting.

First Fit Decreasing (FFD)

When the tool change times are very large, the second part of the objective 
function dominates, and the tool change problem gets closer to a bin packing 
problem. First-fit-decreasing (FFD) is one of the well known heuristics for bin 
packing problem. It has shown to have a worst case performance bound of 
1.222 [15]. The algorithm adapted to tool change problem can be described as 
follows:

Step 1. Sort the jobs in nonincreasing order of processing times (in LPT 

order).

Step 2 Starting from the beginning, assign each successive job to the first 
available tool.

Step 3 Resort the blocks such that liiTs <  h±Z£ foj. i j.r- Vi — Vj ·'

Step 4 Sort the jobs in each block in SPT.

This algorithm tries to use minimum number of tools, maintaining a balance 
in the used tool lifes, which are ij values of the tools. For the tool change 
problem, it is expected that FFD would result in good solutions when the Tc 
value is very high, since then the would dominate our objective, which 
represents the bin-packing aspect of the problem.

Modified First Fit Decreasing (MFFD)

This algorithm combines the SPT and FFD rules to improve over the 
performance of these rules. The main motivation of this rule is to get benefit
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of the fact that no tool change time is added to the flowtimes of jobs using the 
first tool. SPT maximizes the number of jobs using the first tool. It can be 
beneficial to fill in the first block with the shortest jobs, so that the number of 
jobs being affected by the tool changes will be minimum.

In MFFD algorithm, we first order the jobs in SPT order until the first block 
is full. Then, we turn our attention to balancing the loads of the tools so as to 
minimize the tool usage. After all jobs are assigned to blocks, they are resorted 
to fit to the properties of an optimal schedule. This algorithm would also have 
less Cl value than FFD algorithm has, because it assigns more shorter jobs 
to earlier blocks, that is it is closer to SPT. Formally, the algorithm is as follows:

Step 1 . Sort the jobs in nondecreasing order of processing times (in SPT 
order).

Step 2  Starting from the beginning, assign each successive job to the first 
tool until no more can be assigned to it.

Step 3 Apply FFD algorithm to the remaining jobs.

Step 4 Resort the blocks such that L±l£ <  h±l£ i

Step 5 Sort the jobs in each block in SPT.

A  R anking Index Based H euristic

In this section we will explain a dynamic dispatching rule proposed for the 
flowtime scheduling with tool changes problem. The rule is dynamic in the 
sense that an index has to be calculated for all the unscheduled jobs at each 
stage, although there is no time dependency. At each stage the jobs will 
be ranked according to this index, which represents the expected decrease in 
the total flowtime by scheduling that job to kth position, that is the expected 
gain. The jobs will be ordered in SPT at the beginning, and their indexes in 
this order will be kept, to be used in further steps in order to calculate the
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expected gain index (EGI). The index will be used to find an initial sequence. 
Afterwards, the final schedule will be found applying first fit algorithm to 
make tool assignments, and resorting if necessary after checking the structural 
properties defined before. First fit is a well known algorithm for bin packing 
problems as explained before. It is essentially the same as FFD except that 
the initial sorting in nonincreasing order of p j’s is skipped.

The index EGIqk for job q at stage k is defined as;

EGIqk — {Pq Pmin)[j,j  ̂ ([i] ^)]

where [q] is the SPT index of job 9 , and Pmin is the minimum processing time 
among the remaining jobs.

Now, we will briefly explain the logic behind this index. For a given SPT 

schedule, assume that there is a pair of jobs (^, r) [q < r) such that their 
interchange is feasible with respect to tool life constraints. Hence we can 
swap these jobs without increasing the tool requirements. If we make this 
interchange, the increase in flowtime which is reflected in C f value can be 
calculated as follows:

=  E /5£g,r(« -  i +  1 )P/ + { n - q  +  l)pr +  { n - r +  l)pq

-  T,lqiq,r{'̂  ~  ̂+  )̂pi + { n - q P  l)Pq +  (n -  r +  l)pr

= i P r - P g ) { r - q )

On the other hand, by moving a larger job to an earlier block, we have some 
saving in the tool usage of the later block, which is expected to decrease the 

C2 portion of the objective function by allowing another job move to earlier 
blocks. This possible gain is represented as:

Finally, we can find the expected decrease in the overall objective as:
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AZs = A C i - A C f  

=  (Pr -  Pq)[fz -

While scheduling the kth job, if we were applying SPT, the job with pr =  
Pmin would be assigned to kth position, whereas the position of job q would be 
[9 ]. Now, we get the expected gain from the cost by assigning job q to the kth. 
position from the above equation for AZs  using q =  k̂  pg =  Pmin·, f  =  [i] and 
Pr =  Pg. This is certainly a rough approximation to the change in the objective 
value with this decision. Because while job q is assigned to kth position, the 
job with minimum processing time is not assigned to the [q]th position, so there 
is not a real interchange. Furthermore, the expected gain from C2 is also only 
a rough representation of our expectation. Note that this calculation should 
only be done for the jobs that can be put into the current tool at that stage, 
without increasing the tool requirement.

Having explained the calculation of our ranking index, we can define the 
algorithm using this index as follows:

Step 1  Order the jobs according to shortest processing time rule. 
Determine the SPT index [9 ] for each job q.

Step 2  Order the unscheduled jobs in SPT and for each job if it can fit to 
the current tool, calculate its index EGIqk, else assign a very small value to its 
index.

Step 3 Select the job with highest index (in ties choose shorter job) to be 
scheduled as the next job. If all the jobs are not scheduled yet. Goto Step 2 .

Step 4 Find the block assignments using first fit algorithm.

Step 5 Order the blocks such that <  h±Z£ for i <  j’ .

Step 6 . Order the jobs in the blocks such that pg < pr for q < r .
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The advantage of using this index is incorporating the information of ^  
value to the solution. When this ratio is large, the algorithm favors larger jobs, 
so the sequence found at the end of Step 3 will be closer to LPT. Thus, the 
bin packing aspect of the problem will be solved better, since best bin packing 
algorithms like FFD uses LPT ordered sequence. On the other side, when ^  
is small the algorithm favors smaller jobs, and the sequence found will be closer 
to SPT sequence.

The algorithm is applied for two steps for a small example problem below: 

Let n =  5 Tc — 36, Tl =  12, and the processing times are given as:

/ 1 2 3 4 5

Pi 5 3 8 6 1 0

The algorithm will proceed as follows: 

Step 1  Sort the jobs in SPT order.

[1] 1  2 3 4 5

Pi 3 5 6 8 1 0

Step 2  The unscheduled jobs are already sorted in SPT order, p^in =  3

k =  1 ¿1 =  0

Pi =  3 feasible to fit the tool 
^ G /ii  =  ( 3 - 3 ) [ f | - l  +  l] =  0

Pi =  6 => feasible to fit the tool 

EGhi  =  (5 -  3)[f| -  2  +  1 ] =  4

Pi = 6 => feasible to fit the tool

EGhi  =  ( 6  -  3)[f| -  3 +  1 ] =  3
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Pi — 8 feasible to fit the tool 

^ G /4 i  =  ( 8 - 3 ) [ f | - 4  +  l] =  0

Pi =  10 =4̂  feasible to fit the tool 

^ G '/5 i =  ( 1 0 - 3 ) [ f | - 5  +  l] =  - 7

Step 3 Job 2 has the highest index, so assign it to the first position.

Step 2  k =  2 , ti — 6

Pi =  3 =4” feasible to fit the tool 

EGIn  =  (3 -  3)[f| -  1 +  2] =  0

Pi =  6 =4̂  feasible to fit the tool 

£:G /32  =  (6 -  3)[f| -  3 +  2] =  6

Pi =  8 =4̂  not feasible to fit the tool 

EG hi =  -9 9 9 9 9 9

Pi =  10 not feasible to fit the tool 

EGh2 =  -9 9 9 9 9 9

Step 3 Job 3 has the highest index, so assign it to the second position.

We proceed this way, until all the jobs are scheduled. After that, 

assignments of jobs to tools is done. Finally, the structural properties are 
checked and if it is necessary the order is changed.

4.2.2 Knapsack Heuristic

The next heuristic algorithm is a single-pass type procedure, which jointly 
uses SPT rule and solution of a knapsack problem. Our intuition is that, SPT
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rule must be applied to some extent for solving tool change problem. Because 
we know that it minimizes one part of the objective function. When SPT 
performs badly, it is mostly because of the underutilized blocks through the 
later portions of the schedule. Since larger jobs come together at the end of 
the sequence, usually few of them can fit to a block, leaving much space (tool 
life) unused. Thus the number of tools needed increases, which consequently 
leads to an increase in . This can be avoided by moving some large jobs to 
earlier blocks, hence providing more flexibility for the last blocks. As explained 
before, this was also the underlying idea of calculations for ranking index.

To achieve our goal, we considered applying SPT until a predetermined 
amount of tool life is used, afterwards solving a knapsack problem to use the 
remaining tool life as efficiently as possible. In order to favor assignment 
of shorter jobs in case there are alternative solutions with same tool usage, 
the objective is written as the sum of the number of jobs assigned and the 
total processing times of the assigned jobs. Thus the objective function is: 

+  Ŷ =̂\Pq̂ q- Then the weight of item q in the objective function of 
the knapsack problem becomes ( 1  ■+Pg).  In fact, we have tried giving weights 
to the components of the objective function. However, it turned out to have 
no significant effect on the performance of the algorithm. Hence, we decided 
to ignore the weights in the objective function.

There is one parameter of this algorithm that has to be decided at the 
beginning. 7  is a real number less than 1 , which is used to determine when to 
stop SPT ordering. We schedule jobs in SPT until at most 7  · Tl amount of 
the tool life is used. Suppose there are N  unscheduled jobs at an instant of the 
algorithm, and the remaining tool life is RL. Note that RL can be greater than 
(I — 7 )Tl. Then the mathematical programming formulation for the knapsack 

problem is given as:
N

Minimize ^ ( 1  + Pq)xq
q=l

Subject t o :
N

'^PqXq < RL
q=l
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where Xg is the 0 — 1  binary decision variable which is equal to 1  if job q is 
assigned to the current block, for which we are solving the above mathematical 
programming problem.

The algorithm can be defined step by step as follows:

Step 1  Sort the jobs in SPT order.

Step 2  Schedule the jobs successively from the sorted list as long as the 
total used tool life is not more than ( 7  · TL).

Step 3 Solve the knapsack problem with the remaining jobs to fill up the 
block.

Step 4 If there are any unscheduled jobs goto step 1 . Else, check the 
structural properties, and reorder the jobs and blocks if necessary.

This algorithm is expected to give better results than SPT algorithm does, 
when Tc value is high.

4.2.3 Local Search Algorithms

Local search approaches have two basic elements. One is the concept 
of a neighborhood of a solution and other is a mechanism to generate 
neighborhoods. The generating mechanism is a method of taking one 
sequence as a seed and systematically creating related sequences. The 
search algorithm takes the seed, generates neighborhood solutions using the 
generating mechanism and thus try to find a better result.

There are various search procedures used for scheduling problems. 
Simulated annealing, tabu search and genetic algorithms are some most popular 
search algorithms. We have studied two local search algorithms, one generates 
neighborhoods via knapsack problem solutions, the other one is a genetic 
algorithm using problem space search. These two algorithms are explained 

in detail in this section.
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Two Bin Heuristic

The first local search algorithm we will discuss is called two bin heuristic. This 
is a local search procedure which takes SPT schedule as the initial seed and 
tries to improve over it. In this algorithm, the knapsack problem formulation 
will be used again. Our motivation is same with the knapsack heuristic. SPT 
solution is tried to be improved by getting more use of the tool lifes.

For generating new schedules, the main idea is reordering a two block length 
portion of the sequence so as to make it fill one of the blocks and leave more 
space in the other. At every iteration, two blocks are chosen randomly and 
a knapsack problem is solved for the jobs in these two blocks. As a result of 
the knapsack solution, these jobs are re-partitioned into two blocks. Hence we 
obtain a different schedule. This procedure continues for a fixed number of 
iterations. The best solution obtained at the end of this search is reported as 
the result of the algorithm. At every iteration, the objective value is calculated 
and compared with the best value obtained until that time, keeping the best 
schedule throughout the search.

The knapsack formulation used in this algorithm is similar to the one used 
in knapsack heuristic. But, this time the objective value is a weighted sum of 
the number of jobs and the total processing time assigned, so the weight for 
item q in the knapsack problem is (wi +W2Pq). Moreover, in this case knapsack 
size is the whole tool life, not just a fraction of it.

We define wi as the weight of the number of jobs in the objective and u>2 

as the weight of the sum of processing times assigned. Suppose two blocks are 
chosen randomly with totally N  jobs in them. Then the problem to be solved 
would be formulated as follows:

N
Minimize +  W2Pq)Xq

7=1

Subject to:
N

Y^PqXq < T l  
7=1
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where Xg is the 0 — 1 binary decision variable for assigning the jobs to a block. 
The jobs with Xg = 1 are assigned to one of the blocks while the others are 
assigned to the second block. The weights wi and W2 , which are both greater 
than zero, should be determined before the algorithm is applied.

The two bin algorithm is defined step by step as follows:

Step 1 Sort the jobs in SPT order. Calculate the objective function value 
and assign best value to SPT objective, best schedule to SPT schedule.

Step 2 Select two blocks randomly. Solve the knapsack problem defined 
above for these jobs.

Step 3 Rearrange these two blocks according to the solution of the knapsack 

problem.

Step 4 Reorder the block to fit into the structural properties. Calculate 
the objective value. If it is less than the best value assign best value to 
current objective value and best schedule to current schedule. If the number 
of iterations have not exceeded the predetermined number, increase number of 
iterations by one and goto Step 2.

Genetic Algorithm with Problem Space Search (GAPS)

As the last algorithm, we applied a recent search technique called problem 
space search combined with genetic algorithm.

Problem space search (PSS) algorithms are fundamentally local search 
heuristics, but are entirely different than most current applications of simulated 
annealing and tabu search which presume neighborhood structures based on 
interchanges (swaps) of combinatorial elements. The unifying feature of PSS 

algorithms is an implicit, underlying constructive algorithm upon which a 
search space is defined. A problem space search heuristic requires an initial 
feasible solution, a base heuristic, and a neighborhood definition. One of 
the most important features of the problem space search is that neighboring
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solutions are generated by first perturbing the problem data and then applying 
the base heuristic to the perturbed data. This, in turn, allows the base heuristic 
to generate alternative solutions. The cost of each alternative solution has to 
be determined using original problem data. Thus, a search space can be formed 
given a base heuristic and a specific problem perturbation method.([23], [26])

The problem space approach explicitly defines a neighborhood structure to 
which systematic search can be applied to seek the optimum. That is, rather 
than simply using perturbations to randomly generate alternative solutions, 
problem space provides neighborhood structure which can be exploited by 
search algorithms. To perform search in the problem space, different procedures 
can be used such as hill climbing, steepest descent, genetic algorithm or 
simulated annealing, etc. If only slight perturbations to the original problem 
data are made, it seems reasonable that “good” solutions will be generated 
by the base algorithm. That is, it is expected (and indeed have verified on 
numerous occasions) that perturbed problem data configurations in the vicinity 
of the original problem will, in general, map to good solutions. The ability to 
generate neighborhoods populated primarily by good solutions accounts for 
much of the success of the approach.

In this study, we have applied genetic algorithm with problem space search. 
As the base heuristic, we have chosen the dispatching heuristics SPT and 
FFD, which are expected to perform well in extreme values of Tc. The 
algorithm applies problem space search using both of the rules as a base 
heuristic independently, then gives the best result obtained.

Genetic algorithm is a local search technique stemming from the theory of 
evolution. The evolution is based on two random processes, mutation and 
crossover. The chromosomes in the gene pool randomly mates, and their 
offspring is added to the gene pool. Throughout the process, the stronger 
genotypes will survive as the theory of natural selection suggests. In some cases 
the chromosomes can mutate by some external effect. The genetic algorithms 
use all these ideas to generate different alternatives and search among the 

alternatives. In case of the problem space search, the chromosomes represent
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the perturbation vectors, and genes represent the perturbation amount for a 
single job.

Our GAPS heuristic starts with generating an initial population of 
perturbation vectors, called seeds. These are vectors of n random real numbers 
assigned within a specified range, which shows the perturbation amount to be 
applied on each job. The objective value corresponding to a perturbation 
vector is calculated in three steps. First, the processing times are perturbed 
by that amount. Second, with the new processing times, the base heuristic is 
applied. Then the information on resulting sequence is passed to the original 
problem data and objective value of that sequence is calculated using original 
processing times.

At each iteration of the genetic algorithm, the parents are selected randomly 
from the population. This is done by tournament selection method, in two 
steps. First, two seeds are chosen randomly and the one with better objective 
is chosen as mother seed. Then this procedure is repeated to select the father 
seed. After that, these two seeds are crossed to get a new offspring. Crossing 
is done by first determining a crossover point randomly, and then taking the 
genes of the mother vector until the crossover point and from the dad after 
the crossover point to combine them. This child may have mutation with 
some small probability, that is the perturbation amounts can be recalculated 
with a different random range of perturbation. Then, the objective value 
corresponding to this new child is calculated. Finally the child is added to 
the population, replacing the one having the worst objective. This process is 
repeated for the desired number of iterations.

In order to apply this algorithm some parameters have to be determined at 
the beginning. These are the population size, perturbation range, mutation 
probability and mutation range, in addition to the number of iterations. 
Perturbation range shows the interval from which random perturbations will 
be chosen, where mutation range shows the perturbation range when mutation 
occurs. Mutation probability is the probability of having mutation for a child. 
Finally, population size is the number of initial chromosomes generated.
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The procedure can be summarized briefly as follows:

Step 1 Generate the initial population of perturbations and find the 
objective values for each member of the population.

Step 2 Select parents from the population and generate an offspring by 
crossing-over and mutation.

Step 3 Remove the seed with worst objective value and insert the newly 
generated offspring to the population. If the desired number of iterations is 
not reached go to step 2.

4.3 Example Problem

In this section, the heuristic algorithms will be illustrated on a numerical 
example with 20 jobs. The problem data is given as follows:

Tc =  182 

Tl =  108

1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Pi 3 13 10 9 11 16 11 13 15 9 6 17 8 14 16 13 13 6 9 3

Now, let us explain briefly how each algorithm will proceed for this problem.

4.3.1 SPT

SPT rule finds the sequence as follows:

1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Pi 3 3 6 6 8 9 9 9 10 11 11 13 13 13 13 14 15 16 16 17

Then the jobs are assigned to tools in the same order. First 12 jobs’ total
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processing time equals 98, and if 13th job is added it would be 98 +  13 =  111 
which is greater than the tool life. So, beginning from job 13 the second tool is 
used. The next 7 jobs processing times add to 100, so the last job with p20 =  17 
cannot be processed with the second tool. Thus a third tool is used for the 
last job. The resulting schedule has total flowtime equal to 3439 as shown in 
Figure 4.1.

4.3.2 FFD

FFD algorithm starts with ordering the jobs in LPT, which is just the reverse 
order of the one done by SPT given above. The initial sequence would be:

1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Pi 17 16 16 15 14 13 13 13 13 11 11 10 9 9 9 8 6 6 3 3

The first 7 jobs can be assigned to first block, using 104 time units. For the 
Sth job a new block is opened, and all other jobs are assigned to second block 

until job 19. Since pig =  3, it can fit to the first block, so it is assigned to the 
first block. And for the 20th job, second block is available. Thus using two 
tools all the jobs can be finished. At this step, the sequence found in terms of 
the processing times is as follows, where T c  representing tool change instance:

17 16 16 15 14 13 13 3 T c  13 13 11 11 10 9 9 9 8 6 6 3

Then, the structural properties are checked. We see that the jobs in a 
block are not in SPT order. The second requirement is <; which is
checked as follows:

ti — 107 ¿2  =  108 i/i =  8 and 7/2 =  12,

. 107+182 J 108+182
^  8 ^  12

So the order of the blocks must also be changed. The final schedule can be
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SPT 3; 66 8 9 9 9 10 11 11 13 13 13 13 14 15 16 16 17
Tc

FFD 3 66 8 9 9 9 10 11 11 13 13 : 13 13 14 15 16 16 17

TC=3439

TC=3329

MFFD n 6 6 8 9 9 9 10 11 11 13 13 13 14 15 16 16 17 / / 13 TC=3452

EGI 6 8 9 9 9 10 11 11 13 13 : 13 13 14 15 16 16 17 TC=3329

KNAP ;6 10 160 13 14 T03481

2BIN ii 66 9 9 9 10 11 11 13 17 8 13 13 13 14 15 16 16 TC=3301

GAPS 6 10 15 0 13 14 16 17 TC=3298

Optimum 66 8 9 9 10 11 13 13 16 9 11 13 13 14 15 16 17

Figure 4.1: The schedules found by different algorithms 

seen in figure 4.1 with total flowtime equal to 3329.

4.3.3 MFFD

TC=3293

Since MFFD is a combination of SPT and FFD, the initial sequence will be 
same as the SPT until the first tool is used up. Then, the remaining jobs are 
ordered in LPT, which will be same as the first 8 jobs in LPT order given in the 
FFD section. These jobs can be assigned to two tools. After tool assignments 

are done, the sequence will be as follows:
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3 3 6 6 8 9 9 9 10 11 11 13 T c  17 16 16 15 14 13 13 T c  13

Finally, the structural properties are checked, and the schedule is revised 
to have the form as in Figure 4.1, having total flowtime as 3452.

4.3.4 Ranking Index EGI

The calculation of EGIqk was explained step by step before. So here, it will 
not be done again. In this example, the ^  value is not high, so EGI turns 
out to be larger for small jobs. As a result, the sequence is found as:

3 6 6 8 9 9 9 10 11 11 13 13 13 13 14 15 16 16 17 3

Then the tool assignments are done using first fit algorithm with this 
sequence. The schedule before revising according to structural properties is 
as follows:

3 6 6 8 9 9 9 10 11 11 13 13 T c  13 13 14 15 16 16 17 3

The final schedule can be seen in Figure 4.1. The result of this algorithm 
turns out to be same with FFD schedule for this example, with total flowtime 
equal to 3329.

4.3.5 Knapsack Heuristic

The parameter of knapsack heuristic, 7 , is chosen to be 0.7 in this example. 
Knapsack heuristic starts with ordering the jobs in SPT order. Since (0.7-Ti,) =  
75.6, first 10 jobs with total processing time of 75 are assigned directly to the 
first block. The remaining jobs are as follows:

/ 1 2 3 4 5 6 7 8 9 1 0

Pi 1 1 13 13 13 13 14 15 16 16 17
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For this set of jobs the following knapsack problem is solved:

10 10
Minimize PqXq

9=1 9=1
Subject t o ;

10
'Ŷ PqXq <  33
9=1

Xq — 65 1

The solution of this problem is given as xg =  2:9 =  1 all other variables 
being zero. So, the %th and 9i/i jobs are assigned next to the first block, both 
of which have processing time of 16.

Then the remaining jobs are sorted in SPT and the procedure is repeated 
for the second block. Finally the schedule is found as shown in Figure 4 .1 , 
with total flowtime equal to 3481.

4.3.6 Two Bin Heuristic

For the two bin algorithm, we have to determine the weights in the objective 
function of knapsack problem first. We have chosen wi =  0.2, and W2 =  0.8. 
This algorithm starts with the SPT schedule, which is given in Figure 4.1. 
Then, two blocks are chosen randomly. For this particular example, the first 
and third blocks are chosen at the first iteration. So, the jobs to be rearranged 
by solving knapsack problem are as follows:

1 1  2 3 4 5 6 7 8 9 1 0 1 1 1 2 13

Pi 3 3 6 6 8 9 9 9 1 0 1 1 1 1 13 17

With this data as input, the following knapsack problem is solved:
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13 13
Minimize 0 . 2  ^  a;, +  0.8 E PgXg

9=1 9=1

Subject t o :
13

^  PgXg <  108
9=1

Xg --  0) 1

The optimal solution to this problem gives 2:5 =  0 and all other variables 
are 1. Thus, job 5 is assigned to one block, and the remaining jobs are assigned 
to the other block. Now, the three blocks would have the following jobs: (a 
job is represented by its processing time)

block 1 : .3 3 6 6 9 9 9 10 11 11 13 17 
block 2 : 13 13 13 14 15 16 16 
block 3 : 8

But note that, before the objective value is calculated the tool assignments 
for this sequence is revised. It was before the first iteration that there were 3 
blocks, but now the job in last block can fit into the second block, so number of 
blocks needed is decreased with this iteration. Moreover, the jobs and blocks 
are resorted to obey the structural properties. Then the final schedule after 
this iteration would be:

3  3  6 6 9 9 9 10 11 11 13 17 T c  8 13 13 13 14 15 16 16

This schedule has total flowtime as 3301, which cannot be improved in the 
following iterations. Since one of the blocks (the second one) uses all the tool 
life, it is hard to get a change with the knapsack problem solution after this 

step. The final schedule is shown in Figure 4.1.
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4.3.7 GAPS

The GAPS heuristic involves too much computational work, which we cannot 
present all here. For this reason, we will just illustrate one iteration of 
the algorithm when base heuristic is SPT. The given jobs are also ordered 
in SPT before executing the algorithm. In this example the parameters 
are chosen as: population size=50, mutation probability=0.1, perturbation 
range=(—3.5,3.5), and mutation range=(—1.75,1.75). The algorithm is 
applied for 1 0 0 0  iterations.

First of all a population is generated and the objective values corresponding 
to each individual in the population is found. Then, from this population two 
parents are chosen. In our example, the mom and dad vectors were chosen as 
shown in Table 4.1.

The crossover point is randomly chosen to be 11. Thus, the new offspring 
will take the first 11 genes from mom, and the remainings from dad. The 
offspring vector with its corresponding perturbed processing time (represented 
as ppi) is shown in Table 4.2.

After this step, the base heuristic, SPT, is applied with this perturbed 
processing time data, and a new sequence is found as shown in Table 4.3.

So, the initial sequence generated at this step is:

3 6 6 3 9 10 11 8 9 13 9 T c  13 11 13 13 16 14 15 16 T c  17

After revising it according to structural properties, the schedule becomes:

3 3 6 6 8 9 9 9 10 11 13 T c  11 13 13 13 14 15 16 T c  17

This schedule has total flowtime 3443, which is worse than SPT. But this 
procedure is repeated 1000 times for both base heuristic SPT, and FFD. As a 
result, the schedule shown in Figure 4.1 is found with total flowtime equal to 

3298.



CHAPTER 4. THE ALGORITHMS 59

q mom dad

1 2.325150 -2.552833

2 -2.196676 0.583532

3 -1.531537 -1.701707

4 -1.539781 1.417378

5 -0.094819 0.880233

6 2.383942 -1.285144

7 -1.089634 -2.582775

8 -1.478643 -1.701620

9 -1.553391 2.875961

1 0 2.159815 1.279671

1 1 -1.997042 3.435768

1 2 0.720116 1.950958

13 -0.007031 1.743355

14 0.830110 -1.436884

15 0.665036 0.285349

16 -1.745548 0.854848

17 -0.420383 3.431830

18 -2.384678 -1.239335

19 2.712744 2.494152

2 0 2.081396 3.207853

Table 4.1: GAPS-The parent vectors chosen from the initial population
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q offspring PPi

1 2.325150 5.325150
2 -2.196676 0.803324

3 -1.531537 4.468463

4 -1.539781 4.460219

5 -0.094819 9.415036

6 2.383942 11.383942

7 -1.089634 9.825670

8 -1.478643 7.521357

9 -1.553391 8.446609

1 0 2.159815 13.159815

1 1 -1.997042 9.002958

1 2 1.950958 11.365580

13 1.743355 14.402755

14 -1.436884 11.563116

15 0.285349 13.587250

16 0.854848 14.854848

17 3.431830 18.431829

18 -1.239335 14.760665

19 2.494152 18.494152

2 0 3.207853 20.207853

Table 4.2: GAPS-child vector and corresponding perturbed processing times
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9 PPq corresponding pg

1 0.803324 3

2 4.460219 6

3 4.468463 6

4 5.325150 3

5 7.521357 9

6 8.446609 1 0

7 9.002958 1 1

8 9.415036 8

9 9.825670 9

1 0 11.365580 13

1 1 11.383942 9

1 2 11.563116 13

13 13.159815 1 1

14 13.587250 13

15 14.402755 13

16 14.760665 16

17 14.854848 14

18 18.431829 15

19 18.494152 16

2 0 20.207853 17

Table 4.3: GAPS-perturbed sequence converted to original data
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For this example problem, the optimal schedule turns out to be different 
from those all the heuristics have found. The optimal value of total flowtime 
equals 3293, and the schedule is given in Figure 4.1. Among the heuristics we 
have applied, the GAPS algorithm resulted in a schedule with total flowtime 
only 0.15% more than the optimum. The third best result was found by the 
two bin algorithm. This result is not surprising, because these two are search 
algorithms, and they are expected to find better schedules than the dispatching 
heuristics do.

In this chapter we have explained the algorithms we proposed for the 
solution of the scheduling with tool changes problem. In the next chapter, 
the computational results will be discussed.



Chapter 5

Experimental Design

In this chapter, the performance of the proposed algorithms is tested and 
compared with each other. Moreover, the dynamic-programming algorithm 
is coded and for some instances the optimal solutions are found. All of the 
algorithms are coded in C language and compiled with Gnu C compiler. The 
MIP formulations used in the two bin and knapsack heuristics are solved using 
callable library routines of CPLEX MIP solver. All the problems are solved on 
a spare station 1 0  under SunOS 5.4.

The experimental setting is explained in §5.1. In §5.2, the computational 
results are presented and discussed. Finally, a brief summary is provided in 
§5.3.

5.1 Experimental Setting

There are four experimental factors that can affect the performance of the 
algorithms. In table 5.1 these factors are listed, where UN stands for a uniform 
distribution. Each factor can take values in two different levels. Thus the 
experimental design is a 2  ̂ full factorial design. Moreover, three different 
problem sizes are considered for each case, n being equal to 20, 50 and 100.

63
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Factors Definition Low High

Variance of processing time 2^
5

3/i
4

Mean processing time 10 20

tl Tool life UN[pmax') 3p 77 U N [ ( f - 2 K „ , , ( f +  2 )p.

tc Tool change time UN[p772aa7 9 77 UN[1 0 pmax') 15pTTiaa;]

Table 5.1: Experimental design factors

For each combination of the factor levels, ten replications are taken. So as a 
total 480 randomly generated problems are solved.

The experimental factors can be briefly explained as follows:

• Variance of processing times affects the distribution of the processing time 
values, which directly affects the characteristics of the problem data. The 
range of processing times affects the flexibility of the jobs to use the tool 
life effectively, which has implications on the objective function value and 
performance of different algorithms.

• Mean processing time determines the processing time distribution 
together with the variance. Processing times are the main data that 
determines the total flowtime of a given sequence, so it is decided to be 
a factor.

• Tool life affects the number of tools that should be used. As tool life 
decreases a tool change is required more frequently and this increases the 
contribution of tool change time to the objective function value.

• Tool change time is related with the effect of number of tool changes on 
the objective function value. As tool change time increases, the second 
part of the objective function gains importance as discussed before.

The processing times are chosen from a discrete uniform random variable 

between {pmin,Pmax)· Hence there are two factors related with the processing
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Processing mean

time Low High

variance Low UN[8 ,1 2 ] UN[16,24]

High UN[3,17] UN[5,35]

Table 5 .2 : Processing time distributions for different factor levels

times, the variance and mean. We designed the other factors so as to be 
dependent on the pmax value. Tool life has to be larger than the maximum 
processing time for the problem to be feasible. So we choose the tool life value 
from a discrete uniform distribution between some multiples of Pmax value. 
When factor tc is at high level, the range of tool life depends on n, the number 
of jobs. This enables us to have the tool life value large enough to make the 
number of tools used as small as three, so that its effect becomes more visible. 
Tool change value is chosen from discrete uniform distribution ranging between 
the given values in table 5.1, which also depends on the pmax value.

The processing time distribution for different factor levels of v and p are 
shown in table 5 .2 .

After some trial runs are taken, the parameters used in the algorithms are 
determined as follows:

• The 7  value used in knapsack heuristic, which determines the fraction of 
tool life that will be filled up using SPT rule, is decided to be 0.7.

• The weights in the objective function of the knapsack problem that is 
solved in two bin heuristic are determined as wl =  0 .2  and w2 =  0 .8 .

• Two bin heuristic is run for 50 iterations.

• For the GAPS heuristic the population size is 50, mutation probability is 
0.1, perturbation range is (-3 .5 ,3 .5 ) and mutation range is (—1.75,1.75).

GAPS heuristic is decided to be run for 1000 iterations.
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The performance measures used in evaluating the results of the experiments 
are the total flowtime values and the run times in cpu seconds. The relative 
differences of the solutions of different algorithms are calculated in two ways. 
First one, denoted by d l, is the relative percent deviation of the heuristic from 
the minimum value. It is calculated as:

dl = ------ -̂---- 1 0 0
mm

where h is the solution obtained by the given heuristic and min is the minimum 
objective value found by all the algorithms. The second measure of deviation, 
d2 , is the relative deviation of the result from the minimum value, scaled by 
the range of the objective values found by all the algorithms. It is calculated

as:
d2 =

h - min
max — mm

where max represents the maximum value of the objective function obtained 
by all the algorithms. In the next section, the results will be presented and 
discussed.

5.2 Experimental Results

The results will be analyzed first using the overall averages over 160 runs 
for each n value. Then, we will investigate the effects of the experimental 
factors. Performance of all the seven algorithms proposed are presented using 
the deviation terms dl and d2 in Table 5.3. In this table ARPD stands for the 
average relative percent deviation, MRPD is the maximum relative percent 
deviation, NO is the number of problems that the given heuristic gives the 
best result, and ACT is the average computation time in seconds of cpu time. 

The summary results are presented for different problem sizes separately. The 
complete list of computational results can be seen in the tables in Appendix.

First observation we can make from these results is that the average percent 
deviation, d l, is higher when problem size is small. This can be related with the 

increase in magnitude of the objective function values with increasing problem
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n= 2 0

ARPD MRPD NO ACT

dl d2 dl d2

SPT 3.59 0.43 29.67 1 56 0.001438
FFD 5.00 0.56 44.69 1 36 0.001063

MFFD 2.34 0.35 12.9 1 50 0.001509
EGI 3.27 0.45 29.15 1 34 0.043187

Knap 2.40 0.43 14.49 1 26 0.46125
2 bin 0.56 0.07 9.44 0.87 82 5.0535

GAPS 0.38 0.04 9.44 0.79 138 0.953938

n=50

ARPD MRPD NO ACT

dl d2 dl d2

SPT 2.23 0.39 19.53 1 47 0.001375

FFD 3.94 0 .6 35.00 1 16 0.003

MFFD 1.93 0.43 10.36 1 19 0.003438

EGI 1.52 0.30 11.25 1 47 0.518438

Knap 1.84 0.48 11.69 1 9 0.8345

2 bin 0.53 0 . 1 0 7.36 1 69 34.11788

GAPS 0 . 1 1 0 .0 2 2.83 0.53 138 4.94875

n= 1 0 0

ARPD MRPD NO ACT

dl d2 dl d2

SPT 2.41 0.35 18.4 1 64 0.003438

FFD 2.40 0.51 19.36 1 31 0.00725

MFFD 1.80 0.39 15.1 1 50 0.006

EGI 1.52 0.29 12.3 1 54 1.449438

Knap 1.04 0.40 7.57 1 25 2.755375

2 bin 1.25 0.17 16.3 1 77 51.92663

GAPS 0 . 2 1 0 .0 2 7.9 0.64 130 9.795438

Table 5.3: Summary results for the overall computations
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sizes. Since the improvement obtained does not increase by the same amount 
the flowtime increases, the percent deviations are less when there are more 
jobs.

Worst result on the average is obtained by FFD algorithm, after that comes 
SPT. This was expected, since all the other heuristics are developed in order to 
improve over these two simple rules’ performance. FFD heuristic may deviate 
up to 44.69 percent from the best result. This problem instance was the one 
with all factors at high levels, that is when tool life, tool change time and 
processing time range are high. Thus we see that the problem cannot be 
seen as only a bin packing problem even when the tool change time is large. 
The d2 value of FFD shows that it is on the average worst among all the 
algorithms, although there are instances that it gives the best result. MFFD 
heuristic performs better than the first two. But as n increases its deviation also 
increases. The reason for this is that MFFD algorithm’s main advantage comes 
from assigning more jobs to the first tool. When number of jobs increases, this 
advantage diminishes, since in a larger portion of the jobs FFD is applied 
again. Hence, as n increases, the performance of MFFD algorithm approaches 
to performance of FFD. But still MFFD is better than both SPT and FFD on 
the average.

The dispatching heuristics MFFD and EGI provides approximately 2 % 
improvement over the worst result when number of jobs is 20 and 50. When n 
is 100, the range of improvement is small, the highest deviation being 2.41. In 
this case the improvement achieved by MFFD and EGI heuristics are normally 
smaller. For 20 jobs, MFFD gives better results than EGI, in terms of both 
measures of deviation, while for larger problem sizes EGI is better than MFFD. 
The computation times for these algorithms are very small. Among these four 

dispatching heuristics EGI requires the longest average computation time.

The fifth heuristic proposed was a construction type heuristic which is 
denoted as knap in the tables. Although the computation time spent is 
larger than the earlier algorithms, it is as small as 2.75 seconds even when 

n is 100. This algorithm performs better than SPT and FFD heuristics.
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Although it requires more computation time, its dl value is higher than EGI 
and MFFD, except when n is 100. For 100 jobs, the d2  value shows that it 
may perform worse than the others in many instances, although the average 
percent deviation is smaller in this case. The d2  value being large, shows that 
with small deviations, knapsack heuristic may give the largest flowtime value 
in some cases. The myopic nature of this algorithm may be the reason for this 
performance result. Knapsack heuristic assigns jobs to tools with the objective 
of maximizing the usage of that tool. It does not consider the later steps to be 
taken. Furthermore, the knowledge of Tc value is not used in this algorithm, 
so the average performance is not as good as expected.

Two bin and GAPS heuristics give better results than all the others, GAPS 
being the best. We can also see from the number of best (NO) column that 
GAPS dominates all the other algorithms, and its maximum d2  values show 
that GAPS never performed worst in these 480 problem instances. Moreover, 
the average computation time required for GAPS is 9.7 seconds for 1 0 0  jobs, 
which is a reasonable amount. On the other hand, two bin heuristic requires 
much more computation time. Actually, this value is inflated just because of 
a few instances where a difficult knapsack problem is encountered. In these 
cases, it took CPLFX to solve the problem more than half an hour, hence the 
average values increased. For most of the problems, two bin heuristic requires 
much less computation time than what is indicated in table 5.3.

The two bin algorithm gives very close results to the best one. However, 
when number of jobs is 1 0 0 , its deviation dl increases to more than one percent, 
contrary to the observation that the deviations decrease with increasing 
problem sizes. The reason for this may be the iteration number used. The 
instances when two bin deviates much are the ones when FFD algorithm 
performs well, generally when tool life is at the low level. We conclude that two 
bin may require more iterations for large problems, because at each iteration 
two blocks are considered. When there are many jobs and tool life is small, 
there would be many blocks to be processed, and 50 iterations may not be 

enough to achieve better solutions. The d2 values show that two bin may give 
the worst result in some cases. This may be due to the possibility of getting
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stuck at a local optima. If the tools are fully utilized at some iteration during 
the search, it may not change the partition after that point.

For the problem set when there are 20 jobs, we have also tried to find the 
optimal values of the objective function by using the dynamic programming 
formulation given in chapter 3. Although we have a pseudo-polynomial 
algorithm, we could only solve 17 problems among the 160. The complexity 
of the dynamic programming formulation depends on m in the exponent, so 
only for problems where tool life is very large and m is less than 3 , the optimal 
solutions could be found. Among these 17 problems; for 13 of them, all the 
algorithms have found the optimal solution, for 3 problems, the result obtained 
by GAPS heuristic was the optimum and for one, the optimal solution was 
different from all the ones given by the proposed heuristics. But in this case, 
the deviation of GAPS was only 0.15 percent. Since the number of problems 
that could be solved optimally is only ten percent of all problems for one 
problem size, we did not include them in the summary calculations.

The results are summarized for the sixteen factors and three problem sizes 
in the tables in Appendix. It is seen that the two local search algorithms 
perform much better than all the others in all cases. In the remaining parts, 
in order to understand the effect of factor levels on the performance of the 
algorithms, averages taken over the same factor levels will be presented and 
discussed.

In Table 5.4, the effect of tool life and tool change time on the dl value is 
investigated over all the problems we have solved. These values are averaged 
over 1 2 0  runs.

We see that when tool change time is at high level, the deviation of SPT 
from the best increases significantly. When at the same time the tool life is at 
its low level, SPT performs very bad compared to all the other algorithms. For 
high tc and tl level, on the average 6.84 percent improvement can be obtained 
over SPT using the GAPS heuristic. If we investigate the results for each factor 
combination given in Appendix in more detail, we see that the case with high 
variance and mean of processing times, high tc level and low tl level lead to the
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tl-tc SPT FFD MFFD EGI Knap 2 Bin GAPS

0 0 2.74 3.56 1.95 2.49 1 . 8 6 0.99 0.24

0 1 6.84 3.87 2.24 3.98 3.16 1.81 0.56

1 0 0.19 1 . 1 0 0.72 0.19 0.69 0.08 0 . 0 1

1 1 1 . 2 1 6.59 3.19 1.77 1.33 0.24 0.13

Table 5.4: Average percent deviations (d l) for changing tl-tc factors

worst performance results for SPT heuristic. We observe that FFD performs 
better than SPT when tc is at high level and tl is at low level. This justifies 
our intuition, when tl is low, the number of tool changes required increases 
and making economics of tool life gains more importance. But when tl is high, 
even if tc is also high, SPT performs better than FFD since this time not much 
tool is required even with the SPT algorithm.

Increase in the tool change time level affects all the algorithms’ performance, 
although not as dramatically as it does for SPT. When tool life is low, we see 
that the percent deviation of FFD increases with a small amount by increasing 
the tc level. This shows that FFD algorithm finds relatively good sequence to 
minimize the C2 portion of the objective function in this case. However when 

tool life is high, the deviation of FFD solution increases significantly. Thus we 
see that when total number of tools needed is not much, SPT rule outperforms 
FFD even for the second part of the objective function.

For all levels of tc and tl factors, the proposed algorithms provide some 

improvement over SPT heuristic. Among them, the best results are obtained 

by the two bin and GAPS algorithms as discussed earlier.

We analyzed the impact of v and p levels in table 5.5. It is observed 
that when variance of processing times is high, the deviations increase for all 

heuristics. The mean processing time seems to have a minor effect on the 

performances of the algorithms. The differences in deviation when p is high 

and low are generally very small, being approximately 0.50 percent.
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v-p SPT FED MEED EGI Knap 2Bin GAPS
0 0 2.76 1 . 6 8 1.28 1.89 1.14 0.79 0.04
0 1 2.38 1.80 1.53 1 . 6 8 1.72 0.72 0 . 1 0

1 0 2.69 5.80 2.70 2.16 1.85 0.71 0.18
1 1 3.15 5.84 2.58 2.70 2.33 0.90 0.63

Table 5.5: Average percent deviations (d l) for changing v-p factors

On the other hand, when the variance of processing time distribution is 
increased there is much implication on the percent deviations of the heuristics. 
Especially for FED algorithm, increasing the variance significantly increases 
the deviation from the best. In this case performance of it becomes worse than 
the SPT rules’ performance, while it was better when the v level is low. The 
reason for this may be that FED algorithm tries to find a balanced load for 

all tools, so when the variance is high, many large jobs will be assigned to the 
early positions which would increase the C f portion of the flowtime. In general, 
we can say that when variance of processing times is high, there is more room 
for improvement, since the processing times will lie in a larger range. When 
variance is low, because of the pattern of processing times, fewer alternative 
sequences will be found and this makes the average deviations of the heuristics 

decrease.

For all the values of n, the factor combination which results in largest 
deviation in most of the algorithms is (1101), as seen in the Appendix. In this 
case, even GAPS heuristic deviates more than one percent from the best. This 
suggests that in this factor combination, the problem becomes more difficult 
to obtain a good solution. In fact the reason is obvious. When tc is high and 

tl is low, the number of tool changes and their impact on the total flowtime 
value are important. At the same time, if the variance and mean of processing 
times are at high level, then the processing times are chosen randomly from 
a large range, allowing many alternative solutions. Hence this case turns out 

to be the most difficult one for our problem. The deviation of SPT algorithm
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is huge for this factor combination. The d2  value is 0.95 for n equals 100 
which implies that SPT gives the worst solution most of the time for this case. 
GAPS and two bin heuristics on the other hand, still perform best among all 
the algorithms.

5.3 Summary

In this chapter, an experimental design is presented for the proposed 
algorithms. We have first explained the experimental factors and parameters. 
Then we discussed the computational results and the effects of the factors on 
the performance of the algorithms. Our findings can be summarized as follows:

• Among all the proposed heuristics, the worst ones in terms of the total 
fiowtime is FFD and SPT algorithms.

• The computation time requirements are very low for all the algorithms, 
except for two bin heuristic in some exceptional cases. On the average 
two bin algorithm requires the longest run time but its performance in 
terms of total flowtime is very close to the best one on the average.

• MFFD algorithm performs better when the problem size is small.

• Among all proposed algorithms, GAPS gives the best result in terms of 
the objective value.

• Tool change time and tool life are important factors for performance 
of the algorithms. When tool change time is high and tool life is 
low, the proposed algorithms achieve the largest improvement over the 

performance of the SPT heuristic.

• Variance of processing time has an impact on the performance of the 
algorithms. In general, increase in the variance increases the percentage 

improvements that can be achieved.
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• The problem is most difficult when tool change time and processing time 
range are high and tool life is low. Most of the algorithms show their 
worst performance in this case.

In the next chapter we will discuss some future research directions.



Chapter 6

Future Research Directions

In this thesis, the scheduling problem with tool changes with the objective 
of minimizing the total flowtime is studied. One possible extension of this 
study would be to add the total manufacturing cost to the objective function, 
considering the processing times as a consequence of the decision of machining 
conditions, rather than being constant. Thus, the integration of the tool 
management and scheduling problems would be improved. In this chapter 
this direction of possible future work will be discussed and some findings on 
this issue will be presented.

6.1 Problem Definition

In this chapter, we make a new problem definition. Most of the definitions and 
assumptions are the same with the ones used in this thesis study, but there 

are some further additions for this extended problem. For this reason, let us 
present the assumptions and the notation that will be used hereafter.

As a possible extension, the problem of determining the optimum machining 

conditions, and the schedule of a set of jobs can be considered. The objective 

is to minimize total cost of flow time, tooling, and depreciation. The current
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problem scope is defined with the following assumptions:

• There is a single machine, and a single tool type.

• There are N  jobs with no precedence relation, all with ready times equal 
to zero.

• The depth of cut for a job is given, where cutting speed and feed rate are 
decision variables.

• There are ample tools at hand.

• When the tool is worn, it has to be replaced with a new one by spending 
time Tc.

• Tool change is not allowed during a manufacturing operation in order to 
achieve the desired surface finish quality.

The processing times of jobs, and tool life is determined by the machining 
parameters, v and / ,  by some well known formulas as discussed in Akturk and 
Avci [2 ].

The notation used is as follows:

a, 7  : Speed, feed, depth of cut exponents for the cutting tool
C : Taylor’s tool life constant for the cutting tool 

Cm, b,c,e : Specific coefficient and exponents of the machine power constraint 
Cp : Depreciation cost of the CNC machine, ($/min)
Co '■ Flowtime cost ($/min)

C s,g,h,l : Specific coefficient and exponents of the surface roughness 
constraint

Ct : Cost of the tool, ($/per tool)
Di : Diameter of the generated surface for job ¿, (in.) 
di : Depth of cut for job i, (in.) 

fi : Feed rate for job f, (ipr)
H  : Maximum available machine power for all operations, (hp)
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Li : Length of the generated surface for the job (in.)
Si : Maximum allowable surface roughness for operation (/uin.) 
tjn· : Machining time of operation (min.)

Tc : Tool replacing time for the tool, (min.)
Ti : Tool life of the tool in job i, (min.)
Ui : Usage rate of the tool in job i 
Vj : Cutting speed for job (fpm)

The usage rate of tool in operation i, denoted as Ui, is defined as the 
machining time to tool life ratio, and is expressed as follows:

tm, {it.D i . L i ) / (12.Vi . fi )  IT . D i .  L i . df
U i =

CKvt.ff.dJ) 12. c .

6.2 Discussion

If a schedule is viewed as a sequence of blocks of jobs, which are separated by 
tool changes, the problem is deciding on the optimum machining conditions 

for each job, and partitioning the jobs into blocks. Then we can order the 
jobs within blocks in SPT, and the blocks can be ordered optimally using an 
SPT based rule for groups of jobs. However, it is obvious that these decisions 
are interacting, since the machining conditions determine the machining time, 
and the tool life. Partitioning the jobs into minimum number of blocks does 
not imply optimality. As the tool replacing time decreases, dominates Tc 
for the scheduling decision, and number of tool changes done may become less 
significant. Therefore, a joint cost function for each job can be written as:

Ct-Ui +  Co.tmi +  Co-(N — n -\- l).(tmi +  (Tc))

where the cost components are; tooling cost, depreciation cost, and the 
flowtime cost, respectively. The value Tc is written in parenthesis on purpose, 
meaning it will be added only if a tool change is done before that job.
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Relations between the variables can be summarized as:
1

U (X V oc.
U

Since increasing usage rate would cause a more frequent tool changes, we 
can also say:

u oc number of tool replacements

Thus, we see that there is a trade off between the costs associated with 
machining time (depreciation, and flowtime costs) and the costs associated 
with non-machining time (tooling cost and flowtime cost), which should be 
taken into account in the solution procedure.

The solution to this problem can be investigated in two different cases as 

will be discussed in the following subsections.

6.2.1 Case I : Tc =  0

Automatic machine tools can replace the worn tool during set up of a workpiece; 
which means that Tc =  0. In this case, the problem can be formulated as an 

assignment problem.

In an optimal schedule, if job i is assigned to position j ,  its contribution to 

the cost function is,

Ct-Ui +  Cu-tmi +  Co-{N — j  +  l)-tmi

where the cost components are; tooling cost, depreciation cost, and the 
flowtime cost respectively. The optimum machining parameters u, / ,  which 

minimizes this cost can be found by solving the single machining operation 

problem (SMOP), using the formulation of Akturk and Avci [2 ].

Hence the cost of assigning a job i to position j  is the solution of the 

following program:
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Minimize Mij =  Ci.vr\f~'^ +  

Subject to: <  1

<  1

Vi, fi > 0

(Machine Power Constraint) 

(Surface Roughness Constraint)

where,

^  n.Di.Li.HN -  j  +  l).Co +  Cd ) ^  _  TT.Di.Li.dJ.Ct
12 ’  ̂ 12.(7

_  Cm-d̂  1 _  Ca-dj
5 3*11(1 G g g

It follows that, the cost incurred by scheduling job i to position j ,  and then 
selecting the machining parameters optimally, does not depend on the other 
jobs, and influence the further decisions. Thus, we can formulate our problem 
as an TV X assignment problem.

The formulation would be as follows:

N N
Minimize Y ,Y ,M i,.x n

i=l j=l 
N

Subject to : ^  Xij =  1 , z =  1 , . . . ,
i=l
N

^ V̂ ij 
¿= 1

where,

X ij — ^
1 , if job i is scheduled at position j  

0 , otherwise

and
Mij =  optimal result of SMOP formulated above
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6.2.2 Case II : Tc > 0

In this case, the tool replacing time is a positive constant, and this makes the 
problem much more complicated. Since Tc > 0, the tool replacing time has a 
contribution to the cost function, and the existence of this additional time for a 
job depends not only on the usage rate of that job, but also on the usage rates of 
the previous jobs. The main difficulty arises for this reason. Consequently, the 
optimal machining conditions cannot be calculated for a position independent 
of the other jobs.

However, by making an approximation, we can also reduce this problem to 
an assignment problem. In this case, we write the contribution of a job to the 
total cost if it is assigned to position j  as follows:

Ct-Ui +  Co-imi +  Co-{N — j  A +  Co-{N — j  A l).Tc. Ui

where the last term represents the flowtime cost that might be added as a 
result of tool replacement. The other cost components are the same as Case I.

In fact, we do not know whether there will be a tool change or not in 
advance. If there is one, its contribution would be Co-{N — j  A l).Tc. On the 
other hand, we know that, when the usage rate (ui) increases, it is more likely 
that a tool change would be needed. Hence, multiplying this cost component 
by Ui, we approximately consider the tool replacing time cost in the total 
cost of assigning a job i to the ^th position in the sequence. This cost can 
be calculated independent of the other jobs in the sequence, giving us the 
opportunity to formulate the problem as an assignment problem.

6.2.3 Further Issues for an Exact Algorithm

The total cost for case II can be written as follows:

N N N N

TC  =  ^  Ct-Ui +  Co-tmi +  ~ j  +  ^)-Tc.y[j] +  ^  ^  Co-{N — j  +
t= l i= l
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where,

and,

Xij =  <
1, if job i is scheduled at position j  

0, otherwise

y[j] =  <
1, if a tool replacement is required before the job at position j  

0, otherwise

Instead of trying to solve for the above cost function directly, we can 
consider an iterative solution method. A state represents a portion of the 
schedule completed up to that point. At each state, the jobs waiting to be 
scheduled, and the remaining tool life is known. So, the cost contribution 
(with optimal machining conditions) of each job for a given state can be easily 
calculated by the formulation given in section 2.1. And if the resulting usage 

rate is less then the remaining tool life, it is fine.

When the remaining life of the tool is less than the usage rate, the result 
may not be optimal since it ignores the tool change time, then there are two 
possibilities to be considered:

1. Either replacing the tool with a new one, thus spending time Tc,

2. Or, changing the machining conditions to fit the usage rate to the 
remaining tool life, thus increasing the machining time, tmi ■

We see that there is a trade off between Tc and tmi > which affects the costs 

for alternative actions. We can summarize the relations between Ui and cost 

components as:

Ui oc tooling cost a  tool replacing time cost a  machining time cost

After computing the cost contribution of all remaining jobs, we should 

consider which new states to generate. We are considering to work on finding
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some dominance relations between jobs for a position j ,  in order to decrease the 
number of alternatives at each state. Taking into account the above relations 
can be helpful for this purpose.

If we relax the assumption of not allowing tool change during a 
manufacturing operation, we can formulate the problem of minimizing the 
total flowtime as a mixed integer programming formulation, for given values of 
tjni, Ti, Tc, and TL (tool life) as follows:

N N N
Minimize '^ {N  -  j  + l).Tc.y[j] +  ^  '^ {N  -  j  +  l)tmi.Xij

j=l  j = l 1 = 1
N

Subject to : Xjj =  1 , z — 1 , . . . ,  TV
i=i
N

^  V ^ij  I 5J  
i=l 
N

' ^ T i . X i j  +  S j - i  =  S j , \ / j

^ < K j  +  UVj 

K j  -  K j - i  <  M.yj,Wj 

So =  0,

Ko =  0,

K j  is integer and Xij, yy]  are binary variables

where Xij and y\j] are defined above before.

This formulation may be helpful to solve a subproblem within an algorithm 

that can be developed for this problem.
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6.3 Summary

In this chapter we introduce a possible extension to our problem. There are 
many possible extensions to the scheduling with tool changes problem. The 
one considered here is considering the processing times as a consequence of the 
machining conditions decisions and including the tooling and depreciation cost 
to the objective value in addition to the flowtime cost.

We have discussed some difficulties to be faced with this problem. Then 
we have formulated the special case of the problem, when tool change time is 
insignificant, as an assignment problem. For the general case, we have discussed 
some approximations and possible directions for an exact algorithm.

In the next chapter some concluding remarks will be done.



Chapter 7

Conclusion

In this chapter a brief summary of the contributions of this study will be 
done and some possible extensions of this study will be presented for future 
research. In this thesis, we have considered the scheduling problem to minimize 
the total flowtime for a single CNC machine where tool changes are required 
due to tool wear. We analyzed the characteristics of the problem and proposed 
a pseudo-polynomial dynamic programming formulation and several heuristic 
algorithms. In §7.1 the results will be summarized and Anally in §7.2 some 
future research directions will be suggested.

7.1 Results

The existing studies in the literature consider tool changes which are done 
due to different requirements of parts and they do not incorporate scheduling 
objectives in decision of the job sequence, rather try to minimize the number 
of tool changes. However, the tool replacements due to tool wear can 

have significant impact on total cost of production and throughput of parts. 

Moreover, the tools are changed ten times more often due to tool wear than 
due to part mix because of relatively short tool lives of many turning tools as
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stated by Gray et al. [13]. There are no studies in the literature which take 
these facts into account in the solution of scheduling problems. In scheduling 
literature, there are some studies concerning the unavailability of machines, 
but to the best of my knowledge, no published work exists which considers the 
unavailability of tools. This thesis is a first step to fill this gap in the literature.

In this study we have introduced an untouched problem, scheduling with 
tool changes with the objective of minimizing the total flowtime. We have 
shown that this problem is strongly NP-hard. Moreover, even when number 
of tools is fixed, it was shown to be NP-hard. Then we have discussed the 
performance of the SPT heuristic for our problem and shown that its worst 
case performance is bounded above by a constant. Some conditions concerning 
the problem data were also presented which would guarantee the optimality of 
SPT rule for scheduling with tool changes problem to minimize total flowtime.

We have developed a pseudo-polynomial dynamic programming formulation 
for the problem, but for computational purposes this algorithm was not 

practical. Since the problem is NP-hard, heuristic approaches are justified. In 
this study, several heuristic algorithms were proposed for the solution of this 
problem in order to improve the simplest heuristic, SPT, which first comes to 
mind for flowtime problems, and FFD, which is a bin packing heuristic and 
was expected to work well for tool change problem when tool change time is 

very large.

We have proposed two dispatching heuristics, one of which is a modification 
to FFD, and the other uses a simple dynamic ranking index. In the 

proposed computational studies, these algorithms perform better than SPT 
and FFD even though they require very short computation time. Another 

algorithm presented was a construction algorithm based on a knapsack 
problem. It provided some improvement on the average with a small additional 

computational effort. However, this algorithm showed erratic behavior during 
the computational analysis and could not always outperform the dispatching 

heuristics.

The best improvement was achieved by the two local search algorithms. We
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have used the problem space search technique with genetic algorithm which 
proved to be the most effective of all to find a relatively good solution to 
the scheduling with tool changes problem with respect to both the objective 
function value and computation time.

As a result, we have shown that for this problem, tool change time and tool 
life values are important data which together determine the characteristics 
of the problem. Thus, we can conclude that the solution procedure for this 
problem should take into account these values. We have observed that when 
tool change time is small and tool life is large, SPT heuristic can perform quite 
well and we cannot improve much over its performance. However, when the 
tool change time is large and tool life is low the problem gets complicated 
and SPT cannot perform as well. In this case, we can provide on the average 
6.84 percent improvement over SPT rule’s solution. Moreover, over the small 
set of problems we could solve optimally by using the dynamic programming 
algorithm, we have seen that the genetic algorithm with problem space search 
finds very close results to the optimum.

7.2 Future Research Directions

Finally, some future research directions can be suggested as follows:

• In this study, only a single tool type was considered. The study 
can be extended considering multiple tool types and different tooling 

requirements of jobs.

• We have assumed the processing times to be constant. However, the 

processing times and tool life are direct consequences of the machining 
parameters. The decision of machining parameters can be incorporated 
into this study, for which we have started the discussion, in Chapter 6 .

• The scheduling with tool changes problem can be considered with some 
other performance measures, such as weighted flowtime, tardiness etc.
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v- p- tl-tc Flowtime
SPT
d l d2 Flowtime

FFD
dl d2 Flowtime

M FFD
dl d2 Flowtime

EGI
dl d2

0000 3974.40 3.12 0.53 3874.20 0.69 0.34 3860.00 0.27 0.06 3939.40 2.42 0.57
0001 19550.10 6.98 0.60 18463.60 0.43 0.21 18538.40 0.97 0.09 18823.40 2.74 0.37
0010 2422.70 0.65 0.26 2435.60 1.25 0.51 2434.60 1.16 0.43 2422.70 0.65 0.26
0011 6253.30 2.92 0.49 6360.90 4.97 0.70 6236.60 2.77 0.45 6292.60 3.75 0.70
0100 7924.80 2.16 0.51 7865.20 1.33 0.52 7823.50 0.71 0.19 7930.70 2.18 0.67
0101 38670.50 5.37 0.60 37552.00 1.40 0.40 37586.60 1.48 0.21 37712.70 1.98 0.52
0110 4885.40 0.74 0.25 4900.80 1.11 0.51 4915.10 1.35 0.52 4885.40 0.74 0.25
0111 12651.70 3.49 0.52 12773.90 4.71 0.74 12762.50 4.48 0.66 12698.90 4.10 0.77
1000 2788.40 3.62 0.46 2937.00 9.00 0.97 2770.90 3.10 0.45 2774.10 3.08 0.40
1001 12438.50 8.23 0.65 12884.50 12.09 0.90 11921.80 4.06 0.35 12296.70 6.75 0.51
1010 1812.70 0.32 0.17 1830.70 1.37 0.38 1836.30 1.49 0.51 1812.70 0.32 0.17
1011 4089.10 2.25 0.22 4539.30 11.64 0.52 4167.90 3.82 0.38 4188.20 4.07 0.35
1100 5556.20 4.19 0.62 5722.40 7.44 0.78 5457.90 2.75 0.36 5488.80 3.01 0.48
1101 24887.20 10.32 0.79 24520.00 9.07 0.63 23214.70 3.88 0.33 24901.50 10.16 0.69
1110 3591.10 0.41 0.05 3694.40 3.28 0.42 3620.30 1.21 0.21 3591.10 0.41 0.05
1111 8140.70 2.73 0.23  1 8815.60 10.14 0.48  1 8240.50 3.90 0.31 8422.80 5.95 0.43

AVG 1 9977.30 3.59 0.43  I 9948.13 5.00 0.56  1 9711.73 2.34 0.35  1 9886.36 3.27 0.45 ¡1

Table A .l: Averages over ten replications for n=20

v- p- tl-tc Flowtime
Knap

dl d2 Flowtime
2Bin
dl d2 Flowtime

GAPS
dl d2

0000 3886.40 1.01 0.29 3857.90 0.19 0.03 3851.30 0.00 0.00
0001 18608.40 1.23 0.15 18488.80 0.47 0.02 18414.30 0.00 0.00
0010 2436.60 1.25 0.71 2412.80 0.27 0.11 2406.10 0.00 0.00
0011 6162.30 1.79 0.32 6077.70 0.41 0.06 6055.40 0.00 0.00
0100 7855.40 1.21 0.40 7781.20 0.08 0.03 7777.90 0.03 0.00
0101 37526.50 1.20 0.17 37194.40 0.02 0.00 37237.60 0.23 0.04
0110 4961.20 2.28 0.87 4865.30 0.35 0.11 4847.50 0.00 0.00
0111 12744.40 4.06 0.49 12270.90 0.67 0.08 12241.40 0.34 0.08
1000 2740.60 2.18 0.33 2725.20 1.24 0.16 2701.50 0.51 0.04
1001 11941.10 4.58 0.34 11734.00 1.61 0.15 11488.70 0.00 0.00
1010 1820.40 0.72 0.41 1808.60 0.06 0.15 1807.60 0.00 0.00
1011 4115.50 2.89 0.28 4019.80 0.38 0.05 4001.10 0.00 0.00
1100 5472.40 2.75 0.48 5387.00 1.22 0.12 5361.70 0.92 0.13
1101 23928.80 6.15 0.46 22955.60 1.87 0.09 23156.20 3.30 0.23
1110 3634.10 1.53 0.65 3580.90 0.11 0.01 3581.00 0.10 0.03
1111 8227.80 3.57 0.54 7913.50 0.04 0.00 7962.60 0.64 0.09

II avg  1 9753.87 2.40 0.43  1 9567.10 0.56 0.07  1 9555.74 0.38 0.04  II

Table A.2: Averages over ten replications for n=20 (continued)
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v-p-tl-tc Flowtime
SPT
dl d2 Flowtime

FFD
dl d2 Flowtime

M FFD
dl d2 Flowtime

EGI
dl d2

0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

3187.00
4208.00
3776.00
4191.00
5658.00
4881.00
2832.00
4718.00
3297.00
2996.00

3.07
14.04
0.00
4.38
6.77
0.00
1.32
0.00
0.00
1.56

1.00
1.00
0.00
1.00
1.00
0.00
0.39
0.00
0.00
0.90

3095.00
3690.00
3776.00
4015.00
5304.00
4917.00
2891.00
4756.00
3297.00
3001.00

0.10
0.00
0.00
0.00
0.09
0.74
3.43
0.81
0.00
1.73

0.03
0.00
0.00
0.00
0.01
0.68
1.00
0.67
0.00
1.00

3095.00
3737.00
3776.00
4015.00
5299.00
4881.00
2825.00
4718.00
3297.00
2957.00

0.10
1.27
0.00
0.00
0.00
0.00
1.07
0.00
0.00
0.24

0.03
0.09
0.00
0.00
0.00
0.00
0.31
0.00
0.00
0.14

3187.00
4208.00
3776.00
4090.00
5299.00
4934.00
2832.00
4775.00
3297.00
2996.00

3.07
14.04
0.00
1.87
0.00
1.09
1.32
1.21
0.00
1.56

1.00
1.00
0.00
0.43
0.00
1.00
0.39
1.00
0.00
0.90

0001
0001
0001
0001
0001
0001
0001
0001
0001
0001

14374.00
20840.00
20870.00
19041.00
29374.00
28821.00
9962.00
27708.00
13517.00
10994.00

8.36
29.67
0.00
8.71
9.99
0.00
6.55
0.00
0.00
6.52

1.00
1.00
0.00
1.00
1.00
0.00
1.00
0.00
0.00
1.00

13265.00
16098.00
20870.00
17515.00
26710.00
28857.00
9446.00

27746.00
13517.00
10612.00

0.00
0.17
0.00
0.00
0.02
0.12
1.03
0.14
0.00
2.82

0.00
0.01
0.00
0.00
0.00
0.86
0.16
0.64
0.00
0.43

13265.00
16805.00
20870.00
17515.00
26705.00
28821.00
9610.00

27708.00
13517.00
10568.00

0.00
4.57
0.00
0.00
0.00
0.00
2.78
0.00
0.00
2.39

0.00
0.15
0.00
0.00
0.00
0.00
0.42
0.00
0.00
0.37

13340.00
19204.00
20870.00
17726.00
26710.00
28863.00
9618.00

27767.00
13517.00
10619.00

0.57
19.49
0.00
1.20
0.02
0.15
2.87
0.21
0.00
2.89

0.07
0.66
0.00
0.14
0.00
1.00
0.44
1.00
0.00
0.44

0010
0010
0010
0010
0010
0010
0010
0010
0010
0010

2212.00
2498.00
2360.00
2489.00
2826.00
2529.00
2247.00
2558.00
2277.00
2231.00

0.00
0.00
1.03
0.00
2.54
0.32
0.00
1.67
0.98
0.00

0.00
0.00
0.43
0.00
0.67
0.19
0.00
1.00
0.28
0.00

2253.00
2533.00
2392.00
2523.00
2769.00
2545.00
2247.00
2528.00
2335.00
2231.00

1.85
1.40
2.40 
1.37 
0.47 
0.95 
0.00 
0.48 
3.55 
0.00

0.71
1.00
1.00
0.43
0.12
0.57
0.00
0.29
1.00
0.00

2270.00
2515.00
2360.00
2489.00
2861.00
2545.00
2247.00
2521.00
2307.00
2231.00

2.62
0.68
1.03
0.00
3.81
0.95
0.00
0.20
2.31
0.00

1.00
0.49
0.43
0.00
1.00
0.57
0.00
0.12
0.65
0.00

2212.00
2498.00
2360.00
2489.00
2826.00
2529.00
2247.00
2558.00
2277.00
2231.00

0.00
0.00
1.03
0.00
2.54
0.32
0.00
1.67
0.98
0.00

0.00
0.00
0.43
0.00
0.67
0.19
0.00
1.00
0.28
0.00

0011
0011
0011
0011
0011
0011
0011
0011
0011
0011

4924.00
6590.00
6356.00
6239.00
8370.00
7947.00
4202.00
8124.00
5357.00
4424.00

0.00
1.90
5.95
0.00
6.79
3.38
0.00
5.25
5.97
0.00

0.00
0.78
0.71
0.00
0.81
0.79
0.00
1.00
0.84
0.00

5466.00
6625.00
6499.00
6739.00
8497.00
8011.00
4202.00
7731.00
5415.00
4424.00

11.01
2.44
8.33
8.01
8.41
4.21
0.00
0.16
7.12
0.00

1.00
1.00
1.00
1.00
1.00
0.99
0.00
0.03
1.00
0.00

4982.00
6607.00
6356.00
6239.00
8434.00
8011.00
4202.00
7724.00
5387.00
4424.00

1.18
2.16
5.95
0.00
7.60
4.21
0.00
0.06
6.57
0.00

0.11
0.89
0.71
0.00
0.90
0.99
0.00
0.01
0.92
0.00

5063.00
6485.00
6406.00
6660.00
8472.00
8015.00
4232.00
7731.00
5415.00
4447.00

2.82
0.28
6.78
6.75
8.09
4.27
0.71
0.16
7.12
0.52

0.26
0.11
0.81
0.84
0.96
1.00
1.00
0.03
1.00
1.00
1.00
1.00
0.00
0.42
0.18
1.00
0.57
1.00
0.84
0.66

0100
0100
0100
0100
0100
0100
0100
0100
0100
0100

6403.00
7684.00
8137.00
8374.00
10469.00
9984.00
5706.00
9512.00
6948.00
6031.00

3.07
6.03
0.00
4.47
0.00
0.00
1.89
0.00
4.80
1.34

1.00
1.00
0.00
1.00
0.00
0.00
0.57
0.00
0.84
0.66

6215.00
7306.00
8137.00
8016.00
10480.00
10058.00
5786.00
9591.00
7007.00
6056.00

0.05
0.81
0.00
0.00
0.11
0.74
3.32
0.83
5.69
1.76

0.02
0.14
0.00
0.00
1.00
0.61
1.00
0.54
1.00
0.87

6215.00
7314.00
8137.00
8016.00
10475.00
9984.00
5607.00
9512.00
7007.00
5968.00

0.05
0.92
0.00
0.00
0.06
0.00
0.13
0.00
5.69
0.29

0.02
0.15
0.00
0.00
0.55
0.00
0.04
0.00
1.00
0.14

6403.00
7684.00
8137.00
8165.00
10471.00
10105.00
5706.00
9657.00
6948.00
6031.00

3.07
6.03
0.00
1.86
0.02
1.21
1.89
1.52
4.80
1.34

0101
0101
0101
0101
0101
0101
0101
0101
0101
0101

28777.00
35668.00
45928.00
38074.00
53281.00
57674.00
19966.00
55682.00
29628.00
22027.00

8.37
14.06
0.00
8.73
0.00
0.00
6.71
0.00
9.45
6.35

1.00
1.00
0.00
1.00
0.00
0.00
1.00
0.00
0.98
1.00

26555.00
31330.00
45928.00
35016.00
53292.00
57748.00
18925.00
55761.00
29687.00
21278.00

0.00
0.19
0.00
0.00
0.02
0.13
1.15
0.14
9.67
2.73

0.00
0.01
0.00
0.00
1.00
0.70
0.17
0.66
1.00
0.43

26555.00
32130.00
45928.00
35016.00
53287.00
57674.00
18717.00
55682.00
29687.00
21190.00

0.00
2.75
0.00
0.00
0.01
0.00
0.04
0.00
9.67
2.31

0.00
0.20
0.00
0.00
0.55
0.00
0.01
0.00
1.00
0.36

26896.00
32130.00
45928.00
35141.00
53292.00
57780.00
19266.00
55801.00
29687.00
21206.00

1.28
2.75
0.00
0.36
0.02
0.18
2.97
0.21
9.67
2.39

0.15
0.20
0.00
0.04
1.00
1.00
0.44
1.00
1.00
0.38

Table A.3: Computational results for SPT, FFD, MFFD, EGI algorithms for 
n= 2 0
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v- p- tl-tc Flowtime
SPT
dl d2 Flowtime

FFD
dl d2 Flowtime

MFFD
dl d2 Flowtime

EGI
dl d2

0110
0110
0110
0110
0110
0110
0110
0110
0110
0110

4479.00
4984.00
4762.00
5062.00
5628.00
5133.00
4491.00
5192.00
4588.00
4535.00

0.00
0.00
0.00
1.81
2.46
0.39
0.00
1.62
0.39
0.73

0.00
0.00
0.00
0.56
0.64
0.19
0.00
0.27
0.13
0.73

4535.00
5052.00
4815.00
5042.00
5520.00
5173.00
4491.00
5139.00
4706.00
4535.00

1.25
1.36
1.11
1.41
0.49
1.17
0.00
0.59
2.98
0.73

0.41
1.00
0.69
0.43
0.13
0.58
0.00
0.10
1.00
0.73

4533.00
5002.00
4839.00
5062.00
5686.00
5163.00
4491.00
5192.00
4648.00
4535.00

1.21
0.36
1.62
1.81
3.51
0.98
0.00
1.62
1.71
0.73

0.40
0.26
1.00
0.56
0.91
0.48
0.00
0.27
0.57
0.73

4479.00
4984.00
4762.00
5062.00
5628.00
5133.00
4491.00
5192.00
4588.00
4535.00

0.00
0.00
0.00
1.81
2.46
0.39
0.00
1.62
0.39
0.73

0.00
0.00
0.00
0.56
0.64
0.19
0.00
0.27
0.13
0.73

0111
0111
0111
0111
0111
0111
0111
0111
0111
0111

10129.00
13168.00
12718.00
13162.00
16716.00
15926.00
8401.00
16370.00
10748.00
9179.00

0.00
1.89
5.97
5.53
6.76
3.38
0.00
5.22
2.85
3.27

0.00
0.72
0.72
0.68
0.81
0.79
0.00
0.36
0.72
0.45

10956.00
13236.00
12992.00
13494.00
16969.00
16058.00
8401.00
15588.00
10866.00 
9179.00

8.16
2.41
8.25
8.19
8.38
4.24
0.00
0.19
3.98
3.27

1.00
0.92
1.00
1.00
1.00
0.98
0.00
0.01
1.00
0.45

10794.00
13186.00
12855.00
13162.00
16828.00
16042.00
8401.00
16370.00
10808.00 
9179.00

6.57
2.03
7.11
5.53
7.48
4.14
0.00
5.22
3.43
3.27

0.80
0.78
0.86
0.68
0.89
0.96
0.00
0.36
0.86
0.45

10160.00
13262.00
12818.00
13311.00
16917.00
16068.00
8460.00
15596.00
10866.00 
9531.00

0.31
2.62
6.80
6.73
8.05
4.30
0.70
0.24
3.98
7.23

0.04
1.00
0.82
0.82
0.96
1.00
1.00
0.02
1.00
1.00

1000
1000
1000
1000
1000
1000
1000
1000
1000
1000

2168.00
2924.00
2793.00
2927.00
4141.00
2781.00
2409.00
3244.00
2084.00
2413.00

0.65
3.21
4.37
5.63
5.96
1.46 
1.73 
5.12
2.46 
5.56

0.15
0.61
0.18
0.73
0.59
0.13
0.45
0.42
0.36
1.00

2233.00
2983.00
3330.00
2984.00
4303.00
3042.00
2459.00
3465.00
2174.00
2397.00

3.67
5.29

24.44
7.69
10.11
10.98
3.84
12.28
6.88
4.86

0.82
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
0.87

2250.00
2963.00
2780.00
2943.00
4032.00
2741.00
2396.00
3192.00
2036.00
2376.00

4.46
4.59
3.89
6.21
3.17 
0.00
1.18 
3.43 
0.10 
3.94

1.00
0.87
0.16
0.81
0.31
0.00
0.31
0.28
0.01
0.71

2168.00
2924.00
2793.00
2802.00
4152.00
2747.00
2409.00
3249.00
2084.00
2413.00

0.65
3.21
4.37
1.12
6.24
0.22
1.73
5.28
2.46
5.56

0.15
0.61
0.18
0.15
0.62
0.02
0.45
0.43
0.36
1.00

1001
1001
1001
1001
1001
1001
1001
1001
1001
1001

8408.00
12648.00
14254.00
12512.00
20055.00
14529.00
7625.00
17864.00
7855.00
8635.00

2.11
7.10
9.33
10.81
9.91
3.59
7.47
9.39
6.05
16.53

0.17
0.93
0.40
0.90
1.00
0.24
0.71
0.73
0.35
1.00

9240.00
12707.00
16047.00
12642.00
19781.00
15680.00
7838.00

18429.00
8411.00
8070.00

12.22
7.60

23.08
11.97
8.41
11.79
10.47
12.85
13.55
8.91

1.00
1.00
1.00
1.00
0.85
0.80
1.00
1.00
0.78
0.54

8490.00
12687.00
13142.00
12315.00
18420.00
14133.00
7449.00

17124.00
7409.00
8049.00

3.11
7.44
0.80
9.07
0.95
0.76
4.99
4.86
0.03
8.62

0.25
0.98
0.03
0.76
0.10
0.05
0.48
0.38
0.00
0.52

8630.00
12054.00
13244.00
11610.00
19399.00
16098.00
7473.00

18349.00
8690.00
7420.00

4.81
2.07
1.58
2.83
6.31
14.77
5.33

12.36
17.32
0.13

0.39
0.27
0.07
0.24
0.64
1.00
0.51
0.96
1.00
0.01

1010
1010
1010
1010
1010
1010
1010
1010
1010
1010

1664.00
1910.00
1824.00
1839.00
2203.00
1631.00
1972.00
1879.00
1440.00
1765.00

0.36
0.00
0.00
0.00
0.00
2.58
0.00
0.21
0.00
0.00

0.67
0.00
0.00
0.00
0.00
0.26
0.00
0.80
0.00
0.00

1664.00
1919.00
1824.00
1839.00
2207.00
1745.00
2025.00
1879.00
1440.00
1765.00

0.36
0.47
0.00
0.00
0.18
9.75
2.69
0.21
0.00
0.00

0.67
0.31
0.00
0.00
0.03
1.00
1.00
0.80
0.00
0.00

1664.00
1910.00
1857.00
1886.00
2331.00
1646.00
1985.00
1879.00
1440.00
1765.00

0.36
0.00
1.81
2.56
5.81
3.52
0.66
0.21
0.00
0.00

0.67
0.00
1.00
1.00
1.00
0.36
0.25
0.80
0.00
0.00

1664.00
1910.00
1824.00
1839.00
2203.00
1631.00
1972.00
1879.00
1440.00
1765.00

0.36
0.00
0.00
0.00
0.00
2.58
0.00
0.21
0.00
0.00

0.67
0.00
0.00
0.00
0.00
0.26
0.00
0.80
0.00
0.00

Table A.4: Computational results for SPT, FFD, MFFD, EGI algorithms for 
n= 2 0  (continued)
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v- p- tl-tc Flowtime
SPT
dl d2 Flowtime

FFD
dl d2 Flowtime

M FFD
dl d2 Flowtime

EGI
dl d2

1011
1011
1011
1011
1011
1011
1011
1011
1011
1011

3424.00
4341.00
4336.00
4182.00
5691.00
4479.00
3439.00
5319.00
2634.00
3046.00

5.10
0.00
0.00
0.00
0.00
9.73
4.28
3.42
0.00
0.00

0.64
0.00
0.00
0.00
0.00
0.34
0.77
0.43
0.00
0.00

3424.00
4915.00
5742.00
4182.00
7558.00
5244.00
3329.00
5319.00
2634.00
3046.00

5.10
13.22
32.43
0.00

32.81
28.47
0.94
3.42
0.00
0.00

0.64
1.00
1.00
0.00
1.00
1.00
0.17
0.43
0.00
0.00

3469.00
4341.00
4369.00
4229.00
6255.00
4565.00
3452.00
5319.00
2634.00
3046.00

6.48
0.00
0.76
1.12
9.91
11.8
4.67
3.42
0.00
0.00

0.82
0.00
0.02
1.00
0.30
0.42
0.84
0.43
0.00
0.00

3516.00
4580.00
4369.00
4200.00
6331.00
4329.00
3329.00
5548.00
2634.00
3046.00

7.92
5.51
0.76
0.43
11.25
6.05
0.94
7.87
0.00
0.00

1.00
0.42
0.02
0.38
0.34
0.21
0.17
1.00
0.00
0.00

1100
1100
1100
1100
1100
1100
1100
1100
1100
1100

4336.00
5853.00
5640.00
5573.00
8214.00
5467.00
4861.00
6604.00
4177.00
4837.00

3.14
3.61
5.90
2.39 
9.11 
4.49 
1.72 
5.44
2.40 
3.71

0.39
0.87
0.41
0.28
0.98
0.18
1.00
0.94
0.34
0.77

4217.00
5855.00
6086.00
5901.00
8203.00
6511.00
4835.00
6400.00
4367.00
4849.00

0.31
3.65
14.27
8.41
8.97 

24.45 
1.17 
2.19 
7.06
3.97

0.04
0.88
1.00
1.00
0.96
1.00
0.68
0.38
1.00
0.83

4543.00
5652.00
5637.00
5682.00
7542.00
5233.00
4779.00
6600.00
4079.00
4832.00

8.06
0.05
5.84
4.39
0.19
0.02
0.00
5.38
0.00
3.60

1.00
0.01
0.41
0.52
0.02
0.00
0.00
0.93
0.00
0.75

4336.00
5853.00
5640.00
5456.00
8228.00
5232.00
4861.00
6268.00
4177.00
4837.00

3.14
3.61
5.90
0.24
9.30
0.00
1.72
0.08
2.40
3.71

0.39
0.87
0.41
0.03
1.00
0.00
1.00
0.01
0.34
0.77

1101
1101
1101
1101
1101
1101
1101
1101
1101
1101

16876.00
25873.00
29219.00
23093.00
40470.00
28159.00
15581.00
36694.00
16038.00
16869.00

9.41
10.70
16.74
4.55
17.57
9.44
7.50

10.18
6.06
11.04

0.73
0.99
1.00
0.75
1.00
0.32
1.00
0.74
0.43
0.97

15437.00
25105.00
29019.00
23421.00
37323.00
33229.00
15220.00
33304.00
16637.00
16505.00

0.08
7.41

15.94
6.04
8.43

29.15
5.01
0.00
10.02
8.64

0.01
0.68
0.95
1.00
0.48
1.00
0.67
0.00
0.71
0.76

17413.00
24132.00
26309.00
22764.00
34422.00
25729.00
14494.00
35274.00
15122.00
16488.00

12.9
3.25
5.11
3.07
0.00
0.00
0.00
5.92
0.00
8.53

1.00
0.30
0.31
0.51
0.00
0.00
0.00
0.43
0.00
0.75

17009.00
24661.00
26779.00
23375.00
38589.00
33229.00
14990.00
37858.00
17260.00
15265.00

10.28
5.52
6.99
5.83
12.11
29.15
3.42
13.67
14.14
0.48

0.80
0.51
0.42
0.97
0.69
1.00
0.46
1.00
1.00
0.04

1110
1110
1110
1110
1110
1110
1110
1110
1110
1110

3234.00
3786.00
3588.00
3659.00
4350.00
3259.00
3861.00
3744.00
2843.00
3587.00

0.00
0.00
0.81
0.63
0.00
2.52
0.00
0.11
0.00
0.00

0.00
0.00
0.07
0.19
0.00
0.20
0.00
0.07
0.00
0.00

3234.00
3786.00
3991.00
3659.00
4601.00
3586.00
3861.00
3796.00
2843.00
3587.00

0.00
0.00
12.14
0.63
5.77

12.80
0.00
1.50
0.00
0.00

0.00
0.00
1.00
0.19
1.00
1.00
0.00
1.00
0.00
0.00

3274.00
3786.00
3649.00
3757.00
4413.00
3289.00
3861.00
3744.00
2843.00
3587.00

1.24
0.00
2.53
3.33
1.45
3.46 
0.00 
0.11 
0.00 
0.00

0.32
0.00
0.21
1.00
0.25
0.27
0.00
0.07
0.00
0.00

3234.00
3786.00
3588.00
3659.00
4350.00
3259.00
3861.00
3744.00
2843.00
3587.00

0.00
0.00
0.81
0.63
0.00
2.52
0.00
0.11
0.00
0.00

0.00
0.00
0.07
0.19
0.00
0.20
0.00
0.07
0.00
0.00

n il
n il
n il
n il
n il
n il
n il
n il
n il
n il

6204.00
8791.00
8756.00
8477.00
11518.00
9115.00
6206.00
10824.00
5297.00
6219.00

0.00
0.00
8.35
5.75
0.00
9.78
0.00
3.42
0.00
0.00

0.00
0.00
0.48
0.70
0.00
0.22
0.00
0.93
0.00
0.00

6204.00
10034.00
9482.00
8477.00
13701.00
12014.00
6206.00
10522.00
5297.00
6219.00

0.00
14.14
17.34
5.75

18.95
44.69
0.00
0.54
0.00
0.00

0.00
1.00
1.00
0.70
1.00
1.00
0.00
0.15
0.00
0.00

6244.00
9352.00
8817.00
8575.00
11581.00
9290.00
6206.00
10824.00
5297.00
6219.00

0.64
6.38
9.11
6.97
0.55
11.8
0.00
3.42
0.00
0.00

0.09
0.45
0.53
0.85
0.03
0.27
0.00
0.93
0.00
0.00

6230.00
8876.00
9482.00
8674.00
13701.00
8349.00
6206.00
10535.00
5956.00
6219.00

0.42
0.97
17.34
8.21
18.95
0.55
0.00
0.66
12.44
0.00

0.06
0.07
1.00
1.00
1.00
0.01
0.00
0.18
1.00
0.00

AVG 9977.30  3.59  0.43  | 9948.13  5.00  0.56  | 9711.73  2.34  0.35  | 9886.36  3.27  0.45

Table A.5: Computational results for SPT, FFD, MFFD, EGI algorithms for 
n= 2 0  (continued)
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v-p-tl-tc Flowtime
Knap

dl d2 Flowtime
2Bin
dl d2 Flowtime

GAPS 
dl d2

0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0001
0001
0001
0001
0001
0001
0001
0001
0001
0001
0010
0010
0010
0010
0010
0010
0010
0010
0010
0010
0011
0011
0011
0011
0011
0011
0011
0011
0011
0011
0100
0100
0100
0100
0100
0100
0100
0100
0100
0100
0101
0101
0101
0101
0101
0101
0101
0101
0101
0101

3104.00
3854.00
3776.00
4080.00
5304.00
4881.00
2832.00
4718.00
3329.00
2986.00

0.39
4.44
0.00
1.62
0.09
0.00
1.32
0.00
0.97
1.22

0.13
0.32
0.00
0.37
0.01
0.00
0.39
0.00
1.00
0.71

13274.00
17846.00
20870.00
17580.00
26710.00
28821.00
9387.00

27708.00
13549.00
10339.00

0.07
11.04
0.00
0.37
0.02
0.00
0.40
0.00
0.24
0.17

0.01
0.37
0.00
0.04
0.00
0.00
0.06
0.00
1.00
0.03

2212.00
2531.00
2385.00
2569.00
2776.00
2563.00
2268.00
2547.00
2282.00 
2233.00

0.00
1.32
2.10
3.21
0.73
1.67
0.93
1.23
1.20
0.09

0.00
0.94
0.88
1.00
0.19
1.00
1.00
0.74
0.34
1.00

4924.00
6491.00
6381.00
6619.00
7858.00
7729.00
4223.00
7750.00
5222.00
4426.00

0.00
0.37
6.37
6.09
0.26
0.55
0.50
0.40
3.30
0.05

0.00
0.15
0.76
0.76
0.03
0.13
0.70
0.08
0.46
0.09

6367.00
7433.00
8137.00
8153.00
10475.00
9984.00
5716.00
9512.00
6705.00
6072.00

2.50
2.57
0.00
1.71
0.06
0.00
2.07
0.00
1.13
2.03

0.81
0.43
0.00
0.38
0.55
0.00
0.62
0.00
0.20
1.00

26707.00
33569.00
45928.00
35153.00
53287.00
57674.00
18826.00
55682.00
27145.00
21294.00

0.57
7.35
0.00
0.39
0.01
0.00
0.62
0.00
0.28
2.81

0.07
0.52
0.00
0.04
0.55
0.00
0.09
0.00
0.03
0.44

3094.00
3742.00
3776.00
4015.00
5299.00
4881.00
2798.00
4718.00
3297.00
2959.00

0.06
1.41
0.00
0.00
0.00
0.00
0.11
0.00
0.00
0.31

0.02
0.10
0.00
0.00
0.00
0.00
0.03
0.00
0.00
0.18

13265.0
16810.0
20870.0
17515.0
26705.0
28821.0
9352.00
27708.0
13517.0
10325.0

0.00
4.60
0.00
0.00
0.00
0.00
0.02
0.00
0.00
0.04

0.00
0.15
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.01

2212.00
2498.00
2340.00
2489.00
2772.00
2523.00
2247.00
2539.00
2277.00
2231.00

0.00
0.00
0.17
0.00
0.58
0.08
0.00
0.91
0.98
0.00

0.00
0.00
0.07
0.00
0.15
0.05
0.00
0.55
0.28
0.00

4924.00
6468.00
6011.00
6239.00
7854.00
7689.00
4202.00
7742.00
5224.00
4424.00

0.00
0.02
0.20
0.00
0.20
0.03
0.00
0.30
3.34
0.00

0.00
0.01
0.02
0.00
0.02
0.01
0.00
0.06
0.47
0.00

6215.00
7247.00
8137.00
8035.00
10469.0
9984.00
5622.00
9512.00
6630.00
5961.00

0.05
0.00
0.00
0.24
0.00
0.00
0.39
0.00
0.00
0.17

0.02
0.00
0.00
0.05
0.00
0.00
0.12
0.00
0.00
0.08

26555.0
31271.0
45928.0
35035.0
53281.0
57674.0
18736.0
55682.0
27070.0
20712.0

0.00
0.00
0.00
0.05
0.00
0.00
0.14
0.00
0.00
0.00

0.00
0.00
0.00
0.01
0.00
0.00
0.02
0.00
0.00
0.00

3092.00
3690.00
3776.00
4015.00
5299.00
4881.00
2795.00
4718.00
3297.00
2950.00

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

13265.00
16071.00
20870.00
17515.00
26705.00
28821.00
9350.00

27708.00
13517.00
10321.00
2212.00
2498.00
2336.00
2489.00
2756.00
2521.00
2247.00
2516.00
2255.00
2231.00

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

4924.00
6467.00
5999.00
6239.00
7838.00
7687.00
4202.00
7719.00
5055.00
4424.00

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

6212.00
7268.00
8137.00
8016.00

10469.00
9984.00
5600.00
9512.00
6630.00
5951.00

0.00
0.29
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

26555.00
31284.00
45928.00
35016.00
53281.00
57674.00
18710.00
55682.00
27070.00
21176.00

0.00
0.04
0.00
0.00
0.00
0.00
0.00
0.00
0.00
2.24

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.05
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.35

Table A .6 : Computational results for Knap, 2 Bin, GAPS algorithms for n=20
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v- p- tl-tc Flowtime
Knap

dl d2 Flowtime
2Bin
dl d2 Flowtime

GAPS
dl d2

0110 4614.00 3.01 1.00 4479.00 0.00 0.00 4479.00 0.00 0.00
0110 5030.00 Ö.92 0.68 4984.00 0.00 0.00 4984.00 0.00 0.00
0110 4828.00 1.39 0.86 4762.00 0.00 0.00 4762.00 0.00 0.00
0110 5134.00 3.26 1.00 5042.00 1.41 0.43 4972.00 0.00 0.00
0110 5705.00 3.86 1.00 5532.00 0.71 0.18 5493.00 0.00 0.00
0110 5217.00 2.03 1.00 5122.00 0.18 0.09 5113.00 0.00 0.00
0110 4524.00 0.73 1.00 4491.00 0.00 0.00 4491.00 0.00 0.00
0110 5420.00 6.09 1.00 5144.00 0.69 0.11 5109.00 0.00 0.00
0110 4593.00 0.50 0.17 4588.00 0.39 0.13 4570.00 0.00 0.00
0110 4547.00 1.00 1.00 4509.00 0.16 0.16 4502.00 0.00 0.00
0111 10264.00 1.33 0.16 10129.0 0.00 0.00 10129.00 0.00 0.00
0111 12950.00 0.20 0.08 12924.0 0.00 0.00 12931.00 0.05 0.02
0111 12784.00 6.52 0.79 12718.0 5.97 0.72 12002.00 0.00 0.00
0111 13234.00 6.11 0.75 12487.0 0.12 0.01 12472.00 0.00 0.00
0111 16793.00 7.26 0.87 15696.0 0.25 0.03 15657.00 0.00 0.00
0111 15508.00 0.67 0.16 15405.0 0.00 0.00 15926.00 3.38 0.79
0111 8434.00 0.39 0.56 8401.00 0.00 0.00 8401.00 0.00 0.00
0111 17813.00 14.49 1.00 15593.0 0.22 0.02 15558.00 0.00 0.00
0111 10473.00 0.22 0.06 10461.0 0.11 0.03 10450.00 0.00 0.00
0111 9191.00 3.41 0.47 8895.00 0.08 0.01 8888.00 0.00 0.00
1000 2177.00 1.07 0.24 2156.00 0.09 0.02 2154.00 0.00 0.00
1000 2945.00 3.95 0.75 2892.00 2.08 0.39 2833.00 0.00 0.00
1000 2793.00 4.37 0.18 2679.00 0.11 0.00 2676.00 0.00 0.00
1000 2787.00 0.58 0.08 2804.00 1.19 0.15 2771.00 0.00 0.00
1000 3926.00 0.46 0.05 4130.00 5.68 0.56 3908.00 0.00 0.00
1000 2788.00 1.71 0.16 2772.00 1.13 0.10 2741.00 0.00 0.00
1000 2431.00 2.66 0.69 2373.00 0.21 0.05 2368.00 0.00 0.00
1000 3086.00 0.00 0.00 3086.00 0.00 0.00 3244.00 5.12 0.42
1000 2084.00 2.46 0.36 2054.00 0.98 0.14 2034.00 0.00 0.00
1000 2389.00 4.51 0.81 2306.00 0.87 0.16 2286.00 0.00 0.00
1001 8417.00 2.22 0.18 8236.00 0.02 0.00 8234.00 0.00 0.00
1001 12669.00 7.28 0.96 11828.0 0.16 0.02 11809.00 0.00 0.00
1001 14254.00 9.33 0.40 13041.0 0.02 0.00 13038.00 0.00 0.00
1001 11307.00 0.14 0.01 11780.0 4.33 0.36 11291.00 0.00 0.00
1001 18314.00 0.37 0.04 19826.0 8.65 0.87 18247.00 0.00 0.00
1001 14536.00 3.64 0.25 14342.0 2.25 0.15 14026.00 0.00 0.00
1001 7484.00 5.48 0.52 7100.00 0.07 0.01 7095.00 0.00 0.00
1001 16330.00 0.00 0.00 16330.0 0.00 0.00 16330.00 0.00 0.00
1001 7855.00 6.05 0.35 7427.00 0.27 0.02 7407.00 0.00 0.00
1001 8245.00 11.27 0.68 7430.00 0.27 0.02 7410.00 0.00 0.00
1010 1667.00 0.54 1.00 1664.00 0.36 0.67 1658.00 0.00 0.00
1010 1939.00 1.52 1.00 1910.00 0.00 0.00 1910.00 0.00 0.00
1010 1824.00 0.00 0.00 1824.00 0.00 0.00 1824.00 0.00 0.00
1010 1839.00 0.00 0.00 1839.00 0.00 0.00 1839.00 0.00 0.00
1010 2203.00 0.00 0.00 2203.00 0.00 0.00 2203.00 0.00 0.00
1010 1633.00 2.70 0.28 1590.00 0.00 0.00 1590.00 0.00 0.00
1010 2014.00 2.13 0.79 1972.00 0.00 0.00 1972.00 0.00 0.00
1010 1880.00 0.27 1.00 1879.00 0.21 0.80 1875.00 0.00 0.00
1010 1440.00 0.00 0.00 1440.00 0.00 0.00 1440.00 0.00 0.00
1010 1765.00 0.00 0.00 1765.00 0.00 0.00 1765.00 0.00 0.00

Table A .7: Computational results for Knap, 2 Bin, GAPS algorithms for n=20 
(continued)
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v- p- tl-tc Flowtime
Knap

dl d2
2Bin

Flowtime dl d2 Flowtime
GAPS 
dl d2

10 11
10 11
10 11
10 11
10 11
10 11
10 11
10 11
10 11
10 11
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100

3427.00
4557.00
4336.00
4182.00
5691.00
4481.00
3481.00
5320.00
2634.00
3046.00

5.19
4.98
0.00
0.00
0.00
9.77
5.55
3.44
0.00
0.00

0.66
0.38
0.00
0.00
0.00
0.34
1.00
0.44
0.00
0.00

4222.00
5883.00
5414.00
5498.00
7787.00
5471.00
4856.00
6625.00
4080.00
4888.00

0.43
4.14
1.65
1.01
3.44
4.57
1.61
5.78
0.02
4.80

0.05
1.00
0.12
0.12
0.37
0.19
0.94
1.00
0.00
1.00

3266.00
4341.00
4336.00
4182.00
5691.00
4082.00
3301.00
5319.00
2634.00
3046.00

0.25
0.00
0.00
0.00
0.00
0.00
0.09
3.42
0.00
0.00

0.03
0.00
0.00
0.00
0.00
0.00
0.02
0.43
0.00
0.00

4244.00
5655.00
5326.00
5467.00
7805.00
5467.00
4783.00
6302.00
4124.00
4697.00

0.95
0 .11
0.00
0.44
3.68
4.49
0.08
0.62
1.10
0.71

0.12
0.03
0.00
0.05
0.40
0.18
0.05
0 .11
0.16
0.15

110 1 15442.00 0.12 0.01 15464.0 0.26 0.02 15424.00 0.00 0.00
110 1 25903.00 10.83 1.00 23372.0 0.00 0.00 24129.00 3.24 0.30
110 1 26732.00 6.80 0.41 25029.0 0.00 0.00 26708.00 6.71 0.40
110 1 22142.00 0.25 0.04 2 2 111 .0 0 .11 0.02 22087.00 0.00 0.00
110 1 36907.00 7.22 0.41 36925.0 7.27 0.41 35304.00 2.56 0.15
110 1 28163.00 9.46 0.32 28159.0 9.44 0.32 28159.00 9.44 0.32
110 1 15241.00 5.15 0.69 14544.0 0.34 0.05 15217.00 4.99 0.67
110 1 36715.00 10.24 0.75 33560.0 0.77 0.06 33304.00 0.00 0.00
110 1 15123.00 0.01 0.00 15167.0 0.30 0.02 16038.00 6.06 0.43
110 1 16920.00 11.37 1.00 15225.0 0.22 0.02 15192.00 0.00 0.00
1110 3360.00 3.90 1.00 3234.00 0.00 0.00 3234.00 0.00 0.00
1110 3899.00 2.98 1.00 3786.00 0.00 0.00 3786.00 0.00 0.00
111 0 3615.00 1.57 0.13 3559.00 0.00 0.00 3567.00 0.22 0.02
1 1 1 0 3649.00 0.36 0 .11 3636.00 0.00 0.00 3659.00 0.63 0.19
1 1 1 0 4520.00 3.91 0.68 4350.00 0.00 0.00 4350.00 0.00 0.00
111 0 3193.00 0.44 0.03 3213.00 1.07 0.08 3179.00 0.00 0.00
111 0 3871.00 0.26 1.00 3861.00 0.00 0.00 3861.00 0.00 0.00
111 0 3772.00 0.86 0.57 3740.00 0.00 0.00 3744.00 0 .11 0.07
1 1 1 0 2864.00 0.74 1.00 2843.00 0.00 0.00 2843.00 0.00 0.00
1110 3598.00 0.31 1.00 3587.00 0.00 0.00 3587.00 0.00 0.00
1 1 1 1 6660.00 7.35 1.00 6204.00 0.00 0.00 6204.00 0.00 0.00
1 1 1 1 9289.00 5.66 0.40 8791.00 0.00 0.00 8791.00 0.00 0.00
n il 8783.00 8.69 0.50 8081.00 0.00 0.00 8089.00 0.10 0.01
n il 8029.00 0.16 0.02 8016.00 0.00 0.00 8477.00 5.75 0.70
n il 12584.00 9.26 0.49 11518.0 0.00 0.00 11518.00 0.00 0.00
n il 8317.00 0.17 0.00 8337.00 0.41 0.01 8303.00 0.00 0.00
n il 6216.00 0.16 1.00 6206.00 0.00 0.00 6206.00 0.00 0.00
n il 10852.00 3.69 1.00 10466.0 0.00 0.00 10522.00 0.54 0.15
n il 5318.00 0.40 0.03 5297.00 0.00 0.00 5297.00 0.00 0.00
n il 6230.00 0.18 1.00 6219.00 0.00 0.00 6219.00 0.00 0.00

II avg I 9753.87 2.40 0.43 1 9567.10 0.56 0.07 1 9555.74 0.38 0.04 II

3258.00
4341.00
4336.00
4182.00
5691.00
4082.00
3298.00
5143.00
2634.00
3046.00

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

4204.00
5649.00
5390.00
5443.00
7528.00
5467.00
4832.00
6263.00
4177.00
4664.00

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

0.00
0.00
1.20
0.00
0.00
4.49
1 .1 1
0.00
2.40
0.00

0.00
0.00
0.08
0.00
0.00
0.18
0.65
0.00
0.34
0.00

Table A .8 : Computational results for Knap, 2 Bin, GAPS algorithms for n= 2 0  

(continued)
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|| v- p- tl-tc 1 SPT 1 FFD 1 MFFD 1 EGI 1 Knap 1 2bin 1 GAPS II
0000 0 0 0 0.07 0.75 4.77 0.97
0000 0 0 0 0.09 1.03 4.69 1.03
0000 0 0 0 0.06 1.29 4.48 1.23
0000 0 0 0 0.07 0.73 4.55 0.91
0000 0 0 0 0.07 1.17 4.7 1.14
0000 0 0 0 0.06 1.18 4.38 1.17
0000 0 0 0 0.04 0.49 4.76 0.96
0000 0 0 0.01 0.08 0.53 4.49 1.26
0000 0 0 0 0.02 0.76 4.54 0.97
0000 0 0.01 0 0.02 0.49 4.54 0.96
0001 0 0 0 0.05 0.75 4.7 0.98
0001 0 0 0 0.06 1.03 4.7 1.02
0001 0.01 0.01 0 0.05 1.29 4.55 1.13
0001 0 0 0 0.05 0.73 4.73 0.91
0001 0 0 0 0.04 1.17 4.67 1.01
0001 0.01 0 0 0.08 1.18 4.39 1.22
0001 0 0 0.01 0.05 0.49 4.55 0.88
0001 0 0 0 0.05 0.53 4.55 1.15
0001 0 0 0 0.06 0.76 4.73 0.88
0001 0 0.01 0 0.02 0.49 4.69 0.9
0010 0 0 0.01 0.04 0.3 4.73 0.89
0010 0.1 0 0 0.04 0.35 4.78 0.83
0010 0 0 0 0.05 0.39 4.58 0.93
0010 0 0 0 0.03 0.29 5.1 0.92
0010 0 0 0 0.03 0.37 4.81 0.86
0010 0 0 0 0.07 0.42 4.87 0.9
0010 0 0 0 0.04 0.18 5.4 0.84
0010 0 0 0 0.06 0.46 4.77 0.82
0010 0 0 0 0.04 0.32 4.79 0.87
0010 0 0 0 0.04 0.21 5.12 0.85
0011 0 0.01 0.1 0 0.26 4.78 0.94
0011 0 0 0 0.01 0.36 4.72 0.94
0011 0 0 0 0.04 0.4 4.83 0.99
0011 0 0 0 0.05 0.26 5.25 0.96
0011 0 0 0 0.07 0.38 4.99 0.97
0011 0 0 0.01 0.07 0.43 4.89 0.97
0011 0 0 0 0.05 0.17 5.08 0.96
0011 0 0 0 0.05 0.5 4.77 0.91
0011 0 0 0 0.07 0.29 4.94 0.94
0011 0 0 0 0.03 0.17 5.17 0.98
0100 0 0 0.01 0.05 0.71 4.93 0.88
0100 0 0 0 0.01 0.94 4.64 0.97
0100 0 0.01 0 0.02 1.35 4.59 1.2
0100 0 0 0 0.06 0.74 4.78 0.82
0100 0 0 0 0.07 1.39 4.47 1.17
0100 0 0 0 0.09 0.91 4.32 1.21
0100 0 0 0 0.06 0.45 4.85 0.92
0100 0 0.01 0 0.05 0.19 4.27 1.27
0100 0 0 0 0.02 0.7 4.31 0.89
0100 0 0 0 0.05 0.46 4.83 0.96
0101 0 0 0 0.04 0.68 4.94 0.95
0101 0 0 0 0.03 0.83 4.63 0.89
0101 0 0 0 0.04 1.29 4.48 1.13
0101 0 0 0.01 0.04 0.69 4.66 0.95
0101 0 0 0 0.05 1.3 4.55 1.1
0101 0 0 0 0.02 0.89 4.46 1.25
0101 0.01 0 0 0.03 0.47 4.86 0.97
0101 0 0 0 0.02 0.19 4.35 1.2
0101 0 0 0 0.06 0.78 4.71 0.92
0101 0 0 0 0.04 0.51 4.98 0.93

Table A.9: Computation times for n=20
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II v- p- tl-tc 1 SPT 1 FFD 1 MFFD 1 EGI 1 Knap 1 2bin 1 GAPS II
0110 0 0 0 0.04 0.32 5.48 0.9
0110 0 0 0 0.04 0.27 4.8 0.94
0110 0 0 0 0.04 0.4 4.87 0.89
0110 0 0 0 0.06 0.27 5.15 0.95
0110 0 0 0 0.05 0.34 4.88 0.92
0110 0 0 0 0.04 0.42 5 0.94
0110 0 0.01 0 0.07 0.17 5.76 0.93
0110 0 0 0 0.04 0.37 4.98 0.94
0110 0 0 0 0 0.25 4.77 0.97
0110 0 0 0 0.03 0.33 6.05 0.92
0111 0 0.01 0.01 0.06 0.26 5.2 0.86
0111 0.01 0.01 0.01 0.03 0.26 4.81 0.89
0111 0 0 0 0.03 0.4 4.85 0.8
0111 0 0 0 0.02 0.3 5.18 0.89
0111 0 0 0 0.08 0.34 4.62 0.94
0111 0 0 0 0.05 0.35 5.01 0.84
0111 0 0 0 0.07 0.21 9.18 0.79
0111 0.01 0 0 0.06 0.37 4.87 0.78
0111 0 0 0 0.06 0.29 4.93 0.96
0111 0 0 0 0.03 0.33 5.96 0.87
1000 0.01 0 0 0.05 0.46 4.69 0.94
1000 0 0 0 0.05 0.46 4.62 0.84
1000 0 0.01 0 0.04 0.75 4.26 0.98
1000 0.01 0 0.01 0.05 0.48 4.63 0.79
1000 0 0 0 0.07 0.66 4.55 0.81
1000 0 0 0 0.07 0.47 4.45 0.93
1000 0 0 0 0.06 0.39 4.93 0.91
1000 0 0 0 0.04 0.47 4.59 1.06
1000 0 0.01 0 0.03 0.36 4.48 0.95
1000 0.01 0 0.01 0.03 0.49 4.42 0.87
1001 0 0 0 0.03 0.48 4.44 0.92
1001 0 0 0 0.06 0.42 4.67 0.95
1001 0 0.01 0 0.03 0.75 4.45 0.84
1001 0 0 0 0.04 0.53 4.64 1.01
1001 0.01 0 0 0.05 0.64 4.5 0.9
1001 0 0 0 0.06 0.47 4.84 0.95
1001 0 0 0 0.04 0.42 5.31 0.85
1001 0 0 0 0.04 0.53 4.94 0.97
1001 0 0.01 0 0.06 0.34 4.82 0.92
1001 0 0 0 0.03 0.44 4.66 0.82
1010 0 0 0 0.04 0.19 5.56 0.92
1010 0 0 0.01 0 0.25 5 0.93
1010 0 0 0 0.04 0.28 5.51 0.88
1010 0 0 0 0.04 0.18 5.55 0.84
1010 0 0 0 0.02 0.29 5.34 0.85
1010 0 0 0 0.07 0.3 4.42 0.92
1010 0 0 0 0.08 0.17 7.02 0.94
1010 0 0 0 0.02 0.29 5.25 0.89
1010 0 0 0 0.05 0.18 5.05 0.87
1010 0 0 0 0.05 0.22 4.8 0.88

Table A. 10: Computation times for n= 2 0  (continued)
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v- p- tl-tc SPT FTO 1 MFFD 1 EGI 1 Knap 1 2bin 1 GAPS
0 0.01 0 0.04 0.21 5.7 0.85
0 0.01 0 0.04 0.2 4.95 0.88
0 0 0 0.03 0.29 5.64 0.75

0.01 0 0 0.02 0.19 4.93 0.89
0 0 0 0.03 0.3 5.79 0.86
0 0 0 0.03 0.27 4.79 0.83
0 0 0 0.04 0.19 6.89 0.97
0 0.01 0 0.04 0.26 5.47 0.84
0 0 0 0.03 0.19 4.9 0.88

0.01 0 0 0 0.16 4.81 0.92
0 0 0.01 0.04 0.54 4.73 1.15
0 0 0 0.06 0.48 4.77 1.18
0 0 0 0.06 0.77 4.36 1.2
0 0 0 0.05 0.49 4.73 1.34
0 0 0 0.03 0.64 4.61 1.24
0 0 0 0.02 0.4 4.59 1.28
0 0 0.01 0.02 0.35 5.06 1.09
0 0 0 0.05 0.59 4.9 1.28
0 0 0 0.01 0.35 5.34 1.24
0 0 0 0.03 0.42 5.31 1.22
0 0 0 0.05 0.53 4.84 0.93
0 0 0 0.05 0.56 4.73 0.96
0 0 0 0.04 0.7 4.38 0.91
0 0 0 0.08 0.45 4.87 0.94
0 0 0 0.02 0.69 4.63 0.92
0 0 0 0.04 0.38 4.48 0.95
0 0 0.01 0.03 0.4 5.06 1.04
0 0 0 0.04 0.51 4.67 0.98
0 0 0 0.04 0.4 5.05 0.89
0 0 0 0.02 0.39 4.91 0.98
0 0 0 0.02 0.21 5.88 0.98
0 0 0 0.04 0.19 5.44 0.95
0 0 0 0.04 0.18 5.11 0.89
0 0 0 0.03 0.18 6.12 0.86
0 0 0 0.05 0.18 5.06 0.93
0 0 0 0.03 0.19 5.01 0.9
0 0.01 0 0.02 0.18 6.78 0.88
0 0 0 0.06 0.3 5.37 0.9
0 0 0 0.05 0.17 5.16 0.92
0 0 0 0.06 0.2 10.47 0.84
0 0 0 0.06 0.21 5.56 0.83
0 0 0 0.05 0.19 6.06 0.91

0.01 0 0 0.02 0.18 5.16 0.85
0 0 0 0.02 0.22 6.37 0.79
0 0 0 0.03 0.2 5.02 0.85
0 0 0 0.04 0.2 5.01 0.83
0 0 0 0.02 0.19 7.43 0.94
0 0 0.04 0.3 5.58 0.81

0.01 0 0 0.04 0.17 4.9 0.89
0 0 0 0.05 0.23 11.3 0.91

10 11
10 11
10 11
10 11
10 11
10 11
10 11
10 11
10 11
10 11
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
110 1
110 1
110 1
110 1
110 1
110 1
110 1
110 1
110 1
110 1
111 0
1 1 1 0
1110
1110
1110
1110
1110
111 0
111 0
1 1 1 0
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
n il
n il
n il
n il
n il
AVG I 0.001438  | 0.001063  | 0.001509  | 0.043187  | 0.46125  | 5.0535  | 0.953938

Table A .l l :  Computation times for n=20 (continued)
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v- p- tl-tc Flowtime
SPT
dl d2 Flowtime

FFD
dl d2 Flowtime

MFFD
dl d2 Flowtime

EGI
dl d2

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
n i l

18901.50
76258.80
12491.60 
19085.20
38453.70
156268.80
25164.60
38668.80
14585.70
55564.10 
9836.90
13913.10
28844.10 

110351.00
19342.80 
27045.30

2.25
6.81
0.05
0.61
2.10
6.78
0.04
0.79
1.52
5.07
0.07
0.84
2.11
6.42
0.00
0.17

0.68
0.99
0.08
0.16
0.63
0.89
0.03
0.14
0.39
0.78
0.13
0.16
0.42
0.78
0.00
0.02

18624.80 
71911.60
12588.40
19793.80
37953.10
148177.80 
25366.70
39983.00
15017.90
55145.40
9944.90
15456.40 
29958.50
111355.00
19767.00
29994.10

0.82
1.06
0.84
4.34
0.85
1.50
0.85
4.20
4.29
4.29 
1.11 

12.42 
5.79 
7.13 
2.23 

11.35

0.29
0.23
0.62
0.87
0.32
0.19
0.52
0.79
0.92
0.68
0.58
0.62
0.90
0.79
0.53
0.69

18734.30
73026.60
12568.30
19351.80
38017.60 
148888.20
25365.00
39606.40
14633.00
53756.40
9885.30
14365.80 
28913.70

107130.00
19431.30
27837.80

1.37 
2.51 
0.67 
2.00 
0.97 
1.84 
0.85 
3.26 
1.92 
1.90 
0.57 
3.98
2.37 
3.32 
0.47 
2.95

0.50
0.47
0.62
0.41
0.34
0.24
0.59
0.56
0.52
0.30
0.39
0.59
0.41
0.37
0.15
0.46

18901.50
73358.10
12491.60
19100.50
38453.70
151372.50
25164.60
38683.80
14585.70 
54632.20 
9836.90 
13927.00
28844.10
107212.60
19342.80 
27045.30

2.25
3.02
0.05
0.69
2.10
3.60
0.04
0.83
1.52
3.54
0.07
0.94
2.11
3.45
0.00
0.17

0.68
0.47
0.08
0.26
0.63
0.39
0.03
0.15
0.39
0.57
0.13
0.16
0.42
0.40
0.00
0.02

AVG 41548.50  2.23  0.39 41314.90  3.94  0.60 40719.47 1.93 0.43 40809.56  1.52 0.30

Table B .l: Averages over ten replications for n=50

v- p- tl-tc Flowtime
Knap

dl d2 Flowtime
2Bin
dl d2 Flowtime

GAPS
dl d2

0000 18842.20 1.98 0.64 18558.20 0.46 0.12 18491.00 0.09 0.03
0001 72933.00 2.39 0.32 71836.70 0.81 0.07 71251.30 0.05 0.01
0010 12528.10 0.34 0.45 12491.60 0.05 0.08 12485.40 0.00 0.00
0011 19083.10 0.61 0.30 18988.60 0.10 0.02 19015.80 0.23 0.07
0100 38773.00 2.88 0.91 37865.90 0.56 0.19 37719.90 0.19 0.03
0101 151623.20 3.48 0.48 148229.00 1.25 0.14 146626.70 0.32 0.03
0110 25355.00 0.80 0.70 25163.60 0.04 0.03 25154.40 0.00 0.00
0111 38763.90 1.03 0.37 38709.70 0.93 0.14 38365.60 0.00 0.00
1000 14663.40 2.04 0.59 14431.20 0.52 0.15 14355.40 0.00 0.00
1001 55370.00 4.79 0.78 53253.30 1.07 0.17 52657.60 0.00 0.00
1010 9856.50 0.26 0.50 9835.90 0.06 0.12 9830.60 0.00 0.00
1011 13883.90 0.61 0.14 13828.50 0.17 0.02 13806.00 0.00 0.00
1100 28969.40 2.48 0.45 28556.40 1.14 0.21 28258.30 0.13 0.02
1101 109269.70 5.18 0.61 105060.00 1.33 0.14 104084.90 0.65 0.10
1110 19376.40 0.18 0.33 19342.80 0.00 0.00 19342.80 0.00 0.00
n i l 27114.40 0.44 0.05 26999.10 0.00 0.00 27045.30 0.17 0.02

AVG 41025.33 1.84 0.48 40196.91 0.53 0.10 39905.69 0.11 0.02

Table B.2 : Averages over ten replications for n=50 (continued)
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v-p-tl-tc Flowtime
SPT
dl d2 Flowtime

FFD
dl d2 Flowtime

MFFD
dl d2 Flowtime

EGI
dl d2

0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

16858.00
20138.00
16207.00
17694.00
18305.00
17864.00
24149.00
17692.00
20404.00
19704.00

0.18
2.88
0.39
0.96
1.98
3.24
1.94
1.17
4.37
5.39

0.07
0.66
0.21
0.42
1.00
1.00
1.00
0.47
1.00
1.00

16936.00
19914.00
16288.00
17644.00
18291.00
17304.00
23689.00
17502.00
19932.00
18748.00

0.65
1.74
0.89
0.67
1.90
0.00
0.00
0.09
1.95
0.28

0.26
0.40
0.48
0.29
0.96
0.00
0.00
0.03
0.45
0.05

16936.00
19914.00
16441.00
17644.00
18291.00
17484.00
24151.00
17502.00
19782.00
19198.00

0.65
1.74
1.84
0.67
1.90
1.04
1.95
0.09
1.19
2.69

0.26
0.40
1.00
0.29
0.96
0.32
1.00
0.03
0.27
0.50

16858.00
20138.00
16207.00
17694.00
18305.00
17864.00
24149.00
17692.00
20404.00
19704.00

0.18
2.88
0.39
0.96
1.98
3.24
1.94
1.17
4.37
5.39

0.07
0.66
0.21
0.42
1.00
1.00
1.00
0.47
1.00
1.00

0001
0001
0001
0001
0001
0001
0001
0001
0001
0001

62962.00
74038.00
56247.00
68862.00
66605.00
74184.00
106546.0
68444.00
101156.0
83544.00

2.64
6.33
3.18
4.24
6.01
8.90
3.49
4.49 
16.13 
12.69

1.00
1.00
0.91
1.00
0.96
1.00
1.00
1.00
1.00
1.00

62362.00
71658.00
54898.00
67090.00
64659.00
68124.00
102957.0
65936.00
87244.00
74188.00

1.67
2.92
0.70
1.56
2.91
0.00
0.00
0.66
0.16
0.07

0.63
0.46
0.20
0.37
0.46
0.00
0.00
0.15
0.01
0.01

62362.00
71658.00
56151.00
67090.00
64659.00
69954.00
106548.0
65936.00
87430.00
78478.00

1.67
2.92
3.00
1.56
2.91
2.69
3.49
0.66
0.37
5.86

0.63
0.46
0.86
0.37
0.46
0.30
1.00
0.15
0.02
0.46

62408.00
71679.00
56415.00
67052.00
66770.00
69926.00
102957.00
65996.00
94234.00
76144.00

1.74
2.95
3.49
1.50 
6.27 
2.65 
0.00 
0.75 
8.18 
2.71

0.66
0.47
1.00
0.35
1.00
0.30
0.00
0.17
0.51
0.21

0010
0010
0010
0010
0010
0010
0010
0010
0010
0010

12243.00
12866.00
12439.00
12174.00
12265.00
12416.00
13281.00
12172.00
12496.00
12564.00

0.19
0.00
0.00
0.00
0.10
0.16
0.05
0.00
0.00
0.00

0.13
0.00
0.00
0.00
0.10
0.50
0.06
0.00
0.00
0.00

12402.00
12962.00
12511.00
12489.00
12367.00
12416.00
13281.00
12396.00
12496.00
12564.00

1.49
0.75
0.58
2.59
0.93
0.16
0.05
1.84
0.00
0.00

1.00
1.00
0.71
1.00
0.97
0.50
0.06
1.00
0.00
0.00

12268.00
12890.00
12541.00
12278.00
12371.00
12416.00
13388.00
12358.00
12496.00
12677.00

0.39
0.19
0.82
0.85
0.96
0.16
0.86
1.53
0.00
0.90

0.26
0.25
1.00
0.33
1.00
0.50
1.00
0.83
0.00
1.00

12243.00
12866.00
12439.00
12174.00
12265.00
12416.00
13281.00
12172.00
12496.00
12564.00

0.19
0.00
0.00
0.00
0.10
0.16
0.05
0.00
0.00
0.00

0.13
0.00
0.00
0.00
0.10
0.50
0.06
0.00
0.00
0.00

0011
0011
0011
0011
0011
0011
0011
0011
0011
0011

18232.00
20104.00
17929.00
18078.00
18889.00
18796.00
22072.00
18028.00
19440.00
19284.00

1.75
0.00
0.41
0.00
2.03
1.29
0.66
0.00
0.00
0.00

0.46
0.00
0.08
0.00
0.78
0.16
0.10
0.00
0.00
0.00

18604.00
20200.00
18725.00
18762.00
18853.00
20068.00
23413.00
19069.00
19440.00
20804.00

3.83 
0.48
4.87
3.78
1.84 
8.15
6.78 
5.77 
0.00
7.88

1.00
1.00
1.00
1.00
0.71
1.00
1.00
1.00
0.00
1.00

18392.00
20128.00
18041.00
18182.00
18995.00
19192.00
22703.00
18458.00
19440.00
19987.00

2.65 
0.12 
1.04 
0.58 
2.60 
3.43 
3.54 
2.39 
0.00
3.65

0.69
0.25
0.21
0.15
1.00
0.42
0.52
0.41
0.00
0.46

18232.00
20200.00
17939.00
18078.00
18889.00
18796.00
22119.00
18028.00
19440.00
19284.00

1.75
0.48
0.46
0.00
2.03
1.29
0.88
0.00
0.00
0.00

0.46
1.00
0.10
0.00
0.78
0.16
0.13
0.00
0.00
0.00

0100
0100
0100
0100
0100
0100
0100
0100
0100
0100

34349.00
40943.00
33508.00
35810.00
36679.00
36381.00
48319.00
36091.00
42168.00
40289.00

1.20
2.62
1.33
1.05
1.73
2.50
1.93
1.31
5.75
1.58

0.57
0.45
0.73
0.42
0.74
0.98
0.34
0.53
1.00
0.56

34121.00
40404.00
33579.00
35606.00
36902.00
35904.00
47405.00
35647.00
40296.00
39667.00

0.53
1.27
1.54
0.47
2.35
1.16
0.00
0.06
1.06
0.01

0.25
0.22
0.85
0.19
1.00
0.45
0.00
0.02
0.18
0.00

34121.00
40397.00
33579.00
35606.00
36902.00
35904.00
48319.00
35647.00
40039.00
39662.00

0.53
1.26
1.54
0.47
2.35
1.16
1.93
0.06
0.41
0.00

0.25
0.22
0.85
0.19
1.00
0.45
0.34
0.02
0.07
0.00

34349.00
40943.00
33508.00
35810.00
36679.00
36381.00
48319.00
36091.00
42168.00
40289.00

1.20
2.62
1.33
1.05
1.73
2.50
1.93
1.31
5.75
1.58

0.57
0.45
0.73
0.42
0.74
0.98
0.34
0.53
1.00
0.56

0101
0101
0101
0101
0101
0101
0101
0101
0101
0101

130399.0
152439.0
122828.0
137314.0
136203.0
153421.0
212560.0
137179.0
207336.0
173009.0

5.79
6.29
5.85
4.63
8.06
6.41
3.48
4.40
19.53
3.39

1.00
0.62
1.00
1.00
0.86
1.00
0.45
1.00
1.00
0.92

124973.0
148204.0
116299.0
131742.0
133646.0
148544.0
205409.0
132118.0
173496.0
167347.0

1.39
3.34
0.22
0.38
6.03
3.02
0.00
0.55
0.02
0.00

0.24
0.33
0.04
0.08
0.64
0.47
0.00
0.13
0.00
0.00

124973.0
148197.0
116299.0
131742.0
133646.0
148544.0
212560.0
132118.0
173461.0
167342.0

1.39
3.34
0.22
0.38
6.03
3.02
3.48
0.55
0.00
0.00

0.24
0.33
0.04
0.08
0.64
0.47
0.45
0.13
0.00
0.00

124889.00
152480.00
119060.00
133711.00
137842.00
148544.00
205409.00
132292.00
192048.00
167450.00

1.32
6.32 
2.60 
1.88 
9.36 
3.02 
0.00 
0.68 
10.72 
0.06

0.23
0.62
0.44
0.41
1.00
0.47
0.00
0.16
0.55
0.02

Table B.3: Computational results for SPT, FFD, MFFD, EGI algorithms for
n=50
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v- p- tl-tc Flowtime
SPT
dl d2 Flowtime

FFD
dl d2 Flowtime

MFFD
dl d2 Flowtime

EG I 
dl d2

0110
0110
0110
0110
0110
0110
0110
0110
0110
0110

24677.00
25823.00
25012.00
24495.00
24550.00
25005.00
26671.00
24776.00
25168.00
25469.00

0.15
0.00
0.00
0.05
0.00
0.10
0.00
0.10
0.00
0.00

0.11
0.00
0.00
0.03
0.00
0.15
0.00
0.06
0.00
0.00

24843.00
26347.00
25393.00
24854.00
24729.00
25005.00
26671.00
25163.00
25168.00
25494.00

0.83
2.03
1.52
1.52 
0.73 
0.10 
0.00 
1.66 
0.00 
0.10

0.59
1.00
1.00
0.78
0.66
0.15
0.00
0.95
0.00
0.07

24985.00
25894.00
25312.00
24961.00
24659.00
25145.00
26671.00
25186.00
25168.00
25669.00

1.40
0.27
1.20
1.96
0.44
0.66
0.00
1.76
0.00
0.79

1.00
0.14
0.79
1.00
0.40
0.97
0.00
1.00
0.00
0.58

24677.00
25823.00
25012.00
24495.00
24550.00
25005.00
26671.00
24776.00
25168.00
25469.00

0.15
0.00
0.00
0.05
0.00
0.10
0.00
0.10
0.00
0.00

0.11
0.00
0.00
0.03
0.00
0.15
0.00
0.06
0.00
0.00

0111
0111
0111
0111
0111
0111
0111
0111
0111
0111

36655.00
40299.00
36452.00
36939.00
37616.00
37765.00
44788.00
37169.00
39376.00
39629.00

1.92
0.73
1.22
0.70
0.00
1.25
1.39
0.73
0.00
0.00

0.18
0.17
0.39
0.17
0.00
0.20
0.24
0.10
0.00
0.00

38356.00
41747.00
37151.00
38197.00
37795.00
39655.00
46727.00
38449.00
39376.00
42377.00

6.65
4.35
3.17
4.13
0.48
6.32
5.78
4.20
0.00
6.93

0.64
1.00
1.00
1.00
0.66
1.00
1.00
0.57
0.00
1.00

39693.00
40370.00
36972.00
37893.00
37725.00
38470.00
46519.00
38065.00
39376.00
40981.00

10.36
0.91
2.67
3.30 
0.29
3.15
5.31
3.15 
0.00 
3.41

1.00
0.21
0.84
0.80
0.40
0.50
0.92
0.43
0.00
0.49

36655.00
40370.00
36452.00
36939.00
37616.00
37765.00
44867.00
37169.00
39376.00
39629.00

1.92
0.91
1.22
0.70
0.00
1.25
1.57
0.73
0.00
0.00

0.18
0.21
0.39
0.17
0.00
0.20
0.27
0.10
0.00
0.00

1000
1000
1000
1000
1000
1000
1000
1000
1000
1000

12461.00
15997.00
13442.00
12529.00
12537.00
14117.00
19849.00
13212.00
16272.00
15441.00

0.45
1.03
0.31
0.98
0.55
1.42
2.13
1.80
3.06
3.50

0.28
0.20
0.10
0.39
0.38
0.18
0.21
0.84
0.92
0.45

12604.00
16635.00
13829.00
12721.00
12651.00
15013.00
21446.00
13209.00
15986.00
16085.00

1.60
5.06
3.20
2.53
1.47
7.86

10.35
1.78
1.25
7.82

1.00
1.00
1.00
1.00
1.00
1.00
1.00
0.83
0.38
1.00

12517.00
16103.00
13659.00
12621.00
12537.00
14394.00
19628.00
13209.00
16248.00
15414.00

0.90
1.70
1.93
1.72
0.55
3.41
0.99
1.78
2.91
3.32

0.56
0.34
0.60
0.68
0.38
0.43
0.10
0.83
0.88
0.42

12461.00
15997.00
13442.00
12529.00
12537.00
14117.00
19849.00
13212.00
16272.00
15441.00

0.45
1.03
0.31
0.98
0.55
1.42
2.13
1.80
3.06
3.50

0.28
0.20
0.10
0.39
0.38
0.18
0.21
0.84
0.92
0.45

1001
1001
1001
1001
1001
1001
1001
1001
1001
1001

43212.00
56763.00
45217.00
44015.00
43309.00
56277.00
82549.00
46752.00
74676.00
62871.00

3.51
3.64
1.82
3.50
2.45
6.06
7.09
4.32
10.33
8.01

0.72
0.69
0.46
0.99
0.47
0.88
0.63
0.98
1.00
1.00

42711.00
57183.00
46154.00
44034.00
43031.00
56708.00
85818.00
45029.00
68267.00
62519.00

2.31
4.41 
3.93 
3.54
I .  79 
6.87
I I .  33 
0.48 
0.86
7.41

0.47
0.84
1.00
1.00
0.35
1.00
1.00
0.11
0.08
0.92

42141.00
55343.00
45208.00
43415.00
42721.00
54292.00
80029.00
45029.00
69942.00
59444.00

0.95
1.05 
1.80 
2.09
1.06
2.32 
3.82 
0.48
3.33 
2.13

0.19
0.20
0.46
0.59
0.20
0.34
0.34
0.11
0.32
0.27

43404.00
55894.00
44942.00
43239.00
44462.00
53402.00
81330.00
46762.00
72548.00
60339.00

3.97
2.05
1.20
1.67
5.18 
0.64 
5.51 
4.35
7.18 
3.66

0.81
0.39
0.31
0.47
1.00
0.09
0.49
0.98
0.70
0.46

1010
1010
1010
1010
1010
1010
1010
1010
1010
1010

9401.00
10353.00
10382.00
8921.00
8589.00
9918.00
11177.00
9384.00
10116.00 
10128.00

0.11
0.00
0.08
0.17
0.22
0.00
0.00
0.12
0.00
0.00

0.56
0.00
0.08
0.21
0.45
0.00
0.00
0.05
0.00
0.00

9405.00
11193.00
10387.00
8972.00
8579.00
9963.00
11302.00
9389.00
10131.00
10128.00

0.15
8.11
0.13
0.74
0.11
0.45
1.12
0.17
0.15
0.00

0.78
1.00
0.13
0.90
0.21
1.00
1.00
0.07
0.68
0.00

9401.00
10536.00
10382.00
8979.00
8612.00
9918.00
11177.00
9604.00
10116.00 
10128.00

0.11
1.77
0.08
0.82
0.49
0.00
0.00
2.46
0.00
0.00

0.56
0.22
0.08
1.00
1.00
0.00
0.00
1.00
0.00
0.00

9401.00
10353.00
10382.00
8921.00
8589.00
9918.00
11177.00
9384.00
10116.00 
10128.00

0.11
0.00
0.08
0.17
0.22
0.00
0.00
0.12
0.00
0.00

0.56
0.00
0.08
0.21
0.45
0.00
0.00
0.05
0.00
0.00

Table B.4: Computational results for SPT, FFD, MFFD, EGI algorithms for
n=50 (continued)
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v- p- tl-tc Flowtime
SPT
dl d2 Flowtime

FFD
dl d2 Flowtime

MFFD
dl d2 Flowtime

EGI
dl d2

1011
1011
1011
1011
1011
1011
10 11
10 11
10 11
10 11

12782.00
14931.00
14257.00
12035.00
11725.00
13793.00
17238.00
12996.00
14826.00
14548.00

1.36
0.00
1.16
1.59
1.87
0.00
0.00
1.43
1.03
0.00

0.08
0.00
0.31
0.06
0.90
0.00
0.00
0.04
0.18
0.00

14886.00
18000.00
14107.00
14973.00
11519.00
14148.00
17572.00
17297.00
14841.00
17221.00

18.04
20.55
0.09

26.39
0.08
2.57
1.94

35.00
1.13

18.37

1.00
1.00
0.02
1.00
0.04
0.58
0.40
1.00
0.20
1.00

13183.00
15332.00
14623.00
12093.00
11748.00
14406.00
18065.00
13388.00
15526.00
15294.00

4.54
2.69
3.75
2.08
2.07
4.44
4.80 
4.49
5.80 
5.13

0.25
0.13
1.00
0.08
1.00
1.00
1.00
0.13
1.00
0.28

12782.00
15070.00
14257.00
12035.00
11725.00
13793.00
17238.00
12996.00
14826.00
14548.00

1.36
0.93
1.16
1.59
1.87
0.00
0.00
1.43
1.03
0.00

0.08
0.05
0.31
0.06
0.90
0.00
0.00
0.04
0.18
0.00

1100
1100
1100
1100
1100
1100
1100
1100
1100
1100

25091.00
31331.00
27019.00
24771.00
25024.00
28175.00
38715.00
25793.00
31879.00
30643.00

0.50
2.14
1.71
1.02
2.43 
1.77 
3.90 
2.17 
3.07
2.43

0.21
0.41
0.46
0.32
0.90
0.15
0.30
0.39
0.79
0.25

25557.00
32293.00
26945.00
25296.00
24846.00
30987.00
42046.00
26669.00
32134.00
32812.00

2.37
5.28
1.43
3.16
I .  70

I I .  93 
12.84 
5.64 
3.89 
9.68

1.00
1.00
0.39
1.00
0.63
1.00
1.00
1.00
1.00
1.00

25097.00
31064.00
27544.00
25070.00
24527.00
28773.00
38937.00
25887.00
31257.00
30981.00

0.53
1.27
3.69
2.24
0.39
3.93
4.50
2.55 
1.06
3.56

0.22
0.24
1.00
0.71
0.15
0.33
0.35
0.45
0.27
0.37

25091.00
31331.00
27019.00
24771.00
25024.00
28175.00
38715.00
25793.00
31879.00
30643.00

0.50
2.14
1.71
1.02
2.43 
1.77 
3.90 
2.17 
3.07
2.43

0.21
0.41
0.46
0.32
0.90
0.15
0.30
0.39
0.79
0.25

1101
1101
1101
1101
1101
1101
1101
1101
1101
1101

88121.00
111431.0
92414.00
87783.00
90229.00
111115.0
162267.0
92178.00
145279.0
122693.0

3.52
5.75
7.93
4.63
6.62
4.67
7.55
5.95

11.25
6.34

0.95
0.76
1.00
0.88
1.00
0.36
0.61
0.66
1.00
0.55

87267.00
113293.0
86598.00
88292.00
88058.00
119883.0
169459.0
94882.00
137077.0
128741.0

2.52
7.52
I .  14 
5.23
4.05 

12.93 
12.31
9.06 
4.97
I I .  58

0.68
1.00
0.14
1.00
0.61
1.00
1.00
1.00
0.44
1.00

85157.00
108014.0
89749.00
87720.00
85277.00
109161.0
158601.0
89073.00
137384.0
121164.0

0.04
2.51
4.82 
4.55 
0.76
2.83 
5.12 
2.38 
5.20 
5.01

0.01
0.33
0.61
0.87
0.12
0.22
0.42
0.26
0.46
0.43

85482.00
112504.00
91452.00
85253.00
86452.00
106496.00
153069.00
88512.00
145282.00
117624.00

0.42
6.77
6.81
1.61
2.15
0.32
1.45
I .  74
I I .  25 
1.95

0.11
0.90
0.86
0.31
0.33
0.02
0.12
0.19
1.00
0.17

1 110
1110
1110
1110
1110
1110
1110
1110
1110
1 1 1 0

18555.00
20360.00
20467.00
17571.00
16645.00
19715.00
21880.00
18143.00
19965.00
20127.00

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

18558.00
21855.00
20475.00
18258.00
16645.00
19715.00
22132.00
19768.00
19968.00
20296.00

0.02
7.34
0.04
3.91
0.00
0.00
1.15
8.96
0.02
0.84

0.01
1.00
0.19
1.00
0.00
0.00
1.00
1.00
0.07
1.00

18924.00
20615.00
20467.00
17736.00
16645.00
19715.00
21880.00
18239.00
19965.00
20127.00

1.99
1.25
0.00
0.94
0.00
0.00
0.00
0.53
0.00
0.00

1.00
0.17
0.00
0.24
0.00
0.00
0.00
0.06
0.00
0.00

18555.00
20360.00
20467.00
17571.00
16645.00
19715.00
21880.00
18143.00
19965.00
20127.00

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

n i l
n i l
n i l
n i l
n i l
n i l
n i l
n i l
n i l
n i l

24825.00
28910.00
27804.00
23623.00
22315.00
27690.00
33544.00
24178.00
29037.00
28527.00

0.00
0.00
0.90
0.00
0.00
0.78
0.00
0.00
0.00
0.00

0.00
0.00
0.04
0.00
0.00
0.20
0.00
0.00
0.00
0.00

33070.00
31305.00
33747.00
24310.00
22315.00
27690.00
34660.00
29902.00
29040.00
33902.00

33.21
8.28

22.46
2.91
0.00
0.78
3.33
23.67
0.01
18.84

1.00
1.00
1.00
1.00
0.00
0.20
0.67
1.00
0.00
1.00

25524.00
29615.00
28490.00
24144.00
22315.00
28524.00
35211.00
24274.00
30350.00
29931.00

2.82
2.44
3.39
2.21
0.00
3.82
4.97
0.40
4.52
4.92

0.08
0.29
0.15
0.76
0.00
1.00
1.00
0.02
1.00
0.26

24825.00
28910.00
27804.00
23623.00
22315.00
27690.00
33544.00
24178.00
29037.00
28527.00

0.00
0.00
0.90
0.00
0.00
0.78
0.00
0.00
0.00
0.00

0.00
0.00
0.04
0.00
0.00
0.20
0.00
0.00
0.00
0.00

AVG 41548.50  2.23  0.39  | 41314.90  3.94  0.60  | 40719.47  1.93  0 .43~ 40809.56 1.52 0.30

Table B.5: Computational results for SPT, FFD, MFFD, EGI algorithms for
n=50 (continued)
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v-p-tl-tc Flowtime
Knap

dl d2 Flowtime
2Bin
dl d2 Flowtime

GAPS 
dl d2

0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0001
0001
0001
0001
0001
0001
0001
0001
0001
0001
0010
0010
0010
0010
0010
0010
0010
0010
0010
0010
0011
0011
0011
0011
0011
0011
0011
0011
0011
0011
0100
0100
0100
0100
0100
0100
0100
0100
0100
0100
0101
0101
0101
0101
0101
0101
0101
0101
0101
0101

17242.00
20429.00
16213.00
17930.00
18004.00
17542.00
23986.00
17921.00
19692.00
19463.00

2.47
4.37 
0.43 
2.31 
0.30
1.38 
1.25
2.48 
0.73 
4.10

1.00
1.00
0.23
1.00
0.15
0.43
0.64
1.00
0.17
0.76

61764.00
74021.00
55043.00
66392.00
63268.00
70012.00
103254.0
65989.00
88684.00
80903.00

0.69
6.31
0.97
0.50
0.70
2.77
0.29
0.74
1.81
9.13

0.26
1.00
0.28
0.12
0.11
0.31
0.08
0.16
0.11
0.72

12359
12941
12451
12178
12339
12436
13285
12172
12553
12567

1.14
0.58
0.10
0.03
0.70
0.32
0.08
0.00
0.46
0.02

0.76
0.78
0.12
0.01
0.73
1.00
0.10
0.00
1.00
0.03

18235
20179
17951
18082
18825
18596
21927
18028
19721
19287

1.77
0.37
0.53
0.02
1.69
0.22
0.00
0.00
1.45
0.02

0.46
0.78
0.11
0.01
0.65
0.03
0.00
0.00
1.00
0.00

34655
42204
33670
36315
36824
36403
50117
36500
40270
40772

2.10
5.79 
1.82 
2.47 
2.14 
2.56 
5.72 
2.45 
0.99
2.80

1.00
1.00
1.00
1.00
0.91
1.00
1.00
1.00
0.17
1.00

124377
158012
116390
132451
133568
149043
221189
132242
175468
173492

0.90
10.1
0.30
0.92
5.97
3.37
7.68 
0.65 
1.16
3.68

0.16
1.00
0.05
0.20
0.64
0.53
1.00
0.15
0.06
1.00

16858.00
19652.00
16144.00
17594.00
17950.00
17322.00
23690.00
17648.00
19550.00
19174.00

0.18
0.40
0.00
0.39
0.00
0.10
0.00
0.92
0.00
2.56

0.07
0.09
0.00
0.17
0.00
0.03
0.00
0.37
0.00
0.47

61500.00
69701.00
54514.00
66059.00
62942.00
68142.00
102957.00
65556.00
88542.00
78454.00

0.26
0.10
0.00
0.00
0.18
0.03
0.00
0.08
1.65
5.82

0.10
0.02
0.00
0.00
0.03
0.00
0.00
0.02
0.10
0.46

12243.00
12866.00
12439.00
12174.00
12265.00
12416.00
13281.00
12172.00
12496.00
12564.00

0.19
0.00
0.00
0.00
0.10
0.16
0.05
0.00
0.00
0.00

0.13
0.00
0.00
0.00
0.10
0.50
0.06
0.00
0.00
0.00

17998.00
20104.00
17856.00
18078.00
18513.00
18647.00
21938.00
18028.00
19440.00
19284.00

0.45
0.00
0.00
0.00
0.00
0.49
0.05
0.00
0.00
0.00

0.12
0.00
0.00
0.00
0.00
0.06
0.01
0.00
0.00
0.00

34089.00
39896.00
33232.00
35617.00
36125.00
35911.00
48319.00
35934.00
39874.00
39662.00

0.44
0.00
0.49
0.51
0.20
1.18
1.93
0.86
0.00
0.00

0.21
0.00
0.27
0.20
0.08
0.46
0.34
0.35
0.00
0.00

123448.00
143412.00
116039.00
131392.00
129529.00
148551.00
212560.00
131393.00
178624.00
167342.00

0.15
0.00
0.00
0.12
2.76
3.03
3.48
0.00
2.98
0.00

0.03
0.00
0.00
0.03
0.30
0.47
0.45
0.00
0.15
0.00

16827.00
19574.00
16168.00
17526.00
17971.00
17304.00
23689.00
17487.00
19668.00
18696.00

0.00
0.00
0.15
0.00
0.12
0.00
0.00
0.00
0.60
0.00

61340.00
69628.00
54729.00
66157.00
62831.00
68124.00
102957.00
65506.00
87105.00
74136.00
12220.00
12866.00
12439.00
12174.00
12253.00
12396.00
13274.00
12172.00
12496.00
12564.00
17918.00
20104.00
17939.00
18078.00
18739.00
18556.00
22072.00
18028.00
19440.00
19284.00

0.00
0.00
0.46
0.00
1.22
0.00
0.66
0.00
0.00
0.00

33941.00
40283.00
33069.00
35438.00
36054.00
35493.00
47405.00
35626.00
40228.00
39662.00

0.00
0.97
0.00
0.00
0.00
0.00
0.00
0.00
0.89
0.00

123265.00
147470.00
116206.00
131240.00
126046.00
144184.00
205409.00
131608.00
173496.00
167343.00

0.00
2.83
0.14
0.00
0.00
0.00
0.00
0.16
0.02
0.00

0.00
0.00
0.08
0.00
0.06
0.00
0.00
0.00
0.14
0.00

0.00
0.00
0.39
0.15
0.00
0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.11
0.03
0.00
0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.10
0.00
0.47
0.00
0.10
0.00
0.00
0.00
0.00
0.17
0.00
0.00
0.00
0.00
0.00
0.00
0.15
0.00
0.00
0.28
0.02
0.00
0.00
0.00
0.00
0.04
0.00
0.00

Table B.6: Computational results for Knap, 2bin, GAPS algorithms for n=50
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v- p- tl-tc Flowtime
Knap

dl d2 Flowtime
2Bin
dl d2

GAPS
Flowtime dl d2

0110 24897 1.05 0.75 24677.00 0.15 0.11 24639.00 0.00 0.00
0110 25829 0.02 0.01 25823.00 0.00 0.00 25823.00 0.00 0.00
0110 25134 0.49 0.32 25012.00 0.00 0.00 25012.00 0.00 0.00
0110 24779 1.21 0.62 24495.00 0.05 0.03 24482.00 0.00 0.00
0110 24820 1.10 1.00 24550.00 0.00 0.00 24550.00 0.00 0.00
0110 25151 0.69 1.00 25005.00 0.10 0.15 24979.00 0.00 0.00
0110 26951 1.05 1.00 26671.00 0.00 0.00 26671.00 0.00 0.00
0110 24866 0.46 0.26 24766.00 0.06 0.03 24751.00 0.00 0.00
0110 25308 0.56 1.00 25168.00 0.00 0.00 25168.00 0.00 0.00
0110 25815 1.36 1.00 25469.00 0.00 0.00 25469.00 0.00 0.00
0111 36649 1.90 0.18 36035.00 0.19 0.02 35966.00 0.00 0.00
0111 40305 0.74 0.17 40024.00 0.04 0.01 40007.00 0.00 0.00
0111 36574 1.56 0.49 36206.00 0.54 0.17 36011.00 0.00 0.00
0111 36979 0.81 0.20 36939.00 0.70 0.17 36681.00 0.00 0.00
0111 37886 0.72 1.00 37616.00 0.00 0.00 37616.00 0.00 0.00
0111 37911 1.65 0.26 37331.00 0.09 0.01 37297.00 0.00 0.00
0111 45068 2.03 0.35 44325.00 0.35 0.06 44172.00 0.00 0.00
0111 37016 0.31 0.04 39616.00 7.36 1.00 36901.00 0.00 0.00
0111 39516 0.36 1.00 39376.00 0.00 0.00 39376.00 0.00 0.00
0111 39735 0.27 0.04 39629.00 0.00 0.00 39629.00 0.00 0.00
1000 12550 1.17 0.73 12419.00 0.11 0.07 12405.00 0.00 0.00
1000 16219 2.43 0.48 15872.00 0.24 0.05 15834.00 0.00 0.00
1000 13670 2.01 0.63 13409.00 0.07 0.02 13400.00 0.00 0.00
1000 12533 1.02 0.40 12499.00 0.74 0.29 12407.00 0.00 0.00
1000 12629 1.29 0.88 12509.00 0.33 0.22 12468.00 0.00 0.00
1000 13991 0.52 0.07 13940.00 0.15 0.02 13919.00 0.00 0.00
1000 20058 3.21 0.31 19500.00 0.33 0.03 19435.00 0.00 0.00
1000 13257 2.15 1.00 13059.00 0.62 0.29 12978.00 0.00 0.00
1000 16312 3.31 1.00 15965.00 1.11 0.34 15789.00 0.00 0.00
1000 15415 3.32 0.43 15140.00 1.48 0.19 14919.00 0.00 0.00
1001 43784 4.88 1.00 42150.00 0.97 0.20 41745.00 0.00 0.00
1001 57639 5.24 1.00 55220.00 0.82 0.16 54770.00 0.00 0.00
1001 45755 3.03 0.77 44506.00 0.22 0.06 44410.00 0.00 0.00
1001 43846 3.10 0.88 42743.00 0.51 0.14 42527.00 0.00 0.00
1001 43401 2.67 0.52 42715.00 1.04 0.20 42274.00 0.00 0.00
1001 54291 2.32 0.34 53155.00 0.18 0.03 53062.00 0.00 0.00
1001 82758 7.36 0.65 78647.00 2.03 0.18 77081.00 0.00 0.00
1001 46797 4.42 1.00 45576.00 1.70 0.38 44814.00 0.00 0.00
1001 73774 8.99 0.87 68207.00 0.77 0.07 67686.00 0.00 0.00
1001 61655 5.92 0.74 59614.00 2.42 0.30 58207.00 0.00 0.00
1010 9409 0.19 1.00 9401.00 0.11 0.56 9391.00 0.00 0.00
1010 10394 0.40 0.05 10353.00 0.00 0.00 10353.00 0.00 0.00
1010 10476 0.98 1.00 10382.00 0.08 0.08 10374.00 0.00 0.00
1010 8923 0.19 0.23 8911.00 0.06 0.07 8906.00 0.00 0.00
1010 8595 0.29 0.60 8589.00 0.22 0.45 8570.00 0.00 0.00
1010 9918 0.00 0.00 9918.00 0.00 0.00 9918.00 0.00 0.00
1010 11187 0.09 0.08 11177.00 0.00 0.00 11177.00 0.00 0.00
1010 9391 0.19 0.08 9384.00 0.12 0.05 9373.00 0.00 0.00
1010 10138 0.22 1.00 10116.00 0.00 0.00 10116.00 0.00 0.00
1010 10134 0.06 1.00 10128.00 0.00 0.00 10128.00 0.00 0.00

Table B.7: Computational results for Knap, 2Bin, GAPS algorithms for n=50
(continued)
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v- p- tl-tc Flowtime
Knap

dl d2 Flowtime
2Bin
dl d2 Flowtime

GAPS
dl d2

1011 12629 0.14 0.01 12625.00 0.11 0.01 12611.00 0.00 0.00
1011 14972 0.27 0.01 14931.00 0.00 0.00 14931.00 0.00 0.00
1011 14196 0.72 0.19 14148.00 0.38 0.10 14094.00 0.00 0.00
1011 12037 1.60 0.06 11852.00 0.04 0.00 11847.00 0.00 0.00
1011 11731 1.92 0.93 11530.00 0.17 0.08 11510.00 0.00 0.00
1011 13793 0.00 0.00 13793.00 0.00 0.00 13793.00 0.00 0.00
1011 17248 0.06 0.01 17238.00 0.00 0.00 17238.00 0.00 0.00
1011 12831 0.14 0.00 12924.00 0.87 0.02 12813.00 0.00 0.00
1011 14848 1.18 0.20 14696.00 0.14 0.02 14675.00 0.00 0.00
1011 14554 0.04 0.00 14548.00 0.00 0.00 14548.00 0.00 0.00
1100 25246 1.13 0.47 25091.00 0.50 0.21 24965.00 0.00 0.00
1100 31327 2.13 0.40 30674.00 0.00 0.00 31065.00 1.27 0.24
1100 27147 2.19 0.59 26848.00 1.07 0.29 26565.00 0.00 0.00
1100 24769 1.02 0.32 24771.00 1.02 0.32 24520.00 0.00 0.00
1100 25090 2.70 1.00 24690.00 1.06 0.39 24431.00 0.00 0.00
1100 28388 2.54 0.21 28165.00 1.73 0.15 27685.00 0.00 0.00
1100 39778 6.76 0.53 38178.00 2.46 0.19 37261.00 0.00 0.00
1100 25562 1.26 0.22 25284.00 0.16 0.03 25244.00 0.00 0.00
1100 31366 1.41 0.36 31220.00 0.94 0.24 30930.00 0.00 0.00
1100 31021 3.69 0.38 30643.00 2.43 0.25 29917.00 0.00 0.00
1101 88276 3.70 1.00 85341.00 0.25 0.07 85124.00 0.00 0.00
1101 110077 4.46 0.59 105374.00 0.00 0.00 108058.00 2.55 0.34
1101 90309 5.47 0.69 89299.00 4.29 0.54 85624.00 0.00 0.00
1101 85645 2.08 0.40 83900.00 0.00 0.00 86220.00 2.77 0.53
1101 88675 4.78 0.72 84630.00 0.00 0.00 85180.00 0.65 0.10
1101 111328 4.87 0.38 106373.00 0.21 0.02 106154.00 0.00 0.00
1101 168514 11.6 0.95 156655.00 3.83 0.31 150882.00 0.00 0.00
1101 89462 2.83 0.31 87245.00 0.28 0.03 87000.00 0.00 0.00
1101 136990 4.90 0.44 136404.00 4.45 0.40 130590.00 0.00 0.00
1101 123421 6.97 0.60 115379.00 0.00 0.00 116017.00 0.55 0.05
1110 18555 0.00 0.00 18555.00 0.00 0.00 18555.00 0.00 0.00
1110 20378 0.09 0.01 20360.00 0.00 0.00 20360.00 0.00 0.00
1110 20510 0.21 1.00 20467.00 0.00 0.00 20467.00 0.00 0.00
1110 17658 0.50 0.13 17571.00 0.00 0.00 17571.00 0.00 0.00
1110 16645 0.00 0.00 16645.00 0.00 0.00 16645.00 0.00 0.00
1110 19756 0.21 1.00 19715.00 0.00 0.00 19715.00 0.00 0.00
1110 21888 0.04 0.03 21880.00 0.00 0.00 21880.00 0.00 0.00
1110 18232 0.49 0.05 18143.00 0.00 0.00 18143.00 0.00 0.00
1110 20006 0.21 1.00 19965.00 0.00 0.00 19965.00 0.00 0.00
1110 20136 0.04 0.05 20127.00 0.00 0.00 20127.00 0.00 0.00
n i l 24825 0.00 0.00 24825.00 0.00 0.00 24825.00 0.00 0.00
n i l 28928 0.06 0.01 28910.00 0.00 0.00 28910.00 0.00 0.00
n i l 27847 1.05 0.05 27557.00 0.00 0.00 27804.00 0.90 0.04
n i l 23710 0.37 0.13 23623.00 0.00 0.00 23623.00 0.00 0.00
n i l 22315 0.00 0.00 22315.00 0.00 0.00 22315.00 0.00 0.00
n i l 27731 0.93 0.24 27475.00 0.00 0.00 27690.00 0.78 0.20
n i l 33552 0.02 0.00 33544.00 0.00 0.00 33544.00 0.00 0.00
n i l 24622 1.84 0.08 24178.00 0.00 0.00 24178.00 0.00 0.00
n i l 29078 0.14 0.03 29037.00 0.00 0.00 29037.00 0.00 0.00
n i l 28536 0.03 0.00 28527.00 0.00 0.00 28527.00 0.00 0.00

II avg  I 41025.33 1.84 0.48 1 40196.91 0.53 0.10  1 39905.69 0.11 0.02  II

Table B.8: Computational results for Knap, 2Bin, GAPS algorithms for n=50
(continued)
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II v-p-tl-tc 1 SPT 1 FFD 1 MFFD T EGI 1 Knap 1 2bin 1 GAPS II
0000 0 0.01 0.02 1.58 1.4 4.92 11.38
0000 0 0 0.01 1.71 1.33 5.16 11.39
0000 0 0.01 0.01 1.9 1.4 4.92 17.46
0000 0 0 0.01 1.35 1.3 5.09 10.36
0000 0.01 0 0.01 1.52 1.73 4.91 11.48
0000 0 0.01 0.01 1.61 1.55 4.98 14.95
0000 0 0.01 0.01 1.49 1.89 4.95 11.39
0000 0 0.01 0.01 1.55 1.23 4.89 11.88
0000 0 0.01 0.01 1.87 2.32 5.1 15.11
0000 0.01 0 0.02 2.01 1.71 4.91 17.67
0001 0 0 0 1.31 1.44 4.99 11.41
0001 0 0.01 0 1.39 1.31 4.97 11.7
0001 0 0.01 0.02 1.7 1.33 5.05 17.75
0001 0 0 0 1.31 1.26 4.86 10.51
0001 0 0 0.01 1.36 1.6 4.71 11.24
0001 0.01 0.01 0.02 1.61 1.56 4.99 15.14
0001 0 0 0 1.4 1.92 4.9 11.23
0001 0 0 0.01 1.56 1.29 4.97 11.92
0001 0 0.01 0.02 1.83 2.3 4.81 14.95
0001 0 0.01 0.02 2.02 1.69 4.69 17.55
0010 0.01 0.01 0.01 0.21 0.72 5.76 3.04
0010 0 0 0 0.21 0.33 5.3 3.23
0010 0 0 0 0.26 0.27 5.17 3.12
0010 0 0.01 0 0.29 0.3 5 3.17
0010 0 0 0 0.18 0.26 5.44 3.16
0010 0 0 0 0.21 0.31 7.8 3.13
0010 0 0 0 0.23 0.34 5.38 3.15
0010 0 0 0 0.23 0.28 5.44 3.16
0010 0 0 0 0.26 0.51 5.38 2.9
0010 0.01 0.01 0 0.24 0.43 18.36 3.06
0011 0 0 0 0.26 0.75 5.64 3.19
0011 0 0.01 0.01 0.24 0.32 5.21 3.25
0011 0 0 0 0.22 0.29 5.03 3.21
0011 0 0 0 0.22 0.31 5.05 3.24
0011 0 0 0 0.24 0.33 5.37 3.2
0011 0.01 0 0.01 0.2 0.33 5.25 3.21
0011 0 0.01 0.01 0.21 0.33 6.07 3.34
0011 0 0 0 0.23 0.29 5.05 3.3
0011 0 0 0 0.24 0.57 5.82 3.03
0011 0 0 0 0.27 0.39 17.88 3.42
0100 0 0.01 0 0.36 1.28 4.94 3
0100 0 0 0.01 0.25 1.36 4.9 2.97
0100 0.01 0 0 0.35 1.42 4.93 3.1
0100 0 0 0 0.21 1.44 4.95 3.17
0100 0 0 0 0.28 1.72 4.99 3.01
0100 0 0.01 0.01 0.34 2.08 4.91 3.32
0100 0 0 0 0.29 2.12 4.75 3.31
0100 0 0 0 0.35 1.43 5.17 3.17
0100 0.01 0 0 0.4 2.35 4.64 3.23
0100 0 0 0 0.31 1.9 4.7 3.2
0101 0 0 0.01 0.33 1.33 4.91 3.61
0101 0 0.01 0 0.4 1.48 5 3.33
0101 0 0 0 0.48 1.33 4.89 3.42
0101 0 0 0 0.42 1.45 5.06 3.51
0101 0 0 0 0.35 1.73 5.21 3.48
0101 0 0 0.01 0.41 1.98 4.74 3.76
0101 0 0 0 0.44 2.12 4.89 3.83
0101 0 0.01 0 0.39 1.39 4.87 3.47
0101 0 0 0 0.43 2.42 4.59 3.75
0101 0 0 0 0.38 1.95 4.69 3.72

Table B.9: Computation times for n=50
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II v- p- tl-tc 1 SPT 1 FFD 1 MFFD 1 EGI 1 Knap 1 2bin 1 GAPS II
0110 0 0.01 0 0.25 0.29 5.8 3.11
0110 0 0.01 0 0.21 0.33 4.82 3.07
0110 0.01 0 0 0.25 0.58 5.62 3.08
0110 0 0 0 0.23 0.48 6.28 3.09
0110 0 0 0 0.24 0.62 5.43 3.12
0110 0 0 0.01 0.28 0.42 5.97 3.07
0110 0 0 0 0.29 0.86 8.25 2.96
0110 0 0.01 0 0.21 0.28 6.2 3.05
0110 0.01 0 0 0.27 0.3 2320.12 2.94
0110 0 0 0 1.31 0.45 6.23 3.09
0111 0 0.01 0 0.27 0.33 6.58 3.08
0111 0 0 0 0.26 0.38 5.64 3.23
0111 0.01 0 0 0.27 0.58 6.69 3.12
0111 0 0 0 0.29 0.49 6.75 3.19
0111 0 0 0 0.26 0.66 5.72 3.17
0111 0 0 0 0.24 0.36 6.53 3.09
0111 0 0.01 0.01 0.32 0.8 8.41 2.99
0111 0 0 0 0.28 0.32 6.17 3.06
0111 0.01 0 0 0.23 0.36 2126.06 2.94
0111 0 0 0 0.23 0.43 6.28 3.11
1000 0 0 0.01 0.27 0.98 4.78 2.83
1000 0 0 0.01 0.32 0.99 5.42 2.79
1000 0 0.01 0 0.32 1.06 5.18 2.82
1000 0 0.01 0 0.29 0.96 5.06 2.85
1000 0 0 0 0.29 0.96 6.38 2.82
1000 0 0 0 0.27 1.21 5.25 2.99
1000 0 0 0.01 0.2 1.39 4.99 2.92
1000 0 0 0.01 0.2 0.95 5.16 2.87
1000 0 0.01 0 0.21 1.69 5.03 3.16
1000 0 0 0 0.34 0.06 5.2 2.9
1001 0 0 0 0.27 0.98 5.42 2.89
1001 0 0 0 0.27 0.99 4.84 2.91
1001 0 0 0 0.25 1.06 5.05 2.92
1001 0 0 0 0.21 0.96 4.88 2.85
1001 0 0 0 0.23 0.96 5.11 2.89
1001 0 0.01 0 0.25 1.21 4.57 2.76
1001 0.01 0 0.01 0.28 1.39 4.79 3.02
1001 0 0 0 0.27 0.95 4.75 2.9
1001 0 0 0 0.28 1.69 4.62 3.11
1001 0 0 0 0.34 0.06 4.74 2.82
1010 0 0.01 0 0.22 0.22 5.97 3.84
1010 0 0 0.01 0.23 0.28 6.47 3.92
1010 0 0 0 0.34 0.22 5.25 3.8
1010 0 0 0 0.29 0.21 8.32 4.03
1010 0 0 0 0.28 0.24 6.06 4.29
1010 0.01 0.01 0 0.28 0.2 6.61 3.83
1010 0 0.01 0.01 0.31 0.25 7.15 3.79
1010 0 0 0.01 0.31 0.36 6.07 4.05
1010 0 0 0 0.32 0.24 6.92 3.77
1010 0 0 0 0.2 0.2 8.3 3.76

Table B.IO: Computation times for n=50 (continued)
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v-p-tl-tc I SPT I FFD | MFFD | EGI | Knap | 2bin | GAPS
1011
1011
1011
1011
1011
1011
1011
1011
1011
1011
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1101
1101
1101
1101
1101
1101
1101
1101
1101
1101
1110
1110
1110
1110
1110
1110
1110
1110
1110
1110
n i l
n i l
n i l
n i l
n i l
n i l
n i l
n i l
n i l
n i l

0.01
0
0

0.01
0.01

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0.01
0.01
0.01

0
0.01

0
0
0
0
0

0.01
0

0
0

0.01
0
0
0
0
0
0
0

0.01
0
0
0

0.01
0.01

0
0
0
0

0.01
0

0.01
0
0
0
0
0

0.01
0.01

0
0.01

0
0.01
0.01

0
0.01
0.01

0
0
0
0
0

0.01
0.01

0
0
0
0

0.01

0
0.01

0
0
0
0
0

0.01
0
0

0.01
0
0
0
0
0
0
0
0
0
0
0
0
0

0.01
0
0
0
0

0.01
0.01

0
0.01
0.01

0
0.01
0.01

0
0.01
0.01

0
0.01

0
0
0
0

0.01
0.01

0
0

0.29
0.17
0.29
0.28
0.3

0.35
0.21
0.29
0.24
0.26
0.3

0.29
0.34
0.21
0.29
0.33
0.27
0.26
0.32
0.29
0.25
0.23
0.28
0.27
0.29
0.3

0.24
0.28
0.39
0.22
1.43
1.22
1.31
1.32 
1.31 
1.35 
1.54 
1.41
1.43 
1.37 
0.3 

0.25 
0.27 
0.26 
0.27 
0.33 
0.25 
0.28 
0.25 
0.24

0.3
0.25
0.19
0.19
0.2

0.18
0.22
0.37
0.24
0.23
1.04
0.74
0.88
0.8

0.88
1.18
1.19
0.95
1.26
0.09
1.03
0.83
0.89
0.81
0.93
1.15
1.32
1.02
1.35
1.1

0.39
0.35
0.24
0.23
0.21
0.47
0.29
0.33
0.23
0.26
0.39
0.35
0.24
0.27
0.21
0.45
0.3
0.3

0.22
0.24

5.7
6.08 
5.44 
8.28 
5.65 
6.62 
6.62 
5.77
6.64
8.46
5.72
9.09
10.4
6.01

24.88
5.55

11.97
5.06
6.65
7.57 
5.41 
5.82
5.47 
6.24
5.7

4.98 
5.21 
5.53
5.01 
5.16
5.72
9.09
10.4
6.01

24.88
5.55

11.97 
5.06
6.65
7.57 
5.5

9.48 
10.86 
5.67 

25.18 
5.51 
11.83
4.98 
6.86 
7.61

3.47
3.48 
3.2 

3.16
3.75
3.22
3.24
3.5

3.22
3.18 
3.28 
3.47
3.24
3.5 

3.58
3.14
3.11 
3.44
3.19 
3.18
2.73 
2.7

2.79
2.74
2.84
2.76
2.85
2.79
3.05
2.79 

10.73 
10.96 
10.29
10.94 
10.65 
10.86
11.05 
10.56 
10.7

10.95 
3.39 
3.46
3.21 
3.57
3.74
3.14 
3.2 

3.48
3.11
3.22

AVG I 0.001375  | 0.003  | 0.003438  | 0.518438  | 0.8345  | 34.11788  | 4 .94875~

Table B .ll: Computation times for n=50 (continued)
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v- p- tl-tc Flowtime
SPT
dl d2 Flowtime

FFD
dl d2 Flowtime

MFFD
dl d2 Flowtime

EGI
dl d2

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
n i l

101788.10
503556.30
48404.40 
63487.70

205259.80 
1014380.1
97393.40
127923.30
76010.00

353792.80
38654.40
48134.80 

150899.20
709895.00
76190.40
94564.30

3.02
6.63
0.00
0.11
2.14
4.58
0.02
0.28
3.09
7.11
0.00
0.12
3.50
7.78
0.01
0.18

0.51
0.59
0.02
0.02
0.56
0.60
0.04
0.07
0.60
0.95
0.01
0.04
0.63
0.95
0.00
0.04

99340.30
478657.70
48586.50 
66323.10
201814.70
980220.90
97769.70
133620.20
78706.40

347844.40
38711.90
49063.50
154771.20
684963.60
76350.30
98025.60

0.24
0.55
0.38
4.57
0.20
0.33
0.41
4.75
6.26
4.83
0.15
2.10
5.74
3.81
0.21
3.92

0.27
0.23
0.51
0.95
0.18
0.17
0.44
0.96
0.88
0.63
0.44
0.19
0.82
0.48
0.61
0.38

99299.70
478617.10
48528.20
65069.40

201732.70
980138.90 
97743.00

130808.70
77674.10

342504.20
38654.40
49553.90 
152702.50
674933.90
76314.80
97036.80

0.22
0.55
0.26
2.62
0.17
0.33
0.38
2.54
5.02
3.41
0.00
3.12
4.53
2.63
0.17
2.84

0.14
0.10
0.34
0.63
0.06
0.05
0.48
0.58
0.64
0.45
0.01
0.81
0.68
0.38
0.10
0.73

101868.70 
492204.20
48404.40
63487.70 
205416.90 
992411.10
97393.40
127923.30 
75711.50

339667.40
38654.40 
48134.80 
150270.00
683428.40
76190.40
94564.30

3.08 
3.90 
0.00 
0.11 
2.20
2.09 
0.02 
0.28 
2.72
2.75 
0.00 
0.12 
3.17
3.75 
0.01 
0.18

0.72
0.60
0.02
0.02
0.77
0.50
0.04
0.07
0.53
0.34
0.01
0.04
0.60
0.39
0.00
0.04

AVG 231895.88  2.41 0.35 227173.13  2.40  0.51 225707.02 1.80 0.39 227233.18  1.52 0.29

Table C .l: Averages taken over 1 0  replication for n= 1 0 0

v- p- tl-tc Flowtime
Knap

dl d2 Flowtime
2Bin
dl d2 Flowtime

GAPS
dl d2

0000 100216.50 1.27 0.45 101088.20 2.18 0.32 99129.30 0.01 0.01
0001 481490.50 1.41 0.33 495975.80 4.48 0.35 476992.50 0.00 0.00
0010 48511.90 0.23 0.61 48404.40 0.00 0.02 48402.40 0.00 0.00
0011 63497.20 0.13 0.03 63444.40 0.04 0.01 63459.90 0.07 0.01
0100 204057.30 1.51 0.59 204168.70 1.50 0.36 201434.00 0.00 0.00
0101 988671.50 1.51 0.38 1004074.4 3.08 0.37 978071.20 0.00 0.00
0110 97710.60 0.35 0.67 97393.40 0.02 0.04 97369.70 0.00 0.00
0111 128048.40 0.38 0.09 127678.70 0.09 0.02 127655.40 0.07 0.02
1000 74478.80 1.20 0.33 74505.60 1.17 0.24 74146.30 0.62 0.07
1001 337255.80 2.45 0.34 337436.40 2.29 0.30 333699.60 0.98 0.13
1010 38714.70 0.16 0.79 38653.30 0.00 0.00 38653.50 0.00 0.00
1011 48218.50 0.29 0.18 48081.80 0.00 0.00 48079.90 0.00 0.00
1100 147894.00 1.84 0.45 147856.30 1.57 0.29 146200.40 0.44 0.05
1101 675088.30 3.51 0.53 679624.00 3.48 0.41 665907.90 1.14 0.09
1110 76296.70 0.15 0.56 76190.30 0.01 0.00 76186.00 0.00 0.00
n i l 94595.20 0.21 0.06 94452.90 0.06 0.01 94420.60 0.02 0.01

AVG 225296.62 1.04 0.40 227439.29 1.25 0.17 223113.04 0.21 0.02

Table C.2 : Averages taken over 10 replication for n=100 (continued)
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y.p-tl-tc Flowtime
SPT
d l d2 Flowtime

FFD
d l d2 Flowtime

MFFD
d l d2 Flowtime

EGI
d l d2

0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

94982.00
97089.00

141702.00
77810.00
89302.00
95182.00
75894.00
92364.00
104502.00
149054.00

5.19
0
0

0.58
0

8.49
4.53
1.18
10.2

0

1
0
0

0.56
0
1
1

0.51
1
0

90560.00
97277.00
141927.00
78156.00
89503.00
87767.00
72882.00
91284.00
94812.00
149235.00

0.291
0.194
0.159
1.024
0.225
0.042
0.384

0
0

0.121

0.06
0.11
0.67

1
0.15

0
0.08

0
0

0.64

90560.00
97277.00

141702.00
78156.00
89503.00
87767.00
72882.00
91284.00
94812.00
149054.00

0.29
0.19

0
1.02
0.23
0.04
0.38

0
0
0

0.06
0.11

0
1

0.15
0

0.08
0
0
0

94982.00
97277.00
142039.00
77810.00
89302.00
95182.00
75894.00
92364.00

104502.00
149335.00

5.19
0.19
0.24
0.58

0
8.49
4.53
1.18
10.2
0.19

1
0.1

1
0.6
0
1
1

0.5
1
1

0001
0001
0001
0001
0001
0001
0001
0001
0001
0001

405578.00
428324.00
809952.00
296905.00
384208.00
522910.00
310854.00
431514.00
583464.00
861854.00

10.6
0
0

3.69
0

16.2
13.9
3.45
18.4

0

1
0
0

0.93
0
1
1
1
1
0

370268.00
428512.00
810177.00
290871.00
384409.00
449975.00
280602.00
417134.00
492594.00
862035.00

0.974
0.044
0.028
1.579
0.052
0.008
2.831

0
0

0.021

0.09
0.11
0.67
0.4

0.15
0

0.2
0
0

0.64

370268.00
428512.00
809952.00
290871.00
384409.00
449975.00
280602.00
417134.00
492594.00
861854.00

0.97
0.04

0
1.58
0.05
0.01
2.83

0
0
0

0.09
0.11

0
0.4

0.15
0

0.2
0
0
0

383847.00
428512.00
810289.00
297705.00
384488.00
487938.00
298995.00
424377.00
543756.00
862135.00

4.68
0.04
0.04
3.97
0.07
8.45
9.57
1.74
10.4
0.03

0.4
0.1
1
1

0.2
0.5
0.7
0.5
0.6

1
0010
0010
0010
0010
0010
0 0 1 0
0010
0010
0010
0010

49790.00
48417.00
49970.00
48137.00
48782.00
47030.00
48099.00
48462.00
47817.00
47540.00

0
0
0
0
0
0
0
0
0

0.04

0
0
0
0
0
0
0
0
0

0.22

50330.00
48718.00
49971.00
48680.00
48861.00
47030.00
48449.00
48462.00
47829.00
47535.00

1.085
0.622
0.002
1.128
0.162

0
0.728

0
0.025
0.032

1
1

0.01
1

0.26
0
1
0

0.63
0.17

50004.00
48417.00
49970.00
48480.00
49086.00
47030.00
48179.00
48764.00
47817.00
47535.00

0.43
0
0

0.71
0.62

0
0.17
0.62

0
0.03

0.4
0
0

0.63
1
0

0.23
1
0

0.17

49790.00
48417.00
49970.00
48137.00
48782.00
47030.00
48099.00
48462.00
47817.00
47540.00

0
0
0
0
0
0
0
0
0

0.04

0
0
0
0
0
0
0
0
0

0.2
0011
0011
0011
0011
0011
0011
0011
0011
0011
0011

66638.00
65312.00
66440.00
62347.00
64100.00
59910.00
60699.00
63225.00
61962.00
64244.00

0.13
0.32

0
0

0.11
0.18
0.24

0
0

0.17

0.02
0.06

0
0

0.02
0.04
0.05

0
0

0.04

70826.00
68667.00
67957.00
63711.00
68086.00
62224.00
63614.00
68007.00
63279.00
66860.00

6.42
5.473
2.283
2.188
6.333
4.047
5.052
7.563
2.125
4.252

1
1
1

0.98
1
1
1
1

0.54
1

67658.00
67474.00
67358.00
63741.00
65412.00
61906.00
61258.00
64627.00
64404.00
66856.00

1.66
3.64
1.38
2.24 
2.16 
3.51 
1.16 
2.22 
3.94
4.25

0.26
0.67
0.61

1
0.34
0.87
0.23
0.29

1
1

66638.00
65312.00
66440.00
62347.00
64100.00
59910.00
60699.00
63225.00
61962.00
64244.00

0.13
0.32

0
0

0.11
0.18
0.24

0
0

0.17

0
0.1
0
0
0
0
0
0
0
0

0 1 0 0
0100
0100
0100
0100
0100
0100
0100
0100
0100

190092.00
200447.00
283984.00
158046.00
181513.00
189148.00
150595.00
186014.00
213655.00
299104.00

5.23 
0
0

1.24 
0

5.57
3.26
1.81
4.31

0

1
0
0

0.88
0
1
1

0.76
1
0

182637.00
200447.00
284435.00
157022.00
181513.00
179164.00
145916.00
182708.00
204832.00
299473.00

1.106
0

0.159
0.584

0
0

0.053
0
0

0.123

0.21
0

0.61
0.41

0
0

0.02
0
0

0.55

182637.00
200447.00
283984.00
157022.00
181513.00
179164.00
145916.00
182708.00
204832.00
299104.00

1.11
0
0

0.58
0
0

0.05
0
0
0

0.21
0
0

0.41
0
0

0.02
0
0
0

190092.00
200608.00
284721.00
158046.00
181513.00
189148.00
150595.00
186014.00
213655.00
299777.00

5.23 
0.08 
0.26
1.24 

0
5.57
3.26
1.81
4.31
0.23

1
0.1
1

0.9
0
1
1

0.8
1
1

0101
0101
0101
0101
0101
0101
0101
0101
0101
0101

809293.00
901667.00
1620484.0
607441.00
810349.00
1024506.0
607772.00
869900.00
1167685.0
1724704.0

9.53
0
0

4.63
0

10.6
9.48
4.25
7.29

0

747724.00
901667.00
1620935.0
588788.00
810349.00
926214.00
558749.00
834408.00
1088302.0
1725073.0

1.194
0

0.028
1.415

0
0.004
0.648

0
0

0.021

0.13
0

0.61
0.31

0
0

0.07
0
0

0.55

747724.00
901667.00
1620484.00
588788.00
810349.00
926214.00
558749.00
834408.00
1088302.00
1724704.00

1.19
0
0

1.42
0
0

0.65
0
0
0

0.13
0
0

0.31
0
0

0.07
0
0
0

765956.00
901828.00
1621221.0
607487.00
810349.00
956904.00
593091.00
853596.00
1088302.0
1725377.0

3.66
0.02
0.05
4.64

0
3.32
6.83
2.3
0

0.04

0.4
0.1
1
1
0

0.3
0.7
0.5
0
1

Table C.3: Computational results for SPT, FFD, MFFD, EGI for n=100
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v-p-tl-tc Flowtime
SPT
d l d2 Flowtime

FFD
d l d2 Flowtime

MFFD
d l d2 Flowtime

EGI
d l

0110
0110
0110
0110
0 1 1 0
0110
0110
0110
0110
0110

99708.00
97103.00
100634.00
96936.00
97624.00
94742.00
96835.00
97562.00
96630.00
96160.00

0
0.03
0.06
0.06
0.07

0
0
0

0.02
0

0
0.05
0.12
0.05
0.11

0
0
0

0.04
0

100728.00
97727.00
100634.00
98106.00
97686.00
94742.00
97722.00
97562.00
96630.00
96160.00

1.023
0.676
0.06
1.267
0.136

0
0.916

0
0.018

0

1
1

0.12
1

0.2
0
1
0

0.04
0

100241.00
97674.00
100634.00
97761.00
98208.00
94742.00
97244.00
98136.00
96630.00
96160.00

0.53
0.62
0.06
0.91
0.67

0
0.42
0.59
0.02

0

0.52
0.92
0.12
0.72

1
0

0.46
1

0.04
0

99708.00
97103.00
100634.00
96936.00
97624.00
94742.00
96835.00
97562.00
96630.00
96160.00

0
0.03
0.06
0.06
0.07

0
0
0

0.02
0

0
0

0.1
0

0.1
0
0
0
0
0

0111
0111
0111
0111
0111
0111
0111
0111
0111
0111

133296.00
130893.00
134384.00
125836.00
128482.00
120387.00
122140.00
127886.00
125785.00
130144.00

0
0.48
0.44
0.4

0.48
0.16
0.03
0.19
0.37
0.24

0
0.09
0.15
0.13
0.07
0.04
0.01
0.03
0.09
0.06

141555.00
137517.00
136286.00
129175.00
136294.00
124889.00
128460.00
136429.00
130607.00
134990.00

6.196
5.564
1.863
3.068
6.594
3.904
5.209
6.887
4.217
3.975

1
1

0.63
1
1
1
1
1
1
1

135868.00
133834.00
137747.00
126661.00
130763.00
124278.00
124200.00
130621.00
129312.00
134803.00

1.93
2.74
2.96
1.06
2.27
3.4
1.72
2.34
3.18
3.83

0.31
0.49

1
0.35
0.34
0.87
0.33
0.34
0.75
0.96

133296.00
130893.00
134384.00
125836.00
128482.00
120387.00
122140.00
127886.00
125785.00
130144.00

0
0.48
0.44
0.4

0.48
0.16
0.03
0.19
0.37
0.24

0
0.1
0.1
0.1
0.1
0
0
0

0.1
0.1

1000
1000
1000
1000
1000
1000
1000
1000
1000
1000

76727.00
75425.00

107541.00
61883.00
72466.00
64927.00
59065.00
73597.00
76326.00
92143.00

3.05
3.53
3.91
2.22
2.84
1.28
1.9
4.2

3.32
4.67

0.39
1

0.3
0.9

0.99
0.21
0.52

1
0.39
0.31

80220.00
74771.00
116983.00
62038.00
72043.00
67954.00
60101.00
71451.00
80111.00 
101392.00

7.741
2.637
13.03
2.478
2.242
6.006
3.69
1.16

8.441
15.18

1
0.75

1
1

0.78
1
1

0.28
1
1

79720.00
73589.00
111656.00
61411.00
70795.00
67732.00
59857.00
70632.00
80043.00
101306.00

7.07
1.01
7.89
1.44
0.47
5.66
3.27

0
8.35
15.1

0.91
0.29
0.61
0.58
0.16
0.94
0.89

0
0.99
0.99

76727.00
73809.00

107571.00
61883.00
72466.00
64927.00
59065.00
73597.00
76326.00
90744.00

3.05
1.32 
3.94 
2.22 
2.84 
1.28 
1.9 
4.2

3.32 
3.08

0.4
0.4
0.3
0.9
1

0.2
0.5

1
0.4
0.2

1001
1001
1001
1001
1001
1001
1001
1001
1001
1001

318287.00
328808.00
570907.00
230591.00
317074.00
331729.00
229552.00
332849.00
389004.00
489127.00

6.85
8.59
7.62
5.84 
8.69 
5.08 
4.4

9.85 
6.58 
7.54

0.9
1

0.93
1
1
1
1
1
1

0.67

320460.00
312386.00
574046.00
226865.00
298338.00
323242.00
225657.00
307319.00
383799.00
506332.00

7.582
3.171
8.209
4.133
2.271
2.388
2.628
I . 425 
5.157
I I .  33

1
0.37

1
0.71
0.26
0.47
0.6

0.14
0.78

1

318512.00
306605.00
545608.00
224435.00
291883.00
322450.00
223560.00
303000.00
383151.00
505838.00

6.93
1.26
2.85
3.02 
0.06 
2.14 
1.67

0
4.98
11.2

0.91
0.15
0.35
0.52
0.01
0.42
0.38

0
0.76
0.99

302004.00
312029.00
549041.00
224677.00
297388.00
315702.00
223751.00
317884.00
369042.00
485156.00

1.39
3.05
3.5 

3.13 
1.95

0
1.76
4.91
1.11
6.67

0.2
0.4
0.4
0.5
0.2
0

0.4
0.5
0.2
0.6

1010
1010
1010
1010
1010
1010
1010
1010
1010
1010

41129.00
37583.00
43767.00
38333.00
38922.00
35569.00
39115.00
39069.00
37914.00
35143.00

0
0
0
0
0
0

0.03
0
0
0

0
0
0
0
0
00.06
0
0
0

41129.00
37783.00
43767.00
38429.00
38966.00
35630.00
39289.00
39069.00
37914.00
35143.00

0
0.532

0
0.25

0.113
0.171
0.473

0
0
0

0
1
0
1

0.42
1
1
0
0
0

41129.00
37583.00
43767.00
38333.00
38922.00
35569.00
39115.00
39069.00
37914.00
35143.00

0
0
0
0
0
0

0.03
0
0
0

0
0
0
0
0
0

0.06
0
0
0

41129.00
37583.00
43767.00
38333.00
38922.00
35569.00
39115.00
39069.00
37914.00
35143.00

0
0
0
0
0
0

0.03
0
0
0

0
0
0
0
0
0

0.1
0
0
0

Table C.4: Computational results for SPT, FFD, MFFD, EGI for n=100 
(continued)
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v-p-tl-tc Flowtime
SPT
d l d2 Flowtime

FFD
d l d2 Flowtime

MFFD
d l d2 Flowtime

EGI
d l d2

1011 52349.00 0 0 52349.00 0 0 54105.00 3.35 1 52349.00 0 0
1011 47219.00 0 0 47857.00 1.351 0.37 48921.00 3.6 1 47219.00 0 0
1011 55991.00 0 0 55991.00 0 0 55991.00 0 0 55991.00 0 0
1011 46901.00 0 0 55296.00 17.9 1 48113.00 2.58 0.14 46901.00 0 0
1011 48722.00 0.4 0.1 48570.00 0.082 0.02 50400.00 3.85 1 48722.00 0.4 0.1
1011 43042.00 0 0 43103.00 0.142 0.04 44553.00 3.51 1 43042.00 0 0
1011 47152.00 0.39 0.13 47497.00 1.122 0.39 48338.00 2.91 1 47152.00 0.39 0.1
1011 48657.00 0 0 48657.00 0 0 50869.00 4.55 1 48657.00 0 0
1011 46788.00 0 0 46788.00 0 0 48497.00 3.65 1 46788.00 0 0
1011 44527.00 0.4 0.13 44527.00 0.399 0.13 45752.00 3.16 1 44527.00 0.4 0.1
1100 150593.00 2.26 0.4 155661.00 5.701 1 154365.00 4.82 0.85 150593.00 2.26 0.4
1100 145348.00 2.96 0.47 150107.00 6.33 1 146519.00 3.79 0.6 145348.00 2.96 0.5
1100 220956.00 8.77 0.58 233887.00 15.14 1 222867.00 9.72 0.64 217424.00 7.04 0.5
1100 122137.00 2.39 0.82 121011.00 1.446 0.5 121895.00 2.19 0.75 122137.00 2.39 0.8
1100 141041.00 3.46 0.71 142961.00 4.869 1 136323.00 0 0 141041.00 3.46 0.7
1100 130553.00 3.45 0.76 131902.00 4.517 1 131803.00 4.44 0.98 130553.00 3.45 0.8
1100 117319.00 0.99 0.32 118556.00 2.057 0.67 119732.00 3.07 1 117319.00 0.99 0.3
1100 142845.00 2.65 1 139160.00 0 0 139225.00 0.05 0.02 142845.00 2.65 1
1100 156478.00 4.82 0.95 156843.00 5.066 1 156643.00 4.93 0.97 156478.00 4.82 1
1100 181722.00 3.28 0.27 197624.00 12.32 1 197653.00 12.3 1 178962.00 1.71 0.1
1101 618542.00 3.88 1 616362.00 3.512 0.91 610536.00 2.53 0.65 595451.00 0 0
1101 626565.00 5.42 0.81 628763.00 5.787 0.86 611500.00 2.88 0.43 606735.00 2.08 0.3
1101 1208714.0 14.9 1 1164515.0 10.67 0.72 1105033.00 5.02 0.34 1181542.0 12.3 0.8
1101 455197.00 6.21 1 433491.00 1.141 0.18 443763.00 3.54 0.57 444320.00 3.67 0.6
1101 619346.00 10.2 1 594131.00 5.721 0.56 561978.00 0 0 587335.00 4.51 0.4
1101 677624.00 10.9 1 629595.00 3.026 0.28 628706.00 2.88 0.26 653522.00 6.94 0.6
1101 449365.00 4.53 1 434456.00 1.062 0.23 439844.00 2.32 0.51 435822.00 1.38 0.3
1101 642075.00 7.28 1 598529.00 0 0 599489.00 0.16 0.02 613439.00 2.49 0.3
1101 825580.00 9.84 1 753750.00 0.28 0.03 751997.00 0.05 0 777522.00 3.44 0.3
1101 975942.00 4.7 0.68 996044.00 6.853 0.99 996493.00 6.9 1 938596.00 0.69 0.1
1110 81713.00 0 0 81936.00 0.273 0.85 81713.00 0 0 81713.00 0 0
1110 73598.00 0 0 73598.00 0 0 73598.00 0 0 73598.00 0 0
1110 86371.00 0 0 86861.00 0.567 1 86371.00 0 0 86371.00 0 0
1110 75451.00 0.05 0.03 75451.00 0.05 0.03 76695.00 1.7 1 75451.00 0.05 0
1110 76346.00 0 0 76346.00 0 0 76346.00 0 0 76346.00 0 0
1110 70317.00 0.01 0.01 70796.00 0.69 1 70317.00 0.01 0.01 70317.00 0.01 0
1110 77631.00 0 0 77641.00 0.013 0.18 77631.00 0 0 77631.00 0 0
1110 76966.00 0 0 76998.00 0.042 1 76966.00 0 0 76966.00 0 0
1110 74578.00 0 0 74715.00 0.184 1 74578.00 0 0 74578.00 0 0
1110 68933.00 0 0 69161.00 0.331 1 68933.00 0 0 68933.00 0 0
n i l 103910.00 0.19 0.05 104133.00 0.408 0.11 107435.00 3.59 1 103910.00 0.19 0.1
n i l 92540.00 0 0 110452.00 19.36 1 95075.00 2.74 0.14 92540.00 0 0
n i l 110011.00 0 0 110895.00 0.804 1 110011.00 0 0 110011.00 0 0
n i l 92251.00 0.49 0.03 107224.00 16.8 1 93915.00 2.31 0.14 92251.00 0.49 0
n i l 94976.00 0.34 0.12 94976.00 0.338 0.12 97434.00 2.93 1 94976.00 0.34 0.1
n i l 85032.00 0.39 0.12 85184.00 0.573 0.18 87364.00 3.15 1 85032.00 0.39 0.1
n i l 93075.00 0 0 93085.00 0.011 0 95731.00 2.85 1 93075.00 0 0
n i l 95155.00 0 0 95187.00 0.034 0.01 99240.00 4.29 1 95155.00 0 0
n i l 92120.00 0.39 0.1 91899.00 0.148 0.04 95396.00 3.96 1 92120.00 0.39 0.1
n i l 86573.00 0 0 87221.00 0.749 0.3 88767.00 2.53 1 86573.00 0 0

AVG 231895.88 2T41 0.35 I 227173.13 2.40 0.51 0.39 I 227233.18

Table C.5: Computational results for SPT, FFD, MFFD, EGI for n==100 
(continued)
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v- p- tl-tc Flowtime
Knap

dl d2 Flowtime
2Bin
dl d2 Flowtime

GAPS
dl d2

0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0001
0001
0001
0001
0001
0001
0001
0001
0001
0001
0010
0010
0010
0010
0010
0010
0010
0010
0010
0010
0011
0011
0011
0011
0011
0011
0011
0011
0011
0011
0100
0100
0100
0100
0100
0100
0100
0100
0100
0100
0101
0101
0101
0101
0101
0101
0101
0101
0101
0101

93090
98796

141702
77364
90667
87767
75497
93416
94812
149054

3.09
1.76
0.00
0.00
1.53
0.04
3.99
2.34
0.00
0.00

0.60
1.00
0.00
0.00
1.00
0.00
0.88
1.00
0.00
0.00

384654
430031
809952
287469
385573
449975
293537
419266
492594
861854

4.90
0.40
0.00
0.39
0.36
0.01
7.57
0.51
0.00
0.00

0.46
1.00
0.00
0.10
1.00
0.00
0.54
0.15
0.00
0.00

49861
48519
50052
48224
49014
47198
48256
48549
47836
47610

0.14
0.21
0.16
0.18
0.48
0.36
0.33
0.18
0.04
0.19

0.13
0.34
1.00
0.16
0.76
1.00
0.45
0.29
1.00
1.00

66553
65104
66522
62434
64194
59966
60736
63312
61981
64170

0.00
0.00
0.12
0.14
0.25
0.27
0.30
0.14
0.03
0.06

0.00
0.00
0.05
0.06
0.04
0.07
0.06
0.02
0.01
0.01

188762
203621
283984
158316
184113
180618
150145
187078
204832
299104

4.50
1.58
0.00
1.41
1.43
0.81
2.95
2.39
0.00
0.00

0.86
1.00
0.00
1.00
1.00
0.15
0.91
1.00
0.00
0.00

788059
904841
1620484
590371
812949
941271
576956
838778
1088302
1724704

6.65
0.35
0.00
1.69
0.32
1.63
3.93
0.52
0.00
0.00

0.70
1.00
0.00
0.36
1.00
0.15
0.41
0.12
0.00
0.00

93077.00
97089.00
141702.00
77641.00
89302.00
94234.00
73647.00
91756.00
103380.00
149054.00

3.08
0
0

0.36
0

7.41
1.44
0.52
9.04

0

0.6
0
0

0.3
0

0.9
0.3
0.2
0.9
0

389009.00
428324.00
809952.00
293989.00
384208.00
513786.00
286700.00
418819.00
573117.00
861854.00

6.09
0
0

2.67
0

14.2 
5.07 
0.4
16.3 

0

0.6
0
0

0.7
0

0.9
0.4
0.1
0.9
0

49790.00
48417.00
49970.00
48137.00
48782.00
47030.00
48099.00
48462.00
47817.00
47540.00

0
0
0
0
0
0
0
0
0

0.04

0
0
0
0
0
0
0
0
0

0.2
66638.00
65129.00
66440.00
62347.00
64100.00
59804.00
60555.00
63225.00
61962.00
64244.00

0.13
0.04

0
0

0.11
0
0
0
0

0.17
184981.00
200447.00
283984.00
156958.00
181513.00
189148.00
148450.00
183447.00
213655.00
299104.00

2.4
0
0

0.54
0

5.57
1.79
0.4

4.31
0

0.5
0
0

0.4
0
1

0.5
0.2
1
0

777415.00
901667.00

1620484.00
596769.00
810349.00
1024506.00
580715.00
836450.00
1167685.00
1724704.00

5.21
0
0

2.79
0

10.6
4.61
0.24
7.29

0

0.5
0
0

0.6
0
1

0.5
0.1
1
0

90297.00
97089.00
141702.00
77420.00
89302.00
87730.00
72603.00
91284.00
94812.00
149054.00

0
0
0

0.072
0
0
0
0
0
0

366695.00
428324.00
809952.00
286350.00
384208.00
449938.00
272876.00
417134.00
492594.00
861854.00

0
0
0
0
0
0
0
0
0
0

49790.00
48417.00
49970.00
48137.00
48782.00
47030.00
48099.00
48462.00
47817.00
47520.00

0
0
0
0
0
0
0
0
0
0

66638.00
65259.00
66440.00
62347.00
64031.00
59865.00
60699.00
63225.00
61962.00
64133.00

0.128
0.238

0
0
0

0.102
0.238

0
0
0

180639.00
200447.00
283984.00
156110.00
181513.00
179164.00
145839.00
182708.00
204832.00
299104.00

0
0
0
0
0
0
0
0
0
0

738899.00
901667.00
1620484.0
580572.00
810349.00
926178.00
555149.00
834408.00
1088302.0
1724704.0

0
0
0
0
0
0
0
0
0
0

0
0
0

0.07
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0

0.02
0.04

0
0
0

0.03
0.05

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

Table C.6 : Computational results for Knap, 2 Bin, GAPS algorithms for n=100
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v- p- tl-tc Flowtime
Knap

dl d2 Flowtime
2Bin
dl d2 Flowtime

GAPS
dl d2

0110 100018 0.31 0.30 99708.00 0 0 99708.00 0 0
0110 97501 0.44 0.66 97103.00 0.03 0 97071.00 0 0
0110 101093 0.52 1.00 100634.00 0.06 0.1 100574.00 0 0
0110 97092 0.22 0.17 96936.00 0.06 0 96879.00 0 0
0110 97950 0.41 0.61 97624.00 0.07 0.1 97553.00 0 0
0110 94840 0.10 1.00 94742.00 0 0 94742.00 0 0
0110 96974 0.14 0.16 96835.00 0 0 96835.00 0 0
0110 98024 0.47 0.80 97562.00 0 0 97562.00 0 0
0110 97003 0.40 1.00 96630.00 0.02 0 96613.00 0 0
0110 96611 0.47 1.00 96160.00 0 0 96160.00 0 0
0111 133606 0.23 0.04 133296.00 0 0 133296.00 0 0
0111 130981 0.55 0.10 130550.00 0.22 0 130269.00 0 0
0111 134843 0.78 0.27 133837.00 0.03 0 133793.00 0 0
0111 125703 0.30 0.10 125330.00 0 0 125836.00 0.404 0.13
0111 128530 0.52 0.08 128146.00 0.22 0 127863.00 0 0
0111 120485 0.24 0.06 120288.00 0.08 0 120197.00 0 0
0111 122279 0.15 0.03 122100.00 0 0 122140.00 0.033 0.01
0111 128082 0.35 0.05 127638.00 0 0 127861.00 0.175 0.03
0111 125668 0.28 0.07 125773.00 0.36 0.1 125322.00 0 0
0111 130307 0.37 0.09 129829.00 0 0 129977.00 0.114 0.03
1000 76393 2.60 0.34 75301.00 1.13 0.1 74456.00 0 0
1000 74531 2.31 0.65 74603.00 2.41 0.7 72850.00 0 0
1000 103792 0.29 0.02 103493.00 0 0 103820.00 0.316 0.02
1000 61739 1.98 0.80 61453.00 1.51 0.6 60538.00 0 0
1000 72481 2.86 1.00 70522.00 0.08 0 70463.00 0 0
1000 64223 0.19 0.03 64367.00 0.41 0.1 64104.00 0 0
1000 58628 1.15 0.31 58392.00 0.74 0.2 57962.00 0 0
1000 71096 0.66 0.16 71513.00 1.25 0.3 71451.00 1.16 0.28
1000 73875 0.00 0.00 74631.00 1.02 0.1 75261.00 1.876 0.22
1000 88030 0.00 0.00 90781.00 3.13 0.2 90558.00 2.872 0.19
1001 309813 4.01 0.53 308438.00 3.55 0.5 297875.00 0 0
1001 318278 5.12 0.60 311702.00 2.94 0.3 302786.00 0 0
1001 538317 1.47 0.18 530496.00 0 0 536184.00 1.072 0.13
1001 225347 3.44 0.59 221544.00 1.69 0.3 217860.00 0 0
1001 309837 6.21 0.71 299521.00 2.68 0.3 291714.00 0 0
1001 322916 2.29 0.45 321625.00 1.88 0.4 318907.00 1.015 0.2
1001 221591 0.78 0.18 221909.00 0.92 0.2 219879.00 0 0
1001 306660 1.21 0.12 310655.00 2.53 0.3 307319.00 1.425 0.14
1001 364977 0.00 0.00 373215.00 2.26 0.3 380296.00 4.197 0.64
1001 454822 0.00 0.00 475259.00 4.49 0.4 464176.00 2.057 0.18
1010 41138 0.02 1.00 41129.00 0 0 41129.00 0 0
1010 37739 0.42 0.78 37583.00 0 0 37583.00 0 0
1010 43836 0.16 1.00 43767.00 0 0 43767.00 0 0
1010 38347 0.04 0.15 38333.00 0 0 38333.00 0 0
1010 39028 0.27 1.00 38922.00 0 0 38922.00 0 0
1010 35615 0.13 0.75 35569.00 0 0 35569.00 0 0
1010 39149 0.12 0.24 39104.00 0 0 39106.00 0.005 0.01
1010 39166 0.25 1.00 39069.00 0 0 39069.00 0 0
1010 37926 0.03 1.00 37914.00 0 0 37914.00 0 0
1010 35203 0.17 1.00 35143.00 0 0 35143.00 0 0

Table C.7: Computational results for Knap, 2Bin, GAPS algorithms for n—100
(continued)
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v- p- tl-tc Flow time
Knap

dl d2 Flowtime
2Bin
dl d2

GAPS
Flowtime dl d2

1011
1011
1011
1011
1011
1011
1011
1011
1011
1011
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1101
1101
1101
1101
1101
1101
1101
1101
1101
1101
1110
1110
1110
1110
1110
1110
1110
1110
1110
1110
n i l
n i l
n i l
n i l
n i l
n i l
n i l
n i l
n i l
n i l
AVG

52358
47813
56060
46915
48828
43088
47186
48754
46800
44383

0.02
1.26
0.12
0.03
0.61
0.11
0.46
0.20
0.03
0.07

0.01
0.35
1.00
0.00
0.16
0.03
0.16
0.04
0.01
0.02

150489
147222
203132
122766
140833
126202
118907
142375
149281
177733

2.19
4.29
0.00
2.92
3.31 
0.00 
2.36
2.31 
0.00 
1.01

0.38
0.68
0.00
1.00
0.68
0.00
0.77
0.87
0.00
0.08

609378
634302
1052202
451206
604153
627820
448847
626899
753943
942133

2.34
6.72
0.00
5.27
7.50
2.74 
4.41
4.74 
0.31 
1.07

0.60
1.00
0.00
0.85
0.74
0.25
0.97
0.65
0.03
0.15

81975
73819
86371
75526
76542
70450
77687
76990
74595
69012

0.32
0.30
0.00
0.15
0.26
0.20
0.07
0.03
0.02
0.11

1.00
1.00
0.00
0.09
1.00
0.29
1.00
0.75
0.12
0.35

104172
92761
n o o n
91906
95172
84838
93482
95179
91779
86652

0.45
0.24
0.00
0.12
0.55
0.16
0.44
0.03
0.02
0.09

0.12
0.01
0.00
0.01
0.19
0.05
0.15
0.01
0.00
0.04

52349.00
47219.00
55991.00
46901.00
48541.00
43042.00
46970.00
48657.00
46788.00
44360.00

0
0
0
0

0.02
0
0
0
0

0.02
149583.00
144215.00
211042.00
121919.00
139072.00
126243.00
116166.00
140935.00
151500.00
177888.00

1.57
2.16
3.89
2.21
2.02
0.03

0
1.28
1.49
1.1

0.3
0.3
0.3
0.8
0.4
0
0

0.5
0.3
0.1

597374.00
612345.00
1143033.00
451463.00
588661.00
637352.00
437048.00
620934.00
767897.00
940133.00

0.32
3.02 
8.63 
5.33 
4.75
4.3 
1.66 
3.74 
2.16 
0.85

0.1
0.5
0.6
0.9
0.5
0.4
0.4
0.5
0.2
0.1

81713.00
73598.00
86371.00
75450.00
76346.00
70317.00
77631.00
76966.00
74578.00
68933.00

0
0
0

0.05
0

0.01
0
0
0
0

103710.00
92540.00
110011.00
91994.00
94656.00
84844.00
93075.00
95155.00
91971.00
86573.00

0
0
0

0.21
0

0.17
0
0

0.23
0

0
0
0
0
0

0.1
0
0

0.1
0

52349.00
47219.00
55991.00
46901.00
48530.00
43042.00
46972.00
48657.00
46788.00
44350.00

0
0
0
0
0
0

0.004
0
0
0

147266.00
141171.00
209625.00
119286.00
137630.00
126215.00
116252.00
139160.00
149447.00
175952.00
597356.00
594369.00
1135340.0
428600.00
580081.00
611101.00
429891.00
598529.00
751646.00
932166.00

0.32
0

7.901
0

3.221
0
0
0
0
0

81713.00
73598.00
86371.00
75413.00
76346.00
70311.00
77631.00
76966.00
74578.00
68933.00

0
0
0
0
0
0
0
0
0
0

103910.00
92540.00
110011.00
91799.00
94681.00
84699.00
93075.00
95155.00
91763.00
86573.00

0.193
0
0
0

0.026
0
0
0
0
0

0
0

3.196
0

0.959
0.01

0.074
0

0.111
0

0
0

0.21
0

0.2
0

0.02
0

0.02
0

0.08
0

0.53
0

0.32
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0.05
0
0
0

0.01
0
0
0
0
0

225296.6 T 04 0.40  I 227439.29  1.25 0.1 223113.04  0.21 0.02

Table C.8: Computational results for Knap, 2Bin, GAPS algorithms for n=100
(continued)
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II v- p- tl-tc 1 SPT 1 FFD 1 MFFD 1 BGI 1 Knap 1 2bin 1 GAPS II
0000 0 0 0.02 1.58 3.86 4.92 11.38
0000 0 0.01 0.01 1.71 5.04 5.16 11.39
0000 0 0.01 0.01 1.9 6.18 4.92 17.46
0000 0 0 0.01 1.35 5.14 5.09 10.36
0000 0 0.01 0.01 1.52 5.01 4.91 11.48
0000 0 0.01 0.01 1.61 6.32 4.98 14.95
0000 0.01 0.01 0.01 1.49 3.63 4.95 11.39
0000 0 0.01 0.01 1.55 4.97 4.89 11.88
0000 0 0.01 0.01 1.87 6.05 5.1 15.11
0000 0 0.02 0.02 2.01 7.07 4.91 17.67
0001 0 0.01 0 1.31 3.74 4.99 11.41
0001 0.01 0.01 0 1.39 4.92 4.97 11.7
0001 0 0.02 0.02 1.7 5.95 4.79 17.75
0001 0 0.01 0 1.31 4.87 5.05 10.51
0001 0 0.01 0.01 1.36 4.92 4.86 11.24
0001 0 0.01 0.02 1.61 6.19 4.71 15.14
0001 0.01 0.01 0 1.4 3.63 4.99 11.23
0001 0.01 0.01 0.01 1.39 4.84 4.9 11.92
0001 0 0.01 0.02 1.38 6.26 4.97 14.95
0001 0 0.02 0.02 1.93 6.99 4.81 17.55
0010 0 0.01 0.01 1.16 0.45 4.73 11.04
0010 0 0 0.01 1.18 4.56 5.93 11.03
0010 0 0.01 0 1.21 0.91 7.1 18.03
0010 0.01 0 0.01 1.28 0.4 6.2 10.21
0010 0 0 0.01 1.15 4.65 2.26 11.18
0010 0 0.01 0 1.25 0.43 5.73 15.34
0010 0 0.01 0.01 1.08 0.49 5.71 11.12
0010 0 0 0.01 1.11 0.42 6.29 11.33
0010 0 0.01 0 1.13 0.44 6.07 15.81
0010 0.01 0.01 0.01 1.12 4.68 4456.65 17.97
0011 0 0.01 0.01 1.18 0.52 5.71 10.8
0011 0 0 0.01 1.09 4.65 6.1 10.7
0011 0.01 0 0.01 1.09 0.78 5.67 10.43
0011 0.01 0 0.01 1.1 0.38 6.34 10.72
0011 0 0.01 0.01 1.23 4.03 8.32 10.56
0011 0.01 0 0.01 1.23 0.44 5.95 10.4
0011 0.01 0 0.01 1.03 0.47 5.83 10.84
0011 0 0 0.01 1.14 0.47 5.46 11.04
0011 0 0.01 0 1.21 0.41 9.8 10.29
0011 0.01 0 0.01 1.1 4.2 19.85 10.36
0100 0 0 0 1.08 3.48 4.93 0.88
0100 0 0 0 1.16 4.36 4.64 0.97
0100 0 0.01 0 1.42 6.97 4.59 1.2
0100 0 0 0 1.38 5.22 4.78 0.82
0100 0 0 0 1.28 4.12 4.47 1.17
0100 0 0 0 1.34 7.13 4.32 1.21
0100 0 0 0 1.21 3.83 4.85 0.92
0100 0 0.01 0 1.21 4.87 4.27 1.27
0100 0 0 0 1.31 7.15 4.31 0.89
0100 0 0 0 1.35 7.12 4.83 0.96
0101 0 0.01 0 1.5 3.48 5.01 11.04
0101 0 0.01 0 1.48 4.36 5.03 11.03
0101 0 0.01 0 1.77 6.97 5.16 18.03
0101 0.01 0.01 0 1.42 5.22 5.13 10.21
0101 0.01 0.01 0 1.68 4.12 5.2 11.18
0101 0 0.01 0.01 1.45 7.13 5.08 15.34
0101 0.01 0 0.01 1.53 3.83 4.99 11.12
0101 0.01 0 0 1.65 4.87 4.93 11.33
0101 0.01 0.01 0 1.78 7.15 4.88 15.81
0101 0 0.02 0 2.14 7.12 4.95 17.97  1

Table C.9: Computation times for n=100



APPENDIX С. COMPUTATIONAL RESULTS FOR 100 JOBS 122

II v- p- tl-tc 1 SPT 1 FFD 1 MFFD 1 EGI 1 Knap 1 2bin 1 GAPS II
0110 0.01 0.01 0.01 1.5 1.47 21.99 10.34
0110 0.01 0.01 0.01 1.33 0.47 14.41 10.26
0110 0.01 0 0 1.4 0.97 7.09 9.76
0110 0 0 0 1.5 0.43 28.61 10.28
0110 0.01 0.01 0.01 1.5 6.51 1707.86 9.99
0110 0 0 0 1.56 0.43 7.1 9.95
0110 0 0 0 1.45 2.32 7.26 10.52
0110 0 0.01 0.01 1.49 0.45 16.24 10.65
0110 0 0 0 1.42 0.43 8.74 9.99
0110 0.01 0 0 1.31 3.48 37.44 10.06
0111 0 0.01 0 1.44 1.79 21.85 10.05
0111 0 0.01 0.01 4.46 0.48 59.34 9.92
0111 0 0 0.01 4.57 1 8.98 9.65
0111 0 0.01 0 1.57 0.46 31.58 10.46
0111 0 0 0.01 1.38 6.86 918.49 10.04
0111 0.01 0.01 0.01 1.49 0.48 7.03 10.11
0111 0 0.01 0 1.29 2.37 7.14 10.27
0111 0 0 0 1.42 0.42 10.67 10.29
0111 0 0.01 0.01 1.48 0.5 8.55 9.9
0111 0.01 0.01 0 1.4 3.44 30.78 9.91
1000 0.01 0.01 0.01 1.24 3.17 1.16 8.9
1000 0.01 0 0.01 1.22 2.84 1.14 9.24
1000 0.01 0.01 0.01 1.41 4.5 1.15 10.01
1000 0 0.01 0 1.36 1.96 1.34 8.78
1000 0 0 0.01 1.24 3.01 1.59 9.29
1000 0 0.01 0.01 1.48 4.08 1.03 9.78
1000 0.01 0.01 0 1.33 2.53 1.03 8.85
1000 0.01 0 0.01 1.43 3.08 1.18 9.45
1000 0 0.01 0.01 1.32 4.28 1.05 9.69
1000 0 0.01 0 1.35 3.53 0.96 9.89
1001 0 0.01 0 1.27 3.25 5.5 9.45
1001 0.01 0.01 0 1.39 2.75 5.84 9.36
1001 0 0.01 0.01 1.51 4.53 5.2 13.9
1001 0 0 0 1.54 2.13 6.99 9.39
1001 0.01 0.01 0 1.51 3.16 7.11 9.5
1001 0 0.01 0.01 1.4 4.08 5.5 10.54
1001 0 0.01 0.01 1.32 2.67 5.57 9.48
1001 0.01 0.01 0 1.32 2.95 5.39 9.55
1001 0 0 0.01 1.44 4.22 5.37 10.08
1001 0 0.01 0.01 1.54 3.43 5.24 10.39
1010 0.01 0.01 0.01 1.32 0.46 3 10.51
1010 0 0.01 0 1.44 0.4 1.5 10.8
1010 0.01 0.01 0.01 1.3 0.38 2.47 10.27
1010 0.01 0.01 0 1.22 0.8 4.24 11.06
1010 0.01 0.01 0 1.18 0.51 1.74 10.52
1010 0 0.01 0.01 1.48 0.47 6.42 10.68
1010 0 0.01 0 1.45 0.46 1.74 10.71
1010 0 0.01 0 1.42 0.38 1.9 10.72
1010 0.01 0.01 0.01 1.41 0.35 1.5 10.61
1010 0.01 0.01 0.01 1.3 0.12 6.88 10.57

Table C.IO: Computation times for n=100 (continued)
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v-p-tl-tc I SPT I FFD I MFFD | EGI | Knap 2bin GAPS
1011
1011
1011
1011
1011
1011
1011
1011
1011
1011
1100
1100
1100
1100
1100
1100
1100
1100
1100
1100
1101
1101
1101
1101
1101
1101
1101
1101
1101
1101
1110
1110
1110
1110
1110
1110
1110
1110
1110
1110
n i l
n i l
n i l
n i l
n i l
n i l
n i l
n i l
n i l
n i l

0
0.01

0
0
0
0

0.01
0.01

0
0

0.01
0
0

0.01
0
0
0
0
0

0.01
0
0

0.02
0.01

0
0

0.01
0.01
0.01
0.01

0
0
0
0
0
0
0
0

0.01
0.01

0
0.01

0
0
0
0
0
0

0.01
0.01

0.02
0.01
0.01

0
0.01
0.01

0
0.01
0.01

0
0
0

0.01
0.01

0
0.01
0.01

0
0.01
0.01
0.01
0.01
0.01
0.01

0
0.01

0
0.01
0.01
0.01
0.02
0.01

0
0.01
0.01

0
0.01
0.01

0
0

0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01

0.01
0.01

0
0.01
0.01

0
0

0.01
0
0

0.01
0

0.01
0.01

0
0.01
0.01

0
0.01
0.01

0
0.01
0.01
0.01

0
0.01

0
0.01

0
0.01
0.01

0
0.01
0.01

0
0.01
0.01

0
0.01
0.01
0.01
0.01

0
0.01
0.01

0
0

0.01
0
0

1.25
1.43
1.29 
1.38
1.26 
1.49 
1.24
1.37
1.29 
1.33 
1.76 
1.56
1.74 
1.64 
1.8 

2.19 
1.69
1.75 
2.01 
1.81
1.38
1.54 
1.5
1.4 
1.3 

1.51
1.44
1.5 

1.79
1.5

1.43
1.22
1.31
1.32
1.31 
1.35
1.54 
1.41
1.43 
1.37 
1.05 
1.26 
1.25
1.33 
1.29 
1.14
1.31
1.33 
1.22 
1.22

0.42
0.38
0.35
0.76
0.44
0.45
0.46
0.35
0.35
1.1
2.8

3.16
3.82
3.68
3.55 
4.12 
2.92 
3.06 
3.9 

3.43
3.05 
3.18 
3.79 
3.65
3.56 
4.14 
2.94 
2.96
4.05 
3.38 
0.6 

0.39 
0.72 
0.59 
0.94 
0.53 
0.37 
0.48 
1.46 
0.64 
0.61 
0.41 
0.73 
0.61 
0.87 
0.52 
0.32 
0.53 
1.59 
0.65

12.89
6.55
9.85 
17.13
7.85

25.02
7.46
7.7

6.54
27.78
6.47
5.8 

5.26
6.93
5.72
5.88 
6.24
5.58
5.07 
5.51 
6.35
5.54 
7.21 
5.37
5.88 
6.23 
5.28 
5.16
5.48 
4.91
1.72
1.85 
2.4

3.89
1.72
2.58

20.03 
8.45
2.93
2.08 
2.39 
9.33
15

6.79
10.15
70.99
29.44
11.4
7.9

9.78

10.68
10.92 
10.52 
11.2
10.93 
10.81
10.76
10.68
10.76 
10.98 
8.88 
8.89 
10.04
8.5

9.08 
9.46 
8.69 
9.15 
9.57
9.8
9.4

9.54
10.54
9.04
9.5

10.07 
9.23 
9.75 
10.09 
10.12 
10.73 
10.96 
10.29
10.94 
10.65 
10.86 
11.05 
10.56
10.7

10.95 
0.83 
0.91 
0.85 
0.79 
0.85 
0.83 
0.94 
0.81 
0.89 
0.91

AVG I 0.003438  | 0.00725  | 0.006  | 1.449438  | 2.755375  | 51.92663  | 9.795438

Table C.ll: Computation times for n=100 (continued)
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