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ABSTRACT

ALGEBRAIC THEORY OF LINEAR
MULTIVARIABLE CONTROL SYSTEMS

Sevgi Babacan Cetin
M.S. in Electrical and Electronics Engineering
Supervisor: Prof. Dr. A. Biilent Ozgiiler
September 1998

The theory of linear multivariable systems stands out as the most devel-
oped and sophisticated among the topics of system theory. In the literature,
many different solutions are presented to the linear multivariable control prob-
lems using three main approaches : geometric approach, fractional approach
and polynomial model based approach. This thesis is a first draft for a text-
book on linear multivariable control which contains a description of solutions
to the most of the standard algebraic feedback control problems using simple
linear algebra and a minimal amount of polynomial algebra. These problems
are internal stabilization, disturbance decoupling by state feedback and mea-
surement feedback, output stabilization, tracking with regulation in a scalar
system, regulator problem with a single output channel and decentralized sta-

bilization.
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OZET

COK DEGISKENLI DOGRUSAL KONTROL
SISTEMLERININ CEBIRSEL TEORISI

Sevgi Babacan Cetin
Elektrik ve Elektronik Muhendisligi Bolumu Yiksek Lisans
Tez Yoneticisi: Prof. Dr. A. Biulent Ozgﬁler
Eylil 1998

(okdegiskenli dogrusal sistemler, sistem teorisinin en karmasik ve en fazla
iglenmig alanini olugturmaktadir. Literatirde bir¢ok ¢okdegiskenli dogrusal
sistem problemi su ¢ yontemden biri kullanmilarak ¢ozilmugtir : geometrik
yaklagim, kesir yaklagimi ve polinom modellere dayal yaklagim. (okdegiskenli
dogrusal kontrol tizerine bir ders kitabi taslagi olarak hazirlanan bu ¢alisma,
bir¢ok cebirsel geribeslemeli denetim probleminin ¢6ztimtni, basit dogrusal ce-
bir yontemleri ve minimum miktarda polinom cebiri kullanarak sunmaktadir.
Ele alinan baglica problemler sunlardir : igsel kararlilagtirma, durum ve olgim
geribeslemesiyle bozanetkeni ortadan kaldirma, ¢ikti kararhlagtirilmasi, sayil
bir sistemde diizenleme ile izleme, tek ¢ikti kanalli dizenleme problemi ve

dagitilmig (6zeksiz) kararhlagtirma.



Anahtar Kelimeler: (okdegiskenli kontrol, kesir yaklagimi, i¢sel kararlilagtirma,
bozanetkeni ortadan kaldirma, diizenleme ve izleme, dagitilmis (6zeksiz)

kararhlagtirma.
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Chapter 1

INTRODUCTION

The theory of linear multivariable systems stands out as the most developed
and sophisticated among the topics of system theory. The structure of a multi-
variable dynamic system and the limitations it may impose on the success of a
feedback control applied on this system in order to satisfy certain design speci-
fications are well-investigated and well-understood for a large class of idealized

control problems.

Yet, reference by control system designers to very basic and relevant results
the theory has accumulated still remains surprisingly limited. Some quick
explanations for this are that the real systems are too complex to yield to
linear analysis, or that the design specifications are usually many more in
number than any theory can anticipate. Such explanations can be discarded

on the grounds that Newton’s theory of motion is indispensible to designers of



automobiles although an automobile is in fact far more complex than a point-
mass. The reason for the limited attention the theory has received perhaps lies

elsewhere.

If we consider one of the simplest feedback control problems of multivari-
able systems, say the disturbance decoupling problem, then we may better
understand the source of difﬁculty. The problem at its most generality is the
following: A system with two groups of outputs and two groups of inputs are
given. One group of inputs, called the disturbance inputs, consists of variables
with unwanted influence on one group of outputs, called the regulated out-
puts. The second groups of inputs and outputs consist of the inputs available
for control, called the control inputs, and the outputs that can be measured,
called the measured outputs. The problem is to determine a feedback controller
which processes the measured outputs to produce values for the control inputs
such that in the closed loop system the disturbance inputs have no influence
on the regulated outputs. Since the introduction of a feedback loop into any
system may cause instabilities of the signals around the loop, the satisfaction
of stability of the feedback loop is another specification on the controller to he
determined. The problem is a very basic one in many disciplines where a formal
model is used for describing the system at hand. The disturbance inputs sum
up the variables that are external to the model which are known to influence
certain states or outputs. But the dynamics with which these variables are

generated the model builder has little or no knowledge of.

The multivariable control systems literature contains many different solu-
tions to this problem. The differences are in the language used in formulating

the condition for solvability as well as in the technique of construction of a



controller whenever one exists. One class of solutions uses the language of
the so-called geometric approach. The condition for solvability is formulated
in terms of (A, B) and (C, A) invariant subspaces which require an advanced
knowledge of linear algebra. The construction of a controller in this approach is
via the construction of a state-feedback matrix ' and output injection matrix
K which make certain subspaces (A 4+ BF')-invariant and (A 4+ KC)-invariant.
The procedure is anything but straightforward. The second class of solutions
uses the language of fractional approach or factorization approach. The condi-
tion for solvability, in its cleanest form, is formulated in terms of system ma-
trices and as the existence of zero-cancellations among these system matrices.
The construction of a solution requires an advanced knowledge of polynomial,
or alternatively stable proper rational, matrix algebra. The procedure again is
not at all simple. The link between the two approaches is not always obvious.
It is quite usual that the specialists in one approach cannot follow the details
of construction or even cannot fully grasp the limitations imposed by the solv-
ability condition given by the other approach. In fact, a full exploration of
the link between the two approaches is a speciality of another area of research

known as the theory of polynomial models.

The picture drawn above may indeed look complicated to a researcher out-
side the area of control theory as well as to a designer of control systems.
Although the rather heavy specialization in certain techniques is not a weak-
ness of a theory, the fact that each particular approach demands a sophisticated
mathematical background even at the descriptive level of stating the condition

for solvability does shy away the potential appliers of the theory.



Having identified the source of difficulty as such, what needs to be done
is clear. The results obtained by the theory must be presented in as simple
a manner as possible, eliminating the need for a sophisticated mathematical
background. This thesis attempts to present some ol the known solutions
to a number of standard problems of multivariable control systems with this
objective in mind. The proofs given for Theorems (8.2.3) and (8.2.4) of the
solution to disturbance decoupling problem without and with stability and the
proof given for Theorem (9.1.1) of the output stabilization problem, a proto-
type problem of regulation, use simple linear algebra and a minimal amount of
polynomial algebra. The link between the two solvability conditions, one com-
ing from geometric approach and the other from fractional approach, are made
explicit without recource to the theory of polynomial models. As they stand,
the results and the construction of the controllers in these theorems should
be easy to follow for anyone with a basic background in linear systems. This
necessary background is given in Chapters 2-5 with as little technical demand
from the reader as possible. Other standard problems of linear multivariable
control are also presented. These include disturbance decoupling problem with
measurement feedback as posed above, regulation and tracking problems, and
decentralized stabilization problem. These incorporated, the thesis is a first

draft for a textbook on linear multivariable control.

The thesis is organized as follows; Chapter 2 is devoted to some basic con-
cepts of linear time invariant systems. Stability, reachability, equivalence of
linear time invariant systems are presented. In Chapter 3, state feedback is
introduced and the procedure for eigenvalue assignment is given. The concept
of stabilizability also mentioned. Chapter 4 includes the concept of observabil-

ity and synthesis of dynamic asymptotic observers and functional observers.



In Chapter 5, Kalman Canonical Decomposition theorem is given and the sep-
aration principle for feedback controllers is establihed. In Chapter 6, stable
proper factorizations are examined. Chapter 7 contains the parametrization
of all controllers in terms of a free parameter. In Chapter 8, the problem of
cancelling the effect of disturbances using state feedback and output measure-
ment feedback is examined. Two main approaches to this problem namely the
geometric approach and the transfer matrix approach are reviewed and the so-
lution techniques of these two approaches are illustrated. Output stabilization,
tracking and regulation problem in the scalar system and regulator problem
with a single output channel is considered in Chapter 9. In Chapter 10, we
show how the decentralized stabilization problem can be transformed into a

“make-coprime” problem. Finally concluding remarks are given.



Chapter 2

LINEAR TIME INVARIANT
SYSTEMS: SOME BASIC
CONCEPTS

In this chapter, we shall introduce the state variable description of linear time
invariant systems. Then, the definitions of equilibrium state, asymptotic and
exponential stability are given. Finally, the concept of reachability, equivalent
dynamical representations and how we can separate the reachable part are

presented.
A linear time invariant (LTI) system is defined by a pair of equations
&(t) = Ax(t)+ Bu(t), (2.1)
y(t) = Ca(t)+ Du(t), t >0,

where A, B, C, D are constant, real matrices of sizes n xn, nxm, pxn, pxm,

respectively. For every t > 0, z(t) € R", u(t) € R™, and y(¢) € R”. The



components u;(t), ¢ = 1,...,m of u(t) are assumed to be piecewise continuous
functions on the interval [0,00). The vectors x(t), y(t), and u(t) are called
the state, output, and input of (2.1), respectively. Occasionally, the notation

¥ = (A,B,C,D) will be used to denote the LTI system (2.1) with all the

associated restrictions.

2.1 State and Output Trajectories

Given an initial time tp > 0 and an initial state x(ty) =: o, let ©(t; to, xo, u(.))

be defined by

t
o(t; to, To,u(.)) 1= eAt0gg 4 [ A40-7) By(r)dr, (2.2)
to
where
at _ o= (A
© = Z; !

is the exponential matrix function of At. Clearly, ¢(to; o, o, u(.)) = 0. More-
over, using the differentiation and transition properties of the exponential ma-

trix function, it is easy to verify that
H(t; to, o, u(.)) = Ap(t; to, o, u(.)) + Bu(t).

Thus, ¢(t;to, o, u(.)) is a solution of (2.1) for the initial time ¢; > 0 and the
initial state @(fg) = x¢. Note that this solution is a continuous function of
time ¢ and, by the theory of ordinary differential equations, it is unique. The
solution @(t;to, @, u(.)) for t > to is called the state {rajectory of (2.1). The
output expression for the initial time ¢o > 0 and the initial state x(ty) = x¢ is

obtained by substituting z(t) = ¢(¢; to, zo, u(.)) into the output equation as

t
y(t) = CeM=®go+ [ Ce U= Bu(r)dr + Du, t > tq. (2.3)

to



The more explicit notation n(t,p(t;t,, xo, u(.)),u(.)) is used to denote the
value y(t) of the output at ¢ > #,, resulting from application of the input
u(.) in [to,t] starting with the initial state o = x(#y). The set of points
n(t, (t;to, zo, u(.)),u(.)), t > to in RP is called the output trajectory of the

LTI system.

Alternatively using Laplace transform, we can also show that (2.2) is a
solution of (2.1). Let X(s), U(s) be the Laplace transforms of x(t) and (%)
respectively. By setting ¢o = 0 and taking the Laplace transform of (2.1), we

have
sX(s) —z(0) = AX(s) + BU(s),
so that,
X(s) = (s — A)~'z(0) + (s — A)"'BU(s).

Taking inverse Laplace transform of both sides of this equality,

z(t) = L7Y(sI = A)'zo} 4+ L7H{(s] — A)T' BU(s)},

x(t) = etao+ (e B xu(t)),

where “ x” denotes tﬁne convolution. Hence,
z(t) = eftao + ff et Bu(r)dr
= ¢(t;0,z0,u(.)).
This shows that ¢(to, o, u(.)) is a solution of (2.1) for the initial time ¢ = 0
and the initial state x9. The general solution for ¢, > 0 can be obtained using

the following time-invariance property of any solution of (2.1)
©(;t0, zo, u(T — to)) = @(t — to; 0, o, u(T)), (2.4)

which is a consequence of the fact that both A and B in (2.1) are constant

matrices.



Note that any solution (2.1) can be written as
p(t;to, To, u(T)) = T5i(t) + w2s(t),
where
22 (1) := o(t; to, 20,0) = eA(t_t°)3:0, 255(t) = @(t;40,0,u(1)) = /tt 61A(t_r)B'LL(T)dT.
0

The term z,;(¢t) is called the zero-input solution and z.4(t) is called the zero-
state solution of (2.1). More generally, the state trajectory has the following

linearity property: For all o, 8 € R, for all states @,z € R", and all inputs

u(.), (),

o(t;to, ax + Bz, aul.) + Bv(.)) = ap(t; to, z,u(.)) + Bo(t; te, z,v(.)).  (2.5)

2.2 Stability of LTI Systems

Consider the unforced system
z(t) = Az(t), (2.6)

where A € R™" and z(t) € R" for each ¢t > 0. This is a special case of (2.1)

in which the input is set to zero so that
SO(ta to,:L'o,O) = eA(t_tO):BOa ¢ Z tO (2'7)
is the unique solution of (2.6) for the initial state (o) = wo.

The point 0 € R" is an equilibrium point of (2.6) since any state trajectory

starting at 0 at ¢ = ¢o stays at 0 for all ¢ > to.



Definition 2.2.1. An equilibrium point T € R"™ of (2.6) is called a stable
equilibrium point if for all € > 0, to > 0, there exists & possibly depending
on € and to such that for all xg € R® and all t > ty the implication

llzo — Z|| < 6 = ||e(t; to, ®0,0) — T|| < €

holds.

In other words, ¥ is a stable equlibrium point if small perturbations on the
initial state T results in small perturbations on the trajectory. It is not difficult
to show that the equilibrium point 0 of (2.6) is stable if and only if there exists
M > 0 such that

(6 tor 20, O] < Mlaoll, ¥t > o, (28)

Definition 2.2.2. If the trajectory “approaches” the equilibrium as time pro-
gresses, then the equilibrium point is called asymptotically stable. More for-
mally, T is an asymptotically stable equilibrium point if it is stable and

for all ty > 0, there exists § possibly depending on ty such that

A third concept of stability relevant to (2.6) is exponential stability.

Definition 2.2.3. The system (2.6) is called exponentially stable if for all

to > 0 and all zo € R", there exist M > 0 and v > 0 such that
I (t; to, @0, 0)| < M ||zolle™*) Vit > to. (2.9)

The constant vy as above, if it exists, is called the decay rate.

By the particular form of the solution (2.7) of (2.6), it turns out that

asymptotic and exponential stability are equivalent requirements for (2.6).

10



Let C denote the set of complex numbers. By C_. Cy, and C,, we denote
the points in the open left half complex plane, imaginary axis, and the open
right half complex plane, respectively. The points in the closed left and right
half complex plane are denoted respectively by Cy_ and Cgy,. Let C,. denote

Co4+ together with the point at infinity.

Fact 2.2.1. (i) The equilibrium point 0 of (2.6) is asymptotically stable, equiv-
alently, the system (2.6) is exponentially stable, if and only if all eigenvalues
of A have negative real parts, i.e., 0(A) C C_. (ii) The equilibrium point 0 of
(2.6) is stable if and only if o0(A) C Co- and an eigenvalue of A with zero real

part has multiplicity at most one as a root of the minimal polynomial of A.

Proof. Let Aq,..., A, be the eigenvalues of A with multiplicities my,...,m, as

roots of the minimal polynomial of A. Then,
r my .
et =YY" teMtp(A), (2.10)
=1 j=1
where Pij(A) is the ¢j-th interpolating polynomial of A. The solution

o(t; o, 20, 0) is given by

e=)ge = 3~ (8 — to) Tt M) P (A)ao. (2.11)

=1 j=1

(i) If Re(X;) <0 forall e =1,...,r, then by (2.11),

feAt-toaol] = || Sy S (¢ = to)i M P Al

< Tiog TR (t = to) T teNE R | Py A)ao|

= 1=1 £vj=1

o1 g (t = to) 1NN Py (A)[ |l

—= =1

< Me1=)g

11



for some sufficiently large M > 0 and « := max;{—Re(};)}. It follows that the
equilibrium point 0 is asymptotically and the system is exponentially stable.
Conversely, if some eigenvalue A; is such that Re(A;) > 0, then let @y in (2.11)

be an eigenvector corresponding to A; so that (2.11) gives
R e el

Hence,

lim [t~z # 0 (2.12)
and one has neither asymptotic nor exponential stability.
(i) If all eigenvalues have nonpositive real parts and those with zero real
parts, say A;,...,A;, are such that m; = ... = m,;, = 1, then in (2.11) the
terms containing e J = 1,...,k have coefficients independent of t — t,. It

follows that for any z¢g € R"
[ 00| < Mo

for some sufficiently large M > 0, i.e., (2.6) is stable. Conversely, if m;, > 1 for
some j, then the term containing s in (2.11) has a nonconstant polynomial
coeflicient in ¢ — ¢y. Hence, also in this situation we get (2.12) and stability is

not possible. 0

We will call the forced system (2.1) (asymptotically) stable if the equilib-
rium point 0 of the corresponding unforced system (2.6) is (asymptotically)

stable.

Note by Fact(2.2.1) and its proof that if the system (2.1) is asymptotically

stable, then it is exponentially stable with decay rate v = max;{—Re(A;)}.



2.3 Reachability of LTI Systems

Given a LTI system (2.1) and two points in R™, when does there exist a suitable
input such that the resulting state trajectory passes through the two given
points? The concept of reachability, studied in this section, is essential for

answering this question.

Definition 2.3.1. A state ¢ € R" is reachable at time t from x¢ if there
exist o > 0 with t > to and u(7) with t > 7 > to such that o(t;tg, vo,u(.)) = x.
A state xg € R™ is controllable at time ¢y to @ if there exist t > to and u(7)

with t > 7 > tg, such that o(t;to, To, u(.)) = 2.

By time-invariance property (2.4) of (2.1), it is easy to see that x is reachable
at time ¢ from z¢ if and only if it is reachable at time ¢ — ¢g from . Similarly,
xg 1s controllable at time tg to @ if and only if it is controllable at time 0 to
x. It follows that in studying the sets of reachable and controllable states of
(2.1), there is no loss of generality in considering reachability and controllability
at time 0. Moreover, by linearity property (2.5) of (2.1) and by invertibility
of the exponential matrix function, = is reachable at time ¢ from a¢ if and
only if & — eA(t=%)qq is reachable at time ¢ from the state 0. Similarly, 2o is
controllable at time ¢y to x if and only if xg — e~4(t=%)a is controllable at time
to to state 0. It follows that, one can focus on reachable states from the origin
and controllable states to the origin. Finally, note that any state is reachable
from the zero state if and only if any state can be controlled to any other state
as a consequence of linearity. By the invertibility of the exponential matrix

function, it also follows that, any state can be controlled to the zero state if

and only if any state can be reached from any other state.

13



These considerations allow us to concentrate on the set of reachable states

from the zero state at time zero. i.e., the set
Ro := {@ € R": x is reachable from the zero state}.

This is a linear subspace of R" since if ¢(t1;0,0,u(.)) = 2 and ¢(t2;0,0,v(.)) =
z, then by the linearity property (2.5), we have ¢(¢;0,0, aa(.) + 9(.)) = az +
Bz, where ¢t := max{t1,t2}, a(.) is equal to u(.) in the interval [0, ¢] and zero
otherwise, and o(.) is equal to v(.) in the interval [0,¢,] and zero otherwise.
We now give an explicit expression for the control input which drives the state
trajectory to a given state starting at the origin. It will be seen that controls
which achieve the task in an arbitrarily small time exist (provided there are no

bounds on the control input). We first prove the following fact. Let us denote
<A|ImB >:=ImB+ ImAB+ ....+ ImA"'B = Im[B AB..... A" 'B].
Lemma 2.3.1. Let
W, = /Ot A" BB A dr, t >0,
where A’ denotes the transpose of A. Then,
ImW; =< A|ImB >
for all positive t.
Proof. We show that < A | ImB >1= (ImW,)* where for a subspace R C

R", R* denotes the orthogonal complement of R in R™. First, suppose that

x €< A|ImB >, then

t’'B=0, ©’AB=0, --- 2’/A"'B=0.

14



By Cayley Hamilton Theorem, z'A*B = 0, Vk > 0. Thus
o0 /ALtLB

AtB Z

It follows that
t 13
W, = / 'eA"BB'e" Tdr =0, Vt > 0.
0

Hence ¢ € (ImW;)*. Now suppose that = € (ImW;)*. Then a'W;z = 0 so
that
t !
/ | B'e*"2 ||? dr = 0.
0
Therefore, B'e472 = 0, V7 € (0,t). Now repeated differentiation at 7 = 0

yields B'(A')*z = 0 for k = 0,1, ...,n — 1 which implies 2 €< A | ImB >%. O
Theorem 2.3.1. The set of reachable states is given by
Ro=<A|ImB>.

If v €< A|ImB >, then there exists a z, such that x = Wz, and v is reachable

from zero by the application of the input
u(r) := B'e? ("7, 7 €[0,1] (2.13)

for any t > 0.

Proof. Let © € Rp so that for some ¢ > 0 and some u(7), 7 € [0,¢], we have
= o(t:0,0,u(r)), ie.,

tOOA/»
c—-/ A(tTBu clT—/ Bu (lT—ZAk
0

By Cayley-Hamilton theorem, x € ImB4+ImAB+.....+ ImA" 1B, It follows
that < A | ImB > contains Rg. Conversely, suppose that € ImB+ImAB+
..... + ImA™ ' B. Hence,

t I3 t 1 !
T = / eA"BB'eA" 2 dr = / eAt=TV BB A (") 5 dr = (8;0,0, B'eA (77 2,).
0

0
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Therefore,  is reachable from zero by the input w(7) := B'e4’¢=7)z, for 7 €

[0,¢] for arbitrary ¢ > 0. 0

We call the system (2.1) completely reachable, or simply reachable if Ro =
R", which is the case if and only if < A | ImB >= R", by Theorem (2.3.1). If
the system (2.1) is reachable, then any @ € R" is reachable from zero by the
input

’LL(T) = B/eA/(t_T)I/‘/t_IfC, TE [O,f] (2'14)

for any t > 0.

Note that smaller is the time during which a state is reached, larger is the
magnitude of some entries in the control function due to the appearance of
W' in (2.14). It might be wondered if there is some other bounded control
transferring the zero state to a given nonzero state in arbitrarily small time.
However, this is not in general possible. Using elementary methods of varia-
tional calculus, the control function (2.13) can be shown to be the minimizing

function for the energy functional

/0 () u(t)dt.

Thus, fast control requires large control energy and wice versa.

Alternatively, we can state the following rank condition for reachability.

Corollary 2.3.1. The system (2.1) is (completely) reachable if and only if

r(mk[B AB .. A™'B | =n.

Since complete reachability is a property determined by the matrices A and
B only, the phrase “(A, B) is reachable” is also used to refer to reachability of

(2.1).

16



2.4 Transformation of Linear Systems

Many system properties remain unchanged under coordinate transformations

in the states, inputs, and outputs.

Definition 2.4.1. Two LTI systems X, := (A}, B;,C1, D) and Yy :=
(Ag, B3, C3, Dy) are called equivalent if there exist nonsingular matrices T €

R™"™ R e R™™, 5 € RP*P such that

Ay =TAT ' B, =TB,R',Cy = SC;T™", Dy = SD,R™.

The systems ¥; and ¥, are thus equivalent if one can be obtained from
the other by nonsingular coordinate transformations in the state space R", the
input space R™, and the output space R”. Interpl"eting the matrices as maps,

we have the commutative diagram of Figure 2.1 for equivalence.

D1

Figure 2.1: Equivalence of linear systems

Since A; and A, are related by a similarity transformation, the eigenvalues
and their multiplicities remain unchanged under system equivalence. Reach-
ability is also preserved under equivalence as expected. Given the equivalent

systems £y and ¥q, ¥y is completely reachable if and only if ¥y is completely

17



reachable. To see this, note that
B2 A2B2 /’L}L—lBQ ] dlag {Ra Rv 1R} =T }31 A]Bl AIIL_IBl :I .

Since R and T' are nonsingular, the result follows by Corollary (2.3.1).

2.5 Separation of the Reachable Part

If a LTI system is not reachable, it is possible to identify a maximal “part” of
the system which is reachable. The fact that Ro is an A-invariant subspace of

R” allows one to do this.

Definition 2.5.1. Given any A € R™", a subspace S C R"™ is said to be
A-invariant if A € S foralz € S.

Example 2.5.1. The subspaces {0} and R" are clearly A-invariant for any
matrix A. If A has all its eigenvalues distinct and real, then the span of any

collection of the corresponding eigenvectors is an A-invariant subspace of R™.

Given A € R", there is a one-dimensional A-invariant subspace of R™ if and
b

only if A has a real eigenvalue.

Fact 2.5.1. The reachable subspace Ry is the smallest A-invariant subspace

containing ImB of R™.

Proof. Let * € Ry so that * = 29 + 1 + ... + 2n_1, where x; € A'ImB
for i = 0,1,.n — 1. Now Az; € (A" ImB) C Ro for i = 0,1,.n — 2 and
Az,_y € (A"ImB) C Ry, where the last inclusion is by Cayley-Hamilton the-
orem. Hence Ry is a A-invariant subspace containing ImB. Any A-invariant
subspace containing ImB in R™ should contain A'ImB for ¢ = 0,1,..n — 1.

Therefore, Rg is the smallest A-invariant subspace containing ImB. d0

18



Let the columns of a matrix Ry be a basis for Ry and let a matrix R; be
such that T := [Ry R;] is nonsingular. Since Ry is A-invariant containing ImB,

there exist matrices Ay, Ay, Az and By such that

A A, B
A[RO R]] - [Ro R]] ) B = [Ro }‘Zl] .
0 Aj 0
We thus have
A A B
riar=| " TP, rB=| . (2.15)
0 As 0

Note that

dimRy = rank| B AB .. A”‘IB]=7’ank <T"1[B AB .. A"‘IBD

[ B, AB, .. AMB
= rank = 7'ank[ B, AB, .. AV!'B ]
0 0 0
By Cayley-Hamilton Theorem, this is equal to mn/s:[B1 ABy ... AMTIB ],
where n; = sizeA;. We have thus shown: If dimRy = ny < n, then

there exists a nonsingular matriz T such that (2.15) holds for some matri-
ces A, ¢t = 1,2,3 and By such that size Ay = ny and (Aq, By) is a reachable
pair. The particular form (2.15) attained by system equivalence is called the

reachable normal form.

An alternative criterion for reachability is as follows.

Corollary 2.5.1. The system (2.1) is (completely) reachable if and only if

rank [ sI—A B ] =n, Vs € C.

Proof. [Only If] Suppose rank [ sI— A B ] # n, for some s € C, then
there exists a nonzero ¢ € C™ such that ¢'(sI — A) =0, ¢'B = 0. This gives

q’[B AB ... A”‘IB]=0-
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Since ¢ # 0, there exists a nonzero vector in the left null space of the reacha-
bility matrix. By Corollary (2.3.1), (A, B) is not reachable.

[If] If (A, B) is not reachable, there exists a nonsingular T € R™*™ such that
(2.15) holds. Now, for s € o(A3), we have det(s] — Az) = 0 and hence

[SI—Al —As B
rank

< n then, rankT™! [ (sI -A)T B ] <n (2.16)
0 sl — A3 0 ‘

which implies that rank [ sI—A B ] < n. O

We close this chapter by the following definition, the terminology being

explained in Section (3.3).

Definition 2.5.2. The pair (A, B) is called stabilizable if either (A, B) is
reachable or o(As) C C_, where Aj is defined by the reachable normal form

(2.15).

Corollary 2.5.2. (A, B) is stabilizable if and only if

rank [ sI—A B ] =n, Vs € Coy. (2.17)

Proof. [If] If (A, B) is not stabilizable, there exists T € R™™ as in (2.15),
where (A1, By) reachable and o(A3) ¢ C_. Hence there exists s € Coyp No(As)
such that det(s] — A) = 0 so that (2.16) holds and rank [ s—A B ] <n
for this s € Cot N o(As).
[Only If] If rank [ sI—A B ] < n for some s € Cy,, then

sl —-A, —-A;, B

rank <n=rankT! [ (s — AT B ] < n.
0 sl —A; 0



Let 0 # g € C™ be such that ¢’ = [ 4 4 ] and

, , S]— Al —Ag Bl a 10
[ql qz} = 0. (2.18)

0 sl — A3 0
By (2.18), qj(s] — A1) = 0, ¢;B; = 0 so that ¢y = 0 by reachability of
(A1, By). Hence, again by (2.18), ¢3(s] — As) = 0 for ¢; # 0. Therefore,
SEO'(A3)QCO+. g

2.6 Notes and References

The definition of state is due to Belman et al. [1], [2]. The theorem for the
existence and uniqueness of the solution to (2.1) can be found in [3]. The
invariance property (2.4) of (2.1) is explained in detail in Callier and Desoer [4].
The books [5], [6], [7] can be consulted for further background on stability
of systems. The concept of reachability and controllability is introduced by
Kalman [8] in the context of optimal control. The idea of the separation of
the reachable part is due to Kalman [9], [10]. The criterian for reachability
in Corollary (2.5.1) is known as Hautus Belevich Popov (HBP) test because
original sources include [11], [12] and [13]. More fundamental facts of linear
algebra used such as Cayley Hamilton theorem and their proofs can be found

in [14].



Chapter 3

STATE FEEDBACK

A primary objective of control theory is the relocation of the system eigen-
values in order to achieve desired characteristics such as stability, satisfactory
transient response. We assume in this chapter that all state variables are avail-
able for control purposes and show that if system is completely reachable, then

any desired characteristic polynomial can be obtained by state feedback.

Consider the state equation in (2.1),

&(t) = Az(t) + Bu(t), t > 0. (3.1)

If the input is a linear constant function of the states, then we can write
u(t) = Fa(t), F € R™*". (3.2)
The two equations (3.1) and (3.2) lead to a closed-loop unforced system
#(t) = (A+ BF)a(t) (3.3)

driven only by the initial state @p = @(0) as shown in Figure 3.1.
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| x(0)
]
Y =(A,B,C,D) X

]

Figure 3.1: The system (2.1) with state feedback

3.1 Reachability and Feedback

In this section, it will be shown that exponential stability of the closed loop
system with arbitrarily large decay rate can be achieved by state feedback if

and only if (3.1) is reachable.
We first note the following properties of the induced matrix norm.
Fact 3.1.1. For every A € o(A), || A |l:= Sltp;v;gguﬁ_iﬁl“ >l A .

Proof. Let A be an eigenvalue of A and @; be a corresponding eigenvector.

Then, || Azy ||=| A ||| 21 || so that 1A=l —| X[ It follows that

el —
Ax
suposo 255y

[ |

Fact 3.1.2. For every A € o(A),

” 6At ”Z' e/\t |: eRe{/\}t.



Proof. Let z; be a corresponding eigenvector of A € o(A). By the series
expansion of the exponential matrix function

Areqth
i +
n!
Attt

n!

CiAt.’L'l = %1+AT1’+ ..... +

(3.4)

By (3.4), e is an eigenvalue of e“!. The result follows using Fact (3.1.1). O

Theorem 3.1.1. The pair (A, B) is reachable if and only if Vy > 0, IF, €

R™" and M, > 0 such that

|| eA+HBEIL < M e, vt > 0. (3.5)

Proof. [If] Suppose (A, B) is not reachable. Let T' € R™ ™ be nonsingular

putting (A, B) into reachable normal form as in (2.15). For any F € R™*",

A A
0 As

B,

el
0

T-Y(A+ BF)T =

where F'T = [ F FZ‘]. Then

A+ BiFy Ay + BF,
0 A

T”M+BMT=[

Let

;o A+ BiFy Ay + ByFy
0 Az

By Fact (3.1.2), || eMA+BF)t || > eReldalt where A3 € o(A3). Suppose now
that Vy > 0, there exist F, and M, > 0 such that (3.5) holds. Choosing

v > —Re{)3}, we have

M‘Ye—-'yt _>_” e(A+BF»,)t ”Z eRe{,\g}t.
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[t follows that

M, > elfeldabimt, (3.6)
Since Re{As} + 7 > 0, (3.6) fails for large t. Hence, if (A, B) is not reachable,
then (3.5) is not satisfied for some v > 0.
[Only if] Let

= € — —_ A’ _ — A
W, :=/ e A"BBe A Tdr = e WA,
0

where W, is as defined in Lemma (2.3.1) and ¥ := ~B’W75_1. Since (A, B) is
reachable, by Lemma (2.3.1), W.™! exists. Consider the candidate Lyapunov

function V(z) := 'W,.z for & = (A + BF)'z. We have

V(z) = ()7L = 2'W,(A + BF)2
=2 [f$2'e A" BB'e A" A'zdr + 22'W.F'B'z.
Hence,
Vi) = — 06 a—d; | B'e=*"z || dr — 22'BB'z. (3.7)

By (3.7), V(z) < 0. Using Lyapunov Theorem, there exists M > 0 such that
” 6(A+BF)’t “:“ e(A+BF‘)t ”S M, Vi > 0.

Note that, using Corollary (2.3.1) it can easily be shown that, (A, B) is reach-
able if and only if (A 491, B) is reachable. Hence, given any v > 0, there exist
F,, M, such that || A+ T+BI)E [< M, So, || eA+BF! ||< M e, Vit > 0.

Then

F,=-BWS!

£,y

(3.8)

where
W, = / T (AT gDy,
gy 0 ¢
The state feedback F, of (3.8) achieves the desired decay rate in the closed

loop system (3.3). O

o
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The expression (3.8) for the state feedback shows that a small amplitude
closed loop state and/or a large decay rate, can be achieved at the expense
of allowing large magnitudes in the entries of the state feedback, i.e., at the

expense of a “high-gain” state feedback.

3.2 Eigenvalue Assignment

If (A, B) is reachable, not only can one achieve an arbitrary decay rate for the
closed loop system of Figure 3.1, but can also assign the spectrum of the closed
loop system at any given n-points in the complex plane, the only restriction
arising due to the fact that the state feedback F' is a real matrix. In this
section, we first show that, using state feedback, a reachable system can be
made reachable from a single input, usually any of the m input components
with nonzero eflect on the state. The eigenvalue assignment result for single-
input systems is then used to construct a state feedback achieving the desired

spectrum for the original multi-input system.

Lemma 3.2.1. Consider (3.1). If (A, B) is reachable, then for some b = Bv #

0, there exist uy, ug, ...... Un—1 Such that the vectors

1 = b= Bv (3.9)

Ty, = Ar 4+ By

z, = Azn,_1+ Bu,—;

are linearly independent.



Proof. The proof uses induction on n. Forn =1, a; = b # 0 and the statement
is true. Suppose that zi,...x) are linearly independent. We show that there
exists uy such that @y,...@y, x4 are linearly independent for & < n. Suppose
that such ug does not exist. So xp41 = Ay + Buy is in span{z,,...x;}. Let
L := span{zy,...x1}. Then Azy + Buy € L, Yuy. By setting v = 0, Axy € L.
It follows that Buy € L. Hence L is an A-invariant subspace containing ImB.

Therefore L 2 R, by Fact (2.5.1). This implies that &k = n. O

Lemma 3.2.2. [f (A, B) is reachable and b = Bv # 0, then there evists F
such that (A + BF,b) is reachable.

Proof. By Lemma (3.2.1), there exist uy,..u,_; such that zy, ..., z, of (3.9) are
linearly independent. Let I be chosen such that Fay = u; for k = 1,.n — 1.
Then

(A+ BF)x, = Axy + Bup = @41, k= 1,2.n — 1.
So, 2x41 = (A + BF)*b, k = 1,2..n — 1. Therefore

rank [ b (A+BF)o ... (A+BF)*1b } =n.
Hence (A + BF,b) is reachable. |

Theorem 3.2.1. The following are equivalent.
(i) (A,B) is reachable.
(ii) For every set I' := {v1,...7n} C C which is symmelric with respect to the

real azis, there exists F such that c(A+ BF) =T.

Proof. (ii) = (i) Suppose that (A,B) is not reachable, and let ' € R"*" put
(A, B) into reachable normal form (2.15). Then
Al A2 B]l’-,l B2F2

o(A+BF)=0o(T"'(A+BF)T)=0¢ + )
0 A 0 0



where FT = [ F B } It follows that

A+ BiFy Ay + Byl

0 As )

= 0'(/41+BlF1)UO'(Aj3). (310)

oc(A+ BF) = a(

By (3.10), the eigenvalues of Az are in 6(A+ BF'). So o(A+ BF') can not bhe
an arbitrary set.

(1) = (i) If (A, B) is reachable, then by Lemma (3.2.2), there exists F} such
that (A + BFj, Bv) is reachable for some nonzero Bv. Let A:= A+ BF, and

b:= Bv. Note that there exists a transformation matrix 7' putting (A, b) into

control canonical form, i.e., T" i1s such that

0 1 0 0 0
0 0 10 0

TAT-! = CTh=1{ |, (3.11)
—&, —a, —ln | 1

where a;’s are determined from
det(sl — A) = 8" + Gp_y1 8™ 1+ ... + &y5 + éo.

Givenany I' = {v1,...,1} € C, let (s—y1)(s —72)-..(s —7n) =: 8"+ an_18"" 1 +
v + a18 + ag, ﬁ} = [flo—ao c e Gpeq — Gpey }, and Fy = FZT. It

F := Fy + vF;, then the spectrum of the closed loop system is

o(A+ B(Fy +vF)) = o(T(A+ B(F, + vE))T™") = o(TAT ™ + ThE).



By (3.11),

- - -
0 1 0 0 ( 0
0 0 1 0 0
0-(14 + BFY) = 0 + [ to — Ao Up—1 — Up—1 ]
—do —fll "dn—l J I i ] /}
( 0 1 0 0
0 0 1 0
= 0 ={7,...m}="T. (3.12)
—Go, —ai —0p-1 J

The state feedback F' constructed by the algebraic method in Theorem
(3.2.1) achieves the decay rate max;{—Re{v;}} for the closed loop system.
Similar to the state feedback of Theorem (3.1.1), this feedback matrix also has
entries of large magnitude if it achieves a large decay rate since ap = ¥;...»

appears in its expression.

3.3 Stabilizability

[f (A, B) is not reachable, then neither eigenvalue assignment nor exponential
stability with arbitrary decay rate is possible in the closed loop system. We
show in this section that it is still possible to achieve exponential stability with

decay rate being determined by the eigenvalues of the “unreachable part” of

(A, B) provided (A, B) is stabilizable.



Theorem 3.3.1. There exists a state feedback F' € R™ " such that (A +

BF) C C_ if and only if (A, B) is stabilizable.

Proof. [if] Suppose that (A, B) is stabilizable. If (A, B) is reachable, the result
follows by Theorem (3.2.1) on letting I' be any symmetric subset of C_. If

(A, B) is not reachable, then in the reachable normal form, A; has all its

0]

J) = o(A; + B1F1) U o(Az),

eigenvalues in C_. Note that for any F,
A A By

0

o(A+BF) = o(T"Y(A+BF)T)=0¢
0 /‘13

3 A+ BiFy Ay + B Fy
-7 ( { 0 A
(3.13)
where F' := [ F, F, } T-!'. Since (A;, By) is reachable, there exists F} such
that o(A; + BiFy) C C_. Hence, by (3.13), o(A+ BF) C C_.
[Only If] Suppose that for some F', one has o(A+ BF') C C_. Then by (3.13),
o(A3) C C_. O

By Theorem (3.3.1), the eigenvalues of A3 can not be shifted by any state
feedback. For this reason, the matrix As of the reachable normal form is
sometimes referred to as the “unreachable part” of (A, B). Also note that all

the eigenvalues of A, of the reachable normal form can be assigned arbitrarily.

3.4 Notes and References

For Lyapunov theorem and its proof, the hook [6] can be referred to. As

reported by Kailath [15], Bertram perhaps was the first one who realized in
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1959 that if the system was controllable, the desired characteristic polynomial
could be obtained by state variable feedback [15]. In 1962, Rosenbrock [16]
discussed this problem but a complete statement and result was not given.
Eigenvalue assignment problem and complete solution was first published by
Rissanen [17], in a similar way, Popov [18] also obtained the same result for the
multivariable systems. Lemma (3.2.1) and (3.2.2) in Section (3.2) are due to
Heymann [19] and Wonham and Morse [20]. The control canonical form for a
single input system is first published by Popov [21]. A more detailed discussion

of stabilizability can be found in [22].
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Chapter 4

OBSERVABILITY AND
OBSERVERS

When the states are not available for measurements or when engagement of
all the components of the states for feedback is not desirable, the simplest
approach to achieving the control objectives would be to reconstruct the states
from available mesurements, the outputs, and then apply the known state
feedback techniques. The most direct means of reconstructing the states is to
design an observer. Whether the states can be reconstructed at all is an issue
that must first be studied. This gives rise to the concept of observability. In

this chapter, we discuss the concept of observability and the design of dynamic

and functional observers for a LTT system.



4.1 Observability

Consider the LTI system (2.1) with ¢(¢;¢,, z,, u(.)) denoting the value at time
t > 0 of the trajectory resulting by the initial state 2y at to and by the appli-
cation of input u(.) in [to,t]. Also let n(t.p(t;ts, xo,u(.)),u(.)) be the value of
the output at time ¢ > 0 resulting from application of the input w(.) in [to, ]

starting with the initial state xg.
Definition 4.1.1. A state 29 € R" is said to be unobservable in [tg, ;] if
7](t,(,9(t, to,.’L'o,O),O) = 0, vt € [to,tl], to < tl (41)

i.e., when no input is applied, the state xy gives rise to zero output al all times

m [to, tl] .

Note that if zg is unobservable in [to,¢;], then its effect on the out-
put is indistinguishable from that of the zero initial state x(¢p) = 0 since
n(t,0(t;¢5,0,0),0) = 0. In what follows, we show that, as a consequence of

time-invariance of (2.1), the interval of unobservability is immaterial.

Theorem 4.1.1. The following are equivalent:
(1) A state zo € R™ is unobservable in [to,t,] for some to < t1.
(ii) zo € Ny Ker CA'.

(ii1) x¢ is unobservable in [t,s] for any t < s.

Proof. It is obvious that (iil) = (i). (1) = (ii): If x is unobservable in [to, t1],

then by (4.1) and (2.3),

n(t, ot Lo, 7oy u(.)),0) = Ce*0zg = 0, V1 € [to, 1].
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The last equality evaluated at ¢t = to gives Czg = 0. Taking the derivative of

both sides of this equality successively and evaluating at ¢ = t,, we obtain
CA'zo=0,i=0,1,...,n— 1.

Hence, zo € /2, Ker CA'.
(i1) = (iii) If (i) holds, then by Cayley-Hamilton theorem, C Alzg = 0 for all

¢ > 0. It follows that for any t < s,
n(t, ¢(7; 5,0, u(.)),0) = Ce g = 0, Vr € [¢, ],

by the series expansion of the matrix exponential. Thus, x¢ is unobservable in

[i‘,S]. )

Let us define the unobservable subspace of ( 21) by

no := {wo € R" : xois unobservable in [0, ¢] for some ¢ > 0}.

By Theorem (4.1.1),

n—1
no= () KerCA,

=0
so that 7o is a subspace of R".
Fact 4.1.1. The unobservable subspace 1o is the largest A-invariant subspace

contained in Ker C' of R™.

Proof. By Cayley-Hamilton theorem, 7o is A-invariant. Moreover, it is the
largest A-invariant subspace contained in Ker C. To see this, note that any
other such subspace 7 satisfies n C Ker C and, by A-invariance, it also satisfies

Ain C Ker C which impliesn C Ker CAifori=0,...,n—1. Hence,n Cnmo. O
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Suppose 1o # {0}. Let the columns of a matrix Ny be a basis for 5y and
let a matrix Ny be such that 7' := [Ny N;] is nonsingular. Since span Ny is
A-invariant in Ker C, for some matrices A;, ¢ = 1,2,3 and (', the following
equalities hold:

A A,
AT =T cer=]o ¢, (4.2)
0 As

where size Az = dimng. Since span Ny is the largest A-invariant subspace in

KerC, it also follows that

n—1 ng—1 )
dim () Ker C1Ay = (] Ker C1A} = size Az = n — dim 1.
=0 1=0
Alternatively, note that
C 0 C] ] r Cl -
, CA 0 C)A; C1A;
n—dimny = rank T| =rank = rank
0
| cAa ] 0 CiAp! | | C1 A3 |
By Cayley-Hamilton theorem,
c e
CA C] /‘.3
rank = rank
] CAn—l J i leAgs—l -J

so that dim N2y Ker Cy AL = size Az = n — dim .

Definition 4.1.2. We call the system (2.1) or the pair (C, A) observable if
no = {0}. The system (2.1) or the pair (C, A) is called detectable if o (A;) C
C_, where Ay is as defined by (4.2).
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C

C'A
Note that no = {0} if and only if rank =n.

Y An—1
| ¢A J
We have shown above that if a system (2.1) is not observable, then it is

equivalent to a system

A A
0 As

([ e ] , T'B, D), (4.3)

where (C1, As) is observable and size A; = dimng. The sytem (4.3) is referred

to as the observable normal form.
Corollary 4.1.1. The pair (C, A) is observable if and only if

sl — A
C

rank =n, for all s € C.

sl — A

C
nonzero ¢ € C™ such that ¢'(s/ — A’) =0, ¢'C’ = 0. This gives

< n, for some s € C, then there exists a

Proof. [Only If] If rank

q’[(}' A'C . Af(n-l)c"] = 0.

e

. CA
Since ¢’ # 0, rank < n.

CVAn—l
L ]
[If] If (C, A) is not observable, there exists a nonsingular 7' € R"*" such that
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(4.2) holds where (C', A3) is observable. For s € o(A;),

sl — Al —A»
T=Ysl — A)
rank 0 sI — Az | <n, then rank T < n. (4.4)
C
0 C
sl — A
Hence rank < n. O
CV

4.2 Dynamic Asymptotic Observers

Except in some trivial cases where the matrix ' has full row rank, any re-
construction of the state z(0) from the measurements y(t), ¢ € [0,¢,] in the
LTI system (2.1) necessitates dynamic processing. An asymptotic observer is
a LTI system, the output of which asymptotically tracks the states of (2.1). It
is driven by the available system inputs and outputs. A block diagram of the

asymptotic state reconstruction process considered in this section is given in

Figure 4.1.

u y
. (AsB’C:D)

OBSERVER

Figure 4.1: Open loop system state reconstruction

Consider a LTI system

z(t) = Jz(t) + Ky(t) + Lu(t), t > 0, (4.5)
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where J € R™*"* K € R™*?, and L € R™*™. The system (4.5) is a can-

didate observer for (2.1) and the vector z(t) is called the observer state. The
system (4.5) is called a full-state observer if for all initial states xg,zp € R™,

and for every input u(¢),
tlim | z(t) — =(¢) ||= 0,
—00

where z(t) and z(t) are the solutions of (2.1) and (4.5), respectively. Let us

define the error vector by

The error obeys the equation

é(t) = Jz(t)+ Ky(t) + Lu(t) — Az(t) — Bu(t)
= Jz(t)+ KCuz(t) + KDu(t) — Az(t) — Bu(t)
= (A=KCQe(t)+(J — A+ KC)z(t) + (L — B+ KD)u(t).

Setting

J = A-KC, (4.6)
L = B-KD, (4.7)

the error equation simplifies to é(t) = Je(t). If o(J) C C_, then limy_.o ||
¢(t) ||= 0 for all eg = zo— 0. Any observer satisfying the special choice (4.6) is
called a Luenberger observer. It is clear that (4.5) is a Luenberger observer
if and only if there exists I € R™*" such that o (A — KC) C C_. The order
of the Luenberger observer is thus equal to the order of the system it observes.
The decay rate of the Luenberger observer, when it exists, is defined as the
decay rate of the (exponentially stable) error system é(¢) = (A— K C)e(t). The

crucial matrix K is called an output injection matrix for the system (2.1).
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We now examine the conditions under which a Luenberger observer exists.

Theorem 4.2.1. The following are equivalent:

(1) (C, A) is observable.

(ii) For every v > 0, there exists a Luenberger observer for (2.1) achieving a
decay rate v for the error system.

(1i1) For all symmetric family of n complex numbers A, there evists KN such

that o(A — KC) = A.

Proof. Note that (C, A) is observable if and only if (A’, C’) is reachable, as
e,

CA
rank = rank [ C' A'C! (A1 ] .

i C An-l j
Hence, the result follows from Theorem (3.1.1) and Theorem (3.2.1) upon re-

placing A, B, and F by A’, C’, and — K, respectively. O

Thus, observability of (2.1) is a necessary and suflicient condition for the
existence of a Luenberger observer of arbitrarily large decay rate. Note that the
same comment in Chapter 3 concerning large decay rate also applies here, i.e.,
a large decay rate in the observer is achieved by high gain output injection. If

the decay rate is of no particular concern, then an observer exits under weaker

condition.

Corollary 4.2.1. The following are equivalent:
(i) (C, A) is detectable.

(ii) There exists a Luenberger observer for (2.1).
(iii) There exists K such that o(A— KC) C C_.
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Proof. (1)= (i1): (C, A) is detectable if and only if o(A;) € C_, where A; is
in (4.2). Note that

Al A2 - 1(1 (.71

o—(J)=0(A—I\’G)=a( T‘I(A—KC)T):J :
0 A3 — [(201
(4.8)
Ky i
where K := and T, A,, As,Cy are as in (.2). Since (Cy, A3) is ob-
[\’2

servable, there exists K such that o(A3 — K2C)) C C_. Hence, o(J) C C_
and limo || €(t) ||= 0, for all initial states ey = zp — xo. So, there exists a

Luenberger observer.

(ii)= (iii): If there exists a Luenberger observer, then the error system is

asymptotically stable and
o(J)=0c(A—-KC)CC._
for some K.

(iit)= (1): If there exists K such that o (A — KC') C C_, then using (4.8)

o(Ay) € C_. This implies that (C, A) is detectable. O

4.3 Functional Observers

As an application of ideas used in obtaining a Luenberger observer, we now

consider construction of functional observers which find applications in fault

diagnosis. See e.g., [23].

If not the whole state but the reconstruction of some linear combinations of
state components 2;(t) € R", 7 = 1,...,n is desired, then the order of observer

can be less than n. A LTI system (4.5) is called a functional observer if for
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some T' € R™*",

z(t) — T2(t) ||= 0, Yo, 20 and for all inputs u(t),

lim |
t—o0

where z(t) and «(t) are solutions to (4.5) and (2.1). The error vector in this

case 1s defined as

e(t) := z(t) — Tz(t),
which obeys
é(t) =Je(t)+ (JT —TA+ KC)a(t)+ (L — TB+ KD)u(t).

By analogy with the synthesis of the Luenberger observer, suppose it is possible

to satisty

L=TB-KD, (4.9)
JT —TA=-KC, (4.10)
o(J)C C.. (4.11)

Then, the error system é(t) = Je(t) would be asymptotically stable and the

error would converge to zero exponentially fast for all initial states g = z9—T'2¢

and for all input w(t).

We examine the equations (4.9), (4.10), and (4.11). Clearly, if there ex-
ist matrices T € R™*"*, J € R™*" and K € R"™*? satisfying (4.10) and

(4.11), then L can be defined by (4.9), and the functional observer synthesis is

complete.

Fact 4.3.1. Given any matrices A, B, and C of compatible sizes, the matriz

equation AX — X B = C has a unique solution X if and only if the eigenvalues

of A and B are disjoint.

41



Proof. See [24, pages 220-225]. d

By Fact (4.3.1), for every K, there exists a unique nonzero T' € R*"

satisfying (4.10), provided J is chosen such that
o(J)No(A) = 0. (4.12)

One way of synthesizing a functional observer is as follows:

(i) Choose any positive integer no and a matrix K € R™*P.
(ii) Choose any J € R™*™ fulfilling (4.11) and (4.12).

(iii) Determine a T € R™*" satisfying (4.10). Here, T' # 0 provided C # 0.

Note that since o (A) is a finite number of points in the complex plane, fulfilling
(4.11) and (4.12) simultaneously is easy. The resulting functional observer re-
constructs at least one linear combination of the state components. The decay
rate of the error system can be made as large as desired due to the freedom
in assigning the spectrum of J in step (ii). The drawback of this procedure
is that one does not have control on the number of linear combinations of
state components that can be reconstructed. While one would like to choose a
matrix 7' that has as many linearly independent rows as possible, this matrix
is obtained through the solution of the matrix equation (4.10) after fixing K
and .J. Determining the exact relation between rank 7' and matrices K and
J seems to be a diflicult problem. However note that, if (C, A) is observable,

then the choice T' = I is possible while satisfying all three conditions (4.9),

(4.10), and (4.11).



4.4 Notes and References

As reported by Kailath [15], definitions of observability and controllability and
the duality between them were worked out by Kalman in 1959-1960 given in [8].
Observer theory dates from the paper [25] by Luenberger. Minimal order state
observers for LTI systems is first introduced by Luenberger [25]. Murdoch [26]
described a procedure to obtain a minimal order observer providing a specified
linear functional of the state vector. Unknown input observers are discussed by
Basile and Marro [27]. O’Reilly [28] provides further background on observers

for linear systems.
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Chapter 5

DYNAMIC STABILIZING
CONTROLLER

The state feedback and the observer syntheses of Sections (3.2) and (4.2) can
be combined to obtain a LTI system which stabilizes the original system (2.1).
In this chapter, we first study the Kalman canonical decomposition which can
be viewed as a more detailed normal form that can be attained by simple
equivalence than the reachable and observable normal forms. We then give a
procedure of synthesizing an observer plus state feedback scheme which leads

to a dynamic controller that stabilizes the system (2.1).
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5.1 Kalman Canonical Decomposition

Given (2.1), consider the reachable subspace Ry and the unobservable subspace

no which are both A-invariant subspaces of X = R". Let
X1 = Ro N Mo,

which is also an A-invariant subspace of X. Let X, be the complement of
X in Ry, X3 be the complement of X; in 7y, and Xy be the complement of

X16p X, @ X3z in R*. We thus have
X=X19X:80 X538 X,.

It 75, « = 1,2,3,4 are basis matrices for X;, 1 = 1,2,3,4, respectively, then

T := [ T, Ty Ty Ty ] is a basis for X = R". Note that

All A12 A13 A14
0 Ap 0 Ay

A[Tl T2 T3 T;:l = [Tl T’g T3 T4] )
0 0 Az Ay

0 0 0 1444. J

oy
I

[Tl T, Ty n] , (5.1)

C T1 T2 Tg T;:l = [0 Cg 0 04]7

where the zero entries in the new matrix representations of A, B, and C are
obtained by A-invariance of X, X; @& X;, X; & X3 and by the facts that

X9 X3 C KerC, ImBC X, & X;.



The block diagram shown in Figure 5.1 is obtained from the equations in
(5.1). As seen in this block diagram, the input affects only the subsystems
Y1 = (A, B1,0,D) and Xy = (A, By, C2, D) and the output is affected only

by the subsystems ¥, and ¥4 = (Ay44,0,Cy, D).

u 22 ; Y

23

Figure 5.1: Kalman decomposition

Theorem 5.1.1. Given the system (A, B,C, D) and the decomposition (5.1),
the following hold:

Ay A B
(1) oo : ' is reachable.
0 A B,

Agp  As
(i1) [ c, O, ] , woo is observable.
0 Ay

(iii) (Cy, Aa2) is observable and (Aqg, By) is reachable.

(iV) Z(S) = C‘(S] — A)_IB + D= 02(5[ - Azz)_l.Bz + D.

Proof. (1): Note that

mnk[B AB . A’HB} = rank <T‘1[B AB . A"“BD
B AB . . A*'B
= rank ,
0 0 0
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. Ay A . B
where A = ! 12 and B = ! . Hence
0 Agg B,
rank [ B AB A" IB ] = rank [ B AR AL B ] = dimRy
= n;+ng,

where ny := size(A; ;) and ny 1= size(Az). By Cayley-Hamilton theorem

A

rank [ B AB An-1B ] = rank [ B AB . Ar-1R ] , (5.2)

where 2 = ny +ny. By Corollary (2.3.1), (5.2) implies that (A. B) is reachable.

(i1): Let T .= [ T, Ts Tp Ty }, which is obtained by a permutation of the

columns of 7. Then, CT = [ 00 Cy, Cy4 ] and

p-

All A13 A12 Al4

T’—IAT _ 0 A33 0 A34
0 0 A22 /12_-;

0 0 0 /LH |

. Ayp A .
Setting A = l: o } , C

0 A
- c o ¢
CA 0 CA
rank =rank | . =n —dim{n} = n — (ng + na),
n—1 Y An—1
| CA™™ | | 0 CA™ ]

where n; := size(Ay;) and nz := size(Ass). Thus
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o
CA

rank =n — (ng +n3z) = ny + ny,

Cv/in—l
where ny := size(Ass) and np is as defined before. Using again Cayley-
Hamilton theorem, (C, A) is observable.

(iii): By (5.2), the rows of [ B AB . A*-1B | are linearly independent.
Note that
Bl * £

rank [ B AB _ An-1B ] = rank ) ,
By, ApB, . . AL'B,

where “x” denotes entries whose values need not he written explicitly. By this
equality, the rows of [ By, A.B, . AQ;I B, } are linearly independent.

Once again by Cayley-Hamilton theorem,
rank [ By ApB, . . AR'B, } = rank [ By, AnB, . A3%7'B, J ,

so that (Aaz, By) is reachable. Following a similar reasoning, it can be shown

that (Cg, Agz) is observable.

(iv): Note that, the transfer matrix of the system (A, B, C, D) can be written

as
Z(s) = C(s — A)'B+ D = CT(sI — T~ AT)"'T~'B + D.

Using the equations in (5.1), we have
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[ 61— A —Ap =3 A | [ B ]

0 sl — Agg 0 —/134 Ba
Z(s) = [0 Cy 0 c',] +D

0 0 SI - /’133 bt 131 0

L 0 0 0 S[—A.H J L 0 ]

-1
sl — A —-A 2 B )
= [ 0 Cy ] 8 ' ' +D = C"Q(SI - A'gg)—lBg + D.
0 sl — Agg Bg

g

By (iii) and (iv), the transfer matrix Z(s) depends only on the control-
lable and observable subsystem of (2.1). This explains why the input-output
description is sometimes insufficient as a representation of the system since the
uncontrollable and/or unobservable parts do not appear in the transfer matrix

description.

5.2 Combined Observer and State Feedback

Controllers

We can now counsider how to combine an observer and a state feedback to

construct a dynamic stabilizing controller for (2.1).

The observer described in Section (4.2) is used to reconstruct the states. If
a constant feedback u(1) = Fz(t) is utilized, with the estimated state = as its

input instead of the state @, then Figure (5.2) is obtained.



%] (AB,C,D)

F OBSERVER[-_

Figure 5.2: Closed loop observer plus state feedback configuration
Using (2.1), (4.5) and u(t) = Fz(t), we have

T A BF T
: KC J+(L+KD)F || = |

If (4.6) and (4.7) are satisfied, the unforced closed loop system of Figure 5.2 is
describe by the state equation

T A BF a
= . (5.3)
z KC A-KC+ BF

The eigenvalues of the combined system matrix in (5.3) are the roots of the

determinant of

Al — A —-Br
—KC M—-A+KC - BF

Note that
A=A _BF [ A — A —BF
det = det
~KC M—A+KC = BF
[\ —A— BF _BF
0 M— A+ KC

= det

Thus, the spectrum of the combined system matrix in (5.3) coincides with

o(A+ BF)Uo(A— KC).

| (M -A+KC) M—-A+KC

|



A consequence of this expression is that the state feedback and observer
can be designed independently of each other. As far as the eigenvalues are
concerned, it is immaterial to the state feedback whether the estimated state
z or the actual state @ are available. The eigenvalues of the entire system are
the union of those of the closed loop system obtained by a state feedback and
those of the error system obtained by an observer. This property is called the

separation principle of the state feedback-observer design procedure.

Hence, we can state

Theorem 5.2.1. The following hold:
(i) There exists an observer plus state feedback scheme which asymptotically
stabilizes the closed loop system with arbitrary decay rate if and only if (C, A)
is observable and (A, B) is reachable.
(i1) There caists an observer plus state feedback scheme which asymptotically

stabilizes the plant if and only if (C, A) is detectable and (A, B) is stabilizable.

Proof. (1) The spectrum of the closed loop system matrix coincides with o(A+
BF)U o(A— KC). Using Theorem (3.2.1) and (4.2.1), the closed loop system
is stabilized with arbitrary decay rate if and only if (C, A) is observable and
(A, B) is reachable.

(ii) Using Theorem (3.3.1) and Corollary (4.2.1), the plant is asymptotically
stabilized by an observer plus state feedback scheme if and only if (C, A) is

detectable and (A, B) is stabilizable. O



5.3 Notes and References

Kalman Canonical Decomposition originates from the papers [9] and [10]. The
computation of the reachable/observable canonical form is presented by [29].
Dynamic stabilizing controller construction via observer plus state feedback
scheme is first given by Brasch and Pearson [30]. The separation principle for
feedback controllers is due to Luenberger [25], [31]. Our presentation of the

basic properties of linear systems made use of Chapters 1-4 of [32].



Chapter 6

FRACTIONAL
REPRESENTATIONS

Given a transfer function of a scalar LTI system, or more generally, any real
rational function of s, it can be written as the ratio of a numerator and a
denominator polynomial in s. Such a representation is a polynomial fractional
representation or a polynomial factorization of the given rational function.
IExtensions of this idea in two different directions are possible. IMirst, the nu-
merator and denominator entries can be elements of any subring of the field
of rational functions rather than the ring of polynomials. Second, similar frac-
tional representations can be obtained for rational matrices of s and not only for
scalar rational functions. In this chapter, we give a construction for fractional
representations of a transfer matrix, where the numerator and denominator
entries themselves are transfer matrices of stable LTT systems. Such fractional
representations are known as stable proper fractional representations or as sta-

ble proper factorizations. The particular construction given in this chapter



is based on a state space representation of the transfer matrix and on state

feedback and output injection matrices.

6.1 Right and Left Coprime Fractional Repre-

sentations

Let S denote the set of stable transfer functions, i.c.,

gs) . p, ¢ are polynomials such that deg p < deg ¢ and
q(s
q(s) has all its roots in C_}.

p(s)

A rational function ¢(s) == is said to be proper if deg p < deg q and strictly
q(s) p 949 \

~—

=

S:={

proper if deg p < deg ¢. Consider a transfer matrix G(s) of a LTI system with
r inputs and p outputs.

Definition 6.1.1. (i) An ordered pair (N, M), where N € SP*", M € S™", M
is nonsingular, and M~ is proper, is called a right coprime factorization

over S of G if G = NM™1 and there exist Q € S"™?, P € S™" such that
QN + PM = I. (6.1)

(ii) Similarly, an ordered pair (M,N), where N € SP*", M € SP*, M is
nonsingular, and M~ is proper, is called a left coprime factorization over

SofGif G = M=YN and there exist Q) € S™*?, P € SP*? such that
NQ+MP =1 (6.2)

(i) G = NM~! = M~N with N, M, M, N over S and where M. M are

nonsingular and have proper inverses, is a doubly coprime factorization



over S if there exist ), P, Q, P over S such that

M —QJ [1 0}
| = : (6.3)
N P 0/

Note that if right and left coprime factorizations are given, then a doubly

P oQ
-N M

coprime factorization can also be obtained. To do this, let (N, M), (M, N) be
any right coprime factorization (r.c.f) and left coprime factorization (l.c.f) of
(+. Then there exists Q, P, Q, P over S such that (6.1) and (6.2) hold. Let
A:=QP—PQ, P, :=P—NA, Q,:=0Q+ MA. Thus (6.3) is satisfied with

these new P, and (),.

Fact 6.1.1. (i)(A, B) is stabilizable if and only if there exist stable rational

matrices Ri(s), Ra(s) such that,
(SI - A)R](S) + BRz(S) = ], (64)

(i1) (C,A) is detectable if and only if there evist stable rational matrices

Ri(s), Ra(s) such that,

Ri(s)(s] — A) + Ra(s)C =1,

Proof. Only (i) is proved since (C, A) is detectable il and only if (A’,C") is
stabilizable. So, (ii) follows by (i).

[If] Suppose (6.4) can be written but (A, B) is not stabilizable. Then, by
Corollary (2.5.2), there exist s € Coy and a nonzero vector ¢ € C" such that
¢(sl —A) =0, ¢B = 0. For this s, Ri(s) and Ry(s) are both well-defined
(i.e., not co) since all poles are in C_. Hence, (6.1) yields ¢ = 0, which is a
contradiction.

[Only If] If (A, B) is stabilizable, there exists a stable feedback F' such that
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o(A+ BIF)C C_, or equivalently, (sI — A— BF)™!is a stable rational matrix.

But then,
(s] —A)(sI —A—BIF)*—BF(sl —A—-BI') ' =1

and (6.4) is satisfied with Ry := (s/ — A — BF)™, Ry, := —F(s[ — A -
BIML O

6.2 Coprime Factorization From State-Space

Description

Consider the system (2.1). The transfer function of this system is
Z(s)=C(sI — A 'B+D.

Suppose (A, B) is stabilizable and (C, A) is observable. The objective is to
obtain a doubly coprime factorization of Z(s). In Theorem (6.2.1), one such
factorization is given. To prove this theorem Lemma (6.2.1) and Lemma (6.2.2)
are used.

Lemma 6.2.1. Lel G(s) = C(sI — A)7'B. A doubly coprime factorization of
(7, the matriz equality (6.3) in which M, M have proper inverses , is obtained

by the matrices

N = C(sI-A-BF)'B
M = I+F(I-A-BF)'B

= —F(sI-A+KC)'K

= I-F(sI-A+LKC)™'B



N = C(sI-A+KC)''B

M = I-C(sI—A+KC)™'K
P = I+C(sI—A—BF)'K
Q = —F(sI—A—BF) 'K,

where F' and K are any matrices such that c(A+BIF') C C_ and c(A+ K (') C

C._.

Proof. We first verify that G = NM~! = M-IN using the matrix identity
Y(I+XY)1=(I+YX)'Y:
NM™' = C(sI-A—-BF)"'B[[+ F(sI~ A— BF)"'B]"'

1

= C(sI =AY I-BF(sI - A" )" 'B[I+ F(sI - A)"'(I - BF(sI — A)~")™'B}~
= C(sI-A)'B(I-F(sI-A)'B)" ' [I+ F(s[ — A)7'B(I - F(sI — A)"'B)™] -!
= C(sI—A)"'B(I-F(sI-A)"'B)"Y(I - F(sI — A)"'B)

= C(sI-A)"'B

= G
The verification that G = M~!N is entirely similar. NM + MN = 0 since
G=NM-'=M"1N
The next part of the proof shows that (6.1) and (6.2) hold. We have
QN +PM = —F(sI-A+KC)"'KC(sI-A—-BF)™'B

+[I = F(sI = A+ KC)™'B] [T+ F(sI - A— BF)™' B

= —F(sI—A+KC)"'KC(sI-A-BF)"'B4+ 1+ F(sI—A-BF)"'B

—F(s] — A+ KC) 'B-F(sI— A+ KC)™'BF(sI — A— BF)™'B.
Note that the following term on the right hand side of the above equality

F(sI— A+ KC) " [-KC+(sI - A+ KC) = (s = A— BF) — BF)(s] — A— BF)~'B
(6.5)



is zero since the term inside the brackets is zero. Thus (6.1) is satisfied. (6.2)

follows in the same manner. Finally,

—-PQ+QP [[— F(sI — A+ KC)™'B]F(s] — A— BF)™'K

—F(sI = A+ KC) 'K[I +C(s] - A— BF)™ ' K]
= [(sI—A—BF) 'K —-F(sI—A+ KC)™'BF(sI —A—-BF)"'K

—F(sI —A+KC) 'K - F(sI - A+ KC)"'KC(sI — A= BF)™'K.

The right hand side of the last equality is equal to (6.5). Hence —PQ + Qp =
0 |

Lemma 6.2.2. Let N, M, M, N, Q, P, Q, P be a doubly coprime fac-
torization of G(s) and satisfy (6.3). Then a doubly coprime factorization of

G(s)+ D = Z(s) can be obtained by the follow'in.g'7‘epla,ce-me-n,l's:

N « N+DM
P — P—QD
N « N+MD
P« P-DQ.

Proof. Note that (N + DM, M) is the right coprime factorization for Gi(s)+ D
and (N + DM, M) satisfy (6.1) with (Q, P — QD). Similarly (M, N + M D)
is the left coprime factorization for G(s) + D and with (P — DQ,Q), (6.2) is

satisfied. In addition,
~(P-QD)Q+Q(P-DQ) = -PQ+QDQ+QP—-QDQ

= —PQ+QP
= 0.



The following result is an immediate consequence of Lemma (6.2.1) and Lemma
(6.2.2).

Theorem 6.2.1. Gliven the system (2.1) with (A, B) stabilizable and (C, D)

N = (C+DF)sI—A—-BF)Y'B+D
M = I+F(sI—-A-BF)'B

Q = —F(sI—A+KC)7'K

P = I-F(sI—A+KC)"Y(B—-KD)

N = C(sI-A+KC)YB—-KD)+D
M = I-C(sI-A+KC)'K

P = I+4+(C+DF)sl—A-BF)'K

Q = —F(sI—A—BF)'K,

where I' and K are any matrices satisfying c(A+BF) C C_ and o(A+ K(') C

C_.

6.3 Common Factors and Unimodular Matri-

ces

The stable proper fractional representations constructed in the previous section
are such that (6.1) and (6.2) hold. These linear equations over S ensure that
the fractions are coprime. It is our purpose in this section to clarify the relation

between coprimeness and equations (6.1) and (6.2).



Definition 6.3.1. Let N € SP*" and M € S™". A square matriv I/ € 8™
is called a common right factor of the pair (N, M) if there exist N e spxr,
M € S™" such that
N=NE, M =MLE.
A square matriz D € 8™ is a greatest common right factor of the pair
(N, M) if
(i) D is a common right factor of (N, M) and
(i) any other common right factor of E is a right factor of D, i.c., there exists
D € S™" such that
D =DE.
The pair (N, M) is called right coprime over S if there exist matrices @, P
over S such that
QN + PM = 1.
Definition 6.3.2. Let N € SP%" and M € SP*P. A square matriz E € SP*?
is called « common left factor of the pair (M, N) if there exist N e srxr,
M € SP*P such that
N=EN, M=EM.
A square matriz D € SP*P is a greatest common left factor of the pair
(M,N) if
(i) D is a common left factor of (M, N) and
(i) any other common left factor of E is a left factor of D, i.e., there exists
D € SP*P such that
D=FED.

The pair (M, N) is called left coprime over S if there exist matrices @, P

over S such that

MP+NQ=1.
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Fact 6.3.1. Suppose that N € SP*", M € S™" where M s nonsingular and
M~ is proper. Then, (N, M) is right coprime over S if and only if a greatest

common right factor D € S™" of (N, M) is such that D! € §"™*",

Proof. [Only if] if (N, M) is right coprime then there exists Q € S™? and
P € 8" such that QN + PM = I. Let D be a greatest common right factor
of (N, M), then

N=ND, M =MD,
where N € SP*" M € §™". So QND + PMD = I. Multiplying D=! from the
right, we obtain QN + PM = D-!. This implies that D~! € S.
[If] Let G = NM~'. Construct a right coprime representation as GG = NM 1.

So there exist P, () € S such that PM + QN = I. Then
PM + QN = M~ M.

Let D := M~*M. Note that D is a greatest common right factor of (N, M). If
the inverse of all greatest common right factors must be over S since they can
only differ by a left factor whose inverse is also over S. Thus, by hypothesis,
D~! € S. Then,

D'PM + D™'QN =1,

which implies that (N, M) is right coprime. (]

Fact 6.3.2. Suppose that N € SP*", M € SP*P where M is nonsingular and
M~" is proper. Then, (]\7[, N) is left coprime if and only if a greatest common

left factor D € SP*P of (M, N) is such that D™ € SP*».

Definition 6.3.3. Any matriz D € S™" which is nonsingular is called uni-

modular over S if D™! € S™*7,
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By Fact (6.3.1) and Fact (6.3.2), (N, M) is right coprime if and only if
a greatest common right factor of (N, M) is unimodular and (M, N) is left
coprime over S if and only if a greatest common left factor of (M, N_) 1s uni-

modular.

6.4 Some Properties of Polynomial Matrices

[n this section, we present some basic facts about polynomial matrices and give

some results on coprimeness of polynomial matrices.

Definition 6.4.1. (i) Two polynomial matrices M(s) € R[s]"*" and N(s) €
R[s]"*P are right coprime over R[s] if every common polynomial right factor
of M and N is a unimodular polynomial matriz.

(i1) Two polynomial matrices M(s) € R[s|P*P and N(s) € R[s]"*" are left
coprime over R[s] if every common polynomial left factor of M and N is a

unimodular polynomial matriz.

Fact 6.4.1. (i) Given two polynomial matrices M(s) € R[s]"*" and N(s) €
R[s]"*? with M(s) nonsingular, (N(s), M(s)) ts right coprime over R[s] if and

only if there exist polynomial matrices P(s), Q(s) salisfying
P(s)M(s) + Q(s)N(s) = I,.

(i1) Given two polynomial matrices M(s) € R[s]"*? and N(s) € R[s]"*" with
M(s) nonsingular, (M(s), N(s)) is left coprime over R[s] if and only if therc

exist polynomial matrices P(s), Q(s) satisfying

M(s)P(s) + N(s)Q(s) = [,.



Proof. Kailath [15]. g

Fact 6.4.2. Let K, L. M be polynomial matrices with M nonsingular. If
LM~'K is polynomial (respectively, stable rational)

(1) (L, M) right coprime over R[s] implies that K = M X for some polynomial
(respectively, stable rational) matriz X.

(i) (M, K) left coprime over R[s] implies that L = XM for some polynomial

(respectively, stable rational) matriz X.

Proof. Let Y = LM~'K. We only prove (i) as (ii) follows by duality (by
transposition of matrices). If (L, M) is right coprimme over R[s], then by Fact
(6.4.1), there exists polynomial matrices P(s), Q({s) such that PL+ QM = 1.
Hence, PLM™'K + QK = M™'K or PY + QK = M™'K = X. If Y is
polynomial (respectively, stable rational), X is also polynomial (respectively,

stable rational). O

Fact 6.4.3. Let V be a subspace of R™ and let V be a basis matrixz for V. Then,

YV C Ro if and only if there exist polynomial matrices P(s), Q(s) satisfying

V = (sl — A)P(s) + BQ(s). (6.6)

Proof. [If] Suppose (6.6) holds so that
(s1 — A)7'V = P(s) + (sI — A)"'BQ(s). (6.7)

Let us write Q(s) = Qo+ Q15+ ... + Qxs* for constant matrices Q;, 1 = 1,..., k.

Equating the coefficients of s=! on both sides of the equality (6.7), we obtain

V = BQO + ABQ] + ...Ak_lBQA._l.
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Hence, span{V} =V C Ry.
[Only If] Suppose ¥V C Ry so that spanV C< A|ImB >. There thus exist

constant matrices (o, @1, ..., @n_1 such that
V =BQo+ ABQy +...A"'BQ,_,. (6.8)
Multiplying each term in (6.8) on the left by A‘, we have
AV = A'BQo+ A BQ, + ...+ A" 'BQ,._,

for e = 0,1,2.... Thus,

STAWYsT = S ATIBQos™ + S AIBQusT 4+ Z A2 BRQ, 57
=1 =1 i=1 =1

= (s] — A)'BQo + [s(s] — A)'BQ; — BQy] + ...

+ [Sn_l(Sl _ A)_IBQ',L-.] _ Z Ai+n—2BQn_1Si]

1=2—-n

= [(“’[n— A)_IBQS]—’

where Q(s) := Qo+ Q15+...+ Qn-15""! and where [¥(s)]_ denotes the strictly

proper part in the Laurent series expansion of ¥'(s). Therefore,
(sI — AW = (sI — A)7'BQ(s) — [(s] — A)"'BQ(s)]+

or equivalently
V = BQ(s)+ (s — A)P(s),
with P(s) = —[(s] — A)"'BQ(s)]+, where [Y(s)]+ denotes the polynomial part

in the Laurent series expansion of Y'(s). a

Fact 6.4.4. The following hold:
(i) (A, B) is reachable if and only if ((sI — A), B) is left coprime over Rs].
(ii) (C, A) is observable if and only if (C,(sI — A)) is right coprime over R[s].
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Proof. (i): [If] If ((s[ — A), B) is left coprime, then there exist polynomial

matrices X(s), Xz(s) such that
(sI — A)X, + BX,(s) = 1,. (6.9)

Then

[sI—A B}

Xs(s)

So, rank [ sI—A B ] =n,Vs € C. By Corollary (2.5.1), (A, B) is reachable.
[Only if] If (A, B) is reachable, then by Corollary (2.5.1),

rank [ sI—A B ] =n, forall s € C. (6.10)

Then every nonsingular left polynomial factor of (s/ — A) and B must be
a unimodular polynomial matrix. To see this, suppose there exists D(s), a

nonsingular polynomial matrix with detD(s) nonconstant, such that
sl — A= D(s)M(s), B=D(s)N(s)

for some polynomial matrices M(s) and N(s). Then, evaluating at a zero sg
of detD(s), we see that (6.10) fails for s = so. Hence, (6.10) implies that D(s)
has constant determinat, and every common left factor of (sI — A) and B is a
unimodular polynomial matrix. This implies that ((s/ — A), B) is left coprime.
(i1): Note that (C, A) is observable if and only if (A’, C”) is reachable. Then,

O

the proof follows easily by (i).

6.5 Notes and References

The idea of “factoring” the transfer matrix of a system as the “ratio” of two

stable rational matrices was first used in [33] by Vidyasagar, but the analysis of
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the stability of a given plant was considered rather than the synthesis of control
systems. Delinitions of coprimeness, common factors and unimodular matrices
over any principe ideal domain, in particular, over S and over R[s], can be
found in [34]. Coprime factorization from state space description in Section
(6.2) is presented by Khargonekar and Sontag [35] and by Nett, Jacobson and
Balas [36]. Polynomial factorizations and the polynomial system matrix are
introduced by Rosenbrock [37]. Wolovich [38] and Kucera [39] contributes
to this approach. Rosenbrock [40] also presented design methods based on

polynomial factorizations.
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Chapter 7

ALL INTERNALLY
STABILIZING
CONTROLLERS

The main advantage of working with stable proper fractional representations
consists of yielding a simple parametrization of all controllers that stabilize a
given plant. The parametrization is obtained in terms of a free matrix parame-
ter and it is especially suitable for considering additional design specifications to
closed loop stability. In Chapter 5, we studied the construction of a particular
internally stabilizing controller for (2.1). In this chapter we use the fractional
representation developed in Chapter 6 to describe the set of all possible inter-
nally stabilizing controllers. For this purpose in Section (7.1), we first clarify
the link between input-output stability of a feedback interconnection and its

internal stability.
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7.1 Closed Loop Stability

Consider the feedback system shown in Figure 7.1. In this figure, P(s) is
the transfer matrix of a given plant, K'(s) is the transfer matrix of a dynamic
feedback controller applied to the plant, uy and u, are externally applied inputs,
¢) and e, are the inputs to the plant and controller respectively, and y; and y,

are the outputs of the plant and controller respectively.

ul Y el

P
’\’d (s) yl

S

K(s)

Figure 7.1: Feedback loop for internal stability

The system of I'igure 7.1 is then described by

w | I —-K S I 2 P 0 €1 _ (7.1)

U9 -P I €2 Y2 0 K €2
It should be guaranteed that there is a unique solution for the inputs to
the plant and controller in terms of the external inputs and that the transfer
matrix from (w1, wus) to (e, ez) is proper rational. If these two conditions are

satisfied, the system is called well-posed.

If the interconnection is well-posed, then

€1 I -K Uy

€2 -P I U



—-K
Let L :=
—-P I

for =. One of them is

} . It is possible to obtain several equivalent expressions

~1 = (7.2)

[+K(I—PK)"'P K(I[—PK)™
(- PK)-'P  (I—PK)y' |

This is obtained by writing L as a multiplication of two triangular matrices as

| I -K
[t =
0 I-PK

titles
([ — PK)_1 =1+ P(I - KP)_IK, K(I - PI\')_1 = ([ - KP)_lK, (7.3)

-1

I 0
—-P I

) . Using the following matrix iden-

another expression for L=! is obtained as

L=

(I - KP)~ (I — KP)'K } | -

P(I—KP)™ I+ P(I—-KP)'K

Fact 7.1.1. If P(s) and K(s) are proper, then the interconnection is well-posed
if and only if
det([ — P(,,o)[&’(oo)) # 0,

where Py 1= lims_oo P(5), K(co) 1= limy_co K(3).

Proof. If P(s) and K (s) are proper, then (I — PK) is also proper and
I —-PK = Ao + AIS_I + /12.'5_2 + ...

for constant matrices A, £ =0,1,2...

[Only if] If the interconnection is well-posed, then by (7.2), (I — PK)™! exists
and is proper. Let (I—PK)™! = By+ Bys™!' 4 Bys™2 +... for constant matrices
By, k=0,1,2... Then

(AO + /113_1 + A28_2 + )(Bo + B]S_l + BQ.S_Z + ) =1
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so that
AO BO = I ( 7.5)

/loBk + AlBk—l + ...AkBo = 0, I\? = 1,2

Note that Ag = I — Poo) K(x). Thus det(Ag) = det(] — Py () # 0 by (7.5).
[If] If det(] — Poo) K (x)) # 0, then Ag is nonsingular. Hence By exists. Then
by (7.5), By for k = 1,2,3.. can be determined uniquely. Hence (I — PK)™!

exists and is proper. Therefore the interconnection (7.1) is well-posed. a

The interconnection is called stable if it is well-posed and the transfer matrix
from (uy, uz) to (e, €2) is stable rational. Note that stability is defined in terms
of the transfer matrix from « to e not u to y. The reason is that both notions

of stability are equivalent.

Fact 7.1.2. Suppose the system (7.1) is well-posed. The interconnection is

stable if and only if the transfer matriz from (wy,uz) to (y1,y2) s stable.
Proof. Observe that

1 FP O-Fel
Y2 0 [(d_eg

(P oo || 1+KU-PE)'P K(I-PE)" || w
0 K || t-PE)'P (I-PK) ||

| P(I-KP)' PK(I-PK)™ ||
_ ( ) S ) o (7.6)
| K] — PK)'P K(I- PK)™! U
Using the matrix identities in (7.3),
I-PK)'P —I1+4(I-PK)! U
h _ ( ) ( ) 1 (7.7)
Y2 —I+4+(I-KP)"' K(I—-PK) ”
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It is immediate by a comparison of (7.4) and (7.7) that the feedback intercon-
nection is stable if and only if the transfer matrix from (uy,ws) to (y1,y2) is

stable. O
Suppose now that P and K are described by the state space equations of
the form

:'if'p = Apxp + Bpel-; Y1 = (J]):L'p + Dpel’ (78)

t. = Aczc+ Beey, y2 = Cex,. (7.9)

For simplicity, we assume that K is strictly proper. Then, the overall system

is described as

[ T | B ( A, B,C; Tp N B, 0 )

i | | B.C, A.+B.D,C. || = B.D, B.||w |

( €1 ] [ 0 Cc Ty I 0 Uy

= +
| €2 | e D,C. Te D, I Us
Let

\ A, B,C.
A= . (7.10)

B.C, A+ B.D,C. .
The feedback system (7.1) is internally stable if the overall state equation is

A

asymptotically stable, i.e., 0(A) C C_.

Theorem 7.1.1. Suppose that the systems (7.8) and (7.9) are stabilizable,
detectable, and the system (7.1) is well-posed. Under these conditions, the
system (7.1) is internally stable if and only if it is stable.

Proof. [Only if] If the interconnection is internally stable, then a(/i) Cc C_.

Hence the overall system is asymptotically stable and in particular the transfer
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function from w to e is stable rational.

[If] By Kalman Canonical Decomposition, if a system (A, B,C, D) is stabi-
lizable and detectable, then stability of the transfer function G(s) = C(sl —
A)"'B+ D implies that o(A) C C_. Note that the overall state representation
is stabilizable if the plant and controller representations are stabilizable since

with

. B 0
B b
B.D, B.
and A in (7.10),

sI— A, _B,C. B, 0
~B.C, sI-A.- B.D,C. B.D, B.

A

rank [ sI—A B ] = rank

sI—A, B, 0 0
0 0 sI—A B,

= rank

Similarly if the plant and controller representations are detectable, overall state

representation is also detectable. Thus the system (7.1) is internally stable. O

After defining the internal stability of the closed loop system, we charac-
terize the stability of (7.1) in terms of the coprime factorizations over S of the

plant and controller. This is the principal result of this section.

Lemma 7.1.1. Let (N, M) be any right coprime factorizalion of P over S,
and let (Y, X) be any left coprime factorization of K over S. Then the follow-
ing are equivalent:

(i) The feedback interconnection (7.1) is (internally) stable.

-1

YM -X

(ii) is a stable rational matriz.

-N 1



(iii) (YM — XN)=" is a stable rational matriz.

Proof. (ii)= (i) By the definition of L, we have

-1 - -1
- I Y=L o || YM —X || MU 0
~-NM-! I 0 I -N I | 0 I
-1
M 0 YM -X
0 I -N [

~1

YM -X
-N T

that the feedback interconnection is stable.

(i)= (iii) From (7.4),

which shows that L~! is stable since J 1s stable. This implies

M(YM —~ XN)'Y  M(YM — XN)'X
N(YM = XN)'Y I+N(YM-XN)-'X

_1_

If the feedback interconnection is stable, then each entry is stable. Since (N, M)
is right coprime, (Y M — XN)™'Y and (YM — XN)~'X are also stable. By
left coprimeness of (Y, X), it follows that (YM — XN)~! is stable.

(iii)= (ii) Observe that

YM -X (YM — XN)™! (YM — XN)™'X
N I N(YM = XN)"' T4+ N(¥YM—XN)'X |
Thus, if (YM — XN)~! is stable, then left hand side is also stable. (]

Lemma 7.1.2. Let (jfl, ]\7) be any left coprime factorization of P over S, and
let (X,Y) be any right coprime factorization of K over S. Then the following

are equivalent:

(i) The feedback interconnection (7.1) is (internally) stable.
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(ii) 5 is a stable rational matri.

-N MY

(iii) (MY — NX)~' is a stable rational matrix.

Proof. The proof follows along similar lines of Lemma (7.1.1). O

7.2 Parametrization Of All Stabilizing Con-

trollers

The main objective of this section is to parametrize all controllers that stabilize

P in terms of a free parameter which ranges over stable rational matrices.

Theorem 7.2.1. Let (N, M), (M, N) be any right and left coprime factor-
izations of P, respectively. Select matrices P, Q, P, Q) € S with compatible
dimensions such that
P~ ? M —~Q ¥ 9
-N M N P
Then any controller K which stabilizes P is of the form

K=(P+WN)" Y (WM - Q) (7.13)

for some stable W such that (P + W N)=! eists and is proper. If P is strictly
proper, any controller given in (7.13) stabilizes the plant for some stable W.
Conversely, let W be any stable matriz of appropriate dimensions such that
(P + I/VN)‘1 exists and is proper, then the corresponding controller I = (P +

WN)"Y(WM — Q) stabilizes P.



Proof. By Lemma (7.1.1), any stabilizing controller A'(s) = ¥ 71X should be
such that (YM — XN)™! exists and is stable. With U := (YM — XN),
V = U7'Y, X = U~'X, any stabilizing controller A'(s) = ¥~1X should

satisly
YM—-XN=1. (7.14)

Then

(Y- P)M — (X +Q)N =0.
Thus Y —P = WN, X+Q = WM for some stable W given by W = Y (Q+ X P.
This follows since by (7.12) and (7.14), WN=Y—-P,WM = X+Q. Therefore
any stabilizing controller can be expressed by (7.13) for some stable W such

that (P + I/VN)‘1 exists and is proper.

If P(s) is strictly proper, then N and N are also strictly proper. From
PM + QN = I, we have P(OO)M(OO) = [ so that P(,.x,) is nonsingular. Note that
(P + VVN)(OO) = P(m) and thus (P + W N)=! exists and is proper.

Conversely by Lemma (7.1.1), any controller stabilizes the system if and

only if (YM — X N)~! exists and is stable, where K(s) = Y1 X. If
K(s)=(P+WN)" (WM — Q), then

-1

-1
(YM - XN)™' = [ (P+WN)"'M — (WM - Q)M ] = [ I+ W(NM — MN)

= [

Thus any K given by (7.13) stabilizes P.

In Theorem (7.2.1), there is a one-to-one correspondence between the pa-
rameter and the controller in the following sense: Suppose equation (7.12)
holds. Then corresponding to each controller &, there is a unique W such that

K(s)=(P+WN) (WM — Q). In fact, if K = (P + W,N)" " (W, M - Q) =



(P + WoN)"Y (W, M — Q), then by the fact that both factorizations are left

coprime, we have
P+ W N =UP +W,N), WM —Q = U(WyM - Q)

for some unimodular U. These give Wy = UW,, P = UP, ) = U(). By the

last two equalities / = [ and W) = W,.

7.3 Strong Stabilization

As a first application of the parametrization in Theorem (7.2.1), we consider
the following problem called strong stabilization problem: Given a plant
P, when does there exist a stable controller K such that the feedback intercon-
nection of Figure 7.1 is (internally) stable? If such a stable controller exists,
then P is called strongly stabilizable. One motivation for the strong stabi-
lization problem is that if P is strongly stabilizable, then the resulting transfer
matrix has the same C.-zeros as P and no others. Refer to (7.6) and letting

YM - XN =1,

P(I-EKP)™" = NM(I-Y'XNM™)~!

= N(YM-XN)'Y =NY

Since K is a stable controller, then Y is unimodular. As a result N and NY
have the same C,.-zeros. On the other hand, stabilization by an unstable
controller always introduce additional C,.-zeros in the closed loop transfer
matrix beyond those of P. Since the ability of a plant to track reference signal
and reject disturbances is affected by the Cj.-zeros, it is desirable to use a

stable controller in such situations.
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By Theorem (7.2.1), any internally stabilizing controller is given by (7.13)
for some stable matrix W. Such a controller is stable if and only if its de-
nominator matrix P 4+ W N has a stable inverse, or equivalently, if and only if
P+ W N is unimodular. The strong stabilization problem hence has a solution

if and only if there exists a stable matrix W such that
U:=P+WN

is unimodular, where the stable rational matrices P, N satisfy (7.13). Note that
N is the numerator matrix of a left coprime factorization of the plant transfer
matrix and P is a stable matrix that figures in the equation PM+QN = I for a
right coprime factorization (N, M) of the plant transfer matrix. Both matrices
N and P are hence determined once the plant transfer matrix is given. The
mathematical problem of choosing W such that P 4+ WAN is unimodular is
solved in Youla, Bongiorno, Lu [41] and Vidyasagar [42]. Here, we give their

result without proof.

Given a transfer matrix P(s), a complex number s is a blocking zero of
P if P(sp) =0.

The following theorem states necessary and sufficient conditions for strong
stabilizability based on the locations of real unstable poles and blocking zeros
ol the plant.

Theorem 7.3.1. Given P(s), there exists a stable K (s) which stabilizes P(s)
if and only if the real unstable poles of P(s) and the real unstable blocking
zeros of P(s) have a parity interlacing property, i.c., between every two

real unstable blocking zeros of P(s) there exists even number of poles of P(s).

Proof. [41]. o
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7.4 Notes and References

Desoer and Chan [43] presented closed loop stability and its relation to state
space internal stability. The definition and discussion of well-posedness of a
composite system can be found in [44] and [45]. The idea which is the char-
acterization of all controllers that stabilizes a given plant is first presented
by Youla, Jabr and Bongiorno [46]. This characterization is different from
the one in Section (7.2) since it contains both stable rational functions and
polynomials. The characterization in Theorem (7.2.1) of all internally stabi-
lizing controllers is due to Desoer, Liu, Murray and Saeks [47]. The book by
Kucera [39] contains a characterization of all proper controllers for a particular
Hurwitz set. In [41], strong stabilizability is defined and the necessary and
suflicient conditions are given. Anderson [48] also presented a set of conditions
for strong stabilizability based on Cauchy indeces. Simultaneous stabilization
that is designing a controller which stabilizes each of a given family of plants
involves the strong stabilization problem and is developed by Vidyasagar and

Viswanadham [42].
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Chapter 8

DISTURBANCE
DECOUPLING

The unknown inputs to a system are generally termed as disturbance inputs.
Disturbances are physical inputs to the system such as wind gusts influenc-
ing an aircraft or fluctuations of the feed stream in a distillation column. In
control system design one of the additional objectives to stabilization or pole
assignment is decoupling the effect of disturbances acting on the system from
certain system outputs. Disturbance decoupling becomes especially significant
when the designer has no knowlegde of the dynamics of these undesirable in-
puts. We study the problem of cancelling the effect of disturbances using state
feedback and output measurement feedback. Two main approaches to this
problem namely the geometric approach and the transfer matrix approach are

reviewed and the solution techniques of these two approaches are illustrated.
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8.1 A Disturbance Decoupled System

Consider a system with control input u, disturbance input w and output y
¢ = Az+ Bu+ Fuw, (8.1)
y = Ca, t>0,

where A € R*™", B € R¥™™, E € R", (C € RP*". In this section, we

investigate under what conditions on the matrices A, B, E, C the output y(t)

is independent of w(¢t). The output of (8.1) can be written as

y(t) = Ce?a(0) + /Ot CeAt=7) Bu(r)dr + /Ot CeAlt=9) Bw(o)do.
It is independent of w(t) if and only if
¢ " A=) By (0)do = 0, Vi > 0, (8.2)
or equivalently, if and only if
C(sI— A)'E=0, Vs C,

i.e., the transfer matrix from w to y is identically zero.

The following lemma gives a set of necessary and sufficient conditions to

have a disturbance decoupled system.

Lemma 8.1.1. The system (8.1) is disturbance decoupled if and only if one of
the following equivalent conditions hold:

(i) CeME =0, Vt > 0.

(ii) C(sI — A)'E =0, Vse C.

(iii) CA*E = 0, Vk =0,1,...

(iv) < AlImE >C KerC.

(v) ImE C Niz, Ker(CA™).
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Proof. The equivalence of the conditions (1)-(ii) are easy to sece. We show the
equivalence of (iii)-(v).
(iii) & (iv) : By Cayley-Hamilton theorem, (iii) is equivalent to CA*E = 0
for k=1,2,..n — 1, where n = size(A). Hence,

< AlImE >=Im[E AE ... A" 'E| C KerC & CA*E =0, k=0,1,...
(iv) & (v): < A[ImE >= Im[E AE ... A" 'E] C KerC & CAYE =0,
for k=0,1,... & ImECNL, Ker(CA™). O

By (iv) in Lemma (8.1.1), disturbance decoupling problem is solvable if and
only if the largest A-invariant subspace containing /mFE is contained in KerC.

This turns out to be a useful condition in the solution of disturbance decoupling

problem via state feedback.

8.2 Disturbance Decoupling By State Feed-

back

Suppose that the system (8.1) is not disturbance decoupled. The objective
of this section is to find necessary and sufficient conditions for disturbance

decoupling using state feedback.

Suppose that state feedback has been incorporated into (8.1) such that
u(t) = Fz(t), where FF € R™*". The closed loop system under state feedback
18

¢ = (A+ BlI')x+ Fw, (8.3)

y = Cz, t2>0.
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Thus, disturbance decoupling by state feedback is possible if and only if one
ol the equivalent conditions of Lemma (8.1.1) with A replaced by A + BF
holds for some I. We now investigate when such an F' exists by two different

tecniques.

8.2.1 Geometric Approach

This approach is based on the use of certain spaces that are (A, B)-invariant
which will be defined later. The following lemma states the necessary and suf-

ficient condition to have disturbance decoupling system in a different manner.

Lemma 8.2.1. The system (8.1) can be disturbance decoupled by state feedback
if and only if there exists ' € R™ " and an (A + BF)-invariant subspace
YV C R™ such that

ImE CVY C KerC. (8.4)

Proof. If the system is disturbance decoupled, then by Lemma (8.1.1)

< A+ BF|ImE >C KerC. Let V :=< A+ BF|ImFE >. This subspace is
(A4 BF)-invariant and satisfies (8.4). Conversely, if (8.4) is satisfied by an (A+
BF)-invariant subspace ¥V C R"™ and I' € R™*", then since, by Fact (2.5.1).
< A+ BF|ImE > is the smallest (A + BF)-invariant subspace containing Im
ImFE >C KNerC, so

E, we have < A+ BF|ImE >C V. By (84), < A+ BF

the system (8.3) is disturbance decoupled by Lemma (3.1.1). a

In order to obtain a condition purely in terms of the problem data

A, B, I, C, we examine (A + BF)-invariance more closely.

o8]
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Lemma 8.2.2. The following three statements on a subspace YV C R" are
equivalent:

(1) V is (A+ BI')-invariant for some F' € R™*".

(ii) AV CV+ImB.

(iii) For every vo € V, there exists an input u(t), { > 0, such that the solution

of the system

= Ax 4+ Bu, t >0, (8.5)

with the initial condition 2(0) = vg satisfies z(t) € V,Vi > 0.

Proof. (ii) = (i) : Let V be a basis matrix for the subspace V. Then
AV =V Ay + BBy

for some matrices Ay, € R¥#mYxdimV B, c RmxdimV  Gince V has full column

rank it has a left inverse V# satisfying V#V = I. Let F' = —BoV#. Then,
(A4+ BF)V = (A— BB,V*)V = AV — BB, = V A,.

and hence V is (A + BI')-invariant.
(1) = (iii) : If V is (A + BI")-invariant, then for vo € V,

C(A+BF)1:,UO eV.

=

Letting u = Fa, the solution of the system (8.5) with initial condition v

remains in V by the application of this input.
(iii) = (ii) : Since both vy and x(t) V¢ > 0 are in V, it follows that #(0) =

lim; o HCL’(t) — vp| is also in V. But then, by (8.5) and by (iii),

#(0) = Avo+ Bug € V, Yoo € V.
Hence, AV € V + ImB.
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Definition 8.2.1. Let A € R™™", B € R"™™. We say that a subspace V €

R"*™ is (A, B)-invariant if one of the conditions in Lemma (8.2.2) holds.

Note that any A-invariant subspace is automatically (A, B)-invariant by
putting F' = 0 in condition (1) of Lemma (8.2.2). Letl us denote the class of
(A, B)-invariant subspaces of R" contained in a subspace S by V{A, B;S}.
The following property about (A, B)-invariant subspaces in S is important for

our problem. Let V*(A, B; S) be the largest or supremal clement of V{A, B; S}.

Lemma 8.2.3. For every subspace S C R™, V{A, B; S} contains a supremal

element V*(A, B; 5).

Proof. From Lemma (8.2.2), if V;,V, € V{A, B; S}, then

AVi+V,) = AV + AV,

C Vi+WVo+ImB,

hence, V1 + Vo € V(A,B;S). Since S is finite dimensional, there exists
a supremal element of V{A, B;S} which contains every other element in

V{A,B;S}. O

The following theorem which gives a condition for the solvability of our
problem in terms of problem data follows immediately from Lemma (8.2.2)

and the definition of V*(A, B; S).

Theorem 8.2.1. Disturbance decoupling problem by state feedback (DDPSF)

is solvable if and only if

ImE CV*(A, B; KerC).



An algorithm for the computation of V*(A, B; Ker(') is given next.

Theorem 8.2.2. Let A € R, B € R™™ and let S be a subspace of R".

Define a sequence of subspaces V' by

VO = IS’,

Vo= SNATYVT 4 ImB) i=1,2, ...
where for a subspace 7, A7 (1) := {x € R : Av € 7}. There exists k < n
such that

Vi=V*(A4,B;S)

forall v > k.

Proof. Observe that the sequence V* is nonincreasing. The proof is by induc-
tion. Clearly V! C VO. If V! C Vi~1, then
Vit = SN ANV + ImB)
C Sn A_I(Vi_1 + ImB)
= V.
Thus, for some k, V' = V* (¢ > k). Moreover, V¥ is (A, B)-invariant and

contained in S. In fact, since V¥ C S, we have

AVE = AVFL C A(SN ATY(V* 4+ ImB))

C V¥4 ImB.

Now, ¥V € V{A, B; S} if and only if

VCS, VCANY+ImB). (8.6)
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From (8.6), V C VY, and if YV C Vi1,

Yy C SNnA YV +ImB)

C SNAN VT 4+ ImB)

V.
Hence, ¥ C V*. Since V is arbitrary, V¥ = V*(A, B; S). O

Theorems (8.2.1) and (8.2.2) give a constructive solution to the disturbance

decoupling problem by state feedback based on the geometric approach.

8.2.2 Transfer Matrix Approach

In this section, we examine the same problem by using a different technique.
We show that the problem can be transformed to existence of a solution to
a matrix equation of the form G5(s) + G1(s)Y(s) = 0. We also incorporate

stability requirement and investigate the construction of a solution.

Theorem 8.2.3. Consider the system (8.3) and suppose that (C, A) is observ-
able. Let Gy(s) := C(s] — A)"'B, Gy(s) := C(sl — A)™'E. DDPSF has a

solution if and only if the equation

Gi(s)Y(s)+ Go(s) =0 (8.7)

has a strictly proper rational matriz solution Y (s).

Proof. [Only if] If DDPSF has a solution, then by Lemma (8.1.1), there exists

a state feedback F' € R™*" such that

C(sI — A— BF)'E =0.
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Then

C@I—AY4[I—BFQI—AY‘TJE=U
Using the matrix identities in (7.3),
C@f—AYJ{1+BF@]—AYJ[1—BF@]—Ay1TJ}E = 0
C(sl —A)'E+C(sl — A)'BF(sI— A—BIF)7'E = 0.
With Gy(s), Ga(s) defined above and with
Y(s):= F(sI — A— BF)™'E, (8.8)

(8.7) is satisfied.
[if] Let Y(s) be a strictly proper solution of (8.7) and let Iy, Kg, Lo be such
that

Y (s) = Fo(sI — Ko)™* Lo,

where (Fo, Ko) is observable and ( Ky, Lo) is reachable. In what follows we con-
struct the required F' out of Fy. Let N(s), M(s) be right coprime polynomial

matrices such that

(sI — Ko)™' Lo = N(s)M(s)™". (8.9)
By (8.7) and (8.9),
C(sI — A)[BFuN + EM] = 0.
By observability of (C, A), and by Fact (6.4.4), we have
EM + BFyN = (sl — AT, (8.10)
CT =0

for some polynomial matrix T'(s). As (N, M) is right coprime, there exist

polynomial matrices P, () such that

PM 4+ QN =1
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and

TPM+TQN =T. (8.11)
Dividing T'Q) on the right by (sI — Ky), we have
TQ =T(sl — Ko) + V, (8.12)
where V is constant and 7' is a polynomial matrix. By (8.11) and (8.12),
(TP+TLy)+ VNM™' =TM™".

Since TM~', VNM~™" are strictly proper and (I'P 4+ TLg) is a polynomial
maltrix,
TP+TLy = 0
T = VN. (8.13)
By (8.10) and (8.13),
FE =Vl (8.14)
We now show that N has R-linearly independent rows.
If gN(s) = 0 for some constant g, then gNM~! = g(sI — Ko)™'Ly = 0. By

reachability of (Ko, Lo) and by Fact (6.4.4), we have

(s — Ko)P+ LoQ =T

for some polynomial matrices P and (). Hence,

gB(s) = g(sI = Ko)™"

so that ¢ = 0. This proves that N has R-linearly independent rows. Thus by

(8.10) and (8.13),
cV =0
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and by (8.9), (8.10), (8.13)and (8.14)
AV = VK, + BF,.

It follows that span{V'} is an (A, B)-invariant subspace containing /mFE, and
by (8.14), contained in KerC. If V has linearly independent columns, the

required state feedback is constructed as
F = —FV#,

where V#V = [. If V does not have full column rank, then let U be a nonsin-
gular constant matrix such that VU = [ Vi 0 ] with V; having full column

rank. It is easy to see that there exist constant matrices Ly, Ky, Fi satisfying

E = Wi,
cVi =0

AVy = VK. + BF,.
Hence, [ := —F; V¥, where V1#V1 = [ is a solution. a
We now examine the problem of DDPSF with stability. The following

theorem gives the necessary and sufficient condition.

Theorem 8.2.4. Consider the system (8.3). Suppose (C, A) is observable. Let
Gih(s) = C(sI — A)™'B, Go(s) = C(sI — A)~'E. DDPSF with stability has a

solution if and only if (A, B) is stabilizable and the equation
G1(8)Y(s) 4+ Ga(s) =0 (8.15)

has a strictly proper and stable rational matriz solution Y (s).
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Proof. [Only if] If DDPSE with stability has a solution, then there exists a

state feedback F' € R"*™ such that
C(sl —A— BF)_IE =0

and

c(A+ BF)CC._.
Hence (A, B) is stabilizable, Y(s) in (8.8) is a strictly proper and stable solution
of (8.15).
[if] Let Y(s) = Fy(sI — Ko)~ Lo be as in the proof of Theorem (8.2.3) with
(Iy, Ko) observable and (Ko, Lo) reachable. In addition, since Y'(s) is a stable
rational matrix, o(Ly) C C_. We obtain a full column rank constant matrix

V such that

AV = VK, + BF,
CV =0 (8.16)

E = Vi

as in the proof of Theorem (8.2.3). Since V has full column rank, there exist

maitrices W, 1% , V of compatible sizes such that

W B
_ [ V Vv ] =]1.
W
Let A:=A— BIyW, then for some constant matrices K, Ky, By and B;, we

have

~ . o] [ [\’0 1\,1
A [ vV Vv ] = [ Vv Vv | ; )
0 K,

v ] By
B:[VVJ b
2
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By stabilizability of (A, B), the pair (A — BFyVW, B) is also stabilizable. Thus,

by Corollary (2.5.2),

sl — .[(0 —[X’] B1
rank =n, Vs € Coy,

0 sl — ]"2 B2
where n = size(A). This implies that (K3, By) is also stabilizable. So there
exists F5 with compatible size such that

0'([&’2 + BgFIQ) - C._.

Now,

. o . 1| Ko IG . By
(/1+BF2W)[V v] _ [vv +[v V} [0 Fz]
ok,

= [ vV V
N 0 .[\,2 + B2F2

| Ko K, + B, FZJ

Hence (A + BF,W) C C_. Therefore, F := F,W — FoW is a stabilizing

feedback achieving decoupling for the system (8.3). (]

8.3 Disturbance Decoupling By Measurement

Feedback

If the whole state is not available for feedback but some prescribed output is,
then disturbance decoupling can be achieved under more restrictive conditions.
In this section we formulate and solve a general disturbance decoupling problem

by measurement feedback (DDPMF) without and with stability.
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Figure 8.1: Two channel system with measurement feedback

Consider a plant (7(s) having two vector inputs and two vector outputs.
Control input, disturbance input, measured output, and controlled output are
represented by u, w, y and z respectively. A dynamic feedback controller is
applied at the input u and output y so that the resulting closed loop system
has input w and output z. The first problem considered is to determine such
a controller K (s) such that the controlled output = is independent of the dis-

turbance input w. The closed loop system is illustrated in Figure 8.1. We

have

v | Gu(s) Gra(s) u Cu= _K(s)y, (8.17)
z Gai(s) Gaals) w
where we assume that Gy1(s) is strictly proper for well-definedness of the feed-
back loop. For decoupling, the disturbance input to control output transfer
matrix
Tow = Gag — G K(1 + G111 K) ' Gy (8.18)

should be identically zero.

Lemma 8.3.1. Consider the system (8.17). Assume that Gy is strictly

proper. DDPMTF is solvable if and only if there exists a proper rational matri
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Y'(s) satisfying
G22 = Ggl)’/C;lg. (819)

Proof. [Only if] If DDPMF is solvable, then there exists a controller K such
that (8.18) is satisfied. Let Y(s) := K(I + G;;K)~!. Then Y (s) is proper and
satisfies (8.19).

[If] If there exists a proper Y(s) such that (8.19) is satisfied, then

let I{ := (I =Y Gqy)7tY. Thus (8.18) is satisfied. Note that since Gy, is strictly

proper and Y (s) is proper, K is also proper. O

We now impose the additional requirement that the closed loop is internally
stable. Thus, DDPMF with stability requires the existence of a controller K(s)
which solves internal stability problem for the plant (7);(s) and, T%, in (8.18)
is identically zero. Let

Gu=NM"'=M"'N
be a doubly coprime stable factorization of G4;. Thus, there exist stable ma-
trices P, @, P, Q such that
P Q M —-Q I 0
-N M|| N P 0 I
By Theorem (7.2.1), any K which internally stabilizes (G1; is necessarily of the
form
K(s)=(P-0ON)(Q+0M) (8.20)

for some stable proper rational matrix ©.

Lemma 8.3.2. Consider the system (8.17). DDPMF with stability is solvable

if and only if the following equation

Gy — Gt MQG Yy = Gy MOMG (8.21)

93



has a stable proper rational matriz solution ©.

Proof. [Only if] If DDPMI® with stability is solvable, then there exists a con-
troller K'(s) of the form (8.20) which satisfies (8.18). Let P := P — ON and
Q:=Q+ OM. Then

Gy = GuK(I+ G K) Gy
= GuP QU+ NM'P'Q) Gy
= Gu(I+ PP OQNM=YY'P QG
= GuM(PM + QN)'QC,
= GaMQG,
= UuM(Q+ OM)G,.

Thus (8.21) is satisfied.
[If] if (8.21) is satisfied for some stable proper ©, then with this ©, K (s) in

(8.20) is a stabilizing controller satisfying (8.18). d

We now state a more compact solvability condition to disturbance decou-
pling problem by measurement feedback without and with stability in terms

of polynomial system matrices.
Let

. u Y C 0 Wi, u
:L‘:A.’E—I-[B E] , = r+
w D Wy Wo, w

[

be a canonical realization of the system (8.17).
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‘"Theorem 8.3.1. Suppose that (A, B) is stabilizable and (C, A) is detectable.

Consider the equation

sl—A F s-A B X(s) sl—A K
-D I/sz —-D I/Vgl —(’ I/Vlz

(a) Disturbance decoupling problem by measurement fecdback without stability s
solvable if and only if the equation (8.22) has a proper rational matriz solution
X(s).

(b) Disturbance decoupling problem by measurement feedback with stability is
solvable if and only if the equation (8.22) has a stable, proper rational matrix

solution X (s).
Proof. See [49] O

The matrices that figure in (8.19) are over the principle domain of proper
rational matrices. The equation (8.21) can on the other hand be transformed
to an equation over the principle domain of stable proper rational matrices.
The solvability conditions to matrix equations in terms of system zeros can be
found in Ozgiiler [50]. The solvability of (8.22) on the other hand in terms of

system zeros is discussed in [49].

8.4 Notes and References

The idea of (A, B)-invariant subspaces and the results given in Theorem (8.2.1)
and Theorem (8.2.2) were presented independently by Basile and Marro [51],

[52] and by Wonham and Morse [20]. Numerical aspects of the computation of
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supremal element V*(A, B; KerC) are discussed by Moore and Laub [53] and
by Linnemann [54]. The transfer matrix approach to DDPSP has been given
by [55] in a model matching context. The solution of DDP by measurement
feedback via transfer matrix approach is obtained by Ohm, Howze and Bhat-
tacharyya [56]. In Ozgiler and Eldem [49], a polynomial fractional approach
has been used to obtain a solution to DDP with measurement feedback with-
out or with stability in terms of matrix equations involving polynomial system

madtrices.
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Chapter 9

TRACKING AND
REGULATION

A general control problem requires the design of a controller such that the
closed loop system is internally stable,
(i) The output of the plant tracks a desired reference signal, and

(i1) The output of the plant rejects the effect of a disturbance signal.

We shall assume that the reference and disturbance variables satisfy known,
time invariant, linear differential equations so that the combined system can
be obtained. This combined system need not be controllable and observable

or even stabilizable and detectable.

In this chapter, we first consider a prototype regulation problem known
as output stabilization problem. We then consider a scalar system and ob-
tain a necessary and sufficient condition for the solvability of a tracking with

regulation problem for this scalar system. We then discuss regulator problem

97



with internal stability (RPIS) for a multivariable system with a single output

channel.

9.1 Output Stabilization Problem

We consider the system

t = Az + Bu, (9.1)
z = Dz, t2>0,
where A € R*™" B € R"™™, and D € RP**. The problem is to stabilize

the output z(¢) using state feedback. Hence, the aim is to determine a state

feedback I¥, such that Yz,
=)l = |D eUWBP a0)] = 0 as t — oo. (9.2)

Note that (9.2) is equivalent to the requirement that D(s] — A — BF)™!is a

stable transfer matrix.
The conditions for the existence of state feedback F' such that (9.2) is
satisfied are stated in this section. Now we have

Theorem 9.1.1. Given the system (9.1). Suppose (D, A) is observable and
0(A) C Coy. The following are equivalent statements:

(i) Output stabilization problem (OSP) is solvable.

(i1) There exists a stable transfer matriz X(s) and a strictly proper transfer
matriz Y(s) such that

X(s) = D(sI — A)™' + D(sI — A)"'BY (s). (9.3)

(iii) < A|[ImB > +V*(A, B; KerD) = R™.
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Proof. (1) = (ii): If OSP is solvable, then there exists I such that D(sl —
A — BF)™!'is a stable rational matrix. Let X(s) = D(s/ — A— BF)~! so that
X(s) = D(sI— A - BF(sI - A7
= D(sl — A)™! { I+ BF(sl — A)7'[I — BF(s[ — A)~1]7! }
= D(sl — A"+ D(sl — A)"'BF(s] — A — BI")™%.

Thus, with Y (s) = F'(s] — A — BF)~, (ii) holds.

(i) = (iii): Let Y(s) = Fo(sI — Ko)™* Lo be a canonical realization of Y (s)

and let

(s] — Ko) ' Lo = N(s)M(s)™" (9.4)
for right coprime polynomial matrices N, M. Then by (9.3) and (9.4),
XM = D(sI — A)7'[M + BFyN].

By the assumption of observability of (D, A) and by Fact (6.4.4), D and (s/—A)
are right coprime. By Fact (6.4.2), it follows that

XM =DX (9.5)
for a stable rational matrix

X = (sI — A)Y[M + BF,N]. (9.6)

Since 0(A) C Coy, X is also an unstable rational matrix. It follows that

X should be a polynomial matrix. As (N, M) is right coprime, there exist

polynomial matrices P, ) such that
PM+ QN = X.
Dividing @) by (sI — Ky) on the right, we have

Q= Q(sI — Ko) +V
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for a polynomial matrix Q and a constant matrix V. Hence
PM +Q(sI —Ko) N+ VN =X
Since X M~ is strictly proper by (9.6), from this equality we obtain
X =VN. (9.7)
Substituting (9.7) in (9.6) and (9.5),

X = DV(sI - Ko) Lo

I = [(s] — A)V — BFy)(sI — Ko)™" Lo.

By reachability of (Ko, Lo), (8] — Ko) and Lg are left coprime. Fact (6.4.2)

gives

(sI — A)V — BFy = V(sI —K,) (9.8)
I = Vo (9.9)

X = DV(sI— K)™! is stable rational. (9.10)
By (9.8), span{V} is (A, B)-invariant and by (9.9), V is of full row rank.

We now identify the part of span{V} which is in KerD. Let T be a
nonsingular matrix such that (DVT,T-'K,T) is in observable canonical form,

l.e.

, Ky 0
sz:[DloyTﬂmTz , (9.11)
K; K,

where (Dy, K) is observable. Let

vi=lv w| 7=|n 1] (9.12)
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with 741, V) having the same number of columns as D;. By (9.8), (9.11) and

(9.12), we have

(sI — AWy = BTy = Vi(sI — Iy) — Vo (9.13)
(s] — A)Vy— BETy = Vy(sI — k) (9.14)
DV, = 0 (9.15)

and by (9.10) and (9.11),
XT = Dy(sI — K;)™V.
By observability of (Dy, K;) and by stability of X7',
o(K;) C C_.

Since V is of full row rank,

R" = span{Vi} + span{V,},
where by (9.14) and (9.15)

span{Va} CV*(A, B; KerD). (9.16)

We now show that span{Vi} C< A|lImB > +span{Vy} which will complete
the proof that R" =< A[ImB > +V*(A, B; KerD). Let V, be a basis matrix

for span{V2} and let Vi be such that [‘71 Vg] is nonsingular. Hence there exist

R R
[‘/1‘/2] . = 1.
Vs

Note that V4 = V,W; + V,W, for some W, and full row rank Wi. By (9.14)

Vl, Vg such that

and (9.15),
(sI — AV, — BFyTy = Vy(sI — K,), DV, =0
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for some suitable 15, V5. Thus,

(s] — A— BEyToVa)Vy = Vi(sl — K,) (9.17)
DV, = 0. (9.18)

Substituting V) = ‘;’1 Wi + VzW'fz in (9.13) and adding BFOTA'-ZV?Z Vl =0,
(1 = A= BRTy Vo) (Vi Wi +VaWa) = BESTy = (ViWy + VaWa)(s] — K1) = Vo
for some matrices T) and K. Using (9.17),

(s] — A — BIyToVa)ViWy = Va(K, Wy — Wo K, — Ks) + ViWy(s] — K,) + BFyT.

(9.19)
Multiplying every term on the right by a right inverse W, for Wi, we have
(sI — A — BIToVy)Vy = Vol + Vi(sl — Wi K W) + BR,TIW,  (9.20)

for some constant §. The next step is to show that (W4, Ifffl, ‘713) is reachable.
Suppose not, so that for some eigenvalue A of (W, K W, 1) and for some nonzero

vector y, we have
yT (M — W K W) =0, yTV B = 0.
Then by (9.20) and (9.17),

yTVi(A — A — BFTy V)V = yTVi( M — A)V;, = 0

yIViM = AV, = 0.
Hence X is an eigenvalue of A, since yTV, # 0. By (9.19),

yTWi(M — Ky) = 0.



Therefore A is an eigenvalue of K. However a(A) N o(K;) = @ which yields
a contradiction. Hence (WK, 4% 1 Vi B ) 1s reachable and by Fact (6.4.3), there

exist polynomial matrices )y, P; such that
(s — Wi Ky W) Py(s) + ViBQay(s) = 1.
Using W V =1-V,V, and multiplying on the left by V;,
Vi(sI — Wi K W1)Py(s) + BQa(s) — VaVaBQa(s) = V4.
By (9.20) and (9.17),

Vi = (s — A)ViPy(s) + BQs(s) + VaQu(s)
= (sI — A= BRy[,Vo)Vi Po(s) + BQs(s) + VaQu(s)

= (s] — A— BFyT3V3)Ps(s) + BQs(s) + Vol

for some polynomial matrices Q4(s), Qs(s), P3(s), and a constant matrix L;.

By Fact (6.4.3), it follows that
span{V;} C< A|ImB > +span{V;}

and

span{V1} C< AlImB > +span{V,}.

Therefore, by (9.16),
R" =< A|ImB > +V*(A, B; NerD).

(iii)= (i): Let V; be a basis matrix for V*(A, B; KerD) and V] be such that

[ Vi V, ] is nonsingular. Then, by (iii),

span{V1} C< A|lImB > +V*(A, B; KerD)
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i.e, span{Vi} is either reachable or contained in span{V;}. Therefore by Fact
(6.4.3), there exists a constant matrix i’y and polynomial matrices Py(s), Q2(s)
such that

Vi = (sI — A)Py(s) + BQa(s) + Vo iy (9.21)
Since [ Vi V, ] 1s nonsingular, we have

AVi = Vi, — VK (9.22)

for some constant matrices K3, ;. By the fact that 1, is a basis for

V*(A, B; KerD),
AV, = Vo Ky — BFy, DV, =0 (9.23)
. . 4 . .
for some constant matrices K3 and Fp. Let | | be the inverse of [ Vi V, ]
V, |
Then, by (9.23), (9.22) and (9.21),
(s — A— BF0‘72)Y/2 = Vo(sl — Ky) (9.24)
DV, = 0 (9.25)

(s — A— BF,V,)Vi = Vi(sI — Ky) + VK3

(s] — A — BFoV3)Py(s) + BQa(s) + oKy = Vi (9.27)
for some polynomial matrix Q3(s).
We now show that (K, 171B) is reachable. By multiplying (9.27) on the
left by V4, and by (9.24) and (9.26), we obtain
(sI — K1)ViPy(s) + ViBQa(s) = I

so that by Fact (6.4.3), (K, f/lB) is indeed reachable. Hence, there exists I

such that o(K; + Vi BIY) C C_. Let Ky := K; + V; BI". By (9.26),

(sI — A — BF,V3)Vy = Vi(sI — K1) + BO, + VK
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for some constant matrix ;. Or,
(s] — A — BFoVy — BOVI)Vs = Vi(sI — I}) + VoK. (9.28)

By (9.24),
(s] — A — BEFyVy — B0,V )Vy = Va(sI — K>). (9.29)

With o := sI — A — B,V — B6;V; and by (9.28), (9.29) and (9.25),

Dy~! [ Vi Ve ]=[ DVi(sI — K1)™! = Dyp=VaKa(sI — K1)~1 D¢V, ]

[ DVi(sI — K)~' = DVo(sI — Ka)~'K3(sI — K1)~'  DVa(sI — K3)~! ]

[ DVi(sI — K;)™' 0 ]

[l

so that Dy~ is stable rational. O

Note that the proof (ii) = (iii) can be extended to construct a leedback
F' such that D(sI — A — BF)™! is stable rational. Since (WK} Wl, ‘tﬂB) is

reachable, there exists F; such that
o(Wi KW, + ViBF,) C C_.

Let Ky := Wi K\ Wy 4+ ViBFy, by (9.17), (9.18)and (9.20),

A

(sI— A= BFT,V, — BOW:)Wy = Va(sl — Ky)
(s — A= BETy Vo = BOWV)W = Wi(s] = K,) + Vzb

DV, = 0

for some suitable 0; and 0;. These three equalities yield that D(s] —A— BF)~!

is stable rational with F':= FngVg + 6, Vl
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9.2 Tracking with Regulation: Scalar Case

Consider the system in I'igure 9.1. The problem is to determine a proper con-
troller such that the tracking error (the difference between the reference input
and the corresponding output) converges to zero from arbitrary initial values
and the feedback system consisting of the plant and controller is internally

stable.

D

Disturbance
System

|

ul v
Rgfefence L% Controller [ Plant |
ystem |-

Figure 9.1: Tracking with regulation

Let the plant, controller, reference system and disturbance system transfer
functions be written in coprime stable proper fractional representations as p/q,
Pe/qey Pr/ ¢ and pg/qq respectively. The disturbance and reference systems are

supposed to be driven by D and R which are arbitrary unknown constants.
Tracking error in Figure 9.1 is

qq. 1

= T o . - : 9.30
e B0 ppd/qqd] - (9.30)

By Lemma (7.1.1), the pair (p/q,p:/q.) is internally stable if and only if

¢ = qq. + pp. (9.31)
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has a stable inverse. Note that if

q4q4cPr and PqcPd

a, are stable rational, (9.32)
¢(1r ¢(1d

then the tracking error in (9.30) converges to zero for all constants R, D. Since

the pairs (¢, ¢~ 'p,) and (qq, ¢~ 'pq) are coprime, (9.32) holds if and only if
q- divides ¢q. and ¢4 divides pq.. (9.33)

Let the greatest common divisors of (¢, ¢,) and (qq,p) be @, and @4, respec-
tively. Hence, there exist stable proper rational functions ¢, ¢, gz and p such
that

¢ = QrGr, ¢ = x4, (9.34)

44 = Qada, p = Qap,
where the pairs (§,, ¢) and (§q, p) are coprime. Let the least common multiple
(lem) of ¢ and ¢q be ¢q4,. Thus, for stable transfer functions ¢, and ¢y,

qdr = ‘77'(71'7 Qdr = (Id(}da

where the pair (§,, ¢4) is coprime.

We can now state

Theorem 9.2.1. Tracking with regulation in the scalar system is possible if

and only if (qar,p) is coprime.

Proof. [Only if] If the tracking with regulation problem in the scalar system
is solvable then (9.33) holds. Hence by (9.33) and (9.34), ¢ divides ¢, and g4
divides ¢.. Therefore ¢4 divides ¢. and there exists a stable proper rational
function @, such that

9c = qdrQec- (935)
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By (9.31) and (9.35), we have
4Gcqar + ppe = ¢

and
([qs_l(ic(hlr + ])c¢_11) =L

Hence the pair (qy,,p) is coprime.
[If] By the hypothesis, there exist stable proper rational functions 2, y such
that

qarx +py = 1. (9.36)
Since (p, q) is coprime

ga+pb=1 (9.37)

for some stable proper rational functions ¢ and b. Multiplying (9.36) by ¢ a,

we have

qqarTa + pqya = qa. (9.38)

By (9.37) and (9.38),
qqarra + p(b + qya) = 1.

Let

¢ := qgrxa and p, := b+ qya. (9.39)

Note that ¢, divides (¢4rQ,) and g4 divides (g4Qq). By (9.39), ¢4 divides g,
so that ¢, divides ¢.¢ and g4 divides pg.. Therefore by the choice of dynamic
controller in (9.39), the tracking error converges to zero for arbitrary R, D

while assuring the internal stability. O
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9.3 Regulator Problem with a Single Output
Channel

In the configuration of Figure 9.2, the plant has two input channels, a control

mput u, a disturbance input w, and only one output channel .

y

Plant

Controller

Figure 9.2: RPIS with a single output channel

The problem is to design a dynamic controller, A'(s) such that the distur-
bance to output transfer matrix T, 1s stable and the feedback loop is internally
stable. The output channel processed by the controller and the one to be reg-
ulated hence coincide. We now obtain a solution to this problem using the

technique of stable proper factorization.

Let
1 u
'y = A4 [ Nl JVZ ] 9
w

where M, N;, N, are stable proper rational matrices and (M, Ny) is left co-

prime. The disturbance to output transfer matrix is

Ty = (M — N, K)™'N,. (9.40)
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Let
M™IN, =M™'N

for left coprime (M, N). Then
M =DM, N, = DN,

for some stable proper rational matrix D. Note that, T, = (M —
N K)™'D7'N, and the zeros of the greatest common left factor D appears

among the poles of 1), unless they are cancelled by the controller K(s).

Theorem 9.3.1. The RPIS with a single output channel is solvable if and only

if there exist stable proper rational matrices X and Y salisfying

XD+ NY = 1. (9.41)

Proof. [Only if] If RPIS is solvable then the feedback loop is internally stable.
So by Lemma (7.1.2), there exists right coprime fractional representation for
the controller K(s) = QP~!, where () and P are stable proper rational matrices
such that

MP—-NQ=1. (9.42)

The disturbance to output transfer matrix 7y, in (9.40) becomes

Ty, = (M—NQP ™) 'N,
= (DM = DNQP™Y)™'N,
= P(MP—-NQ)"'D'N,.

Using (9.42), we have T, = PD™'N,. Since T, is a stable transfer matrix,

there exists stable proper rational matrix P such that

P=PD.



Hence (9.42) gives
MPD - NQ=1.
With X = MP and Y = —(Q, (9.41) is satisfied.
[If] Since (M, N) is left coprime, there exist stable proper rational matrices
(), P such that

MP - NQ = 1. (9.43)

Using (9.43) and (9.41),

(MP - NQ)XD+NY = 1
MPXD+ N(Y -QXD) = I.
Let
pPi= PXD, Q = ~Y + QXD and K(s)= Q[)—l_ (9.44)
By this choice of dynamic compensator K(s),

MP-NQ=1.

So, internal stability of (M~'Ny, K(s)) is satisfied. Moreover, the disturbance
to output transfer matrix T3, can be written as
T,y = PD'N,

= PXN,,

which is a stable proper rational matrix. O

The solvability of the matrix equation (9.41) requires that the matrices D

and N are “coprime” in some sense. To make this precise, we examine this

equation more closely.
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Fact 9.3.1. There exist stable proper rational matrices X, Y such that (9.41)
holds if and only if
DN =ND (9.45)

for some stable proper rational matrices N, D with the left coprime pair (D, N)
and right coprime pair (N, D).
Proof. [Only if] If (9.41) is satisfied then (Y, D) is right coprime. Let

YD!' = DY (9.46)
for left coprime (D,Y) . By (9.41),

DX +DND7'Y = I.
Since (D,Y) is left coprime, D is a right factor of DN, i.e.,
DN =ND

for some stable proper rational matrix N. Note that (D, N) is left coprime.
In (9.46), since both fractions are coprime, detD = u detD, for some unit u,
Le., uw and u™! are both stable proper functions. This implies that in (9.45),
(N, D) is right coprime.

[If] If (9.45) holds, then D™'N = ND7! with left coprime (D, N) and right

coprime (N, D). Hence there exist stable proper matrices X, ¥ such that
DX + NY =I.

So by (9.45)
XD+ND'YD=1.

Since the pair (V, D) is right coprime, by Fact (6.4.2),

YD =DY
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for some stable proper rational matrix Y. Let X := X, then (9.41) is satisfied.

(]

In Theorem (9.3.1), it is shown that by choosing dynamic compensator
K(s) = (=Y +QXD)(PXD)™!in (9.44). tracking error converges to zero and
the system is internally stable. Note that this controller has the matrix D as
a factor of its denominator matrix. It follows that any controller which solves
RPIS should contain the matrix D which is a greatest common left factor of M
and NVp, in its denominator. This fact is known as the internal model principle

for RPIS considered here.

9.4 Notes and References

The solution to output stabilization problem in Section (9.1) has been ob-
tained in a geometric framework by Bhattacharrya, Pearson and Wonham [57].
Transfer matrix condition given to this problem in Theorem (9.1.1) is new. The
solutions to some special regulation and tracking problems were first given by
Bengtsson [58] and Francis [59]. The simple problem of tracking with regula-
tion in the scalar system in Section (9.2) is also new. The concept of skew-
primeness was first used by Wolovich and Ferreira [60]. Pernebo [61], Cheng
and Pearson [62] presented the solution of the regulation problem stated in
Wonham [63] through a stable rational (not necessarily proper) factorization
approach. Solvability conditions to this problem through polynomial system
matrix approach were obtained by Khargonekar and OZgiilel‘ [64]. The reg-
ulator problem with a single output channel is a special case of the general

regulator problem as posed by Wonham [63].
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Chapter 10

DECENTRALIZED
STABILIZATION

In large scale or geographically distributed systems, it is more a rule than ex-
ception that the control configuration has structural limitations. One of the
most common structural limitations is that certain inputs can only be con-
trolled by certain specified outputs. The control configuration that results by
such a restriction is called a decentralized control. Most commonly, a decen-
tralized control configuration is one in which the controller is restricted to be

block diagonal with fixed sized blocks.

In this chapter, we illustrate how the fractional representation technique of
Chapter 7 can be used to tackle the decentralized stabilization problem where
the controller is constrained to he a 2 X 2 block diagonal transfer matrix.

Rather than presenting a complete solution, we show how the problem can
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be transformed into a “make-coprime” problem, a solution to which 1s more

transparent than a solution to the original problem.

10.1 Decentralized Stabilization Problem

Consider the plant having the following state space description

. [ Uy g
2 =Ax+| B, B, , (10.1)
B Uy
[/} Ch
= T,
Y2 Yy j

where A € Rnxn, 131 € Rnxrl’ 32 € Rnxrz’ Cvl e Ran a.nd CW‘Z € RI)zXn' Let

C
B := [ B, B, ], C = " |. We would like to determine a controller of the
Cy
form
[\,11 0
[((3) = (102)
0 K

such that K (s) internally stabilizes the system (10.1). Suppose that the plant
is stabilizable and detectable. Note that this is a necessary condition for the
existence of even a centralized controller. In order to have a stable rational
matrix description of the plant, let

SLZA p o B, P(s):= S (10.3)

W)= F

Note that by Fact (6.1.1), if (A, B) is stabilizable, then (@, R) is left coprime

over S and if (C, A) is detectable, then (P, @) is right coprime over S. The
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relation from u to ¥ is

Y1 P _
= Q ! [ R, R, J >
Y2 Py Uz

where R and P are partitioned according to the partition of B and C. The

closed loop system 1s shown in Figure 10.1.

Koo
) Yo
(C,A,B)
u M|
K 11

Figure 10.1: Closed loop system for DSP
The following result concerns internal stabilization from two-sided frac-
tional representations.

Lemma 10.1.1. Let a plant transfer matrix G be given in a fractional repre-

sentation over S by

where (N, ]\;[) is right coprime and (]l;l, L) is left coprime. Then a controller

K = PQ~" internally stabilizes G if and only if
. M LP
= . (10.4)

s unimodular.
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Proof. Let NM~' = M~'N, where (M, N) is left coprime. Then, G=M7'NL
for a left coprime pair (M, N [Aj) Note that the controller & = }SQ‘I internally

stabilizes G if and only if
]\71(;) + NLP is unimodular.
Let the doubly-coprime representation of Z := NA~! = M~'N be

M X,
N Y,

Xi
N M

where X1, Y, Xy, Y, are over S. Thus,

X, Y M LP I X{LP+YQ
N M| =N 0 0 NLP+MO |

It follows that K = PQ“I internally stabilizes G if and only if ¢ in (10.4) is

unimodular. O

The following result gives a first necessary and sufficient condition to have

a solution to decentralized stabilization problem(DSP).

Lemma 10.1.2. DSP is solvable if and only if there exist coprime factoriza-
tions
K, =P, Qc_ll, Ky = P.:ZQ:;
such that the matriz ® below is unimodular
Q R11)01 R2P(.‘2
o= _p Q, 0 . (10.5)
-P, 0 Qec,
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Proof. Let G := PQ 'R and M™'!N = PQ™' with left coprime pair
(M,N). Then ( = M~'NR, where (M, NR) is lelt coprime. Let P. :=
P, 0

C1 0
, Qe 1= “ , 50 K(s) = P.Q7" and (P, Q.) is a right
0 £, 0 Q.

coprime factorization of K. We now apply Lemma (10.1.1) to abtain the re-

sult. ad

Theorem 10.1.1. DSP has a solution if and only if the following rank condi-

tions are satisfied for all s € Coy :

(1) rank [ sI—A By, B, ] = n,

(i2) rank [ sI— A" C] ¢ ] =n,

sI—A B
(i41) rank . >, (10.6)
—Cy 0
sl—A B
(1v) rank ’ ’ ' > n.
—Cy 0

Proof. [Only if] If DSP is solvable, then by Lemina (10.1.2), there exist

Ki(s) = P,QZ', 1 =1,2 such that ® in (10.5) is unimodular. Thus,

¢ 0

rank®(s) = n+ p; + p2, Vs € Coy. (10.7)
This implies that
Q Rl PC] R2PC2

rank =n+p, Vs € Cos.

-P Qg 0
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Hence

Q R2P62
rank >n, Vs € Cog. (10.8)
-P 0
Similarly by (10.7),
Q RIIJCI
rank | —P Qe =n+p, Vs € Coy.
—-P, 0
So
Q Rlpcl
rank >n,Vs € Co,. (10.9)
-P, 0
By (10.8) and (10.9),
R Ry
rank © ? > n, rank © ' >n, Vs € Coy. (10.10)
-P 0 —-FP, 0

Using (10.3) and (10.10), last two conditions in (10.6) is satisfied. Since we
assume that the plant is stabilizable and detectable, first two conditions also
hold.

[If] By Lemma. (10.1.3) stated below there exists I{y(s) = P, Q' such that the
closed loop system Z in Figure 10.2, with input «; and output y, is stabilizable

and detectable.

vz Plant Yo
uj yl

K, () I

Figure 10.2: The closed loop system Z;
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The relation between wuy and ¥, is
Y2 = (Zoz — Zn i (1 — Zu]\’l)_lzw)uz-

This can be written as

Q@ P, R,
Y2 = [ P 0 ] Uy
-P Q 0
Ry P, R
with left coprime pair ¢ Ha , 2 over S and right coprime
~_"I:)l ch 0
. Q Rl Pc; . > e oys
pair P 0, over S, by the fact that Z; is stabilizable
_Pl ch

from wy; and detectable at y,. By Lemma (10.1.1) there exist a controller
K3(s) = P, Q' satisfying us = K3(s)yz such that the new closed loop system
is internally stable, i.e., ® in (10.5) is unimodular. It follows that K (s) defined

-1
Pcl 0 ch 0 . vy
by K(s) := internally stabilizes the plant. a

0 P, 0 Q.

The crucial result used in the contruction of a stabilizing decentralized con-
troller of Theorem (10.1.1) is the following solution to a “make-coprime” prob-
lem.

Lemma 10.1.3. Suppose the plant in Figure 10.2 is stabilizable and detectable.
The closed loop system of Figure 10.2 can be made stable from uy and detectable
at yo by a choice of a controller K;(s) if and only if the condition (iii) and

(iv) of Theorem (10.1.1) hold for all s € Coy.
Proof. Ozgiiler [50]. O

By Theorem (10.1.1) to solve the DSP, rank conditions in (10.6) should

be satisfied. Note that these rank conditions are related to the state space
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description of the plant not the controller. If DSP is solvable, the points s,

which fail to satisfy the requirement (10.6) should be in the left halt plane.

10.2 Decentralized Fixed Modes

Consider the system (10.1) and the set of controllers K which contains com-

Ky 0

pensators of the form K(s) = . Then decentralized fixed modes

0 1(22
of (10.1) with respect to K

MC,A,B,K):= () o(A+ BK(C).
KeKk '
Hence, decentralized fixed modes are equal to the eigenvalues of closed loop
system which are common with the eigenvalues of A and independent of the

particular controller used.

These modes may be thought of as a generalization of uncontrollable modes
and unobservable modes that occur in the centralized control but generally

include other modes of the system also. Let

sI—A By
Z:={s€C:rank| sI— A B, B, | <n or rank <n or
-Cy 0
s[— A

sl — A B2

rank <n or rank o < n.}
-C; 0

'y
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Theorem 10.2.1. Consider the system (10.1). Then a necessary and suffi-
cient condition for A € o(A) to be a decentralized fived mode of (10.1) is that

rAeZ.
Proof. [65]. O

This result gives an algebraic characterization of decentralized fixed modes.
By Theorem (10.1.1) and (10.2.1), there exists a decentralized compensator
that internally stabilizes the plant (10.1) if and only if the system (10.1) has

no unstable decentralized fixed modes.

10.3 Notes and References

The solvability conditions to DSP given in Theorem (10.1.1) is due to Corfmat
and Morse [66], [67]. The make-coprime problem stated in Lemma (10.1.3) is
considered in a slightly different manner by [66]. Wang and Davison [68] in-
troduced the fundamental notion of decentralized [ixed modes and presented a
first solution to DSP which was extended by [69]. Anderson and Clements [65]
presented an algebraic characterization of decentralized fixed modes via poly-
nomial matrix fraction representations. The identification of decentralized
fixed modes from the plant transfer matrix is given in [70]. Vidyasagar and
Viswanadham [71] solved the synthesis problem for DSP via fractional factor-
izations over a principle ideal domain. A characterization of decentralized fixed

modes for interconnected systems was studied by [72].



Chapter 11

CONCLUSIONS

We have presented a first draft of a book on linear multivariable control which
contains a description of solutions to most of the standard algebraic feedback
control problems. These problems include internal stabilization, disturbance
decoupling by state feedback and measurement feedback, output stabilization,
tracking with regulation in a scalar system, regulator problem with a single

output channel and decentralized stabilization.

In order to complete the project started in this thesis, examples on applica-
tions need to be added, the proof of Theorem (9.1.1) should be given when the
assumptions fail, regulator problem with more than one output channel need

to be studied and the dependencies among various sections need to he more

carefully organized.

The proofs given for Theorem (8.2.3), (8.2.4) and (9.1.1) implicitly employ
ideas from the theory of polynomial models of Fuhrmann and makes the rela-

tion between the geometric and fractional concepts explicit. Although elegance
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of solutions provided by a pure geometric or pure fractional approach is no
longer there, the presentation here demands a moderate amount of knowledge

of linear algebra from the reader.
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