
AN EVALUAIION OP
^^ETHOOOLOGICAl. ¡gSySS IN

: Vi/ORKFLOW WANAGSIVIENT

SUBlyfiT iHH flE FA F ityE N T OF

COM PUTER F-riGIriSEi-'ihFG AND INFORMATION SCIEN CE

AND THE r iS’i n U TT OE Ei ;GlNEER{NG AND SCIENCE

OF BILKENT UNIVERSITY ̂ ̂ ^

IN PAfV lA l i-'UlFiLLIVIENT OF THE REQUIREM ENTS

FOR THE DEGREE OF

MASTER OF SCiENCE

Anastasia oQlrilKova'

■1

AN EVALUATION OF

METHODOLOGICAL ISSUES IN

WORKFLOW MANAGEMENT

A TH E SIS

S U B M IT T E D T O TH E D E P A R T M E N T O F C O M P U T E R

E N G IN E E R IN G A N D IN F O R M A T IO N SC IE N C E

A N D T H E IN S T IT U T E O F E N G IN E E R IN G A N D SC IE N C E

O F B IL K E N T U N IV E R S IT Y

IN P A R T IA L FU L F IL L M E N T O F T H E R E Q U IR E M E N T S

F O R T H E D E G R E E O F

M A S T E R O F S C IE N C E

By
Anastasia Sotnikova

August, 1998

11

I certify that I have read this thesis and that in my opin
ion it is fully adequate, in scope and in quality, as a thesis
for the degree of Master of Science.

Assoc. Prof. Dr. Ozgiir Ulusoy(principal Advisor)S^rincii

I certify that I have read this thesis and that in my opin
ion it is fully adequate, in scope and in quality, as a thesis
for the degree of Master of Science.

Assoc. Prof. ¿Or. Cevdet Aykanat

I certify that I have read this thesis and that in my opin
ion it is fully adequate, in scope and in quality, as a thesis
for the degree of Master of S cience,^

■ H s —;
Asst. Pr\i|f. D>r Uğ■vIt Giidiikbay

Approved for the Institute of Engineering and Science:

, _
Prof. Dr. Mehmet Baray, Director of Institute/« Engineering and Science

Ill

ABSTRACT

AN EVALUATION OF
METHODOLOGICAL ISSUES IN
WORKFLOW MANAGEMENT

Anastasia Sotnikova
M.S. in Computer Engineering and Information Science

Supervisor: Assoc. Prof. Dr. Özgür Ulusoy
August, 1998

Workflow management is a diverse and rich technology being applied over
an increasing number of industries. Despite this fact, workflow management
systems (WFMSs) still have a long way to go before they can be regarded as
mature technology. In this thesis, we try to analyze methodological aspects
of WFMSs and contribute to the workflow management theory in terms of
new functionality and structures of workflow schemas. A confirmation of our
ideas is provided by simulation results of a workflow application which we have
designed. Bringing the simulation stage in betw'een design and implementation
stages would let a schema designer assess a workflow system in terms of optimal
system throughput, required facility capacities, and an efficient transactional
representation of activities. Also, by allowing a schema designer to choose
an effective structure of a workflow system, simulation results help to avoid
possible future losses at the early stages of the workflow schema design.

Key words: Workflow Systems, Advanced Transaction Models, Performance

Evaluation.

IV

ÖZET

işAKişı y ö n e t i m i n d e k i m e t o d o l o j i k

KONULARIN BİR DEĞERLENDİRMESİ

Anastasia Sotnikova
Bilgisayar ve Enformatik Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Doç. Dr. Özgür Ulusoy
Ağustos, 1998

İşakışı yönetimi teknolojisi, endüstride pek çok alanda uygulanma imkanı
bulmasına rağmen, işakışı yönetim sistemlerinin henüz belirgin bir olgunluğa
eriştiği söylenemez. Bu tezde hedeflerimiz, işakışı yönetim sistemlerinin metodo
lojik özelliklerini analiz etmek ve işakışı yönetim teorisine fonksiyonel ve yapısal
açıdan katkılarda bulunmak olmuştur. Önerdiğimiz fikirlerin doğrulanması
amacıyla bir işakışı uygulanması tasarımı yapılmış ve simülasyon tekniği kul
lanılarak tasarlanan uygulama test edilmiştir. Tasarım ve geliştirme adımları
arasında simülasyon tekniğinin kullanılması, tzısarımcıya işakışı sisteminin çeşit
li yönlerden değerlendirilebilmesi imkanını verecektir. Ayrıca, simülasyon sonuç
ları tasarımcının işakışı sistemi için en uygun yapıyı seçmesini sağlayarak, ileriki
aşamalarda olması muhtemel kayıpların önlenmesi için de yardımcı olacaktır.

Anahtar sözcükler. İşakışı Sistemleri, Gelişmiş İşlem Modelleri, Performans

Ölçümü.

To my grandparents

VI

ACKNOWLEDGMENTS

First of all, I would like to express deep gratitude to my advisor Assoc. Prof.
Dr. Özgür Ulusoy for his careful reading and timely constructive comments
during the study. I would also like to thank my colleague Oleg Gusak for his
friendship and technical support.

I would like to thank the committee members Assoc. Prof. Dr. Cevdet
Aykanat and Asst. Prof. Dr. Uğur Güdükbay for their valuable comments,
and everybody who has in some way contributed to this study by lending moral
and technical support.

Finally, I am very thankful to my family especially to my grandparents who
had grown me up in a scientific atmosphere. Owing to their efforts I was able
to identify rightly my personal strivings and research interests.

Contents

1 INTRODUCTION 1

2 Problem Description 4

2.1 Functionality of a WFMS .. 4

2.2 Application A r e a .. 5

2.3 Multitransactional Support vs. Workflow Transaction Model . . 9

3 Background 12

3.1 Basic C o n ce p ts .. 12

3.2 Transactional S u p p o r t ... 17

3.3 Legacy Applications .. 22

3.4 Priorities.. 24

3.5 Deadlines 25

4 Related Work 27

4.1 Workflow M o d e ls .. 27

4.2 Sim ulation... 31

Vll

5 Simulation Model 34

5.1 Model Description 34

5.2 Deadline Assignment Algorithms 38

5.2.1 Deadline Assignment Algorithms for Non-Priority Systems 43

5.2.2 Deadline Assignment Algorithms for Priority Systems . . 46

6 Implementation 49

6.1 Implementation Notes and Assumptions 49

6.1.1 Program ... 49

6.1.2 Simulation.. 50

6.2 Transaction M od els... 50

6.3 Simulation Results and Performance Analysis 51

6.3.1 Non-Priority System Simulation...................................... 51

6.3.2 Priority System Simulation.. 57

6.3.3 Simulation with Different Initial S ettings...................... 65

6.3.4 S u m m a ry ... 70

7 CONCLUSION 71

CONTENTS viii

Chapter 1

INTRODUCTION

Workflow management is a discipline that studies the coordination, communi
cation and control of organizational processes by means of information tech
nology for the purpose of improving these processes [Joo96]. An organizational
process contains the set of activities involved in handling the arbitrary number
of similar actions, which are typically stretched across boundaries of depart
ments and organizations. A workflow process is an automated organizational
process, which means that the coordination, communication and control within
a process are performed using information technology, but the activities within
the process are either manual, or automated, or a mixture of these two. Work-
flow management is relatively a new term, however the ideas and concepts
associated with it have been around for a considerable period of time. Work-
flow management can be seen as a logical expansion of a number of different
fields. The Workflow Management Coalition (WFMC) [Wor96] suggests no
less than eight areas that have had a direct influence on the development on
workflow management:

• image processing,

• document management,

• electronic mail and directories.

groupware.

• transactional systems,

• project support applications,

• business process re-engineering,

• structured system design tools.

CHAPTER 1. INTRODUCTION

As we can see from this list, workflow management challenges questions
of interdisciplinary nature. It comprehends many other fields, but mostly in
formation systems (e.g., database systems, data communication, software pro
cess modelling, software engineering, programming) and organizational science
(e.g., decision theory, administrative organization, and management science).
From the field of information systems workflow management borrows and ex
tends the developed applications and techniques to support workflow processes.
Organizational science defines interfaces for an organization and workflow tech
nology interaction. It defines necessary workflow management system (WFMS)
functionzility and an efficient way for conducting a workflow-oriented investi
gations in an organization. It also points out the impact of different types of
organizations on the structure and performance of a planned WFMS. At the in
tersection of both disciplines there is a methodology. Methodological research
addresses definitional issues, in an attempt to help architects of workflow tools
and designers of workflow processes by means of methodologies and tools.

Our study is devoted to the methodological issues in workflow management,
in particular, to the required functionality of WFMS and the transactional
support in workflows.

Current WFMSs do not exploit simulation techniques and do not provide
workflow designers with a choice of system implementation as priority or non
priority. We propose a place and a way of incorporating these functionalities
into WFMSs. The second drawback that we noticed in most of the WFMSs is
that workflows are not based on the transactional concept. Even WFMSs that
represent workflows as transactional processes, use insufficient sets of transac
tion models which cannot provide an appropriate support and flexibility for all

possible workflow tasks. In the thesis, we present a set of transaction models
that can be used in a workflow implementation and show on an example a

CHAPTER 1. INTRODUCTION

possible employment of these models. We hope that the ideas presented in this
thesis will find their place in practical implementation of WFMSs.

The outline of this thesis is as follows. In Chapter 2, we describe the
research problem. Chapter 3 provides bгısic concepts from the fields our study
is related to. Also in this chapter we briefiy describe our workflow model. In
Chapter 4, we survey from the literature the state of the art in the workflow
management. Chapter 5 describes our model in detail and presents the deadline
assignment strategies we employ in our simulation experiments. Chapter 6 is
devoted to the experimental part of our study and presents the results of the
simulation. Chapter 7 concludes the thesis.

Chapter 2

Problem Description

2.1 Functionality of a WFMS

In order to give an idea to the reader about a general representation of a WFMS
we present the reference model of it provided by the WFMC [Wor96] (Figure
2.1). The model provides the general architectural framework for the work of
the WFMC. It identifies interfaces covering, broadly, five areas of functionality
between a WFMS and its environment.

• The import and export of process definitions.

• Interaction with client applications and worklist handler software.

• The invocation of software tools or applications.

• Interoperability between different WFMSs.

• Administration and monitoring functions.

The place for enlargement of functionality is in the process definition tools.
In addition to the provided functionality, i.e., visual definition of the schema
of the workflow processes, it should supply the schema designer with a list of
possible transaction models and deadline policies, and a simulation tool, which
would analyse a developed schema and give some performance evaluations for

CHAPTER 2. PROBLEM DESCRIPTION

Interface I

I

Interface 2 Interface 3

Figure 2.1; The Generic WFMS Schema

it. Thus, allowing the schema designer to choose an effective structure it avoids
possible future losses at the early stages of the workflow schema development.
Based on our workflow schema in Chapter 5 we describe the possible workflow
settings, and in Chapter 6 we apply the set of transaction models and conduct
performance analysis.

2.2 Application Area

There has been a growing interest for the use of workflow technology in nu
merous application domains. In literature, one can find a lot of studies related
to different aspects of workflows. Although the workflow-related investigations
require real world examples to assess the variety of performance parameters,

many of the researches use abstract workflows in their studies. The spectrum
of practiced or modeled workflow examples still does not cover the possible
application areas and therefore a generalization of WFMSs requirements is not
feasible yet. The application scope that is encompassed by the research com
munity follows. The authors of [KS95, PR97, PR98b, PR98a] use a service

provisioning process as an example. An example of a loan request workflow is

CHAPTER 2. PROBLEM DESCRIPTION

Figure 2.2: Generic workflow schema

CHAPTER 2. PROBLEM DESCRIPTION

given in [AAA'*"95]. A workflow providing a telephone service is described in
[Amb96]. Another field which is widely referred to as a candidate for ‘work-
flowtization’ is the health care. An example of a health insurance application
processing can be found in [KR95]. These papers are mostly devoted to model
ing aspects, some of them containing performance studies. The series of works
by Panagos and Rabinovich [PR97, PR98b, PR98a] functioned as a source
for a partial set of deadline assignment techniques used in our experiments.
One of the drawbacks noted in all the works listed above is that the examples
given in them are significantly simplified in comparison to the real size of the
demonstrated applications.

In our work we have chosen a graduate school admission procedure as a
motivating example of a workflow schema. This application area is hoped to
let us investigate different settings including a variety of advanced transaction
models (ATMs) and deadline assignment techniques. Furthermore, different
types of techniques can be implemented and evaluated together in the same
system. For example, some of the processes can be interpreted by the nested
transaction model, others by the flex transaction model and some others by
long-lived transactions^ Time constraints can be generated considering a real
experience of conducting an admission procedure at a graduate school.

The general functions (Figure 2.2) covered by the workflow are:

• getting the application package from an applicant;

• determining if there is an available position in the department(s) re
quested by the applicant;

• assessing the applicants skills/scores in different ways including:

- transcript assessment,

- an instructor’ŝ opinion about the applicant background,

- international examinations scores,

- a result of a special examination given by the department or insti
tute.

* Definition of the transaction models are provided in Section 3.2.
^who is assumed to be the advisor for the applicant.

— decision regarding the applicant taken by a jury of faculty members;

• taking an approval from a higher lever administrative office (e.g., Institute
of Engineering) with an attempt of fulfilment of financial support, if it
was requested;

• final approving (e.g., Rector Office approval);

• registration of the applicant as a graduate student;

• sending an acknowledgement.

CHAPTER 2. PROBLEM DESCRIPTION 8

Figure 2.2 also presents the resources that are used at each particular step
of the workflow application we consider. From now on, all the services and
recourses will be referred to as facilities. The system facilities include mailing
facility, registration and searching facilities, the department’s human facilities,
a facility from Institute of Engineering, and a Rector Office facility. The reg
istration and search facility and the facility from Institute of Engineering have
the corresponding repositories for processing the activities, which require re
trieving or saving data for their execution. GeneralDB is a database that stores
application forms. Examination grades like GRE, TOEFL, GMAT scores, en
trance examination results, and some additional data are stored in GradesDB.
Information about faculty members, their major research topics and available
positions for graduate students are maintained in StaffDB which is used for
choosing an advisor for an applicant. DeptlDB, Dept2DB, and DeptSDB store

the information about available positions in the departments. If an applicant
gives a list of desirable departments then the search is performed on all the
databases. ScholarDB is used to keep track of scholarships and to provide
information about available scholarships for new applicants. A more detailed
description of the schema is provided in Section 5.1.

2.3 Multitransactional Support vs. Workflow
Transaction Model

One of the issues in workflow management that our work is related to is the
transactional aspect of workflows. The workflow concept seems to be in evo
lutionary development, starting with conventional DBMSs going through real
time, heterogeneous, active, distributed and mobile DBMSs. In addition to
the properties and issues imposed by their frames, WFMSs pose the challenges
of human invocation and legacy applications management. Without the latter
concepts, WFMSs would progress as transactional systems, inheriting the quite
well studied transactional management issues such as:

• flexibility

• interoperability

• availability

• concurrency control

CHAPTER 2. PROBLEM DESCRIPTION 9

• recovery

• scalability

With the need of humans’ control, incorporation of already existed home
grown applications, and modeling workflow schemas using inter-activity de
pendencies and conditional execution, workflows become a superset of the es
tablishments and rules in the database area. The question of whether work-
flows should be of transactional nature is discussed among workflow researches
whereas, the commercial camp, nonwilling to wait for a decision has taken the
non-transactional side.

. . . no commercial workflow products are based on the on-line trans
action processing or database technology . . . [AAAM98]

.. . database community has had so far very little impact in this
(workflow management system) area. [Alo98]

CHAPTER 2. PROBLEM DESCRIPTION 10

While database management is of the data-centric nature, workflow man

agement is recognized/confessed as to be of process-centric origin. The chal
lenge that the workflow community have been facing for the Icist few years is
how to combine these two approaches to produce a sophisticated environment
which would satisfy the wide spectrum of workflow needs.

Traditional
DBMSs

Real-time,
heterogeneous,

active, distributed,
and mobile

DBMSs

Workflow
M anagem ent

Systems

Traditional (flat) .
Model

Advanced Transaction
Models

Non-transactional

A Workflow
Meta-Model

Figure 2.3: Transaction evolution.

Multimodel
Support -*

Figure 2.3 shows the sequence of possible solutions for the transaction issue
in workflow management. Traditional transactions being the first formalization
of databzise accesses are defined as a collection of operations for which a DBMS
quarantees certain properties regarding reliability and correctness of computa
tions. On-line transaction processing (OLTP), as way to control transaction
execution, is assumed to manage a large number of relatively short-lived trans

actions. Success of applying the latter concept in traditional DBMSs led to
efforts of using the same methods in other application domains which require
more flexibility and concurrency. Due to the autonomy property^ of tradi
tional transactions, this attempt failed already in the early investigations in
the workflow area [WAN97].

^This aspect is discussed in detail in Section 3.2.

CHAPTER 2. PROBLEM DESCRIPTION 11

Relaxing some of the traditional transaction properties allows advanced
transaction models (ATMs) to be used in the next generation DBMSs. How
ever, these models still carry a significant drawback: a single ATM relaxes a
single property (e.g., atomicity, isolation, etc.) whereas activities constituting
a workflow may or may not require this particular feature. An appropriate
solution could be found by designing a new model for each application or by
having a general framework to describe and reason about transactional prop
erties of complex applications.

A sound attempt was undertaken by developing several metamodels which
worked for certain set of applications. But the backside of the significant suc
cess of workflow acceptance in many areas materialized an immature property
of the proposed metamodels. Researches and practitioners have identified new
applications that could conceptually use this technology, but current workflow
products either do not address the emerging requirements or do so selectively
[SK97]. Nevertheless, the valuability of the transactional approach is preserved
in current research. Database control is still needed because DBMSs provide
services like controlled persistency of data shared among workflow participants.

In our work we introduce the concept of multimodel support in workflow
applications. The kernel of this approach is that a WFMS that maintains a
set of transaction models (including the traditional model) and dependencies
that are used to describe a workflow schema. When defining each activity’s
execution rules, the workflow designer chooses a model for it from the set sup
ported by the WTMS. The merit of using this approach is that there is no
need in inventing and formalizing a new transaction model. The list of ATMs
presented in Section 3.2 is recognized [JK97, PKH88, Elm92] as sufficient for
describing most of the applications. Moreover, with the progress of the ATMs
a multimodel WFMS will become more sophisticated. Existence of several

models in a single management system might sound infeasible but due to some
of the properties of workflow applications presented in Section 5.2 it becomes
quite possible. Each activity can be represented as an autonomous unit mon-
itored/controlled by the chosen policy. The treatment of legacy applications
and human invocation in frame of this approach is presented in Section 3.3.

Chapter 3

Background

3.1 Basic Concepts

A workflow is a collection of tasks organized to accomplish a business pro
cess. A workflow should reflect an organization processing structure, its ma
terial and information processes. Enterprises and organizations can introduce
a workflow management system (WFMS) in their business processes aimed
not only for automating documents rotation but also supporting human in
tervention in managing the business processes, human collaboration and co
decision. Therefore, a real world w'orkflow application is a large-scale system
that should combine ad hoc, administrative, collaborative and production man
agement [GHS95]. The workflow community accepted the same classification
for workflows: ad hoc, administrative, collaborative and production workflows.
Although this classification is not very strict, it points out the principal differ
ences of workflow-based applications. Ad hoc workflows perform office processes

such as, product documentation or sales proposals, where there is not set pat

tern for moving information between the participants. Thus, the ordering and
coordination of tasks in an ad hoc workflow cannot be fully automated and
must be controlled by humans. Furthermore, the tasks ordering and coordina
tion decisions are made while workflow is performed. Administrative workflows
involve repetitive, predicable processes with simple task coordination, such as

12

CHAPTERS. BACKGROUND 13

patient registration in a health care organization. The ordering and coordina
tion of tasks in administrative workflows can be fully automated. They do not
encompass complex information processes and do not require access to mul
tiple information sources used for supporting collaborative management. The
name of collaborative workflows says for itself; it can be seen as an extension
of administrative management where in order to complete a distributed busi
ness process, humans’ collaboration is required. Production workflows are more
complex and are the combination of ad hoc, in terms of human intervention and
unpredictability in execution patterns, collaboration and administrative work-
flows. Automation of production workflows is complicated due to information
processes’ complexity and necessity to access multiple information sources and
storages to accomplish the constituting tasks. The following paragraph intro
duces the basic workflow-related concepts and definitions.

Although it is widely popular to switch to distributed technologies and
applications in providing definitions for core aspects and distinctive features
of workflows and WFMSs, we keep the centralized way respecting the efforts
taken by the Workflow Management Coalition (WfMC). WfMC was organized
to lead the computer society out of labyrinth of opinions of what workflows
are, what they consist of, what we can call a WFMS and what we cannot. Our
further discussion will touch the workflows and WFMS definitions. Initially,
let us represent the interconnection between basic concepts in the workflow
area in a graphical form to prevent any misunderstandings in this still not
well-structured field of Computer Science (Figure 3.1).

Definition of the terms used in Figure 3.1 and the others which we use in our
study are adopted from WfMC Terminology and Glossary [Wor96]. Keeping in
mind discrepancies in workflow terminology, we provide the exact definitions
given by WfMC. Nevertheless, we will modify or extend some of them in further

chapters. •

• Business Process - a set of one or more linked procedures or activities
which collectively realise a business objective or policy goal, normally
within the context of an organisational structure defining functional roles

and relationships.

CHAPTERS. BACKGROUND 14

Business Process

(i.e., what is intended to happen)
is defined in a is managed by a

'P rocess Definition

(a representation of
Workflow Management System

(controls automated aspects

M anual Activities Automated Activities-------------
(which are not managed during execution are

Activity I^nstances
which include

as part o f Workflow System) represented by
and/or

Work Items Invoked

(tasks allocated to Applications
a workflow participant)

(computer tools/appiications
used to support an activity)

Figure 3.1: Relationship between basic terminology

CHAPTERS. BACKGROUND 15

• Process Definition - the representation of a business process in a form,
which supports automated manipulation, such as modelling, or enact
ment by a workflow management system. The process definition consists
of a network of activities and their relationships, criteria to indicate the
start and termination of the process, and information about the individ
ual activities, such as participants, associated information technologies
(IT) applications and data, etc.

• Workflow Management System - a system that defines, creates and man
ages the execution of workflows through the use of software, running on
one or more workflow engines, which is able to interpret the process def
inition, interact with workflow participants and, where required, invoke
the use of IT tools and applications.

• Workflow - the automation of a business process, in whole or part, during
which documents, information or tasks are passed from one participant
to another for action, according to a set of procedural rules. •

• Process - a formalised view of a business process, represented as a co
ordinated (parallel and/or serial) set of process activities that are con
nected in order to achieve a common goal.

• Activity - a description of a piece of work that forms one logical step
within a process. An activity may be a manual activity, which does
not support computer automation, or a workflow (automated) activity.
A workflow activity requires human and/or machine resource(s) to sup
port process execution; where human resource is required; an activity is
allocated to a workflow participant.

• Automated Activity - an activity that is capable of computer automa
tion using a workflow management system to manage the activity during

execution of the business process of which it forms a part.

• Manual Activity - an activity within a business process which is not capa
ble of automation and hence lies outside the scope of a workflow manage
ment system. Such activities may be included within a process definition,
for example to support modelling of the process, but do not form part of

a resulting workflow.

CHAPTERS. BACKGROUND 16

• Instance (as in Process or Activity Instance) - the representation of a
single enactment of a process, or activity within a process, including its
associated data. Each instance represents a separate thread of execution
of the process or activity, which may be controlled independently and
will have its own internal state and externally visible identity, which may
be used as a handle, for example, to record or retrieve audit data relating
to the individual enactment.

• Work Item - the representation of the work to be processed (by a work-
flow participant) in the context of an activity within a process instance.
An activity typically generates one or more work items, which together
constitute the task to be undertaken by the user (a workflow participant)
within this activity. (In certain cases an activity may be completely han
dled by an invoked application which can operate without a workflow
participant, in which case there may be no work item assignment.)

• Workflow Participant - a resource that performs the work represented by
a workflow activity instance. This work is normally manifested as one or
more work items assigned to the workflow participant via the worklist.

• Worklist - a list of work items associated with a given workflow partic
ipant (or in some cases with a group of workflow participants who may
share a common worklist).

• Deadline - a time based scheduling constraint, which requires that a cer
tain activity (or work item) be completed by a certain time (the ‘dead
line’).

• Escalation - a procedure (automated or manual) which is invoked if a
particular constraint (such as the deadline) or condition is not met. •

• Parallel Routing - a segment of a process instance under enactment by a
workflow management system, where two or more activity instances are
executing in parallel within the workflow, giving rise to multiple threads

of control.

• Sequential Routing - a segment of a process instance under enactment by a
workflow management system, in which several activities are executed in

CHAPTERS. BACKGROUND 17

sequence under a single thread of execution. (No -split or -join conditions
occur during sequential routing.)

• AND-Split Point - a point within the workflow where a single thread of
control splits into two or more parallel activities.

• AND-Join - a point in the workflow where two or more parallel executing
activities converge into a single common thread of control.

• OR-Split - a point within the workflow where a single thread of con
trol makes a decision upon which branch to take when encountered with
multiple alternative workflow branches.

• OR-Join - a point within the workflow where two or more alternative
activity(s) workflow branches re-converge to a single common activity as
the next step within the workflow.

From the previous experience of commercial WFMSs it has become clear
that WFMSs should have underneath a database management system (DBMS)
and should rely on it as a management technology, not just as a repository.
While much research has been done in the area of advanced transaction models
(ATMs) in DBMSs, non of the current WFMS products support the transac
tion concept [Moh97, AAAM98]. The reason lies in the fact that neither the
traditional transaction model nor single ATM satisfies the wide spectrum of
workflow management demands. To clarify the above statement let us highlight
the limitations in the traditional transaction technology and present partial so
lutions for them provided by ATMs.

3.2 Transactional Support

The transaction model was originally designed for business oriented database
applications, where transactions are generally short and atomicity of transac
tions is strictly necessary. A traditional or flat transaction must obey atom

icity, consistency, isolation and durability (ACID) properties. The atomicity

CHAPTERS. BACKGROUND 18

property requires either all the effects of operations of a transaction to be suc
cessfully installed in the database, or non of them. Thus, the transaction is
an indivisible, atomic, unit of work. If a transaction leaves the database in a
consistent state, providing that it was consistent when the transaction started,
then it satisfies the consistency property. The isolation property guarantees
that concurrent execution of transactions does not introduce inconsistency to
the database. For a single transaction, even if it is executed concurrently with
other transactions, the database view is that this transaction is executed alone.
To fulfil the durability requirement, all the effects of committed transactions
must be permanent for a database, and guaranteed to survive any subsequent
failures. With the recent use of databases for managing distributed, mobile,
heterogeneous environments, transactions have been becoming an order of mag
nitude more complex. In such environments, transactions need to access many
data items and reside in the system for a long period of time. Transactions
of this kind are usually called long-lived transactions^ Long-lived transactions
pose new challenges to the traditional transaction technology. A long-lived
transaction is more easily interrupted by failures because of its long execu
tion time. Because of atomicity requirement, when a failure occurs, it has
to be rolled back and all the effects on the database must be undone. This
might be reasonable for short transactions, which is composed of one or a few
database operations; however, this is not acceptable for long-lived transactions
due to the fact that much work might have been done and will be lost if the
transaction aborts. Moreover, not all of the committed operations might be
affected by the abortion. Isolation requirement causes unnecessary idle times
(downtimes) in database applications which process long-lived transactions. A
long-lived transaction access many data items and these data items, in frame
of the isolation requirement, cannot be released until the transaction commits.

Another limitation that is caused by the isolation is a restriction of coop
eration among processes. In some applications it might be a need for sharing
uncommitted results of a long-lived transaction which is prevented by isolation.
The durability requirement is violated in mobile environments. A mobile man

agement system (MMS) deals with mobile computers whose location constantly

^Informally defined cis those transactions that last for at least the same time magnitude
as the mean time between failures of the computer system on which they run [KP92].

CHAPTERS. BACKGROUND 19

changes. MMS traces these changes and according to the location of mobile
computers it assigns them to different fixed hosts or servers (i.e., servers pro
cess mobile computers’ queries). In other words, location information changes
without any intervention of mobile client’s management system. In a mobile
environment frequently submitted queries like weather or traffic conditions are
not issued by mobile computers but instead broadcasted by the server to its
mobile clients. Therefore, the DBMS resided in a mobile computer does not
implicitly place a query but in certain time window its content changes. These
particularities of mobile environments contradict with the durability definition.

Advanced transaction models (ATMs) were introduced to combat the en
slavement caused by conventional ACID transactions which prevented DBMS
from meeting availability and robustness requirements. Merging of ATM mod
els and workflow management would give birth to a family of workflow appli
cations, which more closely reflects the demands of enterprise-wide infrastruc
ture and security. But, it is not sufficient to support an extended transaction
model in a WFMS as no single extended transaction model is likely to satisfy
the transactional requirements of all the applications. The list of ATM mod
els which WFMS developers can choose from is composed but not limited to
Nested., Open Nested, Saga and Flex models.

A Nested Transaction [Elm92, JK97] consists of a top-level transaction T
and a set of component transactions S referred to as subtransactions. T may
contain any number of subtransactions, and each subtransaction, recursively,
may contain any number of subtransactions, thus forming a transaction tree. A
child transaction may start after its parent has started and a parent transaction
may terminate only after all its children terminate. The model was proposed
to overcome two main limitations of the flat (single level) transactions, i.e.,
limited parallelism and inflexible failure control. If a parent transaction is
aborted, all its children are aborted. However, when a child fails, the parent
may choose its own way of recovery. It can restart the child or start another

transaction, or even ignore the failure in the case of non-vital subtransaction.

Therefore, at the subtransaction level nested transactions allow a user to define
finer units of recovery than that in the flat model. The subtransactions of a
nested transaction can be executed concurrently ensuring execution atomicity.

CHAPTERS. BACKGROUND 20

Open Nested [Elm92] model relaxes the isolation requirements by making
the result of committed subtransactions visible to other concurrently executing
nested transactions. Applying such a visibility rule open nested transactions
achieve a higher degree of concurrency. To preserve the consistency property
for open nested transactions, only commutative subtransactions are allowed to
use the results of committed subtransactions.

The main contribution to ATMs made by proposing Saga transaction model
[GMS87] is that sagas can deal with long-lived transactions. Sagas use the con
cept of compensating transactions for handling failures. For a transaction T,
a compensating transaction C is a transaction that can semantically undo the
effects of T after T has been aborted. A saga is a set of relatively indepen
dent (component) transactions Tj,i = 1 .. .n which can interleave in any way
with component transactions of other sagas. Component transactions are exe
cuted in a predefined order within the saga. Each component transaction Tj is
associated with a compensating transaction Cj. Both component and compen
sation transactions behave like atomic transaction preserving ACID properties.
Component transactions can commit without waiting for any other component
transactions or the saga to commit. However, a saga commits only if all its
component transactions commit in a prespecified order. When a saga aborts,
compensating transactions are executed in the reverse order of commitment
of component transactions. A compensating transaction can commit only if
its corresponding component transactions commit but the saga, to which it
belongs, aborts. Due to their ACID properties, component transactions make
their changes to objects effective in the database at their commitment times.

Flexible Transactions or Flex transaction model [ELLR90] has been pro
posed as a transaction model suitable for a multidatabase environment. A
multidatabase system is a facility that allows users to access data located in
multiple autonomous DBMSs. Multidatabases typically integrate information
from pre-existing, heterogeneous local databases in a distributed environment

[Bob96]. A flex transaction is a set of tasks, with a set of functionally equiv
alent subtransactions for each task and a set of execution dependencies be
tween subtransactions, including failure-dependencies, success-dependencies,
or external-dependencies. The latter two define the execution order on the

CHAPTERS. BACKGROUND 21

subtransactions, whereas the former defines the dependencies of the subtrans
action execution on the events that do not belong to the transaction. The
execution of a flex transaction succeeds if all its tasks are accomplished. A flex
transaction is resilient to failures in the sense that it may proceed and commit
even if some of its subtransactions fail. The transaction designer is allowed
to specify acceptable states for termination of the flex transactions. To relax
the isolation requirement on the subtransaction level, flex uses compensating
transactions.

The activities that require to be represented by the transaction models
described above are generalized as open-ended activities [KP92]. Open-ended
activities are characteirzed by:

• Uncertain duration - from hours to days;

• Unpredictable developments - actions are not foreseeable at the beginning;

• Interaction with other activities.

In a workflow, open-ended activities can be structurally presented by split-
transaction and join-transaction models.

A split-transaction divides an ongoing activity into two or more activities.
In particular, resources of the original activity are divided among all the new
resulting activities. Thereafter, each activity proceeds independently with its
own resources. In the general case, all the new transactions continue and
may commit or abort independent of each other as if they had always been
distinct. The new activities are thus not subactivities of the original, but
instead effectively replace the original [KP92].

The inverse of the split-transaction is called the join-transaction. It merges
two or more activities into a single activity and all their work is either commit
ted or aborted together [KP92]. Corresponding to the split points’ classification
given in Section 3.1, split-transactions are categorized as AND-split, OR-split,

AND-join, and OR-join transactions.

Open-ended activities as well are restricted by the ACID properties of the

CHAPTERS. BACKGROUND 22

traditional transaction model and being used in workflow applications arises the
need for the employment of ATMs. Although ATMs greatly relax traditional
transaction model, few or non of the current commercial products have incor
porated transactional support for workflows’ management [AAAM98]. One of
the reasons for such a limited success is the inadequacy of ATMs. Advanced
transaction models are too centred on database concepts, which limits their
possibilities and scope as many non-transactional legacy applications are in
herited by WFMSs. In fact, WFMSs bear a strong resemblance to advanced
transaction models, although addressing a much different and often richer set of
requirements. Nevertheless, there are undoubtedly many ideas from the trans
actional world that can be translated and successfully applied in a workflow
environment.

3.3 Legacy Applications

Workflow applications involve legacy tools, which were not developed to be
used in transactional environments. In literature [GHS95, KS95] it is said that
non-transactional activities lie outside WFMSs and are not controlled by them.
Such a statement might create a view that WFMSs are not capable to cope
with legacy tools and fail in sophisticated incorporation of non-transactional
activities. Thinking about application areas of WFMSs we can see that many
of them use a mailing system as a coordination medium. If a mail-based WFMS
assumes that mailing is not a controllable task then there would no need in
using this WFMS at all. We try to show a possible solution for ‘transferring’
non-transactional activities to transactional ones.

Assume that an activity uses a legacy application, e.g., e-mail, and accord
ing to [KS95] it should be considered as a non-transactional task. The differ
ence between transactional and non-transactional tasks is depicted in Figure
3.2. As it can be seen from the picture, we could wrap the functionality of a
non-transactional activity with transactional activity functionality (not in all
cases) and name this activity as a transactional one. The structure we would
obtain after this wrapping is shown in Figure 3.3.

CHAPTERS. BACKGROUND 23

o Initial

V B Executing

fair jqne

• ·
Failed Done

A non-transactional task

o Input state

Output state

State with external
input and/or output

Figure 3.2: Tasks structure

Initial state for transactional task
s art

Initial state for non-onnsacdonal task

Execution of the legacy application

Legacy
application fails

ab m

Abort

Legacy application
is done

Commit

Figure 3.3: Wrapping non-transactiorial task with transactional properties

Therefore, extending a non-transactional activity by pre- and post-transactional
operations (e.g., recording some starting and returning parameters from mail
ing application in our case), allows us to define abortion and commitment
conditions for the legacy application. In the case of abortion we cannot roll
back the activity since from the viewpoint of WFMSs it is executed in a ‘black
box’ . Abortion of a non-transactional activity causes its restarting (may be
in a certain time period) or cancelling. The action upon abortion is deter
mined by time constraints. The above assumption lets us consider all the tasks
as transactional and allows to apply the set of different advanced transaction
models to them as well as to the ‘pure’ transactional tasks.

Human invocation can be treated in a similar way. If it is based on e-mail

CHAPTERS. BACKGROUND 24

communication, the way we described above fully suits the functionality of
this kind of human invocation. In other cases, e.g., paper-based cooperation,
a record can be made in a system database which keeps track of the workflow
states, after papers are submitted to a faculty member for examining. The
system can alarm a clock when the deadline of this activity is approaching or
send a mail to the person who is involved in this operation. Again, when the
papers are returned with a decision, a flnishing record is made in the databaise
making this activity committed.

3.4 Priorities

An important parameter of the activities (and the entire workflow) that is
difficult to set up a priori is the deadline. The designer can estimate a deadline
value but in real implementation the completion time can vary significantly
leading to inefficient execution. Another possibility is to use simulation to
tune deadlines in a workflow implementation.

The notions of deadline and priority are tightly coupled. In this section
we provide an introduction to priority-based and non-priority-based execution.
The next section describes the notion of deadline.

In a priority system, the order of execution is determined based on the
deadlines assigned to the activities constituting a process. Therefore, in such
systems the chain of executed tasks must be commutative to possible changes
in the execution sequence; i.e., regardless of the route taken in the workflow
schema, the final activity must observe the same data state in the WFMS.
We can think of a priority assignment policy as a function that can take two
different kinds of arguments: a single activity or a set of activities. When
applied to a single activity, the result of the function is the priority of the
activity, and when applied to a set of activities, the result is an ordered list

of the activities. In a non-priority system, the execution schema is determined
by the submission order of the tasks and it cannot be changed unless the
inter-task dependencies allow such a reordering. Therefore, in the case of a
non-priority system, we include deadline assignment algorithms to see how

CHAPTERS. BACKGROUND 25

well the timing constraints can be satisfied using different algorithms in an
environment where the constraints do not affect the execution order. The
decision whether a system should be represented as a priority or a non-priority
system is taken according to the type of the business process that is going to be
automated. In an administrative w’orkflow, where the execution sequence and
tasks interdependencies are predefined, the use of priorities cannot bear any
benefits and even may not be feasible in general. On the other hand, if the core
o f a workflow is an ad hoc process, the usage of priorities leads to improvements
in performance. In real life it is often difficult to ascribe an organization’s
management flow exactly to one of the listed management styles, especially
in a large-scale enterprises. The consequence is that the WFMSs should be
ranged by their types or should be flexible enough to cope with all the variety
o f business processes.

3.5 Deadlines

The primary technique for meeting real-time requirements in non-priority sys
tems is choosing a suitable algorithm for distributing deadlines for subactivities
based on a deadline of an activity, which is set by the workflow schema designer.
Deadlines can be expressed in two different ways, either as the allowed execu
tion time for an activity^, or the time by which a (sub)activity must be com
pleted. In the first definition, a deadline is a time period rather than a certain
time point in the future. Therefore, the completion time is a floating parameter
and it is calculated when an activity is submitted for execution. The people
who have proposed various deadline assignment algorithms for database trans
actions have agreed on the fact that the subtransaction deadlines should be
assigned on-line or a priori with further adjustment [KGM93, SST94, LHK97].
It is indisputable that these approaches are natural for WFMSs considering
the range of activities that a single workflow can consist of. Regarding the in
terpretation of deadlines in the scope of workflows, the former technique (i.e.,
a deadline is an allowable execution time) seems to be more acceptable, in
defiance of the definition of deadlines given by WfMC [Wor96].

^without specifying start and com pletion times.

CHAPTERS. BACKGROUND 26

To illustrate this claim by an example, let us assume that a process (Figure
3.4) can be completed in two commutative ways. Following the first route
(To,Ti,T 2 ,T 4 ,T 5) takes 13 time units; otherwise {TQ,T\,Tz,Ti,T^) it takes 61
time units, depending on the output of activity T\. Assume that deadlines are

Figure 3.4: Sample workflow schema

absolute (i.e., deadline is interpreted as a time point in the future till which an
activity must be finished). While assigning deadlines for activities and for the
entire process it is not clear how to determine deadlines for activities T4 and
T5 (Figure 3.5). Deadlines of T4 and T5 can be assigned in two different ways.
Assigning a larger deadline (assuming that the second route will be chosen)

10 12 13
H---- h-4-

38 60 61
H ---------- 1— I -

§ §
e
'a

Figure 3.5: Absolute deadlines

may lead to a significant extension of execution time for the process providing
that in reality the first route has been chosen. Assigning an earlier deadline
for activity T5 may lead to false abortion (e.g., if an early abortion algorithm
is used to predict a possible deadline missing). On the other hand, if deadlines
are relative, then activities become independent of each other meaning that
whichever route is taken, deadlines remain adequate. In the frame of such
an interpretation of deadlines, we do not determine a deadline for the entire
process and therefore, do not try to meet the deadline of the whole process.
Our aim is to meet the deadline for each activity. Later in the report we will
describe and evaluate several deadline assignment algorithms.

Chapter 4

Related Work

4.1 Workflow Models

As it is depicted in Figure 2.3, the final state of the model evolution (that
is seen so far) to be used in workflow applications can be either a workflow
metamodel or a multitransactional archetype. From the metamodel side, two
approaches are the most prominent - ACTA framework [CR94] and the Trans
actional Specification and Management Environment (TSME) [GHKM94].

ACTA was proposed as a framework for specifying the structure and behav
ior of complex applications and for reasoning about their transactional prop
erties. ACTA is not a transactional model itself, rather it is a metamodel,
intended to unify existing models and facilitate their analysis.

ACTA characterizes the semantics of interactions {i) in terms of different
types of dependencies between transactions, and (ii) in terms of transaction
efifects on the objects accessed by the transaction. In ACTA, there can be two
types of dependencies between transactions: •

• Commit-dependency: if a transaction A has a commit-dependency on
transaction B, then transaction A cannot commit until transaction B

either commits or aborts. It does not imply that the two transactions
should commit or abort together.

27

CHAPTER 4. RELATED WORK 28

• Abort-dependency: if a transaction A has an abort-dependency on trans
action B and if transaction B aborts, then transaction A should also
abort. It neither implies that if transaction A aborts, B should abort,
nor that if B commits, .,4 should commit.

An object accessed by a transaction can be characterized by its state and
its status. The state of an object is simply its contents. The state is changed
when an operation invoked by a transaction modifies the contents of the object.
The status of an object is represented by the synchronization information (e.g.,
concurrency control information) cissociated with the object. The status of an
object changes when a transaction performs an operation on that object.

Transaction models are defined by a set of aixioms. These axioms determine
the rules of concurrent execution for a transaction and describe all the events
invoked by the transaction, also indicating the partial order in which these
events occur.

The ACTA framework may be useful for better understanding of the na
ture of interactions between transactions and the effects of transactions on
their environment. It makes it possible to analyze particular applications and
improve their concurrency properties. It also makes it easier the development
and analysis for new extended transaction models suited for a particular en
vironment. However, not all properties of transaction models can be captured
and expressed in ACTA, and when an attempt is made to define a transaction
with a particular set of properties, ACTA framework proves to be very difficult
to use [CHRW98].

The TSME provides an implementation-independent language for trans
action specification, as well as the environment in which transactions can be
executed. The programmable transaction management mechanism is based on
the event-condition-action (ECA) rules. A workflow in this framework consists
of a set of constituting transactions and a set of dependencies among them. In
addition, workflows have an execution structure that is defined by an ATM;
the ATM defines the correctness criteria for the workflow. The TSME claims
to support various ATMs to ensure correctness and reliability of various types

of workflow processes.

CHAPTER 4. RELATED WORK 29

Execution dependencies are based on ACTA notion of dependency. The
differences are that TSME recognizes more states of a transaction (e.g., begin,
prepare-to-commit), and that more dependencies are considered (e.g., strong-
commit-abort dependency on transactions A and B meaning that A must abort
when B commits).

The separation of transaction specification and transaction implementation
in TSME has many advantages:

• It allows the designer to reason about correctness of the transaction model
without considering its implementation.

• It allows for re-using existing transaction models.

• Developing new transaction models suited for a specific application is
easier, especially if combining dependencies from existing models is pos
sible.

However, the TSME relies very much on the properties of underlying sys
tems for ensuring correct execution of the specified transaction. For this rea
son, it is possible to specify a transaction that cannot be executed due to the
lack of functionality of the component systems. Also, due to the statical ap
proach for defining the set of constituting transactions for a workflow, dynamic
transaction models (e.g., split and join transactions) cannot be specified and
considered within this framework.

A formalization of different ATMs through EGA rules is presented in [CA95].
In the paper the authors give their view on the required functionality of the
underlying database system for a WFMS and provide definitions and imple
mentations of several ATMs in an active databcuse paradigm.

The set of primitives based on which the approach is realized, is identified to
consist of nested transaction, saga and DOM transaction models (an extension
of nested and flex transaction models). The authors keep the opinion that
the set of functionalities provided by these models is sufficient to model the
behavior of modern applications.

CHAPTER 4. RELATED WORK 30

. . . it is unlikely that the approach of rolling new variants of trans
actions as applications emerge, will provide a realistic solution to
the general problem [C.\95].

As it was mentioned before, the research community has had almost no
impact on the development of existing commercial products. The solutions
presented above are still paper-based, not found their implementation. Never
theless, the first generation of workflow engines has found wide acceptance since
if there is a prototype for next generation managing systems this is a workflow
management system. Nowadays there are several hundred commercial prod
ucts that claim to be workflow tools. Some of the most relevant systems in the
market include: A ction W orkflow System , of Action Technologies; IBMs
Flow M ark; W orF lo Business System of FileNet; InC oncert, produced
by XSoft, a division of Xerox Corp.; Om niDesk, of Sigma Imaging System
Inc.; P rocessIT , of AT&T Global Information Solutions; and StafFWare, of
StaifWare Corp. [AS96]. These WFMSs still have a long way to go before they
can be regarded as mature technology for large-scale enterprise solutions. The
most important limitations of current WFMSs were mentioned in Section 2.3.

Workflow on Intelligent Distributed database Environment (WIDE) makes
an attempt to overcome some of the limitation [Wid], namely flexibility and
centralized database support (if a centralized database lies in the foundation of
a WFMS it quickly becomes a bottleneck of the system \ crossing the scalability
property).

The main objective of the WIDE project is to extend the technology of
distributed and active databases, in order to provide added value to advanced,
application-oriented software products implementing workflow techniques. In
frame of the results reported recently on the 1 st International Symposium on
Advanced Database Support for Workflow Management [Int], the most relevant
to our work are the following:

• A conceptual model integrating workflows and database technology has
been developed.

^single point o f failure

CHAPTER 4. RELATED WORK 31

• A workflow description language, combining the speciflcation of workflow
with access to external databases, has been proposed.

The WFMS architecture is based on active rules. Rules are generated
from work tasks (W T) specifications. Each W T have five major characteristics
[CCPP95]:

• Name: identificator of the WT.

• Description: a few lines in natural language describing the WT.

• Preconditions: a boolean expression that must yield a truth valúa before
the action can be executed.

• Action: a sequence of operations executed when an appropriate precon
dition switches to a true value.

• Exceptions: is set to handle abnormal events. When an exception is
realised a reaction is selected among a restricted set of options that in
cludes END (termination of the task), CANCEL (the task is cancelled),
NOTIFY (a message is sent to the person responsible for the task).

Tasks in the WFMSs can be represented using only two models. Global
activities are represented by the saga transaction model and local activities
by the nested transaction model. This approach imposes restrictions on im
plementation of dynamic structures (e.g., OR-split, VOTE-split, AND-split
activities). The system as well as its predecessors does not concern about per
formance evaluation capabilities for designed workflows. Whereas, simulation
is recognized to be a powerful tool for managerial decision making.

4.2 Simulation

The approach of merging workflow and simulation technologies is presented in
[BMM96]. The authors propose an architecture of a Workflow Analysis and

CHAPTER 4. RELATED WORK 32

Design Environment (WADE), which is described as a simulation-based tool
of next generation workflow systems.

The niches for using simulation in workflow design are clearly outlined in
the paper. They include:

• measuring the performance of existing systems,

• identifying improvement opportunities,

• evaluating the effect of alternative operational policies on system perfor
mance,

• comparing alternative system designs.

Description

iWorkjh)î Process
■ Descr̂ tion ‘

Models Performance Data

3; ‘' If'·}'

Simulation Model Simul6dionl)iata

\. ¡S W orl^ w
Execution Model ^Tetformance

Figure 4.1: Relationship between simulation and execution models in WADE

WADE is intended to support the design and analysis of workflow systems
in the context of continually evolving business processes. WADE provides au
tomated support for generation of workflow simulation and execution models.
The vision of relationship between these two models is shown in Figure 4.1.

Although this approach is quite useful and applicable to workflow area,

there are several shortcomings in it. The first and the most significant one is
that this approach is superficial. It implicates only the structural aspects of
designed workflows not taking into account the possible task implementation
policies. Secondly, as in the majority of workflow products, the transactional

CHAPTER 4. RELATED WORK 33

aspect is not mentioned in the system documentation. Thirdly, the system
supports neither a priority notion nor deadline policies.

The first performance analysis techniques based on different deadline as
signment strategies for workflow applications were proposed in [PR97, PR98b,
PR98a]. Our study on the non-priority system setting is largely based on the
techniques proposed by these authors. We refer the reader to Section 5 .2 . 1 for
more detailed description of deadline assignment algorithms.

Chapter 5

Simulation Model

5.1 Model Description

Our schema (Figure 5.1) consists of eleven activities each denoted by T{ where
i = Activity Ti starts the whole process by getting an application
package from an applicant. It uses e-mail that is a legacy application, and
according to our assumptions from Chapter 3, we can treat it as a transactional
activity providing that its starting and finishing states are recorded in StaffDB
database and controlled by the WFMS. We represent activity Ti by the flat
(single level) transaction model which preserves ACID properties.

Activity T2 fills in the faculty database (GeneralDB) with the initial data,
such as the information taken form the application form, the applicants’ grades,
and other data required for the acceptance procedure. T2 is also represented
by the flat transaction model. This activity is executed once for each applicant
and it must be committed to make the process continue.

Activity T3 accesses GeneralDB and StafFDB in order to determine if there

is an available position in any of the departments listed by the applicant.
We assume that the limits for the allowed number of positions are different
for native and foreigner applicants. T3 is represented by the flex transaction
model and it consists of a set of subactivities {T 3 i,T i2 . 7 3 3) 7 3 4 }· T’3 i,T 3 2 ,T 33

are the alternative paths for getting the information about available positions

34

CHAPTER 5. SIMULATION MODEL 35

Figure 5.1: Workflow schema

CHAPTER 5. SIMULATION MODEL 36

in the departments. Each of those transactions accesses the database of a
separate department. In our workflow schema we assume that there are three
departments an applicant can choose from. Each department maintains its
own database: DeptlDB is for the first department, Dept2DB is for the second
department, and DeptSDB is for the third department. In a real application
the number of departments and therefore the number of subactivities can be
different. They are determined and set by the workflow schema designer. By
the definition of the flex transaction model [ELLR90], these subactivities obey
ACID rules. T34 is fired if all 7 '3i(z = 1 . . . 3) fail and its functionality is to send
a message to a chairman with a request for an extra position for the applicant.
This case takes place if the applicant’s skills, motivations and recommendations
are strong and he/she might be considered as a successful student. This way,
T3 has one triggering immediate subactivity - T’3 4 . T34 is a vital activity; its
failing causes abortion of the whole process. If it succeeds the process continues
with activity T4 .

T4 is an AND-split activity. It consists of activities T5 and Te, both of which
must commit to make the process continue.

T5 is a long-lived activity and its goal is to get a review on the applicant
by his/her planned advisor. T5 hence, uses a legacy application (e-mail). T5

provides advisor access to GeneralDB and GradesDB, or composes and sends a
report to him/her. The decision from the advisor can either be sent by e-mail or
be made directly by updating the ‘Decision’ record in the GeneralDB databeise
(using for example predetermined options, like ‘yes’ , ‘no’ , ‘possible’ or another
grading system). The choice for the allowable execution time will depend on
all these conditions. We could think about the saga model as a transactional
interpretation, but since undoing is impossible for T5 (we cannot roll back mail
server’s operations), we do not define a compensating transaction. Instead, if

the transaction fails it is reexecuted until it meets its deadline. The WFMS
tracks the states of T5 and fixes them in the StaffDB database.

Тб can be described by the flex nested transaction model. There are three
subactivities {Тб2 ,Тбб,Тб5 } for it and the commitment of any of the subactiv
ities is enough for the commitment of T .̂ Nesting is caused by Тег which has

three subactivities organized in a tree. Tsi,Ts2 and Тб4 access GradesDB and

CHAPTER 5. SIMULATION MODEL 37

make a conclusion about meeting the requirements of the official department
acceptance policy. Throughout the simulation, Tg will be implemented as a
nested transaction, an open nested transaction, and a saga in three separate
experiments. The commit time will depend on that choice in a heavy loaded
system. For example. Transcript assessment (activity Tgg) is a long procedure
and if Tee ‘knows’ that Tes (the subactivity responsible for the entrance ex
amination aissessment) has already been committed, then this procedure can
be aborted without affecting the result of Tg or even can be not started at
all. This discussion applies to the case we represent Te by a flex or OR-split
transaction model. In some cases it might not be the case depending on the
application, for example it is possible that only AND-split is allowed at this
step. The flexibility and performance at this point depends on the locking
technique used by the DBMS. Priorities for the subactivities are determined
according to the graduate school policy.

If Tg fails, which means that either the advisor has assessed the applicant
as unsuccessful or the applicant’s grades do not meet the department require
ments, or both, then activity T7 is triggered. Here we are coming out of the
frames of basic definitions that are given in Section 3.1. Activity T7 cannot
be represented either by OR-Split or by AND-Split point. For this activity we
should give a definition for a new type of split point named a VOTE-Split.

D efin ition VOTE-Split point is a point within the workflow where
a single thread of control splits into three ̂ or more activities. A
quorum of committed activities defines the result of the original
activity. This quorum is set by a workflow schema designer.

Consequently Tr is a VOTE-split activity. The commitment condition for it
in our schema is the following: if 75% of its subtransactions are committed
then the whole transaction is also committed (clearly, the proportion may vary

according to the graduate school policy). T7 consists of four subactivities each
of which accomplishes a similar procedure. Under the control of these four
subtransactions, i.e., {T 7 i,T 7 2 ,T 7 3 ,T 7 4 }, the application package is sent to each
of the members of a selected jury of faculty members. Then the votes of jury *

*The case o f tw o risen activities is equal to the or-split point.

CHAPTER 5. SIMULATION MODEL 38

members (in the form similar to the one for T5 activity) are collected and the
decision is taken according to the defined voting rules. Another possible voting
technique is based on the summation of priorities of committed subactivities.
Note that Tj is a triggered activity for T 4 . If T 4 fails; i.e., neither the grades are
high enough nor the jury has voted ’yes’ for the applicant, the whole process is
aborted; i.e., the applicant is rejected. Otherwise, a file is composed and sent
to a higher level; e.g., the Institute of Engineering Admission Office and then
to the Rector Office.

Activity Tg is responsible for getting an approval from the Institute of
Engineering Admission Office and deciding for a possible scholarship. This
way, Tg has one triggering activity Tgi, which accesses ScholarDB and tries to
assign to applicant a scholarship according to the scholarship type suggested
by the department.

Upon commitment of Tg, Tg is started to get an approval from a higher
level of administration hierarchy. The functionality of Tg is similar to that
of Tg. Tg is represented by the flat transaction model. After the successful
completion of Tg, the applicant is registered in the GradStudDB, which stores
the information about accepted graduate students. Activity To accomplishes
this process. But there is still a possibility for abortion in some cases (e.g., the
applicant may not be satisfied with the scholarship).

The last activity, Tu, sends a resulting decision and some more information
(if needed) to the applicant. Its structure is similar to that of T .

Facilities’ usage for our workflow schema is depicted in Figure 2 .2 .

5.2 Deadline Assignment Algorithms

In this section we present a number of deadline assignment strategies for activ
ities that will be examined by using our schema. As it was mentioned before,
there are two major classes for transactional systems: priority and non-priority.
Let us take a deeper look at the difference between a non-priority and a priority
system from the point of view of deadlines. Remember that in the non-priority

CHAPTER 5. SIMULATION MODEL 39

set up for our workflow schema, we consider a deadline for an activity as allowed
execution time and the workflow schema as a non-prioritizied set of activities.
On the other hand, assuming a priority system, we refer to a time point in the
future as the deadline for an activity. To explain this type of systems we refer
to active and real-time DBMSs^. In contrast to an active DBMS or a real-time
DBMS, a WFMS executes much broader spectrum of tasks and involves more
heterogeneous legacy tools. In turn, these tools use their own DBMSs and data
storages, and do have established execution policies. This fact lets us assume
that in such a system possibility of a bottleneck situation is lower than that
in any DBMS and it is an inner problem of the legacy tool. In many cases
a WFMS cannot resolve the problem ‘inside’ a legacy tool and has to abort
and reexecute the casual activity. In active and real-time DBMSs, priorities
can be used for reducing the number of abortions. Priority execution can be
explained as follows. A process can be treated as a set of independent or quasi
independent activities, which requests one or a few services and data storages.
In order to avoid data or services’ contention, the priorities are involved in exe
cution of activities. A priority scheme reorders the execution sequence in such
a way that the process wastes as little time as possible (reordering is allowed
and does affect the final result of the process). On the other hand, in a WFMS
a workflow schema predefines the execution sequence and often the order must
be preserved. Nevertheless, the notion of a deadline is applicable to both a
priority and a non-priority system.

Priority assignment algorithms are based on deadlines of activities. In order
to be used as a base for priority assignment, deadlines should have a common
absolute measure scale. For example, if we say that a deadline of one activity is
5 time units and a deadline of another is 10 time units, it must mean that the
second activity is less urgent than the first. In other words, deadlines within a
process should have a ‘common denominator’. This is the case wdien a deadline
is expressed as a point of time in future till which an activity must (should) be
finished. As it was shown in Section 3.5 this principle is not easily applicable

for WFMSs. Let us discuss the case when a deadline is expressed as an allowed

execution time.
 ̂Active and real time DBMSs are conceptual predecessors of WFMSs.

CHAPTER 5. SIMULATION MODEL 40

Saying that an activity, which has a deadline of 5 time units, is more urgent
than another activity with 10 time units deadline is not always true. It just
means that the first activity has 5 time units from its starting point to finishing
point and the second has 1 0 time units and they cannot consume more time
for execution. The order of execution for these two activities is defined by the
underlying workflow schema and the current state of the process.

For the two different perceptions of the deadline concept that we discussed
above, we use two different sets of deadline assignment techniques. In the first
set of algorithms, the deadline of an activity is Eissigned based on the execution
time of the activity and the available unused time left by previous activities.
The second set of algorithms makes use of the arrival times of activities and
a deadline for the entire process. We describe both sets of techniques later in
this section.

We first introduce the parameters that describe each activity. The list of pa
rameters has been chosen based on simulation experiment settings for real-time
database systems [KGM93, KGM94, LHK97, SST94]. The basic parameters
for a non-priority system study can be specified as follows:

• deadline of an activity T* - dl{Tk)

• escalation cost of Tk - esc(Tjk)

• failure probability of T* - q{Tk)

Deadline of an activity Tk is the allowed execution time for it. Initially all
the activities are assigned deadlines which can be changed during execution
according to the deadline assignment policy employed. Escalation cost includes
losses in terms of time, caused by abortion of an activity. For all the activities
we introduce a failure probability. For example, for activity Тез (Figure 5.1)
the meaning of the failure probability is that, GRE General Test score is lower
then that needed to be accepted; for Ts\ the failure means absence of available

financial support.

As derivative the following parameter can be considered:

CHAPTER 5. SIMULATION MODEL 41

• available slack time - avLsl

• average execution time of T* - avg.exec{Tk)

The value of the available slack time for an activity is recalculated whenever its
predecessor activity is finished. Therefore, the starting activity (Ti) does not
receive any slack. After it finishes, the available slack is calculated as follows.

avLsl = dl{Ti) — exec{Ti)

where exec{Ti) is the execution time of Ti.

The average execution time {avg-exec{)) is a statistical parameter calcu
lated for each activity throughout multiple runs of that activity. In the perfor
mance experiments, each execution time is set as a random time period within
a deadline. Therefore, at each life cycle the execution time of a particular
activity can change.

Each activity is associated with one or more agents or facilities. Facilities
represent applications which are involved by the WFMS. Systems that provide
a single activity with few facilities are called multiple node systems. Therefore
an activity is associated with a set of agents that can serve it. This set for an
activity Tk is denoted by For such systems we add two more parameters:

• number of agents in the system - n {A \ .. .An)

• average length of the queue of an agent Ai - avgj]{Ai)

For both priority and non-priority systems we consider the following two
additional parameters:

• number of resource units accessed by Tk - num.ru{Tk)

• number of data items accessed by Tk - numMi{Tk)

By using these characteristics we consider our system as service and/or data
oriented. In a service oriented system, there is a most frequently used facility

CHAPTER 5. SIMULATION MODEL 42

each activity requests a service from. In such an environment it is quite logical
to prioritize the incoming activities by the number of times they will request
this facility. In our system the mail facility is the subject of frequent requests.

We also should add one more parameter for priority system simulation
settings, which is

• arrival time of an activity Tk - or(Tjt)

Using this parameter we are able to calculate the absolute deadline for an
activity. Since we assume that deadlines are absolute only in a priority system,
this parameter is used in the second set of deadline assignment algorithms.

Before describing the algorithms, we should explicitly underline the différ
ences between prioritized and non-prioritized execution. The following state
ments are implemented in our simulation experiments.

In a non-prioritized system:

• The whole process is not associated with a deadline.

• Each activity is assigned a deadline and if the deadline is not satisfied,
the activity fails.

• Failing of a vital activity causes failure of the whole process.

In a prioritized system: * •

• The whole process has a deadline and the process fails if the deadline is
not satisfied.

• We do not assign initial deadlines for activities.

• If an activity misses its deadline (which is assigned dynamically), this

does not affect the execution.

CHAPTER 5. SIMULATION MODEL 43

© — ' © — ' © © — ' ©

Figure 5 .2 : Sample workflow schema

5.2.1 Deadline Assignment Algorithms for Non-Priority
Systems

Let us switch to the deadline assignment techniques that we use in the simula
tion. Deadline assignment techniques for a non-priority system simulation that
we adopted mostly from [PR97] are listed bellow. We denote a deadline calcu
lated using a deadline assignment algorithm for an activity Tk as eff.d l{Tk)
and call it an effective deadline.

• No Adjustment (N O A): This policy does not allow any changes in the
initially assigned deadlines. Therefore, the execution sequence is not
sensitive to possible delays in the system. Such a policy relies on a highly
robust environment.

Total Slack (TSL):

effM l{Tk) = dl{Tk) + avLsl

In this policy all the available slack time is added to the deadline of the
activity which is going to be executed next. Such a distribution can lead
to consuming of all the slack time by the currently executing activity
without any consideration about needs of its successors.

In N O A and TSL we do not use any additional information about work-
flow. If we collect some statistics and derive avgje.xec characteristics for
activities, we can use other, more sophisticated methods.

The following three strategies need some explanations. These strategies
are applied recursively. For the workflow schema shown in Figure 5.2, it would

CHAPTER 5. SIMULATION MODEL 44

work as follow. At submission time of T\ the available slack is calculated for Ti
considering the execution times for T2 , T3 , and T4 . At T2 ’s submission point,
we calculate the portion of the available slack time for it and then repeat the
slack time distribution for T21 and T22 using the same formula (T2 ’s portion of
the available slack time is considered as the entire available slack time for T21

and T2 2). Then we distribute slack portions for T2 U and T212 again proceeding
on the assumption that the available slack time for them is the slack portion of
T2 1 . We assume that splitting activities (T2 and T2 1) carry information about
execution times of their immediate subactivities.

Proportional Execution (PE X); In WFMSs, fully automated activities
can have deadlines in terms of seconds, and the other activities which
require human invocation, can have deadlines in term of hours. Therefore,
assigning a second slack to an activity with an hour deadline or vice versa
does not seem logical. Moreover, it can lead to an abortion situation
which could be avoided if another deadline assignment technique is used.
Proportional execution strategy tries to smooth off this shortcoming by
distributing the slack according to the average execution times of the
activities. Assuming that the workflow schema consists of N activities
we can calculate the effective deadline of an activity Tjt by the following
formula:

eff.d l{T k) = dl{Tk) + avLsl * .̂ .̂ ^ 9 -exec{Tk)
Ej=k avg.exec{Tj)

Proportional Escalation (PES): If the escalation cost is a crucial point
for the underlying business processes, it is desirable to distribute the
available slack using the escalation cost associated with each activity.

esc{Tk)
eff.d l{T k) = dl{Tk) + avLsl * EiL..esc(T,·)

Proportional Load (PLO): When in a multiple node system, several agents
or facilities are used, the length of the facility queues can be used as a
distribution parameter. This technique can be useful in heavily loaded

systems within ad hoc business processes. Assume that activity Tk is
ready for execution and a facility Ai will execute it. There are several

CHAPTER 5. SIMULATION MODEL 45

facilities in the set St ̂ which can execute Tk-

eff-dl{Tk) — dl{Tk) + avLsl *
avg.q{Ai)

EAjeSr, avg.q{Aj)

The following algorithm makes use of the parameters num.ru and num.di.
In Section 5 . 2 we have provided the definition of service oriented systems. The
execution process in this kind of systems is built on requests to system fa
cilities. The facilities in turn take up system resources. Beyond traditional
data resources, system resources can be represented by human resources, mail
server resources, and resources^ of another organization involved in the work
flow. Via the num.ru parameter the resources that are not of data type are
taken into account. Activities that use software applications (e.g., in our work-
flow ‘Search and Registration Tools’) and request read and/or write accesses
from the system databzises, are assigned the numjdi parameter. The reason
we make a distinction between these two parameters is in great time superior
ity of a single resource unit access over a single data item access. A method
based on data access parameters was studied in [LHK97]. The authors em
ployed this method for priority assignment in a real-time system. Inspired by
the good performance of it presented by the authors, we propose the following
algorithm for non-priority system simulation.

• Proportional Resource Usage (PR U): This policy assigns deadlines to
activities based on the number of data items the activity accesses and
the number of services the activity needs to request to accomplish its
goal. The avg.data and avg.serv parameters carry information about
the average time of a single data item access and the average service
time consumed, respectively.

eff.d l{T k) = avg.serv * num.ru{Tk) + avg.data * num.di{Tk)
, , num.ru(Tk) + num.di(Tk)

+avl.sl * ------------;--------------------)— -
num .ru{W) -f- num.di[W)

Where num .ru{W) and num.di{W) are the total number of resource
units and data items accessed by the entire workflow W , respectively.

^in terms o f person /tim e coefficient, for example.

CHAPTER 5. SIMULATION MODEL 46

5.2.2 Deadline Assignment Algorithms for Priority Sys

tems

In dealing with a priority system where the execution sequence can be changed
during the life cycle, we express a deadline as a time till which an activity
should be finished. Consequently for priority systems, we use different deadline
assignment techniques that are mostly adapted from [LHK97].

• Ultimate Deadline (U DL): Assume that we have a workflow W , then
according to this policy the deadline of W is aissigned to each activity T*
constituting the workflow schema.

eff.d l{T k) = dl{W)

• Effective Deadline (EDL); The previous policy does not take into ac
count any information about the activities of a workflow schema W and
therefore does not discriminate between long-lived and traditional activ
ities. One possible method to overcome this shortcoming is the effective
deadline policy. Assuming that N is the total number of activities in W,

e f f .d l {n) = dl{W) - f ; avg.exec{T j)
j=k+l

The problem with UDL and EDL is that they allocate all the remaining
slack time of the workflow to the currently executing activity.

• Equal Slack (EQS): This heuristic evenly distributes the slack among
the remaining activities.

/ / jurr ̂ /rr^, ̂ avg.exec{Tj)eff-dl{Tk) = ar{Tk)+avg-exec{Tk)+------------------- ----------------------------------

• Equal Flexibility (EQF); This policy uses the notion of flexibility which
is the ratio of the slack of an activity to the execution time of that
activity. It distributes the slack of activities proportional to their average
execution times.

effJ l{T k) = ar{Tk) + avg.exec{Tk) + (dl{W) - ar{Tk)

^ irrw avg.exec(Tk)- avg.exec{Tj)) * ^
j=k EjLk avg.exec{Tj)

CHAPTER 5. SIMULATION MODEL 47

• Contention Ratio (C T R): In this heuristic activity deadlines are assigned
based on a function which includes real-time properties of activities be
sides the number of data items accessed by activities and the number of
services it requests.

eff.d l{T k) = ar{Tk) + avg.exec{Tk) -f- {dl{W) - ar{Tk)
N

— ^2 avg-exec{Tk)) * contjratio{Tk)
j=k

Where conCratioiTk) = 1 - · The larger the number
of data items and/or recourses an activity accesses, the smaller conLratio
is, and therefore the earlier is T^s effective deadline (i.e., it has higher
priority). By raising the priority of an activity it is hoped that the activity
can complete earlier and the degree of data contention in the system
can be reduced. C T R thus considers both the deadline requirement of
activities and resource contention.

Having introduced the algorithms for our study we would like to explicitly
note some aspects, regarding parallel execution, that might be shadowed before.

The algorithms we proposed are suitable for sequential execution. One can
find a lot of examples of workflow applications in the literature [Kim95]. These
applications include:

• mail routing in office computing,

• loan processing,

• purchase order processing,

• service order processing in telecommunication,

• product life-cycle management,

• health care management.

In most of the application areas listed above, the workflow schemas are pre
defined and required to accomplish several tasks in a certain order. Addition
ally, it is clear that the basic functionality of WFMSs is not of a computational

CHAPTER 5. SIMULATION MODEL 48

nature. They are not devoted to complex mathematical computations but to
managing a set of activities. Parallel execution has shown great performance
improvements in large computational tasks for which it is deeply studied. In
our schema parallelism might exist in two ways, but they are not related to
deadline assignment. Firstly, an activity or a few of them could be computa
tional tasks that may or may not be executed in parallel“*. For the activities of
this type we would assign deadlines using the same algorithms assuming that
the average execution time for them can be estimated. Secondly, we might
introduce parallelism by letting the system facilities have several servers and
serve more than one activity at a time. But again, due to the predetermined
execution order, the situation of having more than one activity requesting the
same facility is not likely. Nevertheless we study this case using the PLO
policy. From the above discussion we may conclude that the need of paral
lel execution in the workflow area is weak since intrinsically WFMSs do not
perform any complex computations by themselves. Moreover, in many ways, a
WFMS is not different from a sophisticated scheduler in which the scheduling is
performed based on inter-activity dependencies, organizational structure, staff
availability, and existing computing infrastructures.

‘‘ D epending on the time constraints and the hardware platfonn.

Chapter 6

Implementation

6.1 Implementation Notes and Assumptions

6.1.1 Program

Our model is implemented in Sim4-+ simulation package [Fis95]. Since we
study two different workflow system settings, corresponding to priority and
non-priority systems, two main programs were written. The reason for sepa
rating the code in two different programs is that in priority simulation we use
a preemption mechanism. Each program consists of an input data file with the
initial parameter settings for the activities; facilities and a facilities monitoring
tool; activities’ pool and a mechanism for their monitoring. After an activity
heis been scheduled for execution, it is placed in a linked list, which is called a
Future Event List in Sim-I-+. The order of this list is defined by the activity
submission times (for non-prioritized simulation) or by the activity priorities
(for prioritized simulation). All the facilities are implemented as single servers.

49

CHAPTER 6. IMPLEMENTATION 50

6.1.2 Simulation

In our simulation we try to be as close to the application area as possi
ble. Since we simulate an administrative process, the value of one simula
tion time unit is equal to one minute. For simplicity we will keep the notion
of time unit in our further discussions. Our simulation cycle is equal to 480
time units. This value is prompted by the duration of one business day (8

hours). This way, in our experiments we study the following workload values:
0.0021,0.0042,0.0084,0.0168,0.0336 and 0.0672, which are respectively equal
to 1,2,4,8,16 and 32 submitted applications per one business day. The in
terarrival time is uniformly distributed. The higher workload values are not
considered since, as it will be shown later, in our system the maximum number
of processed application in a single business day varies from 5 to 7 depending
on the deadline assignment technique employed.

Activity Transaction Model
Ti Saga
T2 Flat
T3 Flex
T34 Saga
T4 AND-split, VOTE-split, Flex or OR-split
n Saga
Te Nested, Open Nested, Nested Saga
6̂2 Nested

T7 VOTE-split
T71 — T74 Sagas
Ts Saga
T9 Saga
Tio Flat
Tu Saga

Table 6 .1 : Transaction Models

6.2 Transaction Models

Table 6.1 shows the transaction model settings for our workflow schema. The
subactivities not included in the table are implemented using the flat model.

CHAPTER 6. IMPLEMENTATION 51

Activity dl{Tk) esc(Tjt) i (i i) numjru{Tk) num.di{Tk) avg-exec{Tk)
Ti 8 5 0.1 1 2 6.037
T2 3 2.2 0.2 0 8 1.146
Tz 40 5 0.2 1 4 10.24
Tzx 0.15 0.01 0.4 0 1 0.102
1 3 2 0.15 0.01 0.4 0 1 0.99
1 3 3 0.15 0.01 0.4 0 1 0.103
T34 30 3 0.2 1 1 19.54
T4 170 7 0.7 13 26 95.46
n 35 7 0.3 1 9 30.04
Ts 140 10.5 0.2 4 13 81.62
Tei 0.075 0.2 0.5 0 1 0.032

0.23 0.6 0.6 0 3 0.128
lea 0.075 0.2 0.3 0 1 0.049
le4 0.075 0.2 0.3 0 1 0.044
Te5 77 5 0.2 2 5 45.98
lee 44 5 0.2 2 5 27.59
T7 70 10 0.4 8 4 40.83
Tn 25 3 0.3 2 1 12.77
T72 25 3 0.2 2 1 13.01
Trz 25 3 0.4 2 1 13.18
T74 25 3 0.1 2 1 14.66
Ts 15 15 0.1 1 2 6.642
Tsi 5 2 0.2 0 1 3.381
T9 10 15 0.1 1 1 6.427
Tio 3 4 0.1 0 8 4.821
Tn 8 5 0.1 1 2 7.21

Table 6.2: Initial settings for non-priority system simulation

6.3 Simulation Results and Performance Anal
ysis

6.3.1 Non-Priority System Simulation

Table 6.2 provides the initial settings for non-priority system simulation. The
values of dl{Tk) and q(Tk) parameters are prompted by common sense and a
practice in the application area. Settings for esc(Tk) parameters are derived
from timing cost of abortion of the corresponding activities. numjru{Tk) and

CHAPTER 6. IMPLEMENTATION 52

num.di{Tk) parameters are taken from the execution requirements. The values
of avgjexec{Tk) are obtained through the set of 50 runs of our workflow. In this
experiment the avg.data and avgserv parameters are defined for the P R U
algorithm. They are set to 0.081 time units and 17.36 time units, respectively.

The evaluation of the results presented in Figures 6.1-6.12 enables us to
provide suggestions in terms of:

• optimal system throughput,

• recommended capacity of facilities,

• possible transaction models and control structures for the better system
performance.

13 10.0 S.0.s
1
S 5.01
2

0.0
! System Load

Figure 6 .1 : Missed Deadline Per
centage

I I I System Load

Figure 6 .2 : Missed Deadline Per
centage

From Figures 6 .1 -6 . 2 we can judge about the worst and the best performing
strategies. Under all load values (except for the first one) the N O A strategy
exhibits the worst performance in terms of missed deadline percentage. On
the other extreme there is the P R U strategy which provides the best perfor
mance results for our workflow schema not only in the terms of missed deadline
percentage but also in terms of system throughput. The other strategies can
be partitioned into two groups according to the their slack distribution ap)-
proaches. TSL comprises the first group whereas, P E X , PES, and PLO
belong to the second. Under a light system load TSL performs worse than the
strategies of the second group. Due to the slack distribution approach used by
this policy, the whole available slack time can be consumed at the first stages

CHAPTER 6. IMPLEMENTATION 53

of the executing process. Nevertheless, in presence of concurrency, i.e., under a
higher system load, it outperforms PES and PLO . In a heavily loaded system
the process failure is often caused by failures of the first activities which is in
turn caused by a long waiting time at the early stages of the executing process.
Since TSL assigns the whole available slack time to any activity (including
first activities), the policy can overcome this situation. Among the strategies
comprising the second group, the PES strategy exhibits the worst performance
under high loads. The value of the escalation cost parameter increases for the
last activities therefore, the PES algorithm assigns a larger portion of the
available slack to the latter activities. As it can be seen form the initial set
tings (Table 6.2), in our schema T4 is the longest activity and it needs to be
assigned an adequate deadline whereas, under PE S policy the latter activities
(e.g., Tg and T 9) are assigned larger deadlines. The strategy would perform fair
if the execution times of activities were close to each other. In our schema this
is not the case; the last activities are mostly shorter than the first ones. Under
the PE S policy activities T$ and Tg for example, are assigned slack portions
of 16.22 and 6.41 time units, respectively, and activity Tj is assigned a slack
portion of 6.13 time units; however the execution time of T4 (95.46 time units)
is an order of magnitude higher than that for Tg (6.642 time units) and Tg
(6.427 time units).

The results given in Figures 6 .3-6. 6 show the system throughput. The max
imum number of processed applications for our schema is 7, which is achieved
under the P R U policy. Again, the worst performing strategies among those
in the second group are PES and PLO . These policies distribute the available
slack based on escalation costs of activities and the lengths of facility queues re
spectively, not taking into account the execution time. TSL, which assigns all
the available slack to the currently executed activity, and P E X , which works
based on the avgjexec parameter, shows better performance results than PES
and PLO . Under the highest system load N O A as well outperforms PES
and PLO since it uses the deadlines estimated based on an experience in the

application area.

Facility utilizations are displayed in Figures 6.7-6.12. The bottleneck fa
cilities are ‘Advisor/ChairMan’ and ‘Staff Members’. Because, these facilities

CHAPTER 6. IMPLEMENTATION 54

Figure 6.3: Completion Ratio

Figure 6.5: Number of Com
pleted Applications

Figure 6.4: Completion Ratio

Figure 6 .6 : Number of Com
pleted Applications

quickly become fully used under increasing system load. Remember that in our
settings all the facilities are realized as single servers. The results of the sim
ulation suggest us to extend the capacities of these facilities. With the P R U
strategy, for the better performance we pay by higher facility loads. Under
this strategy, as is seen from Figure 6 .1 2 , we should extend the capacity of the
‘Mail Server’ facility as well.

Having studied the behavior of the six deadline assignment techniques,
namely N O A , TSL, P E X , PE S, P L O and PR U , we clarify the following
peculiarities inherent in them. N O A does not give any flexibility in using the
unutilized time for improving the performance of the system. We have used
this strategy to provide a basis for evaluating the performance benefits of the
other strategies. Due to the dynamic nature of our workflow schema (OR-
split, VOTE-split activities) TSL outperformed the P E X , PE S and PLO
strategies. P E X , PES and P L O distribute the available slack among all the

future activities based on a corresponding activity parameter. Therefore, these
strategies take into account the further activities that may not be chosen for

CHAPTER 6. IMPLEMENTATION 55

Advisor/ChairMan
Staff Members
Mail Server

^ Institute of Engineermg
* Rector Office

Search and Registfatlon Tool

Figure 6.7: NOA, Facilities’ Uti
lization

Figure 6 .8 : TSL, Facilities’ Uti
lization

Figure 6.9: PEX, Facilities’ Uti
lization

Figure 6 .1 0 : PES, Facilities’ Uti
lization

Figure 6 .1 1 : PLO, Facilities’
Utilization

Figure 6 .1 2 :
Utilization

PRU, Facilities’

CHAPTER 6. IMPLEMENTATION 56

Z 160

i3 80f
&
S j
? 40 f-<

n I I T4isan AND-split
1 I T4 is a VOTE-spJll
F ‘ i T4 is an OR-sptit

T6 Nested Saga T6 Open Nested T6 Nested

Figure 6.13: Transaction Models Performance

execution, causing an artificial reduction of the slack portion cissigned to the
currently executing activity. On the other hand, TSL assigns the whole slack
to the currently executing activity allowing it to meet its deadline. It is impor
tant to assign larger slack portions to long-lived activities which are processed
at the beginning in our workflow schema. Among the P E X , PE S and PLO
strategies, P E X is more suitable for our schema since it uses the avgjexec
parameter in distribution of the a v lsl value. PES and PLO are incognizant
to the difference in execution times and therefore, to the beneficial slack mag
nitude assigned to the activities. Moreover, these policies may overestimate
or come short of the value of the distributed slack portions since they use the
parameters of different measuring scale (i.e., execution time versus escalation
cost and the length of facility queues). For example, under the P L O strategy
activity Tgi with the execution time of 0.042 time units is assigned a slack of
0.58 time units. The P R U strategy is more fair in assigning deadlines to ac
tivities. It distributes the available slack time according to the ‘weights’ of the
activities. It allows the applications to be processed in a more natural way by
letting them reside in the system for a longer time if the next required facility
is busy with another application. With this policy, the submitted applica
tions are allowed to wait for about 50% longer time until they are processed or
aborted. As it was mentioned before, for the better performance under PR U ,
we pay by about 30% heavier facilities’ loads.

Regardless of the deadline assignment strategy employed, we also examined
the performance of transaction models. According to the list of models in Table
6.1, we varied the model settings for the activities T4 and Tq. The results

CHAPTER 6. IMPLEMENTATION 57

are depicted in Figure 6.13. The best performance, i.e., the lowest average
execution time, is achieved when Tq is represented by the Nested Saga model
and T4 is an OR-split activity. The selection of the transaction model can
also be based on the rules at a particular graduate school admission office.
For example, it may be an obligatory recjuirement for T4 to be realized as an
AND-split transaction.

In summary, analysis of the graphs in Figures 6.1-6.13 lets us derive the
following suggestions for our workflow schema:

• Optimal system throughput is 5 — 7 applications per business day.

• The capacity of ‘Advisor/Chaiman’ and ‘Staff Members’ facilities should
be extended. Figures 6.14-6.17 show the performance of the system un
der the P R U policy where the capacities of these facilities are doubled.
With the increa.sed facility capacities, the number of completed appli
cations raises till 11 per business day. The overload of the facilities is
also prevented. The value of facility utilization between 40% and 60% is
recognized in [DKOS97] to be sufficient and not crucial. In comparison
to the previous performance results of P R U (Figures 6 .2 , 6.4, 6 .6), the
better performance is obtained with the extension of the capacities of the
facilities.

• A better performance is achieved if the activity Ti is implemented as an
OR-split activity and the activity Tg is represented by the Nested Saga
model.

6.3.2 Priority System Simulation

In the priority system simulation we assume that the execution order of the
activities is determined by the deadlines assigned to them. This means that the
activities may be executed in an order different than that in the non-priority
system. As we mentioned in Section 5.2, for the priority system simulation we

do not assign initial deadlines for the activities, instead they are determined

CHAPTER 6. IMPLEMENTATION 58

Figure 6.14:
Percentage

Missed Deadline Figure 6.15: Completion Ratio

Figure 6.16: Number of Com
pleted Applications

Figure 6.17:
Utilization

PRU, Facilities’

CHAPTER 6. IMPLEMENTATION 59

Activity <zm) num-ru{Tk) nuni-diiTk) avg-exec{Tk)
Ti 0.1 1 2 8.04
T2 0.2 0 8 2.37
Tz 0.2 1 4 16.33
Tzi 0.4 0 1 0.102
Tz2 0.4 0 1 0.99
Tzz 0.4 0 1 0.103
T34 0.2 1 1 19.54
T4 0.7 13 26 157.41
T5 0.3 1 9 32.11
Te 0.2 4 13 93.07
Tei 0.5 0 1 0.034
T%2 0.6 0 3 0.228
T63 • 0.3 0 1 0.047
6̂4 0.3 0 1 0.049

Tgo 0.2 2 5 49.31
Tee 0.2 2 5 31.65
T7 0.4 8 4 69.71
T71 0.3 2 1 12.77
T72 0.2 2 1 13.01
T73 0.4 2 1 13.18
T74 0.1 2 1 14.66
Ts 0.1 1 2 7.85
Tsi 0.2 0 1 5.88
T9 0.1 1 1 7.42
Tio 0.1 0 8 4.821
Tu 0.1 1 2 7.21

Table 6.3: Initial settings for priority system simulation

dynamically during the execution. Similar to the first set of experiments, we
determined the avg-exec characteristics through 50 system runs. With different
deadline assignment methods for the priority system simulation, we obtained
slightly different values for the avg.exec parameter of each activity. Since
the fluctuation of the avg.exec value did not exceed 7% for any activity, we

calculated the average value of the avg-exec parameter for each activity and we
assumed this parameter to be the same with all deadline assignment methods.
The same assumption was made while investigating the transaction models’

performance (Figure 6.28).

CHAPTER 6. IMPLEMENTATION 60

Figure 6.18: Missed Deadline Percentage

Figure 6.19: Completion Ratio

Figure 6.20: Number of Com
pleted Applications

Figure 6.21: Number of Com
pleted Applications

CHAPTER 6. IMPLEMENTATION 61

In general, the priority system simulation exhibited worse performance than
that obtained for the non-priority system. VVe think that the performance
decline is due to both the preemption mechanism used in this set of experiments
and the non strict execution order of the activities.

Compared to the non-priority system performance results, missed deadline
percentage values (Figure 6.18) increase about 300% under the worst perform
ing policy and about 100% in the best case. The number of completed applica
tions is reduced down by 42.9% which makes 4 completed applications per one
business day^ (Figure 6.21). The assumption that a failure of an activity does
not lead to the failure of the entire process, but to reassigning of the deadline
and reexecution of that activity, lets the number of completed applications not
be reduced dramatically. In the absence of concurrency (i.e., when the system
load is 0.0021 or 0.0042), all the strategies perform equally. The completion ra
tio is 100% for these system loads. Under higher loads, the difference between
performance results of strategies starts to appear. The algorithms that make
use of the arrival times of the activities assign/reassign the deadlines in a more
efficient way than that with the other methods. When an activity misses its
deadline, if the entire process deadline is not missed and there is still enough
time for reexecution of the failed activity, the arrival time value of this activity
is replaced by the current time value and then its deadline is recalculated. As
a confirmation of the discussion above, we can see from Figure 6.18 that the
missed deadline percentage values for EQS and E Q F ’·̂ are lower than that for
the other algorithms. Algorithms U D L and E D L are incompetent of an effi
cient deadline adjustment. Under these policies we observe a chaining effect of
missing deadlines. Wffien an activity misses its deadline it indirectly leads to
missing of the entire workflow’s deadline. Under U D L and EDL, the system
repeatedly reassigns the same deadline to the failing activity and reexecutes it
but the slack portion allowed for this activity is not sufficient to meet its dead
line. Furthermore, continuos reexecution causes consumption of nearly all the

recourses of the involved facility as well as delaying of the arriving activities.

Analyzing the facility utilization graphs presented in Figures 6.22-6.26, we

 ̂under the E Q F policy.
"both use the arrival time parameter in slack distribution.

CHAPTER 6. IMPLEMENTATION 62

Advisor/ChairMan ■o Staff Members
€i Mail Server

Institute of Engineering
Rector Office
Search and Registration Tooi

Figure 6.22;
Utilization

UDL, Facilities’ Figure 6.23:
Utilization

EDL, Facilities’

Figure 6.24; EQS, Facilities’ Uti
lization

Figure 6.25;
Utilization

EQF, Facilities’

Figure 6.26: CTR, Facilities’ Utilization

CHAPTER 6. IMPLEMENTATION 63

can differentiate the impact of the deadline assignment strategies more pre
cisely. The U D L policy causes cascading aborts in the presence of concur
rency. With this policy all the activities in a workflow are assigned the same
deadline which is the deadline of the entire workflow. Therefore, none of the
ensuing activities^ can start execution until the current workflow is finished.
This leads to the fact that the next workflow will most probably miss its dead
line. The same situation occurs for all the subsequent applications submitted
to the system. This behavior results in very low number of completed appli
cations. Considering the facilities’ utilization we note that the facilities that
are involved at the early stages of the execution process (e.g, ‘Mail Server’ ,
‘Search and Registration Tool’) are uselessly heavily loaded; the utilization
of those which· serve latter activities approaches to 0. The EDL and C T R
strategies turned out to be equal for our system settings. The corresponding
formulas (Section 5.2.2) become equal since the contention ratio parameter
[cont-ratio) used by the C T R strategy is neighbouring 1. This means that,
ar{Tk) and avg-exec{Tk) parameters in the formula of C T R are cancelled and
the formula becomes the same as that of EDL. The performance of these al
gorithms in terms of the number of completed applications is better than that
of U D L, but as we mentioned before, E D L and therefore C T R are not ef
fective in deadline adjustment. Utilization of the facilities that serve longest
and shortest activities (‘Advisor/ChairMan’, ‘Staff Members’ and ‘Search and
Registration Tool’ , respectively) raises greatly. To explain the reason for this
situation we provide an example depicted in Figure 6.27.

H--------l·

H f- ■ 'f-

Figure 6.27: A Deadline Assignment Example

Tf is a long-lived activity belonging to a currently executed workflow. Tj is
a short (traditional) activity belonging to another workflow which is processing

an application submitted later. Since Tj has an earlier deadline, it preempts
Ti leading to the reexecution of it later. Consequently, activity T°, which

^comprising the next workflow.

CHAPTER 6. IMPLEMENTATION 64

is executed twice or more, consumes more recourses, and also since it is a
long-lived activity, it delays execution of the activities requesting the same
facility for a considerably long period of time. In the case of short activities’
competition, which are assigned short deadlines and therefore have short slacks
in reserve, it is not likely that once been interrupted these activities will meet
their deadlines.

EQS and E Q F both make use of the arrival time of the activities, thereby
providing a better way for deadlines’ adjustment. Nevertheless, EQS, assign
ing an equal portion of the currently available slack to an executing activity,
does not differ long-lived and traditional activities. This policy leads to an
unnecessary increase in the deadlines of short activities and also the slack por
tions assigned to long-lived activities are not sufficient. Tight deadlines result
in a higher missed deadline percentage which in turn causes a more intensive
utilization of the facilities serving long-lived activities. It can be seen from the
figures that, the E Q F algorithm demonstrates better performance results than
the others. This is because, in this strategy, in conjunction with the arrival
time of an activity, the average execution time characteristic is also used in the
slack distribution.

Figure 6.28: Transaction Models Performance

Considering the transaction models’ performance, presented in Figure 6.28,
we observe the same tendency of the graphs as that in Figure 6.13 for the
non-priority system simulation. Again, the Nested Saga model provides better
performance than others in terms of the elcipsed time. As it was mentioned
before, for the priority simulation the elapsed times are larger then those for
the non-priority simulation. The interesting point in this figure is that the time

CHAPTER 6. IMPLEMENTATION 65

gap between the AND-split and OR-split representation of T4 is significantly
increased and the gap between AND-split and VOTE-split representation of T4

is reduced. Thus, the benefit gained by switching from the AND-split to the
VOTE-split model, which was substantial for the non-priority system, is less
considerable for the priority system. The rationalization can be found in our
assumption regarding a non-strict execution order and a possibility of preemp
tion of the activities. The execution order is determined by the deadlines of
the activities, therefore it is not guaranteed that the subactivities comprising
T4 and Te are executed one by one without interruptions.

As a concluding remark for the two studied system settings, we should note
the following. For our workflow schema, when some activities are represented
by dynamic structures such as AND-, VOTE- and/or OR-split transaction
models, and the execution times of the activities vary from tenths of the time
unit to the tens and hundreds of the time units, the deadlines are better to
be estimated a priori as well as the execution order should be defined by the
workflow schema designer. In other words, the non-priority assumptions and
techniques are more appropriate for the dynamic class of workflows which our
schema belongs to.

6.3.3 Simulation with Different Initial Settings

As we have mentioned in our earlier discussions, the weak performance of some
of the deadline assignment strategies was caused by the significant differences
in the lengths of the activities. In both sets of our simulation experiments,
this fact prevented the methods which do not make use of execution times
in assigning deadlines, from providing a better performance. In this section,
we present the performance results obtained with different parameter settings.
The values of the avg.exec parameter of activities are chosen in a way to reduce
the differences in the execution times of long and short activities. Although

these values are less realistic for our particular application than those used
for the previous experiments, we run this experiment to confirm our earlier
conclusions and predictions. With the new settings, in the non-priority system
simulation we expect an improvement in the performance of P E X and PE S

CHAPTER 6. IMPLEMENTATION 66

strategies, and in the priority system simulation an improvement for EDL,
C T R , and EQS strategies.

Activity dl{Tk) e.sc(Tfc) ?№) numjru{Tk) ri‘nm.di{Tk) avg-exec{Tk) |
8 5 0.1 1 2 6.037

Ti 3 2 . 2 0.2 0 8 1.146 I
Ti 9 5 0.2 1 4 6.51 1
Tn 1.5 0 . 1 0.4 0 1 1.47
T32 1.5 0 . 1 0.4 0 1 1.38
T33 1 . 5 • 0 . 1 0.4 0 1 0.97
T34 7 3 0.2 1 1 6.67
T4 3 9 7 0.7 13 26 24.81
To 1 1

-7/ 0.3 1 9 9.84
T, 2 1 1 0 . 5 0.2 4 13 16.24
Tei 0 . 7 5 0 . 2 0.5 0 1 0.52 1
T62 2 . 5 0 . 6 0.6 0 3 1.98 1
Te-3 0 . 7 5 0 . 2 0.3 0 1 0.47
Tm 0 . 7 5 0 . 2 0.3 0 1 0.62
Te-o 13 5 0.2 2 5 11.69
Tee 4 5 0.2 2 5 3.8 1
Tj 11 1 0 0.4 8 4 7.91
Tn 6 3 0.3 2 1 5.21
T72 6 3 0.2 2 1 4.12
T-3 6 3 0.4 2 1 3.23
7̂4 6 3 0.1 2 1 4.01

Ts 15 15 0.1 1 2 6.642
Tsi 5 2 0.2 0 1 3.381
To 1 0 15 0.1 1 1 6.427
Tio 3 4 0.1 0 8 4.821
Tu 8 5 0.1 1 2 7.21

Table 6.4: Initial settings for non-priority system simulation

Non-priority System Simulation

In this experiment, the values of the avg-exec parameter (Table 6.4) are of the
same order of magnitude except for only a few activities.

As displayed in Figures 6.29-6.30, we observe considerable changes in the
performance results for the P E X and PES strategies. While the results for

CHAPTER 6. IMPLEhdENTATION 67

the PE S strategy agree with our hypothesis, P E X shows the opposite ten

dency. Under this policy with the new settings, long-lived activities are as
signed smaller portions of the available slack time. The reason we think is the
fact that the extracted portions of the a v ls l parameter corresponding to the
remaining activities, increase since the execution time values of these activities

Figure 6.29;
Percentage

Missed Deadline Figure 6.30:
Percentage

Missed Deadline

are increased relative to the avg-exec values of the long-lived activities. To
explain the performance of the PES method, we first note that the set of the
avg.exec values become more homogeneous and ‘closer’ to the values of the es
calation cost (esc) parameter. By ‘closer’ mean that the corresponding values
of avg-exec and esc parameters have a correlation. As a consequence, with the
new settings, PES behaves similar to P E X . It is seen from the figures that for
some values of the system load PES performs even better than P E X . This is
because PE S stilP preserves a more clear distinction between long-lived and
short activities since we did not change the values of the esc parameter. The
other deadline assignment methods are insensitive to the changes in the values
of the execution time parameter and we did not observe sizeable changes in
their performance results.

P rior ity System Sim ulation

Our new parameter settings for the priority system simulation are provided
in Table 6.5. The observation we made regarding the avg.exec values in the
previous section is also valid for this set of avg.exec parameter values.

‘‘ with the new settings.

CHAPTER 6. IMPLEMENTATION 68

Activity « m) numj'u{Tk) num-di{Tk) avg.exec{Th)
Ti 0.1 1 8.04
To 0.2 2.37
T, 0.2 10.23
T.31 0.4 1.08
T,32 0.4 1.31
T.,33 0.4 1.27
T.34 0.2 11.41
T4 0.7 13 26 39.15
T. 0.3 13.25

0.2 13 24.08
Tf61 0.5 0.81
T62 0.6 2.17
T63 0.3 0.53
T64 0.3 0.71
6̂.5 0.2 15.84

T66 0.2 7.21
To 0.4 13.43
T71 0.3 5.21
T72 0.2 4.58
T73 0.4 6.21
T74 0.1 6.45

0.1 7.85
8̂1 0.2 5.88

To 0.1 7.42
T10 0.1 6.15
T,11 0.1 1 2 9.03

Table 6.5: Initial settings for priority system simulation

Our prediction about the behavior of E D L and C T R with the new parame
ter settings was not justified. VVe expected to observe an increased performance
of these methods since we made an adjustment in the average execution time

values to reduce the difference among them. The results obtained with the new

settings are presented in Figure 6.31. As it is seen from the figure, when the
system is not heavily loaded the performance results of EDL and C T R are
slightly improved. Nevertheless, the increase in the system load returns the
values of missed deadline percentage up to those obtained in the previous set
of experiments. Therefore, the inefficiency of E D L and C T R cannot be pre

vented by the change of the avg.exec values. These methods still preserve the

CHAPTER 6. IMPLEMENTATION 69

'-OJCVJrj·
OO
o o
d o

g System Load

Figure 6.31: Missed Deadline Percentage

drawbacks discussed earlier in Section 6.3.2. The U D L policy which does not
use any information about the activities (including avg.exec parameter values)
did not react to the changes in the parameter settings in terms of system per
formance. Algorithms EQS and E Q F exhibited very close performance results
(Figure 6.32). The new values obtained for these methods are in between the
results of E Q F and EQS in the previous experiments. This means that the
performance of E Q F decreased and the performance of EQS increased. For
the E Q F method the degradation in performance is due to the same reason
as that for the P E X method discussed in the previous section. EQS, by dis-

Figure 6.32: Missed Deadline Percentage

tributing the slack time evenly among all the activities, is expected to provide
better results with more or less similar execution time values. We observe

CHAPTER 6. IMPLEMENTATION 70

confirmation of this prediction in Figure 6.32. Having chosen the parameter
settings listed in Table 6.5, we ‘ tuned’ the EQS method to provide better per
formance results for our schema. Thus, the observed higher performance of it
is an unstable effect. Whereas, for the E Q F method, for which the distribu
tion of the available slack time based on avg.exec is envisaged in its formula,
the performance results are less dependent on the parameter settings and this
method is expected to provide steadily better performance than EQS.

6.3.4 Summary

In this chapter we studied several deadline assignment strategies for non-
prioritized and prioritized perception of our system. The two sets of exper
iments showed considerably different performance results in terms of missed
deadline percentage, completion ratio, and number of completed applications
with different system load values. As our experiments show, the performance
results obtained with the non-prioritized system are much better than those
with the prioritized system. We conducted additional experiments for both of
the approaches with different initial parameter settings to see how the results
are affected. The results we obtained with the new settings did not show sub
stantial changes in the performance. Thus, in the final analysis, we confirm the
conclusions we made earlier in this chapter. For our workflow schema which
comprises long-lived and short activities and contains dynamic structures such
as Ai\D-, OR-, and VOTE-split points, the non-priority approach provides
more appropriate functionality of the system. We do not generalize these re
sults over all workflows since we studied only a single application and moreover
we think that there cannot be a common conclusion for all possible workflow
applications. Summarizing this discussion, we claim that for each workflow ap
plication the decision regarding the most suitable implementation in terms of

the prioritized/non-prioritized realization should be taken after studying both

these approaches in conjunction with different deadline assignment strategies.

Chapter 7

CONCLUSION

In this thesis we consider several aspects of workflow management. Our study
contributes to the theory of the workflow management as well as to the practical
issues of workflow management systems (WFMSs) implementation.

We started our work with an observation of functionality of a WFMS sug
gested by the workflow management coalition (WFMC). In our opinion, a
deficiency of WFMSs in the scope of the WFMC definitions is the absence of
simulation tools which should provide a preliminary picture of future workflow
performance. We understand that for currently existing commercial WFMSs
which were produced a few years ago, there is a little ground for conduct
ing simulation experiments. These WFMSs (excluding a few) do not support
transactional representation of workflows. Therefore, a workflow in the frame
of such WFMS is a static representation of a busine.ss process which allows a
workflow designer to define only inter-activity dependencies. However, to im
prove an execution process and give a workflow more stable chances to be still
adequate after a few years by considering scalability, security, and concurrency
issues, workflow management should borrow and adopt database concepts to

WFMSs implementation. In our work we select a set of transaction models
which can function as a projection of a workflow schema onto the database
domain. As a further extension of the simulation ground we suggest to probe
workflows with prioritized and non-prioritized perceptions.

71

CHAPTER 7. CONCLUSION 72

Also in this thesis, we discussed the aspects of human invocation and uti
lization of legacy tools during a workflow life cycle. We contributed with a
combined workflow task structure which allows to control the execution of a
legacy application and monitor human invocation based on the database tech
nology. Also, we complemented the notion of the deadline provided by the
WFMC with another representation which turned out to be more appropriate
for our workflow application.

A practical contribution of our study is the workflow schema we developed
and analyzed through simulation experiments. Our application which models
an admission procedure at a graduate school, allowed us to apply and examine
the performance of different transaction models and system settings. Adopt
ing different deadline assignment ancradj.ustment techniques, we proposed a
new deadline assignment method based on the number of data items accessed
and recourse units requested by an activity. This method provided good per
formance results for our workflow schema. Referring back to the theoretical
contributions, we should add that while designing our schema we felt an insuf-
ffciency in the set of dynamic structures allowed for a workflow schema defini
tion. At this stage we contributed with an additional definition of split points
which we named VOTE-split point and corresponding VOTE-split transaction
model.

Based on our conclusions derived from the simulation results a designer
of a similar application could draw suggestions in terms of optimal system
throughput, recommended capacity of facilities, and possible transaction model
and control structures for the better system performance.

As a future prospect, to make the simulation system transparent and user-
friendly, we present a sketch of a graphical user interface (GUI) for it which
would hide the mathematical complexity from workflow designers (Figures 7.1-

7.3). As we stated earlier, such a tool could be incorporated in a WFMS and
involved after the design stcxge of workflow schemas. The schema which is seen
in Figure 7.1 thus should be specified at an earlier stage. Then this schema
should be processed and simulated using chosen settings. The results of the
simulation might be represented in table and graphical forms similar to those

provided in Figure 7.3.

CHAPTER 7. CONCLUSION 73

•»rSfimufaHon ̂ , · · ^

sch em aV sim uiation r>:>

M''',vH6reabiiut'worK/iow,.'.·' ','j
I V V̂- <■ i ̂c'* * ^ «V’C» 1̂ W i- K -< 4' , r*̂ \ "
'y-'C7iT'A7r7 •Mf0̂ i}i''·’'· ' '' ',.■. \,., ■■'.̂ -. ;■■·

• Wumber.of aplicants Transaction Models '.

|w. ■|3o"

School limit

C>e3dline assignment . :

|20 '/,7 ;^. "-''ftrH:^4MPEX

: ' ^^Non-prio% C Priority

start simulation !'«' \4'̂ r-
., „ . . J b . l v ' S ̂.„.»„..i««!.; iv.

Figure 7.1: GUI, Simulation Setup

, ni:U«rti(ibi)f.':bTiviVi

’’•iTrahsacliari:Models’ ':iv?'7'‘ v<',/'t|^jl·'

Ooen Nested11̂:·;
' ■,* ' ► «»* ̂**̂' ^

> l'>.*»ifci>>.̂xi.)t.wi*rs:îVsiiiiXj*\ii'.trtJi -„T.i.i't' ■ 7?.. i
— .■ ■. · . '*■ ri..<rt«<»Si?H<'·'. tinUi

l7?<g|x|
TnNum TrModel ■ ’ ·■.■■. Jl ''

i T

, , .7 ’. - '

■..... i t 6 Nested Saga
i?dV; T61 T raditional
► T62. J : '■ ·;.■ ■ ■ Open Nested - '

'T63-T64 ¡Traditional 1 , ;
_ χ r^ x z„■ .______________ __________ : f r ..^,—--............. ' iiBnitit

4» ^ ^ ,3,ji_0K '■"'''; jZ-'f’..-,·. CtearSettings j 7|;.r:̂ vj.̂) ‘T V' I - '- rr-r’-Tl- -’'-r---—r—! ,̂ - -1 --1- -'” *'- ̂ .,\ '■‘:,,'V U. ‘

c- .·!/.■· ‘

Figure 7.2: GUI, Transaction Models Selection

CHAPTER 7. CONCLUSION 74

Completion Ratio :

"Load ■ HOA ' TSL 7PD'i\
► 0.021 100 100 1 0 ~

0.0042 50 50 5(^7
0.0084 25 75

m a : n CiH n n / o o r* .. . r>r>. tillllllMlI

'■5M E
Transaction Models Performance ̂ '

<< <4Vrt

■
T4;rRepfesentatibn .■ Fiat fM 'ji.'

► A N D -sp lit 1 9 0 .4 9 1 7
w V O T E -sp lit 137.1
-·. O R-split 9 0 .4 7
iL a a Q : f ; ; - 7 7 : ' : i £

„ ir

ii>- Repeat Simulation | \ ji< / NewSfettirlgs -,.v:ff.-4'ii.'*!: E x il.~ 'f ’

Figure 7.3: GUI, Simulation Results

Bibliography

[AAA■*■9 5] Gustavo Alonso, Dharma Agrawal, Abd-El Abbadi, C. Mohan,
R. Gonthur, and M. Kamath. Exotica/FMQM; A persistent
message-based architecture for distributed workflow management.
In Proceedings of the IFIP WG8.1 Working Conference on Infor
mation Systems for Decentralized Organizations, Trondheim, Au
gust 1995.

[AAAM98] Gustavo Alonso, Dharma Agrawal, Abd-El Abbadi, and G. Mohan.
Functionality and limitations of current workflow management sys
tems. IEEE-Expert (to appear in a special issue on Cooperative
Information Systems), 1998.

[Alo98] Gustavo Alonso. The future of workflow management sys
tems. In Proceedings of the 1st International Symposium on Ad

vanced Database Support for Workflow Management, Enschede, the
Netherlands, May 1998.

[Amb96] Michael Amberg. Modeling adaptive workflows in distributed envi
ronments. In Proceedings of the First International Conference on
Practical Aspects of Knowledge Management, Basel, Switzerland,

October 1996.

[AS96] Gustavo Alonso and Hans-Jörg Schek. Database technology in
workflow managenment. Journal of the Swiss Computer Society,

(1), 1996.

[BMM96] Perakath Benjamin, Charles Marshall, and Richard Mayer. A work-
flow analysis and design environment - WADE. Technical report.
Knowledge Based Systems, Inc., 1996.

75

BIBLIOGRAPHY 76

[Bob96] Angelo Bobak. Distributed and Multi-database Systems. Artech
House, Boston, 1996.

[CA95] Balaji Chakravarthy and El Anwar. Exploating active database
paradigm for supportiing flexible transaction model. Technical Re
port UF-CIS-TR-95-026, University of Florida, CIS Department,
April 1995.

[CCPP95] F. Casati, S. Ceri, B. Pernici, and G. Pozzi. Conceptual modeling of
workflows. In Proceedings of the Ifth Object-Oriented and Entity-
Relationship Approach International Conference, Gold Goast, Aus
tralia, 1995.

[CHRW98] Andrzej Chichoki, Abdelsalam Helal, Marek Ruzinkiewicz, and
Darell VVoelk. Workflow and Process Automation. Concepts and
Technology. Kluwer Academic Publishers, Boston, Dordrecht, Lon
don, 1998.

[GR94] Panos K. Chrysantis and Krithi Ramamrithan. Synthesis of ex
tended transaction models using ACTA. ACM Transactions on
Database Systems, (3):450-491, 1994.

[DKOS97] Asuman Doğaç, Leonid Kalinichenko, M. Tamer Özsu, and Amit
Sheth. Advances in Workflow Management Systems and Interop

erability. NATO Advanced Study Institute, Turkey, 1997.

[ELLR90] Ahmed Elmagarmid, Y. Leu, W. Litwin, and Marek Rusinkiewicz.
A multidatabase transaction model for Interbase. In Proceedings
of the Conference on Very Large Data Bases, Brisbane, Australia,
August 1990.

[Elm92] Ahmed Elmagarmid. Database transaction models for advanced ap

plications. M. Kaufmann Publishers, San Mateo, California, 1992.

[Fis95] Paul Fishwick. Sim-h+ Reference manual. University of Florida,
CSE Department, 1995.

[GHKM94] Dimitros Georgakopoulos, Mark Hornik, P. Krychniak, and
F. Manola. Speciflcation and management of extended transac
tions in a programable transactional environment. In Proceedings

BIBLIOGRAPHY 77

of the 10th International Conference on Data Engineering, pages
462-473, Huston, Texas, February 1994.

[GHS95] Dimitros Georgapoulos, Mark Hornick, and Amit Sheth. xA.n
overview of workflow management: From process modeling to
workflow automation infrastructure. Distributed and Parallel
Databases, 3(2):119-153, 1995.

[GMS87] Hector Garcia-Molina and Kim Salem. Sagas. In Proceedings of the
Conference on Database Systems in Office, Technique and Science,
pages 249-259, May 1987.

[Int] International symposium on advanced database support for work-
flow management http://wwwis.cs.utwente.nl:8080/ wide/sympo/.

[JK97] Sushil Jajodia and Larry Kerschberg. Advanced Transaction Mod
els and Architectures. Kluwer Academic Publishers, 1997.

[.Joo96] Stef .Joosten. Workflow management research area overview. Sec
ond American Conference on Information Systems, Tutorial, 1996.

[KGM93] Benjamin Kao and Hector Garsia-Molina. Deadline assignment in
a distributed soft real-time system. In Proceedings of the 13th IEEE
International Conference on Distributed Computing Systems, 1993.

[KGM94] Benjamin Kao and Hector Garsia-Molina. Subtask deadline assign
ment for complex distributed soft real-time tasks. In Proceedings of
the 14 th IEEE International Conference on Distributed Computing
Systems, 1994.

[Kim95j Won Kim. Modern database systems: the object model, interoper

ability, and beyond. Addison-Wesley, New York, 1995.

[KP92] Gail E. Kaiser and Calton Pu. Dynamic Restructuring of Trans

actions, chapter in [Elm92]. M. Kaufmann Publishers, 1992.

[KR95] Mohan Kamath and Krithi Ramamrithan. Modeling, correctness
and system issues in supporting advanced database applications
using workflow management systems. Technical Report CS-TR-
95-50, University of Massachusetts, CS Department, 1995.

http://wwwis.cs.utwente.nl:8080/

BIBLIOGRAPHY 78

[KS95] Narayan Krishnakumar and Amit Sheth. Managing heterogeneous
multi-system tasks to support enterprise-wide operations. Dis

tributed and Parallel Databases, 3(2):155-186, 1995.

[LHK97] K. Lam, L. S. Hung, and Benjamin Kao. Impact of priority assign
ment on optimistic concurrency control in distributed real-time
databases. lEE Proceedings - Computers and Digital Techniques,
144(5), September 1997.

[Moh97] C. Mohan. Recent Trends in Workflow management Products Stan

dards and Research, chapter in [DKOS97]. NATO Advanced Study
Institute, 1997.

[PKH88] C. Pu, E. Kaiser, and N. Hutchinson. Split transactions for open-
ended activities. In Proceedings of Ifth International Conference
on Very Large Data Bases, Los Angeles, California, USA, August
1988.

[PR97] Euthimios Panagos and Michael Rabinovich. Reducing Escalation-
Related Cost in WFMSs, chapter in [DKOS97]. NATO Advanced
Study Institute, 1997.

[PR98a] Euthimios Panagos and Michael Rabinovich. Managing activities
deadlines in WFMSs. ATT Labs - Research, 1998.

[PR98b] Euthimios Panagos and Michael Rabinovich. Reducing escalation-
related cost in WFMSs. ATT Labs - Research, 1998.

[SK97] Amit Sheth and Krys Kochut. Workflow Applications to Research
Agenda: Scalable and Dynamic Work Coordination and Collab

oration Systems, chapter in [DKOS97]. NATO Advanced Study
Institute, 1997.

[SST94] Rajendran Sivasankaran, John Stankovic, and Don Towsley. Pri
ority assignment in real-time active databases. In Proceedings of
the Parallel and Distributed Information Systems, 1994.

[WAN97] Jiirden Wäsch, Karl Aberer, and Erich J. Neuhold. Transactional
Support for Cooperative Applications, chapter in [DKOS97]. NATO
Advanced Study Institute, 1997.

BIBLIOGRAPHY 79

[Wid] WIDE project home page. http://dis.sem a.es/projects/W IDE/.

[Wor96] Workflow Management Coalition. The Workflow Management
Coalition Specification. Workflow Management Coalition Termi

nology and Glossary, WFMC-TC-1011, June 1996.

http://dis.sema.es/projects/WIDE/

