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ABSTRACT

PLANE-WAVE THEORY OF SINGLE-CRYSTAL
UPCONVERSION OPTICAL PARAMETRIC
OSCILLATORS

Yamag Dikmelik
M.S. in Electrical and Electronics Engineering
Supervisor: Assoc. Prof. Dr. Orhan Ayttr
August 1998

T'his thesis presents a theoretical analysis of single-crystal upconversion op-
tical parametric oscillators (OPO’s) where a single nonlinear crystal is used for
both the OPO and sum-frequency generation (SF'G) or second-harmonic genera-
tion (SHG). In these devices, the OPO and SFG/SHG processes are both phase
matched for the same direction of propagation inside the crystal. Different po-
larization geometries for which this simultaneous phase matching condition can
potentially be satisfied are identified and categorized. for both birefringent and
quasi-phase matching methods. This categorization results in four classes of sum-
frequency generating OPO’s (SF-OPO’s) and three classes of self-doubling OPO’s
(SD-OPQO’s). Plane-wave coupled mode equations are presented for each of these
seven classes. Solutions of these coupled mode equations, and calculation of the
single-pass saturated signal gain are outlined. The dependence ol the photon
conversion cfficiency on various design parameters are investigated. A pulsed
plane-wave model that takes into account the temporal profiles of the fields and
the group velocity mismatch between pulses is constructed. This model is in good
qualitative agreement with experimental measurements of a class-C SIF-OPO.

Keywords: Nonlinear frequency conversion, optical parametric oscillators.
parametric devices, sum-frequency generation, second-harmonic generation. uasi-

phase matching
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OZET

TEK KRISTALLI YUKARI-CEVRIM OPTIK PARAMETRIK
OSILATORLERININ DUZLEM-DALGA TEORISI

Yamag Dikmelik
Elektrik ve Elektronik Mithendisligi B6limu Yiiksek Lisans
Tez Yoneticisi: Dog. Dr. Orhan Aytiir
Agustos 1998

Bu tezde, tek bir dogrusal-olmayan kristalin hem parametrik tretim. hem
de toplam-frekans: tretimi (SFQ) veya ikinci-harmonik tretimi (SHG) icin kul-
lanildigr tek-kristalli yukari-dontigim optik parametrik osilatérlerinin (OPO) ku-
ramsal analizi sunulmaktadir. Bu cihazlarda, hem OPO hem de SFG/SHG
stregleri kristal igindeki aym yayilim yoni i¢in faz eglidir. Bu ayni sirada faz esli
olma kosulunu saglayabilecek farkli polarizasyon geometrileri, hem gift-kiriniml
hem de vaklagik faz esleme yontemleriigin belirlenmis ve simiflandirilmigtir. Bunun
sonunda, toplam-frekans: ureten OPO’lar (SF-OPO) i¢in dort, ikinci-harmonik
treten OPO’lar (SD-OPO) i¢in ti¢ smf belirlenmistir. Bu yedi simf i¢in ayr
ayr1 dizlem-dalga baghh mod denklemleri ve tek-geciste doygun sinyal kazanci
hesabr sunulmugtur. Ioton déniigim veriminin ¢egitli tasarim parametrelerine
olan baghligi incelenmigtir. Alanlarin zamansal profilini ve darbe grup hizi uyum-
suzlugunu hesaba katan bir darbeli duzlem-dalga modeli olugturulimugtur. Bu

model, deneysel bir C-simfi SF-OPO’nun délgiimleri ile uyumlu sonuglar vermigtir.

Anahtar kelimcler: Dogrusal olmayan frekans dontigimu, optik parametrik
osilatorler, parametrik cihazlar, toplam-frekans: tretimi, ikinci-harmonik tretimi,

yaklagik faz esleme.
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Chapter 1

Introduction

Lasers find applications in many fields such as telecommunications, medicine, de-
fense, printing, entertainment, and basic science. A particular application places
various demands on a number of laser properties such as its wavelength, power,
beam profile, and bandwidth. One of the most important laser properties is the
wavelength of operation.

The operating wavelength of a laser is determined by the energy level differ-
ences of the material used as the laser gain medium. l'or most laser materials,
these energy level differences are fixed and the operating wavelength of the laser
cannot be tuned. Even though tunable lasers that utilize transitions between
broad energy bands exist, the wavelength ranges for these lasers are relatively
narrow.

It is of great technological importance to convert the output of a laser to
different wavelengths in an cfficient manner. This conversion can be achieved
using nonlinear optical materials. In such materials, the polarization density has
a nonlinear dependence on the electric field. For most nonlinear materials used
in frequency conversion, this nonlinear dependence is quadratic. This second-
order nonlinear dependence leads to an energy exchange between optical fields at
different wavelengths.

Second-order nonlinear interactions lead to such frequency conversion appli-
cations as second-harmonic generation (SHG), sum-frequency generation (SI'G),
and difference-frequency generation (DIFG). With SHG, the output beam of a
laser can be converted to a beam at twice the frequency. SHG is the most widely
used second-order interaction, since this process requires only a single laser. In

SI'G and DFG, two lasers with different {requencies are used to generate the



sum-frequency or the difference-frequency of the frequencies of the two lasers.

Another second-order interaction is optical parametric amplification; of the
two input beams for the DFG process, the lower frequency beanm is amplified.
The gain provided by an optical parametric amplifier (OPA) can he enclosed in
an optical cavity to construct an optical parametric oscillator (OPO), much like
a laser amplifier is enclosed in a cavity to construct a laser. The OPO requires a
single laser as its input; this laser is the source of energy for the OPO and is said to
pump the OPO. The initial light energy at the amplified frequency is provided by
parametric fluorescence, similar to spontaneous emission in lasers. This fact also
allows for the tunability of OPO’s. This tunability is achieved by manipulating
the momentum conservation (phase matching) condition by rotating the nonlinear
crystal or by changing the crystal’s temperature.

By itself, an OPO can only provide downconversion to longer wavelengths.
Upconversion to shorter wavelengths is achieved with the use of SHG or SFG in
conjunction with an OPQO. One approach is to first frequency-double the laser
and then use the second-harmonic as the OPO pump [1], [2]. A more widely
used technique is to use the OPO output for SHG in a second nonlinear crystal,
either outside [3] or inside [4], [5] the OPO cavity. Intracavity SHG is usually
more efficient because of the high intensity of the resonant field. SFG of the
OPO output with the pump laser also provides upconversion, and can be imple-
mented extracavity or intracavity [6], [7]. These two crystal upconversion OPQO’s
have successfully generated tunable light at visible wavelengths, but with limited
conversion efficiencies.

Single-crystal upconversion OPO’s, where SHG [8] or SFG [9] takes place
within the OPO crystal itself, have recently been demonstrated. These new
devices provide highly efficient schemes for frequency upconversion.

The modeling of practical OPO’s is an involved task. The simplest approach
is to assume that the fields are uniform monochromatic plane waves. However,
in a real OPO, the pump beam usually has a Gaussian transverse profile. If the
pump laser is pulsed, the temporal profiles of the pulses also have to be taken
into account. For OPO’s pumped with ultrafast lasers, the ultrashort pulses get
separated in the interaction, due to their differing group velocities. This effect is
called group velocity mismatch (GVM). Such ultrashort pulses are also broadened
in the nonlinear crystal, due to group velocity dispersion (GVD). Furthermore,

the intense resonant pulse in the OPO cavity is modified by self-phase modulation,



a third-order nonlinear effect, in the nonlinear crystal. To account for all these
effects accurately, coupled nonlinear partial differential equations that govern the
propagation and nonlinear interaction of fields have to be solved. Moreover, these
solutions should be iterated for several round trips in the OPO cavity, to find the
steady-state temporal and transverse profiles of the resonated field.

The plane-wave theory of OPO’s was investigated in the carly stages of OPO
development [10]. The effects of Gaussian profiles were first investigated by as-
suming plane-wave solutions at each point in the transverse plane [11]. The
effects of transverse and temporal profiles for pulsed OPO’s operating in the
nanosecond regime have recently been investigated with an accurate numerical
model [12]. The effects of GVM and GVD on ultrafast OPO performance were
first modeled by assuming plane-wave transverse profiles [13], [14], and then by
taking into account the more realistic Gaussian profiles [15], [16]. The plane-wave
theory for two-crystal upconversion OPO’s has also been studied [10], [17], [18].
Even though the plane-wave analyses cannot model an experiment accurately,
they bring out the fundamental physics behind these devices.

In this thesis, the plane-wave theory of single-crystal upconversion OPO’s is
presented. The theoretical background on second-order nonlinear interactions is
provided in Chapter 2. Possible phase matching geometries are identified and
classified, and the associated sets of differential equations are presented in Chap-
ter 3. Next, solutions of these sets of equations are discussed in Chapter 4. In
Chapter 5, the dependence of the conversion efficiency and other OPO perfor-
mance measures on physical parameters are investigated. A pulsed plane-wave
model that takes into account temporal profiles and GVM is constructed in Chap-

ter 6. I'inally, conclusions and future directions are presented in Chapter 7.



Chapter 2

Second-Order Nonlinear

Interactions

In this chapter, we first present the wave equation for a nonlinear medium, where
the polarization density is a nonlinear function of the electric field. Three optical
fields interact througl a second-order nonlinearity, and this interaction is gov-
erned by the coupled mode equations which are presented next. We then discuss
phase matching, a condition that has to be satisfied for efficient frequency con-
version. We finally introduce optical parametric amplification, optical parametric

oscillation, SFG, and SHG.

2.1 The driven wave equation

The interaction of optical fields in a second-order nonlinear medium is governed
by the driven wave equation. To arrive at this equation, one can start with

Maxwell’s equations in a medium with no free charges and currents

V-D = 0 (2.1)
vV-B = 0 (2.2)
JH
= —lo—= 2.3
V xE o a7 (2.3)
D
VxH = 2= (2.4)
Ji
and the constitutive relations
D = C()E + P (.2 3)
B = nH. (2.6)
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The consititutive relation for B [Equation (

6)] assumes that the material is
nonmagnetic.

In a nonlinear medium, the polarization density P has a nonlinear dependence

on the local electric field E [19]. When the fields are a discrete sum of monochro-

matic plane waves at different frequencies, P can be expressed in the powers of
E as

where (! is the linear electric susceptibility tensor, y(® is the second-order

o
-~J

N
o0

nonlinear susceptibility tensor, and so on. In materials that do not have a center of
symmetry, y(?) is nonzero and higher order nonlinearities can usually be neglected.
The focus of this thesis is on second-order nonlinear interactions in such materials.
The driven wave equation is obtained by taking the curl of Equation (2.3), and
substituting Equation (2.4). For uniform plane waves, the driven wave equation
can be simplified by using the vector identity V x V x E = V(V . E) — V?E,
since V- E = 0 for a plane wave [19]. The driven wave cquation then becomes
o 0'D )
V°E = wo 90 (2.9)

[t is convenient to split the linear and second-order nonlinear optical properties
of the medium so that,

D = D" + P®? (2.10)
where
D! = ¢E + P (2.11)
is the linear part of D. With this separation, the driven wave equation takes the
form

. J9*Dl )*P )
VZE — - = [ — 2.12
Ho 91 fo 2 ( )
To put the driven wave equation in a form where we can interpret the effect of

the second-order nonlinear polarization density, we consider the simple case of an
isotropic medium, for which x'*) is a scalar quantity rather than a tensor. Then,

the driven wave equation can be expressed as

V'R n? 9*E J*p2)

= 2.13)

- ",U'O (._,. .
c? O d%

where n = /1 + (1) is the refractive index of the medium. The second-order

nonlinear part of the polarization density acts as a source term in the driven

wave equation and leads to the generation of new optical [requencies [19].

BN



2.2 Coupled mode equations

In a second-order nonlinear medium, the nonlinear part of the polarization den-
sity is a quadratic function of the electric field, and the nonlinear interaction is
between three waves that satisfy the frequency relation wy = wy +w; [19], [20]. For
uniform plane waves propagating collinearly in the z-direction, the scalar form of
Equation (2.13) is adequate. When these plane waves are also monochromatic,
one can define complex amplitudes A by
Em(z,t) — [{Q[Ame](wmt—l\:mZ)] m=1,2,3 (2.14)
where k,, = n,w, /c are the wavenumbers. The refractive indices n,, are allowed
to be different for each wave since real materials are dispersive and the natural
birefringence of anisotropic crystals is used for phase matching (see Section 2.3).
We also represent the nonlinear polarization at each frequency as
])m(za /) = }{e[])mejwmt] m =1, .2,3 (213)
The complex amplitude of the nonlinear polarization at each frequency can then

be expressed as [19], [21]

[)1 = 260([,_f/‘1'\;A;CT_"]‘(kG—k‘)): (216)
Py = 2epd, AyAje /PR (2.17)
Py = 2cpd, Ay Age=iRith)e (2.18)

where d, is the effective nonlinear coeflicient. The same nonlinear coefficient
appears in all three nonlinear polarizations because we assume the material to be
lossless [19].
We also assume that the variation of complex amplitudes in a distance of a
wavelength is small and the relation
d?A,, dA,,
Ky ——

dz? dz

is valid. This is called the slowly-varying envelope approximation [19] and is a

m=1.2.3 (2.19)

very good approximation at optical frequencies. With this approximation, we

obtain the coupled set of equations for the complex amplitudes

A wid, N

e el (220
[~ 1 C

d {1' Lw; (l,, ; ot 3
/1) — _1 ALY /l:‘/l’;(:ﬁ_'IAA“— (22] )
dz T nye

dAs _ _jw-’i(lr: A]AQCJAL-z (2.22)
dz e

G



where Ak = k3 — ky — k; 1s the phase mismatch. These equations are called the
coupled mode equations and they govern the evolution of the field amplitudes as
the three waves interact through the second-order nonlinearity.

Different initial conditions at the input of the nonlinear medium lead to various
[requency conversion processes. These SI'G, SHG, and DFG. In the DFGprocess,
one of the incident waves is amplified. If this aspect is more important for the
application, the nonlinear process is called optical parametric amplification.

Second-order nonlinear interactions can also be viewed in terms of quantum
mechanics, as three-photon interactions [20]. In SF'G for example, two photons
of energy fiw; and hw, combine to form a photon of energy fiws. The frequency

relation w3 = w; + w, can then be interpreted as a statement of conservation of

energy.

2.3 Phase matching

For a second-order interaction to be strong, the phase matching condition Ak =0
has to be satisfied. When this condition is satisfied, the nonlinear polarization at
each frequency travels with the same phase velocity as the electric field at that
frequency [22]. In this case, the nonlinear polarization and the electric field at
each frequency remain in phase throughout the interaction and the exchange of
energy between the waves is efficient.

In terms of the quantum mechanical picture of secoud-order nonlinear inter-
actions, the phase matching condition can be interpreted as momentum conser-
vation. In SFG, the generated photon at wy must have the same momentum hky
as the sum of the momenta of the combined photons at w; and w,.

The most common way ol achieving phase matching is to employ the natural
birefringence of nonlinear crystals [19], [23]. Recently, the method of quasi-phase
matching has come into widespread use. This method has the potential to phase
match any second-order nonlinear interaction, the only limitation being the trans-

parency range of the nonlinear crystal [24], [25].

2.3.1 Birefringent phase matching

Most materials exhibit normal dispersion, that is. the refractive index a wave

experiences increases with increasing frequency. The phase matching condition



expressed in the form

N3w3 = MWy + Nywy (2.23)
and the frequency relation w; = w; 4 w, cannot be simultancously satisfied in a
material with normal dispersion.

In an anisotropic crystal, there are two eigenmodes of polarization for any di-
rection of propagation inside the crystal. These two modes are linearly polarized
waves with orthogonal polarizations [20]. The orthogonally polarized eigenmodes
experience different refractive indices, hence an anisotropic crystal displays bire-
fringence. The refractive index an cigenmode experiences also changes with the
direction of propagation inside the crystal. The phase matching condition can
be satisfied by having one of the waves polarized orthogonally to the other two
and by varying the direction of propagation inside the crystal. This is called
birefringent phase matching (BPM).

In materials exhibiting normal dispersion, the highest frequency wave of the
interaction has to be polarized along the fast axis of the crystal, the axis with the
lower refractive index. The remaining possibilities for the direction of polarization
of the two lower frequency waves lead to three different types of BPM. In this
thesis, we follow the convention that the fields are labeled according to w; < wy <
ws. In type-1 BPM, both the lower frequency waves at w; and w; are polarized
along the slow axis, whereas in type-II (III) BPM, the lowest frequency wave at
w; is along the fast (slow) axis and the remaining wave at w; is along the slow

fast) axis. These possibilities are summarized in Table 2.1 and Figure 2.1.
g

Type w3z — wy +w,y
[ f—os+s
I f—=f+s
111 f—=s+f

Table 2.1: Potential phase matching types for BPM of second-order nonlinear

interactions. Normal dispersion is assumed. The fast and slow axes are denoted

by [ and s, respectively.

2.3.2 Quasi-phase matching

Quasi-phase matching (QPM) is achieved in most cases by employing periodic

domain reversals in ferroelectric crystals [24]. These domain reversals lead to a
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Iigure 2.1: Polarization geometries for BPM types. The fast axis is horizontal

and the slow axis is vertical.

periodic modulation of the sign of the effective nonlincar coeflicient. The nonlin-
ear coefficient then becomes a periodic function ol = and can be represented by a

Fouricr series

dlz)=d. Y Gyelts (2.24)

=
where k, = 2m¢/A and A is the period of the modulation. In QPM, a particular
spatial harmonic of the modulation compensates for the phase mismatch [24] and
ks — ky — ki — k, becomes zero. The order n of this spatial harmonic gives a degree
of freedom for phase matching. If the non-phase matched harmonics are ignored,
the effective nonlinear coefficient of the quasi-phase matched interaction is equal
to d.Cr,. With QPM, the highest frequency field of the interaction does not
have to be polarized along the fast axis of the crystal anymore, and the number
ol potential phase matching types becomes eight. However, QPM is usually
achieved with all fields polarized along the same direction, to take advantage of
a large diagonal element of the second-order nonlinear susceptibility tensor (2.
When the nonlinear coeflicient is modulated by periodic sign reversal,
9mimal

(iy = ————sin(mnl") (2.25)
nmw

where I' = Ig/A is the duty cycle and [y is the length of the reversed domain
in a single period [24]. The largest possible nonlinear coefficient is obtained by

first-order QPM with 50% duty cycle and is equal to 2jd, /7.

2.4 Optical parametric amplification

In an OPA, an intense field at wsy amplifies a weak field at either wy or w,. If
either one of the lower frequency fields at w; or w, is not present initially, that
ficld is generated in the interaction. In OPA terminology, the intense field at wy

is called the pump. the amplified field is called the signal, and the generated field

9



is called the idler. In this thesis, we assume for definiteness that the signal is at
wy. However, the results presented below are equally valid if the signal is at w;.

In any second-order nonlinear interaction, the lack of one of the three inter-
acting waves at the crystal input leads to field solutions whose intensities are
independent of the relative phases of the two input fields. In an OPA, the idler
field is absent at the crystal input, and the generated idler field adjusts its phase
to match the phase difference between the pump and the signal. To show this
result analytically, the coupled mode equations for the complex field amplitudes
[Equations (2.20)—(2.22)] are first converted to equations for real field amplitudes
and phases. We also normalize the real field amplitudes so that their squares
correspond to photon flux densities. The transformation from the complex field
amplitudes to real amplitudes a; and phases ¢; for a phase matched interaction

15

The resulting real equations are

day ) Py
o = — Rqlzay SIN (2.27)
dz
day X 90
ol —Kql3a SiN @ (2.28)
dz
das .
T = KqliUeSINY (2.29)
dz

dp U1y oz Uy .
— = Ry — — COS © (2.30)
dz s ay (s

where ¢ = ¢3 — ¢p — ¢1 [21]. In these equations, there is only a single coupling

constant for the interaction

(2.31)

NNy '
Substituting the real amplitude equations (2.27)-(2.29) into the phase equa-
tion (2.30) gives

1 s d
p_rve In(aayas). (2.32)

dz  sinpdz
It may be verified by direct differentiation that this equation can be rewritten as
d .
— In(a azas cos ) = 0. (2.33)
dz
Hence, ayagas cos @ is a conserved quantity; it does not depend on the propagation

distance z. If one of the three fields has zero amplitude at the crystal entrance,

10



this quantity has a constant value of zero. Since the field that is not present
initially is generated in the interaction, ¢ has to be equal to £7/2 throughout
the interaction so that cose = 0. In an OPA, the generated idler acquires a
phase that makes ¢ equal to —x/2. In this case, the coupled mode equations

that describe the interaction are

da Kql30 (2.34)
(ZZ ate362 LT
(l(Lz _ e IR
= Kal3d; (2.35)
dz
d(lg
— — K , 9 :'
™ Koy (2.36)

In terms of the quantum mechanical picture of second-order nonlinear interac-
tions, when a signal photon is created, a pump photon is annihilated and an idler
photon is created [19], [20]. The Manley-Rowe relations express the conserved

quantities

¢y = (Lf(z)+(t§(z) = (Lé(()) (2.37)
Cy = ai(z) +di(z) = a2(0) + a(0) (2.38)

in terms of the photon flux densities [19], [20]. These quantities can be used to
transform the coupled mode equations for an OPA [Iiquations (2.34)-(2.36)] to
a single differential equation which can be integrated to obtain the solutions for
field amplitudes in terms of Jacobi elliptic functions. We define a new variable

6(z) through

a(z) = \/aco.SO(::) (2.39)
az(z) = \/asin()(.:). (2.10)

Since no idler is present at the crystal input, 0(0) is equal to an odd multiple of
m/2; for convenience, we choose 0(0) = 7/2. Substituting into Equation (2.34),
the signal field amphtude is obtained as

L do

(Lg(;’) = _h_(/—‘ (.2“)

We then substitute ISquation (2.41) into the Manley-Rowe relation for (' [Equa-
tion (2.38)] to get a single differential equation

2
L <d()> + (Y sin(0) = (2.

k2 \dz

‘u

[
(O
~—

I



in the variable 8(z). When integrated, Equation (2.42) gives
/0 (1 —mygsin? 'z/))‘l/zd'z/.’ = —ra\/Caz (2.43)
n)2
where m, = C/C,. This integral can be expressed in terms of the elliptic integral
of the first kind [26], whose inversion leads to Jacobi elliptic functions. The
integral first has to be put into a standard elliptic integral form so that its lower

limit is zero. This leads to
6 ") 1/2 :
/ (L —mgsiny)~ / dip = K(m,) — ke Coz = Z, (2.14)
0

where
] n/2 ) )

K(mg) = / (1 — mgsin? )~ Y24y (2.45)

0
is the complete clliptic integral of the first kind, and is also the quarter-period
of Jacobi elliptic functions [26]. The angle 6, whose value at the crystal output
is unknown, is called the amplitude and m, is called the parameter in elliptic
function terminology [26]. The Jacobi elliptic function sn is defined in terms of
the amplitude 8 as sn(Z;|m,) = sin 0. We then obtain the solutions for the field

amplitudes as

w(z) = +/Cipen(Z,|m,) (2.46)
ax(z) = \/a dn(Z,|m,) (2.47)
asz(z) = \/C-'l sn(Zy|my) (2.48)

m,) = cos

where the Jacobi elliptic functions cn and dn are defined as cn(Z,
and dn(Z,|mg) = | — mgsn?(Z,|m,); respectively.

Figure 2.2 shows the evolution of the photon flux densitics in an OPA, com-
puted using the solutions (2.46)~(2.48). The photon flux densities are normalized
to the incident pump photon flux density «3(0). We define a dimensionless nor-
malized propagation distance £ = rya3(0)z so that the results are presented in
a more general fashion. For this example, the input signal photon flux density
is 0.25 times the input pump photon flux density, and therefore. m, = 4/5. As
shown in Figure 2.2, the signal field is amplified in the interaction until the pump
field is fully depleted. At this point, the argument 7, of the Jacobi elliptic func-
tions becomes equal to zero [26]. Afterwards, the interaction reverses direction.
and the signal photons combine with the idler photons to regenerate the pump.
This SI'G process is called back-conversion. The interaction continues in this
fashion and the three ficlds exchange energy periodically as they propagate in

the nonlinear crystal.
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Figure 2.2: The evolution of the pump, signal, and idler photon flux densities in
an OPA as functions of the normalized propagation distance £. All photon flux
densities are normalized to the incident pump photon flux density. The input
signal photon flux density 1s 0.25 times the input pump photon flux density.

2.5 Optical parametric oscillation

An OPO is constructed by placing the OPA crystal inside a resonator. If the
resonator mirrors reflect only at the signal frequency, the OPO is singly-resonant.
Singly-resonant OPQO’s are preferred to doubly-resonant OPO’s (in which both
the signal and the idler are resonated), primarily because the phase-insensitive
OPA interaction in a singly-resonant OPO results in stable operation. However,
doubly-resonant OPO’s have a significantly lower threshold pump intensity. They
are therefore employed if the available peak pump intensity is limited.

In a singly-resonant OPO, one of the mirrors is a partial reflector at the
signal frequency in order to couple the signal out of the resonator. If the small-
signal (unsaturated) gain is larger than the total cavity loss (output coupling and
parasitic useless losses combined), oscillation starts and the signal field intensity
starts to grow. The initial signal intensity is usually provided by spontaneous
parametric fluorescence [27], not by a laser at the signal frequency. The OPO
reaches steady-state when the saturated signal gain compensates for the loss

exactly. The steady-state oscillation condition is

as(l)
R-21L = | 219
“a0) (249)
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Figure 2.3: The intracavity signal flux density of an OPO is found by the inter-
section of the gain saturatiou curve and the resonator loss line (of value 1/R). For
this example, the nonlinear drive of the OPO is unity and the lumped resonator
reflectance R = Roc Ry, is 0.9. The signal flux density is normalized to the input

pump flux density.

where R = Roc Ry; Roc is the reflectance of the output coupler, Ry, is a lumped
reflectance representing useless losses, and [ is the crystal length.

To find the intracavity signal photon flux density ¢(0), in general one has to
solve Equation (2.49) iteratively using a numerical root-finding algorithm. In this
thesis, the secant method is used for finding the root of the function f[a3(0)] =
Ra3(1)/a2(0) — 1. The secant method starts with two initial guesses on «3(0).
At each iteration, the saturated signal gain ¢ = «3({)/a2(0) is calculated using
the single-pass solutions [FEquations (2.46)-(2.48)] and the next approximation
to 2(0) is taken to be the zero-crossing of the line that passes through the two
previous approximations [28]. The algorithm stops when the difference between
the last two approximations is less than a specified tolerance.

Figure 2.3 shows an example of gain saturation for the signal field as a function
of the intracavity signal photon flux density. The gain saturation in an OPA is
completely characterized by the dimensionless parameter D = [r,a3(0)1]%, called
the nonlinear drive [10], [23], [17]. The nonlincar drive is a measure of the strength
of the interaction. In Figure 2.3, the nonlinear drive is chosen to be unity and

this results in a small-signal gain of 2.4.



In the small-signal regime, the depletion of the pump field is negligible. There-
fore, the small-signal gain go can be obtained by solving the coupled mode equa-

tions [Equations (2.34)-(2.36)] with a3 taken to be constant. In this regime,
ay(z) = az(0) cosh[r,a3(0)z] (2.50)

and the small-signal gain is go = cosh?(v/D). The threshold nonlinear drive Dy,
can be found by solving Rgo = 1 {or D.

Also shown on Figure 2.3 is a loss line representing a resonator loss of R = 0.9.
The intersection of the gain saturation curve and the loss line gives the intracavity
signal flux density. For this example, the intracavity signal flux density is 4.8
times the input pump flux density. Onunce the intracavity signal flux density is
known, the ficld amplitudes at the crystal output can be calculated using the
single-pass solutions [Equations (2.46)-(2.48)].

The performance of an OPO is characterized by the photon conversion effi-
ciency (also called the quantum efficiency [10], [23])

) = (1 — IEOC)Q%U)
a3(0)

(2.51)

the ratio of the signal photon flux density coupled out of the cavity to the input
pump photon flux density. Iigure 2.4 shows the conversion efficiency of the OPO
as a function of the nonlinear drive for four different values of the output coupler
reflectance Roc. For cach case, Ry, = 1. The OPQO can be very eflicient, with
conversion efficiencies reaching 100% for particular values of the nonlinear drive.
These maxima of conversion correspond to complete depletion of the pump. If the
nonlinear drive is increased still further, the conversion efficiency drops hecause
of back-conversion. Note that for a given value of the nonlinear drive, the output
coupler reflectance can he optimized for maximum conversion [10], [23]. Figure 2.5
shows the dependence of the optimum Roc on the nonlinear drive. The optimum

Roc decreases monotonically with increasing nonlinear drive.

2.6 Sum-frequency generation

In SI'G. a lower [requency input field at wy and a higher {requency input field
al ws interact to generate their sum-frequency at ws = wy + ws.  As in the
OPA case, the lack of a sum-frequency field at the crystal input leads to phase-

insensitive field solutions; the generated sum-frequency field acquires a phase so
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[Figure 2.4: Photon conversion efficiency of the OPO as a function of the nonlinear
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Figure 2.5: Optimum output coupler reflectance Roc for the OPO as a function
of the nonlinear drive. Ry, is taken to be unity.

that @ = ¢¢ — ¢5 — ¢4 = 7/2. The coupled mode cquations that govern the

interaction are

(l(t..l 9K

— = —RpUgUs (2.52)

dz

das "
L= —Rplsiy (2.53)

dz
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dag )54
— = KpQ4ds 2.54
s b4l (2.54)
with the coupling constant

Wildsweg

Ky = d, (2.55)

NyNsng

The solutions for the SI'G process are in terms of Jacobi elliptic functions as in
OPA’s. However, the SI'G solutions depend on which of the two input fields has
smaller photon flux density at the crystal input. The interaction reverses direction
when the field with the smaller photon flux density is fully depleted inside the
crystal, and back-conversion (parametric amplification) begins. If «3(0) > 2(0),

the solutions are [17]

as(z) = +/C1 dn(Zy|my) (2.56)

as(z) = 1/Ca en(Zylmy) (2.57)

as(z) = \/Cs su(Zyfmy) (2.58)
where

C1 = di(z)+di(z) = a}(0) (2.59)

Cy = a3(2) +ag(z) = a35(0) (2.60)

are the Manley-Rowe conserved quantities and

Zy =k /Ch 2 (2.61)

v
—2
Cy

The solutions for the case «2(0) > a2(0) are obtained hy interchanging the field

my =

subscripts 4 and 5 and the Manley-Rowe subscripts | and 2.

Figure 2.6 shows the evolution of photon flux densities in SI'G for the case
a2(0) > a?(0). All photon flux densities are normalized to «3(0). The higher
frequency SFG input field is completely depleted at Z, = 2.3, at which pomt the
sum-frequency photon flux density reaches its maximum value. After this point,
back-conversion of the sum-frequency to the SF'G mput fields begins and the SIFG

photon flux density decreases.

2.7 Second-harmonic generation

In SHG, an incident field at w leads to the generation of light at 2w. The inci-

dent field at w is called the fundamental and the generated field at 2w is called
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Figure 2.6: The evolution of the lower frequency SFG input (a,), higher frequency
SFG input (as), and sum-frequency (ag) photon flux densities as functions of the
normalized propagation distance €. All photon fux deusities are normalized to
a2(0).
the second-harmonic. SHG can also be viewed as SFG degenerate in frequency
(wy = ws = w). However, the phase matching type may require the fundamen-
tal field to have two components polarized along orthogonal eigenmodes of the
crystal. In type-II phase matched SHG, the fundamental field is nondegenerate
in polarization. In other words, the fundamental has two orthogonally polar-
ized components ¢y and as. In this case, the coupled mode equations are the
same as the equations for SI'G [Equations (2.52)-(2.54)]. The usual practice in
non-degenerate SHG is to orient a linearly polarized fundamental field at a -15°
angle to the two eigenpolarization directions since maximum conversion to the
seccond-harmonic takes place if the incident fundamental components have the
same photon flux density. lor this orientation, the SHG process becomes de-
generate and this degeneracy reduces the number of coupled mode equations to
two [19].

In type-I phase matched SHG, the fundamental field is degenerate in hoth
frequency and polarization; the fundamental field is polarized along the slow axis
of the crystal and it cannot he decomposed into two distinct fields corresponding

0 wy = w and ws = w. In terms of normalized real field amplitudes, the equations

18



that govern degenerate SHG are

day ) 5
1= KpUgy (2.63)
(l(l(; l 2 :
P gf\"b(k (2.64)

with the coupling constant

(8™
b

I 2h Qw3 (2.65)
Kp = e[| —/— 2.67
V cBeo | n2ng

where a4 is the fundamental at w and ag is the sccond-harmonic at 2w. The

solutions to this set of equations are [19]

aq(z) = a4(0)seché (2.66)
L
ag(z) = 7(2(54(0) tanh ¢ (2.67)
where ]
£ = —=rpaq(0)z (2.68)

V)

is the normalized propagation distance. There is only one Manley-Rowe conserved

quantity for SHG, and this quantity
Cy = d¥(z) 4 2a2(z) = a?(0) (2.69)

is proportional to the total intensity in the interaction.

Figure 2.7 shows the evolution of the photon flux densities along the direc-
tion of propagation inside the crystal for SHG. Both photon flux densities are
normalized to the incident fundamental photon flux density. In contrast to other
second-order nonlinear interactions, the photon flux deunsities do not evolve peri-
odically in degenerate SHG. The second-harmonic photon [lux density increases
monotonically, and all of the input fundamental flux density is converted to the

sccond-harmonic in the limif of infinite interaction length.
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Chapter 3

Simultaneous Phase Matching of
OPO and SFG/SHG

Single-crystal upconversion OPO’s are based on the premise that two second-
order nonlinear interactions can be phase matched for the same direction of
propagation inside the same crystal [29], [30]. For frequency upconversion with
an OPO, the second nonlinear interaction has to be either SHG or SF'G. Upcon-
version with the OPO is more efficient if the SFG or the SHG processes take
advantage of the high intensity of the resonant signal field.

The simultaneous phase matching condition can be satisfied by either BPM
or QPM of the two processes. Various combinations of phase matching types of
the two processes lead to several classes of upconversion OPQO’s, each governed
by a different set of coupled mode equations. Some of these classes require a
polarization rotation for the signal or the pump fields.

Simultaneous phase matching of two second-order interactions within a single
nonlinear crystal has been experimentally demonstrated for a number of frequency
conversion applications. Single-crystal upconversion OPO’s that employ simulta-
neous BPM of frequency doubling [8] or SI'G [9] in K'TiOPO4 (K'T'P), and period-
ically poled lithium niobate (PPLN) OPO’s with simultaneous third-order QI’M
of frequency doubling [31], [32] or SF'G [33] have been reported. A cascaded OPO,
where the signal of a primary OPO acts as the pump for a secondary OPO, has
been demonstrated in PPLN with first-order QPM for hboth OPO processes [34].
Simultaneous SFG of the pump and the idler in a #-barium borate (BBO) crys-
tal OPA has been achieved with BPM [35]. Simultaneous SI'G with BPM has

also been reported in an ADP crystal parametric fluorescence experiment [36].



Third-harmonic generation in PPLN with simultaneous first-order QPM of the
frequency doubling and SFG processes has also been demonstrated [37].

For cach combination of phase matching types for the OPO and SHG/SIG
processes, the respective coupling constants «, and s, depend on the phase-
matched frequencies, the refractive indices, and the effective nonlinear coefficients.
The ratio of the two coupling constants 3 = k; /s, is an important quantity that
may assume a range ol values depending on these parameters. Here, the relative
magnitudes of the frequencies and effective nonlinear coefficients are of particular
importance. If the OPO and SHG/SFG processes are of the same BPM type,
the effective nonlinear coefficients differ only due to dispersion of the second-
order nonlinearity [38]. However, for different phase matching types the effective
nonlinear coefficients may be dramatically different from each other.

If QPM is employed for simultaneous phase matching, the QPM order of the
two processes may or may not be different from each other. Since the effective
nonlinear coefficient {or a process depends on the QPM order as well as the other
parameters mentioned above, choosing different QPM orders for the two processes
provides a mechanisimn for adjusting the value of 5. The results of Chapter 5 show
that having some control on the value of # can be very useful in maximizing the
conversion efficiency of single-crystal upconversion OPO’s.

Note that QPM can easily be used to phase match two interactions in a single
crystal by employing two consecutive sections with different poling periods. Such
a double-grating PPLN was recently used for intracavity SI'G of an OPO [39].
However, these double-grating devices are 1dentical to upconversion OPO’s with

two different crystals in terms of the plane-wave theory [18], [17].

3.1 Simultaneous phase matching of OPO and
SFG

We first present the possible combinations of BPM types for OPO’s with simul-
taneous SI'G. These combinations lead to four different classes of sum-frequency
generating OPO’s (SF-OPO’s), some of which require a polarization rotation for
the signal or the pump fields. QPM opens up several more possibilities ol phase
matching type combinations, yet, cach of these combinations can be identified

with one of the lour SIF--OPO classes.



3.1.1 Birefringent phase matching

There are nine possible combinations of BPM types for the OPO and SI'G pro-
cesses. These combinations are summarized in Table 3.1 and Figure 3.1. In this
thesis, the resonant signal field, which also constitutes the lower frequency input
field for the SFG process, is labeled as being at wy. However, our formulation and

results are equally valid if the field at w, is resonated and used as a SFG input.

OPO SFG
Type w3 — w; +w; wy+ws— wg
I f—s+s s+s— f

11 f—Ff+s f+s—f
I f—s+f s+ f—/f

(Case OPO SFG Rotation Class

I [ | pump C
2 11 | pump C
3 I11 | both B
4 [ I1 both B
D II II both B
6 [11 I pump C
7 | I11 none A
S IT I none A
9 III II signal D

Table 3.1: Possible combinations of BPM types for OPO with simultaneous SFG.
Normal dispersion is assumed. The fast and slow axes are denoted by [ and s.

respectively.

In cases 7 and 8, the pump and the signal fields are polarized along the
same axes in both the OPO and SIFG processes. As a result, the two processes
become coupled through the signal and the pump fields. The set of coupled mode

equations that describe this interaction are

day _
= KeU3Uy (3.1)

dz

day 29
= KqU30; — Kplgas (3.2)

dz

das o -
= —R,U Ay — Kpley (3.3)

dz

dag .

S = Kyyay. (3.4)
dz
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Figure 3.1: Polarization diagrams for possible combinations of BPM types in SF-
OPO’s. The fast axis is horizontal and the slow axis is vertical. Polarizations for
the pump (p), signal (s), idler (1), polarization rotated pump (rp), polarization
rotated signal (rs), and sum-frequency (sf) are shown. Intracavity polarization

rotation is indicated with an arc. Each combination of phase matching types is
labeled with a circled number.

We arrive at these equations by combining the OPA equations [[iquations (2.34)-
(2.36)] with the SFG equations [Equations (2.52)-(2.54)]. The signal ay (pump
ay) and the lower frequency SFG input a4 (higher [requency SKFG input as) are
the same field mode; the rate of change of the signal (pump) field amplitude is
the sum of the rates of change of the OPO signal (pump) and the lower (higher)
frequency SIFG input field amplitudes separately. The same equations can also
be obtained by considering the total nonlinear polarization P, and P at w, and
ws, respectively, and re-deriving the coupled mode equations. We designate this
SI-OPO process as class-A.

[n cases 3, 4, and 5 the pump and signal fields are both orthogonally polarized
hetween the OPO and SFG processes. The same crystal can be used for both
processes al the same time through extracavity polarization rotation of the punp

and intracavity polarization rotation of the signal. However, the two processes
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are not coupled in the crystal as they are in class-A interactions, and the coupled
mode equations that govern this SF-OPO are simply Equations (2.34)-(2.36)
and (2.52)-(2.54). We designate this SF-OPO as class-B.

In cases 1, 2, and 6, the pump field is polarized orthogonally between the OPO
and SI'G processes. A polarization rotation of the pump at the cavity input is
required for SFG to take place. The signal field is common to both processes,
and couples them to each other. The set of coupled mode equations that describe

all three cases are

day 35
— = K4
pp 139 (3.5)
dasy
T, T Ral3a1 — Kydsds (3.6)
da:
B - —Kq 1y (3.7)
dz
das
= —Nhgly (3.8)
dz
dag
LA (3.9)
dz

We designate this SI°-OPO process as class-C.

In case 9, the signal is orthogonally polarized between the OPO and SFG
processes, and an intracavity polarization rotation of the signal is necessary. The
OPO and SFG processes are coupled to each other through the pump, which is
common to both processes inside the crystal. The coupled mode equations that

describe the mteraction are

da, .
— = K309 (3.10)
dz

la.

2 _ Kql30] (3.11)
dz

la-

% = —R,U Uy — Rplgly (3.12)
dz

la.

M kst (3.13)
dz

T

o Kplsiy . (3.14)
dz

We designate this SF-OPO process as class-D.

3.1.2 Quasi-phase matching

In terms of simultancous phase matching of SFG in an OPO, the eight QPM

phase matching types lead to 64 different combinations. We found that each of
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these combinations can be identified with one of the four classes introduced ahove,
depending on whether the coupling between the two processes in the crystal is
through the signal (class-C), the pump (class-D), both (class-A), or neither (class-

B).

3.2 Simultaneous phase matching of OPO and
SHG

The possible combinations of BPM types for OPO with simultaneous SHG lead to
three different classes of self-doubling OPO’s (SD-OPQ’s). Two of these classes
require a polarization rotation for the signal field while the third does not. We
also find that each of the possible combinations of QI’M types can be identified

with one of these three classes.

3.2.1 Birefringent phase matching

There are six possible combinations of BPM types for the OPO and SHG pro-
cesses. These combinations are summarized in Table 3.2 and Figure 3.2. The
fundamental field for SHG is assumed to be the resonant signal field, since the
high intracavity signal intensity leads to efficient SHG. For frequency upconver-
sion with the SD-OPO, the signal field has to be at w,, so that 2w, > wy can be
satisfied.

In cases 1 and 2, the OPO signal and the SHG fundamental are both polar-
ized along the same direction and the two fields are indistinguishable in every
aspect. As a result, the two processes are coupled through the signal field which
is common to the two processes. The coupled mode equations that govern this

interaction are

l
o K3y (3.15)
dz
la-
”ﬁ = KR, U301 — RKplay (3 l())
dz
dﬂ = —Rgal1Uy (3'17)
dz
dag . B
ﬁ—( _ 5,{/)“; (3.18)

where &, and s, are the coupling constants for the OPA and the SHG processes,



OPO SHG
Type w3 = w +wy wy+wy — 2wy
| f—s+s s+s—of
L fofts st fo]
[11 f—os+f

Case OPO SHG Rotation Class

! [ I 1o A
2 I | no A
3 II1 | yes B
4 I II yes C
5 I1 I yes C
6 11 11 yes C

Table 3.2: Possible combinations of BPM types for OPO with simultaneous SHG.
Normal dispersion is assumed. The fast and slow axes are denoted by [ and s,
respectively. There is no type-III BPM for SHG since this process is degenerate
in frequency.

ST ;1 ST 11 !
OPO: ? 1 ? S
S — —

SII{G: ST @ ST @ I'ST 4\@

I'S S
—_— E— —_—

ds ds ds

SHG:
I

Iigure 3.2: Polarization diagrams for possible combinations of BPM types in SD-
OPO’s. The fast axis is horizontal and the slow axis is vertical. Polarizations for
the pump (p), signal (s), idler (i), polarization rotated signal (rs), and frequency-
doubled signal (ds) are shown. Intracavity polarization rotation is indicated with
an arc. Iach combination of phase matching types is labeled with a circled
number.

respectively. We obtain these equations by combining the OPA equations [Fqua-

tions (2.34)-(2.36)] with the degenerate SHG equations [Equations (2.63)-(2.64)].
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We designate this SD-OPO process as class-A.

In case 3, the polarizations of the OPO signal and the SI'G fundamental are
orthogonal. However, an intracavity polarization rotation of the signal provides
the input field for SHG and allows the same crystal to be used for both processes
at the same time. In contrast with class-A SD-OPO’s, the two processes are
not coupled in the crystal, and the coupled mode equations that describe the
interaction are simply Equations (2.34)-(2.36) and (2.63) -(2.64). We designate
this SD-OPO as class-B.

In cases 4, 5, and 6, the SHG process is nondegenerate in polarization, and
there are two orthogonally polarized fundamental components. The OPO signal
is polarized along cither component of the fundamental in each case, and the
two processes are coupled through this component. An intracavity polarization
rotation of the signal field provides the second fundamental component and makes

SHG possible. T'he coupled mode equations that govern the interaction are

da,
= KoUs30 (3.19)
dz
das L
P = Rol3zly — Kplgls (3.20)
da:
= —keaiay (3.21)
dz
das _ Kplgl (3.22)
= —Rplely 3.22
dz ’
dag A
] > = KpUads. (3.23)
dz :

These equations are obtained by combining the OPA equations [Equations (2.34)-
(2.36)] with the nondegenerate SHG equations [Iiquations (2.52)-(2.54)]. We
designate this SD-OPO as class-C. Note that Iiquations (3.19)-(3.23) are the same
as the coupled mode equations that govern class-C SI-OPO’s [Equations (3.5)

(3.9)).

3.2.2 Quasi-phase matching

Since the SHG process is degenerate in frequency, there are only six possible
QPM types for SHG as opposed to eight for the OPO. In terms of simultancous
phase matching of SHG in an OPO, the potential QPM types lead to 48 different
combinations. We found that each of these combinations can be identified with
one of the three classes introduced above, depending on whether the SHG process

is nondegenerate in polarization (class-C) and if not, whether the polarizations

28



of the OPO signal and the SHG fundamental are orthogonal (class-B) or not
(class-A).



Chapter 4
Single-Pass Solutions

To analyze the performance of single-crvstal upconversion OPQ’s, it is first nec-
essary to calculate the single-pass parametric gain for the signal field by solving
the coupled mode equations for each class [29], [30]. For some of these classes,
analytical solutions of the coupled mode equations are available. For the other
classes however, we used a numerical method to compute the single-pass para-
metric gain. For these classes, the coupled mode equations were solved with the
Runge-Kutta-Fehlberg method.

Runge-Kutta-Fehlberg is an adaptive step-size method widely used for solving
ordinary differential equations [28]. At each step, this technique uses two fixed
step-size Runge-Kutta methods with orders five and four, to estimate the step-size
that will keep the local error within a specified tolerance. Having a small local
error at each step ensures that the global error is also small. In our calculations.

the tolerance is chosen to be 107° times the input signal field amplitude.

4.1 Single-pass solutions of SF-OPO’s

The coupled mode equations for two of the four SI-OPO classes have analytical
solutions. A simple transformation maps the class-A equations to regular OPA
equations, leading to analytical solutions in terms of Jacobi elliptic functions. In
class-13 SIF-OPO’s the OPA and SFG processes are not coupled in the crystal,
and analytical solutions are readily available. or class-(! and class-D SI:-OPO’s,
however, we used the Runge-Kutta-Fehlberg method to solve the coupled mode

cquations.
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4.1.1 Class-A solutions

An important simplification in the coupled mode equations for class-A SE-OPQ’s
is achieved by recognizing that the right hand sides of IEquations (3.1) and (3.4)
are proportional. Since both the idler field ¢; and the sum-frequency field ag have
zero amplitudes at the crystal input, we have ag(z) = Ba;y(=z). The coupled mode
equations then become

da,y

= K30y (4.1)
dz
1c
(d(tz = (1 = ) Kqasa, (4.2)
da.
daj = —(1+ B*)kretas. (4.3)

The evolution of the field amplitudes as they propagate down the crystal
depends on the value of 3. If f is equal to unity, the right hand side of Equa-
tion (4.2) becomes equal to zero for all values of =. In this case, the parametric
gain provided by the pump is exactly balanced by the nonlinear loss due to SFG,
and the signal field amplitude stays constant throughout the length of the crys-
tal. If /3 is less than unity, the parametric gain overcomes the nonlinear SFG
loss, and the signal field 1s amplified. Under this condition, the substitutions
ay; = up /\/(1 — B2)(1 4+ B?), ay = uy /1 ¥ B2, and ay = us /\/1 — 2 transform

Equations (4.1)-(4.3) to the coupled mode equations for a regular OPA [Equa-

tions (2.34)-(2.36)] in terms of the variables wy, 1, and us. After transforming
the OPA solutions [Equations (2.46)-(2.48)] in terms of wuj, uy, and us back to
the original class-A variables ay, ¢, and a3, the evolution of the field amplitudes

can be expressed as

-~ — C"I ~ 7 1 A ’
“l® = ¢(1 — g A A
az(z) = 1—(:/3 dn( A,,]m (1.5)
) = |2zl (1.6)
az(z) = ey sn(Zq|m,)
ag(z) = fay(z) (4.7)
where

o= (1= A0+ F)z) + (1 = F)ad(z) (13)
¢y = (14 B2adz) + (1 - A=) (+.9)



are the Manley-Rowe conserved quantities [Equations (2.37) and (2.38)] expressed
in terms of the field amplitudes «;, ay, and ¢3. Here, m, = C1/Cy and Z, is as
defined in Equation (2.44).

If 4 is larger than unity, the parametric gain provided by the pump cannot
compensate for the nonlinear SI'G loss. In this case, the net gain experienced by
the signal field is always less than or equal to unity, regardless of the values of &,
and the input photon flux densities. Therefore, it is impossible for the SI-OPO

to get above threshold.

4.1.2 Class-B solutions

In class-B SF-OPO’s, the OPO signal (pump) and the SFG lower (higher) fre-
quency mmput fields have orthogonal polarizations. Therefore, the OPA and SIFG
processes are independent of each other in a single pass through the crystal. How-
ever, an intracavity polarization rotation of the signal field and an extracavity
polarization rotation of the pump field with the use of half-wave retarders can
couple the two processes and allow SI'G to take place. The single-pass solutions

are given by Equations (2.46)-(2.48) and (2.56)--(2.58).
g .

4.1.3 Class-C solutions

The phase matching geometry for class-C SF-OPQO’s requires the polarizations of
the OPO pump and the higher frequency SI'G input fields to be orthogonal. The
higher frequency SFG input field is provided by a polarization rotation of the
pump, before the pump enters the cavity. In calculating the single-pass solutions,
we take the total pump field amplitude to be «,. We then rotate the polarization
of this input field by and angle «, so that the input OPO pump field amplitude
is a3(0) = a,cosa,, and the rotated pump (higher [requency SI'G input) field
amplitude is a5(0) = «, sina,.

Since analytical solutions of class-C coupled mode equations (3.5)-(3.9) are
not available, we used the Runge-Kutta-Fehlberg method to calculate the evo-
lution of the photon flux densities and the net signal gain. Iigure 4.1 shows an
example for the single-pass solutions of class-C' coupled mode equations. For this
example, we have taken o, = 30°, 4 = 1.5, and «3(0) = O.3aflf. The photon {lux
densities evolve periodically with a period of 10 in this example and the maximum

value for the sum-[requency photon flux density is limited by the input rotated
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Figure 4.1: Single-pass solutions for a class-C SF-OPA for # = 1.5. The evolution
of the pump (p), signal (s), idler (i), polarization rotated pump (rp), and sum-
frequency (sf) photon flux densities are shown as functions of the normalized

propagation distance £ = rqapz. All photon flux densities are normalized to the

total input pump photon flux density (4]2). For this example, o, = 40°, g = 1.5,

and a3(0) = 0.3a2.

pump photon flux density.

While calculating the single-pass solutions, we found that the field amplitudes
oscillate either periodically or aperiodically as a function of z, depending on the
initial field amplitudes and 3. This behavior can best be analyzed by transforming
the coupled mode equations (3.5)-(3.9) to a single differential equation similar to

Equation (2.42). To do this, we use the class-C Manley-Rowe conserved quantities

Cr = di(z)+d3(z) = «3(0) (1.10)
Cy, = ai(z)+di(z)+ai(z) = «l(0)+a3(0) (1.11)
Cy = ai(z)+di(z) = (0) (4.12)

and define new variables 0(z) and ~(z) through

ai(z) = O sind(z) (1.13)
az(z) = /C1 cosb(z) (4.14)
as(z) = C'y cos y(z) (1.15)
ag(z) = /Cysiny(z) (1.16)



Since no idler or sum-frequency is present at the crystal input, 6(0) and v(0) are
equal to an integer multiple of 27; for convenience, we choose §(0) = 4(0) = 0.
Substituting into Equations (3.5) and (3.9), we obtain
1do 1 dy

Ked:  Kpdz

(4.17)

az(z) =

When integrated this equation yields 0(z)/x, —v(z)/xs = 0, from which we obtain
v(z) = #0(z). This relation, along with the Manley-Rowe relation for (', allows
us to reduce the set of coupled mode equations to a single differential equation

L (do\* Y ,
<(——> + Cycos? 8 + Cysin®(p0) = C, (4.18)

k2 \d=z

in the variable #(z). The solution 8(z) either oscillates periodically around zero or
increases monotonically, depending on the values of the Manley-Rowe quantities
and fB. If Cycos?0 + Cysin?(f0) is larger than (%, for any value of ¢, the field
amplitudes oscillate periodically. In this case, the signal field is fully depleted
inside the crystal, with the depletion locations coinciding with the maxima and
minima of 8(z). If  has a rational value, there exists a # value such that cos?§ =
sin?(30) = 1. Then, the condition C) cos?f + Cysin®(30) > C, is equivalent to
a2(0) < a2(0).

In the other case where 0(z) increases monotonically, the field amplitudes are
periodic functions of = only if A has a rational value. Otherwise, C| cos®§ +
C5sin?(j30) is an aperiodic function of 0, and the field amplitudes vary aperiodi-
cally.

Although Equation (4.18) gives more insight into the qualitative behavior of
the solutions, in calculating the single-pass solutions we prefer to solve liqua-
tions (3.5)-(3.9) directly. The first term of Equation (4.18) brings about an
ambiguity in the sign of df/dz, and every time the signal field is depleted the
corresponding sign change in d0/dz needs to be taken care of in numerical solu-

tions.

4.1.4 Class-D solutions

In class-D SF-OPO’s. the polarizations of the OPO signal and the lower frequency
SI'G input are orthogonal. The lower frequency SFG input (rotated signal) is
provided by an intracavity polarization rotation of the signal. In calculating the

single-pass solutions, we take the total signal field amplitude to be a,. We then
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Figure 4.2: Single-pass solutions for a class-D SF-OPA for # = 1.5. The evolution
of the pump (p), signal (s), idler (i), polarization rotated signal (rs), and sum-
frequency (sf) photon flux densities are shown as functions of the normalized
propagation distance & = r,a3(0)z. All photon flux densities are normalized to
a%(0). For this example, o, = 40°, f = 1.5, and the total input signal fAux is
a? = 0.4a3(0).

rotate the polarization of this input field by an angle «, so that the input OPO
signal field amplitude is a3(0) = «, cos a,, and the rotated signal (lower frequency
SI'G input) field amplitude is a4(0) = «; sin «.

We used the Runge-Kutta-Fehlberg method for the calculation of the class-
D single-pass solutions as well. Figure 4.2 shows an example for the evolution
of the photon flux densities in a class-D SF-OPA. We found that the photon
flux densities oscillate periodically as functions of =, regardless of the values of
the Manley-Rowe quantities and /4. This behavior is easier to analyze il the
coupled mode equations are reduced to a single differential equation similar to
Equation (4.18). TIurthermore, this differential equation can be used to obtain
conditions that maximize conversion efficiency, as outlined in Chapter 5.

The Manley-Rowe conserved quantities for class-D SI"-OPO’s are

Cy o= aj(z)—di(z) = aj(0) (4.19)
(1, = ai(z)+ad(z)+ai(z) = «d(0) + «5(0) (+4.20)
(ly = a(z)+dd(z) = d}(0). (1.21)



We define new variables 8(z) and v(z) through

a(z) = \fCusinho(z) (4.22)
ax(z) = \/acoshf)(:) (4.23)
ay(z) = \/acosv(:) (4.24)
ag(z) = \/C_isinv(s)- (4.25)

Since a1(0) = as(0) = 0, (0) = 0 and (0) is an integer multiple of 27; we choose
7v(0) = 0 for convenience. When these transformations are substituted into the
coupled mode equations (3.10) and (3.14), the pump field amplitude is obtained
in terms of 0(z) or y(z) as

11

Ko dz Ky dz

az(z) = (4.26)

It is then possible to integrate this equation and get a fourth conserved quantity
C'y = 0(2)/ka — (=)/ks = 0. Using this relation and the Manleyv-Rowe relation
for 'y, we obtain a single differential equation
2

h% (%) + Cycosh? 0 + Cssin*(pY) = C, (4.27)
in the variable 0(z). As 0(z) starts from zero at the crystal input and increases,
the second term in Iquation (4.27) increases monotonically until df/dz becomes
zero. We observe from Equation (4.26) that this point corresponds to complete
pump depletion. Since the first term of Equation (4.27) cannot be negative, 6(z)
has to decrease [rom this point on. Hence, 8(z) oscillates periodically around zero,
and the field amplitudes also evolve periodically with the period being identified
by complete pump depletion. As in class-C single-pass solutions. we prefer to
solve the original coupled mode equations [Equations (3.10)=(3.14)] in computing

the single-pass signal gain.

4.2 Single-pass solutions of SD-OPOQO’s

Of the three SD-OPO classes, analytical solutions are readily available only for
class-B coupled mode equations. Lor this class, the OPA and SHG processes
are not coupled in the crystal and analytical solutions for the two processes can
be used separately.  Ior class-A and class-C SD-OPO’s, we used the Runge-
Kutta-Iehlberg method to solve the coupled mode equations and to compute the

single-pass parametric gain.
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IYigure 4.3: Single-pass solutions for a class-A SD-OPA for # = 1.5. The evolu-
tion of the pump (p), signal (s), idler (i), and second-harmonic (sh) photon flux
densities are shown as functions of the normalized propagation distance €. All
photon flux densities are normalized to the input pump photon flux density and

a2(0) = 0.25a3(0).

4.2.1 Class-A solutions

Figure 4.3 shows an example for the evolution of the photon flux densities in
a class-A SD-OPA. The normalized propagation distance is defined to be £ =
kaa3(0)z, as in OPA’s, and all photon flux densities are normalized to the input
pump photon flux density. For this example, /7 is taken to be 1.5.

At the beginning of the interaction, the OPA process is dominant and the
signal photon flux density increases with increasing €. However, the nonlincar
Joss due to the increasing second-harmonic eventually overcomes the parametric
gain and the signal flux density begins to decrease after € = 1.6. The pump lield
is completely depleted at £ = 2.5, and back-conversion of the signal and the idler
to the pump begins after this point. However, the amount of back-conversion is
small, since much of the signal flux density is already converted to the second-
harmonic. At £ = 7, essentially the entire pump and the signal is converted to
the second-harmonic, and the interaction stops. Throughout the interaction, the
oscillatory nature of the OPA process is dampened by the conversion of the signal
to the second-harmonic, and the class-A single-pass solutions are not. periodic.

The parameter /3 is a measure of the relative strengths of the OPA and SIG
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processes. With increasing /3, the SHG process becomes more prominent, the os-
cillatory behavior due to the OPA process decreases in amplitude. and conversion
to the second-harmonic is completed earlier in the crystal.

There are only two Manley-Rowe conserved quantities in class-A interactions.

These quantities are

Cy = dX(z)+di(z) = a2(0) (4.28)
Cy = al(2)+ai(z) +2a2(z) = a3(0) + a2(0). (4.29)

4.2.2 Class-B solutions

In class-B SD-OPO’s, the OPO signal and the SHG fundamental have orthogonal
polarizations, and the OPA and SHG processes are independent of each other in a
single-pass through the crystal. However, an intracavity polarization rotation of
the signal field with the use of a half-wave retarder can couple the two processes
and allow frequency doubling to take place. The single-pass solutions are given

by Equations (2.46)-(2.48) and (2.66)-(2.67).

4.2.3 Class-C solutions

Since class-C self-doubling and SF-OPQO’s are governed by the same coupled mode
equations [Equations (3.19)-(3.23) and (3.5)-(3.9)]. the single-pass solutions ex-
hibit the same behavior. In both cases, the coupling in the crystal is through the
signal field. However, the second fundamental component a5 in class-C SD-OPO’s
is provided by intracavity polarization rotation of the signal field, whereas the
higher frequency SIF'G input a5 in class-C SF-OPO’s is provided by extracavity
polarization rotation of the pump. The class-C SD-OPO performance therefore

has a different dependence on the design parameters, as shown in Chapter 5.
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Chapter 5

Plane-Wave Theory of

Single-Crystal Upconversion
OPO’s

A singly-resonant single-crystal upconversion OPO is constructed by placing the
nonlinear crystal inside a resonator that provides feedback at the signal frequency.
In contrast with regular OPO’s, output coupling for the signal field is not nec-
essary, since the useful light output is either the frequency-doubled signal field
or the sum-frequency of the signal and the pump. However, the cavity will in-
evitably have a few percent of linear loss (L) at the signal frequency, due to less
than unity reflectances of the resonator mirrors and imperfect antireflection coat-
ings on the nonlinear crystal. This linear loss can be represented by a lumped
cavity reflectance Ry, =1 — L.

In single-crystal upconversion OPO’s, the saturation of parametric gain is
completely characterized by the nonlinear drive D, the ratio of the coupling co-
efficients f# = ry/Kq, and the polarization rotation angle (il any) [29], [30]. The
nonlinear drive for single-crystal upconversion OPO’s is defined as D = (r,a,0)%,
where a2 is the pump photon flux density at the crystal input. Tor class-B and
class-C SF-OPO’s, (1,'; = a2(0) 4 «2(0) is the total pump photon flux density be-
fore polarization rotation of the pump field, whereas in other upconversion OPO’s
there is no pump polarization rotation and a2 = a3(0).

As in regular OPO’s, if the small-signal gain is larger than the resonator

Joss, oscillation starts. The initial signal photon flux provided by parametric
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fluorescence grows until the upconversion OPO reaches steady-state. In steady-
state, the parametric gain in the nonlinear crystal exactly compensates for the

resonator loss and this condition is expressed as
2 .
Rugla3(0)] = | (5.1)

where g = a2(1)/a3(0) is the single-pass saturated gain for the signal field. The
intracavity signal photon flux density in steady-state a¢3(0) can in general e found
by solving Equation (5.1) iteratively using the single-pass solutions outlined in
Chapter 4. In doing this, we used the secant method for numerical root-finding.

The performance of the secant method depends on the initial approximations
provided. When investigating the behavior of single-crystal upconversion OPQO'’s,
we usually vary one of the parameters that influence gain saturation while the
remaining parameters are kept constant. In such cases, the solution «2(0) from
the latest parametcr value is a very good initial approximation for the solution
corresponding to the next parameter value. With this choice for the initial approx-
imation, the secant method typically takes five to fifteen iterations to converge
to the solution within a relative tolerance of 1073,

Once the intracavity signal photon flux density is known, all other fields at
the crystal output can be calculated using single-pass solutions. From the output
photon flux densities, photon conversion efficiency and pump depletion can be
calculated as measures of performance for single-crystal upconversion OPO’s.
The photon conversion efliciency for upconversion OPQ’s is defined as the ratio
of twice the output upconverted flux density to the input pump flux density.
n = 2a2(l)/a3(0), since two pump photons are needed for one upconverted photon.
The conversion efficiency represents the overall efficiency of the two-step process
from the pump to the signal and then to either the sum-{requency or the doubled
signal, and is equal to unity for total conversion.

In regular OPO’s, pump depletion [1 — a3(1)/a3(0)] is an alternalive measure
of performance, since maximum conversion requires complete pump depletion.
As shown in this chapter, this is no longer the case in single-crystal upconversion
OPO’s, except for class-A and class-D SF-OPO’s.

In general, Equation (5.1) may have more than one solution. In this thesis.
we investigate the steady-state performance of single-crystal upconversion OPO’s.
and always choose the smallest of these solutions, assuming that the intracavity
signal field builds up [rom noise to reach this smallest solution. However, the

dynamical evolution ol the signal field as it builds up [rom noise can also be
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simulated [30], [40], by starting with parametric fluorescence and iterating the
single-pass solutions several times, multiplying the signal flux density by Ry, after
each pass through the crystal. This analysis has revealed that hoth SF-OPQ’s
and SD-OPO’s may display periodic or chaotic oscillations at high values of the
nonlinear drive. [urthermore, if the nonlinear drive is high enough, the SF-OPQ
may reach different steady-state solutions depeunding on the initial signal flux
density. It has been found that these steady-state solutions are stable and the

SE-OPO thus exhibits multistability [30].

5.1 SF-OPO’s

5.1.1 Class-A SF-OPO’s

As pointed out in Chapter 4, class-A SF-OPO’s can get above threshold only if

/3 is less than unity. Under this condition, the small-signal gain is

go = cosh? /(1 — 2D . (5.2)

The threshold nonlinear drive Dy, is found by solving 2,y = 1 for D. Since ¢
depends on /3, Dy, is influenced by the presence of the SFG process. This is in
contrast with SD-OPO’s.

(Conversion efficiency is maximized if the pump field is fully depleted at the
crystal output, as shown by the Manley-Rowe relation (4.8) and Equation (4.7).
To obtain the nonlinear drive for complete pump depletion, we first evaluate the
Manley-Rowe relation (4.9) at z = 0 and z = [ and use the steady-state oscillation
condition [Equation (5.1)], to get the intracavity signal flux density normalized
to the input pump flux density

a2(0) _ (I - L)1 - /J"‘)')‘ (53)
a3(0) L(1 4 /%)

Using Equation (5.3), we find that m, = L. The pump field amplitude has a

sn(Z|m) functional dependence which assumes its zeros at even multiples of the

Jacobi quarter-period K. Therefore, complete pump depletion at z = [ requires
| ) |

that
KN — k0 /Cyl = =2nK n=>01,2.... (5.4)
This relation leads to a family of optimuin nonlinear drive values
Dopy = L [(2n + [)K]? (5.5)
opt — 1 _ /32 ' I
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that maximizes the conversion efficiency for given values of # and L. The ratio
Dopi/ Dy, depends only on L, similar to a regular OPO [10]. Only the smallest
Depe (corresponding to n = 0) is of interest, since for n > 0 Equation (5.3) does
x4

5.1).

Figure 5.1 shows the conversion efficiency as a function of the nonlinear drive

not yield the smallest solution of equation (

for various 8 values at a constant L = 0.04. The peak of cach curve is at D,

with a value of

2/3*
7]mh.x — W

This value is a function of 3 only. As f increases towards unity, 7y approaches

(5.6)

unity, while Dy, and Dy, increase without bound.
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Figure 5.1: Conversion efficiency of class-A SF-OPO’s as a [unction of the non-
linear drive for various values of . For cach case, [, = 0.04.

The cavity loss L at the signal frequency results in the loss of signal photons
from the cavity. One would expect that this useless loss should be minimized
for maximum conversion to the sum-frequency. However, as illustrated in Fig-
ure 5.2, the cavity loss can be adjusted to maximize the conversion efficiency. At
a constant /4 value of 0.8, the conversion efficiency curve shifts to the right with
increasing cavity loss, whereas the peak conversion efficiency does not change.
in agreement with the analytical result given in IEquation (5.6). At a nonlinear
drive of unity, a relatively large cavity loss of L = 0.14 is needed for maximum

(n = 0.78) conversion.
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IYigure 5.2: Conversion efficiency as a function of the nonlinear drive for various
values of L for a class-A SI-OPO. For each case, = 0.8.

5.1.2 Class-B SF-OPO’s

Class-B SF-OPO’s require an intracavity polarization rotation for the signal field
and an extracavity polarization rotation for the pump field. Two different modes
of operation are possible, depending on the polarization rotation configuration
employed for the signal field. In the first case, the signal polarization is rotated
by an amount o, < 90°, so that a sin® o, fraction of the OPO signal flux is coupled
to the lower frequency SFG input field ¢4(0), while the remaining cos? o5 fraction
becomes the input signal a3(0). At each pass through the crystal, the OPO signal
ay experiences parametric gain, whereas the rotated signal a4 is depleted due to
SFG. Here, we assume that the residual rotated signal at the crystal output ay(l)
is either coupled out of the cavity with the use of a polarizing beamsplitter, or
negligible due to strong couversion. If instead both the signal and the rotated
signal are resonated, the polarization mixing at the retarder will result in the
interference of the two fields in an uncontrolled fashion.

In this configuration, the OPO signal experiences a linear loss of sin’ay in
addition to other resonator losses and the total resonator reflectance becomes
Ry, cos? ag. There is no nonlinear output coupling in this situation; the intracavity
signal flux is not affected by the presence of the SI'G process. Even though the
SI'G process is internal to the OPO resonator, it does not benefit from high values

of the intracavity signal flux density. As such, this configuration is not expected
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to be particularly efficient.

On the other hand, a different mode of operation is achieved if the residual
rotated signal a4(() is not coupled out and «; is set to 90°. In this configuration,
the retarder switches around the polarizations of the OPO signal ay(/) and the
residual rotated signal a4(!) with no resulting interference due to polarization
mixing. The OPO signal at the crystal output provides the rotated signal «,(0)
for the next round trip, whereas the residual rotated signal becomes the QOPA
input az(0). As in the previous configuration, the polarization of the pump field
is rotated before entering the cavity to provide the higher frequency SFG input
field as(0).

The distribution of the pump photon flux density between the two processes
can be optimized by adjusting the pump polarization rotation angle «,. Figure 5.3
shows the conversion efliciency and the depletion of the pump and the rotated
pump flux densitics as functions of «, for four different values of . In all cases,
the nonlinear drive is kept constant at unity and L = 0.04. For = 0.7 in
Figure 5.3(a), a maximum conversion efficiency of 0.71 is achieved at ¢, = 41°,
whereas the pump and the rotated pump are fully depleted at «, = 42° and

«, = 17°, respectively. The SI-OPO is below threshold for «, > 51°.
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Pigure 5.3: Conversion efliciency (7), pump depletion (pd), and rotated pump
depletion (rpd) as functions of the pump polarization rotation angle for a class-B
SI-OPO. The nontinear drive is unity and L = 0.04 i all cases.
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Figure 5.3(b) with a larger # of 0.9 shows a similar behavior with a higher
conversion efficiency of 0.79. The SF-OPO gets below threshold at an earlier
value of «, = 44°, since the SFG process is stronger in this case. For larger
values of /3, the maximum conversion efficiency increases up to a value of .81
and then begins to decrease as a result of the threshold «v, being smaller than the
optimum ¢,. Figure 5.3(c) and (d) show two examples of this situation. Here,
the SI-OPO achieves its maximum conversion efficiency right before going below
threshold. This behavior is related to the unusual saturation characteristics of
the parametric gain; starting from go at «2(0) = 0, g[a3(0)] first increases with
increasing a2(0), and then decreases to cross the loss line 1/ Ry, at the intracavity
signal flux density a3(0) = 2. When «,, is increased, gy decreases and becomes less
than 1/Ry,. If the SI-OPO is turned on at this point, oscillations cannot build
up in the cavity. However, if one increases a, while the SF-OPO is oscillating
at a5(0) = a, the oscillations continue past the threshold a, value, as shown in
Figure 5.3(c) and (d).

Both the threshold «, and the threshold nonlinear drive can be found by
solving Rrgo = 1. Since the OPO and the SFG processes are independent in a
single-pass through the crystal and the retarder switches around the polarizations
of a3 and a4 in each round trip, the signal field has to be followed for two cavity
round trips to find the threshold condition. The small-signal gain over two round

trips can be expressed as
go = Ry, cosh® (\/B CoS (.1',,) cos? (/5’\/5 sin a',)) . (5.7)

where the cosh?(V/D cos ) factor represents the gain of the OPO signal in
the first pass through the crystal, whercas the cos®(v/D sin a,) factor repre-
sents the loss due to SIF'G in the second pass. The oscillatory nature of the
cos? (VD sin ap) factor in Equation (5.7) results in a number of ranges for the
nonlinear drive where the SF-OPO is below threshold. Figure 5.4 shows the
dependence of the conversion efliciency on the nonlinear drive for four different
values of 4. In cach case, o, is adjusted to maximize the conversion efficiency
at unity nonlinear drive. We observe a number of sub-threshold regions in I'ig-

ure H.4.
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Figure 5.4: Conversion efficiency as a function of the noulinear drive for different
values of f for a class-B SF-OPO. For each f value, the pump polarization ro-
tation angle v, is adjusted to maximize the conversion efficiency at a nonlinear
drive of unity. (a) # = 0.5, o, = 44.1°% (b) A = 1.0, «, = 39.9°; (¢) f = 1.5,
a, = 24.6°% (d) p = 3.0, a, = 15.54°. For each case, L = 0.04.

5.1.3 Class-C SF-OPO’s

The phase matching geometry of class-C SF-OPO’s leads to orthogonal polariza-
tions for the OPO pump and the higher frequency SFG input fields. A half-wave
retarder provides adjustable rotation of the pump polarization before the pump
beam enters the cavity. For a polarization rotation angle of a,. a sin’«, frac-
tion of the total input pump flux density af, is used as the higher frequency SI°G
input «2(0), whereas the remaining pump flux density «2(0) provides parametric
gain for the signal field. With this configuration, the distribution of the pump
photon flux density between the two processes can be adjusted to maximize the
conversion efficiency.

Iigure 5.5 shows the conversion efficiency and the depletion of the pump and
the rotated pump (higher frequency SIFG input) flux densities as functions of the
polarization rotation angle «, for four different values of A, where the nonlinear
drive is kept constant at unity and L = 0.04. TFor f = 0.5 in Figure 5.5(a),
a maximum conversion efficiency of 0.64 is achieved at o, = 46°, whercas the

pump is fully depleted at a, = 51°. The depletion of the rotated pump starts at
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Figure 5.5: Conversion efficiency (n), pump depletion (pd), and rotated pump
depletion (rpd) as functions of the pump polarization rotation angle for a class-C
SF-OPO. The nonlinear drive is unity and L = 0.04 in all cases.

0.93 with a, just above zero and decreases monotonically until the SF-OPO gets
below threshold at o, = 62°.

For # = 1 in Figure 5.5(b), the maximum conversion efficiency is higher
(0.90), and complete pump depletion coincides with maximum conversion. For
this particular value of g, the depletion of the pump and the rotated pump fields
are equal for all values of «, and D, since ¥(z) = 0(z) for # = 1. However,
simultaneous depletion of both pump components is possible only when /# or 1//4
is an odd integer, since cos(30) and cos8 can become equal to zero at the same
0 value only then.

For 4 larger than unity, the conversion efliciency achieves its maximum right
before the threshold a,, similar to class-B SI-OPO’s. Figure 5.5(¢) and (d) show
examples of this behavior for f = 1.5 and 3, respectively. Note that a solution
of the steady-state oscillation condition [Equation (5.1)] may exist beyond the
threshold «,, even though the intracavity signal cannot build up from noise to
reach this solution.

Both the threshold nonlinear drive and the threshold a, can be found by
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values of f for a class-C SI-OPO. For each A value, the pump polarization ro-
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equating the small-signal gain

go = cosh? (cos a,,\/(l — /32 tan? Q’p)[)> . (5.8)

to 1/Ky. Note that Equation (5.8) is valid only if ftan «, < 1, otherwise go < 1.

Figure 5.6 shows the dependence of the conversion efliciency on the nonlinear
drive for four different values of 3. For each case, «, is adjusted to maximize 5
at D = 1. We observe that the maximum conversion efficiency for 4 = 0.5 and

A =1 is higher than the maximum values for 4 = 1.5 and /# = 3.

5.1.4 Class-D SF-OPO’s

In class-D SEF-OPO’s, the polarizations of the OPO signal a, and the lower [re-
quency SEFG input a4 are orthogonal. An intracavity half-wave retarder provides
the SIFG input «4(0) by rotating the signal polarization. There are two modes of
operation, as in class-13 SI'-OPO’s, depending on the signal polarization rotation
angle .

[or the configuration where 0° < a; < 90°, we assuine that the rotated signal

field (lower [requency SF'G input) at the output of the crystal is either coupled
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out of the cavity with a polarizing beamsplitter or strongly depleted, so that
interference due to polarization mixing at the half-wave retarder is avoided. In
this configuration, maximum conversion to the sum-frequency takes place when
both the pump and the rotated signal fields are fully depleted at the output. The
nonlinear drive and «, can be adjusted to deplete these two fields completely and
maximize 7.

The depletion of the rotated signal does not depend on the value of the nonlin-
ear drive. To arrive at this conclusion, we first note that Ry,aZ(l) = «2(0) 4+ 2(0),

and obtain

2 14 fan2
as(l) ) | + tan? a
= cosh®f(l) = ———= 5
22(0) cosh” (1) R (5.9)

where 6(z) is the solution to Equation (4.27). Equation (5.9) shows that (1)
depends only on «; and Ry,. The rotated signal depletion at the output is

3 ai(l)
a2(0)

=1 — cos®(36(1)) (5.10)

and independent of the value of D.

or the rotated signal to be fully depleted, the product #0(1) should be equal
to an odd multiple of 7/2. Since the A0(l) = 7 /2 case requires smaller values for
D and «, we consider this case only. Using Equation (5.9), the angle a, that

depletes the rotated signal for given values of 3 and Ry, is found to bhe

s = tan”! \/RL cosh2(7r/2/3) —-1. (5.11)

Complete depletion of the pump takes place when the first term in Iqua-
tion (4.27) representing the pump photon flux density is equal to zero. This
condition allows us to obtain the ratio of C; and €, as
Cy |
C—'z ~ cosh?0 + tan? v, sin?(40) 5.

Z
(O
-

m =

Iiquation (5.12) also determines the ratio of the intracavity signal {lux density to
the input pump flux density through the Manley-Rowe relations (4.19) and (:1.20).
In the case of simultaneous depletion of the pump and the rotated signal ficlds
at the crystal output, Equation (5.12) can be expressed in terms of /4 and £}, as

|

e ' - 5.13
ot (Ry, + 1) cosh®(n/2p) — 1 (5.13)

We then integrate Iiquation (4.27) and obtain the optimum nonlinear drive as
2

w203 ) ) o )
Dopr = (1 = niap) [/ [l -- 771‘,,p[,((:osh2 ¢ + tan? sinz(/fq/)))]‘l/zdgf) (5.14)
0

19
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Figure 5.7: Conversion efficiency (1), pump depletion (pd), and rotated signal
depletion (rsd) as functions of the signal polarization rotation angle for a class-D
SI-OPO. The nonlinear drive is unity and L = 0.04 in all cases.

where «; and myg, are given by Equations (5.11) and (5.13), respectively. The
integral in Equation (5.14) has an integrable singularity at its upper limit, and
can be evaluated numerically after a change of variable ¢ = 7/28 — p* eliminates
the singularity [41].
The optimum nonlinear drive D, decreases with increasing values of 3. The
maximum conversion efficiency achieved at Dy, is
Ry, cosh®(n/2/3) — |

maxziz — . 5.15
! (Rp, 4 1) cosh®(m/2/3) — 2 (5-15)

For larger values ol /3, imax decreases rapidly with increasing cavity losses.
Iiigure 5.7 shows 7 and the depletion of the pump and the rotated signal flux
densities as functions of «; for four different values of 3. where D is kept constant
at unity and L = 0.04. Note that as /# gets larger, the peak conversion efficiency
increases and shifts to smaller values of a,. The threshold «y is independent
of 4 since the net small-signal gain gy = cos? ay cosh? /D, which includes the
linear loss due to polarization rotation, does not depend on 3. Figure 5.8 shows
the dependence of y on D for four different values of /3. For each f# value, o, is
adjusted to maximize 1 at unity nonlinear drive. The peak conversion efficiency

is largest in IMigure 5.8(d), since Dy is closer to unity for 4 = 3 than for the
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Figure 5.8: Conversion efficiency as a function of the nonlinear drive for various
values of 3 for a class-D SF-OPO. For each 3 value, the signal polarization ro-
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B =15 (d) o =27.8° B =3. For each case, L = 0.04.

other f values.

If o is set to 90°, the retarder switches around the polarizations of the OPO
signal ay(l) and the lower frequency SFG input a4(/) after each pass through the
crystal. Since the OPO and the SFG processes are coupled in the crystal, iterating
the single-pass solutions to simulate the intracavity build-up of the signal and the

rotated signal flux densities is more appropriate for this configuration [30].

5.2 SD-OPO’s

5.2.1 Class-A SD-OPO’s

Fignure 5.9 shows the photon conversion efficiency, pump depletion and intracavity
signal flux density as functions of the nonlinear drive for four different values of
f. The intracavity signal flux density is shown normalized to the input pump
flux density. Ry, is taken to be 0.96 in all cases. The threshold nonlinear drive
Dy, s independent of 3. This is because conversion to the second-harmonic is

negligible in the small-signal regime and the small-signal gain is not affected by
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Figure 5.9: Conversion efficiency (), pump depletion (pd), and intracavity signal
flux density normalized to the input pump flux density (o) as functions of the
nonlinear drive for class-A SD-OPO’s. Ry, is taken to be 0.96 for (a) /4 = 0.5, (b)
B =1.0,(c) B=1.5,and (d) g = 3.0.

the SHG process. Hence, the threshold nonlinear drive of 0.041 is equal to that
of a regular OPO with £ = 0.96.

In class-A SD-OPO’s, maximum conversion does not coincide with complete
pump depletion, but the conversion efficiency and pumnp depletion curves are very
close. As f increases, the two quantities become nearly equal. The Manley-Rowe
conserved quantity of Equation (4.29) can be used to formulate a relation hetween
the photon conversion efficiency, pump depletion, and intracavity signal {lux den-
sity (normalized to the input pump flux density). Evaluating Lquation (4.29)
al z = { and z = 0, dividing both sides of the equality by the input pump flux
density «2(0), and using the steady-state oscillation condition {liquation (5.1)].
we obtain

ob=n+ (RLL— 1)0 (5.16)

where 6 is the pumyp depletion and o = «3(0)/a3(0) is the intracavity signal flux
density normalized to the input pump flux density. Since no output coupling
is employed, the resonator loss is usually small and the factor m front of o 1s

typically smaller than 1/10. Hence, conversion efficiency and pump depletion are



nearly equal. As /2 increases, the intracavity signal flux decreases as a result of
the nonlinear output coupling through the SHG process and the depletion and
conversion curves begin to overlap.

We observe that maximum conversion efficiency is high for all values of g
shown. As /3 increases, the nonlinear drive for maximum conversion increases
and becomes more difficult to attain. However, variations from this optimum

value do not affect the conversion efficiency significantly.

5.2.2 Class-B SD-OPO’s

Class-B SD-OPO’s require an intracavity polarization rotation for the signal field.
Two different modes of operation are possible, depending on the polarization
rotation configuration employed. In the first case, the signal is rotated by an
angle o, < 90°, so that a sin® o, fraction of the OPO signal flux density is coupled
to the SHG fundamental a4, while the remaining cos? v, fraction becomes the
input signal ay. For this configuration, we assume that the residual fundamental
at the crystal outputl ay(!) is either coupled out of the cavity with a polarizing
beamsplitter or strongly depleted, so that interference due to polarization mixing
al the half-wave retarder is avoided.

In this configuration, the total resonator reflectance becomes Ry, cos? v, There
is no nonlinear output coupling in this situation; the intracavity signal flux den-
sity is not affected by the presence of the SHG process. Even though the SHG
process is internal to the OPO resonator, this configuration is not different from
external frequency doubling of a rcgular OPO. Since the SHG process does not
benefit from high values of the intracavity signal flux density, this configuration
is not expected to be particularly efficient.

If the residual fundamental a4({) is not coupled out and «; is sct to 90°. the
retarder switches around the polarizations of the OPO signal «o({) and the resid-
ual fundamental a4(/) with no resulting interference due to polarization mixing.
The OPO signal at the crystal output provides the SHG fundamental «4(0) for
the next round trip, whereas the residual fundamental becomes the OPA input
a3(0). Since the two processes are not coupled in the crystal, this configuration is
conceptually equivalent to intracavity frequency doubling of a regular OPO with
a second crystal. The plane-wave theory of such two-crystal intracavity-doubled

OPO’s has been presented elsewhere previously [18].
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Figure 5.10: Conversion efliciency (7), pump depletion (pd), and rotated signal
depletion (rsd) of class-C SD-OPO’s as functions of the signal polarization rota-
tion angle a; for four different values of . The nonlinear drive is kept constant

at unity and L = 0.04 for (a) 3= 0.5, (b) = 1.0, (¢) # = 1.5, and (d) = 3.0.

5.2.3 Class-C SD-OPO’s

In class-C SD-OPOQ’s, the signal polarization rotation angle «vs can be adjusted
to change the degree of coupling between the OPA and the SHG processes for a
fixed value of 3. Figure 5.10 shows the conversion cfficiency and the depletion of
the pump and the rotated signal as functions of «; for four different values of /4.
where the nonlinear drive is kept constant at unity and L = 0.04. For # = 0.5 in
Figure 5.10(a), a maximum conversion efficiency of 0.62 is achieved at o, = 24°,
whereas the pump is fully depleted at «y = 28°. The depletion of the rotated
signal starts at 0.93 with «y just above zero and decreases monotonically until
the SD-OPO gets below threshold at «, = 49°.

For # = | in Figure 5.10(b), the maximum conversion efficiency is higher
(0.89) and complete pump depletion coincides with maximum conversion. lor
this particular value of /3, the depletion of the pump and the rotated signal fields
are equal for all values of ay and D, similar to class-C SF-OPO’s.  However.
simultaneous depletion of the pump and the rotated signal is possible only if /#
or 1//is an odd integer.

For 3 = 1.5 and 3.0, the conversion efficiency curve has more than one peak



and the maximum conversion efficiency is 0.79 and 0.89, respectively. The intra-
cavity signal flux density and consequently the conversion efficiency and depletion
curves show discontinuities in their «; dependence in Figure 5.10(d). In this case,
the smallest solution of Equation (5.1) below o, = 37° no longer satisfies Equa-
tion (5.1) as «; is increased above 37°. If o varied up and down, a hysteresis
behavior can be observed in the intracavity signal flux.

Iligure 5.11 shows the conversion efficiency and the depletion of the pump and
the rotated signal as functions of the nonlinear drive for four different values of
B. In each case, «; is adjusted to maximize the conversion efficiency at unity
nonlinear drive. Maximum conversion occurs at a nonlinear drive close to unity
for B = 0.5 and 1.5 and at exactly unity nonlinear drive for § = 1.0 and 3.0.
However, the conversion efliciency drops from its maximum relatively quickly
as the nonlinear drive is changed, when compared to class-A SD-OPOQ’s (see

Figure 5.9). This sensitivity to the nonlinear drive increases with increasing /3.
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Figure 5.11: Conversion efficiency as a function of the nonlinear drive for four
different values of /3 for a class-C SD-OPQ. For each f value, the signal polariza-
tion rotation angle oy is adjusted to maximize the conversion efliciency at ) = 1.
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Chapter 6

A Pulsed Plane-Wave Model

Even though the plane-wave theory of single-crystal upconversion OPQ’s pre-
sented in Chapters 4 and 5 describes the fundamental principles of these devices,
it is inadequate for accurate modeling of practical experiments. Such a model
requires one to include the effects of many experimental realities such as the
temporal and transverse profiles of the fields, GVM, GVD, and self-phase modu-
lation. As a first step, we found that developing a plane-wave model that takes
into account the temporal profiles of the fields and the GVM between the pulses
gives the most insight. This model does not take into account the Gaussian beam
nature of the fields, chirped pulses, or group velocity dispersion.

In order to be able to compare the results of this pulsed plane-wave model with
an actual experiment we decided to concentrate on class-C SI-OPO’s [42]. [9].
[43]. In a pulsed class-C SF-OPO, the OPO pump and the rotated pump (higher
frequency SI'G input) get separated from each other as they propagate inside the
crystal, since they have different group velocities. Since the signal gain is provided
by the OPO pump, the intracavity signal pulse is approximately synchronized
with this pump component and falls out of synchronization with the rotated
pump. This reduces the efficiency ol the SFG process. It was experimentally
demonstrated that introducing a group delay between the orthogonally polarized
pump components to compensate for the GVM inside the crystal maximizes the
conversion efficiency [42].

Effects of pulse propagation can be incorporated into the plane-wave model by
including time derivatives in the coupled mode equations. For class-C 51°-OPO’s
squations (3.5)-(3.9) become

da, I day (6.1)

o T T h~ RRIY)
dz v Ol '
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where v, are the group velocities for each field.

We used finite differencing techniques to compute numerical solutions of Equa-
tions (6.1) (6.5) [41]. The values of the physical parameters used in our calcu-
lations are based on the experiment by Koprili et al. [42] and are summarized
in Table 6.1. The refractive indices and group velocities are calculated using the

dispersion relations for the nonlinear crystal KTP [44]. The dispersion in the

Physical parameter Symbol  Value
Wavelengths (nm) A 2755.7
Ay 1182.4
As 827.4
As 827.4
As 186.8
Refractive indices n1 1.7870
Ty 1.7448
T3 1.7575
s 1.8419
N 1.3019
Group velocities (x 10® m/s) 01 1.6094
Vg 1.6896
U3 1.6631
Vs 1.5763
Vg 1.5352

Effective nonlinear coefficients (pm/V)
4, (OPO)  1.76
d. (SFG) 2.07

Total cavity reflectance Ry, 0.94
Crystal length (mm) [ 5

Table 6.1: Values of the physical parameters used in the pulsed plane-wave model

calculations.



effective nonlinear coefficient is accounted for using Miller’s Rule [38]. For con-
version from average power to temporal profiles of field amplitudes, the beams
are assumed to have uniform transverse profiles over a circular region of 28.8um
diameter, the full-width at half-maximum (FWHM) diameter of the pump beam
at the crystal focus [42]. The Ti:Sapphire pump laser used in the experiment has
a repetition rate of 76 MHz. The pump pulse is modeled with a sech pulse shape
that has an intensity FWHM of 170 fs.

We start out with a small signal pulse that has the same sech shape as the
pump to represent the parametric fluorescence that the cavity oscillations build
up from. This signal pulse is iterated through the cavity several times until a
steady-state is reached. At each round trip, the signal pulse meets a new pump
pulse and a fixed delay is introduced to the signal pulse in order to model the
adjustment of the cavity length to synchronize the signal pulse with the OPO
pump. The group delay between the OPO pump («3) and the rotated pump (as)
at the input is also adjustable.

We compute the photon conversion efficiency for a series of cavity length
(signal delay) values while keeping the polarization rotation angle ¢, and group
delay constant. We found that for a relevant range of o, and group delay values,
the signal delay required to maximize the conversion efficiency is in the 380-480 fs
range. This is in agreement with the 472 fs group delay between the OPO pump
and the signal in 5 mm of K'TP. The maximum conversion efficiency obtained by
varying the cavity length is taken to be the conversion efliciency at this «, and
group delay.

Next, we set the group delay between the pump components to 2 ps and
calculated the conversion efliciency for different values of ¢v,. Figure 6.1 shows
the results of this calculation for an average pump power of 515 mW together with
experimental data points. We have made no attempts to fit the predictions of the
model to the data by adjusting one of the physical parameters. The gualitative
agreement of our model with the experimental results is very satisfactory. The
quantitative agreement for the peak conversion efficiency, the optimum «,,, and
the threshold «, are reasonably good.

At zero group delay, we calculated the maximum conversion efficiency to be
22% at a polarization rotation angle of «, = 30°. These results are also in
reasonable agreement with the 15% maximum conversion efficiency measured at

@, = 33° in the experiment.
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IFigure 6.1: Conversion efficiency as a function of the pump polarization rotation
angle c,,. The solid line represents the model’s predictions and the filled circles
correspond to experimental measurements. The average pump power is kept
constant at 515 mW and the group delay between orthogonal pump components

1s 2 ps.

Our model predicted a pulse width of 210 fs for the sum-frequency output.
This is also in good agreement with the 225 fs value measured in the experiment.
Since our model does not take GV into account, this agreement suggests that

GVM is the dominating factor in determining the sum-frequency pulse width.



Chapter 7
Conclusions

The simultaneous phase matching of two different second-order nonlinear interac-
tions within the same crystal with one or more fields in common leads to a wide
range of frequency conversion applications. Both birefringent and quasi-phase
matching techniques can be used to phase match the two interactions. Quasi-
phase matching offers added flexibility in the choice of wavelengths, and brings
adjustability to the relative strength of the two processes.

In this thesis, upconversion OPO’s based on the simultaneous phase matching
of OPO and SFG/SHG were investigated. We have identified four classes of SF-
OPO’s and three classes of SD-OPQ’s, depending on which field components are
common. These seven classes of single-crystal upconversion OPQO’s are character-
ized by different sets of coupled mode equations, and consequently show different
characteristics from each other. However, efficient upconversion is possible in all
seven classes.

The most important design parameters for upconversion OPQ’s are the non-
linear drive and /3. For a desired set of wavelengths, the nonlinear drive depends
on the effective nonlinear coeflicient d, of the OPO process, the crystal length
[, and the available pump photon flux density af). Even though the pump flux
density can be adjusted by changing the beam size, experimental constraints may
limit the maximum available 2. The useful crystal length is also limited; phys-
ical limitations arise from crystal growth constraints, or in pulsed systems the
pulse overlap length may be limited due to GVM between the field components.
As a result, there is usually an upper limit to the available nonlinear drive. The
parameter /3 is even more difficult to tailor. Once the phase matched wavelengths

are known, BPM offers no method for adjusting 4. However, using QPM for the
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two processes provides a mechanism for adjusting /7.

The remaining parameters that play an important role in the performance
of single-crystal upconversion OPO’s are the polarization rotation angle a and
the cavity losses L. The polarization rotation required in five of the seven up-
conversion OPO classes provides an adjustable parameter, «, that may easily be
changed by rotating the half-wave retarder to maximize the conversion efliciency.
The cavity losses are best minimized in all classes except class-A SE-OPO’s; in
a typical experiment one can usually keep L < 0.05. For class-A SF-OPO’s how-
ever, one of the cavity mirrors may have to be replaced with an output coupler
for the signal field in order to maximize the conversion efficiency.

The practical design and optimization of single-crystal upconversion OPO’s
would benefit from the development of accurate computational models that take
into account the transverse and temporal profiles of the fields, and other im-
portant effects such as GVM, GVD, and self-phase modulation. As a first step
toward this goal. we have extended the plane-wave theory of Chapters 4 and 5 to
include the effects of temporal profiles of the fields and GVM. The results of this
pulsed plane-wave model for a class-C SF-OPO are in good qualitative agreement
with experimental measurements. The results also show that compensating for
the GVM between orthogonal pump components ol a class-C SF-OPO increases
conversion efficiency considerably.

There are two main future directions for our work. The first is to incorpo-
rate other experimental effects in the pulsed-plane wave model of Chapter 6.
for predicting the performance of single-crystal upconversion OPQ’s more accu-
rately. The incorporation of GVD and self-phase modulation requires one to add
new terms to Equations (6.1)~(6.5). The incorporation of transverse profiles will
increase the number of physical dimensions in Iquations (6.1)-(6.5), and will
therefore increase the computation time and memory requirements significantly.

The second future direction is to consider other combinations of second-order
nonlinear interactions for different frequency conversion applications. The plane-
wave theory of cascaded OPO’s was recently investigated [45]. Another possibility
is intracavity DI'G of the signal and the idler of an OPO with a second nonlinear
crystal, to provide long-wavelength radiation [46]. The generation of such long-
wavelength radiation with a regular OPO may not be feasible because of phase
matching limitations of available crystals [46]. The same combination can also

he realized with simultaneous phase matching within the same nonlinear crystal.
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