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Abstract

A TIME-BASED CONTROL POLICY FOR A PERISHABLE 
INVENTORY SYSTEM WITH LOST SALES

Eylem Tekin
M. S. in Industrial Engineering 

Supervisor: Assoc. Prof. Ülkü Gürler 
03 07 1998

In this study, we propose a new time-based poiicy for continuous review inventory 
systems where the products have fixed fife times and unmet denicinds are iost. 
We cierive the exact expressions of the key operating characteristics of the 
rnociei. Based on these performance measures, we optimize the reievant costs 

subject to a service ievei criterion, nameiy the average fraction of time out of 
stock. A numericai analysis is provided to Vcilidate and compare our model with 
conventional policies. We also investigate some special cases of the time-based 
policy which are applicable to the products with infinite life times.

Keywords: Inventory, perishable, lost sales.
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RAF ÖMRÜ OLAN ÜRÜNLER İÇİN ZAMANA DAYALI BİR
ENVANTER POLİTİKASI

Eylem Tekin
Endüstri Mühenlisliği Yüksek Lisans 

Tez Yöneticisi: Doç. Ülkü Gürler 
03 07 1998

Bu çalışmada stok dışı talebin kaybedildiği ve stoktaki malların sabit bir ömrü 
olduğu sistemler için zamana dayalı bir envanter politikası geliştirilmiştir. Sözü 
edilen envanter politikası için düşünülen sistemde, iki talep arasındaki zamanın 
üstel dağıldığı ve sabit bir bekleme süresinin olduğu varsayılmaktadır. Problemin 

analitik çözümü için rassal süreçler teorisinden yararlanılmıştır. Sürekli gözden 
geçirilen envanter sistemleri için servis kısıtı altında uzun vadede ortalama maliyet 
ifade edilmiştir.

Anahtar sözcükler: Envanter, raf ömrü, talebin kaybedildiği ortamlar.
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Chapter 1

IN TR O D U C TIO N

Inventory management is a fundamental problem which arises in all areas 

of business administration. Mathematical models form the basis of most of 
the inventory control systems today, which are designed to answer two major 
questions: When should a replenishment order be placed and how much should 
the order quantity be.

The method of analysis and the applicability of any model depend on the 
assumptions about the underlying physical system. There are a number of key 
types of assumptions regarding the structure of an inventory model. Nahmias 
[20] classifies these assumptions as follows.

1. Continuous review vs. periodic review

2. Deterministic vs. random vs. unknown demand

•3. Stationary vs. nonstationary models

4. Single period vs. finite horizon vs. infinite horizon

5. Backorder vs. lost sales

6. Average vs. discounted cost

7. Instant delivery vs. positive lead time

1



Chapter 1. INTRODUCTION

8. Infinite lifetime vs. perishability

9. Single vs. multiple products

10. Single installation vs. multi-echolon

Beginning with Harris’s [13] EOQ formula , a considerable amount of literature 
has been devoted to inventory control problems in order to determine the optimal 
ordering policies. Uncertainty in the demand is the most significant issue that is 
handled in many inventory control studies. The traditional approach has been to 
minimize the expected costs with respect to the decision variables regarding the 
order quantity and reorder point. In this study, we will focus on the single-item, 
single-location inventory control problems.

Most of the research in this area is based on the assumption that the products 
in the inventories have infinite lifetimes and the inventory system operates under 
the (s, ,5') policy (or the continuous review version of the (s, S) policy which is the 
((5,r) policy). The exact analysis of the {s,S) policy is available in the literature 
for the full backlogging case. Optimality of (s,,?) policies for this case is also 
proven. Therefore, with full backlogging assumption, there is a vast literature 

on the algorithms and approximations for computing optimal and near optimal 
solutions of (s,S) policies.

On the other hand, for the case where unsatisfied demands are lost, the 
problem becomes very complex and the optimal ordering policy cannot be 
computed by ancdytical mecins. What makes lost sales analysis more complex 

is that unlike the backorders case, when the system is out of stock, the amount 

on hand plus on order does not change by a demand arrival. Therefore, it is 

not possible to consider the changes in the amount on hand independent of 

the amount on hand plus on order, so the procedure which is used to compute 
the distribution of on hand inventory from inventory position does not apj l̂y. 
Therefore, for nonperishable products there is not much done in the literature on 

the inventory replenishment problems with lost sales. The analysis of this case 

is restricted to Poisson demands and one order outstanding assumption.
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Although one of the basic implicit assumptions of most inventory control 
models has been the infinite lifetime of products, there are also many types of 
products with limited shelf lifes, which are referred cis perishable goods. If the 
shelf life of an item in the inventory is long or if the rate of deterioration is 
low and negligible, the perishability can be ignored in some cases. However, in 
many situations the existence of a shelf life plays a major role and its impact 
should be considered explicitly. Foodstuffs, blood inventories, drugs, volatile 
liquids which are used in industry are some common examples of such perishable 
inventories. Since the conventional ordering policies may not be appropriate when 
applied to perishable inventories, mathematical modeling of such systems has 
been an interesting research topic in inventory theory. A considerable literature 
is devoted to the inventories where products may have a fixed lifetime or a random 
lifetime. The existing studies in this area consider that the perishable inventories 
operate under the (s, S') policy and even for this policy, the means of determining 
optimal ordering quantity and reorder point is not available in the literature with 
reasonable general assumptions. Much of the reported literature assumes Poisson 

demands and instantenaous lead time or imposes a restriction to the policy itself 

(e.g. (S' — 1,-S') or (O,.?)). When replenishment lead times are positive, the 
cinalysis becomes difficult. The difficulty is that aging can only be applied to 
units on hand not on order. The state variable would have to include all orders 
that were placed and the elapsed time since their placement. Unlike the models 
for nonperishable products, for the cases when there is a shelf life, the problem 

is harder if backorders are allowed. Schmidt and Nahmias (1985) states that it 

is unlikely that anyone would be able to find or to use an optimcil policy.

In this study, we consider a continuous review inventory system where the 

products have fixed lifetimes and unmet demands are lost. We propose a 
new time-based policy to determine the optimal ordering quantity and reorder 
point. We derive the exact expressions of the key operating characteristics 

for Poisson demcinds. Based on these performance measures, we optimize the 

relevant costs subject to the constraint on the long run average fraction of lost 

sales. A numerical analysis is provided to validate and compare our model with
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conventional policies. The model is unique in that a different approach rather 
than the classical (5,,S') type policies is addressed for controlling inventories. We 
also investigate some special cases of the time-based policy which are applicable 
to the products with infinite lifetimes.

This thesis work covers the following chapters. In Chapter 2, we present the 
literature on single-item, single-location inventory control models for perishcible 
goods and random demands. For completeness, we present the major studies 
that consider infinite lifetimes for the products.

In Chapter -3, we e.xplain the time-based policy and derive the key operciting 
characteristics of the model. We state the optimization problem that we consider 
explicitly. Some special cases of the model are also examined in this chapter.

In Chapter 4, we present our numerical results on a wide range of parameter 

settings in comparison with the classical (Q.,r) model. In the literature, 
the computational analysis of proposed models is neither exhaustive nor 
comprehensive. Hence, this part of the study can be considered as the most 
exhaustive computational analysis done in the context of perishable inventories.

In Chapter 5, we investigate a special case of our model for items with infinite 
lifetimes. The model is simple and interesting in that it facilitates a quick and 
efficient approximate solution procedure for the conventional iQ,r)  model where 
demands follow an arbitrary distribution.

We conclude the thesis work by summarizing our findings and possible future 
research directions in Chapter 5.



Chapter 2

LITERATURE REVIEW

Inventory management is an area in which operations research has had a 

significant imi^act. Although the history of inventory management goes back to 
the beginning of 20̂ *̂ century, the semiiicvl papers of Arrow, Harris and Marshak 
[3] iind Dvoretsky, Kiefer and Wolfowitz [8,9] are considered as the benchmarks 
of the modern inventory theory, after which a huge literature on inventory 
control models has been built on. The book by Hadley and Whitin [12] have a 
comprehensive discussion on optimal ordering policies and their approximations. 

Nahmias [20] chissifies the inventory control models according to their underlying 
assumptions and highlights the major techniques and results of the inventory 
theory literature. Lee and Nahmias [17] give a comprehensive survey on the 
mathematical models for controlling the inventory of a single item.

Most of the literature on single-item, single-location models considers the 

(s, ,5') policies with full backlogging assumption. Scarf [35] establishes the 

optimality of (s, ,S') policies for a multi-period dynamic model under full 

backlogging. Beckman [4] investigates (s, S) policies for continuous review 
inventory systems and extends the proof for optimality of (s, ,S') policies for 
continuous review case. Veinott [41] provides an alternative proof under slightly 

different conditions.

Sivazlian [38] studies a continuous review inventory system where the 

interarrival times between unit demands are independently and identically

5
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distributed with an arbitrary distribution. Assuming that the reorder point is a 
nonnegative integer, it is shown that the limiting distribution of the inventory 
position is uniform and is independent of the distribution of the iirterarrival times. 
Optimal decision rules for instantaneous deliveries cire given.

Archibald and Silver [2] consider (s, .S') policies for a continuous review system 
with discrete compound Poisson demand, convex holding-shortage cost, fixed 
ordering cost, and positive lead time. They develop a recursive formula to 
compute the cost lor a given (s, ,S') pair. In order to determine the optimal 
(s,S),  relations among s , S , S  — s and the cost rate are determined.

Sahin [31] assumes a compound renewal time process under the (s, S) policy. 
He develops expressions for both time dependent and stationary distributions of 
the net inventory and the inventory position using a renewal theoretic structure. 
He presents the operating characteristics for both continuous review and periodic 
review inventory systems. Later, Sahin [32] proves the necessary and sufhcient 
conditions for pseudo convexity of the cost rate function and computes the 
optimal stationary jDolicy by a one-dimensional search routine.

A considerable effort is given for efficient computation of optimal (.s,.S') 
policies. Federgruen and Zipkin [11] present an algorithm to compute an 
optimal (s, S) policy under stationary data, well-behaved one period cost, discrete 
demand, and full backlogging assumptions. Porteus [25] also considers a periodic 
review inventory system with stationary independent demands and infinite 
planning horizon. He introduces three methods to obtain approximately optimal 
policies with little computational effort. The paper also provides a detailed survey 

of other methods for computing (s, .S') policies and compares them on a broad 

range of problem settings. On the other hand, Federgruen and Zheng [10] propose 

an efficient algorithm for computing an optimal (Q^r) policy in a continuous 
review inventory system. The computational complexity of the algorithm is linear 

in QC
Besides the efforts for computing optimal (s, .S') policies, some heuristics 

and approximations are also developed as the computational difficulties make 

the exact models unattractive in practice. Sahin and Sinha [34] propose an
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approximation which is derived by using asymptotic results from renewal theory 
and examine the distribution-free approximation for the order quantity using a 
wide range of demand distributions and parameter settings. Chen and Zheng [6] 
develop a heuristic (s, S) policy by providing a closed form formula for S — s and 
show that the heuristic is within %6 of the optimal cost value.

The study by Schultz [36] considers a special case of (.s, ,S') policy which is one- 
for-one (,9 — 1, S) inventory policy. He investigates the conditions under which it 
is not economical to batch the orders.

The foregoing discussion presents a non-exhaustive review of some basic 
literature on (s, S) policies with full backlogging assumption. Below we present 
a review of the literature on inventory control problems with lost sales. As 
mentioned earlier, the literature on the inventory control problems with lost sales 
is not as rich as the one for full backlogging case.

One of the earlier works in this area belong to Hadley and Whitin [12]. They 
consider a continuous review inventory sj^stem operating under the (Q,r) policy 
and Poisson demands. They compute the long run average cost rate function for 

the case where there is single outstanding order at a time. They also analyze the 
case Q = I and lead time is an exponential random variable.

Pressman [26] addresses the periodic review inventory system with lost sales. 
He introduces a fixed lag (lead time) between the placement and delivery of 
each order. At the end of each scheduling period, enough stock is ordered so 
that the stock on hand and on order is raised to a preassigned level. Demands 

are assumed to be distributed uniformly and demand sizes are discrete with a 

maximum possible value. Average cost is expressed as a function of the on hand 

inventory. Nahmias [21] provides cipproximate solutions for the periodic review 
case where the lecid time is random and partial backordering is possible.

Archibald [1] proposes a method which minimizes the average stationary 
cost for continuous review inventory systems under discrete compound Poisson 

demand and one order outstanding assumption. He defines a cycle as the time 

between the arrivals of successive supplier shipments. He first calculates the 

expected cost and the length of a cycle for a given starting inventory. Then, by
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using the fact that discrete compound Poisson demand is memoryless and there is 
no outstanding order at the start of a cycle, ti'cinsition from a starting inventory 
to the next is defined to be Markovian. The expected cycle cost is expressed as 
the weighted sum of cycle costs corresponding to every possible starting inventory 
level.

Ravichandran [28] studies the stochastic process induced by a continuous 
review (s, S) inventory model with Poisson demands and a random lead time 
with phase type distribution. The stationary distribution of the stock level is 
obtained as a closed form expression for the unit demands case.

Hill [14] considers the (Q,r) policy for continuous review inventory systems 
where demands follow a Poisson process and cit most two orders may be 
outstanding. He describes a numerical procedure for computing steady state 

values of two key measures of system performance, namely the percentage of 
satisfied demand and the average stock level. Buchanan and Love [5] also consider 
the (Q, r) inventory model with lost sales but they assume that the lead time has 
an Erlang distribution.

The literature that we reviewed so far assume that the items in the inventories 
have infinite lifetimes. The conventional ordering policies that are discussed in the 
previous paragraphs may not be appropriate when applied to perishable inventory 
systems. Therefore, distinct models are developed for these kind of systems. The 
litei'citure on ordering policies for perishable inventories can be classified into 
two categories. The first category considers items with continuous decciy (e.g. 
radioactive materials, photographic films). The second category includes the 

cases where the lifetime of products is a known constant independent of all other 

parameters of the system (e.g. blood inventories, foodstuffs).

Raafat [27] presents an exhaustive review on continuously deteriorating 
inventory models. The first study in this area which considers random demands 
belong to Shah and .Jaiswal [37]. In their paper, they develop an order- 

level inventory model by assuming instantenaous delivery and constant rate of 

deterioration.

Nahmias and Wang [24] derive a heuristic lot size reorder policy for an
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exponential decay problem and discuss some of the difficulties thcit arise due 
to the presence of positive lead time.

Liu [18] studies the (s, S) model with random lifetimes and discusses the 
difference between the proportional inventory decay and the finite lifetime of a 
product. He also assumes that the lead time is zero.

Kalpakam and Sapna [15] analyze the (s,S)  model for inventory systems 
with Poisson demands, exponentially distributed lead times and items with 
exponential lifetimes. The steady state operating characteristics are obtained 
explicitly and ancilytical properties of the long run expected cost rate is discussed. 
Later, Kalpakam and Sapna [16] consider a one-to-one ordering, perishable 
inventory model with renewal demands and exponential lifetimes. In the paper, 
the problem of minimizing the long-run expected cost rate is discussed and a 
non-exhaustive numericcil study is provided.

A recent study by Liu and Cheung [19] investigates base-stock policies with 
unit demands, exponentially distributed lifetimes and a positive lead time. They 
provide the expression of the oi^erating characteristics for complete backorders, 
complete lost sales and partial backorders. They optimize the system parameters 
subject to fill rate and waiting time constraints.

Nahmias [22] provides a comprehensive survey and reviews the relevant 
literature on the problem of determining suitable ordering policies for fixed life 
perishable products. He also considers a limited number of models where the 
products are subject to continuous exponential decay.

The first analysis for fixed life perishability belongs to Van Zyl [40]. He 

considers a periodic review inventory problem and computes the optimal ordering 

policies assuming that the lifetime of items is exactly two periods. Nahmias [2.3] 
extends this study for items that may have lifetimes of more than two periods.

Weiss [42] considers a continuous review inventory .system where the products 
have fixed lifetimes and there is an instantenaous delivery of orders. He presents 

that an optimal policy for the lost sales case is of the type “never order” or the 

type “order up to S  at the instant that the inventory level reaches zero”. He also 

proves that for the full backlogging case, there exists an optimal policy that is
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of the tyjDe “order up to S  as soon iis the marginal shortage cost of not ordering 
is greater than the optimal expected average cost”. The major assumption in 
this study is that the penalty cost incurred, even if the length of time the system 
is short is zero. In the paper, the cost expression for the lost sciles model is 
developed as a function of S. Some computational results are also provided.

Schmidt and Nahmias [39] study (S — TS’) policies with positive lead time 
for a single item whose lifetime is fixed. This study ¡provides the first analysis 
for perishables with a positive lead time. They assume that the inventory is 
monitored continuously, demands follow a Poisson process and unmet demands 
are lost. They comment that the form and structure of an optimal policy for a 
continuous review perishable inventory system with positive lead time appears 
to be extremely complex and it is unlikely that anyone would be able to find or 
to use an optimal policy.

Chiu [7] proposes an approximate continuous review perisha.ble inventory 
model which operates under the (Q ,r) policy. He assumes a positive order lead 
time cind a fixed shelf life for products. The paper provides an cipproximate 

solution by assuming that no undershoot occurs at the reorder point r cind by 
using only the total beginning stock instead of the state vector that denotes the 
remaining lifetime of items. The approximation is verified by a comparison with 
the Weiss [42] model. The computational results reveal that the mean absolute 
deviation is 0.58%. The paper also compares the approximate model to the 
conventional (Q,r) model with no perishability. A simulation model of the real 

system is also developed to validate the approximate results.

Ravichandran [29] studies a continuous review perishable inventory system 

of iS,s)  type. He assumes that the demands are governed by a Poisson process 
and there is a positive lead time with an arbitrary distribution. He presents an 
expression for the stationary distribution of the inventory level process under a 
specified aging phenomena. The specific aging phenomena assumes that the aging 

of a fresh batch does not begin until all units of the previous batch are exhausted 

either by demand or decay. He derives the cost rate function by making use of 

the stationary distribution of the inventory level process.



Chapter 3

THE TIM E-BASED  
INVENTO RY CONTROL  
POLICY

3.1 D escription Of The M odel

In this study, we consider a single-item, single-location continuous review 
inventory system where the products have fixed shelf lifes and unmet demands 
cvre lost.

In the inventory theory literature, the systems with fixed product lifetimes 
are considered to be difficult to analyze when replenishment lead time is positive. 

The possible difficulties which arise in analyzing such systems are discussed in 

Chapter 1 . The first study which considers a positive lead time for perishable 
products belong to Schmidt and Nahmias (1985) and during the last thirteen 
years, there have been very few reported research in this area. Moreover, the 
proposed models do not address the issues regarding the optimal ordering policy 

with reasonably general assumptions. The existing studies consider that the 

inventory system under consideration operates under an (5, 6') type policy and 

develop either approximate models (e.g. Ravichandran [29], Chiu [7] or models 

for a prespecilied class of (s^S) policies such as (S — 1,,5') policy (Schmidt and

If
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Ncihmias [39]).
The major reiison for using (s,S)  type policies for perishable inventories is 

that many practical replenishment problems that assume infinite lifetime for 
the products satisfy the mathematical conditions under which (i', S') policies are 
optimal. However, this is not necessarily true when perishability is introduced 
to the problem. Let us consider air inventory level process where products are 
demanded in discrete units. According to the (s, S) policy, an order is placed 
when the inventory position hits s units. If the items in the inventory are subject 
to decay after a constant time, (5, S) policy is not optimal because the nature of 
the policy necessitates to wait until the inventory position becomes s units even 
though it may be more beneficial to order between demand arrivals. Hence, it 
is reasonable to think that the optimal inventory control policy for perishables 
should incorporate the information of the remaining lifetimes of items.

With this motivation, we propose a new time-based policy for controlling 
perishable inventory systems. Our model provides a starting point for the analysis 
of ¡perishables with a different approach other than the conventional policies. As 

will be discus,sed in Chapter 4, the time-based policy is more robust against the 
perishability of goods for some cases and it performs better than the conventional 
policies.

The time-based policy is applicable to the inventory systems where all 
transactions are monitored continuously and inventory ordering decisions are 
made as soon as a transaction occurs. The products in the inventory have a 

constant lifetime and our model assumes that the aging of a fresh batch does 

not begin until all units of the previous batch are exhausted either by demand 

or decajc This specified aging phenomena was first introduced by Ravichandran 

[29]. The main motivation for the specified aging of a batch is from production or 
inventory environments in which goods are protected enough not to decay until 
they are unpcicked. A new batch is unpacked when the goods from the previous 

batch are either used up by demand or decay. Some composite raw materials 

which are preserved in the refrigerators until they go through the manufacturing 

process are examples for inventories with this specified aging pattern. Besides the
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applicability of the specified aging phenomena to various inventory systems, it can 
also be a good approximation for the systems in ■which the products begin aging 
as soon as they arrive to the system. The performance of this aiDproximation will 
be discussed later in Chapter 4.

Direct costs cissociated to the system are the linear holding cost, linear 
perishiirg cost and the fixed ordering cost. Inventory investment is based on a 
service level criterion rather than on the classiccil cost minimizcition approach. In 
other words, no explicit value is assigned to the lost sales cost. It is often difficult 
for rncinagement to accurately estimate lost sales costs since it is generally not 
a direct out of pocket cost but a cost of loosing goodwill of a customer. The 
consequences of loss of customer goodwill are hard to evaluate and hence, the 
cost minimization approach may not be feasible. On the contrary, using a service 
level criterion generates useful managerial insights. Therefore, we optimize the 
relevant costs subject to the constraint that the average fraction of lost sales is 
not greater than a fixed value.

Having stated the main motivation and basic characteristics of our model, we 
next list the assumptions our model. Some of these assumptions are mentioned in 
the ¡Drevious paragrai^hs but we express them below in order to be more explicit. 
Assumptions

1. DeiTuinds arrive to the inventory system one at a time.

2. Demands are governed by a Poisson process.

3. Demands that cannot be met are lost.

4. The inventory levels are monitored continuously.

•5. There is a positive lead time.

6. There exists at most one order outstanding at any time.

7. Direct costs associated to the system are the linear holding cost, linear 

perishing cost and the fixed ordering cost.
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8. The products in the inventory have a constant lifetime and aging of a fresh 
batch does not begin until cill units of the previous batch are exhausted 
either by demand or through decay.

Under these assumptions, we propose the following tirne-bcised policy.

The Control Policy A repleirishrnent order of Q units is placed either when the 
inventory drops to r or after T  units of time have elapsed since the last instance 
at which the inventory level hit Q, whichever occurs first.

The above policy will be referred to as {Q,r,T)  policy. The decision varia.bles for 
this policy are the order quantity (Q), the reorder point (r) and the time spent in 
the system since the last instance at which the inventory position is Q units (T). 
The ordering decision is based on the relationship between the variables r and 
r .  If we denote the time at which an order is given bĵ  0(t),  r can be considered 
as the inventory threshold for reorder, i.e. inventory position at 0{t) > r. T  
indicates the upper bound for 0(f), i.e. 0{t) < T . Thus, we call T  as the time 
threshold for reorder.

Our aim is to derive explicit expressions of the key operating characteristics 
of the model and determine the optimal values of the decision variables Q, r 
and T  for given cost parameters and the service level constrciint. The operating 
characteristics for the described system can be listed as the expected on hand 
inventory per unit time, expected number of lost sales per unit time and expected 
number of units that perish per unit time. We also derive the long run average 

cost rate function by making use of these quantities and the renewal reward 

theorem.

3.2 N otation  and Prelim inaries

In this section, we present the necessary notation and the preliminary analysis of 

the model under consideration. In particular, typical behaviour of the inventory 

process is displayed in detail which will form the basis of the cost expressions
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that will be derived in Section 2.3.
Notation

Q = Order qucintity.
r = Inventory threshold for reorder.
T  = Time threshold for reorder.
A = Demand arrival rate.
L = Lead time.
r  =  Constant lifetime for a batch of Q units, t > T
h ~  Holding cost per unit per unit time.
7T = Lost sales cost i^er unit.
p — Perishing cost per unit.
K  = Fixed ordering cost.

= Prespecified value for the average fraction of lost sales.

= Rcindom variable representing the arrival time of consecutive demand. 
= Pdf of the time interval between successive demands.
= Counting iDi'ocess associated with demand process in (0,t).
= ?r{N{t) < n)

=
= LA{T T  L) -  Fn{T)

=
=  i T i f a m

a

Xn

m
N{t)

Fnit)
Fnit)
A(n)
J(a, b)
J{a)
Gii, k)
H{i,k)
E{CL)

= i;.+i(r

_  r + i { T  +  r  — i ) fQ -r+k{ t )d t

— Expected cycle length.
E(OH) — Expected on hand inventory per cycle.

E(LS)  = Expected number of lost sales per cycle.

E{P)  = Expected number of units that perish in a cycle.

Under the specific aging pattern, the instances at which the inventory level hits 
Q units are the regenerative epochs. As the system regenerates itself on these 

epochs, we can derive the operating characteristics by employing the renewal 
reward theorem [30]. For this purpose, we define a regenerative cycle as follows.
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Figure 3.1: A Typical Realization of the Model

Cycle definition A cycle is the time between two consecutive instances at which 
inventory level hits Q.

Figure 3.1 presents a typical realization of the inventory level process. Each 
cycle begins with a fresh batch of Q units. Units are withdrawn from stock 
according to Poisson arrivals and one at a time. A replenishment order is given 
either at time T  or when the inventory level drops to r. A regenerative cycle may 

end in two ways. The inventory level may drop to zero either by demand arrivals 
or by decay of units as illustrated in the first cycle of Figure 3.1. In this case, 
the cycle ends when the inventory position is increased to Q units by the arrival 
of a fresh batch. The next cycle begins with this batch of Q units which has a 

useful lifetime of r . If the outstanding order arrives when there are still some 

items in the inventory, the inventory position increases above Q units. At this 
instance, inventory on hand is composed of a number of items from the previous 
batch which are subject to decay and an unpacked batch of Q units. The cycle 
ends either by demand arrivals or decay of the items from the previous batch.

Based on the relations among T, X q-,·, X q and r, there exist eight possible 

realizations for a cycle. Note here that Xq-r  and Xq  are random variables where 

T  and r  are nonnegative constants. The possible realizations are illustrated in 

Figure 3.2 and Figure 3.3. In order to avoid repetition, we will only explain four
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Figure 3.2: Possible Realizations when T < Xg-r

of these realizations where the order is given at the time threshold for reorder T  
(T < Xg-r)·  The other cycle realizations follow the same pattern except that 
for these cases, the order is placed when the inventory position decreases to r 

< T).

Realization 1 The inventory position drops to zero during the lead time. Lost 

sales are incurred until a batch of Q units arrives. Note that no items perish in 
this case. The life time of a batch is greater than the time of last demand arrival.

Realization 2 A batch of Q units arrives when there are still some items 

in the inventory. Therefore, the inventory position increases above Q units after 

the lead time. The inventory level decreases to Q units by demand arrivals and 

the cycle ends. Again, the life time of a batch is greater than the time of last
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Figure 3.3: Possible Realizations when X q- v < T  

demand cirrival.

R ealization  3 Similar to Realization 2, the arrival of an order increases the 
inventory position above Q units. The cycle ends by perishing of the items from 
the previous batch. At this point, the new batch is unpacked and a new cycle 

begins with the fresh batch.

R ealization  4 Some of the items from a batch of Q units perish before a 
new order arrives decreasing the inventory level to zero. The cycle ends by the 

arrival of a new batch.
We develop the expressions for the operating characteristics with respect to 

the stochastic processes associated with each of these possible realizations. The 

following section presents the expressions for the expected cycle length and the
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operating characteristics of the time-based inventory control policy.

3.3 D erivation of The O perating  

C haracteristics

In this section, we derive the expressions for the expected values of the cycle 
length, on hand inventory, number of lost sales cind the number of items that 
perish in a cycle as a function of the decision variables Q, r and T. These 
expressions are then used to construct the average cost function which is explicitly 
discussed below.

Let us denote expected cycle length, expected on luind inventory, expected 
number of lost sales and expected number of units that perish per cycle by E(CL),  
E{OH), E{LS)  and E{P)^ respectively. We consider the optimization of the 
following problem.

K  + hE(OH)  -b pEiP)
min C{Q,r,T)  =

E{CL)

subject to
M LS) < ^
\E(CL)  -

(3.1)

(3.2)

where a is the maximum allowed value for the average fraction of time the system 
is out of stock.

We know from the theory of Langrange multipliers that we can form the 

function

r,/J )  = C (0 ,r .T )  + / 3 ( | | ^ - a A ) (3.3)

where fl is the Langrange multiplier to minimize Equation 3.1 subject to the 
constraint 3.2 and minimizing 'ij^{Q,r,T, P) for a given P will yield the same 

Q*(P), r*{P), T*{P) as minimizing

K  + hEiOH)  -b pE{P)  + pE(LS)
AC(Q,r ,T)  = (.3.4)

E(CL)

Hence, an interesting observation is that in order to determine Q*, r*, T*, we can 

first determine Q*{P), r*{P), T*(P) by minimizing Equation 3.4 and then .selecting
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the /3* for which = Aa. The values of Q*{/3), T*{fl) evaluated at (I*
are Q*, r*, T*, respectively. ACiQ,r ,T)  is simply the long run average cost rate 
function and [3* corresi^onds to the lost sales cost per unit. Thus, minimizing 
Equation 3.1 subject to the Equation 3.2 is equivalent to minimizing the long 
run average cost given by Equation 3.4. But, in the former case, we do not need 
to assign an explicit value for the lost sales cost.

After setting our problem, now we need to derive the expressions for E(CL),  
E(OH), E{LS)  and E{P).  In the analysis, we shall not let T  be greater than 
T,  since postponing an ordering decision until the batch has completely decayed 
makes no sense. The expressions of the oi^erating characteristics differ for the 
cases when T < t  < T L and t > T  L. Because, some of the realizations 
which are observed in one case cannot be observed in the other. For instance, 
if we consider the case r  > T +  T, for the cases where an ordering decision is 
made at time T,  no items perish before the order arrival. However, this particular 
recilization is observed when T < t < T L. Analysis of both Ccises is necessary 
for completeness of the model as we cannot guarantee that the optimal T  always 
satisfies one condition but not the other for a given parameter set.

The following two theorems provide the expressions for the operating 
characteristics of the system for both cases where T < t < T  L and r  > T -\- L. 
First, let us define the following quantities.

Ci(<3.>·)
C2 (Q.r,T)
r](Q,r,T)
c.{Q,rX)

[ r - L F , ( L ) - l F , ^ , ( L ) ] F Q X T - L )  
[LFAL) -  IF, ,̂(L)]FqX T)
- t6'(0,0) + 2=^G(0,1) + fG(l,0)
[T + i)i/(0,0) -  2 ^ / / {0 ,1) -  5/i(1.0)

Theorem 1 If I ' < t < T + i ,  the E(CL),  E{OH), E(LS)  and f.'(P) are given 

by the following equations, respectively.

E(CL) = i  + r,(0,r,r) + T f,_ .(T ) + 2f;[i'« .,+ ,(T )-C <j_.+ ,(r-i)l 
-fc'ife, r)

(3.5)
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E(OH)  = Q[rJ(Q^r,T)+^^FQ+г{r) + rFQ(τ) + C\(Q.r)
- ^ f ^ F Q . r + ı ( r - L ) ] - ^ F Q . , { r )

(3.6)

EiLS)  = \[i]iQ,r,T) + C \ iQ , r ) -TF Qi T) - TFQ _r{ T ) - lL ]  

+{Q -  r)[FQ.r+iiT) -  FQ_,+i(r -  /.)] -  QFq+̂ {t )
(3.7)

E(P) = QFQir) -  Xt F q_At ) (3.8)

Proof: The proof for Theorem 1 is given in Appendix A.
T heorem  2 If r  > T + T, the E{CL), E{OH), E{LS)  and E(P)  are given by 
the following equations, respectively.

E{CL)  = ((Q, r, T)  +  Cг(Q, r, T)  + t F q ( t ) + | f e + . ( r )  (3.9)

E{OH) = Q[C,{Q,r,T) + C 2 ( Q , r , T ) F T F Q . , ( T ) - S ^ F Q . , ^ , ( T )  

+ ^ i '« + > ( ^ )  + 2^7'«(’·) - T - L ] -  ¡^T 'Q.dr)
(3.10)

E(LS) = m Q , r , T )  + C2(Q,T,T)] (3.11)

E{P) = Q F q {t ) -  \ t F q^ i {t ) (3.12)

Proof: The proof for Theorem 2 is given in Appendix A.
Theorem 1 and Theorem 2 above are used to construct the objective function 

given in 3.1. Given the involved form of the expressions, it seems almost 

impossible to find explicit expressions for optimal values of Q, r cind T. 
Furthermore, we have the constraint 3.2 in our optimization problem which makes 
the analysis even more difficult. Our observations from the computational study 
indicate that the average cost function given by Equation 3.1 is unimodal with 

respect to Q, r and T. When we fix r and investigate the average cost function 

by Vcirying Q and T, we observe that there exist more than one value of T* which
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Figure 3.4: Shape of the Average Cost Function w.r.t. Q and T

results in the same optimal cost value (alternate optima). Figure 3.4 illustrates 
such behaviour of T  when A=5, p=10, K —50, L=i ,  h= l, O!=0.01, r= 2  and 7-*=0. 
Thus, we compute the optimal average cost and the corresponding values for Q, 
r and T  by means of an exhaustive search. In order to make the search region 
smaller and hence speed up the procedure, we first solve the optimization problem 
for the (<5,r) model. As we search in a two dimensional spcice and both Q and 
r are discrete variables, exhaustive search results in a shorter time in this case. 
Then, we investigate the optimal values for Q, r and T  in the vicinity of the 

{Qc') obtained from the previous search. Note that T  is always bounded 
by r  so, the search space for T  changes according to the specified value for r. 
For computing optimal (Q,7\T)  values and the corresponding expected costs , 
we have developed a computer program in FORTRAN language. In order to 
fcicilitate the computations for the convolutions of F{t) and f{t),  the necessary 
subroutines from the IMSL MATH/LIBRARY are linked to the program. Our 
numerical results are discussed in detail in Chapter 4.

3.4 Special Cases o f the M odel

In this section, we present the special cases of the {Q,r,T)  model. Our model 

provides a rich and a flexible control policy which also induces insightful special 

cases. These cases are discussed below.
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Case 1: iQ,r)  M odel, T = t

The perishable {Q,r) model for the inventory system under consideration 

places an order when the inventory position is exactly r units or when a decay 
of products tcike place at time r. In our model, if we let T  = r , we satisfy the 
ordering policy described above and obtain the expressions of the (Q,r) model 
lor products which decay according to the specified aging phenomena.

Ravichandran [29] studies a similar model but instead of a constant lead 
time he assumes that the lead time is random with an arbitrary distribution. 
He derives the operating characteristics by defining the stationary distribution 
of the inventory level process. We consider a different approach by defining 
regenerative cycles and using the renewal reward theorem. The following cost 
expressions are obtained for the (Q,r) model which are also of interest since such 
explicit expressions for constant lead time are not provided in Ravichandran.

E(CL) = L + r/(Q,r, T) +  TFg. , (r) +  -  fg_,+,(r -  L)\
+ c ',(C .r)

(3.13)

E{OH) = 0 [ ,(C ,r ,T )  +  r i ’g ( r ) - 2 f l l i g _ , + , ( r - i )  +  i ^ i ’a+ ,(r)

(3.14)
+ C M , r ) ] - ^ F Q . l { T )

E(LS)  =  X\L + r , (Q , v , T ) -T ( FQ . , (T ) -  Fq{t ) ) ~  Fq. A t -  L)\ 
+ { Q -  r)[ig_,+i(T) -  Rj-r+i(T -  i))  -  QFq^ i(t )

(.3.1.5)

E(P)  = Q F g ( T ) - \ T F Q . d T )  (3.16)

In the computational study that we present in the next chapter we iricike use of 

this model and compcire the performances of the time-based policy and the (Q, r) 

policy.

Case 2: (Q,r ,T)  M odel, r  — > oo

As mentioned before, the literature on nonperishable inventories is mostly 

based on the (5,,S') (or (Q,r)) type policies. Although the optimal policy for the
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lost sales case is not available yet, it is well known that (5,5') policies perform 
very well for a wide range of parameter settings. However, investigating different 
policies can still be a fruitful research area. In our model, when we let r  oo, 
the time-based model applies to the continuous review inventory system under 
consideration where products are assumed to have infinite life times and the 
operating characteristics for this case have the following expressions.

E{CL) = ? + CW,r,r) + C2(0,r,7') (3.17)

EiOH) = +
+ m Q , T , T )  + TFQ.,(T)]

(3.18)

E(LS)  = \ \ a Q , r , T )  + C M , r , T ) \  (.3.19)

Case 3: {Q^T) M odel, r =0, r  — »· oo

Another special case for infinite lifetime products is the (Q,T)  policy which 

we obtain by setting the reorder point to zero. If we consider that the 
policies for inventory systems with nonperishable products are generally used for 
inventory systems with a large number of items such as department stores and 
inegci nicirkets, the computational savings become cis important as the accuracy 

obtained. The expressions for the {Q,T)  policy turn out to be straightforward 

and easily computable. Moreover, the analysis of this model results in interesting 

findings. Thus, we examine the (Q^T) policy in detail in Chapter 5.
We should note as a last remark that in our perishable time-based model if 

we take the limits r  oo, T —+ oo, respectively, the conventional (Q ,r) model 
reported in Hadley and Whitin [12] is easily obtained.



Chapter 4

N U M ER IC A L ANALYSIS

In this chapter we present the results of an extensive search for the performance 
of the (Q,?’, 7') policy developed in the previous chapter.

Unfortunately, the related literature lacks a detailed computational analysis 
of the existing methods which would serve as a standard choice of system 
pcirameters. Therefore, we tried to select an informative subset of the parameter 

S2:>ace which would reflect the i^erformance of our model. The existing studies 
maiifly consider the analytical aspects of the (s^S) or (Q,r) type i^olicies (i.e. 
derivation of operating characteristics and the long run average cost function). 
The reasons for not having much numerical work may be that the existing models 

for perishables do not represent a system with considerably general assumptions 
but are bcised on some restrictive conditions and that they are comi^lex in nature. 

We are aware of only two studies that present some computational results for the 
models with positive lead times. Schmidt and Nahrnias [39] conduct a sensitivity 

analysis for their (.!>, ,S') model by computing the optimal S  and the corresponding 
cost value on 166 dilferent settings. Chiu [7] compares his ai^proxirnate {Q,r) 

model with the Weiss [42] model which assumes zero lead time. He also validates 

his results by using simulation of the positive lead time case.

This computational study attempts to highlight the basic features of the 

(Q,r ,T)  policy. Based on a wide range of parameter settings, we first analyze 

the sensitivity of the model to various parameters of the inventory system under

25
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consideration. Second, we compare the performance of the (Q^r/I') policy with 
that of the (Q,r) policy. We observe that the time-based policy outperforms the 
classical (Q,r)  by achieving a maximum improvement of 41.39% in the average 
cost value. Further details of such comparisons are discussed in the following 
section.

4.1 S en sitiv ity  A nalysis

We use two different experimentell setups to analyze the .sensitivity of the (Q, r, T) 
model to various parameters of the system under consideration. Fixed parameters 
are A = 5 and k = 1 (The analysis is done for different A values and A=5 case is 
selected for illustrative purposes). In the first stage of the cinalysis, we also fix 
L=1 and use the following ranges for the rest of the parameters.

Parcimeter Symbol Values Tested
Frac. of Lost Sales a 0.005,0.01,0.02,0.05,0.1
Ordering Cost K 50,100
Perishing Cost P 1,10,50
Shelf Life T 2,4,6

Table 4.1: Test Parameters

The focus of interest in this experimental secirch is to determine how optimal 
values for the decision variables and the average costs chcinge with respect to 
ordering cost, perishing cost, average fraction of lost sales and shelf life. The 

experimental points selected above represent a broad range of cases which includes 

for instance, the case where there is almost no lost sales, high setup costs and a 

short shelf life as well as the case with lost sales of %10, low setup cost and a 

long shelf life.
For the inventory system under consideration, inventory level is depleted by 

the decay of the products in the inventory as well a.s by demand arrivals. Hence, 

the ordering decision depends not only on the demand rate but also on the lifetime 

of items. In order to avoid lost sales during the lead time, the time when the 

products perish is also as important as the number of demands during the lead
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time. Thus, in the second step of the analysis, we are particuhirly interested in 
the interaction effects of the lead time and the product lifetime. Бог this purpose, 
we studied the case with К  =50, r= 2  with different choices for L which take the 

values 0.25r, 0.5r and 0.75r.
Table 4.2 presents our results for the first experimental setup. We note that 

most of the results agree with what one would intuitively expect. The optimal 
value for Q increases as К increases. However, this increase is not as significant 

as it is for nonperishable inventories. For instance, when r  =2, there is almost 

no change in the optimal value of Q as К  increases. We also observe that for the 

cases where the optimal value for Q increases with the increase in K,  the optimal 

values of r decreases and T increases. This means that for a fixed shelf life and 
an average fraction of lost sales increase in the order quantity allows the ordering
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decision to be made at a later time.
When we increase p, we observe that Q decreases in order to decrease the 

number of units that perish. One important observation is that as p increases, 
the policy sets the reorder decision either by decreasing T  or increasing r. When 
products are subject to decay in a short time, for small values of a  ( when the 
avei’cige fraction of lost sales is forced to be less than %2) r does not change with 
the increase in p, but T  decreases considerably. Average costs are more sensitive 
to T  when a low fraction of lost sales is desired and the life time of the products 
is short. However, for higher values of a, no specific pattern is observed for T  as 
p increases. Generally, the optimal value of r increases lor these cases.

The change in the value of shelf life has a noticable effect on the optimal value 
of Q. As shelf life increases, Q increases considerably. At the same time, r tends 

to decrease but the change in r is almost within 1 unit. T  generally increases with 
the increase in shelf life. It seems that the impact of T  decreases with increasing 
shelf life. However, for the cases where perishing cost is high (p=10,50) and the 
average fraction of lost sales is low, we observe tha.t the optimal value of T  first 
increases cind then decreases with increasing shelf life. As expected, the average 
costs increase with p and K.  As the lifetime of the products increase, the costs 

decrease.
Table 4.3 displays the results when we change L. For fixed a, as lead time

x=:5 1 p = l 1 ]9=10 1 /9= 50 1
T = 2 a Q\ T* C l Q t T* C*! Q t T* C l

0 .005 12 5 1.50 36 .12 9 5 0.82 43 .09 7 5 0 .28 52.93
0.01 12 4 1.50 35 .39 9 5 1.59 42 .18 7 5 2.00 51.84

L = 0..5 0 .02 12 3 1.50 3 4 .77 9 4 1.52 40 .93 7 4 0 .7 7 50.76
0.05 11 2 1.52 33 .40 9 3 1.58 39 .10 7 3 1.11 48 .36
0.1 11 0 1.58 31 .49 9 1 1.45 36 .64 7 2 1.34 45 .30
0.005 13 9 1.00 37 .24 10 9 0.23 45.01 10 9 0.23 73 .46
0.01 12 8 0.94 36 .22 9 8 0.11 43 .28 9 8 0.11 62.42

L = 1 0.02 12 7 1.00 35 .22 9 7 0 .30 42 .09 8 7 0.05 54.60
0.05 11 5 0.98 33.45 9 6 0.84 39 .53 7 6 0 .10 49 .18
0.1 11 2 1.05 31 .48 9 5 1.16 36 .90 7 5 0 .50 45 .79
0 .005 13 12 0.04 38.41 13 12 0.04 53 .79 13 12 0.04 122.12
0.01 14 11 0 .46 37 .06 12 3 0 .03 49 .17 12 3 0 .03 102.09

L = 1.5 0.02 13 10 0 .49 35 .56 11 10 0.04 45.05 11 10 0.04 84 .27
0.05 12 7 0 .50 33 .50 10 9 0.25 40 .68 10 9 0.25 67 .86
0.1 11 5 0.54 31 .50 9 8 1.13 37 .13 9 8 1.13 54.53

Table 4.3: Sensitivity Results w.r.t. L, p, a
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increases, Q and r increases and T  decreases. Because, the increase in the lead 
time increases the risk of having lost sales during the lead time. The cwerage costs 
also increase with L. When lead time is large with respect to r , we observe that 
the optimal r does not increase with p but T  decreases. The policy parameter T  

makes the (Q,r ,T)  policy more proactive against the risk of losing sales during 

longer lead times.

4.2 C om parison w ith  the [Q,  r)  M odel

The existing literature on perishable inventories is mostly devoted to the 
investigations of several forms of (5,5) or (<5,?’) models. As we propose a 

new policy for controlling perishable inventories, it is of interest to compare the 
performance of the {Q^r,T) policy with the conventional {Qpr) policy, hor this 
purpose, we tested both policies in a wide range of parameter settings.

We perform our analysis for different demand rates such as A=0,25,0.5,5,10. 
With A < 1, we consider the inventory systems with slow moving products. 
A=5,10 corresponds to the case where the products in the inventory system are 

subject to relatively high demand rates. We vary the shelf life of items (r) as 

follows.

A T
0.25,0.5 12,15,20
5,10 2,4,6

The parameter values for the shelf life cire selected in a way that we are able 

to observe the effects of perishability for each demand rate we consider. The 

fixed parameters are K  =50, T=1 and /r=l. We vary perishing cost and average 

fraction of lost sales as presented in Table 4.1.
Without loss of generality, we will base our discussions on the cases where 

A=0.25 and 5. We present the results for these parameters in Table 4.4. The 

results for A=0.5 and 10 are provided in Appendix B.
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The results in Table 4.4 should be considered as separate analyses as we 
consider different values for the shelf life of the products. Our aim is to provide 
a general idea on the parameter riinge where the {Q, 1\ T )  policy outperforms 
the (Q, r) policy. The percentage improvement in the average costs obtained by 
Lcsing the {Q,r,T)  policy is computed as follows.

A% = ^
^ 2( ^ 2? ^2)

where Ci corresponds the civerage cost function of (Q,r^T)  model and C2 

corresponds to that of (Q,r) model.

The set for A=0.25 is the one from which we observe the most significant 
improvement of the (Q,r ,T)  policy. The main observations from this set of 
results are the following.

1. The improvement obtained by the (Q,r,T)  policy is higher when a is low 

(i.e. a= 0 .005,0.01,0.02) which corresponds to high service levels. When the 
constraint on average fraction of lost sales is tight, {Q,r) policy increases r 
in order not to take the risk of losing sales during the lecid time. However, 
(Q, T)  policy operates with smaller r and prefers to order at time T  which 
results in lower average costs.

2. As a increases, the difference between the two policies does not follow a 

linear pattern. Generally, when we let the average fraction of lost sales to 
be higher, the difference between the two jDolicies becomes smaller.

3. When a is low, the parameters of (Q,r) policy are not sensitive to changes 
in p. On the other hand, those of the (Q ,r, T) policy depend highly on 

the value of p. Thus, {Q,r,T)  policy cilways results in an improvement for 

these cases which means that it is more robust when there is a trade off 

between the tight constraint on the average number of lost sales and the 
risk of incurring high perishing costs.

4. When the lifetime of items is short (r — 12) and the average fraction of 

lost sales cannot be more than 0.5%, we observe the highest percentage
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difference in the average costs of two policies. For these cases, the 
parameters of the (Q ,r) policy does not change as p increases. The reason 
for this phenomenon is the one order outstanding assumption. (Q,r) policy 
keeps r as high as possible in order to satisfy the constraint on the average 

number of lost sales and hence operates with hirge Q. But, the (Q,r, T) 
policy can easily relax this assumption by keeping r low and placing orders 
at time 2'. Thus, it can decrease the value of Q in order to avoid the risk of 
perishing especially when p is large. For large p, an improvement of 41.39% 
is observed.

5. We cannot observe a monotonic behaviour in the percentage differences 

between the two policies with respect to r , p and a. The reason for this is 
that the iQ-,r) policy selects the optimal values of Q and r from a discrete 
sjDace. Бог instance, when r  =20 and a=0.02, the average costs for the two 
policies are the same. When we increase a to 5%, the percentage deviation 
between the two becomes 12.16%. flere, we observe that the {Q,r) policy 
is the scime for both a=2% and 5% which means that it cannot find any 
better values for Q and r. However, as T  is a continuous variable, {Q^r/Г)  
policy attains a lower average cost by cidjusting T'.

The observations for A=0.25 case are also Vcilid for A=5. However, in the 
latter case the difference between the two policies is not as significant as it is 

for A=0.25. A reasonable explanation for this may be the following. Suppose 
the optimal reorder point for the (Q,r) policy is selected to be ?■*. Thus, the 

policy waits until the inventory level depletes from r ’+ l  to r* even though it 

may be more beneficial to order during the inter-demand time. When the mean 

of inter-demand times are large, it is more probable that such an event occurs.

policy can handle this weakness of the (Q,r) policy by placing orders 
at the time threshold for inventory. Therefore, it performs much better than the 
(Q,r) policy when demands are low. However, the percentage deviation between 

the average costs of the two policies decreases with increasing demand rate. Our 

computational results also confirm this explanation. P'igure 4.1 and Figure 4.2
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X=0.25 K=50 p=20 h=1 L=1
C 30

20

10

X=0.5 K=50 p=20 h=1 L=1

X=5 K=50 p=20 h=1 L=1

-------  (Q.r.T) a=0.005
------- (Q.r.T) a=0.05
-------(Q.r) a=0.005
------ (Q.r) a=0.05

10 15 20
T

Figure 4.1: Average Cost vs. Shelf Life

present how the average costs of the two polices change for different demand rates 
with respect to shelf life and perishing cost, respectively.

As seen from Figure 4.1, the difference between the two policies decreases 

with increasing shelf life. This means that for the systems in which the products 

have infinite lifetimes, ordering at T  does not result in considerable savings. 

However, when the products have shorter perishing times, the results show that 

using (Q,r ,T)  policy becomes more advantageous. When the demand rate for 

items is low, scwings up to 41% is achieved. As demand rate increases, it is 

observed that the percentage savings decrease. In general, for a given demand 

rate, the difference between the average costs also decrease when we increase a.
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Figure 4.2: Average Cost vs. Perishing Cost

Figure 4.2 shows that for small a, as the perishing cost increases the {Q,r,T)  

policy performs much better than the (Q^r) policy. When the constraint on the 
avercige fraction of lost sales is relaxed, the {Q,r) policy performs as good as the 

(Q ,r,T ) policy.

The main conclusions of our experimental study can be summarized as follows. 

The (Q,r^T)  policy outperforms the classical (Q^r) policy in 140 experimental 

points out of 180. The maximum savings are observed for the cases where the 

demand for items is low and the average fraction of lost sales is less than 2%. The 

mean improvement for these cases is approximately 12%. It is observed that when 

shelf life for products is long (the cases for which the infinite lifetime assumption
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Table 4.5: {Q,r,T)  as an Approximation to a Generalized Case

may hold), the policy parameter T  is not effective in determining an optimal 
policy. However, when we consider a relatively short shelf life for products, the 

{Q,r,T)  policy has an outstanding performance because the policy parameter T  
allows the model to incorporate the remaining shelf life of products at an arbitrary 
instance of the inventory level process. For instance, the maximum improvement 
of 41.39% is cichieved when A=0.25, «=0.005 and r=12. In general, the difference 

between the two policies decreases with the increase in demand rate and shelf life. 

Therefore, the mean percentage difference between the two policies is 5% when 

cill experiments are considered.
Consequently, we would like to note some remarks about the specified 

aging assumption. Although there are perishable inventories which satisfy this 

assumption, in many other perishable inventories products begin aging as soon 

as they arrive to the system. In order to investigate under which conditions 

the specified aging phenomena can be a good approximation to these cases, we 

have developed a simulation program in FORTRAN programming language. In
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this program, we consider the (Q,r,T)  policy for products that begin aging as 
soon cis they arrive. The regenerative approach is used in simulating the system. 
The regeneration epochs are defined as the instances at which a fresh batch of 
Q units arrives when the inventory level is zero. For a given parameter set, a 

single simulation run of 50000 regenerative cycles are made. In order to compare 
the ((5,r, r )  policy that operates under the specified aging assumption with the 
explained case, we simulated the system cit the optimal values of the policy 
parameters for different demand rates and cost parameters. Fixed parameters 
are L=l  and cv=0.01. Tcible 4.5 presents our results.

In Table 4.5, HC, PC, and OC represent the average holding cost, average 
perishing cost and average ordering cost per unit time, respectively. The results 
indicate that when the perishing cost is low, the {Q,r,T)  policy under the 
specified aging assumption can be a good approximation for the case where 
products begin aging as soon as they arrive to the system. In the cases where 
demand rcite is low (i.e. A=0.25 and 0.5), the percentage difference between 
the two average costs is within 1%. The percentage deviation increases with 
the increase in demand rate. As perishing cost increases, the iDerformance of 

the approximation decreases. Because, when we assume that products follow a 

specified aging pattern we underestimate the perishing costs and the magnitude 
of this underestimation increases as perishing cost increases.



Chapter 5

The (Q,T) MODEL

In this chapter, we will consider a time-based inventory control policy for a single- 
item, single location continuous review inventory problem.

5.1 D escription  o f the (Q,T) P olicy

A special case of the 7') policy is the iQ,T)  policy which is obtained in
the limiting case when r  —> oo and r=0. The iQ,T)  model is applicable to 
the inventory systems where all transactions cvre monitored continuously and the 
products in the inventory are assumed to have infinite lifetimes. Also, in many 
continuous review systems, demand process can be characterized by single units 
separated by random intervals. Household appliances, prescription glasses and 
niciny consumer cku’cibles in a department store with an optical scanner can be 

considered as examples for such kind of inventories.

Figure 5.1: Three Possible Realizations of the Model

37
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The (Q,T) policy phices an order at the time threshold for inventory instccid 
of the reorder point. According to the policy, a replenishment order of Q is placed 
either when inventory level drops to zero or after T  units of time have elapsed 
since the last instance at which the inventory level hit Q, whichever occurs first. 
The possible realizations of the model is given in Figure 5.1.

In this chapter, our aim is to investigate how the lost sales problem operates 
under the (Q,T)  policy. We first present the operating characteristics of the 
(Q, T)  model. Second, we propose an iterative procedure to determine the 
optimal order quantity (Q) and the time threshold for inventory (T). Lastly, 
we discuss our computational results. When we compare the performance of 
the (QiT)  policy with that of the classical {Q,r) policy for Poisson demands, 
we observe that the time-based policy finds only near optimal solutions to the 
¡problem. On the other hand, the analytic exi^ressions for the (Q,r) policy 
where demands follow an arbitrary distribution is not available in the literature. 
The {Q,T)  model is interesting in the sense that by a simple heuristic we 
are able to compute the order cjuantity (Q) and the reorder point (?’) for the 

cases where demands are governed by an arbitrary distribution. Of the 174 
experimental points tested, the results reveal that the average cost of ordering 
policies determined by the heuristic has a mean deviation of only %0.92 from the 
optimal values that are provided by the (Q,r) model.

5.2 O perating C haracteristics

The key operating characteristics of the system are the expected cycle length, 

expected on hand inventory and expected number of lost sales. The expressions 

derived for the (Q,r\T)  policy in Chapter 3 reduce to the following quantities in 
the limiting case when t —>■ oo and ?’=0.
Result 1

E(CL) = J(0, T)  + J{T T L )  + TA{Q)  + LFq{T -f L) (5.1)
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Result 2

EiOH)  = -  Q{T + L)FQ{r + L) + QJi'L + L) (5.2)

Result 3
E{LS)  = A[TA(g) -  J(T , T + L) + LFq(T + L)] (5.3)

By using the expressions for the operating characteristics, we obtain the long run 
average cost rate function AC{Q, T)  by using renewal reward theorem. AC{Q^ T) 
is given by Equation 5.4.

EiCC{Q,T)  _  K  + liEiOH) + t:E{LS)
AC(Q,T)  = (5.4)

E{CL{Q,T))  E(CL)

Unlike the previous case, for the analysis of the [Q, T) model we assign an explicit 
value to the lost sales cost which is denoted by tt.

The above expressions assume that demand process is governed by Poisson 
cirrivals. When demand process has an arbitrary demcind distribution, we cannot 
use our previous definition for a cycle. Non-Poisson demands introduce a memory 
to the process. Therefore, the epochs at which the inventory position increases 

or decrecises to Q units are not regeneration points any longer.
The exact analysis for this case can still be carried out by making use of the 

renewal reward theorem but it requires a different cycle definition. There may be 

more than one alternative for the cycle definition in non-Poisson demand case. 
One definition is that a regenerative cycle starts whenever the inventory level 

decreases to Q — 1 units. We should note that when the inventory level increases 

to Q units by an order arrival, the random time until the next demand arrival is 

the forward recurrence time. As the policy starts to keep track of the time spent 
in the system whenever the inventory level decreases or increases to Q units, the 
limiting distribution of this residual lifetimes should be determined to find the 

exact solution to the system. Another cycle definition may be to start a cycle 

whenever inventory level drops to zero and there is no outstanding order. In this 

case, a cycle is composed of several subcycles which nuikes the analysis rather 

difficult.
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Exponanllûl >^20 n=10 K=50 h=1 L=1 Erlang X=20 |1=2 n=10 K=50 h=1 L=1 Normal n=0.05 <1=0.0125 rt=10 K=50 h=1 L=1

Figure 5.2: Behciviour of the Cost Rate Function w.r.t. Q

Although it can be manageable to derive the exact expression for the long run 
average cost rate function for non-Poisson demands, the resulting formulation 
will not be so simple because of the facts discussed in the previous paragraphs. 
Therefore, it is worthwile to use our model as an approximation to non-Poisson 
demands. With this approximation, we make the assumption that the epochs at 
which inventory level increases to Q units are regeneration points although the 
inventory level process does not regenerate itself at these epochs.

5.3 O ptim ization A lgorithm

After stating the objective function of our model, we now propose an iteixitive 
procedure to determine the optimal order quantity (Q) and reorder time (7 )̂. 

In order to develop such an algorithm, we should first investigate the behaviour 

of the long run average cost rate function with respect to the decision variables 
Q and T.  The analytical properties of the cost function AC{Q,T)  are difficult 

to discuss. Therefore, we illustrated the function for a wide range of parameter 
settings (48 experimental points for ecich demand distribution that we consider) 

and observed its behaviour.

Figure 5.2 shows how the cost rate function changes with respect to Q for fixed 

values of T.  In these cases, demands follow Poisson, Erlang and Normal demands, 

respectively. As seen from the figures, the cost rate function appears convex with 

respect to Q. As T  increcises, the cost rate function becomes extremely flat. In
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Exponential >^20 ji=lO K=50 h^l L=1 Normal /.=0.05 o=0.0125 t:=10 K=50 h=1 L=1

Figure 5.3: Behaviour of the Cost Rate Function w.r.t. T

the next stage of the analysis, we fix Q and observe the behaviour of the cost rate 
function with respect to T. As seen from Figure 5.3, the cost function can be an 
increasing, decreasing and a convex function of T. In the cases where it is convex, 

we observe a single minimum with respect to T. But when it is decreasing or 
increasing with resj^ect to T, we observe alternate optima. However, the first 
order condition of the cost rate function AC{Q, T)  with respect to T  satisfies the 
following equality at T*.

. r ' i T )  -  -  E{CC(Q,T*))
o  ) m cLĵ Q,T̂ )) -  E{CLiQ,T*)) (5.5)

dT

An observation from our test experiments is that for Q*, this equality has 
ordy one solution which means that there is a single value T* which optimizes 

the cost rate function. Therefore, we can consider that AC{Q,T)  is a unimodal 
function. For illustrative purposes,we present Figure 5.4 for which the parcimeters 

cire A = 10, 7T = 5, K  =  100 and Q* = 45.

F igure  5.4: An Illustrative Example For Unimodality



Chapter 5. The (Q, T) MODEL 42

Parameter
Holding Cost
Lost sales Cost
Ordering Cost
Arrival Rate
Lead Time

Symbol
h
IT
K

Values Tested
1
2,5,10
10,20,50,100
5,10,20,40
1

Table 5.1: Parameters Tested for (Q/T)  Model

An iterative linear search procedure is used to optimize our objective fuirction 
(Equation 5.4). The initial ¿ipproximation to Qo is obtciined by computing the 
necirest integer to conventional EOQ which is equal to / h. By using
Qo, we determine the corresiDonding optimal T’o by a linear search. Then, we 
continue iteratively until no improvement in the objective function is achieved. 
The solution algorithm has been programmed in the FORTRAN language. The 
FORTRAN subroutines CDFGAM and CDFNOR are linked to the program to 
facilitate the computations of the numerical analysis. The algorithm converges to 
the optimal value in seconds on a Pentium 200 MMX with 64 MBytes of Random 
Access Memory under operating system LINUX.

After computing {Q*jr,T*) values by the above algorithm, we apply a simple 

heuristic to convert these vidues to (Q*,r*). As T* is the time spent in the 
system until ¿in order is given, on the average AT* demands occur in this interval. 
Therefore, we can approximate the reorder point suggested b}̂  the time-based 
policy as the nearest integer to Q* — AT*. Then, the heuristic order quantity and 

reorder point are expressed as follows.

?'·* =  max(L(5 — ATJ,0) and Q"" = (5.6)

In the next section, we compare performance of this heuristic {Q*,r*) pair with 

the optimal (Q^r) pair.
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5.4 C om putational R esu lts

In this section, we test the performance of the heuristic for 48 different 
experimental points for each demand distribution which are exponential, Erlang 

and Normal. 16 experiments for the exponential distribution are not considered in 
the analysis because average expected costs come out to be greater than Att which 
means that losing all demands result in less costs. Therefore, our experiment set 
consists of 174 points. For the exponential case, the optimal average costs for 
the (Qpr) model is computed by using the expressions developed by Hadley and 
Whitin [12]. For Erlang cirid Normal demand distributions, a simulation model 
is developed.

N o . A 7T K A i % A 2 % A a % A ^ %

1 5 5 10 5.92 7.84 6.79 5.64
2 5 5 20 5.06 3.41 3 .98 4.44
3 5 5 50 0 .39 1.15 1.80 2.54
4 5 10 10 4.81 10.77 15.16 7.68
5 5 10 20 8.24 9.55 9.05 6.15
6 5 10 50 6.88 4 .57 3.29 3.90
7 10 5 10 2.35 6.85 9.19 4 .38
8 10 5 20 4.64 5.86 4.64 3.55
9 10 5 50 3.70 1.63 1.64 2.55

10 10 10 10 1.02 7.05 9.73 3.91
11 10 10 20 4.90 7.83 9.70 4.40
12 10 10 50 6.73 6.88 5.55 3.59
13 20 2 10 0.44 2.95 2.42 1.98
14 20 2 20 1.48 0.93 1.58 1.96
15 20 5 10 0.22 3.42 6.81 1.97
16 20 5 20 2.09 4.75 5.59 2.48
17 20 5 50 3.68 3.62 2.32 2.01
18 20 10 20 1.28 5.17 7.68 2.47
19 20 10 50 4.71 5.84 5.98 2.51
20 20 10 100 5.15 4.96 4.02 2.27
21 40 2 20 0.22 1.79 1.32 1.05
22 40 2 50 0.93 0.38 0 .67 0.94
23 40 5 50 2.19 3.29 3.33 1.44
24 40 5 100 2.72 2.51 1.45 1.27
25 40 10 50 2.33 4.2 4.93 1.69
26 40 10 100 3.66 4.29 4 .07 1.63

Table 5.2: {Q,T)  vs. {Q,r)

In our experimental study, we take the holding cost (h) and the lead time [L) 

as unity. The ranges for the demand arrival rate, lost sales cost and ordering cost 

are presented in Table 5.1. We consider two different values of shape parameters 

for the Erlang distribution which are ^=2,4. The standard deviation for the
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N o . Ai% A-2% Aa% Ai% N o . Ai% A2% A3% A4 %
1.44 14 0.09 0.01
0 .97 1.07 0 .9 15 0.38 1.79
0 .39 0.39 16 0.74 0.79 0 .69 1.15
3.80 6.91 17 0.26 0.20 0.68
2.02 0.86 3.04 5.53 18 0.91 2.35 1.78
0 .67 2.82 19 1.04 1.08 0.12 0 .36
1.48 0 .09 4.01 20 0.80 0.51 0 .63
0.36 0.1 1.48 21 0.11 0.05 0 .08 0.02
0.50 0.66 0.01 22 0.06 0.01

10 0.60 3 .57 0.24 1.4 23 0.34 0.35 0 .2 7
11 2.06 3.48 2.51 2.04 24 0 .07 0 .37
12 1.41 0.15 1.14 25 0.69 1.38 0.41 0.53
13 0 .27 0 .07 0.06 26 0 .08 0.89 0.04 0 .59

Table 5.3; Performance of the Heuristic

Normal distribution is taken as -T.
Before discussing the results of the heuristic, we will present the percentage 

devicition of the optimal costs determined by the (Q, T) model from that of (Q, r) 
model. As mentioned earlier, the (Q.,T) policy does not perform better than the 
(Q,?·) policy. Table 5.2 presents 26 selected experimental points out of 48. The 
whole data set is provided in Appendix C. The percentage error of the suboptimal 
iQ,T)  policy is computed by

^ ^ AC(Q- T ’) TC(Q-X)  ^
TC{Q*,r*)

where TC{Q^r)  corresponds to the average cost function of the {Q^r) i:)olicy.
We observe from Table 5.2  ̂ that the time-based model performs better for 

high demands. In general, the percentage devicition is higher in the cases where 

the lost sales cost is high (i.e. 7t= 10). When all experiments are considered, the 

mean percentage deviation is 3.24%.

When we compute the average cost of the {Q^r) policy by using the optimal 

pairs, we observe that the suggested heuristic has an outstanding 

performance. In Table 5.3 we present the percentage errors of the heuristic for 
the parameter set stated in Table 5.2. Of the 174 experimental points tested, the 

mean percentage error of the heuristic is only 0.92% and the heuristic finds the 

exact ordering policy for 63 cases. Especially, for the cases where demand rate is

U,2,.3,4 refers to the exponential, Erlang(A,2), Erlang(A,4) and Normal demand distribu­
tions, respectively.
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high (he. A=40), the percentage error is less than %1 for almost all distributions. 
The maximum deviation of 6.91% is observed for the case where the demand 
distribution is Normal(0.2,0.05), 7t= 10 and /h=10.



Chapter 6

CONCLUSION

In this thesis, we propose a time-based control policy, the {Q^r/F) policy, for 

continuous review inventory systems where the products hcive constant shelf lifes 
cincl unmet demands are lost. The model admits a positive lead time. The aging 
of products in the inventory follows a specified aging pattern such that the aging 
of a fresh batch does not begin until all the products from the previous batch 
are exhausted either by demand or decay. The expressions for the key operating 
characteristics are derived for Poisson demands case by using the renewal reward 

theorem. Based on these performance measures, the problem is analyzed under 
a service level criterion, namely the average fraction of lost sales.

In the inventory theory literature, the systems with constant product lifetimes 
are considered to be difficult to analyze especially when the lead time is positive. 
Therefore, there is not much done in this area. The existing studies are based on 

the classiccil {s,S)  or (Q,r) type policies. Even for these policies a model that 

satisfies considerably general assumptions have not been developed yet.

The {Q,r,T)  model provides a starting point for the analysis of perishable 

inventories with a different approach other than the conventional policies. The 
model introduces an additional decision variable to the (Q,r) model which is 

the time threshold for inventory. This time-based decision variable makes the 
model more proactive against the perishability of products. The results of a

46
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performance comparison with the {Q,r) model indicate that the proposed time- 
based approach outperforms the (Q,r) model in the 140 experimented points out 
of 180. Of the 180 experimental points, a mean improvement of 5% is obtained 
in average costs. The maximum savings (i.e. 41..39%) are observed for the cases 
where demand rate is low (i.e. A=0.25,0.5) and the average fraction of lost sales 
is less than 2%. This computational study is the first in the sense that it involves 
comparison of two different policies for controlling perishable inventories.

The (Q,r ,T)  model also provides a rich and flexible control policy which 
induces insightful special cases such as the perishable (Q, r) model (Raviclmndrcin 
[29]) and the conventional {Q,r) model (Hadley and Whitin [12]). An interesting 
specied case is the (Q,T)  model which is obtained in the limiting case where 

r  ^  oo and r=0. The {Q,T)  policy applies for the inventory systems with 

nonperishable products. Although it provides suboptimal results when compared 
to the (Q,r) policy, it facilitates a quick and efficient heuristic solution procedure 
to the i^roblem where demands follow an arbitrary distribution. Since the general 
solution does not exist for the (Q ,r) model, the heuristic that nudges use of 

the {Q,T)  model can be one of the methods to be applied to rionperishable 
inventories. Of the 174 experimented points tested for exponential. Erlang and 
Normal demand distributions, the mean deviation of the heuristic order quantity 
and reorder point determined by the {Q,T)  policy deviates from the optimal 

iQu') P̂ -ir by only 0.92% and, in 63 of the test experiments it finds the optimal 
solution.

Most of the existing research in inventory theory literature is based on the 

assumption that the products in the inventories have infinite lifetimes. Especially, 

for the full backlogging case the exact analysis of the {s,S)  policy is available 

and hence there is a vast literature on the algorithms and approximations for 
computing optirned or near optimal solution of (s, S) policies. On the other hand, 

for the cases where unsatisfied demands are lost, the optimal ordering policy has 

not been computed by cinalytical means. Moreover, when perishability is included 

in the analysis the problem becomes even more complex. The literature in this 

area is restricted to Poisson demands, one order outstanding assumption and some
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other simplifying assumptions regarding the aging of products in the inventory. 
A model with considerably general assumptions hcis not been developed yet.

The (Q,r ,T)  model that we propose in this thesis also lacks this generalit}^ 
Therefore considerable improvements in the model is possible. One extension 

may be the incorporation of random perishing times, which is not too hard to 
do by using our current setup of the model. However, other extensions such as 
relaxing the assumption on the specified aging, cirbitrary demand arrivals, more 
than one order outstanding at a time necessitate a distinct and complex analysis 
of the model which can be a fruitful research area for future studies.



Bibliography

[1] B. C. Archibald, Continuous Review (s,S) Policies With Lost Sales, 
Management Science 27, 1171-1177 (1981).

[2] B. C. Archibald, E. A. Silver, (s,S) Policies Under Continuous Review and 

Discrete Compound Poisson Demand, Management Science 24, 889-909 
(1978).

[3] K. A. Arrow, T. E. Harris, .J. Marschak, Optimal Inventory Policy, 
Econometrica 19, 250-272 (1951).

[4] M. Beckman, An Inventory Model for Arbitrary Interval an Quantity 

Distribution of Demand, Management Science 8, 35-57 (1961).

[5] D. .J. Buchanan, R. F. Love, A (Q,R) Inventory Model with Lost Sales 
and Erlang Distributed Lead Times, Naval Resecirch Logistics, 32, 605-611 
(1985).

[6] F. Chen, Y. Zheng, Sensitivity Analysis of An (s,S) Inventory Model, 

Operations Research Letters 21 , 19-23 (1997).

[7] H. N. Chiu, An Approximation To The Continuous Review Inventory Model 
With Perishable Items and Lead Times, European .Journal of Operational 

Research 87, 93-108, 1995.

[8] A. Dvoretzky, .J. Kiefer, .J. Wolfowitz, The Inventory Problem: I. Case of 

Known Distributions of Demand, Econometrica 20, 187-222 (1952).

49



Bibliography 50

[9] A. Dvoretzky, J. Kiefer, J. Wolfowitz, The Inventory Problem: I. Case of 
Unknown Distributions of Demand, Econometrica 20, 450-466 (1952).

[10] A. Pedergruen, Y. Zheng, An Efficient Algorithm Eor Computing An 
Optimal (r,Q) Policy in Continuous Review Stochastic Inventory Systems, 
Operations Research, Technical Notes, 808-813 (1991).

[11] A. Pedergruen, P. Zipkin, An Plfficient algorithm For Computing Optimal 
(s,S) Policies, Operations Research 32, 1268-1285 (1984).

[12] G. J. Pladley, T. M. Whitiri, Analysis of Inventory Systems, Perntice-PIall, 
Englewood Cliffs, New .Jersey (1963).

[13] P’. W. Harris, Operations and Cost (Factory Management Series Chap. 2), 
Shciw, Chicago (1915).

[14] R. M. Plill, Numerical Analysis of A Continuous Review Lost Sales 
Inventory Model Where Two Orders May Be Outstanding, European 
.Journal of operations Research 62, 11-26 (1992).

[15] S. Kalpakarn, K. P. Sapna, Continuous Review (s,S) Inventory System With 

Random Lifetimes and Positive Leadtimes, Operations Research Letters 16, 
115-119 (1994).

[16] S. Kalpakam, K. P. Sapna, A Lost Sales (S-1,S) Perishable Inventory 
System With Renewal Demand, Naval Research Logistics 43, 129-142 

(1996).

[17] PL L. Lee, S. Nahmias, Single-Product, Single-Location Models, Handbooks 

in OR & MS 4, Elsevier Science Publishers B.V. (1993).

[18] L. Liu, (s,S) Continuous Review Inventory Models For Inventory With 
Random Lifetimes, Operations Research Letters 9, 161-169 (1990).

[19] L. Liu, K. L. Cheung, Service Constrained Inventory Models With Random 

Lifetimes and Lead Times, Journal Of Operational Research Society 48, 

1022-1028 (1997).



Bibliography 51

[20] S. Nalimias, The Encyclopedia of compure Science and Technology 9, 
Marcel Dekker Inc., New York (1978).

[21] S. Nahmicis, Simple Approximations For a Variety of Dynamic Leadtime 
Lost Sales inventory Models, Operations Research 27, 904-924 (1979).

[22] S. Nahmias, Perishable Inventory Theory: A Review, Operations Research 
30, 681-707 (1982).

[23] S. Nahmias, Optimal Ordering Policies For Perishable Inventory, Opera­
tions Research 23, 735-749 (1975).

[24] S. Nahmias, S. Wang, A Heuristic Lot Size Reorder Point Model For 

Decaying Inventories, Management Science 25, 90-97 (1979).

[25] E. Porteus, Numerical Comparison of Inventory Policies For Periodic 
Review Systems, Operations Research 33, 134-152 (1985).

[26] I. Pressman, An Order-Level-Scheduling-Period System with Lost Sales, 
Management Science 23, 1328-1335 (1977).

[27] F. Raafat, Survey of Literature on Continously Deteriorating Inventory 
Models, Operational Research Society 42, 27-37 (1991).

[28] N. Ravichandran, A Note on (s,S) Inventory Policy, lEE Transactions 16, 
387-389 (1984).

N. Ravichandran, Stochastic Analysis of A Continuous Review Perishable 

Inventory System With Positive Lead Time and Poisson Demands, 

European Journal of Operational Research 84, 444-457 (1995).

S. Ross, Stochastic Processes,Wiley, New York (1983).

[31] I. Sahin, On the Stationary Analysis of (s,S) Inventory Systems with 

Constant Lead Times, Operations Research 27, 717-729 (1979).



Bibliography 52

[32] I. Şahin, On the Objective Function Behaviour in (s,S) Inventory Models, 
Operations Research 30, 709-724 (1982).

[33] I. Sahin, Regenerative Inventory Systems, Springer-Verlag, New York 
(1990).

[34] I. Sahin, D. Sinha, Renewal Approximation to optimal Order Quantity For 
a Class of Continuous Review Inventory Systems, Naval Research Logistics 
34, 655-667 (1987).

[35] H . E. Scarf, The Optimality of (s,S) Policies in the Dynamic Inventory 
Problem, Mathematical Methods in the Social Sciences, Stanford University 
Press (1960).

[36] C. R. Schultz, On The Optimality of the (S-1,S) Policy, Naval Research 
Logistics 37, 715-723 (1990).

[37] Y. K. Shah, M. C. Jaiswal, An Order-Level Inventory Model For A System 
With Constant Rate of Deterioration, Opsearch 14, 174-184 (1977).

[38] B. D. Sivazlian, A Continuous Review (s,S) Inventory System With 

Arbitrary Interarrival Distribution Between Unit Demands, Operations 
Research 22, 65-71 (1974).

[39] C. P. Schmidt, S. Nahmias, (S-1,S) Policies For Perishable Inventory, 
Management Science 31, 719-728 (1985).

[40] G. J. J. Van Zyl, Inventory Control For Perishable Commodities, 

Unpublished Ph. D. Dissertation, University of North Carolina (1964).

[41] A. F. Veinott, On the Optimality of (s,S) Inventory Policies: New 

Conditions and a New Proof, SIAM .Journal on Applied Mathematics 14, 

1067-1083 (1966).

[42] H. Weiss, Optimal Ordering Policies Бог continuous Review Perishable 

Inventory Models, Operations Research 28, 365-374 (1980).



A ppendix

A .l  A P P E N D IX  A

A . 1.1 P roo f o f T heorem  1

Derivation of the Expected Cycle Length

^ Q - r  +  L  - ^ Q - r  <  T , X q - r  <  X q  <  min(T', A q_,. +  L )  

X q ^ r  +  L T - L <  Aq_, < r ,  Aq > r
^ Q - r  <  T,Xq^r  +  L < Xq <  T 

T Xg-r  < T -  L ,Xq > T
T + L X q _ r > T , X q > T

T + L T <  Aq_, < X q < T

CL  = < (A.1.1)

Xq-r + L)I{Xq-r <  T,Xq-r < X q <  min(Ag_,. + L , t ))] 

+E[{Xq.r + L)I(r - L <  < T,Xq > r)]
+E[XqI(Xq.r < T,Xq_, + L < Xq < r)]
+i?[r/(AV. < r - L , A g > r ) ]
+E[{T + L ) IiX q -r> T ,X Q > T )]
^E [iT  + L ) I( r < X q _ r < X q < T ) ]

(A.1.2)
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Then

= 1^=0 f y t o i x  +  L ) f Q . , . ( x ) f r ( y )  d y  d x  

+  i L r - L l y ^ o  f Q - r { x ) f r i y )  d y  d x  

+  I L t - L  L ^ r - x  f Q - r i x ) f r { y )  d y  d x  

+ fx=o Iy=L f Q - r { x ) f r { y )  d y  d x  

+ T  Ix=o ¡^r-xfQ-rix)fr{y) d y  d x  

+ ( T  +  L )  f ^ T - x  f Q - r i x ) f r ( y )  d y  d x  

+  (T  +  L )  f Q - r ( x ) f r ( y )  d y  d x

=  Q ^ F r { L ) F Q . r ^ , { r  - L ) F  L F A D F Q . r i r  -  L )

+  i J - L  F r { r  -  x ) f Q - r + i { x )  d x  

F L i J _ ] ^ F r { T  -  x ) f Q _ r { x )  d x

F r { r  -  x ) f Q - r ^ x [ x )  d x  +  L [ F Q . r { T ) F Q _ , { r  -  L) ]

- L j ; _ L  F r { T  -  x ) f Q _ r { x )  d x  

_ Q ^  j r - L  -  .r)/Q _,+i(a;) d x  

_ Q ^ F A L ) F Q _ r + i { r  -  L )

+ jfo~^ Fr+i{T -  x)fQ_r{x) dx
-j^Fr+i{L)FQ^r(r -  L) + TFq-riT -  L)
- T , g - ^ F r ( T - x ) f Q . A x ) d x

- ( r  + L) -  (T F  L)FQ.r{T)
(T + L) F r { r  -  x )  f Q _ ^ ( x )  d x  

i T  +  L ) ! i F r { T - x ) f Q . , i x ) d x  

(T + L) + O f ^  F r ( r  -  x ) f Q - r + x { x )  d x  

+  l  F r + \ { T  -  x ) f Q - r { x )  d x  

f o ~ ^  F r i r  -  x ) f Q - r ( x )  d x

+ L[Fr(L) -  j;Fr+x{L) + r -  L]Fq_At ~ L)
+  ̂ F Q _ . + i ( r )  -  ^ F q . r ^ x i T  - L ) -  T F q . A T )
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Derivation of Expected On Hand Inventory

OH =

E?=> V,· Xq-r < T,Xq-r < X q < Xq-r
E i V X i + r[Q -N (T)] T - L <  X q _ ,  < r , X q > T

e L · X, + QIXq -  X q -.· -  L] Xq-r < E^Xq-r + L < Xq < r
ES^'’ Xi + r lQ -N ( T Xq-r < T -  L,Xq > T

E ^ ; 'X i  + r[Q -N (T)] Xq-r > 7', Xq > T

E?=. A'. T < Xq-r < Xq < T
(A.1.4)

E[OH]= X.KXg > r)]
+  B E ? = 1  X i H X Q  <  t )]

+ E \ t { Q  -  N { t ) ) I ( X q  >  t )]

+EIQ{Xq -  XQ.r -  l ) I(Xq^, <  t ,Xq. ,  +  l <  Xq <  t )1 

+E[Q{t -  Xq_, -  L)I(Xq. ,  < T -  L ,Xq > t)|
(A.1,5)

1=
=  X,I(N( t) < Q)]
=  E [ E ( E ^ J ; > X : H N ( t ) <  Q ) \ N ( t ) =  n ) (A.1.6)

Z ^ t = l  ’ ^ 2 ^  n\

In order to find E[liY^f^i XiI(XQ < r)], denote the joint density of 

{X i , X 2 , . . . ,Xq) by f ( x i , X 2 ,..,XQ). {Xi , X 2 , . . . ,Xq ) — {xi,X2 , ...PXq ) is
equivalent to (T i,72, ■··,7q) = {xi,X2 — XiiXz — X2 i --,xq — ^Q-i) where Tfs 
are inter-dernand times.

f ix i ,X 2,..,XQ) = =  A^e'^'-Xxr
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E [O H h=  E [E t r X i I {X Q < T ) ]

I x q = q I x Q _ i = o  · ·  ¡ x i = o ( ^ i  +  ^ 2  +  · ·  +  .x’ g ) A ‘^ e  ^ ^ ' Q d x i d x 2 . . d x Q

E Z i fxQ=o JxQ̂ . ô · ·  Ix!=o · ·  Ixi ô XiE^e-^^Qdxi..dxi..dxQ

^ ^ F Q ^ ^ İ r )
(A.1.7)

E[OH]^ = E[r{Q -  N{t ))I{Xq > r)]
= QT[i -FQ{T) ]-TE[N{T) I (N{r )<Q)]  
= Q r [ l -F Q { T) ] - \ r ^ [ i -F Q _ , { r ) ]

(A.1.8)

E[OH],  = £[(5(Xq -  Xq-,. -  L)I{Xq_,. < T, XQ_r + L <  X q < r)] 

== Q f x = Z  f y = L ( y  -  L ) f Q - r ( x ) f r { y )  dxj d x  

=  Q j  F r + l { T  -  x ) f Q _ r i x )  d x

= Qj ^Fr +i i L) FQ_r i T  - L )  +  Q L F A L ) F q ^ A t  -  L)  

- Q L E A Z  F A t  -  x ) f Q - A x )  dx
(A.1.9)

E[Q{t -  Xq_, -  L)I{XQ_r < t - L , X q > r)]
Q i ^  -  L )  f l A Z  f y Z r - x  f Q - r { x ) f A y )  d y  d x  

- Q I xA Z  I ^ r - x ^ f Q - r i x ) f r { y )  d y  d x  

Q{t -  L)Fq- A t - L ) -  Q{t -  L) ¡¡aZ f Q - A x ) F A T  -  x )  d x  

^ Q Q ^ F q - r + A x  -  L )  +  Q ^ f ^  f Q - r + A x ) F r { T  -  x )  d x

(A.1.10)
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E[OH] = E[OH]^ + E[0H]2 + E[0H]3 + E[OHU +  E[OH],
= - ^ ( 1  -  Fq_i (t)) + + Qr[l -  Fq{t )]

+ Q j l ^=0  Er+l {T -  x)fQ_r{x) dx
- Q r J ^ I o F r ( r - x ) f Q - r { x ) d x  

+ Q ^ J ^ ¡ x = o  j Q - r + i { x ) F r i t a u  -  .t ) d x

+ F q _ , ( t  -  L)(Q{t - L )  + QLFAL) -  Q^^F,.+г{L)) 
-QQf^FQ.r+Ar -  L)

(A.1.11)

Derivation of Expected Number of Lost Sales

LS =

^{^Q-r +  L  — X q ) X q - t <  2\X q -r <  X q <  Xq-r +  L,Xq <  T 

N { X q _ r  +  L - r )  T - L <  X q _ r  <  T , A q  >  r

N( T  + L - t ) X q . r > T , X q > T
N { T ^ L - X q )  T < X q _ r < X q < T

(A.1.12)

E[N{Xq-r + L — Xq)I(Xq_,. < T’, Ag_,. < Xq < Xq-,· + L,Xq < r)] 
+E[N(Xq-r + L - r ) J { r - L <  Aq_, < J\ Xq > r)]
+E[N(T + L -  r)/(A g_ , > T ,Xq  > r)]
+E[N{T + L -  Xq ) I (T  < Ag_, < Aq < r)]

(A.1.13)

E[LSA =  E[N{Xq-r + L -  Xq)I{Xq-r  < T ,Xq . r  < X q < XQ-r + L ,Xq  < r)]

= ^ r X  A o ( i  -  v ) h - r ( n M )  dy dx
+-' / ¿ T - t  /JS T ii -  y) f a-r (x)My)  dy dx

= {\LF,(L) -  r)Fg.,(T -  L)
+ - 'i  /J=T-t -  x)fQ-,(x) dx 

I E - l Pr-n(x -  x)fQ-r(x) dx
(A.1.14)
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2 — E[N{XQ_r + L -  t ) I { t  - L <  Aq_, < T , X q > r)]

/з/=r-.г·(·'̂ ' +  L -  T ) f Q _ r i x ) f r { y )  d y  d x

( Q  -  r ) [ F Q _ r + i ( T )  -  F Q - r + i i r  -  L) ]

- ( Q  -  r )  C = r - L  P r { r  -  x ) f Q - r + l { x )  d x  

- \ { r  -  L)[FQ_r{T) -  Fq_,.{t -  L)]
+ A (r  -  L )  F , { t  -  x ) f Q ^ r ( x )  d x

(A.1.15)

F[LS]s = F[N{T + L -  T)IiXQ_r > T, X q > r)]
= X{T + L - t ) fXj ,  f Q - r { x ) f r i y )  dy dx

+X(T +  L - t ) fQ_r{x)friy) dy dx
= _A(T’ _  r  + L)[l -  FQ_r{T) -  ¡:=T FAr -  x)iQ-r x\

(A.1.16)

4 — E[N{T + L -  X q)I{T < Aq_, < Ag < r)] 

A(T + L) f Q - r { x ) f A y )  dy dx
- ^ f x = T f y A A  ^ f Q - r { x ) f r { y )  dy dx

yfQ-Ax)fAy)  dy dx 
X{T + L ) j : ^ ^ F A r - x ) i Q . A x ) d x

- { Q - r )  fJ=T Fr(r -  x)fQ-r+i (x)  dx 
- r f ^=T Ft+At -  x)fQ^r(x) dx

(A.1.17)

F[LS] =  F[LSA + ^[i:,5’]2 + F[LSh + F[LS]4
=  -QFQ+4 ir )  +  XrFQ(T)

F̂ 'fxFo Fr+Ar -  x)fQ-rix) dx 
FAt -  x)fQ-r(x) dx

+{Q -  r) f Âo Fr{T -  x)fQ_r+Ax) dx 
+[XLFAL) -  rFr+i{L) + A(r -  I)] i'Q -.(r  -  L) 

+{Q -  r)FQ.r+AT) - i Q -  r)FQ.r+Ar -  L) 
- X T F q . A T ) A X { T a L - t )

(A.1.18)
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E\P] =  E[{Q -  N{t ) ) I (Xq > r)]

=  0 | 1  -  -  [At  -  A T E ^ a _ i » i > ( J V ( T )  =  n )

=  0 [ l - i ’« ( T ) l - A r [ l - F o _ , ( T ) )

A. 1.2 P roo f o f T heorem  2

Derivation of Expected Cycle Length

Derivation of Expected Number of Items That Perish

CL =

ÂQ X q - t < T , X q - t L < X q < T

^Q-r  + L X q - t < T , X Q - r  < X q > X q - t + L

T Ag_, < T , X q > T

T X q - t > T , X q > T

X q X q - j. >  r ,  T +  Zi < X q < T

T  + L T < X Q . r < X g < T  + L

(A.1.19)

(A .1.20)

= EIXqK X q.,. < r ,  Xq_, + L <  X q < r)]

+ L ’[(X g _ , +  L ) I ( X Q - r  <  T , X g . r  <  X q  >  X g - r  +  L) ]  

+ E[r X g  >  r] +  ^ [A g /(A ^ g _ , >  T ,  T  + L <  X q  <  t )] 

+E[{T + L)I{T < Ag_, < X q < T  + L)]

=  f l o  f;=L(^ +  y)fQ-rix)My) dy dx 
+  iLo Iy=o{x +  d^)fQ-r{x)fr{y) dy dx

+ Ix^T Iy^T+L-x{x + y)fQ-r{x)fr{y) dy dx

+rE[IiXQ > r)]
'T —  X  /
i j = T + L — X  \

+ £=r+i, /¿ " o '+ v)k-A^) fr iv )  iy ffc 
+{T + L) S li-f· SyX~’  h -Ax) f . {y )  dy dx

=  ^ k - H ( x )  +  T \ l  -  F q { t )

+ L -  (.t) dx
+(T + L) fp^ ·  F,(T + L -  x )k - r (x )  dx 
+ILFAL) -  |i',+ ,( i) ] i« - ,( r )
- i  f p ’· iv+,(r + L -  x')/«-,(t) dx

(A.1.21)

(A.1.22)



Appendix 60

' E ?= , A'. +  Q [ X i i -  X q - ,  -  L ]  ,Y g_, < T , X q ^ ,  +  L < X q < t

A i < T ^ X q - r  <  X q  >  X q - r  +  L

E Z ' i ’ X ,  +  r l Q  -  iV(r)) +  (3 |t -  X q _ ,  -  i ]  X q _ ,  <  T ,  X q  >  T 

E ^ r ’ A . +  t [ Q -  Af(r)l +  Q [ t - T - L ]  X q . ,  >  T ,  X q  >  T 

E ?=, A i +  Q { X q  -  T  -  L]  X q . ,  > T , T + L < X q < t

E ? = ,A . T < X q . , < X q < T + L

( A .1.23)

Derivation of Expected On Hand Inventory

OH

E[OH\ =  £ |E ; i ; ’ X.HXq > r)]

+ £ ’[E?=1 X,!{Xq < 0 ]
+ E [ Q { X q  -  X q . ,  -  L ) I ( X q . ,  <  T ,  X q . ,  +  L <  X q  <  t ))

+ E I t ( Q  -  N { t ) ) I { X q  >  t )1

+ £ ¡ 0 ( 7  -  X q . ,  -  L ) I ( X q . ,  <  T , X q  >  t )]

+ E [ Q { t  -  T  -  L ) I ( X q . ,  > T , X q >  t )|

+ E [ Q { X q  - T -  L ) I ( X q . ,  > T , T + L < X q < t )\

(A.1.24)

E[OH], = E [E Sr X.HXq > 7)1
= S l i lE " ' : ’ X . I ( N ( t ) < Q\N(r) = n)]]

(A.1.2.5)
= E i : i n l P ( N ( T ) = n )
=  i E ? i ‘ n W 7 ) = n )
=  i(A7 -  E “  « nF(JV(7) =  n)

= f(A7-A7E“ , - i i ’(A(7) = ")
=  ^ [ \ - F q . , ( t )\

E[OH]г =  illE?=i A,/(A'« <  7)1
(A .1.26)
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3  — E[Q{Xq -  Xg_r -  L)I{XQ_r < T , X q_,. + L < X q < r)] 

QlLofy=L(y -  L)fQ-rix)fv(y) dy dx
= Q /o,=0 fy=L yfQ-rix)fr{y) dy dx -  QL Iy=L fQ-r{^)friy) dy dx

(A. 1.27)

E[O.HU = E[t {Q -  N{T))i{XQ > r)]
= E[rQI(XQ > r)] -  E[tN{ t)I{Xq > r)]

Qr[l -  Fq{t)] -  TE[NiT)IiN{T) < Q)]
= Qt [1 -  Fq(t)] -  nP{N{T) ^ n)
= Qt [1 -  Fq{t)\ -  t [\t -  nP{N{T) = ?z)]
=  Q t [V -  F q { t )] -  t [ \ t  -  P ( N { t ) =  72)]

= (5r[l -  F q ( t ) ]  -  Ar^[l -  FQ_i(r)]

(A.1.28)

E[OH],  = E[Q{t -  XQ_r -  L)I{XQ_r < T, Xq > r)] 

= Q{r -  L) /J^o fQ-r{x)fr{y) dy dx

- Q  iLo L]^T-x ^fQ-r{x)friy) dy dx 
= Q ( t  -  L) /q_,(.t)[1 -  Frir -  a;)] dx

rT- Q  L·=oXÍQ-r{x)[i -  Fr{T -  .r)] dx
Q(t -  L)Fq. , (T)  -  Q(t -  L) -  x) dx

- < 3 2 f  f«_,+i(T) + /« - ,+ .(.T)i’.(T -  x) dx
(A.1.29)

E[OH]s = E\Q(t -  T  -  L) I ( Xq^,  > T, X q > t))

= Q(t - T - L )  / ¿ j. fQ .A x ) M y)  dy dx

+Q(t - T -  L ) f ' t ,  f , Zo fQ- r ( xWy)  dy dx 
= Q ( r - T - L )  S U  h - A x ) l l  - F , ( T - x ) ] d x  

+ Q ( r - T - L ) i Z , f Q - r { x ) d x

= Q(t - T - L ) - Q ( t - T - L ) F q.AT)
- Q ( t - T - L )  / « - , ( x )[1 -  F,(r -  x ) | dx

(A.1..30)
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N iX g.r + L -  X q) Xg^r < T,Xg_r < Xg < Xg_,. + L 
N(T + L -  X g) T < A'q _ ,  < X g < r  + L

Derivation of Number of Lost Sales

LS (A.1.31)

:[LS] = E[NiXg^r + L -  Xg)I{Xg.r < d \X g., < Xg < Xg_, + L] 
+E[N{T + L -  Xg)I{T < Xg^r < X q < T  + L)]

(A.1.32)

E[LS]г = E[N(Xg_r + L -  X g)liXg-r < T, Xg_, < Xg < Xg_,. + L]
=  ^  ¡ 1 = 0  /¿ o (^  -  y)fQ-Tix)fr(y)  dy dx
= \LEr{L)Eg.r{T) -  rEr^,{L)Eg_,.{T)

(A.1.33)

E[LS\2 =  E[N{T + L -  Xg) I{T < Xg_r < X g < T ^  L)] 

= \ {T  + L) fg.r{x)fr(y) dy dx

- ^ C \ ' ^ & - ^ ^ f Q - r i x ) M y )  dy dx 
- ^ ¡ l : ^ r & ~ ^ y f Q - r i x ) f r { y )  dy dx 

=  X(T + L) Er{T + A -  x)jg-r{x) dx
- ( Q - r )  X S f Er(7^ + L -  x)fg-r+i(x) dx 
- r  Fr+x{T + L -  x)fg-r{x) dx

E[LS] =  E[LS]i + E[LS]2
= Eg-r{T)[XLEr{L) -  rFr+i(L)

+X{T + L) Fr(T + L -  x)fg-r{x) dx 
- r F r + i i T  + L -  x)fg-r{x) dx 
- ( Q  -  r) / S f  Fr{7' + L -  x)fg-r+iix) dx

Derivation of Expected Number of Items That Perish

E\P\ = E[{Q -  N(t))I(Xq > t)J
= Q [ l-F g ( T ) ] -E i: in P { N { T )  = n)
= 0(1 -  ib(T)l -  lAr -  Ar E “ nP(N(T} = n)

= (3Ii - p« W ] - A t[i - iV iMI

(A.1.34)

(A.1.35)

(A.1.36)
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A.2 A P P E N D IX  B

A= 0.5

T* Cl Qo C2 A %

T = 1 2

0 .005
0.01
0.02
0.05
0.1

11.12
11
11.18
11.03
11.98

9.86
9.43  
9.02
8.43  
7.91

11.01
10.55
9.71
8.8
8 .07

10.45
10.62
7.11
4.20
1.98

P = 1 T =  15

0 .005
0.01
0.02
0.05
0.1

14.32
14.02
14.28
14.13
15

9.43
9.04
8.49
7.99
7.52

10.34
9.39
9.37
8.41
7.52

8.80
3 .73
9.39
4.99
0.00

r = 2 0

0.005
0.01
0.02
0.05
0.1

20
19.02
20
19.14
20

9.14
8.69
8.16
7.61
7.18

9.14
9.14  
8.16  
8.16  
7.18

0.00
4.92
0.00
6.74
0.00

T = 1 2

0 .005
0.01
0.02
0.05
0.1

11.17
11.78
11.04
11.03
11.98

10.5
10.45
9.55
9.24
8.38

11.53
10.83
10.44
9.38
8.85

8 .93
3.51
8.52  
1.49  
5.31

p = 1 0 T = 1 5

0.005
0.01
0.02
0.05
0.1

14.32
12.03
14.28
11.87
15

9.8
9.69
8.85
8.48
7.71

10.44
9.76
9.76
8 .77  
7.71

6.13
0.72
9.32
3.31
0.00

T = 2 0

0 .005
0.01
0.02
0.05
0.1

20
16.13
20
15.92
20

9.29
9
8 .27
7.85
7.26

9 .29
9.29
8 .27
8 .27  
7.26

0.00
3.12
0.00
5.08
0.00

0 .005 4 2 11.23 12.08 4 3 13.15 8.14
0.01 4 2 12 12.06 4 2 12.06 0.00

T = 1 2 0.02 4 1 7.14 11.37 2 12.06 5.72
0.05 4 1 12 10.87 4 1 10.87 0.00
0.1 4 0 11.06 9 .67 4 1 10.87 11.04
0 .005 5 2 14.61 10.77 4 2 10.87 0.92
0.01 5 2 15 10.76 5 2 10.76 0 .00

p = 5 0 r = 1 5 0.02 5 1 13.58 9.77 5 2 10.76 9 .20
0.05 5 0 8.88 9.64 5 1 9 .68 0.41
0.1 5 0 15 8.53 5 0 8.53 0.00
0 .005 6 2 20 9.66 6 2 9.66 0 .00
0.01 6 1 9.64 9.59 6 2 9.66 0.72

r = 2 0 0.02 6 1 20 8.64 6 1 8.64 0 .00
0.05 6 0 12.35 8.4 6 1 8.64 2.78
0.1 5 0 20 7.52 5 0 7.52 0.00

Table A .l: (Q,r,T)  vs. {Q.,r) (A=0.5)
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A= 1 0

a Q r ’•r T * C’l « 2 >'2 C'2 A  %

0 .005 22 15 1 43 .09 20 16 44 .17 2.45
0.01 21 14 1.01 41.91 20 15 42 .98 2.49

T= 2 0.02 21 12 0.92 40 .46 20 14 41.72 3.02
0.05 20 10 1.01 38 .08 20 12 38 .92 2.16
0.1 19 7 1.02 35.63 19 10 .36..36 2.01
0 .005 33 14 2.31 36.74 31 15 .37.19 1.21
0.01 32 13 3 35.21 31 14 36 .17 2.65

p = l T= 4 0.02 31 12 4 34.13 31 12 .34.13 0 .00
0.05 32 9 2.88 31.54 30 10 32.11 1.78
0.1 30 7 3.82 29.28 31 7 29.35 0.24
0.005 36 14 3.04 36.51 38 14 .36.66 0.41
0.01 32 13 6 35 .09 32 13 35 .09 0 .00

T =  6 0.02 36 11 2.96 33 .99 31 12 34 .08 0.26
0.05 34 9 4.02 31.35 35 9 31 .47 0..38
0.1 34 6 3.34 29.23 30 7 29.25 0 .07

0 .005 16 15 0.06 48.45 17 16 49 .09 1.30
0.01 16 14 0.24 47.12 16 15 47.84 1.51

r = 2 0.02 16 13 0.71 45 .43 16 14 46.65 2.62
0.05 16 11 0 .97 42.6 16 12 44 3.18
0.1 16 9 1.04 39 .48 16 10 40.82 3.28
0 .005 30 14 1.82 37.34 29 15 37.5 0.43
0.01 30 13 2.25 35 .77 29 14 36 .48 1.95

p = 1 0 T= 4 0.02 28 12 4 .34.42 28 12 34.42 0.00
0.05 30 9 2.47 32 .08 28 10 32..34 0 .80
0.1 29 7 3.14 29.53 31 7 29.83 1.01
0.005 36 14 3.04 36.51 38 14 36 .67 0.44
0.01 32 13 6 35 .09 32 13 35 .09 0 .00

T  =  6 0.02 36 11 2.96 33 .99 31 12 34 .08 0.26
0.05 34 9 4.02 31.35 35 9 31 .47 0..38
0.1 34 6 3.34 29.24 30 7 29.25 0 .03

0.005 16 15 0.06 58.84 17 16 64..39 8.62
0.01 15 14 0 .07 .54.42 16 15 58.21 6.51

T= 2 0.02 14 13 0.12 51.33 15 14 53.81 4.61
0.05 14 11 0 .38 48 .36 13 12 49.25 1.81
0.1 14 9 0.58 44.92 13 10 45 .56 1.40
0.005 26 15 4 38.02 26 15 38.02 0 .00
0.01 27 13 1.66 .36.-58 26 14 36 .99 1.11

p = 5 0 T= 4 0.02 26 12 2.69 34 .89 27 12 34.92 0 .09
0.05 26 10 4 32.74 26 10 32.74 0 .00
0.1 27 7 2.47 30 .14 26 8 30 .63 1.60
0.005 35 14 2.75 .36.51 38 14 36 .69 0 .49
0.01 32 13 6 35 .09 32 13 35 .09 0 .00

T = 6 0.02 35 11 2.78 34 31 12 34 .08 0 .23
0.05 34 9 4.02 31 .36 35 9 31 .47 0.35
0.1 34 6 3.34 29.24 30 7 29.25 0 .03

Table A.2: (Q,r,T) vs. (Q ,r) {A=10)
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A .3 A P P E N D IX  C

No. A 7T K Q t T* AC Q* r* TC %A
1 5 5 10 10 0.88 13.16 11 5 12.43 5.92
2 5 5 20 15 2.43 16.78 15 4 15.97 5.06
3 5 5 50 23 8.51 23.25 23 2 23.16 0.39
4 5 10 10 9 0.29 14.30 11 7 13.65 4.81
5 5 10 20 13 1.18 18.66 15 6 17.24 8.24
6 5 10 50 23 3.76 26.41 23 r0 24.71 6.88
7 5 10 100 33 7.1 34.39 32 4 33.31 3.23
8 10 2 10 14 0.68 16.13 15 7 15.81 2.00
9 10 5 10 13 0.08 18.67 16 11 18.24 2.35
10 10 5 20 20 0.9 24.44 22 10 23.36 4.64
11 10 5 50 32 2.49 35.07 33 8 33.82 3.70
12 10 5 100 45 5.06 46.07 45 6 45.72 0.77
13 10 10 10 14 0.02 19.89 16 13 19.69 1.02
14 10 10 20 19 0.53 26.15 22 12 24.93 4.90
15 10 10 50 31 1.84 38.01 33 11 35.61 6.73
16 10 10 100 45 3.48 50.67 46 10 47.91 5.77
17 20 2 10 20 0.01 23.72 22 19 23.62 0.44
18 20 2 20 29 0.63 31.05 29 17 30.60 1.48
19 20 5 10 23 0 26.63 24 23 26.57 0.22
20 20 5 20 27 0.2 34.68 30 22 33.97 2.09
21 20 5 50 44 1.16 50.78 47 20 48.98 3.68
22 20 5 100 64 2.36 68.16 65 18 66.21 2.93
23 20 10 20 26 0.03 36.43 31 24 35.97 1.28
24 20 10 50 43 0.9 53.61 47 23 51.19 4.71
25 20 10 100 62 1.91 72.27 65 22 68.73 5.15
26 40 2 20 40 0.01 45.21 43 39 45.11 0.22
27 40 2 50 64 0.78 66.35 65 34 65.74 0.93
28 40 5 50 62 0.46 72.27 67 42 70.72 2.19
29 40 5 100 89 1.2 97.96 92 40 95.36 2.72
30 40 10 50 61 0.33 75.18 66 46 73.47 2.33
31 40 10 100 87 1 102.04 93 44 98.43 3.66

Table A.3: Comparison of Cost Values for Poisson Demands
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No. Q* r* Q* r* %A No. Q* r"" Q* r* %A
], 10 6 11 5 1.44 16 45 10 46 10 0.03
2 15 3 15 4 0.97 17 21 20 22 19 0.27
3 23 0 23 2 0.39 18 29 16 29 17 0.09
4 9 8 11 7 3.80 19 23 22 24 23 0.38
5 13 7 15 6 2.02 20 27 23 30 22 0.74
6 23 4 23 5 0.67 21 44 21 47 20 0.26
7 33 0 32 4 3.57 22 64 17 65 18 0.11
8 14 7 15 7 0.21 23 26 25 31 24 0.91
9 13 12 16 11 1.48 24 43 25 47 23 1.04
10 20 11 22 10 0.36 25 62 24 65 22 0.80
11 32 7 33 8 0.50 26 41 40 43 39 0.11
12 45 0 45 6 0.80 27 64 33 65 34 0.06
13 14 13 16 13 0.60 28 62 44 67 42 0.34
14 19 14 22 12 2.06 29 89 41 92 40 0.07
15 31 13 33 11 1.41 30 61 48 66 46 0.69

Table A .4: Comparison of Ordering Policies for Poisson Demands
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O' =  2 O' =  4
A 7T K T * AC Q * r * TC % A Q*T T * AC Q * r * TC % A
5 2 10 6 24.62 6.88 7 0 6.75 1.97 4 15.88 4.88 5 0 4.73 3.15
5 2 20 9 15.35 9.35 9 0 9.25 1.03 6 17.88 6.78 7 0 6.67 1.55
5 2 50 14 19.29 14.7 14 0 14.64 0.42 10 22.01 10.72 11 0 10.66 0.61
5 2 100 20 22.01 21 20 0 20.94 0 .27 15 25 15.27 15 0 15.21 0.38
5 5 10 7 2.18 8.61 7 2 7.99 7.84 5 5.98 5.65 5 0 5.29 6.79
5 5 20 10 5.36 10.9 10 1 10.54 3.41 7 17.89 7.37 7 0 7.09 3.98
5 5 50 15 18.46 15.79 15 0 15.61 1.15 11 23.99 11.13 11 0 10.93 1.8
5 5 100 21 23.33 21.8 21 0 21 .67 0 .6 15 25 15.56 15 0 15.42 0.9
5 10 10 7 1.41 9 .57 7 3 8.64 10.77 5 2.97 6.42 5 1 5.57 15.16
5 10 20 10 2.94 12.37 11 2 11.29 9.55 7 5.48 8.24 7 1 7.55 9.05
5 10 50 17 7.46 17.42 16 2 16.66 4.57 11 18.44 11.77 11 0 11.39 3.29
5 10 100 23 17.59 23.08 23 1 22.77 1.33 16 25 16.04 15 0 15.76 1.74

10 2 10 10 24.62 10.33 10 0 10.16 1.71 6 24.62 6.88 7 0 6.69 2.95
10 2 20 13 24.62 13.39 13 0 13.24 1.09 9 10.55 9.35 9 0 9.19 1.67
10 2 50 20 15.1 20.4 20 0 20.3 0.48 14 15.88 14.7 14 0 14.59 0.72
10 2 100 28 13.6 28.97 28 0 28.88 0.3 20 17.81 21 20 0 20.91 0.41
10 5 10 10 0.91 12.46 11 5 11.66 6.85 7 1.97 8 .37 7 2 7.67 9.19
10 5 20 14 1.95 16.29 15 4 15.38 5.86 10 3 .97 10.87 10 1 10..39 4.64
10 5 50 23 5.31 23.24 23 3 22 .87 1.63 15 14.47 15.79 16 0 15.53 1.64
10 5 100 31 14.56 31.14 30 0 30.95 0.62 21 18.28 21.8 21 0 21.61 0.89
10 10 10 9 0 .43 13.32 11 6 12.45 7.05 7 1.51 9 .03 8 2 8.23 9.73
10 10 20 14 1.5 17.58 15 5 16.31 7.83 10 2.89 11.9 10 2 10.85 9.7
10 10 50 22 3 .37 25.58 23 5 23.93 6.88 16 6 17.27 16 2 16.36 5.55
10 10 100 32 5.97 34 .08 32 4 32.74 4.08 23 11.39 23.08 22 1 22.62 2.01
20 2 10 14 0.58 15.74 15 8 15.29 2.95 10 24.62 10.33 10 0 10.09 2.42
20 2 20 20 24.62 20.33 20 0 20.15 0.93 13 24.62 13.39 13 0 13.18 1.58
20 2 50 29 24.9 29.1 28 0 28 .97 0.45 20 8 .9 20.4 20 0 20.25 0.75
20 2 100 40 8 .9 40.4 40 0 40 .28 0.29 28 15.1 28 .97 29 0 28.86 0.38
20 5 10 14 0.25 17.59 16 11 17 3.42 10 0.93 11.92 10 5 11.16 6.81
20 5 20 20 0 .93 23.36 21 10 22.3 4.75 14 1.88 15.84 15 4 15.01 5.59
20 5 50 32 2.37 34.31 32 9 33.11 3.62 23 4.45 23.21 22 3 22.68 2.32
20 5 100 45 4.28 45 .97 46 4 45.54 0.94 31 11.63 31.14 30 0 30.88 0.85
20 10 10 13 0.03 18.46 15 12 17.96 2.81 10 0.74 12.57 10 6 11.8 6.55
20 10 20 19 0.64 24.62 21 11 23.41 5.17 14 1.59 16.77 14 5 15.57 7.68
20 10 50 31 1.91 36 .38 33 11 34 .37 5.84 22 3.35 24.85 23 5 23.44 5.98
20 10 100 45 3.45 49.21 46 10 46 .88 4.96 32 5.67 33.65 32 4 32.35 4.02
40 2 10 20 0.01 22.84 21 19 22 .57 1.2 14 0.52 15.45 9 14 14.96 3.25
40 2 20 28 0.52 30 .44 29 18 29.9 1.79 20 24.62 20.33 2 20 20.07 1.32
40 2 50 43 24.9 43 .59 43 0 43.42 0.38 29 24.9 29.1 0 29 28.91 0.67
40 2 100 57 24.62 57.83 56 0 57.69 0.25 40 15.1 40.4 0 39 40.25 0.37
40 5 10 22 0 24.89 23 22 24.61 1.15 14 0 .29 16.77 10 15 16.14 3.88
40 5 20 28 0 .29 33.05 30 21 32 .23 2.55 20 0.95 22.56 10 21 21.59 4.5
40 5 50 45 1.22 49 .22 46 20 47 .66 3.29 32 2.31 33 .7 9 32 32.62 3.33
40 5 100 64 2.31 66 .93 64 19 65 .29 2.51 45 3.98 45.81 7 46 45.15 1.45
40 10 10 24 0 26.25 24 23 26 0.98 13 0.1 17.43 11 16 16.8 3.76
40 10 20 27 0.15 34 .36 30 23 33 .56 2.37 19 0.71 23.48 11 21 22.31 5.23
40 10 50 44 1.02 51 .27 46 22 49.2 4.2 31 1.97 3 5 .17 10 33 33.52 4.93

40 10 100 63 2.02 69 .86 66 21 66 .99 4 .29 45 3.46 48 .08 10 46 46.2 4.07

Table A.5: Comparison of Cost Values for Erlang Demands
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Q ' =  2 Q ' =  4
N o . Q * 7' * Q * r * % A Q * 7' * Q · r * % A

1 6 0 7 0 0.04 4 0 5 0 0.52
2 9 0 9 0 0 6 0 7 0 0.13
3 14 0 14 0 0 10 0 11 0 0.06
4 20 0 20 0 0 15 0 15 0 0
5 7 2 7 2 0 5 0 5 0 0
6 10 0 10 1 1.07 7 0 7 0 0
7 15 0 15 0 0 11 0 11 0 0
8 21 0 21 0 0 15 0 15 0 0
9 7 3 7 3 0 5 1 5 1 0
10 10 3 11 2 0.86 7 0 7 1 3.04
11 17 0 16 2 2.82 11 0 11 0 0
12 23 0 23 1 0.21 16 0 15 0 0.01
13 10 0 10 0 0 6 0 7 0 0.12
14 13 0 13 0 0 9 0 9 0 0
15 20 0 20 0 0 14 0 14 0 0
16 28 0 28 0 0 20 0 20 0 0
17 10 5 11 5 0 .09 7 2 7 2 0
18 14 4 15 4 0.1 10 0 10 1 1.48
19 23 0 23 3 0.66 15 0 16 0 0.01
20 31 0 30 0 0.05 21 0 21 0 0
21 9 7 11 6 3.57 7 3 8 2 0.24
22 14 7 15 5 3.48 10 3 10 2 2.51
23 22 5 23 5 0.15 16 1 16 2 1.14
24 32 2 32 4 1.83 23 0 22 1 0.38
25 14 8 15 8 0 .07 10 0 10 0 0
26 20 0 20 0 0 13 0 13 0 0
27 29 0 28 0 0.05 20 0 20 0 0
28 40 0 40 0 0 28 0 29 0 0.04
29 14 12 16 11 1.79 10 5 10 5 0
30 20 11 21 10 0.79 14 5 15 4 0 .69
31 32 8 32 9 0.2 23 1 22 3 0.68
32 45 2 46 4 0.38 31 0 30 0 0.02
33 13 12 15 12 1.08 10 6 10 6 0
34 19 13 21 11 2.35 14 6 14 5 1.78
35 31 12 33 11 1.08 22 5 23 5 0.12
36 45 11 46 10 0.51 32 4 32 4 0
37 20 19 21 19 0.15 14 9 9 14 0
38 28 18 29 18 0.05 20 0 2 20 0.08
39 43 0 43 0 0 29 0 0 29 0
40 57 0 56 0 0.06 40 0 0 39 0.01
41 23 22 23 22 0 14 11 10 15 0.42
42 28 22 30 21 0 .38 20 11 10 21 1.5
43 45 21 46 20 0.35 32 9 9 32 0
44 64 18 64 19 0 45 5 7 46 0 .37
45 24 23 24 23 0 13 12 11 16 1.6
46 27 24 30 23 0 .79 19 12 11 21 2.09

47 44 24 46 22 1.38 31 11 10 33 0.41
48 63 23 66 21 0 .89 45 10 10 46 0.04

Table A.6: Comparison of Ordering Policies for Erlang Demands
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N o . Q r T * AC Q · r * TC % A
1 10 24.62 10.33 10 0 10.02 3 .07
2 13 24.62 13.38 13 0 13.13 1.89
3 20 15.08 20.4 20 0 20.22 0.9
4 28 15.94 28.96 29 0 28.83 0.44
5 10 0 .97 11.23 10 5 10.63 5.64
6 14 1.84 15.25 15 4 14.6 4.44
7 22 3.73 23.05 22 4 22.48 2.54
8 31 20.44 31 .13 31 0 30.81 1.04
9 10 0.87 11.59 10 5 10.76 7.68
10 14 1.7 15.74 14 5 14.83 6.15
11 22 3.37 23.88 22 5 22.98 3.9
12 32 5.51 32.92 32 4 31.99 2.92
13 14 0.46 15.05 14 9 14.51 3 .7
14 20 25.59 20.33 20 1 20.02 1.54
15 29 24.62 29.1 29 0 28.86 0.83
16 40 15.08 40.4 40 0 40.22 0.46
17 14 0.35 15.74 14 10 15.08 4.38
18 20 0.98 21.55 20 10 20.81 3.55
19 32 2.26 32.92 32 9 32.1 2.55
20 45 3.72 45.52 45 9 44.92 1.34
21 14 0.3 16.11 15 10 15.5 3.91
22 20 0.91 22.05 21 10 21.12 4.4
23 31 2.03 33 .68 32 10 32.51 3.59
24 45 3.48 46 .67 45 10 45.5 2.57
25 20 0 21.36 21 19 20.95 1.98
26 28 0.44 29.39 29 19 28.83 1.96
27 43 25.59 43 .58 43 0 43 .29 0 .67
28 57 25.59 57.83 58 0 57.59 0.42
29 21 0 22.09 21 20 21.66 1.97
30 28 0.36 30.35 29 20 29.61 2.48
31 45 1.24 46 .67 45 20 45.75 2.01
32 63 2.19 64.9 64 19 63.91 1.55
33 22 0.03 22.59 22 21 22.04 2.5
34 28 0.33 30 .87 28 21 30 .13 2.47
35 44 1.14 47.44 45 20 46.28 2.51
36 63 2.1 65 .96 64 20 64.5 2.27
37 40 0 31 .88 40 39 31.53 1.11
38 40 0 41 .73 41 39 41 .3 1.05
39 63 0.62 64 .43 64 38 63 .83 0.94
40 86 25.59 86 .83 87 0 86 .53 0.34
41 41 0 33 .07 42 41 32 .76 0.95
42 41 0 42 .76 42 41 42.25 1.2
43 63 0.55 65 .96 64 40 65.03 1.44
44 89 1.22 92.01 90 40 90 .86 1.27
45 42 0 33.84 42 41 33 .46 1.13

46 42 0 43.35 42 41 42.95 0.93
47 62 0.5 6 6 .77 65 41 65 .66 1.69
48 89 1.18 93 .08 90 41 91 .59 1.63

Table A.7: Comparison of Cost Values for Normal Demands
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No. g* g* r* %A No. g* r* g* r* %A
1 10 0 10 0 0.00 25 20 19 21 19 0.06
2 13 0 13 0 0.00 26 28 19 29 19 0.01
3 20 0 20 0 0.00 27 43 0 43 0 0.00
4 28 0 29 0 0.03 28 57 0 58 0 0.00
5 10 5 10 5 0.00 29 21 20 21 20 0.00
6 14 5 15 4 0.90 30 28 21 29 20 1.15
7 22 3 22 4 0.39 31 45 20 45 20 0.00
8 31 0 31 0 0.00 32 63 19 64 19 0.00
9 10 6 10 5 6.91 33 22 21 22 21 0.00
10 14 6 14 5 5.53 34 28 21 28 21 0.00
11 22 5 22 5 0.00 35 44 21 45 20 0.36
12 32 4 32 4 0.00 36 63 21 64 20 0.63
13 14 9 14 9 0.00 37 40 39 40 39 0.00
14 20 0 20 1 0.00 38 40 39 41 39 0.02
15 29 0 29 0 0.00 39 63 38 64 38 0.01
16 40 0 40 0 0.00 40 86 0 87 0 0.01
17 14 11 14 10 4.00 41 42 41 42 41 0.00
18 20 10 20 10 0.00 42 42 41 42 41 0.00
19 32 9 32 9 0.00 43 63 41 64 40 0.27
20 45 8 45 9 0.02 44 89 40 90 40 0.00
21 14 11 15 10 1.40 45 42 41 42 41 0.00
22 20 11 21 10 2.04 46 42 41 42 41 0.00
23 31 11 32 10 2.00 47 62 42 65 41 0.53
24 45 10 45 10 0.00 48 89 42 90 41 0.59

Table A .8: Comparison of Ordering Policies for Normal Demands


