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ABSTRACT

RADIUS OF CURVATURE AND LOCATION
ESTIMATION OF CYLINDRICAL OBJECTS WITH
SONAR USING A MULTI-SENSOR
CONFIGURATION

Ali Safak Sekmen
M.S. in Electrical and Electronics Engineering

Supervisor: Assist. Prof. Dr. Billur Barshan
July 1997

Despite their limitations, sonar sensors are very popular in time-of-flight
measuring systems since they are inexpensive and convenient. One of the most
important limitations of sonar is its low angular resolution. An adjustable
multi-sonar configuration consisting of three transmitter/receiver ultrasonic
transducers is used to improve the resolution. The radius of curvature es-
timation of cylindrical objects is accomplished with this configuration. Two
different ways of rotating the transducers are considered. First, the sensors are
rotated around their joints. Second, the sensors are rotated around their cen-
ters. Also, two methods of time-of-flight estimation are implemented which are
thresholding and curve-fitting. Sensitivity analysis of the radius of curvature
with respect to some important parameters is made. The bias-variance com-
binations of both estimators are compared to the Cramér-Rao lower bound.
Theory and simulations are verified by experimental data from real sonar sys-
tems. Data is smoothed by extended Kalman filtering. Rotating around the
center works better than rotating around the joint. Curve-fitting method is
shown to be better than thresholding method both in the absence and pres-
ence of noise. The best results are obtained when the sensors are rotated
around their centers and the curve-fitting method is used to estimate the time-
of-flight. There is about 30% improvement in the absence of noise and 50%

improvement in the presence of noise.
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OZET

COKLU SONAR DUZENLESIMI KULLANARAK
SILINDIRIK CISIMLERIN YARICAP VE KONUM
KESTIRIMI

Ali Safak Sekmen
Elektrik ve Elektronik Miihendisligi Boliimtu Yiksek Lisans
Tez Yoneticisi: Yrd. Do¢. Dr. Billur Barshan
Temmuz 1997

Ucuz ve kullanimlarmin kolay olmasi nedeniyle, bazi simirlamalar: ol-
masina ragmen, sonar algilayicillar ugug zamam Olgimlerinde ¢ok sik
kullanilmaktadirlar. Sahip olduklart smurlamalarin ilki  digiik agisal
coztintrliiktir. Bu calismada, ¢ozintrligi arttirmak icin, ti¢ adet alici/verici
ultrasonik sonar algilayicidan olugan ayarlanabilir ¢oklu sonar duzenlegimi kul-
Janildi. Bu diizenlesim ile silindirik cisimlerin yaricap kestirimleri yapilda.
Algilayici déndirimiinde iki yontem kullanildi.  1lk olarak, algilayicilar
askilary etrafinda dondirildiiler. Ikinci olarak algilayicilar merkezleri etrafinda
déndiiriildiiler. Ayrica, ucug zaman: kestiriminde de esikleme ve egri-uyarlama
yontemleri uygulandi. Ayrica kestiricilerin bagarimini saptamak i¢in Cramér-
Rao alt sinir kargilagtirmas: yapilmigtir. Analiz ve benzetim sonuglari, gergek
sonar sistemlerinden alinan veriler kullanilarak desteklenmigtir. Genigletilmisg
Kalman stizgeci ile veri diizlestirilmigtir. Algilayicilarin merkezleri etrafinda
dondirtilmeleri daha iyi sonug vermigtir. Egri-uyarlama yonteminin esikleme
yonteminden daha iyt caligtigi gorilmustir.  Egri-uyarlama yonteminin
giiriiltiisiiz bir ortamda yaklagik %30 ve glraltild bir ortamda yaklagik %50

daha iyi sonug verdigi gézlemlenmistir.
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LIST OF SYMBOLS

Prmaz propagation pressure

Tmin minirmnum range

r range

Ji(.) Bessel function of first order

a radius of the transducer

0 deviation angle

0, half beam-width angle

A wavelength

Pe reflection coefficient

Anas maximum amplitude

to time-of-flight

fo resonant frequency

d transducer separation

hot distance between the central transducer and the object
hi distance between the left transducer and the object
hr distance between the right transducer and the object
R radius of curvature

Tol range of the central transducer

™ range of the left transducer

Tp1 range of the right transducer

To2 range of the central transducer after rotation

T2 range of the left transducer after rotation

T2 range of the right transducer after rotation

o inclination angle of the left transducer

n inclination angle of the right transducer

c the speed of sound

¢ rotation angle of the left transducer

] rotation angle of the right transducer

R radius of curvature estimation after rotating the left sensor
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R, radius of curvature estimation after rotating the right sensor

R radius of curvature estimation after rotating the sensors
() radius of curvature estimate

AR perturbation on the radius

Ahy perturbation on A

Ah perturbation on A,

ok standard deviation of R estimate
b*(R) bias of R estimate

o2 standard deviation of r estimate
b*(r) bias of r estimate

ag standard deviation of # estimate
b*(0) bias of § estimate

w, noise on hyy

wy noise on hj;

w, noise on h,q

Z measurement vector

p(z|r, 0, R) conditional probability density function of z

x(k) state vector

z( k) observation vector

(k) Jacobian matrix

maximum likelihood estimate of range
maximum likelihood estimate of angle
maximum likelihood estimate of radius
Fisher information matrix

error correlation matrix
measurement noise correlation matrix

state covariance matrix

H

p

0

R

J

C

Q process noise correlation matrix
R

P

P residual covariance matrix
A%

filter gain matrix
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Chapter 1

INTRODUCTION

Ultrasonic sensors are a convenient and inexpensive means for a mobile robot, to
build a model of its environment. However, these sensors have some limitations
such as high beam-width which makes it difficult to localize objects correctly,
and multiple reflections which may be difficult to interpret. In order to decrease
the effect of these limitations, an adaptive multi-sensor configuration is used,
composed of three transmitter/receiver ultrasonic transducers. This way, the
radius of curvature and location of the reflecting object can be estimated. With
the estimation of the radius of curvature, different types of reflectors such as
walls, cylinders and edges can be discriminated. For large values of radius, the
object can be assumed to be a planar wall, and for values close to zero, the

object can be assumed to be an edge [1].

Barshan and Kuc differentiated sonar reflections from corners and planes
by using a multi-transducer sensing system [2]. Kuc used a system which
adaptively changes its position and configuration in response to the echoes
it detects [3]. In [4], Kleeman and Kuc classified the target primitives as
plane, corner, edge and unknown, and showed that in order to distinguish
these, two receivers and two transmitters are necessary and sufficient in a
non-adaptive configuration. In [5], Sasaki and Takano showed that the echo
signals from the same object in different locations may have more variation
than that from different objects. In order to decrease the limitations of sonar,
Flynn used a multi-sensor configuration consisting of infrared and sonar sen-
sors [6]. In [7, 8, 9], acoustic sensors were used for sonar mapping. Ohya
and Yuta investigated how the information obtained by the ultrasonic sensor
is affected by the characteristics of the sensing systems such as sensitivity and
directivity [10]. In [11], Sabatini illustrated that advanced filtering methods



are required for making data more accurate and reliable. He also proposed a
digital-signal-processing technique for building a transducer array capable of
automatically compensating for variations in the speed of sound due to tem-
perature or any other atmospheric conditions [12]. Curran and Kyriakopoulos
used an extended Kalman filter to combine dead-reckoning, ultrasonic, and
infrared sensor data to estimate current position and orientation of a mobile
robot [13]. Webb, Gibson and Wykes used novel sensors to measure the range
and bearing of a target and guide the robot [14]. In [15, 16, 17], acoustic sensors
were used for robot navigation. In [18], Ko, Kim, and Chung used sensors to
extract multiple landmarks for the indoor navigation of a mobile robot. Chang
and Song solved the beam-opening angle problem by fusing data from multiple
ultrasonic sensors [19]. In [20, 21, 22], a sensor with the flexibility to track 3-D
targets which are not necessarily in the same horizontal plane as the sensors is
investigated. Moreover, radius of curvature estimation is important in image

analysis to provide viewpoint-independent cues for shape classification [23].

In this thesis, the work done in [1] and [24] is extended to an adaptive
tri-aural sensor for improved radius of curvature and location estimations of
targets. When the object and the sensor are not perpendicular to each other,
there is an exponential decline in the amplitude of the reflected sonar signal
which decreases the signal-to-noise ratio. In order to avoid this problem, an
adaptive tri-aural sensor is developed. Depending on the location of the object,
the sensor can rotate its transducers to get a more accurate radius of curvature
estimation. First, a tri-aural sensor composed of three sensors is employed.
According to the measurements made with this set-up, the peripheral sensors
are rotated around the joints. Also, the case in which the sensors are rotated

around the centers is investigated.

In Chapter 2, background information on sonar sensors is given. The main
reason why the sonar sensors are rotated is discussed. Also, rotated configura-

tions of the sonar sensors are illustrated.

In Chapter 3, radius of curvature estimation is described. In order to es-
timate the time-of-flight values, two different methods are used. First, the
traditional thresholding method is tested which is fast but biased and sub-
optimal. Second, the curve-fitting method which is slower but more accurate
compared to the thresholding method is used. The sensitivity of estimation to
the distance between sensors, the true radius, and the range is investigated.
In Section 3.1, the case in which the sensors are rotated around their joints is
investigaied. In Section 3.1.1, the sensitivity analysis of the radius of curvature

is performed. In Section 3.2, the case in which the sensors are rotated around

2



their centers is investigated. Noiseless and noisy cases are studied separately.
In order to obtain reliable results in a noisy environment, a 100-iteration Monte
Carlo simulation study is performed. In Section 3.3, the curve-fitting method
is described. In Section 3.4, in order to evaluate the estimation performance,

a comparison with the Cramér-Rao lower bound is made.

In Chapter 4, the radius of curvature estimation is extended to location

estimation.

In Chapter 5, an extended Kalman filter is used to estimate the radius of

curvature and location of cylindrical objects.

In Chapter 6, the experimental results of both thresholding and curve-fitting

methods are presented.

In Chapter 7, conclusions are drawn and directions for future work are

motivated.

In Appendix A, the details of the Cramér-Rao lower bound calculation are
given. In Appendix B, the model for the extended Kalman Filter which is used
to estimate location and radius of curvature of cylindrical objects is detailed.
In Appendix C, the properties of chi-square distributed random variables are
presented. In Appendix D, the computer programs with which the simulations

are performed and the experimental results are analyzed are presented.



Chapter 2

SONAR SENSING

In this chapter, some properties of sonar sensing are discussed. The multi-sonar

configuration is introduced and the reasons why this configuration is used are

given.

2.1 Acoustic Transducers

Ultrasonic transducers are acoustic devices having a resonant frequerncy higher
than 20 kHz. They have been used widely in burglar alarm systems, proximity
switches, anti-collision devices, counter for moving objects and TV remote
control systems. Since the characteristics of the sound produced by an acoustic
transducer change with distance, the near-field region (the neighborhood of the
transducer) and the far-field region (beyond the near-field) are investigated
separately. The near-field region is called as Fresnel diffraction zone and the
far-field region is called as Fraunhofer zone [25]. The expression for the sound
pressure within the near-field is relatively complex, and not in the scope of this
thesis. The far-field characteristics at range r and angular deviation 0 for a
single frequency of excitation is described by [26, 27]

__ PmazTmin Jl(ka sin 0)

A(r,0) = for T > Pmin (2.1)

T kasin @
where Ji(.) is the Bessel function of first order, and pp,. is the propagation

pressure amplitude on the beam axis at range rmi, along the line-of-sight.

The half beam-width 6, in the far-field region corresponds to the first zero

of the Bessel function in Equation 2.1 which occurs at kasinf = 1.227 and the
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Figure 2.1: The main lobe of the radiation pattern of the Polaroid transducer.

following equation is obtained for the half beam-width angle [28]:

0. = sin-! [0.61)\}

a

where A = ¢/ f is the wavelength, and a is the radius of the transducer.! The

radiation pattern is shown in Figure 2.1.

Since a range of frequencies around f, are transmitted, the correspond-
ing beam patterns are superposed and the resulting beam pattern can be ap-
proximated by a Gaussian beam profile centered around zero with standard
deviation og = & [16, 27]:

02

“~ 7' . — —
A (r,0) = Me 255 for > Poin (2.3)

Since the position and radius of curvature of cylindrical objects are going
to be estimated, a reflected sonar signal model for cylindrical objects is needed.
The signal model is basically a sinusoidal enveloped by a Gaussian which is
given by [27, 29]:

t—to—-—*-—? 2
Ama:z:ri/gn '"'9‘27 “( 2 ) .
A(r,0,d,t) = P ¢ “oe % sin[2r fo(t — to)] (2.4)

where p. is the reflection coefficient depending on the radius of curvature (for
r > 5cm, p. = 0.0044946 R —0.0022471 [29]), Amaz is the maximum amplitude,
» is the distance between the sensor and the center of the object, rmin = a?/A
(a is the radius of the transducer aperture, 0.65 cm for the Panasonic and 2

le=3314 5% m/s, where T is absolute temperature in Kelvin. At room temperature,

¢ = 343.3 m/s.
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cm for the Polaroid), O is the angle normal to the receiver with respect to the
object, ae = ™/2 (0o is the half beam-width angle), to is the time-of-flight, fo
is the resonant frequency (49.4 kHz for Polaroid, 40 kHz for Panasonic), and

“t=1/lo.

The cross-section of the Panasonic transducer is pictiired in Figure 2.2.

Internal Construction

_ Cofiruictor
Pi(;/0(iI<iciric

AlufTiinum Resonator X
Ceramic Elernenr

Lead Wire

Terminal Pin

Figure 2.2: Cross-section of the Panasonic transducer.



2.2 Tri-aural Sensor Configuration

In this study, a tri-aural sensor composed of three sensors was employed as
shown in Figure 2.3. Fach one of the transducers is sensitive to echo signals
reflected within its beam pattern. The actual beam pattern is similar to the
region illuminated by a flashlight. All members of the tri-aural configuration
can detect targets located within the overlap of the three beam patterns, which
is called the sensitivity region, as illustrated in Figure 2.4. In fact, the bound-
aries of the sensitivity region change with the type of object. For example, for
edge-like or pole-like targets, this region is much smaller but of similar shape,

and for planes, it is more extended.

b b b
&> —> —
~ P L | RN -

lem { { lom

Figure 2.3: The tri-aural configuration where the sensors are aligned.

As seen from Equation 2.4, when the object and the sensor are not perpen-
dicular to each other (8 # 0°), there is an exponential decline in the amplitude
which decreases the signal-to-noise ratio. Hence, information provided by sonar
sensors is most reliable when the object is perpendicular to the sensor, and at
nearby ranges due to the 1/r%? term in Equation 2.4. Because of this, the
transducers are rotated to make them orthogonal to the object. In this study,
two methods to rotate the transducers are used. First, the sensors are rotated
around their joints as shown in Figure 2.5. Second, the sensors are rotated

around their centers as will be shown later in Figure 3.14.



Figure 2.4: The beam patterns of the sensors (within dotted lines) and their
sensitivity region (within solid lines).

\ /
dem 4em
TR TR
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Figure 2.5: The tri-aural configuration where the peripheral sensors are rotated
around their joints.



Chapter 3

RADIUS OF CURVATURE
ESTIMATION

In this chapter, radius of curvature estimation of cylindrical objects is de-
scribed. Two different ways of rotating the sensors are investigated. Two
methods are used in order to estimate the time-of-flight. Sensitivity analysis
for radius of curvature estimation is performed. Finally, the performances of

the estimators are compared to the Cramér-Rao lower bhound.

3.1 Sensors Rotated around their Joints

Figure 3.1 illustrates the object and the tri-aural configuration.

As seen from Equation 2.4, in order to model the sonar signal, the time-of-

flight information is needed.

The following algorithm describes how the sensors can be rotated with

respect to the target location in the simulations:

e Take the true values of h,, R,d and 0.

o The true distances between left transducer and the surface of the ob-
ject (hn), and right transducer and the surface of the object (k1) are



computed from the geometry:

hyy = \/7'31 +d? —2dr,;sinf — R
hiy = /r3 +d®+2dr,; sinf — R (3.1)

e The distances of the three sensors to the center of the object and their

inclination angles are calculated:

m = hy+R
Tol = hol + R
Tr1 = hrl + R (32)

2 2 2
0 = sin~! T —Tm —d
2(17‘01

oy (rh oy +d?
a = sin” | ——F/——
2dT]1

2 _ 2 2
- snt (Tt d o
n = sin ( S ) (3.3)

o The signal from each sensor is modeled by finding the time-of-flight val-

ues corresponding to h,y, Ay and hyg.

e For the central sensor: too = 2—’1;01 , normal angle = 6.
For the left sensor: tol = 2}2 , normal angle = a.
IFor the right sensor: tor = 2—hc’-L , normal angle = 7.

e The signals are modeled according to Equation 2.4 by using the time-of-

flights obtained. The following model parameter values are used:

A =1 cm

Pmin =10 cm

pe = 0.44946 R — 0.022471
fo =50 kHz

¢ = 34350 cm/s

e White Gaussian noise AN'(0,0) is added to the signal at every 1 us and

the noisy signal model is obtained.
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The noiseless and noisy signal examples are shown in Figure 3.2(a) and

(b) respectively.

e The time-of-flight can be estimated by choosing an appropriate thresh-
old. In this case, the threshold is chosen as 5o and the first time instant
where the noisy signal exceeds the thresholding is detected. This is the
noisy time-of-flight estimate. h = €= is used to find the noisy k.1, hn
and h,q.

e By using the noisy h1, ki and h,q, the initial estimates of 6, and 7
values are calculated, and the radius of curvature is estimated from the

measurements:

(RZ, + h}y) — 2(h2 + &)

= ey — 20t 1 )

(3.4)

e The noisy distance of the left sensor is estimated and the rotation angle

is calculated accordingly:

rip = \/7'?1 + 67 sina

T3 — 1} 6 + 2ry; sin o
a = — b: _—
2rip 2ry

. 3—ab_ Vaz —6ab+9

S Yo 1
3

= -1 3.5

6 = o () (39

The left sensor is rotated by ¢.

e After the left sensor is rotated, the radius of curvature is estimated again:

a = y(z+3)?—32
hiz = T2 — Ry
g = hp—q¢
cz = d— 2z
Ry = c3 — h? + & — 2cycasin @ (3.6)

2k, — 2¢3 + 2¢3sin ¢

o The noisy distance of the right sensor is estimated and the rotation angle

is calculated:

Ty = \/rfl + 67,1 sinn
11



a =

r2, —r} b— 6 + 2r.1sin o

2r;2 279
3—ab Va:—6ab+9
-1 2-1

cos™! ( 3 )
zr + 3

(3.7)

o After rotating the right sensor by 3, the radius of curvature is estimated

again:

Cq

Cs

Cs

R27‘

= /(2 +3)? - 32
= rp— R
= hn—c

= d—z
¢z — k% + 2 — 2cscesin 8
2ho1 — 2¢5 + 2¢gsin 3

(3.8)

e The average of the radius values calculated by rotating the left and right

sensors are calculated:

_ Ra+ Ror

R, 5

12

(3.9)
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Figure 3.1: The object and the tri-aural configuration.

Noisy Sonar Signal Model

Noiseless Sonar Signal Model
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Figure 3.2: Noiseless and noisy signal models.
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3.1.1 Sensitivity Analysis of the Radius of Curvature

Estimate

In this section, the sensitivity analysis of the radius of curvature estimation
to parameters such as ho1, hi, hri, d, R and 0 is presented. The sensitivity

analysis can be summarized by the following steps:

e Function f(.) for the radius of curvature estimate is defined as follows:

(h2, + hf) — 2(h%, + d?)
hoty hity hor,d) = Ry = =~ ol 3.
f(hots husy hra,y d) 1 4hoy — 2o + hat) (3.10)

e Perturbation is added to the variable for which sensitivity analysis is

made. For example, the perturbation Ah,; is added to Ay

e The perturbation on radius of curvature is calculated as follows:

(h2y 4 hf) — 2[(hoy + Ahoy)? + d?]

4(/Lo1 + A]lol) — 2(/?,,.1 + hll)
(3.11)

f(hol +Ahol7 hlla hrla d) =R +AR =

o The effect of the perturbation on the radius of curvature estimate is

found:

AR = f(hol =+ Ahoh hlla hrl; d) - f(hol-; hlla hrh d) (312)

Figure 3.3(a) is plotted for h, between 0-150 cm. The error in hy is
positive and between 0-0.4 mm. A stationary cylindrical target at 6 = 0° with
radius 5 cm is used and transducer separation is assumed to be 10 cm. The
error AR in R increases linearly with the error Ah,; and nonlinearly with hyy.
Also a positive error in h, leads to a positive error in R since for constant
h,1 and hj1, increasing h,; means increasing R, as the geometry of Figure 3.1
indicates. As range increases, the error also increases since the sensor has lower

resolution for fixed d.

In Figure 3.3(b), the same parameters are used as in Figure 3.3(a) with
a positive error in h,; instead of h,;. Since the terms %,y and Ay are used
symmetrically in the radius of curvature equation, the sensitivity analysis of
hyy gives the same results. A positive error in h,q or Ay causes a negative error
in R since a positive error on left and right measurements for constant central

sensor measurement leads to a reduction in R as in Figure 3.1.
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Figure 3.4(a) and 3.5(a) show the effect of d on the radius of curvature
estimation. Ah,; = Ah,; = 0.18 mm errors are taken for Iligure 3.4(a) and
3.5(a) respectively. Range is again varied between 0-150 cm. The error is
plotted for d between 4-40 cm. As seen from the figures, for small d/k,;, the
error is high since the resolution of the left and right sensors decrease as shown
in Figure 2.4. Hence, as range increases the transducer separation should also
be increased to achieve higher resolution. Also for high values of d/h,y, the
error is large since the sensitivity patterns of the transducers will not overlap
at the target [30].

Iigures 3.4(b),(c) and 3.5(b),(c) illustrate the sensitivity of radius of cur-
vature to measurement errors Ak, = 0.18 mm and Ah,; = 0.18 mm, re-
spectively. In Figures 3.4(c) and 3.5(c), 6 is varied from 0° to 20° with 1°

increments.

3.1.2 Simulation Results

Now, the simulation results can be investigated by using the results of the

sensitivity analysis.
Figure 3.6-3.9 show the simulation results for § = 0°.

I'igure 3.6 and 3.7 show how the estimated radius values R, and R, are
affected from different variables in the absence of noise. Figure 3.8 and 3.9

show the same calculations obtained with the Monte Carlo simulation study.

The sensitivity analysis of the calculated radius of Equation 3.4 to
hot, hi1, hr1,d and R shows that the radius is very sensitive to these variables.
A positive error in h,; (Ahy > 0) causes the estimated radius to be greater
than the true radius (according to Equation 3.4). A positive error in Ay or Ay
(Ahj; > 0) causes the estimated radius to be less than the true radius. More-
over, the error corresponding to the separation between the sensors is positive
and it decreases as the separation increases. As the distance between the sen-

sors and the object increases, the error increases in the negative direction.

The results are completely consistent with the sensitivity analysis predic-
tions. Although the noise is zero in some cases, the estimated radius deviates

from the true radius. The error sources are the bias error due to thresholding

and the error due to sampling the signal.
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Figure 3.3: Sensitivity of R to distance measurements (a) hoi (b) Ki or hn for
d= 10cm, i? = 5cm and 6 = 0°.
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(a)

(c)

F'igure 3.4: Sensitivity of R to (a) d, (b) R and (c) 0 when Ahoi = 0.18 mm.
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(a)

(b)

(c)

Figure 3.5: Sensitivity of R to (a) d, (b) R and (c) 0 when Aliri = 0.18 mm.
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Figure 3.6(a) shows the relation of the estimated radius and the separation
distance between the transducers. The error in the estimated radius values
decreases as the separation increases. As stated previously, a positive error in
h,1 makes the estimated radius greater than the true radius, and a positive error
in Ay or h,; makes the estimated radius less than the true radius. Since there is
error not only in A, but also in kj; and A,y in this estimation, error is positive
for some values of d and negative for some other values of d. Figure 3.6(b)
shows the effect of h,; on the estimated radius. As h,; increases the error in
the negative direction increases (that is, the error in A,y is negative, Ah,y < 0).
The estimated radius after rotating the left sensor is very close to the estimated
radius of the linear configuration. Figure 3.6(c) shows the effect of the noise
standard deviation on the estimated radius. In the presence of noise, the error
after rotation is nearly the same as the error before rotation. However, for
some values of the noise standard deviation (2x107° to 3x10~% V), it is greater

than that of the linear case.

Figure 3.7 shows the effect of d and the true radius R on the estimated
radius. At fixed distance, as R increases the error increases, and as d increases

the error on the radius estimate decreases.

Figures 3.8 and 3.9 display the results of a 100-iteration Monte Carlo sim-
ulation study. In the figures, the effect of noise on d,hyy and R is shown. The
dashed line shows the mean value and the other two lines indicate one standard
deviation from the mean. When Figure 3.6(a) and 3.8(a) are compared, the
effect of noise on d can be observed. The estimated radius is less than the true
radius for all values of d. This is because the negative error in h; and h,y is
more dominant than the positive error in ko . Figure 3.8(b) shows the effect of

h, and Figure 3.8(c) shows the effect of the noise standard deviation on the

estimated radius.

Figure 3.9 shows the effect of d and R over a 100-iteration Monte Carlo
simulation study. As the separation between the sensors increases, the standard
deviation decreases. For low values of R and high values of d, the error is large
since for large values of d the normal angle between the object and the left

sensor increases, causing a high exponential decline in Equation 2.4.

Figures 3.10 and 3.11 illustrate the results of & # 0° case in the absence
of noise. In Figure 3.10(a), the dependence of the estimated radius to the
separation distance between the transducers is illustrated. As d increases, the
error in the estimation of the radius of curvature corresponding to the linear

configuration of the sensors decreases. Although the error in estimation after
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rotating the sensors is larger than that of the linear configuration case, it
decreases with d. After a certain value of d (around d = 27 cm), the error for
both cases begins increasing since at that point, the target is not within the
beam pattern of the left or right sensor. Figure 3.10(b) shows the effect of A,
on the estimation of the radius of curvature. As h,; increases the error in both
linear and rotated configurations increases. Figure 3.10(c) shows the effect of ¢
on the estimated radius. As 6 increases, the error increases as expected, since
a sonar sensor can make more accurate measurements along its line-of-sight.
This is because the echo amplitude decreases exponentially with the square of

0 according to Equation 2.4.

Figure 3.11 shows the effect of d and true radius R on the curvature es-
timation. As d increases, the estimation error corresponding to the linear
configuration decreases according to the sensitivity analysis but the error for
the rotated configuration increases. This is because as d increases, the object
goes out of the sensitivity region and the rotation angle calculated by using

the linear configuration is not correct.

Figures 3.12 and 3.13 show the effect of noise on the above observations. In
these figures, a 100-iteration Monte Carlo study was employed. I'igure 3.12(a)
shows the effect of d. In both cases, as d increases, initially the error decreases,
and after a certain value of d (around d = 16 cm) the error increases sub-
stantially. Figure 3.12(b) shows the effect of oy and Figure 3.12(c) shows the
effect of 8. When Figures 3.10 and 3.12 are compared, the effect of noise can
be observed. Figure 3.13 shows the effect of d and R in the presence of noise.

As d increases the estimates are degraded.
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Figure 3.6: Estimated radius versus d, h,; and noise standard deviation.
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Figure 3.8: Estimated radius versus d, ko and noise standard deviation using
a 100-iteration Monte Carlo simulation study.
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cm using a 100-iteration Monte Carlo simulation study.
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Figure 3.10: Estimated radius versus d, ho; and 6 in the absence of noise.
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Figure 3.12: Estimated rad
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3.2 Sensors Rotated around their Centers

In this part, we consider the case in which the left and right sensors are assumed

to rotate around their centers as shown in Figure 3.14.

4cm 4cm 4cm

Figure 3.14: The object and the sensor configuration when the sensors are
rotated around their centers.

The algorithm to find the rotation angle can be summarized as follows:

e The initial estimate of the radius of curvature (when the sensors are

aligned) is the same as in the previous algorithm.

e Irom the first set of measurements, noisy 4, « and 5 are calculated:

2 2 2
0 — sin~! (711_701‘d)

2(1T01
2 2 2
RS | T~ Te T d
a = sin (—-——*2617‘“ )
2 _ .2 d2
n = sin”} (%{“—) (3.13)

e After finding the rotation angles, §, a and 7, the central, right and left
transducers are rotated by 6, a and 7 respectively. When the sensors
are rotated, they are assumed to be perpendicular to the center of the

object.



e The nominal values of the distances after rotation should be:

hoo = hy
hiy = hn
h,-g = hrl (314)

e New measurements are taken and the second estimation of the radius of

curvature is made by using Equation 3.4.

3.2.1 Simulation Results

Figure 3.15 shows the effects of d, h,; and noise standard deviation on the
estimation of the radius of curvature when 6 = 0°. It can be seen that for
all values of d, ko, and noise standard deviation, the second estimation (after
rotation) provides better results. Figure 3.15(a) shows that the deviation be-
tween the two estimates begin after a certain point in d (around d = 37 cm).
Up to that point, the first and the second estimates are nearly the same since
for low values of d, the normal angle of the left sensor is small and the object
is nearly perpendicular to the left sensor. However, as d increases the normal
angle of the left sensor also increases and the estimation after rotation provides
improved results. Figure 3.15(b) shows that as h,; increases, the first and sec-
ond estimates become closer. This is because when h,; is small, the deviation
angle of the left sensor is large and the estimation after rotation gives improved
results. Figure 3.15(c) shows the effect of the noise standard deviation. The

second estimation is less affected from noise than the first estimation.

Figure 3.16 shows the effect of d and R simultaneously. As d increases both
estimators improve and for the low values of R the second estimation is more
accurate for the same reason as above. For lower values of R (R < 10 cm)
and high values of d, the estimated radius after rotation is better since for high

values of d, exponential decline in Equation 2.4 is very high.

FFigures 3.17 and 3.18 show the same calculations done by using a 100-
iteration Monte Carlo simulation study. Figure 3.17 shows the effect of d and
o1 on the estimated radius in the presence of noise. Figure 3.17(a) indicates
that as d increases, the second estimation provides better results which is con-
sistent with the above argument. When d is small, the object can be consid-
ered perpendicular to the sensors, hence we do not expect much improvement
with the second estimation. Since there is error in the rotation angle, the es-

timation after rotation must be worse than that of the linear configuration.
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Figure 3.17(b) shows that as %, increases the first estimate improves since the

object becomes perpendicular to the sensors.

Figure 3.18 shows the effect of d and R simultaneously on the radius of
curvature estimation. As d increases, the second estimation improves as ex-
pected. For low values of R, as d increases the error in the first estimation also
increases since for high values of d and low values of R, the normal angle of

the left and right sensors are high and the exponential decline in Equation 2.4

is high.

3.3 Curve-Fitting Method for Time-of-Flight

Estimation

A curve-fitting approach is used in order to reduce the error in the time-of-
flight estimations obtained from the thresholding method and improve the
estimation procedure. Earlier, in [24], a similar method was used to improve
the accuracy of point-target localization. It was shown that this method of
time-of-flight estimation eliminated the bias resulted from thresholding and
was comparable to thresholding in variance. Here, we generalize the method
to include radius of curvature estimation. Figure 3.19 shows the parabola fitted

noisy sonar signal model. It is expected to reduce the bias with this method.

The following algorithm is used when estimating the time-of-flight with

curve fitting:

e An approximate time-of-flight estimate is obtained using the thresholding

method.

e The amplitude of the signal is sampled at three time instants before the
time-of-flight obtained by the thresholding method. The time interval

between the time instants equals 3 ps.

e The zero-crossing parabola passing through these points is found.
Parabola is assumed to be of the form y = at? + bt + ¢, and the co-
efficients a, b and c are calculated by using the three samples. If the
parabola found by using the above samples does not take the value zero
at any time, then new samples are taken and another parabola is ob-

tained. This procedure continues until a zero-crossing parabola is found.
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sensors are rotated around their centers).
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Figure 3.19: Curve-fitting method to estimate the time-of-flight.

o The timeinstant at which the value of this parabola is zero is the estimate

of time-of-flight with the curve-fitting method.

3.3.1 Simulation Results

I'igure 3.20 shows the results found by curve-fitting for § = 0° case when the
sensors are rotated around their joints. The improvement in the results is

about 40% with respect to the thresholding method.

IFigure 3.20 shows the effect of d for two different noise levels. W hen [Mig-
ure 3.20(a) is compared with Figure 3.8(a), about 50% improvement is ob-
served. The results improve especially after the rotation of the left sensor.
When the curve-fitting approach is used, the error on the time-of-flight is some-
times positive and sometimes negative and likewise for hj; and h,;. Hence, the
estimated radius is sometimes greater and sometimes less than the true radius.
Figure 3.20(b) shows the effect of d and R simultaneously. When Figure 3.20(b)
and 3.9(a) are compared, it can be seen that there is substantial improvement
in the estimations both before rotation and after rotation of the sensors. The
improvement is about 40%. Figure 3.20(c) shows the same results when the

noise is small. When Figures 3.20(b) and 3.20(c) are compared, 20% improve-

ment can be observed.

Figure 3.21 illustrates the effect of d, k1 and R in a noiseless environment
when the sensors are rotated around their centers. Figure 3.21(a) illustrates
the effect of d. Up to d = 43 cm, both estimates have very small errors, but
after this point, estimation before rotation gets worse and estimation after

35



rotation continues improving. The corresponding d value for the thresholding
method is 37 cm as can be seen from Figure 3.15. Figure 3.21(b) shows that
there 1s only 2% error before and after rotation. Figure 3.21(c) illustrates that

the error is 0% before and after rotation.

Figure 3.22 shows the effect of d, h,; and R in a noisy environment when the
sensors are rotated around their centers. In this case, a 100-iteration Monte
Carlo simulation study is employed. Figure 3.22(a) illustrates the effect of
d. When Figure 3.22(a) and 3.17(a) are compared, about 30% improvement is
observed. Figure 3.22(b) illustrates that as k., increases standard deviations of
both estimates increase. Also, when Figures 3.22(b) and 3.17(b) are compared,
a 30% improvement is observed. Figure 3.22(c) illustrates the effect of the true
radius. Estimate after rotation is better than estimate before rotation. When
Figures 3.22(c) and 3.18(b) are compared, again a 30% improvement can be

observed.

3.4 The Comparison of the Estimation Errors

with the Cramér-Rao Lower Bound

In order to evaluate the performances of the estimators, the results are com-
pared to the Cramér-Rao lower bound (CRLB) which sets a lower bound on the
variance of unbiased estimators [31]. The matched filter, which is the optimal
method to estimate the time-of-flight, satisfies this lower bound asymptoti-
cally [31]. Since the CRLB is primarily derived for unbiased estimators, the
variance and bias values are combined and compared with this lower bound.
CRLBs for unbiased estimators of r, § and R are derived in Appendix A.

Figures 3.23, 3.24 and 3.25 show how the CRLB (v/J1) and ok + V*(R),
the bias-variance combination, is affected by d, R and h,,. 6 = 0° is assumed
for all cases. For each figure, parts (a) and (b) are the results obtained with
the thresholding method and (c) and (d) are obtained with the curve-fitting
method. Also, the sensors are assumed to rotate around their centers. In the
curve-fitting method, the variance, and in the thresholding method, the bias

term is dominant in the bias-variance combination.

CRLB is small when compared with the bias-variance combination since
Equation 3.4 is highly sensitive to d and ke and we calculated the time-of-
flights with thresholding and curve-fitting methods which are very fast but
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suboptimal. For the thresholding method, the difference between CRLB and
bias-variance combination is more than that for the curve-fitting method. The
difference for thresholding is about 5-fold and for curve-fitting about 1.5-fold.
Also, with the curve-fitting method, the CRLB has a tendency to either steadily
increase or decrease but with the thresholding method there is no such ten-
dency. With the comparison of the estimators to CRLB, it is concluded that the
estimator with curve-fitting method is better than the estimator with thresh-
olding method. If the time-of-flights were to be estimated optimally, it would
be necessary to store the templates of the signals corresponding to different ob-
jects at different distances and angles and to compare the returned signal with
these and find the best matched one. This way, the processing time and the
memory requirements would increase considerably. By using the thresholding
method, a trade-off between the accuracy of estimation and system complexity

is achieved.

3.5 Discussion

A method for radius of curvature estimation has been developed by using var-
ious configurations of sonar sensors. Two different methods of time-of-flight
estimation are used. In order to assess the performances of the estimators.
the comparison of the Cramér-Rao lower bounds with the bias-variance com-
bination is included. When the time-of-flight is estimated by the thresholding
method, the estimation of radius after the rotation of the left and right sensors
1s better than that of the linear case in the absence of noise. After adding
the noise, the estimations after rotation degrade because of the error in the
rotation due to noise. When the time-of-flight is estimated by the curve-fitting
method, the results both before rotation and after rotation improve consid-
erably. We obtain better results especially after rotation. When we use the
curve-fitting method, the sensitivity of the estimation to noise decreases. In
the cases for which the three sensors are rotated around their centers, consider-
able improvement is achieved due to the increased SNR. The effect of the error
sources decrease very much. When sensors are rotated around their centers
and curve-fitting method is used, further improvement is achieved. The com-
parison of the Cramér-Rao lower bounds with the bias-variance combination
indicate that the difference is about 5-fold for thresholding and 1.5-fold for
curve-fitting. This is caused by the suboptimality of these two methods used
for the time-of-flight estimation. Also, it is seen that the difference is lower for

the curve-fitting method than for the thresholding method.
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Chapter 4

LOCATION AND RADIUS OF
CURVATURE ESTIMATION

In this chapter, the radius of curvature estimation is extended to include es-
timation of target location. We investigate the case in which the sensors are

rotated around their centers as shown in Figure 3.14 and estimate:

e The distance between the center of the object and the central sensor,

hol + ]2.
e The normal angle of the central sensor, 6.

e The radius of curvature, R.

4.1 Algorithm for Location and Radius of

Curvature Estimation

We have the following measurements:

>

= r— R+ w,(r,0,R)

o =
h, = Vr? + d? — 2drsind — R + w.(r,0, R)
by = Vr?+4d?+2drsind — R+ w(r,0,R) (4.1)
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where wo(r, 8, R), w.(r,0, R) and w(r,0, R) are spatially uncorrelated zero-

mean white Gaussian noise. Suppose the following vectors are defined:

b, r—R
22| h, h(r,0,R) = | V/r2+d?> —2drsinf — R (4.2)
izI Vr2 4+ d? 4+ 2drsinf — R

In [1], it is shown that for Polaroid transducers the noise correlation coefficient
is small since most of the noise on the sensors is dominated by the thermal noise
in the electronics. Because of this, w,(r, 0, R), w.(r,0, R) and w(r, 8, R) can be
modeled as uncorrelated Gaussian noise. Hence, the error correlation matrix,

its inverse, and the probability density function of z are taken as follows:

(02 0 0 |
C=10 o2 0 (4.3)

| 0 0 d |

i o0 .
ct = 0 = 0 (4.4)

0 0
i .
. 1 1. T 1

p(z|r,0,R) = 2710 exp{—g z—h(r,0,R)]"C™ [z — 11(7',0,R)]} (4.5)

The r, § and R values maximizing Equation 4.5 are the maximum likelihood

estimators which can be found by taking the inverse of Z = h(#, g, R) as follows:

242 + 2(hy + hy)ho — 2h2 — B} ~ h?

o= < 5 5 (4.6)
2h, + 2h; — 4h,
A YHRY QA_A'A
b = sinmt | A 20— bR (4.7)
4d(h, + R)
72 L 12y _9o(12 2
(R b —2(h+ &) (4.8)

4?7,0 — 2(ilr + il[ill)
The algorithm to localize the object is outlined below:

o Noisy values of the distances are generated using Equation 4.1.
e By using these noisy values:

— Radius of curvature,

— Deviation angle (azimuth) of the central sensor,
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~ The distance between the central sensor and the object
are calculated by using Equations 4.6-4.8.

e Noisy values of the normal angles of the left and right sensors are found

as explained in the radius of curvature estimation algorithm.
o The sensors are rotated by their normal angles.

o New measurements are taken and the new estimates are made by using

the above equations.

4.2 Simulation Results

IFigures 4.1-4.3 show the simulation results obtained in a noiseless environ-
ment. Figures 4.4-4.7 show the same simulation results obtained by using a
100-iteration Monte Carlo simulation study in a noisy environment. For all
simulation results, the curve-fitting method is used in order to estimate the

TOF.

I'igure 4.1 shows the dependence of the estimates to the transducer sepa-
ration d. The estimates before and after rotation are the same. Figure 4.1(a)
illustrates the dependence of the estimation of range to the transducer sep-
aration d. As d increases, the error decreases. The average error is 0.03%.
Figure 4.1(a) illustrates the dependence of the angle estimate to d. As d in-
creases, the estimate improves. The average error over d is 0.0%. Figure 4.1
illustrates the dependence of the radius of curvature estimation to d. Again as

d increases, the error decreases. The average error over d is 0.6%.

Figure 4.2 displays how the estimates depend on the true distance between
the central sensor and the object, hyy. Figure 4.2(a), 4.2(b) and 4.2(c) show
the dependence of the distance, the angle and the radius of curvature to A1,
respectively. The average errors for the distance, the angle and the radius of

curvature estimates are 3.6%, 0.0% and 0.2%, respectively.

Figure 4.3 illustrates the dependence of the estimates on the true radius,
R. Figure 4.3(a) shows the dependence of the distance to R. The average
ervor is 0.0%. Figure 4.3(b) shows the dependence of the normal angle to R.
Figure 4.3(c) shows the dependence of the radius of curvature estimation to

the true radius. The average error is 0.0%.
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Figure 4.1: Location and radius of curvature estimation versus d in a noiseless
environment with the curve-fitting method when sensors are rotated alound
their centers (note that both estimates are the same).

47



220 R=5cm d=10cm Theta-sdeg Noise=0

200

180

rlcm)
-t
[*]
o

140

120

100 i H ; ; H H H ; i ;
ioo 110 120 130 140 150 160 170 180 190 200
ho1 (cm)

(a)

R=5cm d=10cm Theta=S5deg Noise=0 Avr_ Theta1-5 00deg Avr_Theta2= soodeg
5.01

5.008
5.006
5.004

5.002

Thela(deg)

4.998

4.996

4.994

4,992

4.09 H i i i i . H . .
100 110 120 130 140 150 160 170 180 190 200
ho1t (cm)

()

R=5cm d=10cm Theta=5deg Nolse=0 Avr_R1=5.01cm Avr_r2=5.01cm

s i i H
170 180 190 200

a8 i H H H H i
-8%00 110 120 130 140 150 160
ho1 (cm)

()

Figure 4.2: Location and radius of curvature estimation versus h,; in a noiseless
environment with the curve-fitting method when sensors are rotated around

their centers (note that both estimates are the same).

48



130

d=10cm ho1=100cm Theta::sdeg Noise=0

T2 R
B 2O e T
=
=2
: : . —————— ri :
PR 71 T R TS
: : —_———— 2 :
105 i H P :
5 10 15 20 25
R (cm)
(a)
d=10cm ho1=100cm Theta=5deg Noise=0
5.01 T T T
5.008
5.006
5.004
__5.002 :
g z
g ’
4.998
4.996 4
4.994 B
4.992 -
4.99 L i .
S 10 15 20 25
R (cm)
d=10cm ho1=100cm Theta=5deg Noise=0
P 2 N
= O N b e
2O ...................... AAAAAAAAAAAAAAAAAAAA
= : :
£ : :
B S LTI PR N— RY............
: —mmm. B2
1O o T P T
s : ; ; ;
5 10 15 20 25

Figure 4.3: Location and radius of curvature estimation versus R in a noiseless
environment with the curve-fitting method when sensors are rotated around
their centers (note that both estimates are the same).

49



Figure 4.4 shows the dependence of the estimates to d in a noisy environ-
ment. Figure 4.4(a) illustrates that as d increases the estimate after rotation
improves. The estimation before rotation improves up to d = 12 cm, and after
that value it gets worse since the target is now located either at very low SNR
regions of the sensitivity pattern or outside it (as d increases the normal angles
of the left and right sensors increase). The average error before rotation is
5.96% and the error after rotation is 0.05%. Figure 4.4(b) illustrates the de-
pendence of the normal angle to d. The error figures before and after rotation
are 6.0% and 0.0% respectively. Figure 4.4(c) illustrates the dependence of the
radius of curvature estimation to d. The average error before rotation is 11.4%
and the average error after rotation is 1.2%. Note that the standard deviation
of the estimates after rotation are lower than those before rotation by a factor

of four approximately.

Figure 4.5 shows the dependence of the estimates to the distance %,y In
a noisy environment. For small values of h,;, the normal angles of the left
and right sensors are high and the estimates are not very good. For large val-
ues of k.1, the normal angles decrease and estimations improve. I'igure 4.5(a)
illustrates the distance estimation. Figure 4.5(b) illustrates the angle estima-
tion. The average error before rotation is 6.0% and after rotation it is 0.0%.
Figure 4.5 illustrates the radius of curvature estimation. The average error
before rotation is 19.0% and after rotation it is 0.0%. Note that the standard

deviations after rotation are lower than those before rotation.

Figure 4.6 shows the effect of R in a noisy environment. As R increases,
all three estimates improve. IMigure 4.6(a) illustrates the range estimate. Fig-
ure 4.6(b) illustrates the azimuth angle estimate. The average error before
rotation is 0.4% and after rotation it is 0.0%. Figure 4.6(c) illustrates the

radius of curvature estimation.

Figure 4.7 shows the effect of the azimuth angle 0 in a noisy environment.
Up to @ = 6° the estimates improve, but after that value the target is either
outside the sensitivity region or within a very low SNR region. Figure 4.7(a)
illustrates the distance estimate. The average error before rotation is 5.71%
and after rotation it is 0.0%. Figure 4.7(b) illustrates the angle estimation.
Figure 4.7(c) illustrates the radius of curvature estimation. The average error
before rotation is 85.6% and after rotation it is 0.6%. Note that again the

standard deviations after rotation are smaller than those before rotation.
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4.3 The Comparison of the Estimation Errors

with the Cramér-Rao Lower Bound

As explained in the radius of curvature estimation section, in order to evaluate
the performances of the estimators, the results are compared to the CRLB
which sets a lower bound of the variance of unbiased estimators [31]. In this
section, we combine the variance and bias values to compare to this lower

bound. The derivation is provided in the Appendix.

Figures 4.8-4.11 show how the Cramér-Rao lower bounds v/J11, v/J22 /]33
and (/o2 + b%(r), \/00? + 5%(6), \/0'}2.2 + b*(R), which are the combinations of

biases and variances, are affected by d, h,1, R and 6. The simulation results

are presented both for the thresholding method and the curve-fitting method.
The first columns of the figures illustrate the results of the thresholding method,

and the second columns show the results of the curve-fitting method.

I'igure 4.8 and 4.9 illustrate the effect of d. Figures 4.8(a),(c) and (e) il-
lustrate the results with thresholding method. When Figures 4.8(a) and (e)
are compared to Figures 4.9(a) and (e), a 3-fold difference can be observed.
When Figure 4.8(c) and 4.9(c) are compared, the difference is 10-fold. Fig-
ures 4.8(b),(d) and (f) illustrate the result with the curve-fitting method. When
Figures 4.8(b) and (f) are compared to Figures 4.9(b) and (f), it is observed
that they are very close to each other. When Figure 4.8(d) and 4.9(d) are
compared, a 2-fold difference can be observed. From these results,'it is con-
cluded that the curve-fitting estimator is more accurate than the estimator
with thresholding. Figure 4.9 illustrates that for the thresholding method the
bias term, and for the curve-fitting method the variance term is dominant.

Figure 4.10 and 4.11 illustrate the effect of h,;. Figure 4.10(a),(c) and
(e) illustrate the results with thresholding. When Figures 4.10(a) and (e) are
compared to Figures 4.11(a) and (e), it is seen that they are nearly the same.
Figure 4.10(c) and Figure 4.11(c) show a 10-fold difference. Figures 4.10(b),(d)
and (f) illustrate the results with curve-fitting. When Figures 4.10(b) and (f)
are compared to Figures 4.11(b) and (f), they seem to be the same. When
Figure 4.10(d) and 4.11(d) are compared, a 5-fold difference can be observed.
It is concluded that the estimator with curve-fitting has higher performance.
Again, the bias term is dominant for the thresholding method, and variance

term is dominant for the curve-fitting method.
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Chapter 5

SMOOTHING OF THE
ESTIMATES USING
EXTENDED KALMAN
FILTERING

In this chapter, an extended Kalman filter (EKF) is used to estimate the loca-
tion and radius of curvature of the target. The case in which the sensors are
aligned is investigated as shown in Figure 3.1. Appendix B gives a brief sum-
mary of extended Kalman filtering. A more detailed treatment can be found

in [32].

5.1 Algorithm

The following procedure is used to estimate the location and the radius of

curvature of the cylindrical object.

e The state vector is defined as follows:



e The observation model is

ho1 (k)
2(k) = | hu(k) | =h[x(k)] + w(k) (5.2)
by (k)
where
r(k) — R(k)
h[x(k)] = | /r2(k) + d? — 2dr(k) sin 0(k) — R(k) (5.3)

V/r2(k) + d2 + 2dr(k) sin 0(k) — R(k)

e Since the target is assumed to be stationary, the state transition model

r(k) v, (k)
X(k+1) =Fx(k)+v(k)= | (k) |+ | vs(k) (5.4)
R(k) vr(k)

where vg, v, and vy are the additive process noise for radius, range and
angle, respectively. F matrix in this case is an identity matrix. Note that

the state model is linear but the observation model is nonlinear.

e The Jacobian matrix H is found as follows:

-1 1 0 .
_ r(k)—dsiné(k) _ dr(k) cos (k)
H(k) = Vh(k) = 1 \/r(k)2+d2—2dr (k) sin 0(k) /7 (k)2+d? —2dr (k) sin 6(k)
r(k)+dsin (k) dr(k) cos (k)

V/r(k)2+d2+2dr(k)sind(k)  \/r(k)2+d2+2dr(k) sin6(k)

where (k) and (k) are the predicted values of range and normal angle.

5.2 Simulation Results

Figure 5.1(a), (b) and (c) show the measurement residuals of A1, 2y and Ay,
respectively. All three figures illustrate that innovations are white as expected.
When a three degree-of-freedom chi-square test is applied, it is observed that
one out of 30 points falls outside of the 97.5% confidence region. Although
the maximum error allowed is 2.5%, the innovations with error 3.3% can be
considered as white Gaussian distributed since only 30 iterations are processed.

The details of chi-square test are given in Appendix C.
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Figure 5.2 illustrates the estimated and predicted states. Figure 5.2(a),
(b), (c) illustrate how the estimation of the range, normal angle and radius of
curvature improve as the number of steps increase, respectively. For Figures 5.1
and 5.2, d = 10 cm, R = 5 cm, h,; = 100 cm, 0 = 0°, measurement noise
standard deviation = 107® V, the variance of the radius noise = 10~3 ¢m? and

the variance of the angle noise =107* rad?.

Figure 5.4(a), (b) and (c) illustrate how the range, angle and radius estima-
tions are affected by d. For small values of d, the radius and range estimation
are not accurate. The average error is about 0.8% for the range, and 10% for
the radius. For Figure 5.4, R = 5 cm, hy; = 100 cm, § = 0°, measurement
noise standard deviation = 10~ V, the variance of the radius noise = 103

cm? and the variance of the angle noise =10"* rad?.

Figure 5.5 presents the effect of R on the estimations. Figure 5.5(a), (b) and
(c) illustrate the effect of It on the range, angle and radius, respectively. All
of the three estimations are very accurate for different values of R. The errors
on the range and radius of curvature are about 0.6% and 5%, respectively. For
Figure 5.5, d = 10 cm, hy,; = 100 cm, § = 0°, measurement noise standard
deviation = 107® V, the variance of the radius noise = 10™3 cm? and the

variance of the radius noise =10"* rad?.

Figure 5.6 shows how A, affects the estimation. Figure 5.6(a) is drawn
for the range estimation and the average error is about 1.2%. Figure 5.6(b) is
for the azimuth angle estimation. Figure 5.6(c) is for the radius of curvature
estimation and the average error is about 18%. For Figure 5.6, ¢ = 10 cm,
R = 5 cm, § = 0°, measurement noise standard deviation = 107% V, the

variance of the radius noise = 10> cm? and the variance of the angle noise

=10"* rad?.

Figure 5.7 displays the effect of § on the estimation process. igure 5.7(a),
(b) and (c) illustrate how the range, angle and radius estimations are affected
by 6. As 6 increases, the estimations degrade a little due to increase in un-
certainty on the measured values. For Figure 5.7, d = 10 cm, R = 5 cm,
ho1 = 100 cm, measurement noise standard deviation = 107% V| the variance

of the radius noise = 10~ cm? and the variance of the angle noise =10~* rad?.

Figure 5.3 illustrates the range, angle and radius estimations respectively
by using extended Kalman filtering and raw data over a single data sequence.
That is, in the first case, estimates are smoothed by the EKF' in the second,

estimates are directly derived from the raw data.
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Figure 5.1: Measurement residuals of Kalman filtering for d = 10 cm, R =5
cm, hoy = 100 cm, = 0°, measurement noise std = 107® V, variance of radius
noise = 10™% cm?, variance of angle noise = 107* rad?.
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Figure 5.2: Estimated and predicted values of Kalman filtering for d = 10 cm,
R =5 cm, hoy = 100 cm, 6 = 0°, measurement noise std = 107® V, variance of
radius noise = 1072 c¢m?, variance of angle noise = 10~* rad?.
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Chapter 6

EXPERIMENTAL RESULTS

In this chapter, two different set-ups using transducers at different frequencies
are employed to verify the simulation results. In the first set-up, Panasonic
transducers are used to estimate the position and radius of curvature using the
algorithm mentioned in Chapter 4. In the second, Polaroid transducers are
used to estimate the position and radius of curvature estimation using an EKI

described in Chapter 5.

6.1 Experimental Set-up with Panasonic

Transducers

The set-up is constructed for 2-D applications. Since the Panasonic transducers
are manufactured separately as transmitter and receiver with different charac-
teristics, the same transducer was not used as both transmitter and receiver.
Because of this, two different transducers, with very close vertical separation,
are used to transmit and receive the echoes. In this case, the pair can be con-
sidered as a transmitter/receiver transducer. The experimental set-up consists
of three such pairs as shown in Figure 6.1. The aperture radius of each Pana-
sonic transducer is ¢ = 0.65 cm, the resonant frequency is f, = 40 kHz and

0, = 54°. The block diagram for the hardware is shown in Figure 6.2.
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Figure 6.1: The exi”erimental set-up consisting of Panasonic transducers.

Figure 6.2: The block diagram of experimental set-up with Panasonic trans-
ducers.

71



6.2 Experimental Results

6.2.1 Thresholding Method

In this section, the set-up with Panasonic transducers is used in order to in-
vestigate the results of position and radius of curvature estimation when the
thresholding method is employed to estimate the time-of-flight (TOF). During
the process of data collection, the transducers’ line-of-sights were maintained
perpendicular to the target surface since this way, the SNR is maximized. Ta-

bles 6.1-6.8 illustrate the estimation results.

Tables 6.1 and 6.2 show the estimates for ~,; = 500 mm and A, = 600 mm,
respectively. True radius R = 75 mm and true azimuth angle § = 0° for the
two cases. As the transducer separation d increases, the standard deviations of
the estimated range and radius decrease, but there is not an observable trend
in the standard deviation of 8. The error for h,; = 500 mm is about 1.3% in
the estimated radius and 0.9% in the estimated range. The error for k,; = 600
mm is about 1.3% in the radius estimation but it is about 1.8% in the range
estimation. Also, the standard deviations are larger for h,; = 600 mm than

for h,y = 500 mm.

Tables 6.3 and 6.4 illustrate the above results for true radius K = 48 mm
and true angle 8 = 0°. Again, the standard deviations of the range and radius
decrease as the separation d increases and the deviations are less for h,; = 500
mm. The error in the range is 0.5% for h,; = 500 mm, and 0.8% for h,; = 600
mm. The error in the estimated radius is 4.4% for h,; = 500 mm, and 4.6%

for A,y = 600 mm.

Table 6.5 displays the estimation results for h,; = 500 mm, R = 25 mm
and 6 = 0°. The error for the radius is 4.0% and it is 0.1% for the range.

With the help of Tables 6.1-6.5, it is concluded that as d increases the esti-
mations improve, as h,; increases the estimations degrade and as R increases

the standard deviations of the range and radius of curvature estimations de-

crease.

Tables 6.6 and 6.7 show the estimated results when the target is a plane.
The radius of curvature estimations and standard deviations are large. By

looking at the radius estimates, it is confidently concluded that the object is a

plane.
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Finally, Table 6.8 illustrates the effect of the azimuth angle. As the azimuth
angle increases, the standard deviations tend to increase. Also, the estimates
degrade as the true azimuth angle § increases. The average error in the angle
estimation is about 16%.

| d (mm) | £{r} (mm) [ o, (mm) | £{0} (deg) || oo (deg) || E{R} (mm) | or (mm) |

250 571.90 16.96 0.23 0.19 76.76 15.88
300 569.74 10.88 0.07 0.13 74.18 9.81
350 569.78 7.38 -0.06 0.15 73.66 6.82
400 569.73 5.27 0.11 0.19 73.89 8.09
450 570.07 4.93 -0.19 0.19 74.74 7.23

Table 6.1: Experimental results when A,; = 500 mm, R = 75 mm, § = 0° and
the thresholding method is used.

| d (mm) || E{r} (mm) || 5, (mm) || E{0} (deg) || oo (deg) || E{R} (mm) || o0 (mm) ||

250 661.73 15.93 0.36 0.16 73.26 15.17
300 663.84 15.15 0.21 0.10 74.87 13.90
350 661.98 13.02 -0.14 0.17 73.15 13.08
400 664.07 12.77 0.10 0.15 74.32 11.21
450 664.86 11.42 -0.43 0.15 74.45 9.91

Table 6.2: Experimental results when Ay, = 600 mm, R = 75 mm, 0 = 0° and
the thresholding method is used.

[ d (mm) [ E{r} (mm) [ o, (mm) [| E{6} (deg) ][ oo (deg) ]| E{R} (mm) || or (mm) |

200 550.39 29.88 -2.10 0.41 50.18 28.77
250 548.97 8.39 2.48 0.12 48.18 7.73
300 552.19 8.50 0.01 0.20 51.50 8.18
350 549.55 5.23 -0.19 0.09 48.93 4.62
400 555.66 7.62 -0.06 0.18 55.18 6.75
450 549.97 7.06 -0.32 0.18 49.58 6.20

Table 6.3: Experimental results when h,; = 500 mm, R = 48 mm, 6 = 0° and
the thresholding method is used.
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[ d (mm) | £{r} (mm) || or (mm) [| E{8} (deg) [ o5 (deg) ]| E{R} (mm) ]| or (mm) |

200 636.97 27.52 -0.49 0.30 40.38 26.88
250 637.96 24.18 -0.56 0.33 41.79 23.01
300 645.36 16.90 -0.11 0.12 49.16 15.38
350 643.29 13.03 -0.25 0.16 47.22 11.72
400 648.86 14.04 -0.18 0.19 52.30 12.68
450 643.10 10.26 -0.21 0.22 46.99 9.34

Table 6.4: Experimental results when A, = 600 mm, R = 48 mm, § = 0° and
the thresholding method is used.

[d (mm) [ E{r} (mm) [ o, (mm) || £{6} (deg) [ oo (deg) | E{R} (mm) || or (_me) I

250 524.72 6.31 0.09 0.13 26.40 6.00
300 529.16 8.23 0.03 0.21 27.61 7.88
350 525.41 5.16 -0.18 0.13 24.03 4.64
400 522.92 7.03 0.35 0.23 24.85 6.89
450 522.91 3.85 -0.23 0.18 24.87 3.85

Table 6.5: Experimental results when h, = 500 mm, R = 25 mm, 0 = 0° and
the thresholding method is used.
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[ d (mm) | E{r} (mm) || o, (mm) |

E{0} (deg) ” oy (deg)J E{R} (mm) ” OR (mmﬂ]

200 2824.56 789.76 0.10 1.95 2344.87 789.74
250 2527.98 270.57 -0.98 0.17 2048.72 266.34
300 1531.40 476.66 -0.40 0.90 1051.84 475.77

Table 6.6: Experimental results when the thresholding method is used to esti-
mate the radius of curvature of a plane at h,; = 500 mm and § = 0°.

[ d (mm) | E{r} (mm) || o, (mm) | E{0} (deg) || oo (deg) || E{R} (mm) || or (mm) |

200 3122.65 860.69 -0.01 4.12 2545.12 848.52
250 2561.10 693.35 -0.98 1.78 1981.51 688.54
300 1354.48 480.81 -1.20 3.14 775.72 476.15

Table 6.7: Experimental results when the thresholding method is used to esti-
mate the radius of curvature of a plane at h,; = 600 mm and 6 = 0°.

[0 (deg) | E{r} (mm) || o, (mm) || E{0} (deg) [ o5 (deg) | E{R} (mm) || or (mm) |

0 522.92 7.03 0.35 0.23 24.85 6.89
3 522.96 3.19 2.53 0.10 24.65 0.35
) 522.66 4.79 4.11 0.19 24.43 4.76
S 524.12 6.02 6.76 0.18 22.98 5.89

Table 6.8: Experimental results when the thresholding method is used to esti-
mate the radius of curvature of a cylinder at h,; = 500 mm, d = 400 mm and
R =25 mm.
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6.2.2 Curve-fitting Method

In this section, the experimental results of estimation with the curve-fitting
method are presented. The set-up with Panasonic transducers is used and the
transducers are rotated around their centers. Tables 6.9-6.16 summarize the

experimental results.

Table 6.9 illustrates the estimation results for A,; = 500 mm, R = 75 mm
and § = 0°. As d increases, the standard deviations decrease for the range
and radius. The average error for the range is about 0.9% and it is 1.1% for
the radius. Table 6.10 shows the results for A, = 600 mm, R = 75 mm and
0 = 0°. Again as d increases, the standard deviations decrease. The range and

radius errors are about 1.4% and 2.7%, respectively.

When Tables 6.1, 6.2 and 6.9, 6.10 are compared, it is observed that the
standard deviations of the range, radius and angle estimates are comparable

for the thresholding and curve-fitting methods.

Table 6.11 and 6.12 illustrates the results of » = 48 mm and § = 0° for
hoy = 500 mm and h,; = 600 mm, respectively. As d increases, standard
deviations decrease and they are comparable to the results of the thresholding
method (Tables 6.3 and 6.4). The error in the range is 0.4% for h,; = 500 mm
and 0.7% for h,; = 600 mm. The error in the radius is 3.5% for A,; = 500 mm

and 6.9% for hy,; = 600 mm.

Table 6.13 displays the effect of d for h,; = 500 mm, B = 25 mm and
6 = 0°. The error for the radius is 3.3%, and it is 0.5% for the range.

Tables 6.14 and 6.15 illustrate the estimation results when the target is a
plane. The radius of curvature estimations and standard deviations are huge.
As in the thresholding case, it is concluded that the target is a plane.

Table 6.16 shows the effect of the inclination angle. As the angle increases,
the standard deviations increase. Also, the estimates degrade as the true in-

clination angle 6 increases. The average error in the angle estimation is about

11.4%.
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| d (mm) [ E{r} (mm) [ o, (mm) | E{6} (deg) || o (deg) [| E{R} (nm) | or (mm) |

250 569.47 15.64 0.24 0.18 74.71 14.60
300 571.:40 12.94 0.05 0.15 76.71 11.64
350 570.58 8.04 -0.09 0.15 74.59 7.25
400 969.45 8.75 0.12 0.18 73.57 §8.02
450 969.51 8.36 -0.21 0.18 74.30 7.17

Table 6.9: Experimental results when A,; = 500 mm, £ = 75 mm, § = 0° and

the curve-fitting method is used.

| d (mm) | E{r} (mm) || o, (mm) || E{6} (deg) || o5 (deg) [ E{R} (mm) ][ or (mm) |

250 664.49 21.71 0.13 0.24 75.80 20.85
300 664.04 16.43 0.23 0.13 75.14 15.23
350 667.68 17.49 -0.16 0.15 77.44 15.78
400 665.78 14.47 0.08 0.19 75.70 12.87
450 666.00 12.06 -0.40 0.20 75.40 10.53

Table 6.10: Experimental results when h,; = 600 mm, B = 75 mm, § = 0° and

the curve-fitting method is used.

[ d (mm) [ E{r} (mm) [ o, (mm) ]| E{6} (deg) || oo (deg) | E{R} (mm) [ op (mm) ||

200 550.93 30.18 -2.25 0.44 50.64 29.27
250 548.92 8.56 2.45 0.13 48.15 8.01
300 550.10 10.62 -0.05 0.21 49.69 10.01
350 549.22 6.56 -0.20 0.11 48.81 5.89
400 556.30 8.05 -0.11 0.21 595.92 7.35
450 549.95 7.39 -0.31 0.19 49.80 6.48

able 6.11: Experimental results when h,; = 500 mm, R = 48 mm, § = 0° and

the curve-fitting method is used.




| d (mm) | E{r} (mm) [ o, (mm) | £{6} (deg) [ o5 (deg) || E{R} (mm) | or (mm) |

200 635.59 25.49 -0.60 0.25 38.99 24.81
250 645.27 29.32 -0.52 0.31 49.20 28.24
300 644.99 17.84 ~0.12 0.13 48.92 16.29
350 648.39 14.86 -0.27 0.16 51.74 13.44
400 649.20 12.85 -0.16 0.24 52.76 11.83
450 643.41 12.84 -0.24 0.22 47.16 11.63

Table 6.12: Experimental results when h,y = 600 mm, R = 48 mm, § = 0° and
the curve-fitting method is used.

| d (mm) | E{r} (mm) || o, (mm) || E{8} (deg) || o (deg) | E{R} (mm) || or (mm) ||

250 520.75 8.96 0.06 0.17 22.56 8.49
300 524.91 11.04 0.01 0.24 23.64 10.34
350 926.53 8.63 ~-0.15 0.17 25.30 7.53
400 922.81 6.76 0.39 0.26 24.76 6.66
450 920.93 5.73 -0.29 0.12 23.46 4.91

Table 6.13: Experimental results when k,; = 500 mm, R = 25 mm, § = 0° and
the curve-fitting method is used.
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[ d (mm) || E{r} (mm) [ o (mm) [ £{6} (deg) ] o4 (deg) | E{R} (mm) [ or (mm) ]

200 2860.72 959.80 0.10 0.47 2381.13 559.73
250 2471.04 465.58 -0.85 1.09 1991.88 462.32
300 1610.82 99.42 -0.27 0.37 1130.96 99.40

Table 6.14: Experimental results when the curve-fitting method is used to
estimate the radius of curvature of a plane at h,; = 500 mm and 0 = 0°.

| d (mm) || E{r} (mm) || o, (mm) [ E{6} (deg) [ o5 (deg) | E{R} (mm) [ or (mm) |

200 3503.52 4330.69 -0.31 0.79 2924.89 4929.26
250 2644.16 685.01 -0.54 1.76 2065.07 678.08
300 1467.02 103.38 -1.22 0.21 886.53 101.96

Table 6.15: Experimental results when the curve-fitting method is used to
estimate the radius of curvature of a plane at h,; = 600 mm and 6 = 0°.

[ 6 (deg) || E{r} (mm) || o, (mm) [| E{6} (deg) || oo (deg) [ E{R} (mm) || & (mm) |

0 522.81 6.76 0.39 0.26 24.76 6.66
3 522.73 4.35 2.52 0.14 24.50 4.10
) 524.19 5.54 4.20 0.21 26.01 5.30
8 525.91 6.41 6.81 0.20 24.71 6.19

Table 6.16: Experimental results when the curve-fitting method is used to
estimate the radius of curvature of a cylinder at k,; = 500 mm, d = 400 mm
and r = 25 mm.




REMARKS:

o When the transducer separation d exceeds 20-22 cm, the transducer can-
not observe the object with the linear configuration. Because of this, all
experimental data is collected when the object and the transducers are

perpendicular to each other.

o The transducers are maintained perpendicular to the object surface while

experimental data is taken.

6.3 Experimental Set-up with Polaroid Trans-

ducers

The set-up is constructed for 3-D sonar applications. The system consists of
five Polaroid transducers, each of which can be used both as transmitter or
receiver. One of them is at the center, and the others symmetrically surround
the central sensor as shown in Figure 6.3(a). The separation between the fixed
central sensor and each surrounding sensor can be adjusted manually between
7.5 — 12 cm. The central sensor can be moved backward and forward, so that
the others are perpendicular to the target, by a single stepper motor, as shown
in Figure 6.3(b). A 12-bit 4 channel A/D converter, Metrabyte DAS-50 1M1z,
samples the analog signals reflected by the target. The aperture radius of the

transducers 1s @ = 2 ¢m, the resonant frequency f, = 49.4 kHz, and 6, = 12°.

6.3.1 Experimental Results with the EKF

In this section, the simulation results of the EKF for the position and radius of

curvature estimation are verified using the set-up with Polaroid transducers.

Figures 6.4 and 6.5 illustrate the Kalman filtered results of the experimental
datafor R=5cm,d = 7.5cm, hyy = 100 cmand § = 0°. R =5.1cm, hyy =99
cm and @ = 0.1° are taken as the initial conditions. Figures 6.4(a),(b) and (c)
show the innovations for h,i, h,1 and hy respectively. Figure 6.5(a),(b) and
(c) illustrate that the estimates for range, angle and radius are close to the real
values. When a three degree-of-freedom chi-square test is applied, it is observed
that four out of 30 points (the error is 13.3%) falls outside the 97.5% confidence

region which means the innovations are not white Gaussian distributed.
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(a) (b)

Figure 6.3: Two extreme positions of the sensing device.

Figures 6.6 and 6.7 display the Kalman filtered results of the experimental
data for /7— 10 cm, d = 75 cm, hoi = 100 cm and 0 = 0°. R = 10.2 cm,
hoi — 99 cm and 0 = 0.1° are taken as the initial conditions. Figures 6.6(a)
and (c) illustrate that the innovations for hoi ~nd hn are white sequences,
but Figure 6.6(b) shows that the innovation for hri is not a white sequence.
Figure 6.7 illustrates that the estimated values do not convergé to the real
values. Since all of the innovations are not white sequences, this result is
expected. When a three degree-of freedom chi-square test is applied, it is
observed that six out of 30 points (the error is 20%) fall outside the 97.5%
confidence region, that is, the innovations are not white Gaussian distributed.

Figures 6.8 and 6.9 illustrate the Kalman filtered results of the experimental
data for R = 5cm, d = 75 cm, hoi = 140 cm and 0 = 0°. R = 51 cm,
hoi = 139 cm and O = 0.1° are taken as the initial conditions. In Figure 6.8,
all of the innovations seem to be white sequences. Also, the estimated values
are close to the true values. When a three degree-of freedom chi-square test is
applied, it is observed that one out of 30 points fall outside the 97.5% confidence
region and the innovations are white Gaussian distributed.

When the simulation results (Figures 5.2) and the experimental results
(Figure 6.5) are compared, a huge difference is observed. There are two main
reasons for this: First, the curve-fitting method is used for the simulations
and the thresholding method is used for the experimental results. Second, the
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process noise standard deviation is tuned to be 107® V in the simulations but
1t is different for the real data.

6.4 Discussion

The experimental results indicate that the radius of curvature estimation can
be used to classify the target primitives into three categories as plane, edge or
cylinder. In order to assess the type of the object by estimating its curvature,
all reflectors are assumed to be curved. A continuum of reflector types are
considered, R = 0 for an edge-like reflector going all the way up to R = oo
for a plane-like reflector. The classification procedure, consistent with the
experimental results, is illustrated in Figure 6.10. The uncertainty region of
each radius estimate is considered to be between [R — 3og, R + 30g] assuming
zero mean Gaussian distributed estimation error. In the figure, or changes
with the type of object (reflected signal depends on the type of the object) and

seems to increase with radius of curvature.

Given two targets with constant curvature, if there is overlap between their
uncertainty regions, then these targets may not be distinguished for estimates

which fall within the overlap region.
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Figure 6.4: Measurement residuals of the Kalman filter for d = 7.5 cm, R =5
cm, hoy = 100 cm, § = 0°, variance of radius noise = 1073 cm?, variance
of angle noise = 107* rad?, initial estimates R = 5.1 cm, ko, = 99 cm and

6 =0.1°
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Figure 6.5: Estimates of the Kalman filter for d = 7.5 cm, R = 5 cm, h,; = 100
cm, § = 0°, variance of radius noise = 10~2 c¢m?, variance of angle noise = 10~

rad?, initial estimates R = 5.1 cm, h,; = 99 cm and 6 = 0.1°.
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Figure 6.6: Measurement residuals of the Kalman filter for d = 7.5 cm, R = 10

cm, hoy = 100 cm, 6 = 0°, variance of radius noise = 1072 cm?

, variance of

angle noise = 107* rad?, initial estimates R = 10.1 cm, h,y = 99 cm and

§ =0.1°
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Figure 6.7: Estimated values of the Kalman filter for d = 7.5 cm, R = 10 cm,
hoy = 100 cm, 6 = 0°, variance of radius noise = 1073 cm?, variance of angle
noise = 107 rad?, initial estimates R = 10.1 cm, ho,; =99 cm and 6 = 0.1°.
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Figure 6.8: Measurement residuals of the Kalman filter for d = 7.5 cm, R =5
cm, hoy = 140 cm, 0 = 0°, variance of radius noise = 107° cm?, variance
of angle noise = 10~* rad?, initial estimates R = 5.1 cm, h,; = 49 cm and

0 =0.1°
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Figure 6.9: Estimated values of the Kalman filter for d = 7.5 cm, R = 5 cm,
ho1 = 140 cm, § = 0°, variance of radius noise = 10~ c¢m?, variance of angle
noise = 10™* rad?, initial estimates R = 5.1 cm, h,y = 139 cm and 6 = 0.1°.
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Figure 6.10: Target discrimination using radius of curvature estimation.
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Chapter 7

CONCLUSION AND
DIRECTIONS FOR FUTURE

WORK

In this chapter, some conclusions are presented by summarizing the contents

and contributions of the thesis and some suggestions for future work are made.

7.1 Summary of Thesis

In this study, the estimations of the location and radius of curvature of cylindri-
cal objects are made by using the equations from geometry and the estimates
are smoothed by using extended Kalman filtering. A tri-aural sensor consisting
of three transmitting/receiving transducers is composed to perform the estima-
tions. The main goal of the thesis is to improve radius of curvature estimation.
This is done by obtaining sufficient data and rotating the transducers in order
to make them perpendicular to the object. This way, SNR is increased and the
estimation accuracy is improved. Two methods are used to rotate the transduc-
ers. First, the peripheral transducers are rotated around their joints. Second,
the transducers are rotated around their centers. Also, the thresholding and
curve-fitting methods are used to estimate TOYF. In order to assess the per-
formance of the estimator, the bias-variance combinations of both estimators
are compared to the CRLB. Finally, in order to verify the simulation results,

experimental data is collected using both Panasonic and Polaroid transducers.
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The main conclusions of this thesis are as follows:

o The estimation with rotated configuration gives much better results than

the estimation with linear configuration.

e The simulation results and the CRLB comparison test show that the
curve-fitting method works better that the thresholding method.

o The experimental results illustrate that the thresholding and curve-fitting

methods give comparable results.
» The extended Kalman filtering smoothes the estimates considerably.

o The radius of curvature estimation can be used to differentiate the dif-
terent types of reflectors such as edges, cylinders and walls.

e The estimations are made for convex (R > 0) reflectors but they are

equally applicable for concave (R < 0) reflectors.

7.2 Directions for Future Work

The following are the main directions of future research:

e Sensory information from different types of sensors such as sonar, infrared
and laser can be fused to estimate the location and radius of curvature

of cylindrical objects more accurately.

e Location and radius of curvature estimation can be extended to spherical

targets in 3-D.

e The adjustable tri-aural sensor can be used on a mobile robot for map-

building and robot navigation.

e The method can be generalized to extended surfaces with spatially vary-

ing curvature where the curvature can be both concave and convex.
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Appendix A

CRAMER-RAO LOWER
BOUNDS

In the following, the comparison of the standard deviation of the biased radius
estimator with the Cramér-Rao lower bound (CRLB) is explained for different
d, R and h,;.

e In the measurements, zero-mean spatially uncorrelated additive white

(Gaussian noise is assumed:

hyy = r—R+ w,o(r, 0, R)
izo, = r24d? —2drsind — R+ w,(r,0, R)
ho = Vri+d?+2drsind— R+ wi(r, 0, R) (A.1)
ho1 r—R
52 h,, h(r,0,R) = | V/r2+d?* —2drsinf — R (A.2)
izo, Vr2 4+ d? + 2drsind — R

o As explained in the text, the r, § and R values maximizing Equation 4.5
are the maximum likelihood estimators which can be found by taking the
inverse of Z = h(7, g, fZ) as follows:

2 4 2 + hor Yot — 202, — = B2
P 2d° 4+ 2(ha + h"")hi’l 2h:,1 1o — RZ, (A.3)
2hor + 2hol - 4}7'01
2y 1 N
Gin-1 hZ — hZ, + 2(1101‘ hor) R (A.4)
4d(hol + R)
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b o (B i)~ 200 + &)

4jz‘ol - 2(}Azlor
e The biases of the three estimations

b(r)
b(0)
b(R)

e lie e

+ ilol)

are defined as:

E{r}—r
E{0} -0
E{R}-R

Here, E{.} is the expectation operator.

e The variances of the estimators are

o

SN

Q
o
I

found:

= war[f(2) —r]
ar [é(“) -0
var [R(i) - R}

(A.6)

(A.7)

o CRLB for the variance of an unbiased estimator is given as follows:

0_72 Z Jll
22
Ué Z J
2 33
O'R Z J

(A.8)

here J', J?2 and J*3 are the diagonal elements of the inverse of the

I'isher information matrix.

o The Fisher information matrix J and its inverse J~1 are given as follows:

[ Ju Ji Jis
J = Ja1 Ja2 J23
_J31 J3z Ja3
[ g1 12 g3
_]—1 — J?l J22 J23
I J31 J32 J33
é)hT(r,H,R) _10h(r,0,R)
S = or C or
on'(r,0,R) _, Oh(r,0,R)
T = 5 C 5
oh’(r,0,R) ,_,0h(r,0,R)
Joa = o AR
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Jl2
J13

JZ.'}

where

Jor =
Ja =

Ja2 =

C—l

oh’(r,0,R) c-19h(r,0, R)
or a0
8hT(r,0,R) C_lah(r,O,R)
, or OR
oh’(r,6, R) -1 oh(r,0, R)
80 OR

o2 0 0 ]
0 o2 O
[0 0 o]
[ L o o0 |
0 L 0
0 0 |

Let us abbreviate some of the expressions as follows:

RN

1

A

2

=

3

ohy

A vk

~ Or B

a O

00 B

Aahl

=— B
R

2

3

a0h a0k
- Or 01_87'
a0hy .\ aOhy
T80 T o0
a0k oa Ohs
“OR T R

(A.11)

(A.12)

(A.13)

By taking appropriate derivatives, above parameters can be found as

r 4 dsin 0

- Vr? 4+ d% + 2dr sin 0

+dr cos 0

follows:
r —dsin
A =1 By =
! ! V72 +d? — 2drsind ]
—dr cos 0
Ay, = 0 By, =
2 ? Vr2 + d? — 2drsin 2
A3 — -—1 AB3 — —1 (/13 =-—1

- V12 + d? + 2dr sin 0

(A.14)

With these derivations the elements of the Fisher information matrix can

be found easily:

Jll

Jas

Bt | CF
Tt
Uw,~ U'wl
Bl 2

+ =+ =
oL 04

2 Y2

0.2 + 0.2
Wy wy



Jio = Jy = A14s n B, B, 4 €10y

0%y Om. O
Al A BB C1C-
JSI — J13 — 12 3 + 12 3 + 12 3
awo Uwr Gw,
A A B,Bs  C,C; ,
J23 = -]32 = 2,) 3 -+ 2,) & + 22 2 (Al5)
0’{Uo O'_ILT o w

By using the elements of the Fisher information matrix, the diagonal

elements of the inverse Fisher information matrix are evaluated:

JagJas — J3s

Jll
3]
g2 _ Jinas — Jis
9
72
g = Brlesda (A.16)
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Appendix B

EXTENDED KALMAN
FILTER ALGORITHM

The extended Kalman filter (EKF) is a nonlinear estimator which recursively
calculates a minimum variance estimate for a state by using observations which
are nonlinearly related to this state. The EKI" has many application areas such
as location estimation problems in mobile robot systems, aerospace navigation

and process control [33, 34, 35, 36].

The notation of Bar-Shalom [32] is used to provide the details of the ex-

tended Kalman filtering. Also the paper by H. W. Sorenson [37] is very helpful.

Firstly, notation will be established and process and observation models

will be given. In general, both the process model and the observation model

can be nonlinear.

o The state or process model is
x(k+1) = flk,x(k)] + v(k) (B.1)
where v(k) is the zero-mean, additive, white Gaussian process noise with
B v(Ev(i)] = QK6 (B.2)
and 0x; is the Kronecker-delta.
e The observation model is
z(k) = h [k, x(k)] + w(k) (B.3)
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where w(k) is zero-mean, additive, white Gaussian measurement noise
with

Ew(k)w(j)] = R(k)ér; (B-4)
X(jlk) is the estimate of the state vector x(j) at time step j given all
observations up to time step k.

P(j|k) is the conditional covariance matrix of x(;) given all observations

up to time step k.

EXTENDED KALMAN FILTER ALGORITHM :

o

Estimate the state X(k|k) at time .

Predict the state at time t;4, given the measurements up to time #:

x(k + 1]k) = £k, %(k|k)] (B.5)
Predict the measurement at time t;,; given the measurements up to time
tkl

2k +1k) =h[k+1,%(k + k)] (B.6)
Calculate the measurement residual or the innovation sequence:
r(k+1)=2z(k+1)—2z(k+1[k) (B.7)

Estimate the state covariance P(k|k) at time 2.

Calculate the Jacobian of h(k + 1) at x = X(k + 1|k) using steps 2 and
5:

H(k+1) = %:—Q (B.8)
Predict the state covariance:
P(k + 1[k) = P(k[k) + Q(k) (B.9)
Calculate the residual covariance:
S(k + 1) = H(k + 1)P(k|k)H (k + 1) + R(k) (B.10)
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9. Calculate the filter gain:

W(k+1)=Pk+1[E)H (k+1)S(k+ 1) (B.11)

10. Update the state covariance:

Pk+1lk+1)=P(k+1lk) ~ W(k+1)S(k+ )W (k+1) (B.12)

11. Update the state using steps 4 and 9.

%(k+10k+1) = %(k+ 1K) + W(k +1) r (k+1) (B.13)

12. Go to step 1.
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Appendix C

CHI-SQUARE DISTRIBUTED
RANDOM VARIABLES

In this appendix, the convergence test of the extended Kalman filter algorithm

is provided. The notation of Bar-Shalom is used [38].

The following criteria are most commonly used for the consistency of a
filter:

e The state errors should be zero-mean.

e The innovations should have the same property.

e The innovations should be white (uncorrelated in time).

The first criterion cannot be tested in real data applications. The last two are

the consequences of the first one and can be tested in real data applications [38].

For a consistent filter, the normalized innovations squared, as given below,
eo(k) £ 1'(k)S™(k)r(k) (C.1)

must have a chi-square distribution with n, degrees of freedom, where n, is

the dimension of the measurement vector z. In this study, since there are three

measurements, n, = 3.

Let u be n-dimensional Gaussian random vector with covariance matrix C.

When the following is calculated, a scalar quantity is obtained.
v=(u—1)Cu- ) (C.2)
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where 0 is the mean vector.

v s the sum the squares of n independent, zero mean, unity variance Gaus-
sian random variables. v is called a chi-square distributed random variable

with n degrees of freedom.

The proof of this can be given as follows:

x = C'2(u—uq) (C.3)
Ex] = 0 (C.4)
E[xx] = I (C.5)

The components of x are independent since the covariance matrix is diag-

onal, and

v=xx=) 2 (C.6)
i=1
where
T; NN(O,l) (07)

In order to measure the performance of the estimator, the statistical table

for chi-square distribution [38] is used as follows:

A o
Q) 2 P(y > ) (C5)
where y is chi-square distributed random variable with m degrees of {reedom:

Y~ Xm (C.9)

The confidence region of this random variable can be found by using the

statistical table [38]. For example, the 95% confidence region for x3 is given as

follows:

[x2(0.025), x5(0.975)] = [0.05,7.38] (C.10)

This means that when the value
eo(k) £ x'(k)S™(k)r(k) (C.11)

is calculated, it is likely to fall between 0.05 and 7.38 95% of the time. In other
words, out of 100 samples of a chi-square random variable with two degrees-

of-freedom, about five are expected to fall outside this interval.
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Appendix D

COMPUTER PROGRAMS

In this chapter, the computer programs used for the simulations are presented.
The programs are written in C programming language. There are basically
two programs. First program simulates the location and radius of curvature
estimations and CRLB with the thresholding and curve-fitting methods. Sec-

ond program is for the extended Kalman filtering. The two programs produce

MATLAB files to show the results graphically.

101



PROGRAM 1:
0OG v2 = v2 * fac * std + m;

return v2;
}
#include <stdio.h> else
#include <math.h> {
#include <stdlib.h> iset = 0;
#include<stddef .h> return (gset * std) + m;
}

#define RAND_MAX (2147483647)
#define Random_Seed 0 /* 0 = randomize %/

double ¢,Amax,rmin,pc,fo,var,R; void set_seed (void)

/* routine to set seed of random number generator in a 'razdom’ fashion by
using the time */

{

double N ( double m, double std)
srand ((unsigned int) time(NULL));

/* calculates two normal (mean m, variance std**2) values, returns ona */
{

double fac, ul, u2, vi, v2, s;

int u;

static int iset = O

/% This Function Calculates The Signal Value At A Specific Time »/

double f( double p, double A, double rm, double r, double tetha, double t,
double to, double foo, double devT, double dev)

{

return{p*A*pow(rm,3/2)/pov(r,3/2) *exp(-pow(tetha/devT,2))

static double gset;

if (iset == 0)

{
s =0; *exp(-pow((t-to-3/foo)/dev,2))*sin(2%M_PI*foo*(t-to)));
do }
{

u » rand ();

ul = (double) u/ RAND_MAX; /* This Function Finds Noisy Time O0f Flight =/

u = rand ();
u2 = (double) u/ RAND_MAX; int f1(double truet, double tidiv, double trh, double tetl,double hg )
vi=2xul-1; {
v2 * 2 %022 - 1;
int i,j;

3=yl % vl + v2*» v2;

} while (s > 1); double k,h[50000];

k=floor(truet*tidiv+0.5);

fac = sqrt ((-2 * log (s)) / 8); 1=0; j=0;
do{
gset = (v1 » fac); if (i<=k)
iset = 1: h[i)=0 + N(0,var);

102 103
else char ofile[10],int lenght,double hg2)
h[i)=f(pc,Amax,rmin,hg,tett,i/tidiv,k/tidiv,f0,6.5*M_P1/180,1/f0)+N(0,var); {
if(h{il>trh) FILE *fout;

(=i int i,j;
return(j);} double k,ho[50000];
it foutsfopen(ofile,"w");

fprintf(fout,"A={ \n");
k=floor(truet*tidiv);
for(i=0;i<=lenght;i++){

}while(i<=50000 &k j==0);

}

if(i<=k)
/*This function is for curve fitting */ ho[i)=0 + N(0,var)
double function(double time, double distance, double angle, double tdiv, else

ho(i}=f(pc,Amax,rmin,hg2,tet1,i/tidiv,k/tidiv,

int coun)
{ fo,6.5*M_PI/180,1/f0)+N(0,var);
double a,b,c,fun(5],cur([5],delta,j; fprintf(fout,"4f \n",hol[il);}
int i; fprintf(fout,”"] ; \n plot(A); \n grid; \n");
delta = -1; fclose(fout);
je=coun; }
do
{
for(ix0;i<3;i++)
{fun[i)=f (pc,Amax,rmin,distance,angle, (j-2.5%i)/tdiv,time, main()
{

fo,6.5¢M_PI/180,1/fo0)+N(0,var);

cur[i)=(j-2.6%i)/tdiv;}

a=((fun[0)-fun[1))*(cur [0]~cur[2])-(fun(0]-fun[2])*(cur[0]-cur(1]))
/(Ceur(0]~cur[1))*(cur[1]~cur(2]) *(cur [0]-cur[2]));
b=((fun{0]~fun[1))~a*{cur[0)*cur[0)-cur[1)»cur[1]))

int i,j,l,v,count.countl,method,rot,:nuntz,counts,counté,

count5,counté;
int lent,lentl;

/(eur[0]-cur(1]);

c=fun[0}-a*cur[0)*cur(0]-brcur{0]; doubla B,k,hl,hr,ho,ro,tet,d,R1{1000],R2{1000],r(200],r2{200],

delta=bb-4*arc; angle(200] ,angle2[200] ,alp,x,rl,rr,a,b,h12,hot ,hlt,hrt,hr2,

J=j-1; tr2,hr2n,tr2n,hol,t12,t12n,h12n,phi,c1,c3,R21,rr2,21,beta,

}while(delta < 0 ); c2,R2r,tetg,rg;

return((-b+sqrt(delta))/(2*a})); double z,al,bl,a2,a3,ad,alpl,too,tll,trr,t112,variable(200],sum,

} sumi,sum2,sun3,sum4,sun5, sumé,tog,hrl, tetn,alphan,etan,
ho2,to02,to2n,ho2n,rl2g,rl2,rr2g;

double hoa[sDDOO],hla[sOOOO],hra[SOOOO],hlZa[SOOOO),trhold,timediv,

/* This Function is For Drawing The Signal */ Radius,Radius?2,distance,distance?,ang,ang2,mean,mean2,meand,
mean4,meanS,meanG,std,stdl,std2,atd3,std4,stdS,std6,hog,toog,

void draw(double truet, double tidiv, double trh, double tetl , hlg,hrg,bias,biass,biass,stb,sth,stbS,A,Al,CRb,toln,holn.zol,
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rol,hl1,tll,rl1,alpha,eta,hlin,hrin,tlin,trin,tr1,rrl,A2,B1,82, printf(“enter hol:");

¢,C1,C2,k1,k2,k3,k4,k5,k6,CRb2,CRb3,detJ,e1[100],e2[100], scanf ("41f", &hol);
@3(100] ,mel ,me2,me3,vel,ve2,ved,vtotall,vtotal2,vtotal3; printf(“enter d:"
scanf ("41f", &d);
char  letter,input[10]; printf(“enter noise std :");
FILE *fou; scanf("41f",&var);
if ('Random_Seed) set_seed(); printf(“enter theta: ");
else srand(Random_Seed); scanf("/1f",2tet);

printf(“enter the start point for the radius :");
scanf ("41f",4R);

/* Takes The True Values */ for(i=0;i<lent;i++)
printf(“"Choose The Variable 4, R, r, t (theta), s (std) : "); variable[i)=R+i

scanf ("c",kletter); break;

printf(" enter the file name :");

scanf ("}s",input); case 'r’

printf(" 1 (thresholding) or 2 (curvefitting) :"); printf(" enter R:");
scanf("4d",&method) ; scanf ("41f", &R);

printf("1 (rotation around joint) or 2 (rotation around centar) :"); printf(“enter d:");

scanf ("/d",&rot); scanf ("%1f", &d);
printf("enter the lenght of the variable : "); printf("enter noise std :");
scanf("%d",klent); scanf{“%1f",&var)
printf(”enter the iteration number : "); printf(“enter theta: “);
scanf (")d",klentl); scanf ("%1f",ktet);
switch(letter){ printf(" enter the start point for r : ");
case ’d’ scanf (“41f" ,&hot);

printf("enter hol:"); for(i=0;i<lent;i++)
scanf ("41£", thol); variable[i]=ho1+5+i;

printf(" enter R:"); break;
scanf ("}1f", &R);
printf("enter noise std :"); case 's’

printf("enter hol:");
scanf("%1f", &hol);
printf(" enter R:");

ford : "); scanf ("41f", &R);
printf("enter d:");
scanf ("%1f", &d);

printf("enter theta: ”);

scanf ("}1f",ktet);

scanf ("41f",&var);
printf("enter theta: ");

ascanf ("/1f",&tet);

printf(" enter the start point
scanf("41£f",&d);
for(i=0;i<lent;i++)
variable[i]=d+i;

breek;
for(i=0;i<lent;i++)
casa 'R’ variable(i)=0.00001+i;
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break; timediv=1000000;
case 't': fou=fopen(input,"v");

printf(" enter R:"); fprintf(fou,”"A=[ \n ");

scanf("%1f", ER);

printf("enter d:"); vtotall=0;

scanf("}11", &d); vtotal2=0;

printf("enter noise std :"); vtotal3d=0;

scanf ("4Lf",&var); for(1=0;1<lent;1++)

printf("enter hol:"); {

scanf ("41f", &hol); switch (letter) {

printf(" enter the start point for theta : "); case 'd’
d=variable[l];

scanf{("%1f" ,&tet);
for(i=0;i<lent;i++)
variable[i]=tet+i;

fprintf(fou,")1f %1f %1f “,R,hol+R,tet);
tet=tet*M_PI/180;

break; break;
} case 'R’ :
R=variable(1l];
fprintf(fou,"41f %1f %1f “,R,hol+R,tet);
/* Assigns Constants */ tet=tet*M_PI/180;
break;
case 'r’ :
holsvariable(l];
c=34350; fprintf(fou,"%1f %41f %1f “,R,hol+R,tet);
f0=50000; tetetet*M_PI/180;
Amax=1; break;
rmin=10; case 's’ :
sum=0; var=yariable[l];
sumi=0; fprintf(fou,"41f 41t %1f “,R,hol+R,tet);
sum2=0; tet=tetwM_PI/180;
sum3=0; break;
sum4=0; case 't’ :
sumS=0; tetmvariabla{1]*M_PI/180;
sumé=0; fprintf(fou,"41f %1f %Lf “,R,hol+R, tet*180/M_PI);
count=0; break;
counti=0;
count2=0;
count3=0; }
count4=0; hog=hol;
count5=0; rg=hol+R;
count6=0; tetg=tat;
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pc=0.44946*R-0,022471;

tol=2*hol/c; rolshol+R;

togstol; /*printf(“hoin :%1f \n",haoln);*/

Radius=0;

Radius2=0;

ang=0, /* Calculates the true hll and tli #/

ang220; hli=sqrt{pov(rol,2.0)+pou(d,2.0) +2+dsroi»sin(tet))-R;
distance=0; tli=2+hl1/c;

distance2=0; rli=hl1+R;

std=0;

stdi=0; /* Calculates the true hrl and tri =/

std3=0; hrl-sqrt(pov(rol,2.0)+pou(d,2.0)-2'd'r01*sin(tet))-R;
std4d=0; tri=2+hri/c;

std5=0; rri=hri+R;

std6=0;

/% calculates the true alpha and eta */
if(var>0) alpha=asin((rlisrli+d*d-rol*rol)/(2+d*r11));

trhold=6%var; eta=asin({rrisrri+dsd-roisro1)/(2+d*rr1))

else

trhold=te-9;
/* Calculates Noisy hl1l and tl1 */

j=f1(tl1,timediv,trhold,alpha,h11+R);

if (method==1)

{tlin=j/timediv;

hlin=c*tlin/2;}

mel=0; mo2=0; me3=0; else

for{v=0;v<lentl;v++) {tlin=function(tli,hl1+R,alpha,timediv,j);
{ hlinxc#tlin/2;}

/*printf(“hlin :%1f \n“,hlin);»/

/+ Monte Carlox/

j=£1i(tol,timediv,trhold,tet,hol+R);
drav{tol,timediv,trhold,0.0,"outi.m",10000,hol+R);

if(method==1)
{tola=j/timediv; /» Calculates Noisy hr! and tr1 »/
holn=cstoin/2;} j=f1(tri,timediv,trhold,eta,hr1+R);
else if (method==1)
{toln=function(tol,hol+R,0.0,timediv,j); {trin=j/timediv;
holn=cetoln/2;} hrin=cstrin/2;}

else

{trin=function(tri,hri+R,eta,timediv,j);

et[r)}shol~holn;
hrin=c*trin/2;}
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ho2n=c*to2n/2;}

e2[v]=hri-hrin;
}

e3{vi=hli-hlin;
/*The Value Of h12 And t12 In The Absence Of Noise*/

/*First calculation of the estimated radius, distance and angle */
if (rot==2)

R1[v)=((hrin*hrin+hlin*hlin)-2»(hoin*hoin+dwd))

/(4*hoin-2»(hrin+hlin)); {h12=hl1;

r{v)=(2+d*d+2¢(hlin+hrin)*hoin-2*hoin*hoin-hlin+ t12=2#h12/c;}

hlin-hrin*hrin)/(2*hrin+2+hlin-4*hoin); else

angle[v]=180/M_PI*asin((hlin*hlin-hrinshrin+2* {h12=sqrt(rli*rli+6*rli*sin{alphan))-R1[v];
r12g=h12+R1[v];

(hlin-hrin)*R1{v])}/(4*d*(holn+R1(v1)));
h12=sqrt((h11+R)*(h11+R)+6+(h11+R) *#sin(alpha))-R;

RadiussRadius+R1[v]; t12=2#h12/c;}

distance=distance+r[v];
ang=ang+anglel[v];
/*printf(*h12 :41f \n",h12);+/

/*Calculation O0f hl2 In The Presence Of White Noise */

/* calculates noisy »/
j=f1(t12,timediv,trhold,0.0,h124R);

if (method==1)

rol=hoin+R1[v];

rli=hlin+R1i[v}; {t12n=j/timediv;

rri=hlin+R1[v]; hl2n=c*tl2n/2;}
else

{t12n=function(t12,h12+R,0.0,timadiv,j);
hl2n=c*tl2n/2;}
/#printf(“h12n :%lf \n",hl2n);*/

/* calculates noisy theta,alpha end eta%/

tetn=asin((rlierli-roi*roi-d«d)/(2*d*ro1));
alphan=asin((rli#rli+d+d-roi*ro1)/(2%d*r11));

etan=asin((rrisrri+dsd-rol*rol)/(2#d»rr1));
/*» The Second Calculation Of The Radius O0f Curvature

/*The value of ho2 and to2 in the presence of vhite noise */ by Using Left sensor */

if (rot==2)

{ko2=hot; if(rotse1)

to2=2+ho2/c; {ri2=hl2n+R1[v];
j=£1(to2,timediv,trhold,0.0,ho2+R); a=(rl2g*rl2g-rlisrl1}/(2+rl2g)

if (aethodm=1) b=(6+2vrli*sin(alphan))/(2+r12g);
{to2n=j/timediv; 2=(3-a+b)/(b*b-1) -sqrt (a*a-6*a*b+9)/(beb-1);
ho2n=c*to2n/2;} /#print?(“z :%lf \n",z};*/

else phi=acos(3/(3+2));

{to2n=function(to2,ho2+R,0.0,timediv,j); /*printf("phi :%1f \n“,phi);*/
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c3=d-z1;

clesqrt(pov(3+z,2.0)-3+3); R2r=sqrt ((rr2-c1)*(rr2-c1)+c3*c3-2«(rr2-c1)=c3ssin(beta)) -holn;
c3=d-z; }

R2l=sqrt((rl2-c1)+(r12-c1)+c3+*c3-2%rl2+c3ssin(pki))-holn; /* The sccond calculation of radius, distance and angle */
} if (rot==2) '

{R2{v]=((hr2n*hr2n+h12n+h12n) -2+ (ho2nsho2n+d«d))
/{4*ho2n-2%(hr2n+hl2n));

/+ The Value Of hr2 And tr2 In The Absence Df Noise%/ r2[v]=(2+*d*d+2+ (h12n+hr2n) *ho2n-2*ho2n*ho2n-hl2n*
if (rot==1) hl2n-hr2n*hr2n)/(2%hr2n+2*hl12n-4%ho2n);
{hr2=sqrt(rri*rri+6«rrirsin(etan))-Rilv]; angle2[v]=180/M_PI*asin((h12n*hl2n-hrZnshr2n+2+
rr2g=hr2+R1lvl; (h12n-hr2n)*R2[v])/(4+d*(ho2n+R2[v1)));}
hr2=sqrt ((hri+R)*(hr1+R)+6+(hr1+R)*sin(eta))-R; else
{R2[v]=(R21+R2r)/2;
r2[v}=0;
tr2=2+hr2/c;} angle2[v]=0;}
else
{hr2=hrt; Radius2=Radius2+R2[v];
tr2=2«hr2/c;} distance2=distance2+r2(v];
ang2=ang2+angle2[v];
/#*Calculation Of hr2 In The Presence Of White Noise */ mel=mel+alilv];
me2=me2+e2[v];
j=f1(tr2,timediv,trhold,0.0,hr2+R); me3=me3+e3[v];
if (method=w1)
{tr2n=j/timediv; }
hr2nsc*tr2n/2;}
else
{tr2n=function(tr2,hr2+R,0.0,timediv,j); mean=Radius/lentl;
hr2n=c*tr2n/2;} mean2=Radius2/lentl;
mean3=distance/lentl;
/* The Second Calculation Of The Radius Of mean4=distance2/lent];
Curvature by Using Right sensor */ meanS=ang/lentl;
mean6=ang2/lentl;
if(rot==1) mal=mel/lent};
{rr2=hr2n+R1lv]; me2=me2/lentl;
a=(rr2g*rr2g-rri*rll)/(2+rr2g); me3=me3/lentl;
b=(6+2#rri*sin(eta))/(2vrr2g); it{mean>=0)
z1=(3-a*b)/(b*b-1)-sqrt(asa-6*avb+9)/(b*b-1); { sum=sum+mean;
beta=acos(3/(3+z1)); count++;}
ci=gqrt (pow(3+z1,2.0)-3+3); if (mean2>=0)
{sumi=sumi+mean2;

¢2=hrZn-cl;
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std5=sqrt(stdS/lentl);
std6é=sqrt(std6/lentl1);
bias=mean-R;

counti++;}
if (meand>=0)

{sum3=sum3+meand;

count3++;} bias3=mean3-(hog+R);
if (mean4>=0) biasS=meanS-tetg*180/M_PI;
{sum4=sum4 +meand ; stb=sqrt(stdsstd+biassbias);

stb3=sqrt(std3*std3+bias3sbiasld);

counté4++;}
stbS=sqrt (stdS*stdS+bias5+biass);

if (mean5>=0)

{sumS=sumS+mean$;
count5++;} vtotali=vtotalitvel;
if (mean6>=0) vtotal2=vtotal2+ve2;
{sum6=sumb+meant; vtotal3=vtotal3+ved;
count6++;}
vel=0; A=1;
ve2=0; B=((hog+R)~d*sin(tetg))/(sqrt((hog+R)*rg+d=d-2+dsrg*sin(tatg)));
ved=0; C=(rg+d¥sin(tetg))/(sqrt(rgrrg+dxd+2=d*sin(tetg)));

Bl=-dsrg*cos(tetg)/(sqrt(rgerg+d*d-2+d*sin(tetg)));

for(v=0;v<lentl;v++)
Ci=dergrcos(tetg)/(sqrt(rg*rg+dvd+2+d*sin(tetg)));

{std=std+pow(R1[v]-mean,2);

stdi=std1+pow(R2[v]l-mean2,2); A2=-1;
std3=std3+pov(r(v]-mean3,2); B2=-1;
C2=-1;

std4=std4+pow(r2(v]-meand,2);
stdS=std5+pov(angle(v] -mean5,2);
stdé=std6+pow(angle2[v]-means,2);
vel=vel+pow(ael[v]-mel,?2);
ve2=ve2+pou(e2[v]-me2,2);
va3d=vae3+pow(e3[v]-me3,2);}

ki=A#A/vel1+B*B/ve2+C*C/ve3;

k2=B1%B1/ve2+C1%C1/ve3;

k3rA2%A2/vel+B2+B2/ve2+C2+C2/vea3;

k4=B*B1/ve2+C*C1/ve3;

kS=A%A2/ve1+B*B2/ve2+CnC2/va3;

vel=vel/lentl; k6=B1%B2/va2+C1#C2/vel;

va2ave2/lentl; detJakie (k2wk3-k6+k6) -kar (k3+k4-k5+k6) +k5* (k4*k6-k2+k5) ;

ve3d=ve3/lentl; CRb=(k2+k3-k6+k6)/(detl]);
CRb2+(k1*k3-k5+k5)/(det])*180/M_PI;

if (vel < 0.0000002)
vel=0.0000002; CRb3=(k1*k2-k4*k4)/(det));

if (ve2 < 0.0000002) CRb=sqrt(CRb);

ve2=0.0000002; CRb2=sqrt (CRb2) ;

if (ve3d < 0.0000002) CRb3=3qrt (CRb3) ;

va3=0,0000002; tat-tetgﬂBO/H_PI;

. H )

printf("me1=4lf \n me2=%lf \n me3=/lf \n vai=%lf \n ve2»%lf\n ve3=/lf

stdesqrt(std/lentl); \n detJ=%Lf\n CRbi=%1f \n CRb2=%1f \n CRb3=%1f \n ki=%lf \n k2=/1f \n ki

! .

\n k4=%1f \n kS=%1f \n k6={1f \n v, mel,me2,me3,vel,va2,ve3,dotJ,CRb,CRb

stdi=sqrt(std1/lentl);
std3=sqre(std3d/lentl);
std4=sqrt(std4/lentl);

k1,k2,k3,k4,k5,k6) ;
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tprintf(fou,” %1f %1f J1f %1 %1f L1f %1f %1f %1f %1f %Lf %1f %1f Y1f

A1f ALE ALE ULE ULE ULE UL ULE ULE %Lf N1f Y1f 41f " variable[l],mean,
maan-std,mean*std,std,maanZ,meanZ-stdl,mean2*std1,stdl,mean3,mean3-std3,
mean3~std3,stds,mean4,mean4-std4,mean4¢std4,std4.muan5,msanS-stdS,maanS*stdS,
std5,mean6,mean6-std6,mean6+std6, 8td6,bias,stb);
printf("deg :%41f \n",variable[l]);
printf("R1 :%1f \n R2 :%1f \n rl :%1f \n r2 :%1f \n anglel :Jif

\n angle2 :%1f \n ",mean,mean2,mean3,mean4,meanS,means);

fprintf(fou,"f1f J1f %Lf %1f UL %Lf L1f J1f %1f %1f %1f %Lf \n",CRb,
CRb2,CRb3,stb,s5tb3,s5tb5,bias,bias3,biash,std,std3,stds);

vtotall=vtotall/lent;
vtotal2=vtotal2/lent;
vtotal3=vtotal3d/lent;
fprintf(fou,”) \n B={ \r");
for(l=0;1<lent;1++)

{

switch (letter) {

case 'd’

d=variable[1];
tot=tet*M_PI/180;

break;

case 'R’

R=variable[1];
tet=tet*M_PI/180;

break;

case ‘r’

hol=variable[l];
tet=tet*M_PI/180;

break;

case 's’

var=variable[1l];
tet=tet*M_PI/180;

break;

case 't’
tetxvariable{1]sM_PI/180;
fprintf(fou,"41f %1f %1f ",R,hol+R,tet*180/M_PI);
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printf("Average angle! : ALf \n Average angle2 : ¥1f \n “,sumS,sum6);

/xtprintf(fou,”) \n hold on; plot(A(:,4),A(:,1)); plot(A(:,4),A(:,5),'c-=");

plot(A(:,4),A(:,6),’y-",A(:,4) ,A(:,6),"'y0’); plot(A(:,4),A(:,7),’'y~",A(:,4),
AC:,7),'y0’); plot(A(:,4) ,A(:,9),'y-."); grid; plot(Aa(:,4),A(:,10),’y~.",A(:,

LAC:,10),°y+°); plot(A(:,4),A(:,10),%y-." ,A(:,4) ,A(:,11),’y+’); hold off;
pause; figure(2); hold on; plot(A(:,4),A(:,2));
plot(A(:,4),A(:,13),’c-="); plot(A(:,4) ,A(:,14),%y~",A(:,4),A(:,14), yo’);
plot(A(:,4),A(:,15),’y-* ,A(:,4),A(:,15),'yo");
plot(A(:,4),A(:,18), y-." ,A(:,4) ,A(:,18),°y+');

plot(A(:,4),A(:,19),y-." ,A(:,4),A(:,19),°y+*); plot(A(:,4),A(:,17),'y-.");

grid; hold off; pause; figure(3); hold on; plot{A(:,4),A(:,3));
plot(A(:,4),A(:,21),’c-="); plot(A(:,4),A(:,22), y-" ,A(:,4),A(:,22),"y0’);
plot(A(:,4),A(:,23),’y-",A(:,4),A(:,23),’y0’);
plot(A(:,4) ,A(:,26), y~.",A(:,4) ,A(:,26), 'y+);
plot(A(:,4),A(:,27), y=." ,A(:,4),A(:,27),'y+*);

plot(A(:,4),A(:,256),’y-."); grid; hold off; "); %/

/* This part will be used only for CR */
fprintf(fou,"] \n hold on; plot(A(:,4),A(:,31)); plot(B(:,1),B(:,2),’~.");
hold off; grid; pause; figure(2); hold on; plot(A(:,4),A(:,32));
plot(B(:,1),B(:,3),’~.); hold off; grid; pause; figure(3);
hold on; plot(A(:,4),A(:,33)); plot(B(:,1),B(:,4),'-."); hold off; grid;
pause; figure(4); hold on; plot(A(:,4),A(:,34)); plot(a(:,4),A(:,37),%¢c-.");
plot(A(:,4),A(:,40),y-",A(:,4),A(:,40),’yo’); grid; hold off; pause;
figure(5); hold on: plot(A(:,4) ,A(:,35)); plot(A(:,4),A(:,38),'¢c-.");
plot(A(:,4),A(:,41),y=" ,A(:,4),A(:,41), y0’); grid; hold off;
pause; figure(6); hold on; plot(A(:,4),A(:,36)); plot(A(:,4),A(:,39),%¢c-.");
plot(A(:,4),A(:,42),'y~" ,A(:,8) ,A(:,42), y0’); grid; ");

fclose(fou);
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break;

}

hog=ho1;

rg=hol+R;

tetg=tet;

A=1;
Bz((hung)-d'sin(tetg))/(sqrt((hog¢R)trgOdtd-Z*dirgtsin(tetg))):
C=(rg+d*sin(tetg))/(sqrt(rgrrg+dsd+2edssin(tatg)));
Bl=-dsrg*cos(tetg)/(sqrt(rgerg+dsd-2+d*sin(tetg)));
Ci=d*rgscos(tatg)/(sqrt(rgrrgtd+d+2+drsin(tetg)));
A2=-1;

B2=-1;

C2=-1;

ki=A*A/vtotal1+B+B/vtotal2+C*C/vtotald;
k2=B1#*B1/vtotal2+C1#Cl/vtotall;
k3=A2*A2/vtotal1+B2+B2/vtotal2+4C2*C2/vtotalld;
k4=B»B1/vtotal2+C+Cl/vtotal3;

kS=A*A2/vtotal 1+B+B2/vtotal2+C*C2/vtotal3;
k6=B1%B2/vtotal2+C1*C2/vtotal3;

detJ=k1x (k2+k3~k6¢k6) -k4* (k3*k4-k5+k6) +k5+ (k4*k6-k2+kS) ;

" CRb=(k2+k3~k6+k6)/(detJ);

CRb2=(k1#k3-k5*k5)/(det]) *180/M_PI;
CRb3=(k1*k2-k4+k4)/(det]);

CRb=sqrt(CRb);

CRb2=sqrt (CRb2);

CRb3=sqrt (CRb3) ;

fprintf(fou,"%1fr %1f %1f %1f \n",variable[1l],CRb,CRb2,CRb3);
printf(fou,“41f %1f %1f %1f \n",variadble[1],CRb,CRb2,CRb3);

sum=sum/count;

sumi=sumi/counti;

sum3=sum3/count3;

sum4=sum4/count4;

sumS=sum5/counts;

sum6=sum6/count6;

printf("Average Radiusl : %1f \n Average Radius2 : %1f \n ",sum,suml)
printf("Average distancel : %If \n Average distance2 : %1f \n ",sum3,sum
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#include "../cbmat/cbmat.h"

#include <stdio.h>

#include <math.h>

#include <stdlib.h>

#include<stddef.h>

#define RAND_MAX (2147483647)

#define Random_Seed 0 /% 0 = randomize */

double c,Amax,rmin,pc,fo,var,R;

main()

{

matrix_t F,H,x_est,x_pred,z_pred,P_est,P_pred,v_res,S_res,
W_gain,QQ,RR,zz,F_T,H_T,W_T,S_I,tXX1,tXX2,tX,t2X,tX2,
tZZ,tmpmsr;
int 1i,j,1,v,count,countl,method,rot,count2,count3,count4,
count5,count6,method?2;
int lent,lenti,XDIM,ZDIM,steps,dummi,dumm2,dumm3;
double B,k,hl,hr,ho,ro,tet,d,R1[1000],R2[1000],r[200],r2(200],
angle[200],angle2(200) ,alp,x,rl,rr,a,b,h12,hot, hlt,hrt,
hr2,tr2,hr2n,tr2n,hol,t12,t12n,h12n,phi,c1,c3,R2],rr2,
z1,beta,c2,R2r,tetg,xg,nu;
double z.al,bl,n2,a3,a4,alpl,too,tll,trr,tllz,vuriable[zool,
sum,suml,sum2,sum3, sum4,sumS,sumé, tog,hri,tetn,alphan,
etan,ho2,to2,to2n,ho2n,rl2g,rl2,xr2g;
double Rk[lOD],rk[lOO],tetk[lOO],hoa[SOOOO],hla[SOOOO],hra[SOOOO],
h12a(50000] ,trhold,timediv,Radius ,Radius2,distance,distance2,
ung,nng?,m-an,moanz,mnuns,msan4,menn5,mennG,scd:stdl,stdZ.
std3,std4,stdS,std6, hog,toog,hlg,hrg,bias,bias3,biass,stb,
stb3,stb5,A,A1,CRb,toln, hoin,tol,rel,hl1,tll,rll,alpha,eta,
hlin,hrin,tlin,trin,trl,rr1,A2,B1,82,C,C1,C2,ki,k2,k3,k4,k5,
kG,CRbZ.CRbG,de:J,radius_noise,dist_ncise,ungle_noise,qx,dl,
d2,d3,d4,kstdl, kstd2,kstd3, kml,km2,km3,dumnd , dumm$ ;
char  letter,input(20],input1[20],input2{20];
FILE *fou, *foul, *fou2;
if (!Random_Seed) set_seed();

else srand(Random_Seed);
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count5=0;

count6=0;

/* Takes The True Values */ timediv=1000000;
fou2=fopen(input2,“r");
foul=fopen(inputl,"w");

printf{"Choose The Variable d, R, r, t (theta), s (std) : "); fprintf(foul,"B=[ \n *)

ascanf ("%c",kletter);

printf("enter the filename to read the data : "); hog=hol;

scanf("%s",input2); rg=hol+R;

printf(”enter the filename to write the results : "); tetgstet;
scanf("/s",inputl); pc=0.44946%R-0.022471;
printf("enter the iteration number : "); tol=2*hol/c;
scanf("/d",klent1); tog=tol;

printf("enter d: "); Radius=0;

scanf ("41f",&d); Radius2=0;

printf("enter R : ang=0;

scanf("%1f",&R); ang2=0;

printf(“enter hol :"); distance=0;

scanf ("41f",&hol); distance2=0;

printf("enter theta:"); std=0;

scanf ("41f",ktet); std1=0;

rol=hol+R; std3=0;
std4=0;

/+ Assigns Constants */ std5=0;

c=34350; std6=0;

fox=50000;

Amax=1; /* For Kalman Filtering */

min=10;

sumaQ; tmpmsr=mat_new(lent1+5,3);

sumi=0;

sum2=0; XDIM=3; 2ZDIM=3;

sum3=0; nu=10;

sum4=0; x_est=mat_nev(XDIM,1);

sum5=0; x_pred=mat_new(XDIM,1);

sum6=0; Fe=mat_new(XDIM,XDIN);
count=0; H=mat_new(ZDIM,XDIM);
coant1=0; P_estsmat_nev_diag(0.0,XDIM);
coun%2=0; zz=mat_new(ZDIM,1);

count3=0; z_pred=mat_new(ZDIM,1);

count4=0; v_res=mat_nev(ZDIM,1);

P_pred=mat_new_diag(0.0,XDIM);
S_res=mat_new(ZDIM,ZDIM);
W_gain=mat_new(XDIM,ZDIM);
QQ=mat_new(XDIM,XDIM);

RR=mat _new(ZDIM,ZDIM);

/* Temporary stuff =/

F_T = mat_new(XDIM, XDIM);
H_T = mat_new(XDIM, ZDIM);
W_T = mat_new(ZDIM, XDIM);

km1=0; ka2=0; km3=0; kstdi=0; kstd2=0; kstd3=0;
for(v=0;v<(lent1+1);v++)

{

fscanf(fou2,"%d %d %d %d 41f %1f %1f %1f 41f
\n “,ksteps,zdunml, &dumm2,kdumm3,kholin,&hrin,
&hl1n,&dumnd,&dummS) ;

Ss_I = mat_new(ZDIM, ZDIM); hoin=hoin/10;
tXX1 = mat_new(XDIM, XDIM); hrin=hrin/10;
hlin=hl1n/10;

tXX2 = mat_new(XDIM, XDIM);
tX = mat_new(XDIM, 1);

tZX = mat_new(ZDIM, XDIM);

tXZ = mat_new(XDIM, ZDIM);

t2Z = mat_new(ZDIM, ZDIM);

/% Process Noise »/

for (i = 0; i < XDIM; ++i)
tor (j = 0; j < XDIM; ++j)
e(QQ, i, j) = 0.0;

e(QQ, 0, 0) » 0.001;
e(QQ, 1, 1) = 0.001;
e(QQ, 2, 2) = 0.0001;

/* Initialization of state prediction covariance */

for (i = 0; i < XDIM; *++i)
for (j = 0; j < XDIM; ++j)
e(P_est,i,j)=nure(QQ,i,j);

/» Some Parts of Jacobian Matrices /

F=mat_new_.diag( 1.0 , 3);

e(H, 0, 0)=-1; a(H, 0, 1)=1; e(H, 0, 2)=0; e(H, 1 ,0)=-1; e(H,2,0)=-1;

/« Calculates the true hll and tli */
hli=sqrt(pow(rol,2.0)+pow(d,2.0)+2*d*rol*
sin(tet))-R;

tli=2+hli/c;

rli=hl1+R;

/* Calculates the true hrl and tri */
hri=sqrt{pow(ro1,2.0)+pow(d,2.0)~2#d*rol*
sin(tet))-R;

tri=2shri/c;

rri=hri+R;

e(tmpmsr,v,0)=hoin; e(tmpmsr,v,1)=hrin;

e(tmpmsr,v,2)=hlin;

kmi=kmitholn; km2=km2+hrin; km3=km3+hlin;
}

¥ml=kn1/(lent1+1); km2=km2/(lent1+1); km3=km3/(lenti+1);

for(va0;v < (lentl+l) ;v++)

{

kstdl=kstdi+pow((e(tmpmsr,v,0)-ho1),2.0);
kstd2=xstd2+pov((e(tmpmsr,v,1)-hr1},2.0);
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kstd2=kstd2+pov((e(tmpmsr,v,2)-h11),2.0);
}
kstdi=sqrt(kstd1/(lent1+1));
kstd2=sqrt(kstd2/(lent1+1));
kstd3=sqrt(kstdd/(lenti+1));

for (i = 0; i < ZDIM; ++i)
for (j = 0; j < ZDIM; ++j)
e(AR, i, j) = 0.0;
o(RR, 0, 0) = kstdlskstdl
a(RR, 1, 1) =kstd2*kstd2;
e(RR, 2, 2) =kstd3+kstd3;

for(v=0;v < lentl;v++)

{

koln=e(tmpmsr,v,0); hrin=e{tmpmsr,v,1);
hlin=e(tmpmsr,v,2);

printf("hoin : %1f \n hrin : %1f hlin : %1f",
e(tmpmsr,v,0),e(tmpnsr,v,1),e(tmpmsr,v,2));

if (v==0)

{

e(x_est,0,0)=4.9;

e(x_est,1,0)=55.1;
e(x_est,2,0)=0.01;

/* Noisy Measurements */

e(zz,0,0)=e(tmpmsr,v+1,0);
a(zz,1,0)=e(tmpmsr,v+1,1);
o(zz,2,0)=e(tmpnsr,v+1,2);

/* State Prediction */
s(x_pred,0,0)= e(x_est,0,0) ;

e(x_pred,1,0)= e(x_est,1,0) ;
o(x_pred,2,0)= e(x_est,2,0) ;

gmat_mpy(tZZ, tZX, H.T);
qmat_add(S_res, tZZ, RR);

/* Filtexr gain */

gmat_mpy (tXZ, P_pred, H.T);
it (qmat_inv(S_I, S_res ) == SINGULAR)

fprintf(stderr, “Singular Inversion of S\n");

qmat_mpy (W_gain, tXZ, S_I);
/» Updated State Estimate »/

gmat_mpy(tX, W_gain, v_res);
gmat_add(x_est, x_pred, tX);

/* Updated State Covariance »/

gmat_trans(W_T, W_gain);

gmat_mpy (tXZ, W_gain, S_res);

qmat_mpy (tXX1, tXZ, W_T);
gmat_sub(P_est, P_pred, tXX1);
fprintf(foul,"’d %g g %g %g %g % %g Ug Yg
%g %g g Yg %g \n",v,e(v_res,0,0),
e(v_res,1,0),e(v_res,2,0),e(x_est,0,0),
e(x_est,1,0),180/M_PIve(x_est,2,0),
e(x_est,1,0)-R,holn,e(x_pred,0,0),
e(x_pred,1,0),e(x,pred,?,O)‘lBO/H_PI.
R, rol, tet*180/M_PI);

printf("%d %g %g g %g %g %g \n",v,e(v_res,0,0),

e(v_res,1,0),e(v_res,2,0),e(x_est,0,0),
o(x_est,1,0),180/M_PI*a(x_ est,2,0));

fprintf(foul,"); figure(1); plot(B(:,1),B(:,2));
figure(2); plot(B(:,1),B(:,3)); grid; pause; figure(3); plot(B(:,1),B(:,4));

grid; pause;

grid; pause; figure(4); hold on; plot(B(:,1),B(:,5),'y-");

plot(B(:,1),B(:,10),’r-."); grid; hold off; pause; figure(5); hold on;
plot{(B(:,1),B(:,6),'y~"); plot(B(:,1),B(:,11),’e-."); grid;hold off; pause;
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/» Measurement Prediction */

e(z_pred,0,0)=e(x_pred,1,0)-e{x_pred,0,0);
e(z_pred,1,0)=sqrt(pou(e(x_pred,1,0),2.0)+dsd-2+

d»e{x_pred,1,0)+sin(e(x_pred,2,0)))~

e(x_pred,0,0);
e(z_pred,2,0)=sqrt(pcv(e(x_pred,1,0),240)+d*d¢
2+d+e(x_pred,1,0)*sin(e(x_pred,2,0)))-
e(x_pred,0,0);

/* Measurement Residual »/

gmat_sub(v_res,zz,z_pred);

/* Evaluation of Jacobians */

e(H,1,1)=(e(x_pred,1,0)-d*#sin(e(x_pred,2,0)))
/sqrt(pow(e(x_pred,!,0),2.0)+d«d-2+d*
e(x_pred,1,0)*sin(e(x_pred,2,0)));
e(H,1,2)=(~d#re(x_pred,1,0)*cos(e(x_pred,2,0)))
/sqrt(pov(e{x_pred,1,0),2.0)+d+d-2%d+
e(x_pred,1,0)*sin(e(x_pred,2,0)));
e(H,2,1)=(e(x_pred,1,0)+d*sin(e(x_pred,2,0)))
/sqrt(pow(e(x_pred,1,0),2.0)+dwd+
2*d*e(x_pred,1,0)*sin(e(x_pred,2,0)));
o(H,2,2)=(d*e(x_pred,1,0)*cos(e(x_pred,2,0)))
/sqrt(pov(e(x_pred,1,0),2.0)+d=d+
2+d*e(x_pred,1,0)*sin(e(x_pred,2,0)));
/* State Prediction Covariance */

qmat_trans(F_T,F);
qmat_mpy (tXXi,F,P_est);
qmat_mpy (tXX2, tXX1,F.T);
qmat_add(P_pred, tXx2,QQ);

/+ Residual Covariance */

qmat_trans(H.T, H);
qmat_ mpy(tZX, H, P_est);

figure(6); hold on; plot(B(:,1),B(:,7),’y~"); plot(B(:,1),B(

hold off; grid;");
fclose(foul);
fclose(fou2);

129

1,12),%¢c-.%);



REFERENCES

[1]

4]

[5]

H. Peremans, K. Audenaert and J. M. Van Campenhout, “A high-
resolution sensor based on tri-aural perception,” IFEE Transactions on
Robotics and Automation, vol. 9, pp. 36-48, February 1993.

B. Barshan and R. Kuc, “Differentiating sonar reflections from corners
and planes by employing an intelligent sensor,” IEEE Transactions on

Pattern Analysis and Machine Intelligence, vol. 12, pp. 560-569, June
1990.

R. Kuc, “Fusing binaural sonar information for object recognition,” in
Proceedings of IEEE/SICE/RSJ International Conference on Multisensor
Fuston and Integration for Intelligent Systems, pp. 727-735, 1996.

L. Kleeman and R. Kuc, “Mobile robot sonar for target localization and

classification,” International Journal of Robotics Research, vol. 14, pp.

295-318, August 1995.

K. Sasaki and M. Takano, “Classification of object’s surface by acoustic
transfer function,” in Proceedings IEEE/RSJ International Conference
on Intelligent Robots and Systems, pp. 821-828, Raleigh, NC, July 7-10,

1992.

A. M. Flynn, “Combining sonar and infrared sensors for mobile robot

navigation,” The International Journal of Robotics Research, vol. 7, pp.

5-14, December 1988.

J. L. Crowley, “Navigation for an intelligent mobile robot,” IEEE Trans-
actions on Robotics and Automation, vol. RA-1, pp. 31-41, March 1985.

A. Elfes, “Sonar based real-world mapping and navigation,” IEEE Trans-
actions on Robotics and Automation, vol. RA-3, pp. 249-265, June 1987.

J. J. Leonard and H. F. Durrant-Whyte, “Mobile robot localization by

tracking geometric beacons,” IEEE Transactions on Robotics and Au-

tomation, vol. 7, pp. 376-382, 1991.
130



[10]

[11]

[12]

[13]

18]

[19]

A. Ohya, T. Ohya, S. Yuta, “Obstacle detectibility of ultrasonic rang-
ing system and sonar map understanding,” Robolics and Autonomous
Systems, vol. 18, pp. 251-257, 1996.

A. M. Sabatini, “Adaptive target tracking algorithms for airborne ul-
trosonic rangefinders,” IEE Proceedings-Radar Sonar and Navigation,

vol. 142, pp. 81-87, 1995.

A. M. Sabatini, “A digital signal processing technique for compensating
ultrosonic sensors,” IEEFE Transactions on Instrumentation and Measure-

ment, vol. 44, pp. 869-874, 1995.

A. Curran and K. J. Kyriakopoulos, “Sensor-based self-localization for
wheeled mobile robots,” Journal of Robotic Systems, vol. 12, pp. 163~
176, 1995.

I. Gibson P. Webb and C. Wykes, “Robot guidance using ultrasonic ar-
rays,” Journal of Robotic Systems, vol. 11, pp. 681-692, 1994.

J. Borenstein and Y. Koren, “Obstacle avoidance with ultrasonic sensors,”
IEEE Transactions on Robotics and Automation, vol. RA-4, pp. 213-218,
April 1988.

O. 1. Bozma. A Physical Model-Based Approach to Analysis of Environ-
ments using Sonar. PhD thesis, Yale University, New Haven, CT, May

1992.
R. Kuc and B. V. Viard, “A physically-based navigation strategy for
sonar-guided vehicles,” The International Journal of Robotics Research,

vol. 10, pp. 75-87, April 1991.

J. H. Ko, W. J. Kim and M. J. Chung, “A method of acoustic landmark
extraction for mobile robot navigation,” IEEE Transcations on Robotics

and Automation, vol. 12, pp. 478-485, 1996.

C. C. Chang and K. T. Song, “Ultrasonic sensor data integration and

its application to environment perception,” Journal of Robotic Systems,

vol. 13, pp. 663-677, 1996.

M. L. Hong and L. Kleeman, “A low sample rate 3-D sonar sensor for mo-
bile robots,” in Proceedings IEEE International Conference on Robotics

and Automation, pp. 3015-3020, Nagoya, Japan, May 21-27, 1995.

131



[21]

22

M. L. Hong and L. Kleeman, “Analysis of ultrasonic differentiation of
three-dimensional corners, edges and planes,” in Proceedings IEEE In-
ternational Conference on Robotics and Automation, pp. 580-584, Nice,
France, May 12-14, 1992.

L. Kleeman and H. Akbarally, “A sonar sensor for accurate 3-D target
localization and classification,” in Proceedings IEEE International Con-
ference on Robotics and Automation, pp. 3003-3008, Nagoya, Japan, May
21-27, 1995.

A. Hilton, J. lllingworth and T. Windeatt, “Statistics of surface curvature
estimates,” Pattern Recognition, vol. 28, pp. 1201-1221, 1995.

B. Barshan and R. Kuc, “A bat-like sonar system for obstacle localiza-
tion,” IEEE Transactions on Systems, Man and Cybernetics, vol. 22, pp.
636—646, July/August 1992.

J. Zemanek, “Beam behaviour within the nearfield of a vibrating piston,”
The Journal of the Acoustical Society of America, vol. 49, pp. 181-191,
January 1971.

A. D. Pierce. Acoustics, An Introduction to Its Physical Principles and
Applications. McGraw-Hill, New York, 1981.

B. Barshan. A Sonar-Based Mobile Robot for Bat-Like Prey Capture.
PhD thesis, Yale University, New Haven, CT, December 1991. University

of Michigan Microfilms, order number 9224325.

L. W. Camp. Underwater Acoustics, chapter 7, p. 166. Wiley-Interscience,
New York, 1970.

B. Ayrulu. “Classifications of Target Primitives with Sonar using two Non-
parametric Data Fusion Methods,” Master’s thesis, Bilkent University,

Ankara, Turkey, July 1996.

B. Barshan, “Location and curvature estimation of spherical targets using
a flexible sonar configuration,” in Proceedings 1996 IEEE International
Conference on Robotics and Automation, pp. 1218-1223, Minneapolis,
MN, April 22-28, 1996.

H. L. Van Trees. Detection, Estimation, and Modulation Theory, Part I
John Wiley & Sons, New York, 1968.

Y. Bar-Shalom and Xiao-Rong Li. Estimation and Tracking: Principles,
Techniques, and Software. Artech House, Boston, 1993.

132



(33] H. W. Sorenson, ed. Kalman Filtering: Theory and Application. IEEE
Press, New York, 1985.

[34] N. Ayache and O. D. Faugeras, “Maintaining representations of the en-
vironment of a mobile robot,” IEEE Transactions on Robotics and Au-

tomation, vol. 5, pp. 804-819, December 1989.

[35] I.. Matthies and S. Shafer, “Error modelling in stereo navigation,” IEEE
Journal of Robotics and Automation, vol. RA-3, pp. 239-248, June 1987.

[36] D. J. Kriegman, E. Triendl and T. O. Binford, “Stereo vision and nav-
igation in building mobile robots,” IEEE Transactions on Robotics and

Automation, vol. 5, pp. 792-803, December 1989.

[37] H. W. Sorenson, “Least-squares estimation: from Gauss to Kalman,”

IEEE Spectrum, vol. 7, pp. 63-68, July 1970.

[38] Y. Bar-Shalom and T. E. Fortmann. Tracking and Data Association.
Academic Press, New York, NY, 1988.

133



