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AB STR ACT

BLISS AND GROWTH:
OPTIMAL POLICIES UNDER UNCERTAINTY

Ebru Voyvoda
M.A. in Economics

Supervisor: Asst. Prof. Dr. Erdem Başçı 
August 1998

This thesis conducts a study on growth theory by analyzing how the results 

of the current optimal growth theory change when households are assumed to 

have bliss points in their consumption sets. For this purpose a discrete-time, 

one-sector, stochastic model of endogenous growth, adopting constant returns to 

scale technology and quadratic utility function, is constructed. The solution of 

the model through “value function iteration” shows the existence of qualitatively 

different equilibria, depending on the initial state of the economy. This result 

demonstrates that it is possible to combine “poverty traps” and “sustained 

growth” into a common analytical framework.

Keywords: Optimal growth, bliss, value function iteration, poverty traps,

sustained growth
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ÖZET

DOYUM VE BÜYÜME:
BELİRSİZLİK ALTINDA OPTİMAL POLİTİKALAR

Ebru Voyvoda
İktisat Bölümü, Yüksek Lisans 

Tez Yöneticisi: Yrd. Doç. Dr. Erdem Başçı 
Ağustos 1998

Bu çalışma, bireylerin tüketim kümesinde doyum noktasına sahip olmaları 

durumunda, varolan büyüme teorisinin sonuçlarının ne şekilde değişeceğini 

araştırmaktadır. Bu amaçla, tek sektörlü, birinci dereceden homojen bir üretim 

ve parabolik fayda fonksiyonları altında işleyen, rassal bir endojen büyüme modeli 

kullanılmaktadır. Modelin “değer fonksiyonu iterasyonu” metodu ile çözümü, 

ekonominin başlangıç noktasına bağlı ve kalitatif olarak çeşitlilik gösteren 

dengelerin varlığına işaret etmektedir. Bu sonuç, “yoksulluğun kısır döngüsü” 

ve “sürekli büyüme” konularının ortak bir analitik çerçevede işlenebilirliğini 

göstermektedir.

Anahtar Sözcükler: Optimal büyüme, doyum, değer fonksiyonu iterasyonu,

yoksulluk tuzağı, sürekli büyüme.
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Chapter 1

Introduction

The recent research in economic growth is not only central to the study of 

macroeconomics, but attracts interest from researchers in a wide variety of fields 

such as development economics, international economics, theory, history, ¿ind 

industrial organization. Yet, the academic interest in the mechanics of growth 

and development can be considered as a renewed one rather than a completely 

new area of research. The progress and well-being of nations was one of the 

major areas of interest of classical economists including Adam Smith, Diivid 

Ricardo, Thomas Malthus and Karl Marx. Their ideas provided many of the 

basic ingredients that appear in modern theories of economic growth. *

A discussion on economic growth that stresses the empirical implications of 

the theories and the relation of these hypotheses to data and evidence, identifies 

two major waves of interest in modern growth theory. The first is the development 

of the neoclassical model of late 1950s. The neoclassical theory states that the rate 

of growth of per capita output is a decreasing function of the level of per capita 

stock of capital. There is a unique, steady-state equilibrium where all countries 

are expected to converge; identified by zero rate of growth in the absence of 

exogenous technological advance. This prediction has invoked the question that 

has attracted the most attention in recent empirical work on growth, whether

‘ See Weaver and Jameson (1981) for a survey.



per capita income in different countries is converging. The second wave, named 

“endogenous growth theory” began in 1980s as a reaction to the predictions of 

the neoclassical model. In contrast to the prediction of “convergence” of the 

neoclassical theory, the new endogenous growth theory offers an equilibrium with 

a positive rate of per capita growth, which can differ across countries.

The controversy between the neoclassical and endogenous growth theories, 

has led to hundreds of empirical studies testing the hypotheses of both. The 

hypothesis of convei’gence has mainly been supported for the economies that are 

similar to each other in many aspects; but not in the global sense.^ The new 

endogenous growth theory, has well fitted the observed behavior of poor and rich 

economies, but characterizing the economy with a self-sustained engine of growth, 

lacks an explanation for the existence of many countries that have been unable 

to start their engines.

The simple fact that can be derived from the analysis of data on economic 

growth, is the existence of a variety of routes taken by the world economies. 

Neither the world seems to converge to a unique destination, nor do we observe all 

countries following paths of sustained growth. A number of historical references 

would help clarifying the point that, there are different paths of growth for the 

world economies. Great Britain, during the First Industrial Revolution constitute 

an episode of take-off into sustained growth. According to the analysis ol Rostow 

(1978), the yearly growth rate of industrial production, which had been about 1% 

between 1700 and 1783, became 3.4% between 1783 and 1802, remaining higher 

throughout the 19*̂  century. There are examples of countries which, after having 

been structurally similar for some period of their history, seem to have taken 

divergent paths at some stage. Lucas (1993) reports data showing that Korea 

and Philippines had very similar structural conditions in 1960. In the following 

eighteen years however, Korea has grown at 6.2% average annual rate whereas 

^See Barro and Sala-i Martin (1995), Chapter 11. for convergence topic.



Philippines have grown at a 1.8% rate. The miraculous development of East Asian 

countries in late 1980s has made them candidates to close the gap between the 

developing and developed countries. On the other hand, many countries seemed 

to be locked-in in underdevelopment traps, particularly the majority of the Sub- 

Saharan African countries. The existence of such episodes reveals the need for 

combining the hypotheses of the neoclassical model and the new endogenous 

growth model, into a common analytical framework.

The question that whether it is possible to obtain both convergent and 

divergent paths under a model of endogenous growth is the main motivation 

behind the current study. For the purpose of having a combining framework, 

this study constructs a discrete time, one-sector, stochastic model of endogenous 

growth. The model is designed to reflect the problem of a social planner, trying 

repeatedly over an infinite time horizon to allocate society’s output between 

consumption and investment.^ The key features of the model are as follows: 

A constant returns to scale technology in the reproducible factor of production 

is proposed as done in endogenous models. On the consumers’ side however, 

instead of employing a representative utility function which is strictly increasing in 

consumption argument, a utility function of quadratic form is adopted. The aim 

in adopting such a form of utility, is to analyze how the results of the endogenous 

growth model change when households have bliss points in their consumption sets. 

Finally, the model is constructed in a stochastic environment; the production 

function is exposed to random shocks to productivity. These random shocks can 

be thought to represent stimulus by education, technological innovation, or any 

favorable and unfavorable condition affecting the production process.

Having the criterion of maximizing the expected sum of discounted utilities, 

the long-run equilibrium of the economy under optimal policies is analyzed.
I______________________
^In the sense that the model is a discrete time, one-sector model of optimal growth, it could 

be considered as an endogenous growth analogue of the Brock and Mirman (1971) model, which 
was constructed in a neoclassical framework.



Construction of the model in discrete time, allowed for the application of dynamic 

programming approach in finding the solution to the maximization problem in 

hand. Specihcally, the method of numerical dynamic programming, based on the 

value function iteration is employed.

In constructing such a model of optimal growth, the aim of this study is to 

analyze, from a formal standpoint the two grand issues of economic development: 

the underdevelopment traps that could be analyzed under the framework of the 

neoclassical theory, and sustained growth, implied by the endogenous growth 

theory. The model is expected to exhibit some thresholds which separate a region 

where growth is “Solow-type” with convergence to a stationary steady-state, from 

a region where it is “Rebelo-type” allowing for sustained paths. Such a result 

of the existence of qualitatively different equilibria will help understanding the 

episodes of different growth paths, taken by the world economies.

The organization of the thesis is as follows: Chapter 2, presents a review 

of history of academic interest in economic growth with special emphasis on 

literature on underdevelopment. Chapter 3 introduces the model and the solution 

methodology employed. Chapter 4 provides the concluding remarks and the 

economic interpretations of the I'esults.



Chapter 2

Literature Survey

2.1 A Synopsis on Modern Growth Theory

Modern growth theory dates back to the classic article of Ramsey (1928). 

However, the academic interest, that has made economic growth central to the 

study of macroeconomics could only be awakened in 1950s. Given the recent wave 

of country experiences, a number of studies had already been carried out before 

Kaldor (1963) listed the stylized facts that he thought as typical to the process 

of economic growth. ^

It can be said that seminal works of Solow (1956) and Swan (1956) 

provided the initial contribution to what we term today as the modern theory of 

economic growth. Their models were constructed in a neoclassical environment: 

a production function exhibiting constant returns to scale in aggregate, and 

diminishing returns to each input together with a positive, smooth elasticity of 

substitution between the inputs. The key aspect of their models is the assumption 

that households save a fixed proportion of their income. Neither Solow nor Swan 

attempted to integrate households’ preferences or expectations into their models. 

However, their work constituted a giant step toward in the process of constructing 

a formal model of growth, where its theoretical predictions could be exploited

^Schumpeter (1934) and Knight (1944) provided a number of basic ideas on growth theory. 
Harrod (1939) and Domar (1946) attempted to integrate the Keynesian analysis with the 
elements of economic growth.



as empirical hypotheses through the years. One of these predictions, which 

follows from the assumption of diminishing marginal returns to capital, is on the 

steady-state behavior of the economy. It states that in the absence of continuing 

improvements in technology, which is completely exogenous to the model, per 

capita growth eventually ceases. However, the observation that positive rates of 

growth can persist over a century or more and that these growth rates have no 

clear tendency to decline was one of the stimulating factors in questioning the 

Solow-Swan model. Another prediction of the model, which has been central 

to a large debate in growth economics is “conditional convergence” .̂  The lower 

the starting level of per capita gross domestic product (GDP), relative to the 

unique long run steady state position, the faster is the growth rate. This property 

also comes from the assumption of diminishing returns; economies that have less 

capital tend to have higher rates of return. The hypothesis applies if a poor 

country tends to grow faster than a rich one, so that the poor country can catch 

up with the rich in terms of the level of per capita income. The convergence is 

“conditional” because the steady state level of per capita output depend, in the 

Solow-Swan model, on the saving rate.

The question that whether per capita income in different countries is 

converging has attracted considerable attention in the study of development 

economics. It is important to point that research on the convergence controversy 

helped defining the relationship between the empirical analysis and the theory 

of economic growth. Lucas (1988) explains the role of the theory of economic 

development as to provide some kind of framework for organizing facts; for judging 

which are opportunities and which are necessities. He states “ ... the construction 

of mechanical, artificial world, populated by interacting robots that economics 

typically studies, that is capable of exhibiting behavior the gross features of which

Sq'j-jg convergence controversy hss been the major subject of many empirical studies. 
Examples include Easterlin (1960), Streissler (1979), Baumol (1986), DeLong (1988), Barro 
and Sala-i-Martin (1991), (1992), Chatterji (1993).



resemble those of actual world” to be the mechanics of economic development.^ 

Consistent with this observation, it has always been the organized facts, that is, 

observed regularities across countries and across time in levels and rates of growth 

of per capita income, which functioned as the stimulating and directing factors 

of growth theory. The assumption of exogenous saving rate as the only source of 

country variation, together with the observation of positive and persistent growth 

rates, caused the neoclassical theorists of the late 1950s and 1960s to recognize the 

modeling deficiencies in the work of Solow and Swan. In an attempt to endogenize 

the saving rate, households’ preferences for the first time after Ramsey re-entered 

the discussion of economic growth by the works of Cass (1965) and Koopmans 

(1965).

Cass studied a centralized, closed economy where the social welfare, 

represented by the total discounted utility of consumption per capita is maximized 

over an infinite horizon. A neoclassical aggregate production function with 

constant returns to scale, positive marginal productivities and diminishing 

marginal rate of substitution, and an increasing, concave utility function 

constitute the basics of the model. The single output, is either used to satisfy 

current consumption requirements or is added to the capital stock, which in 

turn, depreciates at a fixed rate. Saving becomes endogenized in this framework, 

yielding a unique intertemporally optimum growth path. However, endogeneity of 

saving does not eliminate the dependence of the long run per capita growth to the 

exogenous rate of technological progress. Diminishing returns to capital implies 

that the long run rate of per capita growth, independent of the saving-investment 

quota, reaches to zero under the absence of technological improvement.

The work of Cass and Koopmans was carried out in a deterministic 

environment. Brock and Mirman (1971) was the first model to integiate a 

stochastic environment into the study of economic growth.·  ̂ Concerned with

^Lucas (1988), page 5.
^Mirrlees (n.d.), Phelps (1962), and Levhari and Srinivasan (1969) attempted to generalize



the necessity of incorporating random fluctuations occurring due to observation 

errors, lack of knowledge of exact production functions or any kind of shock 

to factors affecting the technology, Brock and Mirman studied a one sector, 

discrete time model of optimal growth under uncertainty. Their model operates 

in a completely neoclassical framework where uncertainty is introduced through 

a random element entering the production function in multiplicative form. 

Maximization of expected sum of discounted utilities makes it possible to take 

the random fluctuations into account while calculating optimal policies. Brock 

and Mirman used dynamic programming techniques to construct the necessary 

conditions satisfied by optimal policies. The usual deterministic properties of Cass 

and Koopmans are observed to hold under uncertainty as well: investment and 

consumption are continuous and monotonie functions of existing capital stock. 

However, the result of a unique steady state capital stock under optimal policies 

of the deterministic case leaves its place to the analogous result for the stochastic 

case; namely the existence and uniqueness of a stationary distribution on the 

economy’s capital stock. The long run equilibrium of Brock and Mirman model 

turns out to be analogous to the modified golden rule of the deterministic theory.®

Major studies following the work of Brock and Mirman on stochastic theory 

of optimal growth, include Mirman (1973), Radner (1973), Mirman and Zilcha 

(1975), (1976), (1977), Danthine and Donaldson (1981). Radnor’s work can 

be treated as the multiple-sector optimal growth analogue of the Brock and 

Mirman model. Mirman (1973), in return, worked in a common framework 

with Bi’ock and Mirman and investigated the behavior of an economy under 

the influence of a rather large class of admissible consumption policies. In a 

series of papers, Mirman and Zilcha studied possible technical improvements on 

the model of Brock and Mirman. Their main emphasis was on the extension

deterministic optimal growth models to uncertainty but these works were conceived in the area 
of optimal investment and savings behavior for the individual, not the long run properties of 
economic growth.

^See Barro and Sala-i Martin (1995), page 74, for a discussion of modified golden rule.



of the boundedness property of the price function associated with the optimal 

steady state.® The work by Danthine and Donaldson was the single descriptive 

study in the stochastic optimal growth literature. Concerned with changes in 

discount rates, aversion to risk, and technological productivity, they studied the 

implications on consumption, investment and output. Formally, they provided 

an analysis of how the mean, riinge and variance of the stationary distributions 

of consumption, investment and output cire affected by parameter shifts.

Growth theory, after the work of Brock and Mirman (1971) became quite 

technical and lost contact with the empirics from which it had been fed. Probably 

the reason why it could not recover as an active research field until 1980s was its 

lack of empirical relevance.^ Barro and Sala-i Martin (1995) describe this period 

as follows:

Economists, who are required to give advice to sick countries, 
retained an applied perspective and tended to use models that are 
technically unsophisticated. The fields of economic development and 
economic growth drifted apart and the two areas became completely 
separated...®

Since mid 1980s, research on economic growth has experienced a new 

boom due to a motivation from observed dynamics and empirical results. The 

observation that determinants of the long run economic growth are crucial, led 

researchers to question the neoclassical model at this time. The neoclassical 

growth theory had provided an endogenous determination of the saving rate, 

but continued to rely on exogenous technological progress in order to achieve 

positive rates of per capita growth. Researchers who were not satisfied with a 

theory that leaves the main factor of economic growth, namely the technological

®Price in the deterministic case is simply the marginal utility of optimal consumption. In 
the stochastic case “prices” are taken in the sense of a price function defined on the same set 
as the random variable governing the production process.

■̂ See Barro and Sala-i Martin (1995), Chapters 11, 12, 13 for a brief history of empirical 
analysis of growth.

®Barro and Sala-i Martin (1995), page 12.



progress, unexplained, pursued the idea of determining the long-run growth rate 

endogenously within the model.^

The direction taken at first by the models of new growth theory was 

to eliminate the long-run tendency for capital to experience diminishing 

returns. Arrow (1962), Sheshinski (1967), and Uzawa (1965) constructed models 

which exhibit unintended by-products of production or investment decisions, a 

mechanism described as learning-by-doing or learning-by-investing. Built mainly 

on these studies, Römer (1986) and Lucas (1988) introduced the idea of increasing 

marginal productivity of intangible capital good. In these models, growth may 

go on indefinitely because returns to investment in a broad class of capital goods- 

which includes human capital- do not necessarily diminish as economies develop. 

Rebelo (1991) shares with these models the property that growth is endogenous, 

in the sense that it occurs in the absence of exogenous increase in productivity as 

in the neoclassical model. But in contrast to the emphasis on increasing returns in 

the models of Römer and Lucas, Rebelo’s model displays constant returns to scale 

technologies. The works of Römer, Lucas and Rebelo have been the cornerstones 

of endogenous growth theory in the sense that they opened a new area of research 

to provide theoretical support on many stylized facts on development.

Introduction of the theory of technological progress, however, did not come 

easily since it necessitated fundamental changes in the neoclassical hypotheses; 

mainly the assumption of perfect competition had to be abondened. Römer 

(1986), (1990), Aghion and Howitt (1992) and Grossman and Helpman (1991) are 

among the ones who contributed significantly to the development of the theory of 

technological progress. These models introduced the research and development 

(R&D) theories and imperfect competition into the growth framework where 

technological advance results from purposeful R&D activities, which are later 

rewarded by ex-post monopoly power. Growth can remain positive in the long

^See Römer (1986) for motivation and evidence.
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run as long as there is no tendency for the economy to run out of ideas. Distortions 

that are brought in by imperfect competition, cause the equilibrium to be sub- 

optimal.

There is still a controversy on the determinants of economic growtĥ *̂  but 

compared to the growth theory of 1960s, the improvement achieved by endogenous 

growth theory in explaining the observed facts of economic growth is undeniable. 

Endogeneity of growth provides policy makers a large set of actions to be taken in 

influencing long term rate of growth, which is of course an important step toward 

in achieving economic development.

2.2 Poverty Traps and Growth

The new endogenous growth theory has brought the modern theory of growth to 

a point where it is possible to sustain the marginal productivity of capital, as its 

accumulation proceeds. Among the mechanisms used for the purpose of sustained 

growth are learning by doing externalities (Römer (1986)), accumulation of 

humcin capital (Lucas (1988)), intentional innovation (Römer (1990), Aghion and 

Howitt (1992)) and financial development (Saint-Paul (1992)). One of the main 

conclusions of the modern endogenous growth theory is that both the poor and 

the rich countries will enjoy positive rates of growth, but the poor will remain 

relatively poorer forever.

Many empirical studies, however, have not completely supported the idea 

of sustained growth of per capita. Reynolds (1983) has documented a prolonged 

period in which output growth is driven by labor force growth ( “extensive 

growth” ), and no significant trend in per-capita output is observed. Zilibotti 

(1995), based on the tables of World Bank (1992), has provided evidence that 

many poor countries not only failed to exhibit evidence of sustained growth but 

found themselves trapped in stable “underdevelopment equilibria” with zero rate
10 See Solow (1994), Pack (1994) and Römer (1994).
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of growth. According to the Report, forty-one countries out of one hundred have 

experienced an annual average growth rate of GDP per capita of less than one 

percent.

Such evidence has led to a new theme in the literature of economic growth: 

poverty traps. The most common definition of poverty trap includes a stable 

steady state under low levels of initial per capita output and capital stock. We 

have observed decreasing marginal product of capital in the neoclassical model. 

In contrast, the new endogenous growth theory allows for increasing returns to 

capital cases as well. One of the ways that have been followed by researchers 

in this area is to model poverty traps by combining the neoclassical growth 

theory with elements of the new endogenous growth theory. The economy is 

modeled to have an interval of diminishing marginal product of capital, which 

is followed by a range of rising average product.*^ Poverty traps also arise in 

some models with non-constant saving rates. In an overlapping generations 

(OLG) setting, Galor and Ryder (1989) has shown that for any feasible set of 

well-behaved preferences, there exists a production function under which the 

economy experiences a global contraction, where the steady state equilibrium 

is characterized by zero production and consumption. Dechert and Nishimura 

(1983), have assumed that the form of the production function is contingent 

upon the initial level of capital stock: for small values of capital stock, the 

production process exhibits increasing returns to scale and for large values it 

exhibits decreasing returns. In a competitive equilibrium setting, they have 

demonstrated that for certain interest rates, optimal path of capital accumulation 

converges to zero below some critical level of initial capital stock.

The models of poverty trap together with the models of new endogenous 

growth theory fitted the observed behavior of poor countries among the rich. , 

A low level of output was detected as both the cause and the effect of certain

'̂ Ŝee Barro and Sala-i Martin (1995), Section 1.3.5.
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characteristics such as chronic unemployment together with underemployment, 

low level of scientific and technological knowledge, low savings and investment 

levels and limited accumulation of capital, common to almost all developing 

countries. The theory, mostly developed in a deterministic setting gave no 

chance for a poor country to take-off into sustained growth as the rich. “Modern 

economics has adopted this circular process as an explanation of the fact that a 

poor country tends to remain poor because its poor” ^̂  has been a very familiar 

explanation for what has been demonstrated as the theory of vicious circle of 

underdevelopment.

It is mostly the miraculous development of the East Asian countries that 

suggested searching for ways to connect the two grand issues, underdevelopment 

traps and the take-off into sustained growth, into one framework of analysis. 

Episodes, in which structurally identical countries take diverging routes,as the 

example of Philippines and Korea given in introduction, have been the motivation 

behind the works of Murphy, Shleifer and Vishny (1989), Azeriadis and Drazen 

(1990), Caballe and Manresa (1994), Abe (1995), and Zilibotti (1995).

Murphy Schleifer and Vishny analyzed the idea of big-push of Rosenstein- 

Rodan (1961) in an imperfectly competitive economy with aggregate demand 

spillovers and showed that it is possible to move from a bad to a good equilibrium. 

Caballe and Manresa’s OLG model is based on the work of Jones and Manuelli 

(1992). In an OLG environment with life-cycles, Jones and Manuelli have 

demonstrated that to obtain sustained growth, one needs to have some kind of 

mechanism of income distribution from old generation to the young. In a similar 

set up, Caballe and Manresa have shown that escaping from poverty traps is 

possible when part of the surplus is given to young generation, under certain 

additional conditions on propensity to save, and the magnitude of the external 

effects. Azariadis and Drazen have studied the relation between poverty traps

^^Angelopoulus (1974), page 14.
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and growth with human capital. Abe, on the other hand combined the issue 

of underdevelopment and growth in a model with public goods, giving policy 

implications to achieve persistent growth. Zilibotti, took a historical approach 

and introduced the classic manifest of Rostow (1991) into the study of economic 

growth. Rostow, in his contribution to economics of development, claimed that 

there is a “decisive interval in the history of a society, that growth becomes 

its normal condition.” relying on his observation, that there are countries 

which have not yet achieved this stage. The model of Zilibotti provides an 

analytical framework for Rostow’s observation. Introducing a learning function 

which allows for technological change only in the presence of a positive rate of 

capital accumulation, Zilibotti achieves separate regions of growth.

This thesis can be considered as a part of literature driven by the works 

of Rebelo (1991), Murphy et al. (1989), Dechert and Nishimura (1983) and 

Zilibotti (1995). In a model of endogenous growth, adopting constant returns 

to scale technology, it analyzes the optimal behavior of an economy which 

experiences stochastic shocks to productivity. The key point in the model is 

the behavioral assumption that households have bliss points in their consumption 

sets. This behavioral assumption helps combining the poverty traps and sustained 

growth into a common analytical framework. Existence of qualitatively different 

equilibrium trajectories depending on the initial state, shows that it is possible 

to integrate the neoclassical hypothesis of convergence and the sustained growth 

theory into one model of optimal growth.

^^Rostow (1991), page36.
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Chapter 3

The model

3.1 Discrete time one-sector model of optimal 
growth

In this section, I present a one-sector growth model of an economy in discrete time 

with future production uncertainties. In its most general form, the model reflects 

the decision problem of a central planner trying, repeatedly, over an infinite 

time horizon, to allocate society’s output between consumption and investment. 

Society’s preferences and technological possibilities are assumed to be known. 

Stochastic shocks, whose distribution is given and invariant over time, affect 

productivity.

The production function of the economy is given by:

Yt = F{Kt,Lt-,zt)

where Yt, Kt and Lt are respectively output, capital and labour at time t. The 

random variable representing uncertainty is given by zt. It is customary in these 

type of models, to assume that F { . , .;.) is homogeneous of the first degree in its 

first two arguments. Then, all variables can be expressed in per-capita terms, 

namely:

yt = F{KtlLul-,zt) = f{kuZt)
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where kt =  Kt!Lt- Another way of thinking about this model, which is also the 

way chosen in this study is to have kt representing the capital stock in an economy 

with a single factor of production.

The charactei’istics of the random variable zt will be introduced as follows: 

Let iit denote the set of possible states of the world which influence the production 

at time t, with a typical element cot G fit- Let J-t be a collection of subsets of 

iL, assumed to be a <r- algebra. Let Pt be a probability measure defined on Tt 

which assigns a probability for each element of Tt., i.e. for any set Ft G Tt., the 

probability that the state of the world cui at time t is an element of Ft is given 

by:

Pt{Ft) =  Pr\u:t e Ft\

It is usually assumed that the probability space (Clt^F't^Pt) is the same in 

each period. The random component of the production function, zt is introduced 

to translate the random happenings into measurable values; defined from the 

probability space into the real line. The random variables zt are

assumed to be independent and identically distributed over time.

The representative household of the social planner, ranks stochastic 

consumption sequences according to the expected utility they provide. The 

underlying utility function takes the additively separable form:

£ K co,C „...)] =  -B E ;8 ‘£/(c,)1 (3,1)
t=0

Here, the discount factor is /9 and 0 < /? < 1. The current-period utility 

function is F : E(.) denotes the expected value with respect to the

probability distribution of the random variables {ct}'^o·

The feasibility constraints for the economy under the sequence of random
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variables {zt}^Q are:

ct +  kt+i < f{kt,zt) Vt (3.2)

In this general framework, the problem of the central planner becomes;

maxE
t=0

subject to

ct + kt+i < f(kt,zt) i =  0 ,1 ,2 , . . . (SPs)

ko > 0, given

by choosing the sequence of history contingent policy functions { q , kt+i}'^^.

3.1.1 Constant Returns to Scale Production Function

Specifically, I assume a linear production function where the stochastic shock, in 

each period affect productivity in a multiplicative fashion, i.e. ?/< =  ztAkt. Here 

A should be understood as an expression representing factors that affect the level 

of technology and zt as the value of the random shock in the current period. This 

specification which has been known as the “Ak model” in the endogenous growth 

literature, reflects the case of constant returns to scale to reproducible factor of 

production. The idea becomes more plausible when k is thought to represent 

capital in a broader sense, including both physical and human capital.^ Rebelo 

(1991) has adopted the linear production function in order to show that positive 

rates of endogenous growth can be obtained despite the absence of increasing 

returns. The simple linear model is considered as a good representative model of 

the class of endogenous growth economies that have convex technology.

^Knight (1944) was the first to stress the idea that diminishing returns might not apply 
to broad concept of human capital. Models adopting this idea have also been employed by 
Benveniste (1976) and Eaton (1981).
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3.1.2 Quadratic Utility Function

A quadratic form for the utility function, U{ct) — —aĉ  +  bct is assumed, to 

reflect the idea that households have bliss points in their consumption sets. 

The parameters a and b are assumed both positive, to assure a strictly concave, 

parabolic form for the utility function with /7(0) =  0. Such a form for the utility 

function exhibits a bliss point c =  6/2a > 0. The idea that hou.seholds may 

have a point of maximum obtainable rate of enjoyment or utility was introduced 

by Ramsey (1928). There he stressed the importance of investment-consumption 

decision of the household who wants to reach or approach to bliss sometime 

and allow for the possibility of keeping itself there. Quadratic form of utility, 

although not employed frequently in growth theory^, has been extensively used 

in analogous consumption models, especially in models testing for the hypothesis 

of permanent income.

3.2 Solution Methodology

The usual method in solving such infinite horizon optimization models is to utilize 

the recursive structure of the problem-implied by the additive separability of the 

utility function- and use dynamic programming introduced by Bellman (1957). 

This method, specifically for the problem discussed, involves searching for the 

optimal consumption-investment policy which solves the functional equation:

v {k , z ) =  max {U[z f {k ) -k ' ]  + PE[v{k',z')\k,z]} (FEs)

where v{k,z)  is the maximum attainable expected utility over all feasible 

consumption paths. Here, (k,z) is defined as the state in current period, and 

{k',z') denotes next-period’s state, k' is also known as the control variable of the 

problem.
^Cass (1965) stated that although the neoclassical models eschew the (somewhat artificial) 

foreseeable bliss level of Ramsey, it reappears in a different guise when interpreting the limiting 
optimum path.
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What makes the solution of the general problem posed in terms of infinite 

sequences (SPs) and the solution of the associated functional equation (FEs) 

coincide is a set of assumptions, which are satisfied by a large set of constraint 

correspondences (Eqn. 3.2) and return functions (C/(.), u(.)).^

If we assume that the value function is differentiable and that the 

maximizing value of A;'-call it h{k,z)- is interior, the first order and envelope 

conditions for the maximization problem {FEs) would help establishing the 

existence of optimal capital path given by the stochastic difference equation:

kt+i =  h{kt,zt) (3.3)

For most dynamic optimization problems, it is not possible to obtain an 

explicit analytical solution for the policy function h. In such cases, numerical 

dynamic programming approach is used to compute the explicit solutions.

Let V, denote the value function of the infinite horizon problem as defined 

before. It is possible to approximate u by u„, the value function of the social 

planner of horizon n defined recursively through:

Vn+i{k,z) =  m&x{U[zf{k) -  k'] + /3E[vn{k\z')\k,z]} (3.4)

The recursion is initialized with:

(3.5)

Here, Vo denotes the value function of a planner who chooses consumption 

today, knowing that the economy will survive in the current period only.

Define now, the operator T which maps t>„ to Vn+i ■

Tvn{.) =  Vn+i =  m ax{t/(.) +  /?E[u„(.)]} (3.6)

^Stokey and Lucas (1989), Section 9.1 analyzes the relationship between the problem posed in 
terms of sequences (SP,) and the corresponding functional equation (FE,), m its most general 
form. Section 10.1, specifically introduces one set of assumptions which make the solutions to 
both problems coincide, in a one-sector model of optimal growth.

19



It turns out that if tends to u as n —>■ oo, (̂ F'Es) becomes v =  Tv. 

Solving for (FEs) then, means solving for the fixed points of the operator T', in 

the domain it is defined.

In the context of analyzing permanent income hypothesis, in a dynamic 

model of consumption, Laroque and Lemaire (1997) adopt a quadratic utility 

function and show how the results of the permanent income hypothesis change, 

when free disposal of assets is allowed. The key point of their analysis is that, 

allowing for free disposal of assets makes the state space unbounded. If the 

operator T, that is defined to map into u„+i maps the set of non-decreasing, 

concave functions into itself, Blackwell’s sufficient conditions for contraction are 

satisfied.^ However, working on an unbounded state space causes the operator 

T to support more than one fixed points. It turns out that, when there are 

more than one fixed points, only one of them corresponds to the solution of the 

sequential problem (FFs),^ which in our case is given by the initialization in 

Section .3.5.

The specific forms of the production function and the utility function 

maintained, makes our model analogous to the model of Laraque and Lemaire. 

The parameter of the production function, A multiplied by the random element 

z, in our model of optimal growth, serves as the counterpart of the gross rate 

of interest in consumption models. The bliss point in the consumption set and 

the unbounded state space for the capital; point to the possibility of supporting 

different types of equilibria in our model of optimal growth.

In the neo-classical model of optimal growth, the assumptions on production 

function and utility function cause the operator T to be defined from the set of 

continuous, bounded functions into itself. T then becomes a contraction mapping.

'‘ Blackwell (1965) stated the sufficient conditions for contraction as follows: 
for any w and v in the domain of T,
1. {monotonicity) w > v => Tw > Tv.
2. {discounting) for any constant c, T{v + c) =  Tv+0c, ¡3 being the discount factor. 

®See Laroque and Lemaire (1997) for the proof
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There is a unique bounded, continuous function v, satisfying the (FEs) which 

is strictly increasing, and strictly concave in the first argument. The associated 

policy function A, then has a unique distribution function F,  which is independent 

of the initial capital stock. The counterpart of this result under the deterministic 

model, is convergence to a unique capital stock, under the path of the modified 

golden rule.

Under the Ak model of endogenous growth, the results of the current 

optimal growth theory change substantially when one allows for the households 

to have bliss points in their consumption sets. The results support the possibility 

of retaining positive rates of growth implied by the property of constant returns 

to capital in the production function, while allowing for the possibility of zero 

endogenous growth rate as well; all depending on the initial value of the capital 

stock.

Numerical dynamic programming method bearing on the recursive iteration 

of the value function is employed in the analysis. The implementation procedure 

goes thi’ough a number of steps.

• The state space is discretized and partitioned into a finite set of points. 

While doing this, the presumed growth path of the state variable, k is 

taken into consideration.

• A probability distribution for the stochastic variable 2: is defined.

• Parameters and the discount factor are assigned appropriate values.

The algorithm of the code generated to implement the value function 

iteration method for solving the problem is given below:

1. Formulate an initial guess for vq. Set uo=0 iri order to assure that the next 

values to be computed for the function v denote the pioblem of the plannei 

who chooses consumption for current period only.
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2. For each pair of state variables {k^z) compute the value function for each 

point of control variable, k\ in its feasible set which satisfies Q < k' < zf(k).  

Given the initial guess for vq, choose the point for the control variable ko 

that maximizes the right side of the (FEs)] call this new value function vi.

3. Evaluate the value function for all pairs of state (k,z).

4. Repeat steps 2 and 3 until — u„| < e for all states, whei'e e > 0 is the 

convergence criterion.

3.3 Model Specifications

The utility function is quadratic in the form U{c) = -c^  +  4c which supports 

a bliss point of c =  2. The production function has its technology parameter 

A — 1.4. Ihe random variable z is taken discrete, and is assumed to have three 

states, shockJow, shockstd. and shock^high. z is constrained to follow the 

distribution below;

2 =  0.8 with probability 0.30

— 1.0 w.p. 0.30

2T — 1.2 w.p. 0.40

The parameter of the level of technology, A multiplied by the expected value 

of the random variable AE{z) =  1.428 which assures that ^AE{z)  =  1 with 

the discount factor /? =  0.7.

The state space of the control variable k is discretized into a finite set of 

points with 0.1 grids. That is, starting from 0, the discrete space used allows 

the control variable k to increase by 0.1 units. The fact that k is defined on 

an unbounded space first forced using a dynamic structure, in order to take the 

growth possibility of k into consideration. However the value function analyzed
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became constant after some critical value of k, which made it easier to deal with 

dynamic structures and growing k in the model.

3.4 Deterministic Case

Under the deterministic scenario, the social planner faces the following model of 

optimal growth:
oo

subject to

Ct +  î+1 < f {h )  t =  0 ,1 ,2 ,...

ko > 0, given

(SP,)

The variables are defined just as in the stochastic case except that now we 

do not have any random shock to technology. The central planner chooses the 

infinite sequence {(cj.

The functional equation associated with the deterministic model of optimal 

growth above, then takes the form:

v{k) = -  k'] + l)[v(k')\k\} (FEk)

For the deterministic case it is easy to show that there exists a critical value 

for the capital stock in the economy that allows for sustained growth, i.e. there 

exists a capital stock kc which allows for always consuming at the bliss point and 

for which {A:t} will be a strictly growing sequence.

P r o p o s it io n ! For (¿o > c/(y4 —1)) optimal {kt}'^^ will he a strictly growing 

sequence, with lim kt =  oo.t—̂OO

Proof: We will show that the policy of always consuming the bliss level, ct = c 

for all t, is feasible and leads to sustained growth. Let {ko > c!{A  — 1). Then
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c < ko{A -  1). Since ki = A k o~ c  we have ki > Ak  ̂ -  ko{A -  1) =  k̂ . Now, 

k2 ~ Aki — c. Then

^ Ak{) — c = k\

k̂  =  Ak2 — c >  Ak\ — c =  k2

kt -{· 1 '> kt Vi.

Since kt = Akt-i — c , we can write:

kt = Â ko — c
Lz=0

kt = Â ko — Â   ̂ c Z m y
li=o

It is possible to express the summation term in parenthesis as the difference 

of the two geometric series; then we have:

c
kt = AU k.« - ¿ t ) A - 1 '

We have assumed (ko > cf {A -  1)) which implies lim A:i =  oo □t—̂OO

The above proposition proves the existence of a critical value of the initial 

capital stock where for initial values of the capital stock higher than this specific 

value, we observe a strictly growing sequence of capital. This result defines a 

region where growth is “Rebelo-type” in the sense that we witness endogenous 

sustained growth.

The next step taken in the analysis of the deterministic case is to investigate 

whether the optimal path supports the hypothesis of convergence for initial values 

of the capital stock less than kc. The deterministic model is solved explicitly 

under the method of recursive iteration bearing on the value function, following 

the algorithm described in Section 3.2.

There are two different technological parameters for the production 

function. In the first model, the production function takes the form yt = A'kt
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wheie A A.E{z) — 1.428, E denoting the expectation, and 2; being the random 

variable whose distribution is given in Section 3.3. By choosing such a multiplier 

for the production function, it is assured that ¡3A' =  1. The second model 

possesses a production function yt =  A"kt where A" = A.m<ix{z) =  1.68. All the 

other parameters of the model are as defined in Section 3.3. Under this setup, 

for the first model, k̂  =  4.68 and for the second model kc =  2.94 are computed.

Figure 3.1 shows the shape of the value function under both scenarios. 

The functional forms assumed for the production and the utility functions in the

Figure 3.1: Value Function under Quadratic Utility: Deterministic Model

model, support a value function, which is strictly increasing until the critical 

point of capital stock, and then taking a constant value. This form of the value 

function is different than the form under the neo-classical scenario where the value 

function is strictly increasing in the whole domain. The critical point after which 

the value function becomes linear, is exactly the point where the bliss point of 

consumption becomes supportable in the infinite horizon. Below this level, thç 

value function displays a strictly increasing form as in the case of the neo-classical
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model.

Figure 3.2 illustrates the shape of the consumption function vs. the 

initial value of the capital stock, for the first model {A' =  1.428). The figure 

illustrates that consuming at bliss becomes the optimal policy for capital levels 

that ai’e greater than which is computed to be 4.68 for the case under under 

consideration. The consumption function for the second model {A" =  1.68) is 

the same as the illustration in Figure 3.2, except that the critical is now 2.94; is 

given in Figure A .l in Appendix A.

Figure 3.2: Policy Function under Quadratic Utility: Expected Shock

Lastly I plot the number of divergent series vs. the initial capital stock, 

starting from the initial stock at f =  0 and moving the economy until the period 

t =  100. The exercise has been carried out 1000 times for each initial value of 

the capital stock and the number of strictly growing series of capital has been 

illustrated. Figure 3.3 shows the case for the first model with A' =  1.428. (The 

analogous Figure A.2 for the second model with A" =  1.68 is given in Appendix 

A.) The initial values of capital stock that are greater than kc, always supports
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the economy on a path of sustained growth, as has been shown in Proposition 

1. On the other hand, for any ko < kc, we observe no diverging series. Rather, 

a number of convergence points have been detected for the economies starting 

from any initial capital stock in this range. The observation of more than one 

convergence points however, is due to discretization of the state space into 0.1 

grids, which has affected the dynamics of the algorithm.

Figure 3.3: Number of Diverging Series (out of 1000): A' =  1.428

3.5 Stochastic Case

This section presents the results of the simulation exercises adopted to the 

stochastic model. The results obtained in this section, generalize the results 

of the deterministic case to the stochastic environment. The technology faces 

productivity shocks, which has the ability to move the economy from one state 

to another. The social planner observes the value of the current-shock, but not 

the future values. Therefore the expected value of the consumption sequences to 

the planner are computed.
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The illustration of the value function vs. the initial capital stock for each 

state of the random variable 2: is given in Figure 3.4. Here, we observe that the

Figure 3.4: Value Function under Quadratic Utility

value function takes the same shape as in the deterministic case but the point it 

becomes constant shifts to the right, as the initial shock reduces the productivity 

of the economy. The observation that after some initial level of capital, all three 

plots take exactly the same shape is also noteworthy. This shows the existence of 

an initial value of capital for which the planner takes exactly the same action no 

matter what type of shock is faced. The associated policy function figures revecil 

exactly the same scenario as Figure 3.2 and are given in Figures A.3, A.4, and 

A.5 in Appendix A.

At this point, it would be interesting to observe the behavior of the value 

function under the same functional form for production, but the quadratic form 

of the utility changing to a strictly increasing, concave form from the form 

representing the bliss. For this observation, logarithmic preferences is adopted 

as the specialization of the utility function. U{0) is taken as —10 and a +3 is
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added for all c >  0 for computational purposes. Figure 3.5 shows the behavior 

of the value function under logarithmic utility. The value function is observed 

to be strictly increasing as opposed to the case under quadratic form of the 

utility function. The policy function figures provide additional insight in making 

a comparison between the behavior of the economy under quadratic utility and 

the behavior under logarithmic utility. (Figures A.6, A .7, and A.8 in Appendix 

A, illustrate the policy functions for each state of the random variable, under 

logarithmic form.)

Figure 3.5: Value Function under Logarithmic Utility

Considering the paths followed by the economy, the critical value of the 

capital stock, kc of the deterministic case now leaves its place to a probability 

distribution, over the initial values of the capital stock, ko denoting the probability 

of having a divergent sequence from each starting point. Figure 3.6 is obtained by 

a Monte-Carlo simulation exercise where the economy, starting from each initial 

value of capital is run for 100 successive time periods, each experiment being 

repeated 5000 times. The number of divergent series, for each starting point, 

divided by 5000, gives the approximate probability of take-off.
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Figure 3.6: Probability of Take-off for Capital Stock

Divergence criterion taken while preparing the illustration in Figure 3.6 

is that the capital stock at the end of period 100, reaches a sufficiently high 

value compared to the starting point. For a range of starting values ko 6 

{0,0.1,0.2, ...9.9,10} the divergence criterion is the last period’s capital stock 

being greater than ¿loo =  10000. It is interesting that we have observed divergence 

with probability exactly equal to one for sufficiently high values of the initial 

capital stock. This shows the existence of initial values of capital stock that 

always take the economy into a sustained path of growth. On the other hand, 

for sufficiently low values of the capital stock, the probability for the economy 

to experience strictly growing sequences of capital approaches to zero. The 

equilibrium dynamics for these cases are well likely to drive the economy into 

a poverty trap.

The non-divergent sequences for a large range of the initial capital stocks, 

follow a very similar pattern as the deterministic case and show different loutes 

of convergence. The steady-state behavior under stochastic case of couise, is
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expected to be identified by a distribution over a certain range of capital stocks. 

As an illustration of convergence and divergence paths, Figure 3.7, Figure 3.8 and 

Figure 3.9 show how the economy moves starting from t =  0 with an initial capital 

stock, ko =  3.9 until t =  100. Figure 3.7 here can be identified as the illustration

Figure 3.7: Sample Path of Convergence: ko =  3.9

of an economy which is pushed into low levels of capital stock by unfavorable 

shocks to productivity, and seems to be “trapped” in this situation. Figure 

3.8 shows an economy which, after 100 time periods, still have not achieved a 

way to sustained growth, but living in cycles of booms and busts. In Figure 3.9 

we observe an economy, which has the same starting point as the economies of 

Figures 3.7 and 3.8 but has achieved its take-off into sustained growth.

Once we have observed the existence of divergent paths, it is also possible 

to give a comparison of growth rates under the model adopting quadratic form of 

utility, and the model adopting logarithmic utility. As an illustration, an economy 

starting from an initial level of capital stock, ko =  3.4 is taken. The deterministic 

model with A" =  1.68, adopting quadratic utility and a deterministic model with
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Figure 3.8: Sample Path of Convergence: ko =  3.9

a logarithmic utility function are used to compute the growth rates. Figure 3.10 

shows the growth rates in each period under both models. The growth rate under 

the classical endogenous growth model is more or less constant, as pointed out by 

the current endogenous growth theory, whereas the growth rate under the model 

with quadratic utility is increasing in each period.
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Figure 3.9: Sample Path of Take-off: ко =  3.9
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Figure 3.10: Comparison of Growth Rates for Divergent Seiies. 3.4
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Chapter 4

Conclusion

This study has constructed a one-sector, discrete time stochastic model of optimal 

growth, where households have a point of maximum attainable utility in their 

consumption sets. The behavioral assumption that households have a bliss point, 

has substantially changed the results of the current endogenous growth theory.

The equilibrium of the Ak-iy^e. of endogenous growth model, identified by 

sustained growth of per capita income, leaves its position to the existence of 

multiple steady-state equilibria, if a quadratic utility function -representative of 

households having bliss- is assumed instead of a strictly increasing one. There are 

equilibrium paths, illustrative of the hypothesis of the neoclassical theory, which 

converge to a steady-state. There are also equilibrium divergent paths which 

exhibit endogenous growth theory. An economy can move to one equilibrium or 

the other, depending on the initial state. Specifically, this thesis provides a simple 

analytical interpretation of the empirical evidence on the existence of both paths 

of poverty and paths of perpetual growth.

Deterministic model of Section 3.3 shows the existence of a critical level of 

initial capital stock, above which sustained per capita growth is achieved. The 

mechanism behind the observation of sustained growth for a model economy is as 

follows: For initial capital values which are greater than some critical value, the 

constant returns to scale technology provides the economy with an output level
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where it becomes possible to consume at bliss level in the current period, and 

to consume always at that level thereafter. The economy follows a path where 

capital stock is strictly increasing, reaching to infinity in the limit. For low levels 

of initial capital stock however, the equilibrium is identified by convergence to a 

steady-state, which can be interpreted as a stationary trap at some level above 

the state of zero-income.

Introduction of a random element in the production function, changes the 

results in a way to “soften” the sharp threshold observed in the deterministic 

case. A sequence of favorable shocks may well function as sharp stimulus in 

some form of technological innovation, or education, causing the “big-push” . The 

economy then, experiences a path of sustained growth. On the other hand, an 

economy, facing a sequence of unfavorable shocks, may find itself locked in an 

underdevelopment trap. Figure 3.6, showing the probability of take-olf from each 

initial state portrays that the model constructed in this study, accounts for the 

possibility of both scenarios to take place.

Besides the identification of poverty traps and paths of permanent growth, 

this study also captures the situation that, countries which are identical initially, 

may be driven by different conditions to alternative destinies of making the 

“miracle” and trapping in stagnation. Figures 3.7, 3.8 and 3.9 depict these 

scenarios which are not far away from what we observe in actual world.

Approaching the problem of combining the hypotheses of neoclassical theory 

with the endogenous growth theory by making the behavioral assumption of a 

bliss point in households’ consumption sets, this study differs from the other 

studies of the literature. The models of Dechert and Nishumura and Zilibotti 

which are also constructed in an environment of infinitely-lived households, bear 

on the changes in the form of the production function, depending on the level of 

the capital stock of the economy. The simple model constructed in this thesis, 

point to the importance of the assumption on the household utility functions; a
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fact that may well change the policy implications at times.
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Appendix A  

Figures

Figure A .l: Policy Function Under Quadratic Utility: Maximum Shock
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Figure A .3: P olicy  Function Under Q uadratic U tility: S hockJow
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Figure A.4: Policy Function Under Quadratic Utility: Shock_std.

Figure A .5: P olicy  Function Under Q uadratic U tility: Shock_high
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Figure A.6: Policy Function Under Logarithmic Utility: ShockJow

Figure A .7: P olicy  Function Under Logarithm ic U tility: Shock_std.
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Figure A.8: Policy Function Under Logarithmic Utility; Shock-high
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Appendix B 

Program

/*
This program implements the value function iteration method to 

one-sector model of endogenous growth where consumers have a 
bliss point in their consumption sets.

Bliss Point of Consumption at 2,
Grid size=0.1,
Slope condition in the value function checked 5 consequitive times.

*/

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <time.h>
#include <string.h>
#define beta 0.7 
ttdefine plow 0.30 
#define phigh 0.40 
#define pstd (1-plow-phigh) 
#define Epsilon 0.0001 //
#define a 1.4 //
#define CBar 2 //
#define ShockNum 3 //
#define MC 100 //

// discount factor//
// probability of having a low shock//
// probability of having a high shock//
// probability of having no shock// 

convergence crit. for value func. iteration// 
technology parameter in the prod. func.(A)// 
bliss point of consumption// 
number of shocks to the productivity// 
number of time periods for the economy to move//

/* Declaration of the procedures ♦/

double expected.value(int,int,int); 
double give.shock(int); 
double slope(int,int); 
int calc.Kmax(double,double);
int round(double);

void construct(int); 
void converge(int,int); 
double monte.carlo(int,FILE*,double);
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int simulation(int,double,char*);
void preempt(int);
/* Declaration of dynamic-structures */
double **value; 
double **newvalue; 
double **consumpt;
/* Main program */
void mainO {

int Kmax;
int Pmax;
int i, j, к ;
double kO;
int results[100]
FILE *result;

// Variables for the critical values of capital stock//
// before and after production//
// initial level of capital//
// array for divergence statistics// 
// output file for take-off stat.//

/* Calculating seemingly théorie bounds */
Kmax = calc«Kmax(CBar,a);
Pmax = (int) ceiKKmax * a * give_shock(ShockNum-l) ) ;
/* Construction of used matrixes */ 
construct(Pmax);
/* Application of Dynamic Iteration, Calculating Utility */ 
converge(Kmax,Pmax);

for (i=l;i<=100;i++) { 
kO = i*0.1;
/* Simulation using Random Shocks */
p r i n t f C-- > Iteration for kO = */,. lf\n" , (i*0.1)) ;
results[i] = simulation(Pmax,kO,filenamel);

result = fopenCossimuc2.txt" , "w"); 
for (i=l;i<100;i++)
fprintf (result, "kO = */,f — > Divergence# = y,d\n" , ((i+l)*0.1),results[i] );

/* Destruction of used matrixes */ 
preempt(Pmax);

} // end of main program//
/ )|o|e * J|C >|C)|C)|C 5jc )|C)|C ♦♦ j|e *♦)(< ********************************** /
/♦И«***********************************************************/

/* procedure for calculating utility*/

double utilitydnt k) {
return(-pow( (k*0.1) ,2)+4*(k*0.1));

}
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|̂  ̂procedure for calculating the expected value, right- hand side of the 
T-mapping */

double expected_value(int k, int i, int j) {
return(utility(k)+beta*(plow*value[round(i*give_shock(j)*a-k)][0]+

pstd*value[round(i*give_shock(j)*a-k)] [1] + 
phigh*value[round(i*give_shock(j)*a-k)] [ 2 ] ) );

/* procedure for rounding-off real numbers into integers*/
int round(double x) { 

if ((x-floor(x))>0.5) 
return ((int) ceil(x)); 

else
return((int) floor(x));

}

/* procedure for calculating the critical value of the capital stock 
-for determining the size of the dynamic structures only 
Refer to calculation for the deterministic case */

int calc.Kmax(double cbar,double prod) { 
int Kmax; 
double temp;
if (give_shock(0)*prod == cbar) 
return ((int)cbar*100); 

else ■[
temp = cbar/((give_shock(0)*prod)-l); 
Kmax = (int) ceil(temp*10); 
if (Kmax < 0)
return ((int)cbar*100); 

else
return (Kmax+2);

}

// case when denominator is zero//

/* procedure for applying shock to technology: 
Determines "z" in the production function */

double give_shock(int shock.no) { 
double z.value;
switch (shock.no) {
case 0: z.value = 0.8; break; 
case 1: z.value = 1.0; break; 
case 2: z.value = 1.2; break;
}

return (retvalue);

/* procedure for calculating the slope of the value function */
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double slope(int i,int j) {
return ((newvalue[i][j]-newvalue[i-l][j])/0.1);

/* procedure for construction of the matrices used*/
void construct(int Pmax) { 

int count, i, j;
value=(double **)calloc(Pmax,sizeof(double*)); 
for (count=0;count<Pmax;count++)

value[count]=(double*)calloc(ShockNum,sizeof(double));
for (i=0;i<Pmax;i++)
for (j =0;j <ShockNum;j ++) 
value [i] [j]=0;

newvalue=(double **)calloc(Pmax,sizeof(double*)); 
for (count=0;count<Pmax;count++)
newvalue[count]=(double*)calloc(ShockNum,sizeof(double));

for (i=0;KPmax;i++)
for (j=0;j<ShockNum;j++) 
newvalue[i][j] = 0.0;

consumpt=(double**)calloc(Pmax,sizeof(double*)); 
for (count=0;count<Pmax;count++)

consumpt[count]=(double*)calloc(ShockNum,sizeof(double));
}

/* procedure for applying dynamic iteration, Tv=v */
void converge(int Kmax,int Pmax) {

int i,j,k,l,n,p; 
int Iteration; 
int count; 
int check; 
int UpLimCons; 
double subt; 
double Difference; 
double newslope; 
double MaxValue; 
double Challenge;

// counter for checking the slope condition//
// upper limit of consumption for initial k.//
// diff. bw. the iterations of the value func.// 
// variable for checking convergence//
// variable for the slope of the value function//

FILE *0utput; // output file storing value function and policy function// 
Output = fopenCoutsimuc2.txt" , "w") ;
fprintf (Output, "Kmax is: y,d\n" ,Pmax); 
fp r in tf (Output,"Pmax is: y.dNn",Kmax);

Difference=l;
Iteration=l;
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while (Difference>Epsilon) {
fprintf (Output,"Iteration = */,d\n" .Iteration); 
for (j=0;j<ShockNum;j++)
newvalue[0][j] = expected_value(0,0,j);

check = 5; 
i = 1;
while (check && (i < Kmax)) { 
for (j=0;j<ShockNum;j++) { 
MaxValue=expected_value(0,i,j) ; 

UpLimCons=round(a*i*give_shock(j));
for (k=l;k<=UpLimCons;k++) { 

Challenge=expected_value(k,i,j);

// initial value//

if (MaxValue<Challenge) { 
MaxValue=Challenge;

consumpt[i][j]=k;
}

>
newvalue[i][j]=MaxValue;

}

// calculating the maximum value// 
//for initial capital stock//

check— ; 
j = 0;
while ((j < ShockNum) && (check !=5)) { 
newslope = sloped, j); 
if (newslope >0.1) 
check = 5; 

else

}

i++; // increment the initial value of the capital//

if (i<Kmax)
printfC'i critical: y.d.

if (i == Kmax) {
printf("Bound exceeded"); 
fclose(Output); 
exit(l);

. ",i); // the critical level of capital//
// check for boundary conditions//

for (l=i;KPmax;l++)
for (j=0;j<ShockNum;j++) {
newvalue[1][j] = newvalue[i-1][j]; 
consumpt [1]Cj] = consumpt[i-1][j];

}

// assign the value function//

Difference=0;
for (i=0;i<Pmax;i++)
for (j=0;j<ShockNum;j++) { // calculate the diff. in value//

subt=newvalue[i][j]-value[i][j]; // between iterations//
if (subt>Difference)
Difference=subt;

}
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for (i=0;i<Pmax;i++)
for (j=0;j<ShockNum;j++) { 

value[i] [j]=newvalue[i] [j] ;
fprintf (Output,"i=*/d, j=*/,d => value=y,6f, consumpt=*/,f\n" , 

i,j ,valued] Cj] ,consumpt[i] [j]) ;

}
fprintf (Output,"Difference = ’/,6f\n",Difference) ; 
printf ("Difference='/,6f\n",Difference) ; 
fprintf (Output,"------------------------- \n") ;
Iteration++;

fclose(Output) ;

// increment the iteration no. as long as convergence// 
// criterion not achieved//

/* procedure for applying Monte-Carlo simulation */
double monte_carlo(int Pmax, double kO) {

int i, j ;
double сопегже; 
double rdm; 
double kl; 
double dP; 
int k2;

// initial value of the capital stock//
// economy run until time period = MC//
// random number generator for technology shock//
// consume at bliss when capital is large enough//

kl=ceil(k0*10); 
dP = (double) Pmax; 
for(i=0;i<MC;i++) { 
rdm=drand48(); 
if (kl>=dP)
consume=CBar*10; 

else {
if (rdm<plow) 
j=0;

else if (rdm>=plow rdm<(plow+pstd))
j= i ;else
j=2;

k2 = (int) kl;
consume=consumpt[k2] [j]; // consume at the policy func. calculated//

kl =ceil((a*kl*give_shock(j))-consume); // next periods capital stock//
}
return (kl);

/* procedure for simulation using random shocks */

int simulâtion(int Pmax, double kO, char* filel) { 
int i; 
int Count ;
double Last[1000]; // number of simulations carried out for each k//
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t=time(NULL); 
srand48(t);
Count = 0;
for (i=0;i<1000;i++) {

Last[i] = monte_carlo(Pmax, kO);

t i m e _ t  t ;

// root for random number generator//

if (Last[i] > 10000)
Count++; // increment count if the take-off into sustained//

} // growth occurs//
return (Count);

/* destruction of the matrices used*/ 
void preempt(int Pmax) { 

int i;
for(i=0;i<Pmax;i++) { 
free(value[i]); 
free(newvalue [i]); 
free(consumpt [i]); 
value[i]=NULL; 
newvalue[i]=NULL; 
consumpt[i]=NULL;

>
free(value); 
value=NULL; 
free(newvalue); 
newvalue=NULL; 
free(consumpt); 
consumpt = NULL;
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