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ABSTRACT

PLANE-WAVE THEORY OF SINGLE-CRYSTAL 
UPCONVERSION OPTICAL PARAMETRIC 

OSCILLATORS

Yamaç Dikmelik
M.S. in Electrical and Electronics Engineering 

Supervisor: Assoc. Prof. Dr. Orhan Aytiir 
Aiignst 1998

'rhis thesis pi'('s('nts a theoi'etical analysis of single-crystal upconversion op­
tical parametric oscillators (OPO’s) where a single nonlinear crystal is used for 
both the OPO and sum-frequency generation (SPG) or second-harmonic genera­
tion (SHG). In these devices, the OPO and SFG/SHG processes are both phase 
matched for the same direction of propagation inside the crystal. Different po­
larization geometries for which this simultaneous phase matching condition can 
potentially be satisfied are identified and categorized, for both biréfringent. a.nd 
quasi-phcise matching methods. This categorization results in four classes of sum- 
frequency generating OPO’s (SF-OPO’s) and three classes of self-doubling OPO’s 
(SD-OPO’s). Plane-wa.ve coupled mode equations a.re presented for each of these 
seven classes. Solutions of these coupled mode equations, and calculation of the 
single-pass saturated signal gain are outlined. The dependence of the photon 
conversion efficiency on various design parameters are investigated. .Λ pulsed 
plane-wave model that takes into account the temporal profiles of the fields and 
the group velocity mismatch between pulses is constructed. This model is in good 
qualitative agreement with experimental measurements of a class-G SF-OPO.

Keywords: Noidinear frequency conversion, optical parametric oscillatoi-s. 
parametric devices, sum-frequency generation, second-harmonic generation, (|uasi- 

pha.se matching
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ÖZET

ТЕК KRİSTALLİ YU K A R I-Ç E V R İM  OPTİK PARAM ETRİK  
OSİLATÖRLERİNİN D Ü ZLEM -D ALG A TEORİSİ

Yamaç Dikmelik
Elektrik ve Elektronik Mühendisliği Bölümü Yüksek Lisans 

Tez Yöneticisi: Doç. Dr. Orhan Aytür 
Ağustos 1998

Bu tezde, tek bir doğrusal-olmayaıı kristalin hem parametrik üretim, hem 
de toplam-frekansı üretimi (SFG) veya ikinci-harmonik üretimi (SHG) için kul- 
lamldığı tek-kristalli yvdvan-dönüşüm optik parametrik osilatörlerinirı (OPO) ku­
ramsal analizi sunulmaktadır. Bu cihazlarda, hem OPO hem de SFO/SHG 
süreçleri kristcil içindeki aynı yayılım yönü için faz e.didir. Bu aynı sırada faz eşli 
olma koşulunu sağlayabilecek farklı polarizasyon geometrileri, hem çift-kırınımh 
hem de yaklaşık faz eşleme yöntemleri için belirlenmiş ve sınıflandırılmıştır. Bunun 
.sonunda, toplam-frekansı üreten OPO’lar (SF-OPO) için dört, ikinci-harmonik 
üreten OPO’lar (SD-OPO) için üç sınıf belirlenmiştir. Bu yedi sınıf için ayrı 
a}̂ ·! düzlem-dalga bağlı mod denklemleri ve tek-geçişte doygun sinyal kazancı 
hesabı sunulmuştur. Foton dönüşüm veriminin çeşitli tasarım parametrelerine 
olan bağlılığı incelenmiştir. Alanların zamansa] profilini ve darbe grup hızı uyum­
suzluğunu hesaba katan bir darbeli düzlem-dalga modeli oluşturulmuştur. Bu 
model, deneysel bir (.'-sınıfı SF-OPO’nun ölçümleri ile uyumlu sonuçlar vermiştir.

Anahtar kelimeler. Doğrusal olmayan frekans dönüşümü, optik parametrik 

osilatörler, parametrik cihazlar, toplam-frekansı üretimi, ikinci-harmonik üretimi, 
yaklaşık faz eşleme.
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Chapter 1

Introduction

Lasers find applications in many fields such as telecommunications, medicine, de­
fense, printing, entertciinrnent, and basic science. A particular application places 
various demands on a number of laser properties such as its wavelength, power, 
beam profile, and bandwidth. One of the most important laser properties is the 
wavelength of operation.

The operating wavelength of a laser is determined by the energy level differ­
ences of the material used as the laser gain medium. For most laser materials, 
these energy level differences are fixed and the operating wavelength of the laser 
cannot be tuned. Even though tunable lasers that utilize transitions between 
broad energy bands exist, the wavelength ranges for these lasers are relatively 
narrow.

It is of great technological importance to convert the output of a laser to 
diflerent wavelengths in a.n efficient manner. This conversion can be achieved 
using nonlinear optical materials. In such materials, the polarizcition density has 
a nonlinear dependence on the electric field. For most nonlinear materials userl 
in frequency conversion, this nonlinear dependence is quadratic. This second- 
order nonlinear dependence leads to an energy exchange between optical fields at 
d i fferent wavelengt h s.

Second-order nonlinear interactions lead to such frequency conversion ap])li- 
cations as second-harmonic generation (SIICl), sum-frequency generation (SFC), 
and difference-frequency generation (DFG). With SHC, the output beam ol a 
laser can be converted to a beam at twice the fre(|uency. SHCl is the most widely 
used second-order interaction, since this process requires only a single laser. In 
SFC and DFG, two lasers with different frequencies are used to generate the



sum-frequency or the difference-frequency of the frequencies of tlie two lasers.
Another second-order interaction is optical parametric amplification; of the 

two input beams lor the DFG process, the lower frequency beam is amplified. 
The gain provided l)y an optical parametric amplifier (OPA) can be enclosed in 
an optical cavity to construct an optical parametric oscillator (OPO), much like 
a laser amplifier is enclosed in a cavity to construct a laser. The OPO requires a 
single laser as its input; this laser is the source of energy for the OPO cind is said to 
pump the OPO. The initial light energy at the amplified frecjuency is provided by 
parametric fluorescence, similar to spontaneous emission in lasers. This fact also 
allows for the tunability of OPO’s. This tunability is achieved by manipulating 
the momentum conservation (phase matching) condition by rotating the nonlinear 
crystal or by changing the crystal’s temperature.

By itself, an OPO can only provide downconversioii to longer wavelengths. 
Upconversion to shorter wavelengths is achieved with the use of SHG or .SFG in 
conjunction with an OPO. One approach is to first frequency-double the laser 
and then use the second-harmonic as the OPO pump [1], [2]. A more widely 
used technique is to use the OPO output for SHG in a second nonlinear crystal, 
either outside [3] or inside [4], [.5] the OPO cavity. Intracavity SHG is usually 
more efficient because of the high intensity of the resonant field. SFG of the 
OPO output with the pump laser also provides upconversion, and can be imple­
mented extracavit}^ or intracavity [6], [7]. These two crystal upconversion OPO’s 
have successfully generated tunable light at visible wavelengths, but with limited 
conversion efficiencies.

Single-crystal ui^conversion OPO’s, where SHG [8] or SFG [9] takes place 
within the OPO crystal itself, have recently been demonstrated. These new 
devices provide highly efficient schemes for frequency u])conversioii.

The modeling of practical OPO’s is an involved tcisk. The simi)lest (Vpproach 
is to assume that the fields are uniform monochromatic plane waves. However, 
in a real OPO, the pump beam usually has a Gaussian transverse profile. If the 
pump laser is pulsed, the temporal profiles of the pulses also have to be taken 
into account. For OPO’s pumped with ultrafast lasers, the ultrashort pulses get 
separated in the interaction, due to their differing grou|J velocities. 'Phis effect is 
called group velocity mismatch (GVM). .Such ultrashort pulses aix' also broadened 
in the nonlinear crystal, due to group velocity dispersion (GVD). Furthermore, 
the intense resonant pulse in the OPO cavity is modified by self-phase modulation.



a third-order nonlinear effect, in the nonlinear crystal. To account for all these 
effects accurately, coupled nonlinear partial differential equations that govern the 
propagation and nonlinear interaction of fields have to be solved. Moreover, these 
solutions should be iterated for several round trips in the OPO cavity, to find the 
steady-state temporal and transverse profiles of the resonated field.

The plane-wave theory of OPO’s was investigcited in the early sta.ges of OPO 
development [10]. The effects of Gaussian profiles were first investigated by as­
suming plane-wave solutions at each point in the transverse plane [11 ]. The 
effects of transverse and temporal profiles for pulsed OPO’s operating in the 
nanosecond regime have recently been investigated with an accurate numerical 
model [12]. The effects of GVM and GVD on ultrafast OPO performance were 
first modeled by assuming plane-wave transverse profiles [13], [14], and then by 
taking into account the more realistic Gaussian profiles [b5], [16]. The plane-wave 
theory for two-crystcd upconversion OPO’s has also been studied [10], [17], [18]. 
Even though the plane-wave analyses cannot model an experiment ciccurately, 
they bring out the fundamental physics behind these devices.

In this thesis, the plane-wave theory of single-crystal upconversion OPO’s is 
presented. The theoretical background on second-order nonlinear interactions is 
provided in Chapter 2 . Possible phase matching geometries are identified and 
classified, and the associated sets of differential equations are presented in Chap­
ter 3. Next, solutions of these sets of equations are discussed in Chapter 4. In 
Chapter ·5, the dependence of the conversion efficiency and other OPO perfor­
mance measures on physical parameters are investigated. A pulsed plane-wav(' 
model that takes into account temporal profiles and CVM is constructed in Cha.|)- 
ter 6. Finally, conclusions and future directions are presented in Chapter 7.



Chapter 2

Second-Order Nonlinear 
Interactions

111 this chapter, we first present the wave equation for a nonlinear medium, where 
the polarization density is a nonlinear function of the electric field. Three optical 
fields interact through a second-order nonlinearity, and this interaction is gov­
erned by the coupled mode equations which are presented next. We then discuss 
phase matching, a condition that has to be satisfied for efficient frequency con­
version. We finally introduce optical parametric amplification, optical parametric 
oscillation, SFC!, and SHG.

2.1 The driven wave equation

The interaction of optical fields in a second-order nonlinear medium is governed 
Iry the driven wave equation, do arrive' at this eqimtion, one can start with 
Maxwell’s equations in a. medium with no free charges and currents

and the constitutive' relations

V D = 0 (2.1)

V B = 0 (2.2)

V X E
OH

-

(2.3)

V X H
OD
di

(2.4)

ions

D = cqE + P (To)

B = /¿oH. (2.6)



The consititutive relation for B [Equation (2.6)] assumes that the materici.1 is 
nonmagnetic.

In a nonlinear medium, tlie polarization density P 1ms a nonlinear dependence 
on the local electric field E [19]. When the fields a.re a discrete sum of monochro­
matic plane waves at different frequencies, P can he expressed in the powers of 
E a.s

P = fo[x‘ ' ’ -E -h E - x('^ )-E -f E - (E ·  v<">-E) + ···] (2.7)

= P ‘ >̂ +  P ‘ >̂ +  P(·̂ ) +  · · · (2.8)

where is the linear electric susceptibility tensor, is the second-order 
nonlinear susceptibility tensor, and so on. In materials that do not have a center of 
symmetry, is nonzero and higher order nonlinearities can usually be neglected. 
The focus of l.his tho.'sis is on second-order nonlinear interactions in such materials.

The driven wave eciuation is obtained bĵ  taking the curl of Equation (2.3), and 
substituting Equation (2.4). For uniform plane waves, the driven wave equation 
can be simplified by using the vector identity V x V x E  = V (V -E )  — V^E, 
since V  · E = 0 for a phme wave [19]. The driven wave equation then becomes

V^E =  ¡J.Qd'̂ T>
W

(2.9)

It is convenient to split the linear and second-order noidinear optical properties 
of the medium so that,

D = D'  ̂ + P'^) (2.10)

wlu're
D^ = eoE-fP<‘ * (2.1 1 )

is the linear part of D. With this separation, the driven wave equation takes the 
form

V ' E - / / . o - ^  = /io— vr— . (2. 12)- Q2f ■
d'o put the driven wave equation in a form where we can interpret the (dfect of 
tlie second-order nonlinear polarization density, we consider the simple case of an 
isotropic medium, for which is a scalar quantity rather than a tensor. 'Fhen, 

the driven wave (Xjuation can be expressed as

V '^ E -
¿ ) 2 p ( 2 )

= Mo- (2.13)2̂ i)2[ [)2l

where n =  \Ji + \3b is the refractive index of tlu' medium. I'lie second-order 
nonlinear part of the polarization density acts as a source term in tlu' driven 
wave equation and leads to the generation of new o])tical fre(|uencies [19].



2.2 Coupled mode equations

In a second-order nonlinear medium, the nonlinear part of the polarization den­
sity is a cpiadratic function of the electric field, and the nonlinear interaction is 
between three waves that satisfy the frequency relation u-q = u>y -|-u;2 [19], [20]. For 
uniibrm plane waves propa.gating collinearly in the .^-direction, the scalar form of 
Blquation (2.13) is adequate. When these plane waves are also monochromatic, 
one can define complex amplitudes A by

= Re[zl„,e '̂(‘̂ "‘ ‘ “ ·̂”·"*] ?ri =  1,2,3 (2.14)

where km =  are the wavenumlxu's. The refractive indices ??.„( are allowed
to be different for each wave since real materials are dispersive and the natural 
birefringence of anisotropic crystals is used for phase matching (see Section 2.3). 
We also represent the nonlinear polarization at each frequency as

Pm [zP ) =  Re[P„>e·'"'”“'] m =  1,2,3. (2.1-5)

The complex amplitude of the nonlinear ]iolarization at each frequency can then 
be expressed as [19], [21]

(2.16)

P-i = (2.17)

(2.18)

where (4 is the effective nonlinear coefficient. The same nonlinear coefficient 
appears in all three nonlinear polarizations because we assume the material to be 

lossless [19].
We also assume that the variation of conq)lex amplitudes in a distance of a 

wavelength is small and the relation
d'M,
dz^ k

dA,
dz

■m 1,2,3 (2.19)

is valid. This is called the slowly-varying envelope approximation [19] and is a 

very good approximation at optical frequencies. With this approximation, we 
obtain the coupled .set of equations for the complex amplitudes

dA,
1 7
dA2
dz

d/7
dz

iAk·-■ ^ 1  A /1« - /= - j ------/l;f/I.̂ C ■'
n,c

n-iC
■‘̂ 1  I . iAk·’= - j  —  A ,A 2f'^ ·̂·

n-.iC

( 2 . 20 )

(2.21)

(2 .2 2 )
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where Ak = k:̂  — k2 — k\ is the phase mismatch. These equations are called the 
coupled mode equations and they govern the evolution of tlie field amplitudes as 
the three waves interact through the second-order noidinearity.

Different initial conditions at the input of the nonlinear medium lead to various 
frequency conversion processes. These SFG, SHG, and DFG. In the DFGprocess, 
one of the incident waves is amplified. If this aspect is more important for the 
application, the nonlinear process is called optical para.metric amplification.

Second-order nonlinear interactions can also be viewed in terms of quantum 
mechanics, as three-photon interactions [20]. In SFG for e.x;ample, two photons 
of energy Tuoy and hu>2 combine to form a photon of energy hojyy. The frequency 
relation uz — -{■ oji can then be interpreted as a statement of conservation of
energy.

2.3 Phase matching

For a second-order interaction to be strong, the phase matching condition Ak — 0 
has to be satisfied. When this condition is satisfied, the nonlinear polarization at 
each frequency travels with the same phase velocity as the electric field at that 
frequency [22]. In this case, the nonlinear polarization and the electric field at 
each frequenc}^ remain in phase throughout the interaction and the e.xchange of 
energy between the waves is efficient.

In terms of the quantum mechanical picture of second-order noidinear inter­
actions, the phase matching condition can be interpreted as momentum conser­
vation. In SFG, the generated photon at ^3 must have the same momentum hkz 
as the sum of the momenta of the combined photons at u)i and u.'2.

The most common way of achieving phase matching is to em|)loy the natuial 
birefringence of nonlinear crystals [19], [23]. Recently, the method of quasi-|)lia.se 
matching has come into widespread use. This method has the potential to phase 
match any second-order nonlinear interaction, the oidy limitation being tlu' trans­
parency range of the nonlinear crystal [24], [25].

2.3.1 Biréfringent phase matching

Most materials exhibit normal dispersion, that is. the refractive index a wave 
experiences increases with increasing fre(iuency. The |)hase matching (■ondition



expressed in the form
7r3U;3 =  + 77.2̂ 2 (2.23)

and the frequency relation 073 =  cui +  a>2 cannot Ire simultaneously satisfied in a 
material with normal dispersion.

In an anisotropic crystal, there are two eigenmodes of polarization for any di­
rection of propagation inside the crystal. These two modes are linearly polarized 
waves with orthogonal polarizations [20]. The orthogonally polarized eigenmodes 
experience different refractive indices, hence an cinisotropic crystal displays bire­
fringence. The refractive index an eigenmode experiences also changes with the 
direction of propagation inside the crystal. The phase matching condition can 
be satisfied by having one of the waves polarized orthogonally to the other two 
and by varying the direction of propagation inside the crystal. This is called 
biréfringent phase nicitching (BPM).

In materials exhiljiting normal dispersion, the highest frequency wave of the 
interaction has to be polarized along the fast axis of the crystal, the axis with the 
lower refractive index. The remaining possibilities for the direction of polarization 
of the two lower frequency waves lead to three different types of BPM. In this 
thesis, we follow the convention that the fields are la.beled according to u)\ < u)2 < 
LV3 . In type-I BPM, both the lower freciuency waves at u>i and u>2 are polarized 
along the slow axis, whereas in type-II (III) BPM, the lowest frequency wave at 
u7] is along the fast (slow) axis and the remaining wave at u)2 is along the slow 
(fast) axis. These possibilities are sumniiu'ized in Table 2.1 and Figure 2.1.

Type 073 ^  U7i -f- 072
I /  ^  ,s +  ,s
II ./■ ^  ./■ +  ·̂·
III ./■ + ./■

Table 2.1: Potential phase matching types for BPM of second-order iionlim'ar 
interactions. Normal dispersion is assumed. The fast and slow axes are denoted 
by /  and s, respectively.

2.3.2 Quasi-phase matching

Quasi-phase matching (QPM) is achieved in most cases by employing ])eriodic 
domain reversals in feiroelectric crystals [24]. These domain revcnsals lead to a



TYPE-I TYPE-II TYPE-III

t
(0.

CO.

Figure 2.1 : Polarization geometries lor BPM types. The fast axis is liorizontal 
and the slow cixis is vertical.

periodic modulation of the sign of the effective nonlimxu· coefficient. The nonlin­
ear coefficient then becomes a periodic function of and can be represented by a 
Fourier series

d{z) =  d, ^  GVP*··"·' (2.24)

where G, = i\ and A is the period of the modulation. In QPM, a particular 
spatial harmonic of tlie modulation compensates for the phase mismatch [24] and 
k'i — k-2 — k'l — kn becomes zero. The order n of this spatial harmonic gives a degree 
of freedom for phase matching. If the non-phase matched harmonics are ignored, 
the effective nonlinear coefficient of the quasi-phase matched interaction is equal 
to d,,Gn· With QPM, the highest frequency field of the interaction does not 
have to be polarized along the fast cixis of the crystal anymore, and the number 
of potential phase matching types becomes eight. However, QPM is usually 
achieved with all fields polarized along the same direction, to take advcuitage of 
a large diagonal element of the second-order nonlineai' susceptibility tensor \ 

When the nonlinear coefricient is modulated by periodic sign reversal.

G'„ = ------------- sin(7rnl')
J?.7T

(2.25)

where 1' =  /q/A  is the duty cycle and Iq is the length of the reversed domain 
in a single period [24]. The largest possible nonlinear coefficient is obtained l̂ y 
first-order QPM with 50% duty cycle and is equal to 2j d j n .

2.4 Optical parametric amplification

In an OPA, an intmisi; field at cu3 amplifies a weak field at either u>[ oi' LO2 . If 
either one of the lowei' frequency fields at u>i or u>2 is not j:)resent initially, that 
field is generated in the interaction. In OPA terminology, the intense field at u>:\ 
is called the pump, the amplified field is called the signal, and the generated field
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is called the idler. In this thesis, we assume for definiteness that the signal is at 
oo-i- However, the results presented below are equally valid if the signal is at uo\.

In any second-order nonlinear interaction, the lack of one of the three inter- 
cicting waves at the crystal input leads to field solutions whose intensities are 
independent of the relative ¡diases of the two input fields. In an OPA, the idler 
field is absent at the crystal input, and the generated idler field adjusts its phase 
to match the phase difference between the pump and the signal. To show this 
result analytically, the coupled mode ecpiations for the complex field cimplitudes 
[Elquations (2.20) - ( ‘2.22)] are first converted to equations lor real field amplitudes 
cuid phases. We also normalize the real field amplitudes so that their squares 
correspond to photon flux densities. The transformation from the complex field 
cunplitudes to real amplitudes a,i and phases for a phase matched interaction 
is

' 2 hu>;
A,

The resulting real ecpiations are

dill

-an:
riiCi.0

dz
d(l2
H
da-i
dz
dip

= —/vaa3rt2 sm (p 

= —/vn,a3«i sin (y?

= Kaiiitt^sini/?

K.„
ai(i2 (Hii'i rti«3 cos ip

(2.26)

(2.27)

(2.28) 

(2.29) 

( 2 . ;10 )
«3 «1 a 2

where ip =  (/>3 — (j)2 — '/’1 [21]· In these equations, thei'e is only a single coupling 
constant for the interaction

/v,, d(̂  1
2 h luJ]L02iO:\

c ' h o V  ? i l ' » - 2 ' " 3
( 2. ; l l )

Substituting the real amplitude equations (2.27)-(2.29) into the plia.se equa­
tion (2.30) gives

dip cos <p d
ln(ai«2«3). (2.32)

dz sin ip dz

It ma.y b(' verified liy direct diffen-entiation that this equation can be rewiltten as

d
dz

ln(rtirt2«3 cost/?) = 0. (2..33)

fh'iHX'. « i « 2rt3Cosi/? is a conserved quantity; it does not depend on the propa.gation 
distance ;·. If one of the three fields has zero am])litud(' at l.he crystal enti'ance.

1 0



this quantity has a constant value of zero. Since the field that is not present 
initially is generated in the interaction, ip has to be equal to ± 7 t / 2  throughout 
the interaction so that coup — 0. In an OPA, the generated idler acquires a 
phase that makes p equal to —-k¡'I. In this case, the coupled mode equations 
that describe the interaction are

(Icii
1 7 (2.34)

da 2 
dz

K-aXlsai (2.35)
das
dz (2..36)

In terms of the quantum mechanical picture of second-order nonlinear interac­
tions, when a signal photon is created, a pump photon is annihilated and an idler 
photon is created [19], [20]. The Ma,nle_y-Rowe relations express the conserved 
quantities

6’i — af{z) +  al{z) — « 3(0)

0-2 =  a^^{z)a^^{z) =  a.̂ (0) +  «3(0)

(2.37)

(2.38)

in terms of the photon flux densities [19], [20]. These quantities can be used to 
transform the coupled mode equations for an OPA [Equations (2.34)-(2.36)] to 
a single differential equation which can be integrated to obtain the solutions for 
field amplitudes in terms of .Jcicobi elliptic functions. We define a new variable 
0 [z) through

a\[z) =  yC'i cosfl(.~) (2.39)

(2.40)

Since no idler is present at the crystal input, fl(0) is equal to an odd multiple of 
7t/ 2; for convenience, we choose 11(0) = tt/ 2. Substituting into Equation (2.34), 
the signal field amplitude is obtained as

1 dO
« 2(c) = ------- - .

K.,, dz
(2.41)

We then substitut.e Equation (2.41) into the Manley-Rowe relation for C2 [Equa­
tion (2.38)] to get a single differential eriuation

2
I f  I = (2.42)



in the variable 0{z). When integrated, Equation (2.42) give.s
rO

J TV// 7t / 2
(2.43)

wliere nia =  6’i/C'2. Tlii.s integral can be expressed in terms of the clli|)tic integrcd 
of the first kind [26], whose inversion l(!ads to .Jacobi elliptic functions. The 
integral first has to be i>ut into a slandard elliptic integral form so that its lower 
limit is zero. This leads to

rO
(2.44)

fO ,
/  (1 -  m„sin'fo/>)"^/'fo/'0 =  K(m.a) -  k„\/C2Z -  Z„ 
Jo ^

where

K { n i a ) =  I (1 -  ???a sin'"̂  ■(/’ ) (2.45)
is the complete elliptic integral of the first kind, and is also the qiuirter-period 
of .Jacobi elliptic functions [26]. The angle 6 , whose value at the crystal output 
is unknown, is called the amplitude and ???.„ is called the parameter in elliptic 
function terminology [26]. The Jacobi elliptic function sn is defined in terms of 
the cimplitude 9 as sn(Z„|m„) = sin<?. We then obtain the solutions for the field 
amplitudes as

a^{z) =  yC i  cn(Z„,|/7?.„) (2.46)

(h{z) = y /^ d n (Z jm „ ) (2.47)

(isiz) = ^/C¡ Sn{Za\nia) (2.48)

where the Jacobi elliptic functions cn and dn are defined as cn(Z„ =  cosd 
and dn(Z(,,|??i.(i) = 1 — m.aSn {̂Za\ma); respectively.

Figure 2.2 shows the evolution of the photon flux densities in an OPA, cojn- 
puted using the solutions (2.46)-(2.48). The photon flux densities are normalized 
to the incident pump photon flux density « 3 ( 6 ) .  We define a dimensionless nor­
malized propagation distance  ̂ so that tlie results are [)resented in
a more general fashion. F'or this example, the input signal photon flux density 
is 0.25 times the input pump photon flux density, and therefore, ni„ = 4/5. .As 
shown in Figure 2.2, the signal field is amplified in the interaction until the pump 
field is fully depleted. At this point, the argument Z„, of the Jacobi elliptic func­
tions becomes equal to zero [26]. Afterwards, the interaction reverses direction, 
and the signal photons combine with the idler photons to regenerate' the pumj). 
This SFC process is called back-conversion. The interaction continues in this 
fashion and the thi'ee fields exchange energy periodically as they propa.gate in 
the nonlinear crystal.
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F'igure 2.2: The evolution of the pump, signal, and idler photon flux densities in 
an OPA as functions of the norniiilized propagation distcince All photon flux 
densities are normalized to the incident pump photon flux density. The input 
signal photon flux density is 0.25 times the input pump photon flux density.

2.5 Optical parametric oscillation

An OPO is constructed by placing the OPA crystal inside a resonator. If the 
resonator mirrors reflect only at the signal frequency, the OPO is singly-resonant. 
Singly-resonant OPO’s are preferred to doubly-resonant OPO’s (in which both 
the signal cind the idler are resonated), ]rrimarily because the phase-insensitive 
OPA interaction in a singly-resonant OPO results in stable operation. However, 
doubly-resonant OPO’s hcive a significantly lower threshold pump intensity. They 
are therefore employed if the available peak pump intensity is limited.

In a singly-resonant OPO, one of the mirrors is 9. partial reflector at th(' 
signal frequency in order to couple the signal out of tlu’ resonator. If tlu' small- 
signal (unsaturated) gain is larger than the total cavity loss (output coupling and 
parasitic useless losses combined), oscillation starts and the signal field intensity 
starts to grow. The initial signal intensity is usually provided by spontaneous 
parametric fluorescence [27], not by a laser at the signal frequency, d'he OPO 
reaches steady-state when the saturated signal gain compensates for the loss 
exactly. The steady-state oscillation condition is

,« 2(0R
a¡(0)

2.49)



Figure 2.3: The iiitracavity signal flux density of an OPO is found l:)y the inter­
section of the gain saturation curve and the resonator loss line (of value 1/R). For 
this example, the nonlinecir drive of the OPO is unity and the lumped resonator 
reflectance R =  RocRl is 0.9. The signal flux density is normalized to the input 
pump flux density.

where R. — RqcRl] Roc is the reflectanc(; of the output coupler, /?l is a lumped 
reflectance representing useless losses, and / is the crystal length.

To find the intracavity signal photon flux density (/-2(0), in general one has to 
solve Equation (2.49) iteratively using a numerical root-finding algorithm. In this 
thesis, the secant method is used for finding the root of the function /[o-liO)] = 
7?a2( / ) / « 2(0) — 1. The .secant method starts with two initial guesses on « 2(0). 
At each iteration, the saturated signal gain g =  d2 i^)la\{Q) is calculated using 
the single-pass solutions [Ec(uations (2.46)- (2.48)] and the next ai)proximation 
to « 2(0) ta.ken to Ire the zero-crossing of the line that passes tlirough the two 
previous approximations [28]. The algorithm stops when the difference Iretween 
the last two approximations is less than a specified tolerance.

F'dgure 2.3 shows an example of gain saturation for the signal field as a. function 
of the intracavity signal photon flux density. The gain saturation in an OPA is 

com|)letely chcu-acterized by the dimensionless paramet(?r I) = [a:,,('/.3(0)/] ,̂ called 
the nonlinear drive [10], [23], [17]. The nonlinear drive is a measure of the strength 
of tlu' interaction. In Fdgure 2.3, the noidinear drive is chosen to be unity and 
this results in a small-signal gain of 2.4.



In the small-signal regime, the depletion of the pump field is negligible. There­
fore, the small-signal gain go can be obtained by solving the coupled mode equa­
tions [Equations (2.34)-(2.36)] with «3 taken to be constant. In this regime,

α·2{ζ) =  « 2(0) cosh[K,,a3(0).:] (2..30)

and the small-signal gain is go ~  cosh^(\/Z)). The threshold nonlinear drive Dti, 
can l>e found by solving Rgo =  1 lor D.

Also shown oil Figure 2.3 is a loss line representing a resonator loss of R =  0.9. 
The intersection of the gain saturation curve and the loss line gives the intracavity 
signal flux density. For this example, the intracavity signal flux density is 4.8 
times the input pump flux density. Once the intracavity signal flux density is 
known, the field amplitudes at the cr\'slal output can be calculated using the 
single-pass solutions [Equations (2.46)-(2.48)].

The performance of an OPO is characterized by the photon conversion effi­
ciency (also called the ([uantum efficiency [10], [23])

{ i - R o c ) a l ( l )
a m

(2..51)

the ratio of the signal photon flux density coupled out of the Ccwity to the input 
pump photon flux density. Figure 2.4 shows the conversion efficiency of the OPO 
as a function of the nonlinear drive for four different values of the output coupler 
reflectance Roc- each case, R  ̂ =  1 . The OPO can be very efficient, with 
conversion efficiencies reevching 100% for ])articula.r values of the nonlinear drive. 
These maxima of conversion correspond to complete depletion of the pnni]). If the 
nonlinear drive is increased still further, the convei'sion efficiency drops because 
of ba.ck-conversion. Note that for a given value of the nonlinear drive, the out])ut 
coupler reflectance can l)e o|)timized for maximum conversion [10], [23]. Figure 2.3 

shows the dependence of the optimum Roc on the nonlinear drive. The optimum 
R qc  decreases monotonically with increasing nonlinear drive.

2.6 Sum-frequency generation

In SFG. a lower IVequency in[)ut field at and a higher frequency input field 
at tur, interact to generate their sum-frequency at u-Vj =  u-m -f a.’5. .As in the 
OPA case, the lack of a snm-frequency field at tlie crystal in|)ut leads l.o phase- 
insensitive field solutions; the generated sum-frequency field acqulix's a phase so



Figure 2.4: Photon <'onversion efficiency of the OPO as a function of the nonlinear 
drive fo)· four different values of Roo- Rl is taken to he unity.

F'igure 2.5: Optimum output coupler rellectcmce Roc hu' fhe OPO as a function 
of the nonlinear drive. R\̂  is taken to be unity.

that φ — φα — Φγ, 
interaction are

φ,̂  = 7t/ 2. The coupled mode e(|uations that govern the

da.{
dz
dur,
1 7

dz
(2.52)

(2.55)
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with the coupling constant

dâ
dz

Kb = df

— /v lyCtîCt 5

I 2h
Ĉ Cq

LO:\iOr̂iOQ

(2.54)

(2.55)n.-iUrJlG

The solutions lor the SFCJ i)rocess are in terms of .Jacobi elliptic functions as in 
OPA’s. However, the SFG solutions clei)encl on which of the two input fields lias 
smaller photon flux density at the crystal input. The interaction reverses direction 
when the field with the smaller photon flux density is fully depleted inside the 
crystal, and back-conversion (parametric amplification) begins. If a|(0) > «¡(0), 
the solutions are [17]

« 4(2:) =  dn{Zb\rni,) (2.56)

«s(^) = \ /^  cn(Zb\rnb) (2.57)

« g('~) = \/G2 sn{Zb\rnb) (2.58)

(2.59)

(2.60)

(2.61)

(2.62)

where

Cl = al(z) + (il{z) == aliO)

C, = 4 i^ )  + 4 i z )  =  aliO)

are the Manley-Rowe conserved quantities and

Zb = ^hy C\ z
C 2rn, =  -  .

The solutions lor the case « 5(0) > «¡[(O) are olrtained by interchanging the field 
subscripts 4 and 5 and the Manley-Rowe subscripts 1 and 2.

Figure 2.6 shows the evolution of photon flux densities in SF(1 for the cas(' 
ai](0) > « 5(0). All photon flux densities are normalized to «¡((O). The higher 
frequency SFC input field is completely depleted at Zb =  2.3, at wliich point tlu' 
sum-fre(iuency photon flux density reaches its maximum value. After this point, 

back-conversion of the sum-frequency to the SFG! input fields Ijegins and tlie SF(! 

photon flux density decreases.

2.7 Second-harmonic generation

In SHG!, an incident field at u  leads to the gemoration of liglit at 2u>. 'I’he inci­
dent field at u is called the fundamental and the generated field at 2 lv is called



Figure 2.6: The evolution of the lower frequency SFG input (a.i), higher frequency 
SF'G input (as), and suni-frequency (ae) photon flux densities as functions of the 
normalized propagation distance G All photon flux densities are normalized to

the second-harmonic. SHG can also be viewed as SFG degenerate in frequency 
(cû4 — u-’s =  cu). However, the phase matching type may require the fundamen­
tal field to have two components polarized along orthogonal eigenmodes of the 
crystcd. In type-II phase matched SHG, the fundamental field is nondegenerate 
in polarization. In other words, the fundamental has two orthogonally polar­
ized components (I4 and 05. In this case;, the coupled mode equations are tlu' 
same as the equations for SFG [Elquations (2.52)-(2.54)]. The usual practice in 
non-degenerate SHG is to orient a linearly polarized fundamental field at a 45° 
angle to the two eigenpolarization directions since maximum conversion to fhe 
si'cond-harmonic takes place if the incident fundamental components have the 
same photon flux density. For this orientation, the SHG process becomes de­
generate and this degeneracy reduces the number of coupled mode equations to 

two [19].
In type-I phase matched SHG, the fundamental field is degenerate in both 

frec|uency and polarization; the fundamental field is polarized along the slow axis 
of tli(' ciystal and it cannot be decomposed into two disl.inct fields corresironding 
to u>,i = ca and u>r̂ = co. In terms of normalized real field amplitudes, the equations
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that govern degenerate SHG are

with the coupling constant

da,\
clz
düß

t'X'i) — df>

— —K\)CißCL\

-Kiya\

(2.63)

(2.64)

2 h / 2u;3
c'̂ Co V (2.65)

where is the fundamental at lo and ciq is the second-harmonic at 2a;. The 
solutions to this set of equations are [19]

where

04(2) =  rti(0).sech(f

aQ{z) —■ ^ f i 4(0)tanhi^
v 2

( 2 .66)

(2.67)

(2 .68)

is the normalized propagation distance. There is only one Manley-Rowe conserved 
fluantity for SHG, and this quantity

(̂ ’1 — + 2ag(.s) — â ,(0) (2.69)

is proportional to the total intensity in the interaction.
Figure 2.7 shows the evolution of the photon flux densities along tlie direc­

tion of propagation inside the crystal for SFIG. Both photon flux densities are 
normalized to the incident fundamental photon flux density. In contrast to other 
second-order nonlinear intei'cictions, the photon flux densities do not evolve peri­
odically in degenerate SHG. The second-harmonic photon flux density increases 
monotonically, and all of the input fundamental flux density is converted to tlu' 
sccond-harmonic in the limit of infinite interaction lentith.
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Figure 2.7: The evolut.ion of the furidainental and the second-hannonic photon 
flu.x densities in SHC as functions of the normalized propagation distance 
Both photon flux densities are normalized to the incident fundamental photon 
flux density.
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Chapter 3

Simultaneous Phase Matching of 
OPO and SFG /SH G

Single-crystcil upconversion OPO’s are based on the premise that two second- 
order nonlinear intc'ractions can be phase matched for the same direction of 
propagation inside the same crystal [29], [30]. For frequency upcom^ersion with 
an OPO, the second nonlinear interaction has to be either SHG or SFG. Upcon­
version with the OPO is more efficient if the SFG or the SHG processes take 
advantage of the high intensity of the resonant signal field.

The simultaneous phase matching condition can be? satisfied by either L3PM 
or QPM of the two processes. Various combinations of phase matching types of 
the two processes lead to several classes of upconversion OPO’s, each governed 
by a different set of coupled mode equations. Some of these classes require a 
polarization rotation for the signal or the pump fields.

Simultaneous phase matching of two second-order intercictions within a single 
nonlinecU' crystal lias been experimentally demonstrated for a number of frequency 
conversion applications. Single-crystal upconversion OPO’s that employ simulta­
neous BPM of frequency doubling [8] or SFG [9] in KTiOPO,| (KTP), and period­

ically poled lithium niobate (PPLN) OPO’s with simultaneous third-order QPM 

of frequency doubling [31], [32] or SFG [33] have been reported. A cascaded OPO, 
where the signal of a primary OPO acts as the pump for a secondary OPO, has 
been demonstrated in PPLN with fii'st-order QPM Idi' both OPO processi's [34]. 
Simultaneous SFG of the pump and the idler in a /4-barium borate (B130) crys­
tal OPA has been acliieved with BPM [33]. Simultaneous SFG with BPM has 
also been reported in an ADP crystal parametric fluorescence ex|)erinu'nt [36].
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Third-harmonic generation in PPLN with simultaneous first-order QPM of the 
frequency doubling and SFG processes hcis also been demonstrated [37].

For each combination of phase matching types for the OPO and SHG/SFG 
processes, the respective coupling constants «·,, and k/, depend on the phase- 
matched frequencies, the refractive indices, and the eilbctive nonlinear coefficients. 
The ratio of the two coupling constants β — κ.ι,Ικ„, is an important quantity that 
may assume a range of values depending on these parameters. Here, the relative 
magnitudes of the frequencies and effective nonlinear coefficients are of particular 
importance. If the OPO and SHG/SFG processes are of the same BPM type, 
the effective nonlinear coefficients differ only due to dispersion of the second- 
order nonlinearity [38]. However, for different phases matching types the effective 
nonlinear coefficients may be dramatically different from each other.

If QPM is cni])loj'ed for simultaneous phase matching, the QPM order of the 
two processes may or may not be different from each other. Since the effective 
nonlinear coefficient for a process depends on the QPM order as well as the other 
parameters mentioned above, choosing different QPM orders for the two processes 
provides a. mechanism for adjusting the value of β. The results of Chapter 5 show 
that having some control on the value of β can be very useful in maximizing the 
conversion efficiency of single-crystal upconversion OPO’s.

Note that QPM can easily be used to ])hase match two interactions in a single 
crystal by employing two consecutive sections with different poling periods. Such 
a double-grating PPLN was recently used for intracavity SFG of an OPO [39]. 
Howevei', these double-grating devices ar<i identical to upconversion OPO’s with 
two different crystals in terms of the plane-wave theory [18], [17].

3.1 Simultaneous phase matching of OPO and 

SFG

We first present the possible combinations of BPM types for OPO’s with simul­

taneous SFG. These combinations lead to four different classes of sum-frequency 
generating OPO’s (SF-OPO’s), some of which require a polarization rotation foi' 
the signal or the pump fields. QPM opens up several more possibilities of |)ha.se 
matching type combinations, yet, each of these combinations Ccin be identilied 

with OIK' of the four Sf'-OPO classes.
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3.1.1 Biréfringent phase matching

There are nine possible combinations of BPM types for the OPO and SPG pro­
cesses. These comlrinations are summarized in Table -i.l and Figure 3.1. In this 
thesis, the resonant signal field, which also constitutes the lower frequency input 
field for the SPG process, is labeled as being at u>2 . However, our formulation and 
results are equally valid if the field at ωγ is resonated and used as a SPG input.

OPO SPG
Type 0̂ 3 —>CUi +  U2 ^ 2  +  ^3

I • .s -f s .s +  .s
If ./■ - ./■ +
Iff ./■ - S + ,/■ ■̂· +  /

Case OPO SPG Rotation Class
1 I 1 pump C
2 If I pump C
3 Iff I both B
4 I If both B
5 If If both B
6 Iff II pump c
7 I III none A
8 If III none A
9 Iff III signal D

Table 3.f: Possible combinations of BPM types for OPO with simultaneous SPG. 
iNormal dispersion is assumed. The fast and slow axes are denoted by /  and ,s. 
respectively.

In cases 7 and 8, the pump and the signal fields are polarized along the 
same axes in both the OPO and SPG processes. As a. result, the two ])rocesses 
liecome coupled through the signal and the pump fields. The set of coupled mode 
equations that describe this interaction are

da I 
~cL· 
dü2 
~L·
da-,i
dz 
d(iß
dz

-  «aö.S«2

—  /v f j  CL j CL2 L \’ /)C l { ) C l2

= κ,},α2θ’Λ.

(3.1)

(3.2)

(3.3)

(3.4)

•23



ΟΡΟ
Η λ ; I Η IIi- ο

III

SFG
I

SFG
II

Φ Α

sf 

rs

I f  ^
----------------^sf

rPA
rs

■ ■ P A irs^ ®

Φ Α ^  ®
^  s

SFG
III

H

sf
s^  ®  

P
rSA ®

 ̂ P
sf

Figure 3.1: Polarization diagram.s for possible combinations of BPM types in SF- 
OPO’s. Tlie fast a.\is is horizontal and the slow axis is vertical. Pohirizations for 
the pump (p), signal (s), idler (i), polarization rotated pump (rp), polarization 
rotated signal (rs), and sum-frequency (sf) are shown. Intracavity polarization 
rotation is indicated with an arc. Elach combination of phase matching types is 
lal)eled with a circled number.

We arrive at these equations by combining the OPA equations [Equations (2.34)- 
(2.36)] with the SE'C equations [Equations (2..52)-(2..')l)j. The signal U2 (pump 
a-j) and the lower frequency SFG input a,i (higher frequency SE'G input 0,5) aro' 
the sa.me field mode; the rate of change of the signal (pump) field amplitude is 
the sum of the rates of change of the OPO signal (pum]>) and the lower (higher) 
fre(|uency SFG input field amplitudes separately. Tlu' same equations can also 
Ire olrtained by considering the total nonlinear polarization P2 fi-ncl /3 at tU2 and

resirectively, and re-deriving the coupled mode equations. We designate this 

SE'-OPO process as class-A.
In cases 3, 4, and 5 the jrurnp and signal fields are both oi-thogonally ¡rolarized 

between the OPO and SFG processes. The same crystal can be used for froth 
piocesses at the same time through extracavity polarizal.ion rotation ol the pump 
and intracavity polarization rotation of the signal. However, the two jrrocesses
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are not coupled in the crystal as they are in class-A interactions, and the coupled 

mode equations that govern this SF-OPO are simply Equations (2.34)-(2.36) 
and (2.52)-(2.54). We designate this SF-OPO as class-B.

In cases 1 , 2 , and 6, the pump field is pohu'ized orthogonally between the OPO 
and SFG processes. A polarization rotation of the pump at the cavity input is 
required for SFG to take place. The signal field is common to both processes, 
and couples them to each other. The set of coupled mode ec|uations that describe 
all three cases are

dii\
dz
dci2
dz
dci:i
dz
dus

dcic,
dz

^  a 3 2

/v fj CL 2  CL j  h\j }jCL(y (L  ^

^ a. ^ 1 2

= —KfjClC)Cl2 

= Kl,a2CLrj .

(3.5)

(3.6)

(3.7)

(3.8)

(3.9)

We designate this SF-OPO process as class-C.
In case 9, the signal is orthogonally polarized between the OPO and SFG 

processes, and an intracavity polarization rotation of the signal is necessary. The 
OPO and SFG processes are coupled to each other through the pump, which is 
common to both processes inside the crystal. The coupled mode equations that 
describe the interaction are

da I 
dz 
dü'2
H
das 
dz 
da,I
1 7
dae
dz

=  Kaasai

Κι̂ α,βα̂

Kba:ia,i.

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

We designate this SF-OPO process as class-D.

3.1.2 Quasi-phase matching

In terms of simultaneous phase matching of SFG in an OPO, the eight QPM 
]:>liase matching types lead to 64 different combinations. We found that each ol
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these combinations can be identified with one of the four classes introduced abo\̂ e, 
depending on whether the coupling between the two pi'ocesses in the crystal is 
thiOugh the signal (chiss-C), the pump (class-D), both (class-A), or neither (class- 
B).

3.2 Simultaneous phase matching of OPO and 

SHG

The possible combinations of BPM types for OPO with simultaneous SHG lead to 
three different classes of self-doubling OPO’s (SD-OPO's). Two of these classes 
require a polarization rotation for tlu' signal field while the third does not. We 
also find that eiich of the possible combinations of QPM types can be identified 
with one of these three classes.

3.2.1 Biréfringent phase matching

There are six possible combinations of BPM types for the OPO and SHG pro­
cesses. These combinations are summarized in Tabh' ·Τ2 and Figure 3.2. The 
fundamental field for SHG is assumed to be the resonant signal field, since the 
high intracavity signal intensity leads to efficient SHG. For frequency upconver- 
sion with the SD-OPO, the signal field has to be at tu-i, so that 2ω·ί > ω-i can be 
satisfied.

In cases 1 and 2, the OPO signal and the SHG fundamental are both polar­
ized along the same direction and the two fields cire indistinguislialrle in (‘very 
aspect. As a result, the two processes are coupled through the signal field which 
is common to the two jrrocesses. The coupled mode c(|uations that govern this 
interaction are

dcii ( 3 . 1 5 )

d a -2 ( 3 . 1 6 )
H

=  K.^d'^ax -  K.}y(i^2

d (i:i

~dz
=  - κ ^ α χ α ι ( 3 . 1 7 )

daa
dz = ( 3 . 1 8 )

where k„, and a/, are the coupling constants for the OPA and the SHG proco'sscis.
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OPO SHG
Type CJ3 ωι +  ω·2 ω·2 +  ω ·2 —>2u;2

I ./■ -ye + S .s +  .s· ^ /
II ■ j  +  .s .s + / ./■
III • + ./■

(.hise OPO SI-IG Rota.tion ( ¡lass
1 I I no A
2 II I no A
3 III I yes B
4 I II yes c:
5 II II yes c
6 III II yes G

Table 3.2: Possible combinations of BPM types for OPO with simultaneous SHC. 
Normal clispei'siou is assumed. The fast and slow axes are denoted by /  and s, 
respectively. There is no type-III BPM for SHG since this process is degenerate 
in frequency.

OPO:
1 I H II III

. s

SHG:
I

SHG:
II

H

ω

Λ

ds
©
. rs
%

H

Λ

ds
©
rs

Ts

rs

%

Figure 3.2: Polarization diagrams for possible combinations of BPM types in SD- 
OPO’s. The fast axis is horizontal and the slow axis is vertical. Polarizations for 
the pump (p), signal (s), idler (i), polarization rotated signal (rs), and freciuency- 
doubled signal (ds) are shown. Intrcicavity polarization lotation is indicated witli 
an arc. Bach comihnation of phase matching types is labeled with a cii-cled 
number.

respectively. We obtain these equations by combining the OPA e(|uations [Bqua- 
tions (2.34)--(2.36)] with the degenerate SHG equations [liquations (2.63) (2.64)].
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We designate this SD-OPO process as class-A.
In case 3, the polarizations of the OPO signal and the SFCl fundamental are 

orthogonal. However, an intracavity polarization rotation ol the signal provides 
the input field for SHG and allows the same crystal to be used for both processes 
at the same time. In contrast with class-A SI)-OPO’s, the two processes are 
not coupled in the crystal, and the coupled mode e([uations that, describe the 
interaction are simply Equations (2.34)-(2.36) and (2.63) (2.64). We designate 
this SD-OPO as class-B.

In cases 4, 5, and 6, the SHG process is nondegenerate in polarization, and 
there are two orthogonally polarized fundamental components. The OPO signal 
is polarized along either component of the fundamental in each case, and the 
two processes are coupled through this component. An intracavity polarization 
rotation of the signal field provides the second fundamental component and makes 
SHG possible. 'I'he coupled mode ecpiations that govern the interaction are

cUii
dz

(3.19)

dü2
dz

—  f\· Q CL 3  CL L\· CL(yCL (3.20)

c/a.3
dz —  a  1 2 (3.21)

dcir̂
dz

—  L C h ( L (^ C L 2 (3.22)

dciQ
=  K .i ) C L 2 C L r y . (3.23)

These e([uations are obtained by combining the OPA e(|uations [Eciuations (2.34)- 
(2.36)] with the uondegenerate SHG equations [Equations (2.52)-(2.■54)]. We 
desigimte this SD-OPO as class-G. Note that Equations (3.19) -(3.23) a.re the sanu' 
as the coupled mode equations that govern class-G SE-OPO’s [Equations (3.5) 

(3.9)].

3.2.2 Quasi-phase matching

Since; the SHG ])rocess is degenerate in frec|uency, tli<;re are only six possible 
QPM types for SllG as opposed to eight for the OPO. In terms of simultaiK'ous 
phase matching of SHG in an OPO, the potential QPM typ<;s lead to 48 different 
combinations. We found that each of these combinations can be identified with 

one of the three classes introduced above, depending on whether tlu' SHG ]>rocess 

is nondc'generate in polarization (class-G) and il not, whether the polarizations
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of the ΟΡΟ signal and the SHG fundamental are orthogonal (class-B) or not 
(cl ass-A).
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Chapter 4

Single-Pass Solutions

To anal3'ze the performance of single-crystal upconversion OPO’s, it is first nec- 
essar}  ̂ to calculate the single-pass parametric gain for the signal field by solving 
the coui)led mode equations for each class [29], [30]. For some of these classes, 
analytical solutions of the coupled mode equations are available. Бог the other 
classes however, we used a numerical method to compute the single-pass para­
metric gain. Г'ог these classes, the coupled mode e(|uations were solved with the 
Runge-Kutta-1"ehIberg method.

Runge-Kutta-Fehlberg is an acUiptive step-size method widely used for solving 
ordinary differential equations [28]. At each step, this technique uses two fixed 
step-size Runge-Kutta methods with orders five and four, to estimate the step-size 
that will keep the local error within a specified tolerance. Idaving a sma.ll local 
error at each step ensures that the global error is also small. In our calculations, 
the tolerance is chosen to be 10“ '̂  times the input signal field amplitude.

4.1 Single-pass solutions of SF-O PO ’s

The coupled mode eciuations for two of the four SF'-OPO classes have analytical 
solutions. A simple transformation maps the class-A ecjuations to regular Ofh\ 
equations, leading to analytical .solutions in terms of .Jacobi elliptic functions. In 
class-B .Sk'-OPO’s the OPA and Sk'G proco ŝses are not coupled in the crystal, 
and analytical solutions are readily available. For class-( i and class-D .SF-OPO’s, 
however, we used tlui Runge-Kutta-Fehlberg method to solve the coupled mode 

ec|uations.
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4.1.1 Class-A solutions

An important simplification in the coupled mode equations for class-A SF-OPO’s 
is achieved by recognizing that the right hand sides of Equations (3.1) and (3.4) 
are proportional. Since both the idler field a\ and the sum-frequency field «6 have 
zero amplitudes at the crystal input, we have «(;(;') =  /3«i(.r). The coupled mode 
equations then become

da I 
dz 
da 2 
dz 
da-i 
dz

=  Ka«;3«2

=  (1 -  ^^)/i„a30i

=  — (1 -fi ß ’̂ )Ka.a\a2 ■

(4.1)

(4.2)

(4.3)

The evolution of the field amplitudes as tliey propagate down the crys 
depends on the value of /3. If 0 is equal to unity, the right hand side of Equa­
tion (4.2) becomes equal to zero for all values of In this ciise, the parametric 
gciin provided by the pump is exactly balanced by the nonlinear loss due to SF'G, 
and the signal field amplitude stays constant throughout the length of the crys­
tal. If /3 is less than unity, the parametric gain overcomes the nonlinear SFG 
lo.ss, and the signal field is amplified. Under this condition, the substitutions 
«1 =  til /^ (1  — /3 )̂(1 + /3 )̂, a<2 =  ti'2 /\ /l +  /3'̂ , and «3 =  /\/l — fP transform
Equations (4.1)-(4.3) to the coupled mode equations for a reguhxr OPA [Equa­
tions (2.34)-(2.36)] in terms of the varialtles tii, and tis. After transforming 
the OPA solutions [Equations (2.46)-(2.48)| in terms of tii, 112, and ti3 back to 
the original class-A variables «i, « 2, and « 3, the evolution of the field amplitudes 
can be expressed as

G,
(I -  ¡P){\ -f ¡P)

cn(Z„|m,,)

Cb
1 +  IP

-  dn{Za\nia)

Ch -  sn(Z„|m„)

where

ai(z) =

02(2) =

« 3 ( ^ )  =  I  _ ß 2

a<i{z) =  ßaßz)

G, = (1 - ß' )̂{l + /P)ai{z) + (1 - lP)aU··:) 
C2 = {[ + ß^)aliz) + {I -  ß'^)aliz)

(4.4)

( U 5 )

(4.6)

(4.7)

(4.8)

(4.9)
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are the Manley-Rowe conserved quantities [Equations (2.37) and (2.38)] expressed 
in terms of the field amplitudes ai, α·2, and a.j. Here, 111,,, =  C\/C'2 and Z„ is as 
defined in Equation (2.44).

If β  is larger than unity, the parametric gain provided by the pump cannot 
compensate for the nonlinear SEG loss. In this case, the net gain experienced by 
the signal field is always less than or equal to unity, regardless of the values of /c„ 
and the input photon flux densities. Therefore, it is impossilrle for the SF-OPO 
to get above threshold.

4.1.2 Class-B solutions

In class-B SF-OPO’s, the OPO signal (pump) and the SFG lower (higher) fre­
quency input fields have orthogonal polarizations. Therefore, the OPA and SFG 
processes are independent of each other in a single pass through the crystal. How­
ever, an intracavity polarization rotation of the signal field and an extracavity 
polarization rotation of the pump field with the use of half-wave retarders can 
couple the two processes and allow SFG to take place. The single-pass solutions 
are given by Equations (2.46)-(2.48) and (2.56) (2.58).

4.1.3 Class-C solutions

The phase matching geometry for class-G SF-OPO’s requires the polarizations of 
the OPO pump and the higher frequency SFG input fields to be orthogonal. The 
higher frequency SFG input field is provided Iry a polarization rotation of the 
pump, before the pump enters the cavity. In calculating the single-pass solutions, 
we ta.ke the total pump field a.mplitude to be cip. We then rotate the pohirization 
of this input field by and angle a·,, so that the input Of’O pump field amplitude 
is a:j(0) =  ttpCOSOp, and the rotated pump (higher fre(iuency SFG input) field 
amplitude is a.5(0) =  apsincvp.

Since analytical solutions of clas.s-G coupled mode equations (3.5)-(3.9) are 
not available, we used the Runge-Kutta-Fehlberg method to calculate the evo­

lution of the photon flux densities and the net signal gain. Figure 4.1 shows an 
example for the single-pass solutions of class-G coupled mode eciuations. For this 
example, we have taken cv,, = 30°, β  =  1.5, cuid alj(O) = 0.3n]̂ . The photon flux 
densities evolve periodically with a. jreriod of 10 in this example and the maximum 
valm; for the sum-frec[uency photon flux density is limited by the input rotated
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Normalized propagation distance, ^

Figure 4.1: Single-pass solutions for a class-C SF'-OPA for /3 — 1.5. The evolution 
of the pump (p), signal (s), idler (i), polarization rotated pump (rp), and sum- 
frequency (sf) photon flux densities are shown as functions of the normalized 
propagation distance (f =  KaCipZ. All photon flux densities are normalized to the 
total input pump photon flux density â . For this example, a,) =  40°, /i =  1.5, 
and al(0 ) =  O.Safy

pump photon flux density.
While calculating the single-pass solutions, we found that the field amplitudes 

oscillate either periodically or aperiodically as a function of depending on the 
initial field amplitudes and /A This behavior can best be analyzed by transforming 
the coupled mode equations (.3.5)-(3.9) to a single differential equation similar to 
Equation (2.42). To do this, we use the class-C Manley-Rowe conserved (|uantities

Ch

C'2

c .

al{z) +  al{z) =  rtî (O)

al{z) +  al{z) +  al{z) =  « 2(0) +

al(z) +  al(z) =  « 5(0)

( 1 . 1 0 )

(4.11)

(4.12)

and define new variables 0 {z) and -y{z) through

«,(..) =  ^ m n 0 {z)

d'iiz) =  \fc ix  cos (){z) 
dsiz) =  y ^ C 0S7 (.“ )

« g ( - )  =  J Q x s ' m ' f ( z ) .

(4.13)

(4.14)

(1.15)

(1.16)
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Since no idler or siim-frequency is present at the crystal input, ^(0) and 7 (0) are 
equal to an integer multiple of 2 ir] lor convenience, we choose 0 {0 ) =  7 (0) =  0. 
Substituting into Equations (3.5) and (3.9), we obtain

^   ̂ I dO 1 i/7 
Ka dz Ki) dz (4.17)

When integrated this equation yields 0[z)l K.a—'i{z)l =  0, from which we obtain
7 (.i) =  l- 0̂{z). This relation, along with the Manley-Rowe relation for C'2, allows 
us to reduce the set of coupled mode equations to a single differential equation

^   ̂^  sill'(/30) =  Cl (4.18)

in the viiriable 0{z). The solution 0{z) either oscillates periodically around zero or 
increases monotonically, depending on the values of the Manley-Rowe quantities 
and /3. If CiCOS^O + C:ism^{ft0) is larger than Cb for any value of 0, the field 
amplitudes oscillate periodically. In this case, the signal field is fully depleted 
inside the crystal, with the depletion locations coinciding with the maxima and 
minima of (̂̂ r). If /3 has a rational value, there exists a 0 value such that cos  ̂0 — 
sin (̂/3/3) =  1. Then, the condition CiCos^O +  C'3sin (̂/3i9) > C2 is equivalent to 
«^(0) < aliO).

In the other case where 0{z) increases monotoniccilly, the field amplitudes are 
periodic functions of only if /3 has a rational Vcilue. Otherwise, C'l cos  ̂0 + 
Csshi^i/y)) is an aperiodic function of 0 , and the field amplitudes vary a.]reriodi- 
cally.

Although Equation (4.18) gives more insight into the qualitcitive behavioi· of 
the solutions, in calculating the single-pass solutions we prefer to solve l'k|ua- 
tions (3.5)-(3.9) directly. The first term of Equation (4.18) brings about an 
ambiguity in the sign of d0jdz, and every time the signal field is depleted the 

corresponding sign cliange in d0jdz needs to l̂ e taken care of in numerical solu­
tions.

4.1.4 Class-D solutions

In class-D SE-OPO’s. the polarizations of the OIT) signal and the lower frequency 

SEC! ini)ut ar(' oi’thogonal. The lower frequency SEC! iu|)ut (rotated signal) is 

provided by an intracavity polarization rotation of the signal. In calculating the 
singh'-pass solutions, we take tlie total signal field am|)litude to be â . We then
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Figure 4.2: Single-pass solutions for a class-D SF-OPA for fi =  1.5. The evolution 
of the pump (p), signal (s), idler (i), polarization rotated signal (rs), and sum- 
frequency (sf) photon flux densities are shown as functions of the normalized 
propagation distance S, =  Kaas{0 )z. All photon flux densities are normalized to 
a|(0). For this example, =  40°, /3 =  1.5, and the total input signal flux is
,2 _=  OAaliO).

rotate the polarization of this input field by an angle cv« so that the input OPO 
sigiml field amplitude is « 2(0) =  Ug coscVs, and the rotated signal (lower frequency 
SFG input) field ami)litude is a,i(0) =  assincvj.

We used the Runge-Kutta-Fehlberg method for the calculation of the class- 
D single-pass solutions as well. Figure 4.2 shows an example for the evolution 
of the photon flux densities in a class-D SF-OPA. W(! found that the photon 
flux densities oscillate periodically as functions of regardless of the values of 
the Manley-Rowe (piantities and β. This behavior is easier to analyze if the 
coupled mode equations are reduced to a single differential equation similar to 
Equation (4.18). Furthermore, this differential equation can be used to obtain 
conditions that maximize conversion efficiency, as outlined in Chapter 5.

The Manley-Rowe conserved quantities for class-D SF-OPO’s are

C2

aliz) -  al(z) 

a\[z) -f a\{z)

« 2(0)

aliz) - f  al{z) 4- al{z) — a.2(0) +  0 ^ ( 0 )

a^(0) .

(4.19)

(4.20)

(4.21)
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We define new variables 9{z) and 7 (2) through

a,{z) ^

a2{z) =

« 4(2 ) =

« 6(-î) =

'Ci sinhÖ(^) 

/Ci cosh0 [z)

fä,  cos7(.~)

/^ ¡s in o ir ) .

(4.22)

(4.23)

(4.24) 

(4.2.5)

Since öi(0) =  «(j(0) =  0, 9(0) =  0 and 7 (0) is an integer multiple of 27t; we choose 
7 (0) =  0 lor convenience. When these transformations are substituted into the 
coupled mode equations (3.10) and (3.14), the pump field amplitude is obtained 
in terms of 9(z) or -y(z) as

1 d9 1 d-y
asiz) =  (4.26)

K,, az Ki) clz

It is then possil)le to integrate this equation and get a fourth conserved quantity 
C\ =  9(z)İKa — y{z)/Ki, =  0. Using this relation and the Manley-Rowe relation 
for C 'i ,  we obtain a  single differentiell equation

■2
(4.27)^  ^  1 + Ci cosh' 9 + Ch sin'(/^0) =  C2

in the variable 9{z). As 9{z) starts from zero at the crystal input and increases, 
the second term in Equation (4.27) increases monotonically until d9jdz becomes 
zero. We observe from Equation (4.26) that this point corresponds to complete 
pump depletion. Since the first term of Equation (4.27) cannot be negative, 9(z) 
has to decrease from this point on. Hence, 9{z) oscillates periodically around zero, 
and the field amplitudes also evolve periodically with the period being identified 
by complete pump depletion. As in class-C single-])ass solutions, we prefer to 
solve the original coupled mode equations [Ecpiations (3.10)-(3.14)] in computing 
the single-pass signal gain.

4.2 Single-pass solutions of SD -O P O ’s

Of the three SD-OPO classes, analytical solutions are readily available only for 
class-13 coupled mode equations. Eor this class, l.he OPA and .SHG jirocesses 
are not coupled in the crystal and analytical solutions for the two processes can 
l)e used separately. Eor class-A and class-C SD-OPO’s, we used the Runge- 
Kutta-Eehll)erg method to solve the coupled mode equations and to compute' the 
single-pass ])arametric gain.
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Figure -J.3; Single-pass solutions for a class-A SD-OPA for ¡3 =  f.5. The evolu­
tion of the pump (p), signal (s), idler (i), and second-harmonic (sh) photon flux 
densities are shown as functions of the normalized propagation distance if. All 
photon flux densities are normalized to the input pump photon flux density and 
a'iiO) =  0.25a^(0).

4.2.1 Class-A solutions

Figure 4.3 shows an example for the evolution of the photon flux densities in 
a class-A SD-OPA. The normalized propagation distance is defined to be f  = 
''•a«3(0)r, as in OPA’s, and all photon flux densities are normalized to the input 
pump photon flux density. For this example, /3 is taken to be 1.5.

At the beginning of the interaction, the OPA process is dominant and the 
signal photon flux density increases with increasing f. Flowever, the nonlinear 
loss due to the increasing second-harmonic eventually overcomes the' parainel ric 
gain and the signal flux density begins to decrease after f  =  1.6. The pum|) ii(4d 
is completely depleted at f  =  2.5, and back-conversion of the signal and the idler 
to the pump begins after this point. However, the amount of back-conversion is 
small, since much of the signal flux density is already converted to the second- 
harmonic. At f  =  7, essentially the entire pump and the signal is converted to 

tli(' second-harmonic., and the interaction stops. Throughout the interaction, the 
oscillatory nature of the OPA process is dampened by th(' conversion of the signal 
to the second-harmonic, and the class-A single-pass solutions a.re not periodic.

The parameter ¡3 is a measure of the relative strengths of the OPA and .SIIC
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processes. With increasing /?, the SHG process becomes more prominent, the os­
cillatory behavior due to the OPA process decreases in amplitude, and conversion 
to the second-harmonic is completed earlier in the crystal.

There cire only two Manley-Rowe conserved quantities in class-A interactions. 
These quantities are

Ch =  al{z) + ccHz) =  «^(0) 

C2 =  aliz) + a?^{z)+ 2al{z) α^(0) +  α;̂ (0).

(4.28)

(4.29)

4.2.2 Class-B solutions

In class-B SD-OPO’s, the OPO signal ¿ind the SHG fundamental have orthogonal 
polarizations, and the OPA and SHG processes are independent of each other in a 
single-pass through the crystal. However, an intracavity polarization rotation of 
the signal field with the use of a half-wave retarder can couple the two processes 
and allow frequency doubling to take place. The single-pass solutions are given 
by Equations (2.46)-(2.48) and (2.66)--(2.67).

4.2.3 Class-C solutions

Since class-G self-doubling and SF-OPO’s are governed by the same coupled mode 
equations [Equations (3.19)-(3.23) and (3.5)-(3.9)], the single-pass solutions e.\- 
hibit the same behcivior. In both cases, the coupling in the crystal is through the 
signal ficdd. However, the second fundamentcd component «5 in class-(J SD-OPO’s 
is provided by intracavity polarization rotation of the signal field, whereas the 
higher frequency SFG input «5 in class-G SF-OPO’s is provided by e.xtracavity 
polarization rotation of the pump. The class-C SD-OPO jDerformance therefore' 
lias a different dependence on the design parameters, as shown in Ghapte'r 0.
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Chapter 5

Plane-Wave Theory of 
Single-Crystal Upconversion 
O PO’s

A siiigly-resonant single-crystal upconversion OPO is constructed by placing the 
nonlinear crystal inside a resonator that provides feedback at the signal frequency. 
In contrast with regular OPO’s, output coupling lor the signal field is not nec­
essary, since the useful light output is either the frequency-doubled signal held 
or the sum-frequency of the signal and the pump. However, the cavity will in­
evitably have a few percent of linear loss [L) at the signal frequency, due to less 
than unity reflectances of the resonator mirrors and imperfect antireflection coat­
ings on the nonlinear crystal. This linear loss can be represented by a lumped 
cavity reflectance — I — L.

In single-crystal upconversion OPO’s, the saturation of parametric gain is 
completely characterized by the nonlinear drive D, the ratio of the coujiling co- 
eflicients β =  and the polarization rotation angle (if any) [29], [30]. Tlu'
nonlinear drive for single-crystal upconversion OPO’s is defined as D — (κ·α(ΐρΙβ̂  
where is the pump photon flu.x density at the crystal input. For class-B and 

class-C SF-OPO’s, =  « 3(0) +  « 5(0) is the total pump photon flux density be­

fore polarization rotation of the pump field, whereas in other upconversion OPO’s 
there is no pump polarization rotation and =  « 3(G).

As in regular OPO’s, if the small-signal gain is larger than the resonator 
loss, oscillation starts. The initial signal photon flux ¡rrovided by parametric
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fluorescence grows until the upconversion OPO reaches steady-state. In steady- 
state, the parametric gain in the nonlinear crystal exactly compensates for the 
resonator loss and this condition is expressed as

/?L!7[«2(0)) =  1 (5.1)

where g = a\{l)ld\{^) is the single-pass saturated gain for the signal field. The 
intracavity signal photon flux density in steady-state 0,2(0) can in general be found 
by solving Equation (5.1) iteratively using the single-pass solutions outlined in 
Chapter 4. In doing this, we used the secant method for numerical root-finding.

The performance of the secant method depends on the initial approximations 
provided. When investigating the behavior of single-crystal upconvei'sion OPO’s, 
we usually vary one of the parameters that influence gain saturation while the 
remaining paramet(n's are kept constant. In such cases, the solution a.2(0) from 
the latest parameler value is a very good initial cipproximation for the solution 
corresponding to the next parameter value. With this choice for the initial approx­
imation, the secant method typically takes five to fifteen iterations to converge 
to the solution within a relative tolerance of 10“ ®.

Once the intracavity signal photon flux density is known, cill other fields at 
the crystal output can be calculated using single-pass solutions. From the output 
photon flux densities, photon conversion efficiency and pump depletion can be 
calcula.ted as measures of performance for single-crystal upcoman'sion OPO’s. 
The photon conversion efficiency for upconversion OPO’s is defined as the ratio 
of twice the output upconverted flux density to the input pump flux density, 
7/ =  2ap(/)/a3(0), since two pump photons are needed for one upconverted photon. 
The conversion efficiency represents the overall efficiency of the two-step process 
from the pump to tlie signal and then to either the sum-frequency or the doublecl 
signal, iuid is equal to unity for total conversion.

In regular OPO’s, pump depletion [1 — «3(0 /<̂ ks(0)] alternatiive measure
of performance, since maximum conversion requires complete pump depletion. 
As shown in this chapter, this is no longer the case in single-crystal upconversion 
OPO’s, except for class-A and class-D SF-OPO’s.

In general, Eciuation (5.1) may have more than one solution. In this thesis, 
we investigate the steady-state performance of single-crystal upconversion OPO’s. 
and always choose the smallest of these solutions, assuming tliat the intracavity 
signal field builds up from noise to re<ich this smallest solution. However, the 
dynamical evolution of the signal field as it builds up from noise can also be
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simulated [30], [40], by starting with parametric fluorescence and iterating the 
single-pass solutions several times, multiplying the signal flux density by /?l after 
each pass through the crystal. This anal3̂ sis has revealed that both SF-OPO’s 
cind SD-OPO’s may display periodic or chaotic oscillations at high values of the 
nonlinear drive. Furthermore, if the nonlinear drive is high enough, the SF-OPO 
nuiy reach different steady-state solutions depending on the initial signal flux 
density. It has been found that these steady-state solutions are stable and the 
SF-OPO thus exhibits multistability [3

5.1 SF-O PO ’s

5.1.1 Class-A SF-OPO’s

As pointed out in Chapter 4, class-A SF-OPO’s can get above threshold only if 
¡5 is less than unitjc Under this condition, the small-signal gciin is

(Jo cosh^ ^ (1  — IP)D (5.2)

The threshold nonlinear drive D^i is found by solving /¿ni/o =  1 lor D. Since 
depends on /i, i2th is influenced by the presence of the SFG process. This is in 
contrast with SD-OPO’s.

Conversion efficiency is maximized if the pump field is fully depleted at the 
crystal output, as shown by the Manley-Rowe relation (4.8) and Equation (4.7). 
To obtain the nonlinear drive for complete pump depletion, we first evcilua.te the 
Manley-Rowe relation (4.9) at  ̂ =  0 and z =  I and use the steady-state oscillation 
condition [Equation (5.1)], to get the intracavity signal flux density normalized 
to the input pump flux density

al{0 ) _  ( 1 - A) ( l - / j ^ )  
ai(o) m  + (P) ·

Using Equation (5.3), we find that m.a =  L- The pump field amplitude has a. 
sn{Z\m) functional dependence which assumes its zeros cit even multiples of the 

.Jacobi c|uarter-period K . Therefore, complete pump depletion at c =  I requires 

that
A' -  / =  - 2 nK n =  0, 1, 2, . . .  (5.4)

This relation leads to a family of optimum nonlinear drive values

Dopi =
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that maximizes the conversion efficiency for given values of β  and L. The ratio 
depends only on T, similar to a regular OPO [10]. Only the smallest 

Dopi (corresponding to n — 0) is of interest, since for n > 0 Eciuation (5.3) does 
not yield the smallest .solution of ecpiation (5.1).

Figure 5.1 shows the conversion efficiency as a function of the nonlinear drive 
for various β  values at a constant L =  0.04. 'Phe peak of each curve is at Dop,, 
with a value of

2/i^
Vinax — γ βϊ·

This value is a. function of β only. As β increases towards unity, r/„iax approaches 
unity, while /Aop(, and Z)u, increase without bound.

Figure 5.1: Conversion efficiency of class-A SF-OPO’s as a function of the non­
linear di’ive for various values of /3. For each case, L — 0.04.

'Phe cavity loss L at the signal frecpiency n’sults in the loss of signal photons 
from the cavity. One would expect that this useless loss should be minimized 
for maximum conversion to the sum-frequency. However, as illustrated in Fig­

ure 5.2, the cavity loss can be adjusted to maximize the conversion efficiency. At 
a constant ft value of 0.8, the conversion efficiency curve shifts to the right with 
increasing cavity loss, whereas the peak conversion eificiency does not. change, 
in agreement with the analytical result given in F([ua.tion (5.6). .At a nonlinecir 
drive of unity, a relatively large cavity loss of L — 0.14 is noieded for maximum 

(?/ =  0.78) conversion.
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Nonlinear drive, D

Figure 5.2; Conversion efRciency as a function of the nonlinear drive for various 
values of L for a ( lass-A SF-OPO. For each case, β — 0.8.

5.1.2 Class-B SF-OPO’s

Class-B SF'-OPO’s require an intracavity polarization rotation for the signal field 
and an extracavity polarization rotation for the pump field. Two different modes 
of operation are possible, depending on the polarization rotation configuration 
employed for the signal field. In the first case, the signal polarization is rotated 
by an amount a-j < 90°, so that a sin  ̂O j fraction of the OPO signal flux is coupled 
to the lower frequency SFG input field « 4(0), while the remaining cos  ̂cVs fraction 
becomes the input signal a2(0). At each pass through the crystal, the OPO signal 
CI2 expei'iences parametric gain, whereas the rotated signal a4 is depleted due to 
SFG. H(!re, we assume that the residual rotated signal at the crystal output 
is either coupled out of the cavity with the use of a. ¡solarizing beamsplitt('r. oi' 
negligible due to strong conversion. If instead both the signal and the rotated 
signal are resonated, the polarization mixing at the retarder will result in the 
interference of the two fields in an uncontrolled fashion.

In this configuration, the OPO signal experiences a linear loss of siiC a., in 
addition to other resonator losses and the total resonator reflectance becomes 
R\, cos'̂  n's. There is no nonlinear output coupling in this situation; the intra.ca.vity 
signal flux is not affected by the presence of the ,SFG process. Even though the 
SFG process is internal to the OPO resonator, it does not benefit from liigh values 
of the intracavity signal flux density. As such, this configuration is not expected

13



to be particularly efficient.
On the other hand, a different mode of operation is achieved if the residual 

rotated signal сц{1) is not coupled out and q-j is set to 90°. In this configuration, 
the I’etarder switches around the polarizations of the OPO signal ci2(/) and the 
residual rotated signal (ц{1 ) with no resulting interference due to polarization 
mixing. The OPO signal at the crystal output provides the rotated signal 
for the next round trip, whereas the residual rotated signal becomes the О PA 
input 02(0). As in the previous configuration, the polarization of the pump field 
is rotated before entering the cavity to provide the higher frequency SFG input 
field 0.5(0).

The distribution of the pump photon flux density between the two processes 
can be optimized by adjusting the pump polarization rotation angle a,,. Figure 5.3 
shows the conversion efficiency and the depletion of the pump and the rotated 
pump flux densiti('s as functions of a,, for four different \'alues of β. In all cases, 
the nonlinear drive is kept constant at unity and L =  0.04. For β — 0.7 in 
F'igure 5.3(a), a maximum conversion efficiency of 0.71 is achieved at cv,, =  41°, 
whereas the pump and the rotated pump are fully depleted at cv,, =  42° and
Q '71 17°, respectively. The SF-OPO is below threshold for cvp > 51°.

R ota tion ang le  (degrees), a
(C)

Figure 5.3: Conversion efficiency (?/), puni]) depletion (pd), and rotated pump 
depletion (rpd) as functions of the pump polarization rotation angle for a class-B 
SF-OPO. 'I'he nonlinear drive is unity and L =  0.04 in all cases.



Figure 5.3(b) with a larger β of 0.9 shows a similar behavior with a higher 
con\'ersion efficiency of 0.79. The SF-OPO gets below threshold at an earlier 
Vcilue of cvp - 44°, since the SF'G process is stronger in this case. For larger
values of /4, the ina.ximum conversion efficiency increases up to a value of 0.8f 
and then begins to decrease as a result of the threshold Op being smaller than the 
optimum cXp. Figure 5.3(c) and (d) show two examples of this situation. Here, 
the SF-OPO achieves its maximum conversion efficiency right before going below 
threshold. This behavior is related to the unusual saturation characteristics of 
the parametric gain; starting from go at a?2{0 ) =  0, </[«2(0)] fii'st increases with 
increasing « 2(0)1 then decreases to cross the loss line i/Rh at the intracavity 
signal flux density « 2(0) =  x. When o,, is increased, go d(.'creases and becomes less 
than l/Rh- If the SF-OPO is turned on at this point, oscillations cannot build 
up in the cavity. However, if one increases ap while the SF-OPO is oscillating 
at « 2(0) =  ,T, the oscillations continue past the threshold ap value, as shown in 
Figure 5.3(c) and (d).

Both the threshold Op and the threshold nonlinear drive can be found by 
solving = 1· Since the OPO cind the SFG processes are independent in a
single-pass through the crystal and the retarder switches around the polarizations 
of «2 ii’iid CI4 in each round trip, the signal field has to be followed for two cavity 
round trips to find the threshold condition. The small-signal gain over two round 
trips can be expressed as

go = Rl cosh^ (\/Zf cosop'j cos·̂  (^β\^ siiia,,^ . (5.7)

where the cosh^(\/I} coscvp) factor represents the gain of the OPO signal in 
the first pass through the crystal, whereas the ί:ο8^{β\/Ό sin ο,,) factor repre­
sents the loss due to SFG in the second pass. The oscillatory nature of tlu' 
cos'̂ (/3\/D sino-p) factor in Equation (5.7) results in a number of ranges for the 

nonlinear drive where the SF'-OPO is below threshold. Figure 5.4 shows the 
dependence of the conversion efficiency on the nonlinear drive for four differenl. 
values of β. In each case, cvp is adjusted to maximize the conversion efficiency 
at unity nonlinear drive. We observe a number of sub-thresliold regions in Fig­

ure 5.4.
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Figure 5.4: Conver,sioii efficiency as a function of the nonlinear drive for different 
Vcilues of β for a class-B SF-OPO. For each β value, the pump polarization ro­
tation angle «Ρ is adjusted to maximize the conversion efficiency at a nonlinear 
drive of unity, (a) β =  0.5, Op =  44.1°; (b) β — 1.0, a,, =  39.9°; (c) β  ■ 1.5,
Q'p = 24.6°; (d) β  =  3.0, cVp = 15.54°. For each case, L = 0.04.

5.1.3 Class-C SF-OPO’s

The phase matching geometry of class-C SF-OPO’s leads to orthogonal polariza­
tions for the OPO pump and the higher frequency SFG input fields. A half-wave 
reta.rder provides adjustable rotation of the pump polarization before the puiii]) 
beam enters the cavity. For a pohirization rotation angle of a,,, a siiF cvp frac­
tion of the total input pump flux density is used as the higher frequency SFG 
input (¿5(0), whereas the I'emainiiig pump flux density njjjO) provides parametric 
gain for the signal field. With this configuration, the distribution of the pum|> 
photon flux density between the two processes can be adjusted to maximize the 
conversion efficiei 1 cy.

Figure 5.5 shows the conversion efficiency and the depletion of the pump and 
the rotated pump (liigher frequency .SFG input) flux densities as functions of the 
polarization rotation angle for four different values of /3, where the nonlinear 
drive is kept constant at unity and L — 0.04. For β =  0.5 in F'igure 5.5(a), 
a maximum conversion efficiency of 0.64 is achieved at cv,, =  46°, whereas the 
pump is fully depleted at a,, =  51°. The depletion of the rotated pump starts at

46



20 40 60
R ota tion ang le  (degrees), a

( C )  "

Figure 5.5: Conversion efFiciency (77), pump depletion (pci), and rotated pump 
depletion (rpd) as functions of the pump polarization rotation angle for a class-C 
SF-OPO. The nonlinear drive is unity and L =  0.04 in all cases.

0.93 with Q'p just above zero and decreases monotonically until the SF-OPO gets 
below threshold at Op =  62°.

For 8 = 1  in Figure 5.5(b), the maximum conversion efficiency is higher 
(0.90), and complete pump depletion coincides with maximum conversion. For 
this particular value of /3, the depletion of the pump and the rotated pump fields 
are ecpial for all values of ap and D, since y(~) = 0{z) for fH = \. However, 
simultaneous depletion of both pump components is possible only when 8  or 1 //f 
is an odd integer, since cos(80) and cos 9 can become ecjual to zero at the same 
0 value only then.

For 8  lai'gei’ than unity, the conversion efficiency achieves its maximum right 
before the threshold cv,,, similar to class-B SP'-OPO’s. Figure 5.5(c) and (d) show 
examples of this behavior for 8  =  T5 and 3, respectively. Note that a solution 
of the steady-state oscillation condition [Ecpiation (5.1)] may exist beyond the 
threshold cVp, even though the intracavity signed cannot build up from noise to 

reach this solution.
Both the threshold nonlinear drive a.nd the threshold c\p can be found l)y
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Figure 5.6: Conversion efficiency as a function of the nonlinear drive for different 
values of for a class-C SF-OPO. hor each /? value, the pump polarization ro­
tation angle cVp is adjusted to maximize the conversion efficiency at a nonlinear 
drive of unity, (a) ¡3 =  0.5, tv,, =  45.9°; (b) ft =  l.O, tv,, =  42.3°; (c) ft =  1.5, 
tvp = 32.9°; (d) ft =  3.0, =  18.03°. For each case, L =  0.04.

equating the small-signal gain

go =  cosh^ ^cos \ — ft'̂  tan  ̂a,,)D  ̂ . (6.8)

to l//f.L·· Note that Equation (5.8) is valid onl}  ̂ if ft tan tv,, < 1 , otherwise go < 1 .
Figure 5.6 shows the dependence of the conversion eificiency on the nonlineai- 

drive for lour different values of ft. For each case, tv,, is adjusted to maximize g 
at D =  1. We observe that the maximum conversion efficiency foi' в — 0.5 and 
ft =  1 is higher than the maximum values for ft =  1.5 and /4 = 3.

5.1.4 Class-D SF-OPO’s

In class-D SF-OPO’s, the polarizations of the OPO signal «2 and the lower fre- 
cjuency SFG input a,\ are orthogonal. An intracavity half-wave retarder piOvich's 
the SFG input a,i(0) by rotating the signal polarization. There are two modes of 
operation, as in class-B SF-OPO’s, depending on the signal polarization rotation 
angle os,.

For ( he configuration where 0° < α* < 90°, we assume that the rotated signal 
field (lower freqvu'ncy SFG input) at the output of the crystal is either coupled
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out of the cavity with a polarizing beamsplitter or strongly depleted, so that 
interference due to polarization mixing at the half-wave retarder is avoided. In 
this configuration, maximum conversion to the sum-freciuency takes ¡rlace when 
both the pump and the rotated signal fields are fully depleted at the output. Tlie 
nonlinear drive and o., can be adjusted to deplete these two fields completely and 
maximize r/.

The depletion of the rotated signal docs not depend on the value of the nonlin­
ear drive. To arrive at this conclusion, we first note that Rx^alil) =  « 2(0) + 
and obtain

al{l)
= cosh  ̂0{l) =

+  tan"̂  cv..
(5.9)

a m  R l

where 0{z) is the .solution to Equation (4.27). Equation (5.9) shows that 9{l) 
depends only on a., and 7?l· The rotated signal de])letion at the output is

a\{l)1 - 1 — cos  ̂{l30{l)) (5.10)
a m

and independent of the value of D.

For the rotated signal to be fully depleted, the product I30{1) should be equal 
to an odd multiple of 7t/2 . Since the I36{1) =  tt/2  case requires smaller values for 
D and « 5, we consider this case only. Using Equation (5.9), the angle that 
depletes the rotated signal for given values of Ş and R.]̂  is found to Ire

Q's =  tan ' \JR\ ĉoû\ {̂'K!2¡3) — 1 . (5.11)

Complete depletion of the pump takes place when the first term in hk|ua- 
tion (4.27) representing the pump photon flux density is equal to zero. This 
condition allows us to obtain the ratio of Ci and C2 as

Cfi 1m = (5.12)
C2 cosh^ 9 -|- taiC O'., sin (̂/:/i>)

Equation (5.12) also determines the ratio of the intracavity signal flux density to 
the input pump flux density through the Manley-Rowe relations (4.19) and (1.20). 
In the case of simultaneous depletion of the pump and the rotated signal fields 
at the crystal output. Equation (5.12) Ccin be expressed in terms o f /7 a.nd R.\̂ as

(7?l -h l)co,sh'^(7r/2/^) -  1 ^

We then integrate luiuation (4.27) and obtain the optimum nonlinear di'ive cis

r 7̂1213
^̂ opt (1 )

/•Tr/2/î ^
/  [I — ■m„pi,(cosĥ  (j) -|- tan  ̂a,, iin\̂ {f34>))]~̂ ^̂ d4> 

Jo
(5.14)
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Figure 5.7: Conversion efficiency (?/), pump depletion (pd), and rotated signal 
depletion (rsd) as functions of the signal polarization rotation angle for a class-D 
SF-OPO. The noidinear drive is unity and L =  0.04 in all cases.

where cVs and ??i.opt <-u'o given by Equations (5.11) and (5.13), respectively. The 
integral in Equation (5.14) has an integrable singularity at its upper limit, and 
can be evcduated numerically after a change of variable (¡> =  tt/2 /? — eliminates 
the singularity [41].

The optimum nonlinear drive Dopt decreases with increasing values of /4. The 
maximum conversion efficiency achieved at Oopt is

/¿L cosh ̂ (tt/2/4) — 1
/̂max — 3~ 5.15)

( 7 ? l  +  1 )  c o s h ^ ( 7 r / 2 / :

For larger values of /4, ;/,„ax decreases rapidly with increiising cavity losses.
Figure 5.7 shows // and the depletion of the pump and the rotated signal flux 

densities as functions of for four different values of /4, where D is kept constant 
at unity and L = 0.04. Note that as /4 gets hirger, the peak conversion eificiency 
increases and shifts to smaller values of q .,. Tlie threshold o., is inde])endent 
of /4 since the net small-signal gain =  cos'̂  Oj cosh^ \/D. which includes the 
linear loss due to polarization rotation, does not depend on /4. Figure 5.8 show's 

tlie dep(*ndence of ?/ on D for four dilferent values of /4. For each /4 value, 0« is 
adjusted to maximize // at unity nonlinear drive. The peak conversion eificiency 
is largest in Figure 5.8(d), since 74,jp(. is closer to unity for /4 = 3 than for the
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Figure 5.8: Conversion efficiency as a function of the nonlinear drive for various 
values of β for a class-D SF-OPO. For each β value, the signal polarization ro­
tation angle as is adjusted to maximize the conversion efficiency at a nonlinear 
drive of unity, (a) a =  39.7®, β =  0.5; (b) a = 38.1®, ^ = 1; (c) a — 35.9®, 
β — 1.5; (d) a =  27.8®, β =  3. For each case, L = 0.04.

other β values.
If as is set to 90®, the retarder switches around the polarizations of the OPO 

signal a2{l) and the lower frequency SFG input (¿.[{I) after each pass through the 
crystal. Since the OPO and the SFG processes are coupled in the crystal, iterating 
the single-pass solutions to simulate the intracavity build-up of the signal and tlie 
rotated signal flux densities is more appropriate lor this coniiguration [30].

5.2 SD -O P O ’s

5.2.1 Class-A SD-OPO’s

Figure 5.9 shows the photon conversion efficiency, pump depletion and inti acavity 
signal flux density as functions of the nonlinear drive for lour different vedues of 
ft. The intracavity signal flux density is shown normalized to the input pump 

flux density. R\̂  is taken to be 0.96 in all cascis. The threshold nonlinear drive 
/}(,h is independent of ft. This is because conversion to the second-harmonic is 
negligible in the small-signal regime and the small-signal gain is not affected by
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Figure 5.9: Conversion efFiciency (?/), pump depletion (pd), and intracavity signal 
flux density nornicdized to the input pump flux density (σ) ¿is functions of the 
nonlinear drive for class-A SD-OPO’s. is taken to be 0.96 for (a) β — 0.5, (b) 
β =  1.0, (c) β  =  1.5, and (d) β =  .3.0.

the SHG process. Hence, the thresliold nonlinear dri\'e of 0.041 is equal to that 
of a regular OPO with R =  0.96.

In class-A SD-OPO’s, maximum conversion does not coincide with complete 
pump depletion, but the conversion efficiency and pum]r depletion curves are very 
close. As β increases, the two quantities become nearly equal. The Miuiley-Rowe 
conserved quantity of Equation (4.29) can be used to formulate a relation between 
the photon conversion efficiency, pump depletion, a.nd intracavity signal flux den­
sity (normalized to the input pump flux density). Evaluating Equation (4.29) 
at =  / and = 0, dividing both sides of the equality by the input pump flux 
density «3(0), and using the steady-state oscillation condition [E((ua.tion (5.1)], 
we obtain

* " a  (.5.16)'‘ - ’' + 1 7 4 ·
where 8 is the pump depletion and a = rt2(0) /a 3(0) is l.he intracavity signal flux 
density normalized to the input pump flux density. Since no output coupling 
is employed, the resonator loss is usually small and the fa.ctor in front of a is 
typically smaller than 1/10. Hence, conversion elficiency and |)ump depletion are
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nearly equal. As /3 increases, the intracavity signal flux decreases as a result of 
the nonlinear output coupling through the SHG process and the depletion and 
conversion curves begin to overlap.

VVe observe that maximum conversion efficiency is high for all values of /3 
shown. As j3 increases, the nonlinear drive for maximum conversion increases 
cind becomes more difficult to attain. However, variations from this optimum 
value do not affect the conversion efficiency significantly.

5.2.2 Class-B SD-OPO’s

Class-B SD-OPO’s require an intraca.vity polarization rotation for the signal field. 
Two different modes of operation are possible, depending on the polarization 
rotation configuration employed. In the first case, the signal is rotated by an 
angle O's < 90°, so that a sin̂  fraction of the OPO signal flux density is coupled 
to the SHG fundamental ccj, while the remaining cos  ̂α« frciction becomes the 
input signal ci2 . For this configuration, we assume that the residual fundamental 
at the crystal output η.·ι(/) is either coupled out of the cavity with a polarizing 
beamsplitter or strongly depleted, so that interference due to polarization mixing 
at the half-wcwe retarder is avoided.

In this configuration, the total resonator reflectance becomes cos  ̂a«. There 
is no nonlinear output coupling in this situation; the intracavity signal flux den­
sity is not affected by the presence of the SHG process. Even though the SHG 
process is internal to the OPO resonator, this configuration is not different from 
external frequency doubling of a regular OPO. Since the SHG process does not 
benefit from high values of the intracavity signal flux density, this configuration 
is not expected to be particularly efficient.

If the residual fundamental a^{l) is not coupled out and Oj is set to 90°, the 
retarder switches around the polarizations of the OPO signal «2(0 fFe ix'sid- 
ual fundamental a.\[l) with no resulting interference due to polarization mixing. 
The OPO signal at the crystal output provides the SHG fundamental «.i(0) for 
the next round trip, whereas the residual fundamental becomes the OPA input 
« 2(0). Since the two processes are not coupled in the crystal, this configuration is 
conceptually equivalent to intracavity frequency doubling of a regular OPO with 
a second crystal. 'The plane-wave theory of such two-crystal intracavity-doubled 
OPO’s has been presented elsewhere pre\dously
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Figure 5.10: Conversion efficiency (?/), pump depletion (pci), and rotated signal 
depletion (rsd) of class-C SD-OPO’s as functions of the signal polarization rota­
tion angle Q's for lour different values of /C The nonlinecU' drive is kept constant 
at unity and L =  0.04 for (a) /3 =  0.5, (b) /3 — 1.0, (c) /3 =  1.5, and (cl) /3 =  3.0.

5.2.3 Class-C SD-OPO’s

In class-C SD-OPO’s, the signal polarization rotation angle cv̂  can be adjusted 
to change the chigree of coupling between the OPA and the SHG processes for a 
fixed value of /3. l''igure 5.10 shows the conversion efficiency and the depletion of 
the pump and the rotated signal as functions of cv̂  foi' four different values of /1, 
where the nonlinear drive is kept constant at unity and L =  0.04. For [3 =  0.5 in 
Figure 5.10(a), a maximum conversion efficiency of 0.G2 is achieved at cv,,. =  24°, 
whereas the pump is fully depleted at cVj = 28°. The depletion of the rotated 

signal starts at 0.93 with c\s just above zero and decreases monol.onically until 
the SD-OPO gets below threshold at = 49°.

For ¡3 — i in F'igure 5.10(b), the maximum conversion efficiency is higher 
(0.89) and complete pump depletion coincides with maximum conversion. F'or 
this particular value of /1, the depletion of the puni]) and the rotated .signal fields 
are equal for all values of q ., and D, similar to class-C bF'-OPO’s. Ilowevei'. 

simultaneous depletion of the pump and the rotated signal is possible only il ¡3 

or 1//4 is an odd integer.
For ¡3 =  1.5 and 3.0, the conversion efficiency curve has more than one peak
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and the maximum conversion efficiency is 0.79 and 0.89, respectively. The intra­
cavity signal flux density and consequently the conversion efficiency and depletion 
curves show discontinuities in their cv, dependence in Figure 5.10(d). In this case, 
the smallest solution of Equation (5.1) below cv., =  37° no longer satisfies Equa­
tion (5.1) as cVi is increased above 37°. If a,, varied up and down, a hysteresis 
behavior can be observed in the intracavity signal flux.

Figure 5.11 shows the conversion efficiency and the depletion of the pump and 
the rotated signal as functions of the nonlinear drive for four different values of 
¡3. In each case, cv« is adjusted to maximize the conversion efficiency at unity 
nonlinear drive. Maximum conversion occurs at a nonlinear drive close to unity 
for [3 =  0.5 and 1.5 and at exactly unity nonlinear drive for ¡3 =  1.0 and 3.0. 
However, the conversion efficiency drops from its maximum relatively quickly 
as the nonlinear drive is changed, when compared to class-A SD-OPO’s (see 
F'igure 5.9). This sensitivity to the nonlinear drive increases with increasing /1.

(a)

0.1 1 10 
Nonlinear drive, D

(C )

(b)

(d)

Figure 5.11: Conversion efficiency as a function of the nonlinear drive for four 
different values of ¡3 for a class-C SD-OPO. For each ¡3 value, the signal [)olariza- 
tion rotation a.ngie a,, is adjusted to maximize the conversion efficiency at D =  1. 
(a) ¡3 =  0.5, cv, = 24.1°; (b) ¡3 =  1.0, cv, = 24.8°; (c) ¡3 =  1.5, a , = 28.8°; (d) 
¡ j  =  3.0 cv, =  24.2°. for each case, L =  0.04



Chapter 6

A Pulsed Plane-Wave Model

Even though the plcine-waAK; theoiy of single-crystal upconversion OPO’s pre­
sented in Chapters 4 and 5 describes the fundamental principles of these devices, 
it is inadequate for accurate modeling of practical experiments. Such a model 
requires one to include the effects of many experimental realities such as the 
temporal and transverse profiles of the fields, GVM, GVD, and self-phase modu­
lation. As a first step, we found that developing a plane-wave model that takes 
into account the temporal profiles of the fields and tin.' GVM between the pulses 
gives the most insight. This model does not take into account the Gaussian Iream 
nature of the fields, chirped pulses, or group velocity dispersion.

In order to be able to compare the results of this pulsed plane-wave model with 
an actual experiment we decided to concentrate on class-C SF-OPO’s [42], [9], 
[43]. In a pulsed class-C SF-OPO, the OPO pump and the rotated pump (higher 
frequency SFG input) get separated from each other as they propagafe inside the 
crystal, since they have different group velocities. Since tlie signal gain is provided 
by the OPO pump, the intracavity signal j)ulse is approximately synchronized 
with this pump component and falls out of synchronization with the rotated 
pump. This reduces the efficiency of the SFG process. It was exjjerimentaJly 
demonstrated that introducing a group didciy between the orthogonally pidarized 

pump components to compensate for the GVM inside the crystal maximizes the 

conversion efficiency [42].
Effects of ])ulse pro|iagation can be incor]:)orated into the plane-wave model by 

including time derivatives in the coupled mode equations, hbr cIa,ss-C Sh'-OPO’s 

Equations (3.5) (3.9) become

dci\ 1 ¿fa I
^  + -----XT =
(Jz iq a t
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da2 1 da2
dz Ü2 dt

dci3 1 d(i3

dz Ü3 dt

dci5 1 dci5
dz Vs dt

due 1 dcie
dz vq dt

— ~ KbdC)Clr̂

- K a C i i C l l

— —KbCiç,a2

— KbCİ2Ctr^

(6.2)

(6.3)

(6.4)

(6.5)

where t>.,„ are the group velocities for each field.
We used finite differencing techniques to compute numerical solutions of Equa­

tions (6.1) (6.5) [41]. The values of the physical parameters used in our calcu­
lations are based on the experiment by Köprülü et al. [42] and are summarized 
in Table 6.1. The refractive indices and group velocities are calculated using the 
dispersion relations for the nonlinear crystal KTP [44]. The dispersion in the

Physical parameter Symbol Value
Wavelengths (nm) λΐ 2755.7

1182.4
827.4
827.4
486.8

Refractive indices Ui 1.7870
ri2 1.7448
ns 1.7575

1 1 Q/7.5
riG

i . o i. .L V
1.8019

Group velocities (xlO^ in/s) Vl 1.6094
■t’ 2 1.6896
■t’ ;3 1.6631
I’s 1.5763
t»(3 1.5352

Effective nonlinear coefficients (prn/V)
4 (OPO) 1.76
4  fSFG) 2.07

Total cavity reflectance Rl 0.94
Crystal length (mm) 1 5

'I'alile 6.1 : Values of the physical parameters used in the 
calculations.

plane-wave model
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effective nonlinear coefficient is accounted for using Miller’s Rule [38]. For con­
version from average power to temporal profiles of field amplitudes, the beams 
are assumed to have uniform transverse profiles over a circular region of 28.8μιη 
diameter, the full-width at half-maximum (F'WHM) diameter of the pump beam 
at the crystal focus [42]. The TirSapphire pump laser used in the experiment has 
a repetition rate of 76 MHz. The pump pulse is modeled with a sech pulse shape 
that has an intensity FWHM of 170 fs.

We start out with a small signal pulse that has the same sech shape as the 
pump to represent the parametric fluorescence that the cavity oscillations build 
up from. This signal pulse is iterated through the cavity several times until a 
steady-state is reached. At each round trip, the signal pulse meets a new pump 
pulse and a fixed delay is introduced to the signal pulse in order to model the 
adjustment of the cavity length to synchronize the signal pulse with the OPO 
pump. The group delay between the OPO pump (as) and the rotated pump (« 5) 
at the input is also adjustable.

We compute the photon conversion efficiency for a series of cavity length 
(signal delay) λ̂ alues while keeping the polarization rotation angle cvp and group 
delay constant. We found that for a relevant range of a·,, and group delay values, 
the signal delay required to maximize the conversion efficiency is in the 380-480 fs 
range. This is in agreement with the 472 fs group delay Ijetween the OPO pump 
and the signal in 0 mm of KTP. The maximum conversion efficiency oljtained by 
varying the cavity length is taken to be the conversion efficiency at this c\p and 
group delay.

Next, we set the group delay between the pump components to 2 ps and 
calculated the conversion efficiency for different values of a^. Figure 6.1 shows 
the results of this calculation lor an average pump powc'r of 515 rnW together with 
experimental data points. We have made no attempts to fit the predictions of tlie 
model to the data by adjusting one of the physical parameters. The (|ualitative 
agreement of our model with the experimental results is very satisfactory. The 
quantitative agreement for the peak conversion efficiency, the optimum rvp, and 
the threshold c\p are reasonably good.

At zero group delay, we calculated the maximum conversion efficiency to be 
22% at a polarization rotation angle of cv,, =  30°. These results are also in 

reasonable agreement with the 15% maximum conversion efficiency measured at 

ap =  33° in the experiment.
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F'igure 6.1 : Conversion efficiency as a function of the pump polarization rotation 
cingle ap. The solid line represents the model’s predictions and the fdled circles 
correspond to experimental measurements. The average pump power is kept 
constanl. at 515 mW and the group delay between orthogonal pump components 
is 2 ps.

Our model predicted a. pulse width of 210 fs for the sum-freciuency output. 
This is also in good agreement with the 225 fs value measured in the experiment. 
■Since our model does not take GVD into account, this agreement suggests thaï 
GVM is the dominating factor in determining the sum-frequency pulse width.
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Chapter 7

Conclusions

The simultaneous phase matching of two different second-order nonlinear interac­
tions within the same crystal with one or more fields in common leads to a wide 
range of frecpiency conversion applications. Both biréfringent and quasi-phase 
matching techniques can be used to phase match the two interactions. Quasi­
phase matching offers added flexibility in the choice of wavelengths, and brings 
adjustability to the relative strength of the two processes.

In this thesis, upconversion OPO’s based on the simultaneous phase matching 
of OPO and SFG/SHG were investigated. We have identified four classes of SF- 
OPO’s and three classes of SD-OPO’s, depending on which field components are 
common. These seven classes of single-crystal upconversion OPO’s are character­
ized by different sets of coupled mode equations, and consequently show different 
characteristics from each other. However, efficient upconversion is possible in all 
seven classes.

The most important design parameters for upconversion OPO’s are the non­
linear di'ive and β. For a desired set of wavelengths, the nonlinear drive depends 
on the (dfective nonlinecir coefficient of the OPO process, the crystal length 
/, and the available pump photon flux density ajy Even though the pump flux 
density can be adjusted by changing the beam size, exj^eriniental constraints niciy 
limit the maximum available a .̂ The useful crystal length is also limited; phys­
ical limitations aiise from crystal growth constraints, or in pulsed systems the 
pulse overlap lengtli may be limited due to GVM betwc'en the field components. 
.As a result, there is usually an upper limit to the available nonlinear di'ive. The 

[)arameter β is even more difficult to tailor. Once the phase matched wavelengths 
are known, BPM offers no method for adjusting β. However, using QPM lor the
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two processes provides a mechanism for adjusting /1

The remaining parameters that play an importcuit role in the performance 
of single-crystal upconversion OPO’s are the polarization rotation angle a and 
the cavity losses L. The polarization rotation required in five of the seven up- 
conversion OPO classes provides an adjustable parameter, cv, that may easily be 
changed by rotating the half-wave retarder to maximize the conversion efficiency. 
The cavity losses are best minimized in all classes except class-A SF-OPO’s; in 
a typical experiment one can usually keep L < 0.05. For class-A SF-OPO’s how­
ever, one of the cavity mirrors may have to be replaced with an output coupler 
for the signal field in order to maximize the conversion efficiency.

The practical design and optimization of single-crystal upconversion OPO’s 
would benefit from the development of accurate computational models that take 
into account the transverse and temporal profiles of the fields, and other im­
portant effects such as GVM, CVD, and self-phase modulation. As a first step 
toward this goal, we have extended the plane-wave theory of Chapters 4 and 5 to 
include the effects of temporal profiles of the fields and CVM. The results of this 
pulsed plane-wave model for a class-C SF-OPO are in good qualitative agreement 
with ex])erimental measurements. The results also show that compensating for 
the GVM between orthogonal pump components of a class-C SF-OPO increases 
conversion efficiency considerably.

There are two niciin future directions for our work. The first is to incorpo­
rate other experimental effects in the pulsed-plane wave model of Chapter 6, 
for predicting the performance of single-crystal upconversion OPO’s more accu­
rately. The incorporation of CVD and self-phase modulation requires one to add 
new tenris to Equations (6.1) -(6.5). The incorporation of transverse profiles will 
increase the number of physical dimensions in Equations (6.1)-(6.5), ami will 
therefore increase the computation time and memory requirements significantly.

The second futuix; direction is to consider other combinations of second-order 
nonlinear interactions for different frequency conversion applications. TIk' plane- 
wewe theory of cascaded OPO’s was recently investigated [45]. Another possibility 
is intracavity Dk'C of the signal and the idler of an OPO with a second nonlinear 
crystal, to provide long-wavelength radiation [46]. Tlie generation of such long- 
wavelength radiation with a regular OPO may not Ix' feasible because of |)has(' 
matching limitations of available crystals [46]. The same combination can also 
be realized with simultaneous phase matching within th(' same nonlinear crystal.
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