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ABSTRACT

THE DISCRETE FRACTIONAL FOURIER TRANSFORM

Çağatay Candan
M.S. in Electrical and Electronics Engineering 

Supervisor: Haldun M. Ozaktaş, Ph.D. 
July 1998

In this work, the discrete counterpart of the continuous Fractional Fourier 
Transform (FrFT) is proposed, discussed and consolidated. The discrete trans­
form generalizes the Discrete Fourier Transform (DFT) to arbitrary orders, 
in the same sense that the continuous FrFT generalizes the continuous time 
Fourier Transform. The definition proposed satisfies the requirements of uni- 
tarity, additivity of the orders and reduction to DFT. The definition proposed 
tends to the continuous transform as the dimension of the discrete transform 
matrix increases and provides a good approximation to the continuous FrFT 
for the finite dimensional matrices. Simulation results and some properties of 
the discrete FrFT are also discussed.

Keywords: Fractional Fourier Transform, Discrete Fourier Transform, Discrete 
Fractional Fourier Transform
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ÖZET

AYRIK KESİRLİ FOURIER DÖNÜŞÜMÜ 

Çağatay Candan
Elektrik ve Elektronik Mühendisliği Bölümü Yüksek Lisans

Tez Yöneticisi: Dr. Haldun M. Özaktaş 
Temmuz 1998

Bu çalışmada ayrık kesirli Fourier dönüşümü önerilmiş ve incelenmiştir. 
Önerilen tanım, sürekli kesirli Fourier dönüşümünün sürekli Fourier 
dönüşümünü genellediği şekilde, ayrık Fourier dönüşümünü istenilen herhangi 
bir dereceye geneller. Önerilen tanım, birimci! olma, derece eklenebilirlik 
ve ayrık Fourier dönüşümününe sadeleşme özelliklerine sahiptir. Ayrıca bu 
tanımın sürekli kesirli Fourier dönüşümüne yakınsadığı da gösterilmiştir. Bu 
tanımın bazı özelliklerinin yanısıra benzeşim sonuçları da sunulmuştur.

Anahtar Kelimeler: Kesirli Fourier Dönüşümü, Ayrık Fourier Dönüşümü, 
Ayrık Kesirli Fourier Dönüşümü
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Chapter 1

Introduction

With the development of high power and cheap computers, digital signal pro­
cessing has replaced analog or continuous time signal processing because of its 
exactness, versatility and feasibility. Fourier transform, one of the most impor­
tant transforms in the continuous time signal processing, has found its counter­
part in discrete time as the discrete Fourier transform (DFT) and DFT, along 
with its fast implementation, became one of the intensively used tools utilized 
especially in applications such as filtering, coding, modulation etc. Recently a 
new transform, the fractional Fourier transform (FrFT^) was rediscovered [1-3] 
independently of the previous works [4,5]. The fractional transform general­
izes the continuous Fourier Transform to arbitrary orders and reduces to the 
continuous Fourier Transform at the special cases. With the utilization of the 
additional degree of freedom, the order of the transform, FrFT has found many 
interesting applications, such as improved Wiener filtering [6,7], cost efficient 
approximation of linear systems [8,9], time-frequency domain analysis [10-13], 
analysis and design of optical systems [14-16] and signal representation [17 20]. 
The discrete counterpart of the continuous FrFT is yet an open problem, in 
this work we discuss and consolidate the discrete definition of FrFT.

 ̂Usage of the acronym PrFT is not accepted by everyone, including the supervisor of this 
thesis.



In engineering applications the integral of the continuous Fourier Transform 
is rarely evaluated, because of its high cost of computation, but in general one 
approximates the samples of the Fourier Transform by taking DFT of the func­
tion to be transformed. As size of the DFT matrix increases, the DFT tends 
to the continuous Fourier Transform, which is a fact evident from the compar­
ison of the kernels of the discrete and continuous transforms, leading to DFT’s 
approximation property of the continuous Fourier Transform.^ Apart from the 
approximation of the continuous Fourier Transform, the other properties of the 
DFT such as the ones related with cyclic convolutions, difference equations, 
etc. make this transform an invaluable tool for processing discrete signals.

As mentioned before, FrFT generalizes ordinary Fourier Transform to a 
class of transforms, which includes ordinary Fourier Transform as a special 
case. It is natural to expect the discrete equivalent of the FrFT to generalize the 
DFT to arbitrary orders and to approximate the continuous fractional Fourier 
transform. Unfortunately a satisfying definition for the discrete transform has 
not emerged until now due to the multiplicity of the possible definitions for 
the fractional Fourier transforms. What we mean by the multiplicity of the 
definitions is the possibility of the distinct definitions for fractional transforms 
generalizing the ordinary Fourier Transform. Our choice, out of infinitely many 
different transform possibilities, constitutes a legitimate one which has found 
many applications in different fields, such as quantum physics, optics and signal 
processing. Similarly if one only aims to generalize the DFT, there exists 
again infinitely many distinct definitions, but in this work we aim to find 
the discrete FrFT corresponding to our definition of the continuous fractional 
Fourier Transform.

We will now briefly review the definition and the properties of the Fractional 
Fourier Transform. The definition of the Fractional Fourier Transform can be 
given as

/ 00
cot CSC <^+t'2 cot ( 1 1 )

-oo

where 0 =  o7r/2 and . The transform reduces to
the ordinary Fourier transform, {F /}(ti) =  f  f{1f)dt', when a =  1 and

^The exact relation between DFT and Fourier Transform is given by Poisson’s theorem. 
One can find a brief presentation of this theorem in the appendix.



it can be shown that the kernel approaches 5{ta — t) and 6{ta +  t) when a 
approaches 0 and 2 respectively [21]. Some properties of the PrFT are

1. Unitarity.

2. Additivity of the orders

3. Reduction to ordinary Fourier Transform at o =  1.

4. Having Hermite-Gaussian functions as eigenfunctions.

5. Rotation of Wigner distribution by a x 90 degrees.

One can find more properties of the FrFT in [11,22 -24].

It is legitimate to expect from the discrete equivalent of FrFT to have some 
properties similar to the ones of the continuous time transform. We propose 
that the following requirements should be the properties of a discrete definition 
which is said to be analog of the continuous FrFT.

1. Unitarity.

2. Additivity of the orders.

3. Reduction to DFT.

4. Approximation of the FrFT.

The first two requirements should obviously be satisfied, if one claims to 
find the discrete analog of the FrFT. The third condition is required if one 
argues to generalize the DFT. The last requirement seeks for a relation, like 
Poisson’s theorem, between the continuous FrFT and discrete FrFT.

We will see in the next chapters that the first three requirements are rel­
atively easy to satisfy, but finding a correspondence between the continuous 
and discrete transform is the real difficulty of the problem. Before explaining 
our method of discretization, we will examine previous work on the problem.



1.1 Previous Work

We divide the papers related with the discretization of PrFT into 2 categories 
upon their nature of definition. First category includes the papers whose aim is 
to calculate the integral of the FrFT from samples of the input to the approx­
imate samples of its FrFT. The other category includes the papers in which 
the mapping introduced not only approximates the continuous FrFT, but also 
satisfies some requirements of the discrete definition. We will examine both 
categories together, but one should remember this discrimination of the papers 
while reading this section.

P rF T  calculation via H erm ite-G aussian  series [2,3]: In this paper, 
the computation of the FrFT is established by expressing the input as su­
perposition of Hermite-Gaussians (Hermite-Gaussian series) and taking FrFT 
of the series. Properties of the Hermite-Gaussians, (see Chapter 2), lead to 
easy determination of weight and fractional Fourier transform of each Hermite 
Gaussian term. This method is effective for a certain class of signals, where 
the input can be approximated up to certain degree with the first few Her­
mite Gaussians. It can be seen that this class consists of signals with sufficient 
amount of energy around origin, therefore signals with “mean” energy far from 
origin, such as a shifted rectangle, can not be easily expressed with a few terms. 
Another drawback of this method is that the “average” of the signal (DC term 
of the Fourier series) is represented by all even ordered Hermite-Gaussians, 
therefore whenever you approximate a non-Hermite-Gaussian function with 
Hermite-Gaussians, there will be an error in the mean value. As a result, one 
can think Hermite-Gaussian series as the expansion of the signal in terms of 
the local values of the signal, showing the difficulty of expressing the mean. 
One can easily see that the sole aim of this method is calculating the FrFT 
without chirp integrals given in (1.1).

P rFT  calculation of tim e and frequency lim ited functions [25]: This 
method starts with the definition of the PrFT as given in (1.1) and establishes 
a mapping from the samples of the input to the (approximate) samples of the 
output for a certain class of signals. The class discussed above is the span of 
signals that are both (approximately) time and frequency limited. We know 
that there does not exist a function that is both time and frequency limited, but



most “physical” signals can be thought as approximately time and frequency 
limited. The method involves two steps, first frequency band-limitedness is 
used to express the function using Shannon’s sampling theorem, then time- 
limitedness is used to limit the infinite summation of sines to a finite one (since 
time samples of the function can be ignored when sampling location exceeds 
time limit of the signal). As a result, the function is approximated by a finite 
sine series and then the PrFT of each term of the series is taken. Finally when 
output is sampled, we reach a relation from the finite samples of the input to the 
samples of its FrFT. If we observe the matrix of this discrete mapping, we see 
that the matrix is neither unitary nor satisfies the additivity of the orders. But 
for the class of signals discussed, the mapping introduced is almost unitary, that 
is denoting the matrix of the mapping by M, (M /, M /)  — ( / , / )  ~  0, for f{t) 
in the class discussed. This method is a very powerful method of computing 
continuous FrFT, with its O(NlogN) implementation, but it satisfies none of 
the requirements for the discrete definition.

PrFT calculation through sine interpolation [26]: In this paper; au­
thors, apparently unaware of [25], proposed a similar scheme for calculation 
of FrFT with finite sine summation. Authors reach equivalent results of the 
previously discussed paper, but they mistakenly compare their definition with 
a distinct definition of the the FrFT. Some distinct definitions of FrFT and 
their effect on the discretization problem will be discussed in the core of the 
text.

PVFT calculation through FFT algorithm [27]: Authors of this paper 
propose a method of computation for PrFT based on chirp multiplication, chirp 
convolution and chirp multiplication realization of the PrFT. They replace the 
intermediate continuous convolution step with FFT, multiplication in FFT 
domain and inverse FFT. This method can be utilized successfully, only if the 
aliasing effects in time and frequency domains are treated carefully.

Fractional powers of DFT matrix [28]: In this paper, the author 
aims to find l/p*^ power of the DFT matrix saying that “Our primary goal 
is to demonstrate that {DFTY^^ can be found.” Although the existence of 
{DFTY^^ can be easily seen, since DFT matrix is diagonalable (see Chapter 
2), author finds examples of the power DFT matrix for dimensions of 2



and 4. {DFTy/P matrices satisfies first three requirements, but nothing can 
be said for the correspondence with PrFT.

Discrete FrFT via Taylor Series [29,30]: Both papers find the frac­
tional powers of the DFT matrix, by expressing fractional power operation in 
terms of Taylor series and inserting DFT matrix into the expansion. Using the 
identity =  I, where F and I are the DFT and identity matrix respectively, 
the infinite summation of the Taylor series is condensed to the summation of 
the four terms (F°, F ,̂ F ,̂ F^). By further analysis authors find the fractional 
powers of the DFT matrix. We note that the fractional DFT matrix found 
by two authors are exactly the same (eqn.(26) in [29] is equivalent to eqn.(43) 
in [30]). The discrete fractional Fourier matrix proposed satisfies first three 
requirements, but we will see in the progress of this study that the discrete 
transform defined does not correspond FrFT defined by (1.1), but corresponds 
to a distinct definition of the fractional Fourier transform (see Chapter 2). 
Therefore discrete definition has a correspondence with continuous signals, but 
this correspondence is with some other distinct definition, not with the FrFT 
we have defined.

Discrete FrFT via Poisson’s theorem [31]: As said before, Poisson’s 
theorem enables one to determine DFT as the mapping between time and 
frequency domain representation of the continuous signals which are appropri­
ately aliased and sampled. The author of this paper investigates FrFT in order 
to establish a similar mapping between time and oth domain representation of 
the signal. The author shows the existence of periodic signals both in time and 
ath domain when transform order a is a rational number and finds the map­
ping between the periodic sequences in both domains and denotes the mapping 
as Discrete Fractional Fourier Transform. This mapping reduces to DFT at 
special cases, but for the fractional cases, the parameter To of the Poisson’s 
theorem does not cancel out as in DFT case leading to the ambiguity of de­
termination of this parameter when discrete signal has no obvious counterpart 
in continuous time (see [31]). This mapping is neither unitary nor satisfies the 
additivity of the orders.

Fractional Fourier-Kravchuk Transform [32]: In this paper, authors 
define a finite discrete transform using Kravchuk polynomials. Kravchuk poly­
nomials have two interesting properties. The first one is, N  samples of the first



N  Kravchuk polynomials (from 0th to (A^—l)th  degree) form an orthogonal set 
of with an appropriate weight function. The other one is, Kravchuk polyno­
mials tend to Hermite-Gaussians as N  increases. Since Hermite-Gaussians are 
eigenfunctions of the FVFT (see Chapter 3), we directly found a correspondence 
between PrFT and Kravchuk polynomials. By using the orthogonality of the 
samples of the Kravchuk polynomials, one can define a finite transform satisfy­
ing unitarity and additivity of the orders. Unfortunately this matrix does not 
reduce to DFT matrix at the special cases, which is the major drawback of this 
method. Another difficulty arises while calculating the Kravchuk polynomials 
of high degrees. In order to preserve the orthogonality of the sample vectors 
the coefficients of the high powers must be evaluated with high accuracy, which 
poses a computation problem.^

D iscrete F rF T  th rough  discrete  W igner d is trib u tio n  [34]: In this 
interesting paper, authors use their definition of discrete Wigner distribution 
to define the discrete fractional Fourier Transform. In [35] authors define the 
discrete Wigner distribution using group theoretical concepts. The discrete 
distribution defined satisfies many properties analogous to the continuous one 
such as marginals, symplectic transformations etc. Authors show that the 
rotation of the discrete distribution is possible for a finite number of degrees 
and give the definition of the discrete FrFT by expressing rotation in terms 
of “chirp” convolution and “chirp” multiplications. We note that with this 
definition, it is not possible to get fractional Fourier Transform of a sequence 
at an arbitrary order and furthermore fractional Fourier Transform of even 
length sequences can not be defined. Additionally computer simulations has 
not revealed a correspondence with the continuous FrFT.

D iscrete F rF T  th rough  “D iscrete H erm ite-G aussians” [36-38]: In
his first work, [36], Pei trys to construct a set of eigenvectors of DFT resem­
bling the functional behavior of Hermite-Gaussians, which are eigenfunctions

recent work [33], unaware of [32], attempted to utilize the Kravcuk polynomials for 
the discrete definition. According to the author of this thesis, the paper submitted has 
conflicts with [32] and furthermore some claims of the paper can not be justified by computer 
simulations. Unfortunately, the multiplicity of definitions of PrFT is not taken into account 
by the author of [33].



of fractional Fourier transform (see Chapter 3). Since samples of the Herrnite- 
Gaussians are not eigenvectors of DFT, Pei proposes a novel LMS algorithm 
that produces Hermite-Gaussian like eigenvectors of DFT in [36].

In his more recent works [37,38], Pei notices that the eigenvectors of a 
matrix, defined in [30], “resembles” Hermite-Gaussian functions. Since this 
matrix is symmetric, one does not need an additional error removal algorithm, 
as described before, to orthogonalize the eigenvectors. In Chapter 4 of this 
work, we justify the claims of Pei, which were mainly based on numerical 
experiments, by showing why the eigenvectors of this matrix resemble Hermite- 
Gaussians and determine which eigenvector corresponds to which Hermite- 
Gaussian function. In the same chapter, we also resolve an ambiguity appearing 
in Pei’s papers, the ambiguity of finding eigenvectors, when matrix dimension 
is a multiple of 4. In Chapter 5, we will generate a sequence of matrices 
generating finer approximations to Hermite-Gaussians.

In this section, we will also overview some unpublished ideas on the com­
putation and discretization of the FrFT. Our aim, in including these works, 
is providing different view points for the discretization problem, which can be 
useful in certain application or motivating some other works.

C om puta tion  of PrFT  for band-lim ited  signals: As in [25], we assume 
that the signal to be transformed has Wigner distribution lying mainly in the 
circle of diameter R. It is easy to see that the oth domain representation of 
this signal is also limited to R  for all a. Since the computation of PrFT of a 
signal, via integral kernel definition of PrFT, requires excessive sampling due 
to wide-band nature of the chirps, we propose that the kernel can be smoothed 
for this class of band-limited signals. Since signal to be transformed is band- 
limited to R, one can filter the signal, both at the input and at the output, by 
an ideal low pass filter (with a sufficiently high passband) without affecting the 
result. When pre and post filtering operations are accomplished, one reaches 
the kernel of the PrFT for band-limited signals

K(ta,t) = 1 1  T{t ,X)K{Ci' )T( t ' , t )d t 'd t ' ,  (1.2)

where K{ta,t) denotes PrFT kernel as given in (1.1) and denotes ideal
low pass filters T{t, t') — where R^ > R.



When one inserts the spectral expansion of the kernel (see Chapter 2) in 
the above relation, one immediately gets the spectral of expansion of K,  which 
is given as K(ta,t) =  Z)*exp(—j|A;o)^*(ia)^A:(i)· The function ipk{t) is the 
low-pass filtered versions of V’fc(i)· Thus FrFT matrix can be constructed by 
sampling these low-pass filtered Hermite-Gaussian functions and inserting them 
in the spectral expansion. It would be interesting to compare these Hermite- 
Gaussian vectors with those obtained in Chapters 4 and 5.

Additionally it is not difficult to see that 2-D convolution in (1.2) can be 
calculated by finding 2-D Fourier Transform of the kernel K{ta,t) and then 
truncating the expression in frequency-domain and finally taking the inverse 
Fourier Transform of the truncated function. With this method, one can ex­
press the kernel of K(ta,t) in terms of Fresnel integrals. This calculation is 
facilitated by the fact that the 2-D Fourier transform of K{ta,t) with respect 
to the variables ta, t has a form similar to K{ta, t) itself, a fact which is of con­
siderable interest in itself. Finally FrFT matrix can be obtained by sampling 
the low pass kernel thus obtained.

Discrete PrFT by sampling the kernel of PrFT: If one compares the 
kernels of DFT and Fourier Transform, one may think that DFT follows from 
writing Riemann sum for the Fourier integral and truncating the summation 
to the range n =  0 . . .  A — 1. If we approximate the integral of FrFT with the 
same method, we get the following

It is clear that Ba matrix reduces to DFT at o =  1, but for other values 
of a matrix defined is neither unitary nor satisfies index additivity. On the 
other hand, it is clear that Ba matrix is an approximation to continuous FrFT 
operator.

FrFT of sampled and replicated functions: From Poisson’s theorem 
(see appendix), we know that one can define DFT of the samples of a function 
in terms of Fourier Transform of that function. By replicating a function in 
time and then sampling, we can generate a discrete periodic sequence in time. If 
we take the continuous Fourier Transform of that sequence, we get a sequence 
which is also periodic and discrete. If we attempt to do the same thing for 
FrFT, that is, examine the relation between sampled periodic sequence and its

9



FVFT, we see that PrFT of a discrete periodic sequence is a non-periodic and 
continuous function in general. At the special case of a =  1, the signal in two 
domains becomes periodic and discrete and the relation between the elements 
in a period of two representations is DFT. But in general, there does not 
exist periodic and discrete sequences at the fractional orders, leading to non­
existence of a matrix mapping between values in two domains (see also [31]).

F ractional Fourier Series: Ordinary Fourier series is defined as f{t) = 
^  Following from [39], we can define DFT from Fourier series
by sampling Fourier series relation at N  points in a period W,  that is

k=—oo

If we evaluate the summation above with a different grouping of k = Nq -f r, 
we get

I  N - l  /  , Nq r '  
W  .

The relation between two sequences is nothing but the DFT. Following from 
the above discussion, one may try to define fractional Fourier series and then 
derive the discrete transform from the series. Fractional Fourier series can be 
easily generalized as

m  =
A_

W\ csc((^)|
^ c o t  4> (2<i>)gj27ri|rt

Note that ordinary Fourier series replicates the function such that it becomes 
periodic with W.  But fractional Fourier series involves chirp terms that makes 
the interpretation difficult for ]i] > W¡2. It can be seen that by straightforward 
sampling of the above relation, the summation index can not be reduced to a 
finite one as in DFT case (see also [31]).

10



1.2 Summary

In this chapter, we introduced the problem of discretization of the PrFT. Our 
aim in discretization is not only devising a method of approximation of PrFT 
from the samples of the input to the samples of its PrFT, but also a working 
definition for discrete signals. We have observed that the previous works did 
not satisfy all the requirements for the discrete FrPT, although some of the 
definitions were seemingly plausible, we will see that these definitions corre­
spond to distinct fractionalizations of the Fourier transform, not to the PrFT 
defined by (1.1).

11



Chapter 2

Fractional Fourier Transforms

In this chapter we will investigate the definition of the PrFT and identify dis­
tinct definitions which can be obtained during the fractionalization process of 
the Fourier Transform. In the first section, some elementary facts related with 
unitary operators/matrices are studied. The second section examines eigen- 
structure of the ordinary Fourier Transform using unitary operator concept. 
The remaining sections examine the Fractional Fourier Transform and other 
distinct definitions.

2.1 Unitary Operators

Operators satisfying Parseval’s relation are called unitary, they can also be 
viewed as “angle” preserving operators [22]. Another, but equivalent, definition 
for unitary operator U can be given as = U^. In this section, we will 
review the following theorem about the eigenvectors of unitary matrices.

T heorem  1 Any unitary matrix U has a complete, orthogonal set of eigen­
vectors.

Proof of the theorem can be found in many references including [40,41].

12



Lets recall that, if U has distinct eigenvalues there exists a single eigenvector 
set, apart form normalization, which is orthogonal due to the theorem. For 
the multiple eigenvalue case, the existence of an orthogonal eigenvector set is 
guaranteed by the theorem, but the uniqueness property is lost.

We also note that if an operator is not defined in finite dimensional space, 
it can not be represented with finite matrices, but with infinite matrices. One 
can also show the validity of the theorem discussed in this section for infinite 
dimensional matrices. As a result, all unitary operators, whether in finite or 
infinite space, have a complete and orthogonal eigenvector/eigenfunction set.

2.2 Eigenstructure of Fourier Transform

We know that Fourier Transform is unitary (Parseval’s relation holds), assuring 
us the existence of a complete set of eigenvectors/functions of Fourier Trans­
form. Uniqueness of this set will depend on the eigenvalues of the Fourier 
Transform. F in this section denotes either the continuous Fourier Transform 
or the DFT, following results are valid for both of them.

2.2.1 Eigenvalues of Fourier Transform

One can easily show that =  FF  = J; where J  denotes coordinate inversion 
operator (Ja;(i) =  x{—t)) and F'* =  = I, where I is identity operator. Now
assume that e is an eigenvector/function of F with eigenvalue A. If we multiply 
F'̂  =  I from right by e, we get Â  =  1 implying A =  Therefore
there are only 4 possibilities for the eigenvalues of F, leading to infinitely many 
choices for eigenvector/functions. (DFT matrices with dimensions less than 4 
are not included in this argument)

Reader may have noted that, F do not have to attain all of the 4 differ­
ent values found above as eigenvalues. Since considering the fourth power 
of the identity operation I“* = I and repeating the same procedure, leads 
us to the same eigenvalue set for I, but only one of the values from the set
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A =  {1, — l , i ,  —i} is the actual eigenvalue of I, others are virtual roots of the 
4th power operation. For the case of F, we have all the 4 possible values as 
actual eigenvalues of F, this can shown by finding a single eigenvector/function 
example for each eigenvalue.

2.2.2 Eigenvectors/functions of Fourier Transform

We have seen that there exists many choices for eigenvectors of F. For the 
ease of visualization lets focus on by AT DFT matrix. We know that the 
eigenvectors of the unitary matrix DFT, with different eigenvalues are orthog­
onal. Since DFT has only 4 eigenvalues, this means that N  dimensional space 
is divided into 4 hyper-planes, intersecting orthogonally with each other. For 
example when N  = 7, eigenvalue multiplicity of DFT matrix, (see [42]), leads 
to the following distribution of eigenvalues —> (2,2,2,1). This
means that, for the DFT matrix size 7, A = 1 plane is a spanned by 2 vectors, 
and orthogonal to the other planes. One can visualize the intersection of A = 1 
plane and say A = —j  plane, as intersection of x-y plane and y-z plane in 3-D 
space. It is clear that taking DFT of any vector in a A plane only maps the 
vector to another vector in the same plane.

To represent any vector in, say A =  1 plane, we need two coordinates or two 
orthogonal basis vectors (as in x-y plane). It is clear that there exists infinitely 
many choices for choosing two orthogonal basis vectors, leading to infinitely 
many different choices for eigenvectors of DFT matrix. '■

The following discussion, from [43], can also be fruitful to clarify the relation 
between A planes and eigenstructure of DFT. First lets start with the definition 
of the projection matrices to the A planes.

P 1 = 1 {f 3 + f 2 + F +1}
4

P_i =  7{-F=* + F 2 - F  + I}
4

P i  =  ^ O F ^ - F ^ - j F - l · ! }

^See appendix for a Matlab program that generates a different orthogonal eigenvector set 
of DFT each time it is run.
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P^· =  - { - j F ^ - F ^ + i F  + I}

The following facts about P* matrices, can be easily justified by straightforward 
multiplication and addition of matrices.

1. Pfc matrices are projection matrices (P | =  P*).

2. Projection spaces of P* matrices are orthogonal. (P*P/ =  0, k ^  1).

3. Direct sum of projection spaces is

4. P i +  P_i is the Even operator. Even{x[n]} =  {^x[n] +  a:[—n]}

5. Pj  +  P^· is the Odd operator. Odd{x[n]} =  — a;[—n]}

We know that projection space of identity operator I is partitioned into two 
by Even and Odd operators. Prom the last two properties above, we see that 
the spaces of Even and Odd operators are also sub-divided into two by P*, 
operators. So projection spaces of P^ can be thought as generalized even/odd 
spaces.

Now, we proceed by showing that P* matrices are projectors to A planes 
by proving the projection spaces are invariant under F operation. That is if 
a given vector in the space of P^, vector remains in the same P^ space after 
the application of DPT operation. Por example, DPT of an even (odd) vector 
is also an even (odd) vector.

To prove the invariance of space P i under F, it is sufficient to show that 
F P i =  P i which can be shown as F P i =  F^{F^ -I- F^ 4- F 4-1} = P i.

Reader can easily justify the following by using F'’ =  I.

F P i =  P i
FP_i =  - P - i
FPj = jP i
FP_, =  - j P - j (2.1)

We will now calculate the eigenvalue multiplicity of DPT. Remembering 
that projection spaces of P* span 71^, orthogonal with respect to each other
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and invariant under F, we can easily see that the dimension of the range space 
of Pji; should be equal to the multiplicity of F of the corresponding eigenvalue 
of that space. ({1, —1,_7, —jf}) But we know that Pfc is a projection matrix, 
therefore its trace is equal to dimension of its range space which is also equal 
to the multiplicity of the eigenvalue denoted by k.

trace{P 1} =  ^trace{F^ +  F^ +  F +1}

=  jtrace{F-^ +  F2 + F +1}

=
2 2tt

^  E  cos( ^  n^) +  trace{J} -h N ) (2.2)

trace{P_i} =
2 2tt

^  E  cos( ^  n^) +  trace{J} +  N ) (2.3)

trace{Py} =
2 2tt

^  E  ^  trace{J} +  N ) (2.4)

trace{P_j·} =
2 2tt

—;= E  n^) — trace{J} -I- N}  
y / N ^ o  ^

(2.5)

The expressions on the right hand side can be evaluated if results of the sum­
mations and trace{J} are known. While it is easy to calculate trace{J}, the 
other unknown term, the Gaussian Sum identity, is very difficult to verify.”̂

trace{J} =
1 AT odd

2 N  even
(2.6)

Gaussian Sum:

N - l

V n  ¿"0 *

1 i N  = Am 

1 N  = Am -|-1

0 N  = Am+ 2

1 N  = Am 3

(2.7)

Inserting values from (2.6) and (2.7) to (2.2)-(2.5), one can find the multiplic­
ities of eigenvalues of F as indicated in Table 2.1.

^Reader can find four different proofs of the identity, given by Mertens, Kronecker, Schur 
and Gauss, in [44].
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Table 2.1: Eigenvalue Multiplicity of DFT Matrix
N 1 -1 3 -3

4m m + 1 m m — 1 m
4m + 1 m + 1 m m m
4m + 2 m + 1 m + 1 m m
4m +  3 m + 1 m +  1 m m + 1

An eigenvector set of DFT can also be derived from P* matrices. It is easy 
to see that the columns of P^, which is given in Table 2.2, are the eigenvectors 
of F.

Table 2.2: An Eigenvector Set of DFT
Eigenvalue Eigenvector

1 4  W = cos{'f nk) +  -  n + J[/c +  n]
-1 = -;;;%cos(^nA:) +5[A: -  n] + 6[k + n]
3 <[k] = -  nk) + 6 [ k - n — i[A: + n]

-3 sin{‘f  nk) +  6[k -  n — i[A: +  n]

2.3 Definition of the Continuous Fractional 

Fourier Transforms

In this section, we will see that specifying a set of eigenfunctions of Fourier 
Transform and the branch for the fractional power operations is sufficient to 
define the fractional Fourier Transform. First lets repeat the requirements that 
fractional Fourier Transforms should satisfy.

1. Unitarity of F“ for all a.

2. Additivity of the orders, F“‘F “  ̂ =  F “‘+“^

3. Reduction to ordinary Fourier Transform at a =  1.

We will start with elementary facts.
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F a c tl Utilizing the first requirement, F “ has a complete and orthogonal set 
of eigenfunctions.

Fact2 Eigenfunctions of the F “ are eigenfunctions of the ordinary Fourier 
Transform. Since, if we assume the contrary, let e be the eigenfunction 
and Xa be its eigenvalue. Prom requirement 2, the half order PrFT satis­
fies the relation F =  F 2 F ^ , multiplying this relation from right by e, we 
get F e  = A„e, which contradicts with the assumption for a =  1/2 case 
and this special case can be generalized for all rational orders.

Fact 2, leads to two important observations. Firstly, fractional Fourier 
Transform for all rational orders has the same eigenfunctions with the well 
known special case, ordinary Fourier Transform. Secondly, the eigenvalues of 
the fractional Fourier Transform are fractional powers of {1, — 1, j, —j}.  Reader 
should note that due to the ambiguity in taking the fractional powers or roots 
of the complex numbers, one should assign a certain branch for each fractional 
power operation.

Using facts 1 and 2, we can define many different fractional Fourier trans­
forms, that is using fact 1, we can expand any function in terms of a pre­
determined eigenfunctions of Fourier Transform.

/W  =  '^CkCkit)
/ 00 

-00

(2.8)

(2.9)

where in (2.8) completeness and in (2.9) orthogonality of fact 1 is used. Now 
using fact 2, we can take the fractional Fourier transform of f{t), that is

Fn/)*)})*) = Y : c i . ( h r e , ( t )  (2.10)
k

Inserting Ck from (2.9), we get the kernel of the fractional Fourier transform as

F“{ /(i)K ') =  j  (2.11)

The expression in the brackets of the equation (2.11) is the spectral expan­
sion of the integral kernel of the fractional Fourier transform. One can easily
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see that the definition through spectral expansion will always be unitary (since 
eigenvalues of the fractional transform is of unit magnitude) and reduce to or­
dinary Fourier Transform at the special cases (since functions generating kernel 
of the fractional transform are eigenfunctions of F) and satisfy the additivity 
of orders requirement. One can check the order additivity property by defining 
M = F“* and then examining its kernel. M  can be defined as

KuitM, )̂ — j  ̂ “1 t')Ka2 (í^ t)dt' (2.12)

where K m , Kai, Ka^ denote kernels of M, F“' , F “  ̂ respectively. Inserting 
Ka,,Ka2 from (2.11), we get

■' ki ki

=  Y, ek,{tM){KT^{KT^el^it) J ek2it')el̂ (t')dt'
k\,k2

= I^efc,(ÎM)(Afc,)“'+“"efc,(i)
kl

(2.13)

where orthogonality of ek{t) is used in the last step (Fact 1). One can easily 
see from (2.13) that K m =  Kai+a2 , proving the order additivity property.

One should note that kernel K(t, t') is uniquely determined by spectral 
expansion, if the eigenfunction set of the Fourier Transform and the branch 
for the fractional power operations are specified. It is now easy to guess that 
distinct definitions arises from the usage of different eigenfunction sets and/or 
different branches for the fractional power operations. This multiplicity of 
definitions has led to many confusions during the process of discretization.

2.4 PrFT using Spectral Expansion

We have given the kernel of the FrFT in the first chapter. In this section we will 
specify the eigenfunction set and an eigenvalue assignment rule (assignment of 
branch) corresponding to this definition.

The eigenfunctions of the FrFT, chosen from infinitely many different possi­
ble sets of eigenfunctions of ordinary Fourier Transform, are Hermite-Gaussian

19



functions, 'ipk(t)· These eigenfunctions form a complete, orthogonal set in £2 as 
expected. The eigenvalue of the kth Hermite-Gaussian function is 
one can observe that this value is one of the values from the set {1, —j, — 
as expected. The eigenvalue assignment rule for the fractional powers is 
Â  =  Now, since the ambiguities in fractionalization are resolved,
we can define kernel of the FrFT, using spectral expansion

(2.14)
k= 0

Historically, PrFT is first defined by the spectral expansion, [2,3], and then 
came the closed form definition of the kernel. Reader should note that our 
choice of resolving ambiguities defines a unique transform which is FrFT and 
any other choices will lead to distinct definitions. We also note that the process 
of singling out Hermite-Gaussian set from infinitely many different eigenfunc­
tion set possibilities is explained in the next chapter.

2.5 A Distinct Fractional Fourier Transform

We have seen that there exists, infinitely many fractional operators that gen­
eralize the Fourier Transform. In this section we will examine a distinct frac­
tionalization of the Fourier Transform, which will lead to a unique discrete 
correspondent.

We know that there exists an ambiguity in taking the 1 /N ih  power of a 
number, and each different branch used for the l/7Vth power of an eigenvalue 
of the Fourier Transform leads to a different coefficient in spectral expansion of 
the kernel of the fractional transform, therefore affecting the definition of the 
fractional transform. In our definition of the FrFT, we have assigned 1/A^th 
power of the A:th Hermite-Gaussian as . We can write the
following for the eigenvalues of Fourier Transform in general.

TrkAfc =  e  ̂2 =  e (2.15)

where pk is an arbitrary integer and GSk = k + 4pk- GSk is called generating 
sequence in [45]. It is clear that by changing G S k ,  we can land on any branch of
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so it is now possible to assign different branches for each fractional power 
operation encountered in the spectral expansion of the kernel. Our definition 
of PrFT follows from assigning =  0 or GSk =  k and using Herrnite-Gaussian 
set as eigenfunction set.

We will now define a distinct definition of Fractional Fourier Transform, us­
ing again Hermite-Gaussians as eigenfunctions, but only changing generating 
sequence GSk- Lets assign pk =  — L|J^ > then GSk =  (^)4 where denotes 
congruence of the argument in modulo 4. This will lead to {e~ ^^) ̂  > e ~ ^ ~ ^ .
We will now examine the latter assignment rule and find the fractional trans­
form attached to this rule.

One can observe that, different from FrFT, this new assignment rule, leads 
to only 4 different eigenvalues for all fractional orders. Therefore using the 
spectral expansion definition of the Fractional Fourier Transform we can write 
the following as the kernel of the new definition.

oo
^(ia , i) =  X) (ia)^4fc+l(0  + ■ ■ ·

k=0

e~^'^“'ip4k+2(ta)^4k+2(t) +  e~^'^°‘7p4k+3{ia)'(p4k+s{t)] (2.16)

The summations involving Hermite-Gaussians make the result difficult to 
bring into a closed form. But one can bypass evaluation of the summations, 
by guessing that kernel can be realized as sum of 4 integer ordered Fourier 
transform kernels, that is

K{ta,t) = cgF"-b c“F^-l· c^F'  ̂+  (2.17)

where F* denotes kernel of the Fourier transform operator and denotes 
the complex coefficients which depend on the parameter a.

If the relation (2.17) is correct, it must be satisfied by all Hermite-Gaussians. 
That is when (2.17) is multiplied by nth Hermite-Gaussian and integrated, we 
should get identical results on both sides. Equating both sides of (2.17), we can 
find the Ck coefficients. Using right sides of (2.16) and (2.17) and orthogonality 
of Hermite-Gaussians, we can write the following four equations for the first 
four Hermite-Gaussians, ipo{t) . . .  ■03(i).

’ [xj is the integer part of x.
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1 =

i2L2,

3 J 2 “

c“ +  c“ +  c“ +  c“

cS +  (-i)c?  +  +  (-i)^c^

Co“ +  (-l)c?  +  {-1 )^4  + ( - l) 'c ^  

Co +  (i)c? +  U)'^4 + U f 4 (2.18)

When we repeat the same process for the next Hermite-Gaussian, we again 
get the first equation in (2.18). One can easily convince oneself that the c% 
coefficients found from the above equations, will satisfy (2.17) for all Hermite- 
Gaussians. Since Hermite-Gaussian set is complete, equating both sides of 
(2.17) for all Hermite-Gaussians is sufiicient for equality of (2.17) being satis­
fied. When (2.18) is solved, we get the following coefficients.

^ «=0

This leads to a kernel in continuous time as

(2.19)

K { t„ t )  =  cSi(ia -  t) +  +  cliC*. + <) +  cScl'*’“" (2.20)

One can observe acts as an interpolation function, interpolating fractional 
order transforms from integer order transforms.

As a result, we have seen that by changing the eigenvalue distribution of 
fractional transform, we have come up with a new transform, which is dras­
tically different from FVFT. The new transform is unitary, reduces to Fourier 
Transform at the special cases, and satisfies the order additivity property, etc. 
but it is clear from the definition that this transform is somewhat infertile, in 
the sense that it only produces linear combination of the input and its Fourier 
Transform and reflected versions of these functions. That is, if the input is 
rectangle function, we get at the output a linear combination of sine and rect. 
At the special case o =  1 rect dies out, only sine function is left.

What is interesting about this definition is, it has unique discrete rep­
resentation. Before starting with the description for the discrete case, lets 
summarize the main problem of discretization. To find a discrete equivalent 
of any continuous fractional transform, one should first identify the discrete
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equivalents of the eigenfunctions and also make the same branch assignments 
for fractional power operations, or equivalently use the same GSk sequence of 
the continuous transform. The main problem is: A method of identification 
for the discrete equivalents of the Hermite-Gaussians is not known. There­
fore if one can not justify a reasoning for obtaining the discrete equivalent of 
continuous eigenfunctions, one can be defining a discrete fractional transform 
which is completely unrelated to the continuous transform that we are trying 
to discretize.

Returning back to the problem of finding the discrete equivalent of this 
definition we can see that we do not have to identify the discrete analogs of the 
Hermite-Gaussians. This surprising result is due to existence of only 4 eigen­
values for all orders. Examining (2.16) for the special case of a =  1, which 
is the Fourier Transform, one sees that the term inside the first summation 
corresponds to all eigenfunctions with the eigenvalue 1, therefore the first sum­
mation corresponds to A = 1 hyper-plane and other summations denote the 
other planes. If we consider fractional orders, a 7̂  1, we see that whole A = 1 
plane is multiplied by a constant. More precisely, the input is first projected 
onto 4 planes and then multiplied by some coefficients to construct the frac­
tional Fourier output and these planes correspond to span of eigenfunctions 
with different eigenvalues. It is now clear that we do not need the discrete 
equivalent of each Hermite Gaussian, in the discrete version of this transform. 
We only need subspaces of A =  {1, — 1, and we know that these spaces 
are uniquely determined.

To find the discrete equivalent of this definition, one only needs to compute 
an arbitrary orthogonal eigenvector set of DFT matrix and then evaluate the 
summations given below. One can easily check that all of the different eigen­
vector sets of DFT, say generated by the Matlab program in the appendix, 
leads to the same matrix.

dirri-jdimi

771=1
dz 771-1

e ^E

m=l
diTTij

3 ,rn (2.21)
m=l m=l

The constants ex̂ m and dim\ denotes mth eigenvector and the dimension of 
the A plane respectively. One should notice that although are arbitrarily
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chosen among the infinite choices of eigenvector sets, the span of the arbitrary 
vectors uniquely determines the sub-spaces we need.

The other method of finding the fractional operator using c% coefficients 
can also be utilized, and the method in discrete time is exactly same as the 
method for the continuous time, with an only difference of replacing F operator 
in (2.17) by DFT matrix. This results in the same values for the as in (2.19), 
so the kernel in (2.21) can also be represented by

Ka[k,n] -  + + d^5[k + l]+ cle o’ ̂ 2L· Içrt aJ N (2 .22)

The discrete fractional transform defined by above kernel, has been given 
in [29,30]. In [30], this transform has been introduced as discrete fractional 
Fourier transform, we have seen in this section that the continuous analog of 
this discrete transform is not FrFT but another probable fractionalization of 
the Fourier Transform where the sole difference between the definitions is the 
utilization of different branches for the fractional power operations or GSk- 
One can refer to [45-47] for further discussion of distinct definitions.

2.6 PrFT and other distinct definitions

We have seen that there exists infinitely many possible definitions for fractional 
Fourier Transforms. First of all we note that multiple definitions in fraction­
alization should be expected, since there exists even a multiplicity in finding 
square root of a number. Depending on the problem, we ignore one root due 
to a physical reasoning (such as time delay can not be negative or refractive 
index should be positive, etc.) and determine one of the roots as the principal 
root.

The definition of PrFT satisfies some properties that none of the other def­
initions satisfy. First of all, we know that PrFT can be defined from rotation 
of Wigner distribution for fractions of 90 degrees. If we adopt fractional ro­
tation of Wigner Distribution as a requirement for the generalization of the 
Fourier Transform, there exists a unique fractional transform, which is FrFT, 
that satisfies this requirement [11,48]. Additionally PrFT established strong
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connections with many physical events such as diffraction, optical imaging, etc. 
due to equivalence of the FVFT kernel to the wave propagation in free space. 
One can find other applications of the PrFT in the introduction chapter. To our 
knowledge, we do not know another definition of fractional Fourier Transform, 
that is more useful in a certain area than FrFT.

2.7 Summary

In this chapter, we have examined FrFT and some other distinct definitions 
of fractional Fourier Transform. In the first section, we reviewed some ele­
mentary results about unitary operators and used these results to investigate 
the eigenstructure of the Fourier Transform. We have seen that there exists 
infinitely many possible sets for the eigenfunctions of the Fourier Transform. 
We have examined spectral expansion of the kernel of the Fourier Transform 
and conclude that by altering eigenfunction set and/or by choosing different 
branches for fractional powers, one can define different fractional Fourier Trans­
forms. In the following section we have examined a distinct definition and find 
its discrete equivalent. We make an important observation that in order to 
find the discrete equivalent of FrFT or any other distinct definition; first of 
all, the discrete analog of the continuous eigenfunctions should be determined 
and furthermore the same GSk must be used in both discrete and continuous 
definitions. We noted that although the GSk of the continuous transform is 
known, one can not define an analogous discrete definition for FrFT, unless a 
correspondence between the eigenfunctions of continuous definition and eigen­
vectors of the discrete definition is established. In the last section, we tried to 
justify why we believe our definition stands out among the others.
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Chapter 3

Eigenfunctions of FrFT

In this chapter, we will study how the eigenfunction set used in the definition 
of the PrFT can be singled out among the infinitely many different choices of 
eigenfunction sets. In the next chapter, we will attempt to make an analo­
gous approach to the approach presented in this chapter to define the discrete 
equivalent of the Hermite-Gaussians functions. In the first section, we will 
examine commuting operators, in the next section we will construct Herrnite- 
Gaussian set and chapter will conclude with some of the properties of the 
Hermite-Gaussiaiis.

3.1 Commuting Operators

Two operators, F and S, are said to commute if FS =  SF. For example, partial 
derivative operators, ^  and ^  commute for the functions of two variables x 
and y. A more illuminating example can be commutation of the linear time- 
invariant systems (£) and shift operator {8 ), that is 8 C =  C8 .

We will show that if two operators commute, there exists an eigenvector set 
common to both operators with, in general, different eigenvalues. For example 
since C and £ commutes, eigenfunctions of 8 , which are complex exponentials,
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are also the eigenfunctions of linear time-invariant systems. Note that the 
eigenvalue of shift-right by to operator corresponding to eigenfunction is 
g-jwto. while eigenvalue of £  of the same eigenfunction is the value of the 
Fourier Transform of the impulse response of C at u. In this section, we will 
only examine operators in finite dimensions, but the results can be generalized 
to infinite matrices.

T heorem  2 I f  matrices F and S commutes, there exists a common eigenvector- 
set.

Proof:
Casel: S has distinct eigenvalues, while eigenvalue distribution of F is arbi­
trary. Let ¿1 be a vector such that Sé  ̂ =  Asé̂ . Since FS =  SF,

FS(e;) =  SF(é;) ^  A, (Fe-;) =  S(F(e;)) ^  Fe~l = Pe- (3.1)

can be written, since Fé^ is an eigenvector of S with eigenvalue A« and S has 
distinct eigenvalues.
Case2: S has non-distinct eigenvalues. We will show this case with a simple 
example which can be easily generalized. Assume that Se7i =  AgĈ i, Se72 = 
Xsef2  and e7i,e72 are independent. For e7i, we can write the following as in 
case 1,

FS(e7i) =  SF(e7i) -> A, (Fe7i) =  S(F(e7i)) Fe7i =  ci e7i +  C2 e72(3.2)

where Ci, C2 are constants, if we repeat same operation for e72, we get

FS(ej2) =  SF(e72) A* (Fef2 ) =  S(F(e72)) Fe72 = C3 e7i +  ĉ  e72(3.3)

We will show that by combining e7i and 6 2̂ , we can generate the set of common 
eigenvectors of F and S for the eigenvalue Â . That is, assume that

éf — XiCai -f- X2 &s2 (3.4)

where X\,X 2 are constants chosen such that Fe} — Pe}. Rewriting Fe} using 
(3.2) and (3.3), we get

Fe/ =  (xiCi -I- X2 C3 )e^i +  (a:iC2 +  X2 C4 )e^2 (3.5)

27



Since Fe} =  /?e/,

/? =
{XlCi +  X2C3) (iClC2 +  X2C4)

X l  X2

If we let a;2 =  1, we get the following quadratic equation for xi

C2X\ +  (C4 -  Ci)Xi -  C3 =  0

(3.6)

(3.7)

Therefore by solving (3.7), we can find Xi,X 2 such that Fe) =  Pe). As a result 
two values determined from (3.7) will determine two independent vectors which 
are eigenvectors of both S and F. If the eigenvalue multiplicity is higher than 
2, the above method becomes difficult to apply, but the results will still remain 
valid. For a more technical proof, reader can consult [40, page 52]. ■

3.2 Hermite-Gaussians as Eigenfunctions of 

Fourier Transform

In this section, we will use dummy variable t in both time and frequency do­
mains, that is F{/(i)}(i) =  /  f  dt'}  Operator D denote differentiation
in time domain (or multiplication by { jf)  in frequency domain). Lets define 
an operator S as:

S =  D'-̂  +  FD ^F-^  (3.8)

where F F~^ is the equivalent operator of in frequency domain (multi­
plication by { jfY ) . We can express FS as

FS =  FD^ -l· F^ F “  ̂ =  FD^ +  F^ F~‘̂ F =  FD^ -b F =  SF (3.9)

since F^ =  F “  ̂=  J, where 3x{t) =  x{—t), leads to F^ F “  ̂=  JD ^J =

Since F and S commute, using the results of the last section we can say 
that there exists a common eigenfunction set between operators S and F. S 
can be expressed in time domain as

Cl d 2S = dt^
(3.10)

^One can get the definition of Fourier Transform, given in chapter 1, by scaling time and 
frequency variables by v ^ ·
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If we write the eigenvalue equation for S, S /(i) =  A/(i), we obtain

cP fit) — (A + i ) /(i)  — 0

By substituting f{ t)  =  e *2 H{t) in (3.11), we get

dt“̂ dt

(3.11)

(3.12)

where Xh = —(A + 1).

The differential equation has two solutions for each value of Xh, but what­
ever the solutions are, we are only interested in the solutions such that 
/( i)  =  remains in £ 2· Since Fourier Transform is a mapping from £2
to £ 2, solutions of (3.12) leading to unbounded f{t)  can not be eigenfunctions 
of F.

Lets try to find solutions of (3.12) by power series method, that is assume 
that a solution of (3.12) exists in the form,

H(t) =
n= 0

Substituting H{t) to (3.12), we get
00
Z) {(”  +  2) (”  +  1)oti+2 -  (2n -  Aft)o„}r =  0

(3.13)

(3.14)
n=0

Coefficients of the summation, must vanish for both sides of (3.14) to be iden­
tical, this leads to

“  (n + 2 ) { n + l f ^   ̂ ^

One can see that two solutions of (3.12), for all values of Xh, can be given 
recursively from oq and ci. Lets first assume that Xh =  2n, if Xh = 0, then two 
independent solutions are:

Slit) = 1

Slit) = +  +  + (3.16)

where in the first solution oo =  1, oi =  0 and in the second one co = 0, oi = 1.
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If A/i =  2, then two independent solutions are:

S 2 {t) = t (3.17)

As a result, one can confirm that the solution of (3.12) consists of a nth degree 
polynomial and an infinite polynomial when =  2n. It can also be seen from 
the recursion formula that if ^  2 n, then both solutions of (3.12) are infi­
nite degree polynomials. It is known from [49, page 337] that infinite degree 
polynomial solutions of (3.12) tends to infinity as t oo. Therefore the only 
finite energy solutions of (3.11) are the finite degree polynomial solutions of 
A/i =  2n case. These polynomials are called Hermite polynomials and the gen­
erating differential equation is called Hermite equation [50]. First few Hermite 
polynomials are given in Table 3.1.

Ho 1
Hi 2 t
H2 i f - 2

Hz - 1 2 t
H, 16i  ̂ -  48̂ 2 -1-12
Ho 32i^ -  leOi^ -1- 120i

Table 3.1: First 6 Hermite Polynomials

_ j2
The function f{ t) = e~  ̂Hn{t) is called nth Hermite-Gaussian function, 

ipn{t)· Some properties of Hermite-Gaussians are

1. Hermite-Gaussians are orthogonal and complete in £ 2·

2. The nth Hermite-Gaussian has n real zeros.

3. The nth Hermite-Gaussian is an eigenfunction of F with the eigenvalue 
A„ =

Other properties of Hermite-Gaussians can be found at [50]. We also note, 
for the future reference, the possibility of identification of the order of an 
Hermite-Gaussian by counting the number of zeros it posseses.
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(t)

- 5 -3  -1  1 - 5  -3  -1

Figure 3.1: First 6 orthonormalized Hermite-Gaussiaii functions.

3.3 An Eigenvector Set of DFT

By the commuting S operator, we have shown that Hermite-Gaussians are the 
eigenfunctions of the continuous Fourier Transform. In this section we will try 
to reach an orthogonal eigenvector set of DFT that corresponds to the set of 
Hermite-Gaussians. If this set can be found, one can base a discrete FrFT 
definition on these eigenvectors, as discussed in Chapter 2.

As in the continuous case there exists infinitely many eigenvector sets of 
DFT, one can attempt to get the one corresponding to Hermite-Gaussians 
by uniformly sampling each Hermite-Gaussian. Since sampled vectors are of
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infinite length, one may also attempt to replicate them by period N to get 
periodic sequences. Using Poisson’s theorem one can show that when initial 
sampling rate is the elements of the periodic sequence in a single period, 
is an eigenvector of DFT. With this procedure one can get an eigenvector of 
DFT corresponding to each Hermite-Gaussian. It is clear that as N  increases, 
sampled Hermite-Gaussians will be “less aliased” by the replication operation. 
Therefore these eigenvectors will tend to Hermite-Gaussians as size of DFT 
matrix increases.

Unfortunately it can be shown by numerical experiments that this eigen­
vector set is not orthogonal. Therefore, this set is of no use for the definition of 
the discrete FrFT. In the next chapter we will re-attempt to find the analogs 
of Hermite-Gaussians by finding the analogous operator in the discrete time to 
the commuting S operator presented in this chapter.

3.4 Summary

In this chapter, we have singled out the Hermite-Gaussian eigenfunction set of 
Fourier Transform, using commuting operator S. It is clear that there may be 
other commuting operators leading to different eigenfunction sets, but for the 
definition of FrFT given in chapter 1, we will study the Hermite-Gaussian set 
and the commuting operator S.

32



Chapter 4

Eigenvectors of discrete FrFT

We have seen in the previous chapters that there exists many distinct defi­
nitions for fractional Fourier transforms. In the following chapters, we will 
propose a discrete definition for PrFT based on discrete analogs of Herrnite- 
Gaussians. The definition presented will satisfy the requirements of unitarity, 
angular additivity, reduction to DFT and the correspondence with the PrFT.

By the correspondence with the PrFT, we mean that as the dimension of 
the discrete transform matrix increases, the discrete transform should approach 
to the continuous FRFT, as in the case of DFT and Fourier transform.

We have seen in Chapter 2 that the unitary operator requirement leads 
the kernel of the discrete transform to be expressed by spectral expansion and 
the reduction to DFT requirement forces the eigenvectors used in the spectral 
expansion to be an eigenvector set of DFT. The reader can refer to Chapter 2, 
for the discussion of these comments.

In continuous PrFT, we singled out an eigenfunction set of Fourier trans­
form, using commuting operator S. In this chapter we will define an operator 
commuting with DFT and determine the eigenvectors of this discrete com­
muting operator. We will attempt to find the discrete equivalents of Hermite- 
Gaussians, by constructing the discrete analog of the continuous commuting
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operator and later we will extract eigenvectors of this operator corresponding 
to each Hermite-Gaussian. Once eigenvectors are found, one only needs to de­
fine the branch of each fractional power operation to complete the definition by 
spectral expansion. It is clear that we will use the same branches that are uti­
lized in the continuous PrFT, in order not to conflict with the correspondence 
requirement. As we have seen that any diversion from the correspondence with 
PrFT leads to distinct definitions for the discrete fractional Fourier transforms.

To summarize, we will define the discrete transform by using the eigen­
vectors of DFT that correspond to the first N  Hermite-Gaussians. We will 
justify that discrete definition tends to the continuous PrFT, by showing each 
eigenvector of discrete commuting operator tends to its corresponding Hermite- 
Gaussian as matrix size N  —> oo.

4.1 S Matrix

In this section, we will present an operator in discrete time in analogy with 
the continuous S operator discussed in Chapter 3. In the following section, we 
will see the derivation of the discrete operator from the continuous one. For 
the purposes of this section, it is sufficient to note the similarity of the discrete 
time operator with S.

First lets introduce discrete commuting operator S. Let S be defined by

S = + (4.1)

where F denotes DFT matrix and i^denotes a second difference operator, that 
is S'^fk =  fk+i—̂ fk+ fk-i· It should be noted that the indices of the differencing 
operator are cyclic. Lets first represent the operator F F ”^ Since shift of 
x[k] x[k — l] in time-domain is multiplication by in frequency-domain,
one can express F F “  ̂ as,

FS^F-^ = -  2 +  =  2 (cos(^A:) -  l )  (4.2)

If we write the eigenvalue equation for S, Sx[/s] =  \x[k], we get

-I-2 ^cos(^A:) — 1  ̂ x[k] =  Ax[A:] (4.3)
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We will now show that F and S commutes. If we express FS, we get 

FS =  FS^ +  F^ F “  ̂ =  F(J2 +  F^ 5'̂  F “  ̂F =  Fi^ +  F =  SF (4.4)

since, F^ 5“̂ F~^ = 3 5  ̂3 where 3x[k] =  x[—k] leads to J  J  = S'̂ .

3 Jx[A:]} =  J{a;[—(A: + 1)] — 2 x[—k] + x[—{k — 1)]}

=  a;[—(—A: +  1)] — 2a;[A:] +  a;[—(—A: — 1)] =  î a;[A:] (4.5)

Since F and S commute, using our knowledge on commuting operators, we 
can say that there exists a common eigenvector set between F and S. One can 
express the eigenvalue equation (4.3) explicitly as.

2‘7t
a:[A: +  1] +  2 cos(— A:)a:[A:] + a:[A: — 1] =  AxfA:] (4.6)

where A = A+4. Noting the shifts in (4.6) are cyclic, we can write N  equations 
by inserting 0 <A;<A^—l i n  (4.6).

2 1  0 ... 0

1 2 cos(^) 1 . . .  0

0 1 2 co s(^ 2) . . .  0

1

0

0

1 2c o s (^ ( iV - l) )

-1 Xo Xo

Xi XI

X2
= A

X2

XN- 2 XN- 2

XN- 1 XN- 1

(4.7)

In the first and last equations periodicity of the eigenvectors or cyclic shifts is 
used. We denote the matrix on the left hand side of (4.7) as S matrix. One 
can see that S is a tri-diagonal matrix except the ones at the first row, last 
column and at the last row, first column. We also note that S is a symmetric 
matrix, therefore it has an orthogonal eigenvector set. Reader may observe 
that S =  S — 41, therefore S and S operators have the same eigenvectors. We 
will base our analysis on S matrix for the sake of simplicity and to be consisted 
with the literature.
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4.2 S Matrix and Hermite-Gaussians

In this section, we will try to establish a relation between commuting operators 
in continuous and discrete time. Reader may have observed that the discrete 
commuting operator is formed from the continuous one by replacing continu­
ous Fourier Transform and second derivative operators with their analogs in 
discrete time, which is DFT and second differencing operator. We will now 
provide an alternative approach to the operator substitution in order to clarify 
the relation between two operators. Since this section provides alternative but 
not different results, it may be skipped on a first reading.

We know that, one can generate Hermite-Gaussians from the differential 
equation

d ? m -  f f ( t )  = (2 n +  l) /( i) (4.8)

Solutions of (4.8), are the eigenfunctions of the Fourier transform with the 
definition F{/(t)}  =  /  By scaling time axis of Hermite-Gaussians
by we can modify (4.8) to reveal the eigenfunctions of Fourier transform 
for the definition at the a = 1 special case of FrFT, which is F (/(i)}  = 
J The generating differential equation of the scaled Hermite-
Gaussians, xf){y/^t), is

f{t)
dt“̂

— 47tV / ( í) =  27r(2n-f l) /( i) (4.9)

Solutions of (4.9) are again orthogonal and complete. In this section we will 
establish a difference equation from (4.9) such that its eigenvectors form a 
complete orthogonal set in N  dimensional space and approximate Hermite- 
Gaussians.

We first note that the second central difference operator is an approximation 
to the second derivative, since

<^V(i) f{ t  +  /i) -  2/( i)  +  f{ t  -  h)
h? (4.10)

m + h f{ t)  + j f ' i t ) + + o (h ')  I  -  2/( i)  + . . .

m  -  h f ' i t ) + p " { t )  -  p " ' ( t ) + o (h ')

= f"(t) +  0(h?) (4.11)
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Discretizing the time-variable in (4.9) by taking samples h units apart from 
each other and replacing the second derivative by second difference, we get the 
following

■¿2
— 47T̂ (to +  khy f{to + kh) =  2Tr(2n-I-l)/(io +  (4-12)

Rewriting (4.12) with the notation /*, = f  (to + kh) we get

/fc+i =  (2-f- 2̂ [ 47r2(to-l-/ch)2 +  27r(2n-l· 1)])/fc - /fc-i (4.13)

It is clear that (4.13) can solved iteratively, when initial conditions are given. 
Solutions that are found from (4.13), will be close approximations to Hermite- 
Gaussians, provided that h is suflEiciently small.

We know that the spectrum of the continuous Fourier transform, is ape­
riodic and continuous. The spectrum of DTFT is also continuous but it is 
periodic with 2tt. DFT as an approximation to DTFT, has a spectrum that 
is periodic and discrete. We have seen that Hermite-Gaussians are solutions 
of a differential equation, that generates continuous and aperiodic functions, 
matching the spectrum of the continuous Fourier transform. To match the 
spectrum of DFT, we have written a difference equation and furthermore this 
difference equation should generate periodic sequences with period N. But the 
difference equation being close approximation to Hermite-Gaussians forces the 
solutions of the difference equation to be aperiodic. As a result, we will have 
to modify (4.12), to get periodic sequences as solutions.^

Lets take io =  0 in (4.12), then (4.12) becomes

= x h (4.14)

Note that 2cos{2Trh‘̂ k) = l —4 7 r^h'^k'^+0 {h^), therefore replacing the quadratic 
term by a cosine term, in order to impose periodicity, we obtain

[(J2 -I- 2{co^(2'Kh^k) -  1)] /* =  A/* (4-15)

which is still an 0(h?) approximation of (4.9). By fixing h =  we reach the 
following difference equation which has periodic coefficients with period N.

9’7T
¿2 -f-2(cos(— /c) -  1) fk = Xfk (4.16)

^One can quickly see the periodicity of eigenvectors of DFT from the Poisson’s theorem.
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Since coefficients of the difference equation are periodic, we are assured of the 
periodic solutions (see [51]).

It is now easy to see that equations (4.3) and (4.16) are identical, if one is 
only interested in the solutions of (4.16) which are of period N  (Since shifts of 
the periodic solutions in (4.16) are equivalent to the cyclic shifts of (4.3)). One 
should note that operation S in the previous section, is derived without any 
reference to Hermite-Gaussians, therefore without utilizing the results of this 
section, one does not expect to find a correspondence with Hermite-Gaussians.

4.3 Eigenvectors of S Matrix

In continuous time FrFT, commuting operator defined has distinct eigenvalues, 
leading to uniquely determined Hermite-Gaussian eigenfunction set. In the 
discrete case, when size of S matrix is a multiple of 4, S matrix has 2 eigenvalues 
at zero, which casts doubt on the applicability of this method, since whole aim 
of using commuting operators was determining eigenvectors of DFT without 
any ambiguity. Otherwise we could have used arbitrary eigenvector set of DFT. 
Fortunately, we will show that there exists a unique eigenvector set of S which 
is common to both F and S, whatever the eigenvalue distribution of commuting 
matrix S is.

4.3.1 Uniqueness of Common Eigenvector Set

In [30], it has been conjectured that when N  is not divisible by 4, S matrix 
has distinct eigenvalues, leading to unique eigenvectors. In this section, we will 
show that whatever the eigenvalue distribution of S is, there exists a unique 
set of eigenvectors common to both S and F. We will start with an elementary 
fact.
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T heorem  3 Eigenvectors of DFT are either even or odd sequences.

Proof: Assume contrary and let Fe[fc] =  Ae[A:], then ¥ ‘̂e[k] — Â e[A:], 
but A =  { l , j , - j ,  —1}, leading to Je[A:] =  ±e[k]. This contradicts with the 
assumption. ■

We will define a transformation matrix P  which decomposes vectors into 
even and odd components. We give the following example for vectors of 
length 7.

P r =
J _
71

V 2 0 0 0 0 0 0

0 1 0 0 0 0 1

0 0 1 0 0 1 0

0 0 0 1 1 0 0

0 0 0 1 - 1 0 0

0 0 1 0 0 - 1 0

0 1 0 0 0 0 - 1

(4.17)

We see from the transformation matrix P 7 that the first 4 rows are used to 
calculate the even components and last 3 rows give the odd components. In 
general P  matrix decomposes input to \{N/2  +  1)J even and [(A /̂2 — 1)J odd 
components at the output. One can notice that P  =  P ^  =  P “ ^

T heorem  4 Matrix P S P “  ̂ is the direct sum of two tri-diagonal matrices.

Proof: S =  [ro ri r2 . . .  where denotes {k +  l)th  row of S.

ro\/2

PS =  - 7=

n  +  rN-l

f2 +  fN-2

n  -  Tn -I

(4.18)
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It can be seen that rows of PS are either even or odd sequences (examine 
matrix S). By denoting the columns of PS as [cq Ci C2 . . .  C;v-i],

PSP"^ =  -^[cQy/2\Ci+CN-i\c2 +  CN-2 \ ■■■ \ci-CM-l] (4.19) 
v 2

Since PS  has either even or odd sequences as rows, resultant P S P “  ̂ can 
be constructed from PS  by multiplying each element of PS  with a constant 
of either 0 or ^/2 . Therefore one can observe that tri-diagonal form of S is 
preserved. As we have shown before, eigenvectors of DFT are either even or 
odd sequences, meaning that when eigenvectors of DFT are transformed by P , 
either the first or last “half” of the entries at the output will be zero. Since 
we know that there exists a common eigenvector set between F and S, we can 
conclude that P S P “  ̂ should be written as direct sum of two matrices, that is

PS P-^  =
E vn

0 O

0

dd
(4.20)

where Ev„ and Odd denote tri-diagonal matrices denoting even and odd sub­
space matrices respectively. ■

Example 1 We will give even, odd subspace decomposition of the matrix S 
for N =6;

PSP -1

2 1 0 0 0 1 2 V2 0 0 0 0

1 1 1 0 0 0 y/ 2 1 1 0 0 0

0 1 - 1 1 0 0 0 1 - 1 V2 0 0

0 0 1 - 2 1 0 0 0 - 2 0 0

0 0 0 1 - 1 1 0 0 0 0 - 1 1

1 0 0 0 1 1 0 0 0 0 1 1

Tri-diagonal Eyn and Odd matrices can be identified from P S P  ^

It is important to note that, one can construct even or odd eigenvectors 
of S using Evn and Odd matrices, that is assume that é*v is an eigenvector of 
Evn· Then zero padded ej (e =  [ê  |0. . .  0]^) is an eigenvector of P S P “ ^
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in (4.20). Finally one can find eigenvectors of S by transforming zero padded 
vector through =  P ( P S P “ ê =  A e ->■ S(P“  ̂ë) =  A (P“  ̂e) ).

In the example given the vector e =  [.77 .60 .16 .04]^ is an eigenvector of 
Evn, this leads the vector

P-^fe^OO]"^ =  [.77.42.11.04.11.42]^

to be the eigenvector of S with the same eigenvalue.

We have seen that we can find even, odd eigenvectors of S from Evn or Odd 
matrices. The next result shows that eigenvectors of Evn,Odd matrices can be 
determined uniquely (apart from normalization).

T heorem  5 Tri-diagonal matrices have distinct eigenvalues.

Proof:

T =

Co 1 0 0 0 0

1 Cl 1 0 0 0

0 1 C2 1 0 0

0 0 1 C3 1 0

0 0 0 1 C4 1

0 0 0 0 1 cs

For the ease of presentation, assume A is an eigenvalue of T,|AI — T| =  0. If we 
find the determinant of the minor of the element in the first row, last column 
Cie; we get determinant as 1; therefore there exists an (N  — 1) by {N — 1) 
submatrix of (AI — T) whose determinant is non-zero, implying distinctness of 
eigenvalues of tri-diagonal matrices. (Taken from [52]). ■

Recapitulating the results presented so far, we have shown that it is possible 
to find the even/odd eigenvectors of S from Evn and Odd matrices and fur­
thermore since Evn,Odd are tri-diagonal matrices one can uniquely determine 
the even/odd eigenvectors of S matrix through these matrices. Our motivation
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of defining S was determining an eigenvector set of DFT matrix. One can see 
that the unique even/odd eigenvector set of Smust be the common eigenvector 
set that we are seeking for. Therefore as a result, using commuting matrix S, 
we have managed to single out a unique set of eigenvectors of DFT.

4.4 Ordering Eigenvectors of S

We have seen in the previous section that S generates a single set of eigenvectors 
of F without any ambiguity. In this section, we will try to order the eigenvector 
set of S in an analogy with the Hermite-Gaussian functions. Since our ultimate 
aim is finding a set of eigenvectors of DFT corresponding to Hermite-Gaussians, 
it is of vital importance to be able to identify which eigenvector of S corresponds 
to which Hermite-Gaussian.

The eigenfunctions of the continuous case, found through the continuous 
S operator, are ordered in some sense that they were named as /cth Hermite- 
Gaussian. Reader can check from Chapter 3 that Hermite-Gaussians are 
ordered in terms of their number of zeros. In this section we will order the 
eigenvectors of S, by their zero-crossings.

We will first define the zero-crossing of a discrete sequence. A discrete 
sequence is said to have a zero crossing at k if x[k]x[k -I-1] < 0. We will order 
the eigenvectors of S in the increasing number of zero-crossings. We start with 
finding an explicit relation for the eigenvectors of Evn and Odd matrices.
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4.4.1 Eigenvectors of Evn and Odd Matrices

Lets first rewrite Evn matrix,

Evn =

Cl b2 0 0 0 0

b2 C2 63 0 0 0

0 bs C3 0 0

0 0 64 0

0 0 0 byf

0 0 0 0 bN Cn

Let Pr(^) be the characteristic equation of the rth  principal minor of Evn·

Pi (A) =  ( c i -A)

P 2{X) =  (c i  -  A ) ( c2 -  A) -  ¿>2

One can easily check that the recursion

Pr(A) =  Pr-i(A)(iV -  A) -  hlpr-2{X) 

holds for Pr(A), where po(A) =  1 for consistency.

(4.21)
(4.22)

(4.23)

We will now show that the eigenvector of the Evn matrix with the eigenvalue 
A is,

-  ^  P>(A) , (4,24)
02 0 2 0 s  & 2  ■  · ■  Ok-\-i 02 · . - On

To show that (4.24) is an eigenvector of Evn, we will explicitly write N  equa­
tions of (Evn ~ AI)e = 0.

( c i - A ) - P i ( A )  =0(4.25) 

+  (Cr -  A ) ( - i r ' ^ ^  +  ----- 0̂ (4.26)
V+1&2 · · · W-l &2 · · ·

+  (c„ -  =  0 (4.27)
02 - . ■ OiV-1 02 · ■ - bpf

where (4.25) and (4.27) is written from the first row and last rows of (Evn —AI), 
while (4.26) denotes the rest of the rows.
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We see from (4.21) that (4.25) is satisfied and from the recursion (4.23), 
(4.26) is satisfied. Last equation of the eigenvalue equations, (4.27), is also 
satisfied since using again recursion, we get the left hand side of (4.27) as 
(—l)Af-i^N,(A|, since A is an eigenvalue of Evn, Pn (^) =  0. This completes
the derivation for the expression for the eigenvectors of Evn· (Taken from 
[40, p.316])

4.4.2 Ordering Eigenvectors of Evn and Odd Matrices

In order to sort the eigenvectors using the number of zero-crossings, we need to 
show that eigenvectors of Evn and Odd, have distinct number of zero crossings.

To show this result, we will combine the previous explicit relation for eigen­
vectors and Sturm sequence property of the symmetric tri-diagonal matrices.

T heorem  6 Let Pr{p) denote the rth principal minor of symmetric tri­
diagonal matrix evaluated for some p. Then s{p), the number of sign agree­
ments of consecutive members of pr{p) sequence is the number of eigenvalues 
which are strictly greater than p. I f  pr{p) = 0, then it is assumed to have 
opposite sign withpr-i{p).

Proof: One can find the proof of the theorem cited in [40, page 300]. ■ 

We will illustrate the theorem with an example.

E xam ple 2

T  =

1 1 0 

1 2 1 

0 1 3

Writing pr(A) equations,

Po(A) =  1 
Pi(A) =  1 - A

(4.28)

(4.29)
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p.,(A) =  A2 - 3A +  1

Psi'^) ~  — — 9A + 2

(4.30)

(4.31)

Figure 4.1: Pr(A) polynomials

The Pr{X) polynomials are shown in Figure 4.1. Eigenvalues of T  are roots 
of P3(A). So theorem states that the vector p = \po{p) Piil^) P-iip) Psifj)] 
has 3 sign agreements if p < Xi. As /it is increased gradually, number of sign 
agreements decreases. This property of tri-diagonal matrices is used to find the 
eigenvalues of symmetric matrices. By first tri-diagonalizing symmetric matrix, 
and then by the bisection of the interval in which a sign change in vector p 
occurs, one can find an interval for eigenvalues. Accuracy of the eigenvalues 
can be controlled by length of the bisection interval [40, page 302].

For our case, we are interested in the number of zero-crossings of the eigen­
vectors, which is equivalent to the number of sign agreements of pr{X) sequence 
where A is an eigenvalue of of the matrix (Since {&2, &3, · · ■, of Evn,Odd are 
all positive). We see from the Sturm sequence theorem that the Pr(A) poly­
nomials evaluated at A =  A^in has {N — 1) sign agreements. That is, the
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vector

P  — [P o('^m in) Pli^min) · ■ ■ PN—l{^min) PN{^min)] (4.32)

has (Â  — 1) sign agreements. Since pN(^min) =  0 it has the opposite sign 
of pN-i{^min) by definition, the {N — 1) sign agreements stays in the vector 
[Po(Amm) Pii^min) ■ · · PN-i{^min)]· One Can notc from (4.24) that this is equiv­
alent to the (A'̂ —1) zero crossings for the eigenvector with minimum eigenvalue. 
By inserting other eigenvalues, it can be seen that the number of zero-crossings 
of each eigenvector decreases; eventually ending with an eigenvector with no 
zero crossing for the A =  Xmax- As a result, in this section we have shown that 
Evn and Odd matrices have eigenvectors with distinct number of zero crossings, 
ranging from maximum of {N — 1) to the minimum of 0.

E xam ple 3
Eigenvectors of E^ matrix of example 1 are

.78 -.54 .31 .05

.60 .52 -.58 -.16

.16 .58 .52 .60

.05 .31 .54 -.78

where each column denotes a different eigenvector. It is clearly seen that 
number of zero-crossings of the eigenvectors are ( 0, 1, 2,3} respectively.

4.5 Zero Crossings of Eigenvectors of S

As discussed earlier, even eigenvectors of S can be found from eigenvectors of 
Evnj by first zero padding and then transforming with the similarity transfor­
mation P . We will now show that even and odd eigenvectors of S, has even and 
odd number of zero-crossings respectively using the results of previous section.

In the previous section we have shown that Evn and Odd matrices have 
eigenvectors with distinct number of zero crossings, we will now propose a 
method for counting the zero-crossings of periodic sequences. Due to the
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cyclic behavior of DFT; eigenvectors, e[k], becomes periodic sequences when 
indices are extended from 0 < /c < AA — 1 to all A: values. We propose that 
zero-crossings of the eigenvectors of DFT, should be counted in a period N  
including the end points of the period. That is if e[k] is an N dimensional 
vector, e[k] =  [eo. . .  an additional zero crossing should be counted, if
e[N — 1] and efA/·] have different signs or shortly e[Â  — l]e[A ]̂ =  e[N]e[Q] < 0. 
One should note that with this method of counting number of zero-crossings 
of periodic sequences, beginning and end of the period in which the number 
of zero-crossings are counted becomes unimportant, therefore number of zero- 
crossings of a shifted periodic sequence is always same as the original sequence. 
As a result the number of zero-crossings counted in this manner, becomes of a 
property of the periodic sequence.

T heorem  7 Number of zero-crossings of eigenvectors of DFT, found from 
Evn/Odd íTiflínces, have distinct number of zero crossings in period [0, A’ — 1].

Proof: Case 1: A  =  (2r +  1). Let ë be an eigenvector Evn· Then
e =  P ë  is an eigenvector of S.

? =  Pe =  ^ [> /2  e(0) . . .  e(r) | e(r) . . .  e(l)] (4.33)

To count the number of zero-crossings, we pad the first element e(0) to e.

[e I e(0)] =  ^ [v ^ e (O )  e(l) . . .  e(r) | e(r) . . .  e(l) \/2e(0)] (4.34)
V2 '------------V----------- ' '------------V------------ '

If e has k zero-crossings, 0 < A: < r, then padded vector has 2k zero-crossing. 
Repeating the same operation for Odd eigenvectors. We get the following

[o I o(0)j =  ^ [ 0  o(l) . . .  o(r) I -o{r) . . .  -  o(l) 0]
V2 '-----------------" -̂----------V---------- "

(4.35)

We see that if b has k zero-crossings, 0 < A: < r  -  1, then padded o vector has 
2A: -I- 1 zero crossings. Note that zeros at two sides of the padded vectors do 
not introduce a zero-crossing, since sign of zero is assumed to be the opposite 
sign of the preceding term, by the Sturm sequence theorem.
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Case 2 : N  = (2r). Assume EvnC =  Ae, padded e vector becomes 

[e I e(0)] =  ^=[\/2e(0) e(l) . . .  e(r — 1) | e(r)| e(r — 1) . . .  e(l) \/2 e(0)l (4.36)
V2 '■------------------ --------------------'

k

We see that padded e vector has again 2k zero-crossings, 0 < A: < r. When we 
repeat for odd vectors, we get

Io| o(0)l =  - A [o g(i) ■ ■ ■ °(’· -  1)101- g i r  - 1 ) . . .  -  5(1) 0) (4.37)
k

As a result, padded odd eigenvectors of S, has 2A: -f- 1 zero-crossings where
0 < k < r - 2 .  m

With this theorem, we have showed that the eigenvectors of S matrix have 
distinct number of zero-crossings. Therefore each eigenvector can be identified 
uniquely by its number of zero-crossings.

4.6 Comparison of Eigenvectors of S with 

Hermit e-Gaussians

In this section, we will numerically compare the eigenvectors of S and samples 
of Hermite-Gaussian functions.

Lets review shortly our method of finding discrete equivalents of Hermite- 
Gaussians. First of all, the even/odd eigenvectors of S are found using Eyn and 
Odd matrices and then these eigenvectors are sorted in the increasing number 
of zero-crossings. Since we have proved distinctness of eigenvalues of Evn/Odd 
and distinct number of zero-crossings for eigenvectors, we are able to identify 
uniquely and sort the eigenvectors in the increasing number of zero-crossings.

We note that in order to sort the eigenvectors by their number of zero 
crossings, it is not needed to count the actual number of zero crossings of 
each vector. Prom the proof, we presented for the distinctness of zero crossings 
using Sturm Sequence Theorem, it is clear that the number of zero-crossings an
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eigenvector posses, can be determined by counting the number of eigenvalues 
which are higher than the eigenvalue of that eigenvector. More clearly, the 
even eigenvector of S with no zero-crossings is the eigenvector of Evn with the 
highest eigenvalue, and the eigenvector with two zero crossings is the one with 
the second highest eigenvalue. Therefore with this method, we also overcome 
the numerical problem of counting zero-crossings. That is if the eigenvector, 
whose number of zero-crossings is being counted, has some elements that are 
very small in magnitude, the quantization errors during the calculation of this 
vector can flip the signs of these elements. Since these elements are almost zero, 
accuracy of these vectors will remain same, but the number of zero-crossing of 
these vectors will be wrongly detected. This problem is evidenced by MATLAB 
simulations of S matrices with N >  70.

We will compare the eigenvectors, with the samples of the Herrnite- 
Gaussians sampled with ^  around zero^ , which is the same sampling pe­
riod, h = that is used to generate the periodic difference equation from 
Hermite-Gaussian generating differential equation. For the comparison pur­
poses, the samples of the continous Hermite-Gaussians are normalized such 
that they have unit norm, as the eigenvectors of the S matrix.

In Figure 4.2, we compare the eigenvector of 8 by 8 S matrix with k zero- 
crossings with the samples of the A:th Hermite-Gaussian function. We also 
deflne the error between two vectors as the £2 norm of the difference between 
the eigenvector and N  samples of the A:th Hermite Gaussian around zero.

n
error =  | |( i / i |b (^ ) -e i[ j i])||2 (4.38)

In Figure 4.3, we examine the case of =  25, for the first 8 eigenvectors 
that is eigenvectors with {0, . . . ,  7} zero crossings. One can easily the see the 
evolution of the eigenvectors to the Hermite-Gaussians, as N increases.

In Figure 4.4, we present the error defined above for different values of N.

^For all N  values, samples are taken such that a sample exists at zero and “half’ of 
the samples lie in the negative t axis, the other “half’ in positive axis where the distance 
between two consecutive samples is For N  even case, two “halves” will not be equal 
in number of elements, but one can take extra sample either in positive or negative axis 
without changing the resultant vector since Hermite-Gaussians are even/odd functions.
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It is seen from Figure 4.4 that as N  increases the error between samples 
of A:th Hermite-Gaussian and the corresponding eigenvector decreases, but it 
is also witnessed from Figure 4.4 that for all values of N,  the eigenvectors 
with many zero-crossings are not in a good agreement with Hermite-Gaussians. 
These two factors, where the former favors the S matrix method, and the latter 
degrades the method, is expected; since firstly as N  increases h — decreases 
so that finite difference approximation improves and secondly if it were possible 
to find all eigenvectors of S in a very good agreement with Hermite-Gaussians, 
then these vectors can not be orthogonal and they can not be eigenvectors of 
the DFT matrix. Since it is known that the samples of Hermite-Gaussians are 
not orthogonal and they are not eigenvectors of DFT. As a result, exact samples 
of the Hermite-Gaussians should be altered if one wants to get an orthogonal 
eigenvector set of DFT. In the next chapter, we will find a sequence of S 
matrices such that the approximation to Hermite-Gaussians is improved for all 
eigenvectors, while orthogonality and eigenrelation with DFT is preserved.

4.7 Summary

In this chapter, we have found an eigenvector set of DFT via S matrix. We have 
seen that S matrix generates a unique eigenvector set of DFT which can be 
ordered by the number of zero-crossings of each eigenvector. Therefore, N h y  N  
S matrix generates an ordered sequence of orthogonal vectors, which can be put 
into one-to-one correspondence with first N  Hermite-Gaussian functions. In 
the last section, we have compared these eigenvectors with Hermite Gaussians 
by numerical simulations.

4.8 Notes

S matrix is first introduced without presenting any relation with Hermite- 
Gaussians in [30]. Authors propose that using S one can find a unique orthog­
onal eigenvector set of DFT. They base uniqueness of eigenvectors on their
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conjecture of distinctness of eigenvalues. In the rest of the paper, authors try 
to strengthen their conjecture for distinctness by analysis of S matrix. Al­
though we did not improve the conjecture, we bypassed this requirement for 
distinctness by showing whatever the distribution of eigenvalues of S, there 
exists a unique common eigenvector set between S and DFT.

Although we were aware of [30], we were not expecting the eigenvectors 
found from S matrix to be useful, since this eigenvector set constitutes an­
other eigenvector set of DFT, of which we can generate infinitely many (see 
Appendix). Recently Pei has published a letter, [37], emphasizing on the “sim­
ilarity” of the eigenvectors found from S with Hermite-Gaussians. Pei based 
his observations on numerical simulations with S matrix. This work of Pei has 
initiated the work presented in this chapter and the next chapter. In his letter, 
Pei claimed that “DFT shifted eigenvectors of S with k zero-crossings is similar 
to the A:th Hermite Gaussian” . In this chapter we have not only shown the ex­
istence of an eigenvector with k zero-crossings, but also determined a method 
of finding that eigenvector without explicitly counting the zero-crossings. For 
the similarity between the eigenvectors and the Hermite-Gaussians, we have 
presented an analogy between the difference equation leading to S matrix and 
the Hermite-Gaussian generating differential equation. In the next chapter we 
will find a sequence of S matrices that approximates Hermite-Gaussians more 
closely.

Further research on S matrices, can be based on Mathieu equations [53] 
and Sturm-Liouville problems (For continuous-case [49,54], for discrete Sturm- 
Liouville problem with periodic boundary conditions. [55-57]).
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Figure 4.2: Hermite-Gaussians and Eigenvectors of S matrix, N=8.
(t) . ©1 [n]Vo (t) ■ ®o

Vg (t) ■ ®3

V 4 (t) . [n] V 5 (t) . [n]

Vb (t) . ©8 ["] V b (t) . e „  [n]
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Figure 4.3: Hermite-Gaussians and Eigenvectors of S matrix, N=25.
Vo <*) · ®o

Va <*) ■ ®2

— Λ  —2  0  2  4

Ψβ (t) · ®« [n]

<t) , [n]

Ѵз (t) ■ ®3

—4  —2  О  2

V s  (t) . eg  [n]
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Figure 4.4: Error sequences of {8,25,64,128} dimensional S matrices. 
N= 8 N= 25

Number of zero crossings 

N= 64 N= 128
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Chapter 5

Higher Order Approximations

In this chapter, we will derive a sequence of matrices, S2*, that generates 
finer approximations for Hermite-Gaussians. We will first re-examine the S 
matrix defined in Chapter 4 in a broader context and then derive the finer 
approximation matrices. We will refer to the S matrix of the last chapter as 
S2 which is the crudest approximation matrix of the sequence.

5.1 S o  matrix

In this section, we will review the approximation of S2 to Hermite Gaussians. 
We will first establish some relations on the difference operators.' Lets start 
with the shift operator E^, E ^/(i) =  f{ t  + h). E^ can also be represented as 
a summation using Taylor series expansion of f { t  + h).

E'  ̂ =  1 +  — + ^  + 

= (5.1)

^Reader can refer to appendix for a brief discussion of finite-difference operators.
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where D is the derivative operator. If we denote the continuous Fourier Trans­
form by F, F can be expressed as

FE ^F“  ̂ =  F , hD /1*0*=

^  , /i(i2Tr/) /г^0'27r/)
1 2 ! k\

(5.2)_  gi2ir//i

which is well known shift property of the Fourier transform.

Second central difference operator, ^  =  E^ —2 -fE “ ,̂ is an approximation 
to the second derivative operation, that is

h?

p h T i _ O _i_ p - h T i  u2
^  =  D2 +  +  O(h^)
h? (5.3)

If we express F i |F  \  we get

F5lF-^ = F
g/iD _  2 +

/¡2 F-^ =
_  2 +  2 (cos(27rh/) -  1)

/i2
h

h?

=  -f- — (167tV'') +  C>(/i'‘) (5.4)

We have seen in the previous chapters that the generating differential equa­
tion for Hermite-Gaussians is

(d  ̂+  f d ^f - ' ) / ( i) =  Xf{t) 

f i t )  = Xf(t)

(5.5)

(5.6)

where both time and frequency domain is represented by the dummy variable 
t in (5.5).

In this section, we will rewrite the differential equation (5.6), as a difference 

equation by replacing with ^  in (5.5), that is

<̂h , T,<̂ h p - i  _  , 2 (cos(27Tth) -  1)

One can also express (5.7), using (5.3) and (5.4) as,

|  +  " ( c ° ^ y - l )  =  D ‘ - 4 r t ^  + ^ ( D ^  + m U ‘)+0(h^)(5 .8)
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where the approximation to (5.6) is of If we explicitly write (5.7), we
get the following

f { t  + h) — 2f{t) + f { t  — h) + 2 (cos(27Tih) — 1) f{t) = f{t)  (5.9)

We see from (5.8) that, the recursion defined above is an approximation on 
the order 0{h?) of the Hermite-Gaussian generating differential equation. One 
can easily convince oneself that if f{t)  and f { t  — h) values are given, +  kh) 
can be calculated for an arbitrary integer k. Denoting f{t-\-kh) by /* recursion 
can be rewritten as

A+i -  V k  + S k - i + 2 (cos(27r*Â ) - l ) f k  -  h ^ \ J k (5.10)

where t in (5.9) is replaced by kh, by taking /o =  /(0). By using the notation 
=  fk+i -  2fk +  fk-i ,  we can write (5.10) compactly as.

S^fk +  2 (cos(27rÂ;/г )̂) fk = Xfk

where A’s in (5.10) and (5.11) are not generic.

(5.11)

As discussed earlier, if we expect to find the eigenvectors of DFT from 
(5.11), we should only consider periodic solutions with period N. By fixing 
h =  ^  in (5.11), we get a diflference equation with periodic coefficients and 
existance of periodic solutions is assured. Reader can check that when h = 
the diflference equation (5.11) is exactly the difference equation generating the 
S matrix of the last chapter.

5.2 82k matrices

In this section, we will define 82* matrices such that the eigenvectors of 82* 
approximate of the Hermite-Gaussians on the order of We will first
define a sequence of approximations to the second derivative operator denoted 
by where 2k is the order of approximation. The operator ^examined
in the previous section, is an approximation of the order 0{K^), therefore it 
can be named as (0^)3 in the general setting of approximations.
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T heorem  8 approximation ofD^ can be expressed as

'  '  (2m)!
(5.12)

Proof of the theorem is given in the appendix.

It can be seen that approximation is exact for the polynomials of
degree 2k. Therefore as 2A: ^  oo, we get the following equality for the second 
derivative.

=  6 i -  — 6t + —¿A +  ^ 12 90
(5.13)

To generalize the work presented in the previous section, we define the 
following

S2k = ( D %  +  F (D ^ ) j ,F - ‘

where F represents the continuous Fourier transform.

(5.14)

Exam ple 1
We will examine S4 matrix in this example. (D^)^ and F (D^)^ F~' operators 
can be expressed as.

( 0 \ = S l - ^ 6 l  =  l [ ( E '‘ - 2  +  E - ' - ) - i ( E ' - - 2  +  E - Y

_  ̂  ̂ I  ̂ -pi—2/t
~  h?[ 12 3 2 3 12

(5.15)

F(D ^)4F  ̂ cos (27rh (̂2A:)) + -cos (27rh^(/i:)) -  -  (5.16)

Then using last two relations, S4 can be found after fixing h =

Silk -  ^ ^ h f k  +  2 (^-^cos(^(2A :)) +  ^cos(^A:) “  =  Vfe (5-17)

Note that the resulting difference equation has periodic coefficients with period 
N. One can observe that periodic solutions of (5.17) is equivalent to the
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eigenvectors of the following matrix,

S4 =

2Co 4
3

1
12 0 0

1
12

4
3

4
3 2Ci 4

3
1

12 0 0
1

12

1
12

4
3 2 C2

4
3

1
12 0 0

0
1

12
4
3 2Cs 4

3
1

12 0

0 0
1

12
4
3 2C4 4

3
1

12

1
12 0 0 1

12
4
3 2C5 4

3

4
3

1
12 0 0

1
12

4
3 2Ce

(5.18)

where (Co, C i,...}  denotes the sum of the cosine terms in (5.17). One can 
observe that S4 becomes a five diagonal matrix and it is clear that 82* becomes 
more and more banded matrix as k increases. On the other hand, one can see 
that the terms on the “far” diagonals become considerably small compared 
with the terms on the main diagonal.

T heorem  9 S2m matrix commutes with DFT matrix.

Proof: 82m =  (D^)2m + ^  terms construct­
ing 82m as A  and B, that is

+ + + + + = A  (5.19)

F (D^)2 m F  ̂ =  2 ^Cm cos{2%h‘̂ mk) -I- c^_i cos(27r/i^(m — 1)A:) +  ··· + Co = B  

(5.20)

We know that the cyclic shift operation {x[k] —̂ x[k — m]) in time-domain is 
multiplication by of the DFT representation of x[k] in DFT-domain.
Since we are only interested in the periodic solutions of difference equation 
(D^)2m +  F (1̂ )̂2771 corresponds to cyclic shift by
m  units, leading to the fact that {DFT){A){DFT)~^ =  B  when h = ^  is 
taken in B. On the other hand using the reverse of the same argument one 
can also show that {DFT)(B)(DFT)~^ = (A). Proving that

{DFT)S2m{DFT)-^ =  {DFT){A -l· B){DFT)~^ =  5  -h >1 = 82771

or equivalently (DFT)S 2m = S 2m(DFT) ■
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5.3 Eigenvectors of S2k

We have shown that S2* commutes with F, implying the existence of the com­
mon eigenvector set between 82* and F. We have examined the special case 
of 82 in the previous chapter and managed to determine a unique set of com­
mon eigenvectors and also identify the Hermite-Gaussian that each eigenvector 
corresponds, using the number of zero crossings argument. Unfortunately the 
results proven in the last chapter can not be generalized for all k values, since 
during the process of proving, we have utilized many results from the theory 
of tri-diagonal matrices and 82* matrices becomes more and more banded as 
k increases. Nevertheless if we think of 82 matrix as the main approximation 
matrix and the other matrices as the additional terms to “fine tune” the results 
derived in the last chapter, one may expect to achieve results similar to the 
ones of the last chapter.

In this section we will find the eigenvectors of 82* with the method derived 
for 82. That is first Evn and Oaa matrices are constructed from 82* and 
eigenvectors of Evn/Odd are found, and then eigenvectors of 82* are derived 
by the similarity transformation P  of the zero padded eigenvectors of Evn/Odd· 
(See Chapter 4) Eigenvectors are sorted using the same method utilized for 82, 
that is for 82, we have shown that the even eigenvector with no zero-crossings 
is the eigenvector of Evn which has the highest eigenvalue. We claim that 
the method of ordering, as discussed in Chapter 4, should be valid for all S^k 
matrices. In the last chapter we have seen that the solutions of the crudest 
approximation matrix 82 catches the main functional behavior of Herrnite- 
Gaussians. Therefore one may expect the validity of the same ordering method 
for all 82*: matrices.

In Figure 5.1, we present the comparison of the samples of Hermite- 
Gaussians (sampled with h =  ^  as in Chapter 4) with eigenvectors found 
from 82, 84, 8e matrices where N  = 8.

In Figure 5.2, we present a similar comparison for N  = 25 where eigenvec­
tors of 82, 8s, 824 matrices are compared.

In Figure 5.3, we present the error between Hermite-Gaussians and eigen­
vectors of 82* as k increases for the cases N  = 8 ,16,64,128.
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One can check the validity of the method for the ordering of the eigenvec­
tors of 82* matrices from Figure 5.3. If the method of detecting the order of 
Hermite-Gaussians fails for some reason, then the error curves in Figure 5.3 
should not stay completely under each other as k increases. At least a single 
eigenvector with increasing error (as k increases) would have implied the dis­
crepancy of the method, but until now we have not observed such a situation.

5.4 Comparison of the Hermite-Gaussians and

the Eigenvectors of S2k

In this section we will compare the properties of the eigenvector set found from 
82*: with Hermite-Gaussians. First we will list some properties of Hermite- 
Gaussians.

1. Hermite-Gaussians satisfy a generating differential equation.

2. Hermite-Gaussians are eigenfunctions of continuous Fourier Transform .

3. Hermite-Gaussians form a complete orthogonal set in £ 2·

4. Hermite-Gaussians can be sorted by their number of zeros.
• 7t/c5. The /i:th Hermite-Gaussian with k zeros has the eigenvalue of e 2 under 

Fourier Transform operation.

If we list corresponding properties for eigenvectors of 82*.

1. Eigenvectors satisfy a generating difference equation which is an approx­
imation to Hermite-Gaussian generating differential equation.

2. Eigenvectors of are eigenfunctions of DFT.

3. Eigenvectors form a complete and orthogonal set in 72. .̂

4. Eigenvectors can be sorted by their number of zero crossings.
• irk

5. The eigenvector with k zero-crossings has the eigenvalue of under 
DFT operation.
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Additionally the relation between the eigenvalues and the number of zero- 
crossings of each eigenvector is in agreement with the eigenvalue multiplicity 
of the DFT. That is, for the even dimensional DFT matrices {N =  2k), there 
exists no eigenvector with 2k —1 zero-crossings and the eigenvalue of the DFT 
matrix corresponding to the vector with 2k — I zero-crossings is also skipped. 
The relation also holds for odd dimensional DFT matrices.

Taking into account the analogy presented above, we propose these vectors 
as discrete counterparts of the Hermite-Gaussians functions. We believe that 
these vectors will also be shown to satisfy further discrete counterparts of 
many properties of continuous Hermite-Gaussian functions such as recurrence 
relations, generating function etc. This is an area for further research.

5.5 Summary

We have determined “better” approximations for Hermite-Gaussians in this 
chapter and compared the approximations with the Hermite-Gaussians. In the 
next chapter we will define the discrete FrFT by the eigenvectors found in this 
chapter.
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Figure 5.1: Hermite-Gaussians and eigenvectors of 82* matrices, N  — 8.
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Figure 5.2: Hermite-Gaussians and eigenvectors of S-ifc matrices, N  =  25.
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Figure 5.3: Error sequences for {8,16,64,128} dimensional 82* matrices.
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Chapter 6

Discrete Fractional Fourier 

Transform

In this chapter, we will propose a definition for the discrete PrFT satisfying 
all the requirements and derive some of the properties of the discrete FrFT 
proposed.

6.1 Definition of the discrete PrFT

We will define the discrete FrFT using spectral expansion of the kernel. The 
requirements for the discrete FrFT are:

1. Unitarity.

2. Additivity of orders.

3. Reduction to DFT.

4. Correspondence with FrFT.
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We have shown in Chapter 2, that any definition, including distinct defini­
tions, satisfying the first three requirements can be defined by spectral expan­
sion. To satisfy the last requirement we set up a similar path in discrete time to 
the path that had led to the definition of the Hermite-Gaussians. Throughout 
the Chapters 3 to 5, we have shown that there exists no ambiguity in finding 
the eigenvectors of DFT through S2A: matrices and it is also shown that the 
eigenvectors found from 82*; matrices tend to samples of Hermite-Gaussians 
as N  increases. As a result, the eigenvectors and the eigenvalues of the dis­
crete transform coincides with the continuous transform as N  tends to infinity, 
meaning that discrete transform evolves into continuous one as N  increases.

6.1.1 Definition

Let be the eigenvector of DFT with k zero-crossings found from 82* matrix. 
For N  odd, discrete FrFT is defined by

For N  even.

Ka{na,n) =

= Y^Air ia le  1pk[n]
k=0

(6.1)

N
V’fc[” a]e  ̂ 2 ^^[n]

k-0,kji{N-i)
(6.2)

where Ka(na,n) denotes the kernel of the discrete FrFT matrix. The lower 
summation index in (6.2) indicates that there exists no eigenvector with N  — 1 
zero-crossings when N is even which can be checked from Section 4.5. The 
discrete FrFT matrix generation procedure is summarized in Algorithm 1.

Example 1
The 0.5th order discrete FrFT matrix for N=4 is given by

0.70 -  0.25« 0.35 -b 0.25« 0.25« 0.35 +  0.25«

0.35-1-0.25« 0 .3 5 - 0.60« 0 .3 5 - 0.25« -0.35 + 0.10«

0.25« 0.35 -  0.25« -0.70 -  0.25« 0.35 -  0.25«

0.35 +  0.25« -0.35 +  0.10« 0 .3 5 - 0.25« 0.35 -  0.60«

One can check that F°·  ̂ is unitary, that is f °®(F°· )̂^  ̂ =  I and f “®F"® = F^ 
where F^ is the 4 x 4  DFT matrix.

jpO.5 _
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1 Generate 82*, P  matrices.
2 Generate Evn and Odd matrices.
3 Find eigenvectors and eigenvalues of Evn and Odd·
4 Sort eigenvectors of Evn (Odd) in the descending order of

eigenvalues of Evn (Odd)·
5 Let the sorted eigenvectors be denoted by e*. (^ )

where 0 < k < dim{Evn} {0 < k < dim{Odd})·
6 Let W =  P  [ i j  I 0 . . .  0 ]'̂ .
7 Let tp2 k+i [n] =  P  [ 0^... 0 I ^
8 =  At =  { 0 ,..., iV -  2, (A -  (A)2)}

6.2 Properties of discrete PrFT

A lg o r ith m  1 Discrete PrFT Matrix Generation Algorithm.

Some properties of discrete FrFT can be stated as follows:^

1. Linearity. Linearity is trivially seen from the matrix form definition of 
the transform.

2. Unitarity. By construction, discrete FrFT is unitary. One can also state 
the unitarity of transform as existence of Parseval’s relation for all frac­
tional domains, that is

¿  l/alNI^ =  \fa2[n]\'^
n=0 n=0

3. Index Additivity. By construction, discrete FrFT satisfies index additiv­
ity, that is

F“Va2W = f a l + a 2 [ n ]

4. Reduction to DFT. By construction, discrete FrFT reduces to Identity, 
DFT, Parity and Inverse DFT matrices at the orders a =  {0,1,2,3} 
respectively.

^As in continuous case, the oth order discrete FrFT of the /[n] is denoted by fa[n]·
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5. / [ —n] -i-> fa[-n]. Lets call f ’’̂ [̂n] = f[-n]  .

f ”> ] =  f[- i]

k I

= J2 M n ] \k
k I

= Y^k[-n]xi^k[i]f[ i]
k,l

=  fa[-n]

6. f*[n] -H· /*o[n]. Lets call / “’"̂ ’[n] =  f*[n].

f r n n ]  = { [ Y M r A x i u m i ]
\ \ k , l

=  if-a[n]y

7. Evn{/M } ^  Evn{/oM}· Lets call /®""[n] =  where indices are
in modulo N.

/rw
k,l

=  E
k=even,l

=  E v n { / o N l

8. Odd{/W } ^  Odd{/aW}· Proof is similar to the one of property 7.

Unfortunately shift, modulation and other simple properties of the DFT 
can not be analytically derived for the discrete PrFT, without closed form 
definition of the kernel of the transform.
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6.3 Comparison with Continuous FrFT

As we have discussed earlier, by construction of the discrete PrFT, we expect 
the kernel of the discrete PrFT to approach the continuous kernel. In this 
section we will compare the discrete and continuous PrFT for the two sample 
input functions namely “rectangle” and “triangle” functions.

The continuous PrFT of the sample functions are calculated by numerical 
integration using “quadS” function of the MATLAB with the tolerance of le —3 
and the discrete PrFT is calculated by the definition given in this chapter, using 
the samples of the continuous functions at N  points around zero, taken with 
the sampling rate h =

Figure 6.1 shows the discrete PrFT and continuous PrFT output, when 
input is “rectangle” function for N  = 32 and for the orders a =  
{0.05,0.25,0.5,0.75}. The discrete PrFT matrix used in this example is gener­
ated from eigenvectors of S30.

Figure 6.2 shows the outputs for N  = 64, where PrFT matrix is derived 
from eigenvectors of S62·

Figure 6.3 and 6.4 shows a similar comparison for “triangle” function.

6.4 Summary

In this chapter, a definition for the discrete PrFT is given using discrete coun­
terpart of Hermite-Gaussian functions. Properties of the discrete FrFT and 
the numerical comparison results with the continuous PrFT is presented.
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Figure 6.1: Discrete and Continuous PrFT of rect function, N  =  32.
Magnitude of 're d *  luncfion tor N -3 2  and a -0 .0 5  Magnitude of 'recT function tor N=32 and a=0.25

Magnitude of 'reef function for N -32 and a-0.5 Magnitude of 'ree f function tor N -32 and a=0.75
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Figure 6 .2 : Discrete and Continuous PrFT of rect function, N  =  64.
Magnitude of ’ re e f tunction tor N *6 4  and a *0 .0 5  Magnitude of ’ re e f function for N=64 and a=0.25

Magnitude of *rect' function for N -64 and a*0.5 Magnitude of 'reef function for N*64 and a*0.75
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Figure 6.3: Discrete and Continuous PrFT of triangle function, N  =  32.
Magnitude of 'triangle* function tor N -32  and a>0.05 Magnitude ot 'triangle' function for N=32 and a=0.25

Magnitude of 'triangle' function for N=32 and a=0.5 Magnitude of 'triangle' function for N*32 and a=0.75
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Figure 6.4: Discrete and Continuous PrFT of triangle function, N  =  64.
Magnitude of 'triangle* function for N -64  and a*0.05 Magnitude of 'triangle' function for N=64 and a=0.25

Magnitude of 'triangle' function for N -64  and a-0.5 Magnitude of 'triangle' function for N>:64 and a-0.75
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Chapter 7

Conclusions

In this work, we present a definition for the discrete fractional Fourier Trans­
form. The definition proposed satisfies the requirements of unitarity, index 
additivity and reduction to DFT. We have shown that as the dimension of the 
discrete FrFT matrix increases, discrete FrFT matrix tends to the kernel of the 
continuous FrFT.

First of all, reader may have noted that we have given a number of matri­
ces that can be derived from different 82* matrices, for the definition of the 
discrete FrFT. It is clear that each of these matrices differs by the order of 
approximation to the Hermite-Gaussians. Therefore, if one is only interested 
in calculation of the continuous FrFT of the input, it would be more appropri­
ate to use the highest order transformation matrix, since eigenvectors of this 
matrix are the best approximations to the Hermite-Gaussians. If the signal to 
be transformed has no continuous origin, then any one of the discrete FrFT 
matrices can be utilized, since they all have the same footing with respect to 
each other.

Our derivation of the discrete transform by spectral expansion closely re­
sembles the continuous definition given in [2,3]. In these papers, authors de­
fine the continuous FrFT by spectral expansion using Hermite-Gaussians. It 
has been later discovered that in [5], Namias derived the integral kernel of
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PrFT from spectral expansion using some properties of the Hermite-Gaussians 
(mainly generating function of Hermite-Gaussians). The existence of such re­
lations for Hermite-Gaussians is not surprising, since Hermite-Gaussians are 
well studied under the general setting of orthogonal functions and therefore 
there exists many results for Hermite-Gaussians in the literature. To reach the 
closed form definition for the discrete FrFT that we propose, we need similar 
relations for the eigenvectors of 82* matrices; but apart from the difference 
equation satisfied by these vectors, we do not have any results at our hand. 
Further work on the 82* may yield results leading to the closed form definition 
of discrete FrFT.

In [22], six different, but equivalent, definitions for the continuous FrFT 
are given and the relations between these definitions are discussed. Although 
it is possible to derive any definition from any other, authors show that the 
derivation of some of the properties of the FrFT can be eased by the utiliza­
tion of a specific definition. The definition, we have given for the discrete 
FrFT, is analogous to “Definition B” in [22]. Providing other definitions for 
the discrete FrFT analogous to the ones of the continuous transform can be 
useful to clarify the definition of the discrete transform. The most accessible 
definitions among these six definitions, in the sense of integrating into a def­
inition for the discrete FrFT, are the definition E and definition F. Both of 
these definitions use the continuous 8 operator, which is actually Hamiltonian 
of the harmonic oscillator system, to define the FrFT. As the reader may have 
noted, in this work, we define discrete 82* operators, that are tending to the 
continuous Hamiltonian. Similar to the continuous-time operator, the discrete­
time operator is invariant under DFT operation, which is the counterpart of 
the Fourier Transform in discrete time. Furthermore, since 82*; operator has 
orthogonal eigenvectors, we propose 82* operator as the discrete counterpart 
of the harmonic oscillator Hamiltonian. Returning back to the definitions E 
and F; since these definitions utilize continuous Hamiltonian, one may think 
to replace continuous Hamiltonian with the discrete one to get the definition 
for the discrete FrFT. Unfortunately continuous Hamiltonian has a spectrum 
(eigenvalues) that is uniform and this uniform nature of eigenvalues becomes 
important for the definitions E and F (see [22]). But the discrete Hamiltonian 
has eigenvalues that are not uniform in any sense, leading to problems with the
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definition of discrete PrFT. Further work may ease the problem of the defini­
tion of the discrete FrFT by providing analogous definitions to the definitions 
in [22].

If we examine these definitions more closely, definition E defines the FrFT 
as the solution of an differential equation analogous to the time-dependent 
Schroedinger’s equation. If we write the discrete counterpart of this equation 
using the same method as in Chapters 4 and 5, the resulting difference equation 
can be taken as the definition of the discrete FrFT.

In definition F, the FrFT is defined as F “ =  where S is the continuous 
Hamiltonian given in Chapter 3. One may be able to define discrete FrFT, by 
replacing S by 82*;.

Further work on FrFT can also be based on prolate spheroidal functions. 
These functions are the eigenfunctions of the Fourier Transform in a finite 
interval. It is clear that these functions evolve into Hermite-Gaussians as in­
terval enlarges. It may be of interest to study discretization problem through 
these functions. For details about prolate spheroidal functions, one can con­
sult [39,58].

Another avenue to be explored for the discrete FrFT can be group theory. 
We know that the continuous FrFT generalizes the Fourier Transform to a 
general family of transforms which satisfies the group properties (see [22]). If 
the fractional Fourier group can be defined from integer order Fourier transform 
group using abstract group theoretical concepts, one may be able to apply the 
same method of fractionalization to the DFT operation. The key idea would 
be to find the counterpart of DFT matrix in the same sense that the discrete 
rotation group is the counterpart of the 90 degree and multiples continuous 
rotation group.^

An important part of the theory that remains to be clarified is the relation­
ship between discrete Wigner distribution and the discrete FrFT, analogous to 
the projection and rotation properties (see [24]). Conversely, the discrete FrFT 
defined may find application in defining the discrete Wigner distribution.

 ̂ [35] and references therein can be a good starting point for the group theoretical method.
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A fundamental aspect of the Fourier Transform is the duality of periodicity 
(finite extent) in one domain and discreteness (sampling) in the other domain. 
Generalization of this notion to fractional domains remains an intriguing aspect 
of the theory which remains to be clarified. This aspect is also closely related 
to the relation of the transform to the discrete Wigner distribution.

A fast algorithm for calculating the PrFT has been given in [25], but it 
would be more satisfying to start from the discrete FrFT matrix and present a 
fast algorithm which multiplies precisely by this matrix. We believe that such 
an algorithm will emerge soon.

Another interesting topic is the clarification of how the discrete transform 
is precisely related to the continuous transform beyond stating that “discrete 
PrFT is an approximation to PrFT” . Clearly this problem constitutes the gen­
eralization of the Poisson’s theorem to PrFT.

In this thesis, we have not derived all possible properties of the discrete 
Hermite-Gaussian vectors as well as the discrete PrFT. We also believe that 
these gaps can be easily filled.

Lastly, the definition of the discrete PrFT given in this work, can be viewed 
as an infinite sequence of unitary matrices, which includes Identity and DFT 
matrices. A certain member of this sequence, DFT, and its derivatives, DCT, 
Hartley, etc. are proved to be successful in many applications such as cod­
ing, filtering. Generalization of these DFT based transforms, can also lead to 
interesting results which may be of importance.
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A PPEN D IX  A

Poisson’s Theorem

We know that N point DFT is an approximation to the Discrete Time Fourier 
Transform (DTFT) [59], it is also well known that as N increases approxi­
mation of DFT also improves (windowing effect). If discrete signal is formed 
by sampling the continuous signal with a rate higher than the Nyquist rate, 
then DTFT of the discrete signal is the same as the Fourier Transform of the 
continuous signal. As a result, one can conclude that, as N increases N point 
DFT output becomes a better approximation of the samples of the continu­
ous time Fourier Transform of the signal. Poisson’s theorem [39], not only 
justifies the above comments, but also gives a quantitative expression for the 
approximation.

Poisson’s Theorem [39]:
OO

fa lia s {t )=  f i t  +  '^To)
n=—oo

rp T q

faliasim Ti)

00
F , u U f ) =  E  F { f  + nft)

n=—oo
1

h  =  N fo Ty
N - l

If E
n=0

(A.1)

If we explain the theorem in words, let f{t) , F( f )  be the signal and its 
Fourier Transform respectively, then faiias{t) is periodic extension of f{t) with
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period To, Reader should note that extending a signal periodically in time, cor­
responds to sampling in frequency (Fourier series); therefore Fourier Transform 
of faiiaa(t) Is the Samples of F { f )  taken with the rate If the periodic func­
tion, faiias{i), is Sampled at N points in a period Tq; that is sampled with T , 
function becomes periodically extended in frequency with period f\ (aliasing 
of the sampling theorem). One should note that after extension and sampling 
in both domains; we reach a discrete periodic sequence in time and frequency 
domain. Poisson’s theorem says that the mapping between the discrete time 
sequences generated by extending and sampling operations in both domains is 
DFT. It is clear that as N increases samples in frequency will be “less” aliased, 
leading to a better approximation. We see from Poisson’s theorem that DFT 
of the discrete signal has a correspondence with Fourier Transform of the sig­
nal. Other features of DFT such as unitarity, fast implementation makes this 
transform not only an approximation to Fourier Transform, but turns it into a 
well defined working transform for discrete signals.
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Figure A.l: Poisson’s Theorem By Pictures, Tq =  5, Tj =  1/2.

Time Domain Representation Frequency Domain Representation

Periodically Extended Signal with 1^=5 Sampled in Frequency Domain, with f =1/5
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Samples of the Periodic Signal, with T^=1/2 Aliasing in f-domain due to sampling, with f =2

Samples of Periodically Extended Time Signal in a Period A period of the FT of the periodic sampled time signal
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A PPEN D IX  B

Eigenvector Sets of DFT

The following Matlab lines generates a different orthogonal eigenvector set of 
DFT matrix each time it is run.

N=7;F=dftmtx(N)/sqrt(N); [ Evec,Eval] =eig(F);
Eval=diag(Eval); Evec=real(Evec); 

indexl=find((abs(Eval-l))<le-3) ; 
indexml=find((abs(Eval+l))<le-3); 
indexi=find((abs(Eval-i))<le-3) ; 
indexini=f ind( (abs (Eval+i) ) <le-3) ;

Evec(:,indexl) =Evec(:,indexl)*raiid(length(indexl));
Evec(:,indexml)=Evec(:,indexml)and(length(indexml));
Evec(:,index!) =Evec(:,index!)*rand(length(index!));
Evec(:,indexmi)=Evec(:,indexmi)*rand(length(indexmi));

Evec=orth(Evec);
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A PPEN D IX  C

Approximations for D

In the first section we review calculus of finite differences and in the following 
section we derive approximations for D^.

C.l Calculus of Finite Differences

In this section, we will present the required background for the method of finite 
differences. Reader can refer to the excellent book of Hildebrand [56] for more 
details.

We will first define finite differencing operators.
Forward diflference operator,

Backward difference operator.

Central Difl^erence operator.

=  f { t  + h ) ~  f(t) (A.1)

= f i t )  -  f i t - h ) (A.2)

f i t + 5 ) -  -  2 ) (A.3)
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and the shift operator,

E /( i)  =  f { t  + h)

Operators defined above are closely related with each other, that is

A =  E - 1  , v  =  i  =

i  =  E “ ^A , i  =  E ^ v

(A.4)

(A.5)

(A.6)

One easily verifies using the relations above that,

A v  =  v A  =  (A.7)

A number of identities can be drawn using E  =  A + 1. An important one is

E 'A  =  (1 +  A )'A

fk+T — fk +

where fk =  f { t  + kh). Replacing k by zero and r  by s in (A.8),

fa — /0 +  Y\^ f ^ -  1) 
2! AVo + --- +

s{s — 1) · · · (s — r +  1)

(A.8)

A 7o -(A.»)

When s is an non-negative integer (A.9) reduces to (A.8), otherwise it can 
be observed that right hand side of (A.9) does not terminate. One way of 
viewing (A.9) is, interpreting s as a continuous variable, leading to a polynomial 
of degree n on the right hand side (assume s equals a positive integer n), 
interpolating the sequence of values {fo, fi ,  ■ ■ ■ ,fn}·  The same equation can 
also be viewed as the discrete analog of the Taylor series expansion of a discrete 
function, where derivatives in Taylor series are replaced with A, and s* terms 
are replaced by factorial polynomials,

5W =  s(s — l)(s — 2 ) ...  (s — A:-I-1) (A.IO)

One should note that is also a kth degree polynomial as s*, but it has also 
roots than zero such as {1, 2, . — 1}. As a result Taylor series in discrete 
domain, known as Newton’s formula can be expressed as

/ .  =  E
“  sW . 

A‘ /„
k=0 k\

(A.ll)

87



To strengthen the relation between the factorial polynomials and forward dif­
ference operator, we also show that

As(") =  (s +
=  ( s - | - — n - |-1)

(A.12)

C.2 Approximations for D'

In this section, we will prove the relation between and D^. We will prove
the results for the finite degree polynomials of arbitrary degrees, but results 
of this section are also valid for infinite polynomials under some convergence 
conditions.

In the last section, we have shown that where is the
nth degree factorial polynomial. Using the relation 5̂  =  A' ,̂ one can write

=  ( n ) ( n - l ) ( A : ( A . 1 3 )  

(A. 13) can also be shown by using definitions of and

We will need another result that will be utilized later, which can be stated
as

(A.14)S ^ [ k ( k  + = (2n + 2)(2n + \ ) k ( k  + n -

and proved by

A{k{k + nY'^^+^^ = {k + l){k + n + lY^'^+^'>-k{k + nY'^^^
= k{2n +  1)(A: +  n)(2") + (k + n +

A ^ { k ( k  +  n f ^ - ^ ^ ^  =  A:(2n-Hl)(2n)(A: +  n)(2"-i) +  2(2n-M )(A :-Fn+l)(‘''")

= 2(2n-I-l){nA: 4- A: 4- n +  1 } ( A : - I - ( A . 15)

finally by using =  E “ ^A^,

i2{A:(A: +  n)(2"+')} =  (2n 4-2)(2n-M)A: (A:-F n -  l)^^"-'^ (A.16)
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We will first rewrite an arbitrary polynomial in terms of factorial polyno­
mials and operator One can check that a relation between factorial poly­
nomials and operator A is given the previous section, where relation is named 
as discrete counterpart of the Taylor series.

Assume f { k )  is an arbitrary polynomial, we will write the polynomial f { k )  

as f { k )  =  f e (k )  -f f o (k ) ,  where f e {k )  is the polynomial of only even powered 
terms, and fo (k )  consists of odd powered terms. One can easily see that fe{k)  

and fo (k )  is an even, odd function respectively.

We will expand f e (k )  and fo {k )  polynomials, or equivalently f ( k ) ,  by some 
other even and odd polynomials. The polynomials that will be used in the 
expansion are k{k  + I — and (k + I — where the first one is an
even polynomial, the second one is odd. Evenness of k{k + I — can be
seen from the definition k^'^\ that is

k(k + l -  =  A;(A: +  / -  1 ) ... (/t -M) A: (A: -  1 ) ... (A: -  (/ -  l)iA.17)

=  A:2(A;2 -  l){k^ -  4 ) . . .  (A:" -  (/ -  1)") (A.18)

We claim that f(ko + k) can be written as

f{ko + k) =  (/(^o)) k(k + 1 — 1)̂ ^̂  +  oo/(^o)') +  · · ·

n
E  (/№o +  1)) (A +  i -  !)<’'-*> (A.19)

\l=l
where {oq, . . . ,  o^} are determined such that equality in (A.19) is satisfied for 
all k values. By brute force methods, one can expand both f(ko -I- k) and A:̂ "̂  
polynomials and compare the coefficients of the each A:" term, to determine 
a„ coefficients. Easier method of finding coeflicients can be accomplished by 
inserting certain values for k, and solving the linear systems of equations for 
a„ coefficients. If one inserts A: =  0 in (A.19), one gets

f{ko) = aof{ko) (A.20)

which implies oq =  1. To find other On coefficients, assume that (A.19) is 
satisfied and operate from left by that is

f{ko +  A;) — a2<J^/(^o)2.1 + — l)a2iŜ  ̂ (/(^o)) k[k 1 — 2)̂ ^̂  -I-...

i s  (2/ -  1)(2/ -  {f{ko + l ) ) { k  + l -  (A.21)
q=2
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where (A. 16) and (A. 13) is used at the left of the (A.21). Now by fixing k = 0 
in (A.21), we directly find 02 which is 02 =  1/ 2. Similarly it is easily seen that

To find odd a2k-i  coefficients, we will fix A: =  1 in (A.19), leading to

f{ko +  1) =  Q'oS'̂ f̂ ko) +  o,26̂ f{k(j) +  <X]_f{ko +  1) (A.22)

Since we have found 02* coefficients, one can determine oi from (A.22). To 
find 03 one only needs to insert A: =  1 in (A.21).

One can observe the similarity of the method for finding o„ coefficients and 
the method for partial fractional expansion of the ratio of two polynomials.

It is now clear that arbitrary degree polynomials can be expanded at point 
A:o, that is

f{ko-\-k)  =  ( ^ j ^ S ' ^ { f { k o ) ) k ( k  + l-l)^'^^~'^^+f{ko)^+...

 ̂( f i k o  + 1)) (A: + / — 1)̂ *̂ (A.23)
Kl=l

We will now establish the result of this section by differentiating (A.23) 
twice, that is

(P
dk"^ m + ‘ ) = (t (/(*»)) '  - 1)*"-'') + ■ ■ ■

(P
^α2г-ı(У^* ^(/(Ao +  1)) ^-^(A: +  Z — 1)̂ *̂ |(A.24)

w=i

If we fix A: =  0 in (A.24),

f i h )  = ( p  (2.Coef{i:= of k{k + l -  l)<“- ‘»})) +  . . .

( p  a a - i i“-" ( / ( * 0  +  1)) (2.Coef{A:'' of (k + l -  I)*"'“ ‘>}))(A.25)

One can find the k"̂  coefficient of k{k 1 — 1)(̂ ~̂̂ ) and (A: +  f as
(—1)̂ “ [̂(/ — 1)!]̂  and zero respectively. Then one can reduce (A.25) to

r W  =  2 (/№„)) (A.26)
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which completes the proof of this section.

First few terms of the summation in (A.26) is,

f"(ko) = S'^f{ko) — ^<^^/(^0) +  + (A.27)

which is in agreement with the special case cited in [56, page 124]. Lastly 
it can be shown that the result in (A.26) remains the same; when difference 
operators 5 and are generalized for arbitrary shifts of h units, that is when 
S is replaced with which is defined in (5.3) and is replaced with
polynomials of type {k{k — h){k — 2h) .. .{k — {n — l)h)}. For the notational 
simplicity we present for the special case oi h = l.

The relation (A.25) is exact for the polynomials of finite degrees, leading 
to exact expression for the second derivative. In general one can express 
operator for infinite polynomials as

D ^/(í) =  2 E ( - 1 )
Z=1

i-1 [(i -  1)!]̂
(20! ( /(0 ) (A.28)
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