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ABSTRACT

RADIUS OF CURVATURE AND LOCATION 
ESTIMATION OF CYLINDRICAL OBJECTS WITH 

SONAR USING A MULTI-SENSOR 
CONFIGURATION

All Şafak Sekmen
M .S. in Electrical and Electronics Engineering 
Supervisor: Assist. Prof. Dr. Billur Barshaii

.July 1997

Despite their limitations, sonar sensors are very popular in time-of-flight 
measuring systems since they are inexpensive and convenient. One of the most 
important limitations of sonar is its low angular resolution. An adjustable 
multi-sonar configuration consisting of three transmitter/receiver ultrasonic 
transducers is used to improve the resolution. The radius of curvature es­
timation of cylindrical objects is accomplished with this configuration. Two 
different ways of rotating the transducers are considered. First, the sensors are 
rotated around their joints. Second, the sensors are rotated around their cen­
ters. Also, two methods of tirne-of-flight estimation are implemented which are 
thresholding and curve-fitting. Sensitivity analysis of the radius of curvature 
with respect to some important parameters is made. The bias-variance com­
binations of both estimators are compared to the Cramer-Rao lower bound. 
Theory and simulations are verified by experimental data from real sonar sys­
tems. Data is smoothed by extended Kalman filtering. Rotating around the 
center works better than rotating around the joint. Curve-fitting method is 
shown to be better than thresholding method both in the absence and pres­
ence of noise. The best results are obtained w'hen the sensors are rotated 
around their centers and the curve-fitting method is used to estimate the time- 
of-flight. There is about 30% improvement in the absence of noise and 50% 
improvement in the presence of noise.
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ÖZET

ÇO K LU  SO N A R  DÜ ZENLEŞİM İ K U LL A N A R A K  
SİLİNDİRİK CİSİM LERİN Y A R IÇ A P  V E  KO N U M

KESTİR İM İ

Ali Şafak Sekmen
Elektrik ve Elektronik Mühendisliği Bölümü Yüksek Lisans 

Tez Yöneticisi: Yrd. Doç. Dr. Billur Barshan 
Temmuz 1997

Ucuz ve kullanımlarının kolay olması nedeniyle, bazı sınırlamaları ol­
masına rağmen, sonar algılayıcılar uçuş zamanı ölçümlerinde çok sık 
kullanılmaktadırlar. Sahip oldukları sınırlamaların ilki düşük açısal 
çözünürlüktür. Bu çalışmada, çözünürlüğü arttırmak için, üç adet alıcı/verici 
ultrasonik sonar algılayıcıdan oluşan ayarlanabilir çoklu sonar düzenleşimi kul­
lanıldı. Bu düzenleşim ile silindirik cisimlerin yarıçap kestirimleri yapıldı. 
Algılayıcı döndürümünde iki yöntem kullanıldı. ilk olarak, algılayıcılar 
askıları etrafında döndürüldüler, ikinci olarak algılayıcılar merkezleri etrafında 
döndürüldüler. Ayrıca, uçuş zamanı kestiriminde de eşikleme ve eğri-uyarlama 
yöntemleri uygulandı. Ayrıca kestiricilerin başarımmı saptamak için Cramer- 
Rao alt sınır karşılaştırması yapılmıştır. Analiz ve benzetim sonuçları, gerçek 
sonar sistemlerinden alman veriler kullanılarak desteklenmiştir. Genişletilmiş 
Kalman süzgeci ile veri düzleştirilmiştir. Algılayıcıların merkezleri etrafında 
döndürülmeleri daha iyi sonuç vermiştir. Eğri-uyarlama yönteminin eşikleme 
yönteminden daha iyi çalıştığı görülmüştür. Eğri-uyarlama yönteminin 
gürültüsüz bir ortamda yaklaşık %30 ve gürültülü bir ortamda yaklaşık %50 
daha iyi sonuç verdiği gözlemlenmiştir.
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Chapter 1

INTRODUCTION

Ultrasonic sensors are a convenient and inexpensive means for a mobile robot to 
build a model of its environment. However, these sensors have some limitations 
such as high beam-width which makes it difficult to localize objects correctly, 
and multiple reflections which may be difficult to interpret. In order to decrease 
the effect of these limitations, an adaptive multi-sensor configuration is used, 
composed of three transmitter/receiver ultrasonic transducers. This way, the 
radius of curvature and location of the reflecting object can be estimated. With 
the estimation of the radius of curvature, different types of reflectors such as 
walls, cylinders and edges can be discriminated. For large values of radius, the 
object can be assumed to be a planar wall, and for values close to zero, the 
object can be assumed to be an edge [1].

Barshan and Kuc differentiated sonar reflections from corners and planes 
by using a multi-transducer sensing system [2]. Kuc used a system which 
adaptively changes its position and configuration in response to the echoes 
it detects [3]. In [4], Kleeman and Kuc classified the target primitives as 
plane, corner, edge and unknown, and showed that in order to distinguish 
these, two receivers and two transmitters are necessary and sufficient in a 
non-adaptive configuration. In [5], Sasaki and Takano showed that the echo 
signals from the same object in different locations may have more variation 
than that from different objects. In order to decrease the limitations of sonar, 
Flynn used a multi-sensor configuration consisting of infrared and sonar sen­
sors [6]. In [7, 8, 9], acoustic sensors were used for sonar mapping. Ohya 
and Yuta investigated how the information obtained by the ultrasonic sensor 
is affected by the characteristics of the sensing systems such as sensitivity and 
directivity [10]. In [11], Sabatini illustrated that advanced filtering methods

1



are required for making data more accurate and reliable. He also proposed a 
digital-signal-processing technique for building a transducer array capable of 
automatically compensating for variations in the speed of sound due to tem­
perature or any other atmospheric conditions [12]. Curran and Kyriakopoulos 
used an extended Kalman filter to combine dead-reckoning, ultrasonic, and 
inlrared sensor data to estimate current position and orientation of a mobile 
robot [13]. Webb, Gibson and Wykes used novel sensors to measure the range 
and bearing of a target and guide the robot [14]. In [15, 16,17], acoustic sensors 
were used for robot navigation. In [18], Ko, Kim, and Chung used sensors to 
extract multiple landmarks for the indoor navigation of a mobile robot. Chang 
and Song solved the beam-opening angle problem by fusing data from multiple 
ultra.sonic sensors [19]. In [20, 21, 22], a sensor with the flexibility to track 3-D 
targets which are not necessarily in the same horizontal plane as the sensors is 
investigated. Moreover, radius of curvature estimation is important in image 
analysis to provide viewpoint-independent cues for shape classification [23].

In this thesis, the work done in [1] and [24] is extended to an adaptive 
tri-aural sensor for improved radius of curvature and location estimations of 
targets. When the object and the sensor are not perpendicular to each other, 
there is an exponential decline in the amplitude of the reflected sonar signal 
which decreases the signal-to-noise ratio. In order to avoid this problem, an 
adaptive tri-aural sensor is developed. Depending on the location of the object, 
the sensor can rotate its transducers to get a more accurate radius of curvature 
estimation. First, a tri-aural sensor composed of three sensors is employed. 
According to the measurements made with this set-up, the peripheral sensors 
are rotated around the joints. Also, the case in which the sensors are rotated 
around the centers is investigated.

In Chapter 2, background information on sonar sensors is given. The main 
reason why the sonar sensors are rotated is discussed. Also, rotated configura­
tions of the sonar sensors are illustrated.

In Chapter 3, radius of curvature estimation is described. In order to es­
timate the time-of-flight values, two different methods are used. First, the 
traditional thresholding method is tested which is fast but biased and sub- 
optimal. Second, the curve-fitting method which is slower but more accurate 
compared to the thresholding method is used. The sensitivity of estimation to 
the distance between sensors, the true radius, cind the range is investigated. 
In Section 3.1, the case in which the sensors are rotated around their joints is 
investigated. In Section 3.1.1, the sensitivity analysis of the radius of curvature 
is performed. In Section 3.2, the case in which the sensors are rotated around



their centers is investigated. Noiseless and noisy cases are studied separately. 
In order to obtain reliable results in a noisy environment, a 100-iteration Monte 
Carlo simulation study is performed. In Section 3.3, the curve-fitting method 
is described. In Section 3.4, in order to evaluate the estimation performance, 
a comparison with the Cramer-Rao lower bound is made.

In Chapter 4, the radius of curvatiu'e estimation is extended to location 
estimation.

In Chapter 5, an extended Kalman filter is used to estimate the radius of 
curvature and location of cylindrical objects.

In Chapter 6, the experimental results of both thresholding and curve-fitting 
methods are presented.

In Chapter 7, conclusions are drawn and directions for future work are 
motivated.

In Appendix A, the details of the Cramer-Rao lower bound calculation are 
given. In Appendix B, the model for the extended Kalman Filter which is used 
to estimate location and radius of curvature of cylindrical objects is detailed. 
In Appendix C, the properties of chi-sciuare distributed random variables are 
presented. In Appendix D, the computer programs with which the simulations 
are performed and the experimental results are analyzed are presented.



Chapter 2

SONAR SENSING

In this chapter, some properties of sonar sensing are discussed. The multi-sonar 
configuration is introduced and the reasons why this configuration is used are 
given.

2.1 Acoustic Transducers

Ultrasonic transducers are acoustic devices having a resonant frequency higher 
than 20 kHz. They have been used widely in burglar ahirm systems, proximity 
switches, anti-collision devices, counter for moving objects and TV remote 
control systems. Since the characteristics of the sound produced by an acoustic 
transducer change with distance, the near-held region (the neighborhood of the 
transducer) and the far-held region (beyond the near-held) are investigated 
separately. The near-held region is called as Fresnel diffraction zone and the 
far-held region is called as Fraunhofer zone [25]. The expression for the sound 
pressure within the near-held is relatively complex, and not in the scope of this 
thesis. The far-held characteristics at range r cind angular deviation 0 for a 
single frequency of excitation is described by [26, 27]

A(r,0) = Pn Ji{kasm 0)
ka sin 0

for >  r. (2.1)

where Ji(·) is the Bessel function of hrst order, and Pmax is the propagation 
pressure amplitude on the beam axis at range rmin along the line-of-sight.

The half beam-width 0o in the far-held region corresponds to the hrst zero 
of the Bessel function in Equation 2.1 which occurs at ka sin 0 =  1.227T and the



Figure 2.1: The main lobe of the radiation pattern of the Polaroid transducer.

following equation is obtained for the half beam-width angle [28]:

"o.eiA'
6o =  sin ^

a (2.2)

where A =  c / /  is the wavelength, and a is the radius of the transducer.^ The 
radiation pattern is shown in Figure 2.1.

Since a range of frequencies around /o are transmitted, the correspond­
ing beam patterns are superposed and the resulting beam pattern can be ap­
proximated by a Gaussian beam profile centered around zero with standard 
deviation erg = ^  [16, 27]:

A (r, 9) = ■ 'm ax·  m i n------------ e e for r > r_  · m i n (2.3)

Since the position and radius of curvature of cylindrical objects are going 
to be estimated, a reflected sonar signal model for cylindrical objects is needed. 
The signal model is basically a sinusoidal enveloped by a Gaussian which is 
given by [27, 29]:

3 /2
m a x '  m i n  ^

,2
sin [27r/o(i -  to)] (2.4)

where pc is the reflection coefficient depending on the radius of curvature (for 
r >  5 cm, pc — 0.0044946/7 — 0.0022471 [29]), A-max is the maximum amplitude, 
7’ is the distance between the sensor and the center of the object, r^in — «^/A 
(a is the radius of the transducer aperture, 0.65 cm for the Panasonic and 2

=  .331.4^/^^ rn/s, where T is absolute temperature in Kelvin. At room temperature, 
c =  343.3 m/s.



cm for the Polaroid), 0 is the angle normal to the receiver with respect to the 
object, ae =  ^o/2 (0o is the half beam-width angle), to is the time-of-flight, fo 
is the resonant frequency (49.4 kHz for Polaroid, 40 kHz for Panasonic), and 
(̂ t =  l / / o .

The cross-section of the Panasonic transducer is pictiired in Figure 2.2.

Internal Construction

_  Cofiruîctor 

AlufTiinum Resonator

Lead Wire

Pi(;/0(îl<îciric 
Ceram ic Elernenr

Terminal Pin .

Figure 2.2: Cross-section of the Panasonic transducer.



2.2 Tri-aural Sensor Configuration

In this study, a tri-aural sensor composed of three sensors was employed as 
shown in Figure 2.3. Each one of the transducers is sensitive to echo signals 
reflected within its beam pattern. The actual beam pattern is similar to the 
region illuminated by a flashlight. All members of the tri-aural configuration 
can detect targets located within the overlap of the three becim patterns, which 
is called the sensitivity region  ̂ as illustrated in Figure 2.4. In fact, the bound­
aries of the sensitivity region change with the type of object. For example, for 
edge-like or pole-like targets, this region is much smaller but of similar shape, 
and for planes, it is more extended.

t a
<--------- >

t a
--------- >

t a
<---------->

1

^

Icoi km

Figure 2.3: The tri-aural configuration where the sensors are aligned.

As seen from Equation 2.4, when the object and the sensor a.re not perpen­
dicular to each other {6 ^  0°), there is an exponential decline in the amplitude 
which decreases the signal-to-noise ratio. Hence, information provided by sonar 
sensors is most reliable when the object is perpendicular to the sensor, and at 
nearby ranges due to the term in Equation 2.4. Because of this, the
transducers are rotated to make them orthogonal to the object. In this study, 
two methods to rotate the transducers are used. First, the sensors are rotated 
around their joints as shown in Figure 2.5. Second, the sensors are rotated 
around their centers as will be shown later in Figure 3.14.



Figure 2.4: The beam patterns of the sensors (within dotted lines) and their 
sensitivity region (within solid lines).

4cra/

T/R

4cm
<---------->

T/R

Figure 2.5: The tri-aural configuration where the peripheral sensors are rotated 
around their joints.



Chapter 3

RADIUS OF CURVATURE 
ESTIMATION

In this chaptei', radius of curvature estimation of cylindrical objects is de­
scribed. Two different ways of rotating the sensors are investigated. Two 
methods are used in order to estimate the time-of-flight. Sensitivity analysis 
for radius of curvature estimation is performed. Finally, the performances of 
the estimators are compared to the Cramer-Rao lower bound.

3.1 Sensors Rotated around their Joints

Figure 3.1 illustrates the object and the tri-aural configuration.

As seen from Equation 2.4, in order to model the sonar signal, the time-of- 
flight information is needed.

The following algorithm describes how the sensors can be rotated with 
respect to the target location in the simulations:

• Take the true values of hoi,R.,d and 0.

• The true distances between left transducer and the surface of the ob­
ject and right transducer and the surface of the object (Ari) fii’e



computed from the geometry:

Ki =  \Ji’oi +  (P -  2f/roi sin 0 — R 

hii =  +  2droi sin 0 -  R (3.1)

• The distances of the three sensors to the center of the object and their 
inclination angles are calculated:

r;i — hii R

f'oi — ho\ +  R

— ^̂7*1 I R̂ (3.2)

U =  Sin 2drol

2drn
T] =  sin- 1 (3.3)

• The signal from each sensor is modeled by finding the time-of-flight val­
ues corresponding to hoi, hn and hri-

• For the central sensor: 
For the left sensor:
For the right sensor:

-- , normal angle =  0. 
toi =  , normal angle =  a;.

, normal angle =  r/.

2hr.
c

2h.

tor -- 2hri

• The signals are modeled according to Equation 2.4 by using the time-of- 
flights obtained. The following model parameter values are used:

■‘̂ max ~1 CnCl
I'min 10 cm
Po =  0.44946i? -  0.022471 
/o =  50 kHz 
c =  34350 cm /s

• White Gaussian noise W(0, cr) is added to the signal at every 1 p s  and 
the noisy signal model is obtained.
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The noiseless and noisy signal examples are shown in Figure 3.2(a) and 
(b) respectively.

• The time-of-flight can be estimated by choosing an appropriate thresh­
old. In this case, the threshold is chosen as 5a and the first time instant 
where the noisy signal exceeds the thresholding is detected. This is the 
noisy tirne-of-flight estimate, h — is used to find the noisy hoi, hn 
and hri-

• By using the noisy hoi,hn and hri, the initial estimates of 0,a  and r] 
values are calculated, and the radius of curvature is estimated from the 
measurements:

(^ri +  ^n) ~ ^{^li +Ri = (3.4)
4/i.oi — 2(/iri +  hii)

• The noi.sy distance of the left sensor is estimated and the rotation angle 
is calculated accordingly:

ri2 =  y/7'fi +  6r/i sin a

a =

Z i =

r2 _  r-21̂2 'll b =
6 -h 2r¡i sin Q'

2ri2
S — ab \/a2 — 6ab +  9

2 r i2

6 2 -1  6 2 -1
/ - 1  /  3(j) =  cos

zi 3
(3.5)

The left sensor is rotated by (/>.

After the left sensor is rotated, the radius of curvature is estimated again:

Cl =  ^(^, +  3 )2 -3 2

hl2 - ri2 -  Ri

C2 =  hi2 — Cl 
C3 =  d -  Zi

R21 —
cl — 62j -f C3 — 2C2C3 sin (f>

2hoi -  2 c2 +  2c3 sin (j)
(3.6)

• The noisy distance of the right sensor is estimated and the rotation angle 
is calculated:

Tr2 =  yjrh +  6r î sin r]

11



a =

Zr =

K2 - b = 6 +  2rri sin a
2r 7-2 2r,.2

S — ab Vo^ — 6ab +  9

/5 =  cos

62-1 
- 1

62-1

+  3 (3.7)

• After rotating the right sensor by /3, the radius of curvature is estimated 
again:

C4 - y/{zr +  3y  -  32
hr2 — V̂2 “
C5 hj'‘2 C4
Cq — cl Zj·

c l  -  hl^ +  c l  -  2C5C6 s in /?
R ot --

2hoi — 2 c5 +  2ce sin ^
(3.8)

• The average of the radius values calculated by rotating the left and right 
sensors are calculated:

7?o = R21 +  R2T (3.9)
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Figure 3.1: The object and the tri-aural configuration.

Noiseless Sonar Signal Model Noisy Sonar Signal Model

(a) (6)

Figure 3.2: Noiseless and noisy signal models.

13



3.1.1 Sensitivity Analysis of the Radius of Curvature 
Estimate

In this section, the sensitivity analysis of the radius of curvature estimation 
to parameters such as hoi·, hn, h î, cl, R and 0 is presented. The sensitivity 
amilysis can be summarized by the following steps:

• Function / ( . )  for the radius of curvature estimate is defined as follows;

f(h hi h d) -  B -  (^ri +  hfi) -  2{hl-̂  +  cP)i{hoi,hn ,K i,d ) - R i -  (.3.10)

• Perturbation is added to the variable for which sensitivity analysis is 
made. For example, the perturbation Ahoi is added to hoi-

• The perturbation on radius of curvature is calculated as follows:

i^ri T ~  2[(/ioi +  AhoiY +  d̂ ]fihoı-l·Ahoı, hii, hri, d) — +  —
4(/ioi +  Ahoi) — 2(/iri +  hii)

(3.11)

• The effect of the perturbation on the radius of curvature estimate is 
found:

AR  — fi^hoi T Ahoi, hn, h î, d̂  f  ijioi, hn, h î, d̂ (.3.12)

Figure 3.3(a) is plotted for hoi between 0-150 cm. The error in hoi is 
positive and between 0-0.4 mm. A stationary cylindrical target at 0 =  0° with 
radius 5 cm is used and transducer separation is assumed to be 10 cm. The 
error AR  in R increases linearly with the error Ahoi and nonlinearly with hoi- 
Also a positive error in hoi leads to a positive error in R since for constant 
hri and hii, increasing hgi means increasing R, as the geometry of Figure 3.1 
indicates. As range increases, the error also increases since the sensor has lower 
resolution for fixed d.

In Figure 3.3(b), the same parameters are used as in Figure 3.3(a) with 
a positive error in hri instead of hoi- Since the terms h,.i and hn are used 
symmetrically in the radius of curvature equation, the sensitivity analysis of 
¡Hi gives the same results. A positive error in ĥ i or hn causes a negative error 
in R since a positive error on left and right measurements for constant central 
sensor measurement leads to a reduction in R as in Figure 3.1.

14



Figure 3.4(a) and 3.5(a) show the effect of d on the radius of curvature 
estimation. Ahoi =  Ahri =  0.18 mm errors are taken for Figure 3.4(a) and 
3.5(a) respectively. Range is again varied between 0-150 cm. The error is 
plotted for d between 4-40 cm. As seen from the figures, for small d/ho), the 
error is high since the resolution of the left and right sensors decrease as shown 
in Figure 2.4. Hence, as range increases the transducer separation should also 
be increased to achieve higher resolution. Also for high values of d/hoi, the 
error is large since the sensitivity patterns of the transducers will not overlap 
at the target [30].

Figures 3.4(b),(c) and 3.5(b),(c) illustrate the sensitivity of radius of cur­
vature to measurement errors Ahoi =  0.18 mm and Ah,.i =  0.18 mm, re­
spectively. In Figures 3.4(c) and 3.5(c), 0 is varied from 0° to 20° with 1° 
increments.

3.1.2 Simulation Results

Now, the simulation results can be investigated by using the results of the 
sensitivity analysis.

Figure 3.6-3.9 show the simulation results for 0 = 0°.

Figure 3.6 and 3.7 show how the estimated radius values Ri aild i?2 are 
affected from different variables in the absence of noise. Figure 3.8 and 3.9 
show the same calculations obtained with the Monte Carlo simulation study.

The sensitivity analysis of the calculated radius of Equation 3.4 to 
hoi, hn, hri,d and R shows that the radius is very sensitive to these variables. 
A positive error in hoi (A/ioi > 0) causes the estimated radius to be greater 
than the true radius (according to Equation 3.4). A positive error in hu or /i î 
(Ahii >  0) causes the estimated radius to be less than the true radius. More­
over, the error corresponding to the separation between the sensors is positive 
and it decreases as the separation increases. As the distance between the sen­
sors and the object increases, the error increases in the negative direction.

The results are completely consistent with the sensitivity analysis predic­
tions. Although the noise is zero in some cases, the estimated radius deviates 
from the true radius. The error sources are the bias error due to thresholding 
and the error due to sampling the signal.

15



h (cm)

(a)

h ,(cm)

ib)

Figure 3.3: Sensitivity of R to distance measurements (a) hoi (b) Ki or hn for 
d =  10 cm, i? =  5 cm and 6 =  0°.
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ib)

(c)

F'igure 3.4: Sensitivity of R  to (a) d, (b) R  and (c) 0 when A hoi =  0.18 mm.
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(a)

(b)

( c )

Figure 3.5: Sensitivity of R  to (a) d, (b) R  and (c) 0 when A/iri =  0.18 mm.
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Figure 3.6(a) shows the relation of the estimated radius and the se2Daration 
distance between the transducers. The error in the estimated radius values 
decreases as the separation increases. As stated previously, a ¡Dositive error in 
hot makes the estimated radius greater than the true radius, and a positive error 
in hit or hrt makes the estimated radius less than the true radius. Since there is 
error not only in hot but also in hit and hrt in this estimation, error is positive 
for some values of d and negative for some other values of d. Figure 3.6(b) 
shows the effect of hot on the estimated radius. As hot increases the error in 
the negative direction increases (that is, the error in hot is negative, A/ioi <  0). 
The estimated radius after rotating the left sensor is very close to the estimated 
radius of the linear configuration. Figure 3.6(c) shows the effect of the noise 
standard deviation on the estimated radius. In the presence of noise, the error 
after rotation is nearly the same as the error before rotation. However, for 
some values of the noise standard deviation (2xl0~® to 3x10“ '̂  V), it is greater 
than that of the linear case.

Figure 3.7 shows the effect of d and the true radius R on the estimated 
radius. At fixed distance, as R increases the error increases, and as d increases 
the error on the radius estimate decreases.

Figures 3.8 and 3.9 display the results of a 100-iteration Monte Carlo sim­
ulation study. In the figures, the effect of noise on d, hot and R is shown. The 
dashed line shows the mean value and the other two lines indicate one standard 
deviation from the mean. When Figure 3.6(a) and 3.8(a) are compared, the 
effect of noise on d can be observed. The estimated radius is less than the true 
radius for all values of d. This is because the negative error in hit a.nd hrt is 
more dominant than the positive error in hot- Figure 3.8(b) shows the effect of 
hot and Figure 3.8(c) shows the effect of the noise standard deviation on the 
estimated radius.

Figure 3.9 shows the effect of d and R over a 100-iteration Monte Carlo 
simulation study. As the separation between the sensors increases, the standard 
deviation decreases. For low values of R and high values of d, the error is large 
since for large values of d the normal angle between the object and the left 
sensor increases, causing a high exponential decline in Equation 2.4.

Figures 3.10 and 3.11 illustrate the results o[ 0 ^ 0° case in the absence 
of noise. In Figure 3.10(a), the dependence of the estimated radius to the 
separation distance between the transducers is illustrated. As d increases, the 
error in the estimation of the radius of curvature corresponding to the linear 
configuration of the sensors decreases. Although the error in estimation after
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rotating the sensors is larger than that of the linear configuration case, it 
decreases with d. After a certain value of d (around d =  27 cm), the error for 
both cases begins increasing since at that point, the target is not within the 
beam pattern of the left or right sensor. Figure 3.10(b) shows the effect of hoi 
on the estimation of the radius of curvature. As hoi increases the error in both 
linear and rotated configurations increases. Figure 3.10(c) shows the effect of 0 
on the estimated radius. As 0 increases, the error increases as expected, since 
a sonar sensor can make more accurate measurements along its line-of-sight. 
This is because the echo amplitude decreases exponenticilly with the square of 
0 according to Equation 2.4.

Figure 3.11 shows the effect of d and true radius R on the curvature es­
timation. As d increases, the estimation error corresponding to the linear 
configuration decreases according to the sensitivity analysis but the error for 
the rotated configuration increases. This is because as d increases, the object 
goes out of the sensitivity region and the rotation angle calculated by using 
the linear configuration is not correct.

Figures 3.12 and 3.13 show the effect of noise on the above observations. In 
these figures, a 100-iteration Monte Carlo study was employed. Figure 3.12(a) 
shows the effect of d. In both cases, as d increases, initially the error decreases, 
and after a certain value of d (around d =  16 cm) the error increases sub­
stantially. Figure 3.12(b) shows the effect of hoi and Figure 3.12(c) shows the 
effect of 6. When Figures 3.10 and 3.12 are compared, the effect of noise can 
be observed. Figure 3.13 shows the effect of d and R. in the presence of noise. 
As d increases the estimates are degraded.
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(a)
ReaScm d=s10cm  ^Joiso=0 A v e r a g e  R1 **5.1 1cm  A v e r a g e  R2**S. 1 3 c m

(b)
R=*5cm  d —1 O cm  h 0 1 **1 0 0 c m

(c)

Figure 3.6: Estimated radius versus d, hoi .̂nd noise standard deviation.
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d=15cm ho1»a100cm Noise=0

(a)
d=20cm ho1=100cm Noisei=0

(b)
d=525cm ho1=100cm Noiso=0

(c)

Figure 3.7: Estimated versus true radius for d =  1.5 cm, d =  20 cm, and d =  25
cm.
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(a)
R«5cm d=»15cm Noise Std=»5e—7 volt Average R1 «=4̂ .51 cm Average R2=4.50cm

(b)
R=5cm d=10cm ho1—100cm Average R1 =4.51 cm Average R2=4.50cm

(^)

Figure 3.8: Estimated radius versus d, hoi «'■nd noise standard deviation using
a 100-iteration Monte Carlo simulation study.
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d=15cm ho1=100cm Noise Std=»1 e -6  volt

(a)
d=*20om ho1«»100cm Noise Std«*1 e—S volt

d»a25cm ho1=100cm Noise Std=1 e—6 volt

(c)

Figure 3.9: Estimated versus true radius for d =  15 cm d =  20 cm and d =  25
cm using a 100-iteration Monte Carlo simulation study.
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(a)
R*s5cm da*10cm Noise=0 Theta=5 deg

(b)
R*.5cm d=10cm ho1—100cm Noise^O

(c)

Figure 3.10: Estimated radius versus d, hoi and в in the absence of noise.
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(a)
d=20cm ho1*x100cm Noise«0 Theta=5 deg

ib)
d=25cm ho1»100cm Nolse™0 Theta=«5 deg

(c)

Figure 3.11: Estimated versus true radius for d =  15 cm d = 20 cm and d =  25 
cm in the absence of noise.
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(a)
R*x5cm d=15cm Noise Std=5e—7 vcit Theta=s5 dog

(b)
R=5cm d=i1 5cm ho1*=100cm Noise Std=5o-7 volt

(c)

Figure 3.12: Estimated radius versus d, hoi and 6 in the ¡presence of noise using
a 100-iteration Monte Carlo simulation study.
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d=3l5cm ho1=100cm Noise Std=:5o—7 volt Theta=5 dog

(a)
d=20cm ho1**100cm Noise Std=5o—7 volt Thota=5 deg

(b)

p'igure 3.13: Estimated versus true radius for cl =  15 cm d =  20 cm in the 
presence of noise using a 100-iteration Monte Carlo simulation study.
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3.2 Sensors Rotated around their Centers

111 this part, we consider the case in which the left and right sensors are assumed 
to rotate around their centers as shown in Figure 3.14.

Figure 3.14: The object and the sensor configuration when the sensors are 
rotated around their centers.

The algorithm to find the rotation angle can be summarized as follows:

• The initial estimate of the radius of curvature (when the sensors are 
aligned) is the same as in the previous algorithm.

• From the first set of measurements, noisy 0, a and r) are calculated:

9 =  sin ^ ( r l - r l - d ^
\ 2clroi

a =  sin“ ^
r l - r l ,+ d ^ ·

V ^drn
f  ̂ rl -  ?’oi +r¡ =  sm 1i 2i/r,.i

(3.13)

• After finding the rotation angles, 0, a and r¡, the central, right and left 
transducers are rotated by 9, a and r¡ respectively. When the sensors 
are rotated, they are assumed to be perpendicular to the center of the 
object.
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The nominal values of the distances after rotation should be:

ô2 —
hi2 =  hn

hj-2 — hj-i (3.14)

• New measurements are taken and the second estimation of the radius of 
curvature is made by using Equation 3.4.

3.2.1 Simulation Results

Figure 3.15 shows the effects of d, hot and noise standard deviation on the 
estimation of the radius of curvature when  ̂ =  0°. It can be seen that for 
all values of d, hot and noise standard deviation, the second estimation (after 
rotation) provides better results. Figure 3.15(a) shows that the deviation be­
tween the two estimates begin after a certain point in d (around d =  37 cm). 
Up to that point, the first and the second estimates are nearly the same since 
for low values of d, the normal angle of the left sensor is small and the object 
is nearly perpendicular to the left sensor. However, as d increases the normal 
angle of the left sensor also increases and the estimation after rotation provides 
improved results. Figure 3.15(b) shows that as hot increases, the first and sec­
ond estimates become closer. This is because when hot is small, the deviation 
angle of the left sensor is large and the estimation after rotation gives improved 
results. Figure 3.15(c) shows the effect of the noise standard deviation. The 
second estimation is less affected from noise than the first estimation.

Figure 3.16 shows the effect of d and R simultaneously. As d increases both 
estimators improve and for the low values of R the second estimation is more 
accurate for the same reason as above. For lower values of 72 (77 < 10 cm) 
and high values of d, the estimated radius after rotation is better since for high 
values of d, exponential decline in Equation 2.4 is very high.

Figures 3.17 and 3.18 show the same calculations done by using a 100- 
iteration Monte Carlo simulation study. Figure 3.17 shows the effect of d and 
hot on the estimated radius in the presence of noise. Figure 3.17(a) indicates 
that as d increases, the second estimation provides better results which is con­
sistent with the above argument. When d is small, the object can be consid­
ered perpendicular to the sensors, hence we do not expect much improvement 
with the second estimation. Since there is error in the rotation angle, the es­
timation after rotation must be worse than that of the linear configuration.
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Figure 3.17(b) shows that as hoi increases the first estimate improves since the 
object becomes perpendicular to the sensors.

Figure 3.18 shows the effect of d and R simultaneously on the radius of 
curvature estimation. As d increases, the second estimation improves as ex­
pected. For low values of R, as d increases the error in the first estimation also 
increases since for high values of d and low values of R, the normal angle of 
the left and right sensors are high and the exponential decline in Equation 2.4 
is high.

3.3 Curve-Fitting Method for Time-of-Flight 
Estimation

A curve-fitting approach is used in order to reduce the error in the time-of- 
flight estimations obtained from the thresholding method and improve the 
estimation procedure. Earlier, in [24], a similar method was used to improve 
the accuracy of point-target localization. It was shown that this method of 
time-of-flight estimation eliminated the bias resulted from thresholding and 
was comparable to thresholding in variance. Here, we generalize the method 
to include radius of curvature estimation. Figure 3.19 shows the parabola fitted 
noisy sonar signal model. It is expected to reduce the bias with this· method.

The following algorithm is used when estimating the time-of-flight with 
curve fitting:

• An approximate time-of-flight estimate is obtained using the thresholding 
method.

• The amplitude of the signal is sampled at three time instants before the 
time-of-flight obtained by the thresholding method. The time interval 
between the time instants equals 3 ¡.is. •

• The zero-crossing parabola passing through these points is found. 
Parabola is assumed to be of the form y = at̂  + bt + c, and the co­
efficients a, b and c are calculated by using the three samples. If the 
parabola found by using the above samples does not take the value zero 
at any time, then new samples are taken and another parabola is ob­
tained. This procedure continues until a zero-crossing parabola is found.
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(«)
RaaScm d»1 Ocm Noise«0 Average R1 »:4.83cm Average R2=5.02cm

(&)
R=5cmd=x10cm ho1=100cm Average R1 *=3.19cm Average R2=3.S7’cm

(c)

Figure 3.15: Estimated radius versus d, hoi «'•nd noise standard deviation (when
sensors are rotated around their centers).
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d=20cm ho1=100cm Noise=0 d=40cm ho 1=100cm Noise=0

(a) (b)

Figure 3.16: Estimated radius versus true radius when d = 20 cm and d =  40 
cm (when sensors are rotated around their centers).

R=5cm ho1=100cm Noise Std=1e-6 volt R=5cm d=10cm Noise Std=1e-6 volt

(a) (b)

Figure 3.17: Estimated radius versus d,hoi by using a 100-iteration Monte 
Carlo simulation study.
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(a)
d=20cm ho1=*100cm Noise Std=1 e—S volt

(b)
d»25cm ho1=x100cm Noise Std*1 e—6 volt

(c)

Figure 3.18: Estimated radius versus true radius when d =  15 cm d =  20 cm
and d =  25 cm by using a 100-iteration Monte Carlo simulation study.
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Figure 3.19: Curve-fitting method to estimate the time-of-flight.

• The time instant at which the value of this parabola is zero is the estimate 
of time-of-flight with the curve-fitting method.

3.3.1 Simulation Results

Figure 3.20 shows the results found by curve-fitting for 0 = 0° case when the 
sensors are rotated around their joints. The improvement in the results is 
about 40% with respect to the thresholding method.

Figure 3.20 shows the effect of d for two different noise levels. When Fig­
ure 3.20(a) is compared with Figure 3.8(a), about 50% improvement is ob­
served. The results improve especially after the rotation of the left sensor. 
When the curve-fitting approach is used, the error on the time-of-fiight is some­
times positive and sometimes negative and likewise for hn and hri- Hence, the 
estimated radius is sometimes greater and sometimes less than the true radius. 
Figure 3.20(b) shows the effect of d and R simultaneously. When Figure 3.20(b) 
and 3.9(a) are compared, it can be seen that there is substantial improvement 
in the estimations both before rotation and after rotation of the sensors. The 
improvement is about 40%. Figure 3.20(c) shows the same results when the 
noise is small. When Figures 3.20(b) and 3.20(c) are compared, 20% improve­
ment can be observed.

Figure 3.21 illustrates the effect of d, hoi and 7? in a noiseless environment 
when the sensors are rotated around their centers. Figure 3.21(a) illustrates 
the effect of d. Up to d =  43 cm, both estimates have very small errors, but 
after this point, estimation before rotation gets worse and estimation after
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rotation continues improving. The corresponding d value for the thresholding 
method is 37 cm as can be seen fi'om Figure 3.15. Figure 3.21(b) shows that 
there is only 2% error before and after rotation. Figure 3.21(c) illustrates that 
the error is 0% before and after rotation.

l· igure 3.22 shows the effect of d, hoi cind R in a noisy environment when the 
sensors are rotated around their centers. In this case, a 100-iteration Monte 
Carlo simulation study is employed. Figure 3.22(a) illustrates the effect of 
d. When Figure 3.22(a) and 3.17(a) are compared, about 30% improvement is 
observed. Figure 3.22(b) illustrates that as ho\ increases standard deviations of 
both estimates increase. Also, when Figures 3.22(b) and 3.17(b) are compared, 
a 30% improvement is observed. Figure 3.22(c) illustrates the effect of the true 
radius. Estimate after rotation is better than estimate before rotation. When 
Figures 3.22(c) and 3.18(b) are compared, again a 30% improvement can be 
observed.

3.4 The Comparison of the Estimation Errors 
with the Cramer-Rao Lower Bound

In order to evaluate the performances of the estimators, the results are com­
pared to the Cramer-Rao lower bound (CRLB) which sets a lower bound on the 
variance of unbiased estimators [31]. The matched filter, which is the optimal 
method to estimate the time-of-flight, satisfies this lower bound asymptoti­
cally [31]. Since the CRLB is primarily derived for unbiased estimators, the 
variance and bias values are combined and compared with this lower bound. 
CRLBs for unbiased estimators of r, 9 and R are derived in Appendix A.

Figures 3.23, 3.24 and 3.25 show how the CRLB (\ /j^ )  and \Jcr\ +  9' {̂R)i 
the bias-variance combination, is affected by d,R and hoi- 9 = 0° is assumed 
for all cases. For each figure, parts (a) and (b) are the results obtained with 
the thresholding method and (c) and (d) are obtained with the curve-fitting 
method. Also, the sensors are assumed to rotate around their centers. In the 
curve-fitting method, the variance, and in the thresholding method, the bias 
term is dominant in the bias-variance combination.

CRLB is small when compared with the bias-variance combination since 
Equation 3.4 is highly sensitive to d and hoi «md we calculated the time-of- 
flights with thresholding and curve-fitting methods which are very fast but
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(a)
d—15cm ho1»100cm Noise Std>=i1 e—6 volt

(b)
d=15cm ho1«=*100cm Noise Std=1 e—7 volt

(c)

Figure 3.20: Estimated radius versus d and true radius when time-of-flight is 
estimated by the curve-fitting method when sensors are rotated around their 
joints.
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(a)
R=5cm d=10cm Noise^O Average R1 =5.01 cm Average R2=5.00cm

(b)
d=20cm ho1=100cm Nolse=0

(c)

Figure 3.21: Estimated radius versus d, hoi and R when sensors are rotated 
around their centei’s and the curve-fitting method is used in a noiseless envi­
ronment.
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(a)
R=5cm d=10cm Noise Stds»1 e—6 volt

(b)
d*=20cm ho1—100cm Noise Std«1 o—6 volt

(c)

Figure 3.22: Estimated radius versus d, «ind R when sensor are rotated 
around their centers, the curve-fitting method and a 100-iteration Monte-Carlo 
simulation study are used.
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suboptimal. For the thresholding method, the difference between CRLB and 
bias-variance combination is more than that for the curve-fitting method. The 
difference for thresholding is about 5-fold and for curve-fitting about 1.5-fold. 
Also, with the curve-fitting method, the CRLB has a tendency to either steadily 
increase or decrease but with the thresholding method there is no such ten­
dency. With the comparison of the estimators to CRLB, it is concluded that the 
estimator with curve-fitting method is better than the estimator with thresh­
olding method. If the time-of-flights were to be estimated optimally, it would 
be necessary to store the temi:)lates of the signals corresponding to different ob­
jects at different distances and angles and to compare the returned signal with 
these a.nd find the best matched one. This way, the processing time and the 
memory requirements would increase considerably. By using the thresholding 
method, a trade-off between the accuracy of estimation and system complexity 
is achieved.

3.5 Discussion

A method for radius of curvature estimation has been developed b\· using var­
ious configurations of sonar sensors. Two different methods of time-of-flight 
estimation are used. In order to assess the performances of the estimators, 
the comparison of the Cramér-Rao lower bounds with the bias-variance com­
bination is included. When the time-of-fiight is estimated by the thresholding 
method, the estimation of radius after the rotation of the left and right sensors 
is better than that of the linear case in the absence of noise. .After adding 
the noise, the estimations after rotation degrade because of the error in the 
rotation due to noise. When the time-of-flight is estimated by the curve-fitting 
method, the results both before rotation and after rotation improve consid­
erably. We obtain better results especially after rotation. When we use the 
curve-fitting method, the sensitivity of the estimation to noise decreases. In 
the cases for which the three sensors are rotated around their centers, consider­
able improvement is achieved due to the increased SNR.. The effect of the error 
sources decrease very much. When sensors are rotated around their centers 
and curve-fitting method is used, further improvement is achieved. The com­
parison of the Cramér-Rao lower bounds with the bias-variance combination 
indicate that the difference is about 5-fold for thresholding and 1.5-fold for 
curve-fitting. This is caused by the suboptimality of these two methods used 
for the time-of-flight estimation. Also, it is seen that the difference is lower lor 
the curve-fitting method than for the thresholding method.
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R=5cm ho1=100cmTtieta=0deg Noise Std=1e-4 volt R=5cm ho1=100cm Noise std=le-4 volt

R=5cm h o i= 100cm Theta=0deg Noise Std=1e-4 volt R=5cm ho1=100cm Theta=0deg Noise Std=1e-4 volt

Figure 3.23: CRLB, bias, bias-variance combination versus d with (a),(b)
thresholding and (c),(d) curve-fitting methods.
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Figure 3.24: CRLB, bias, bias-variance combination versus R  with (a),(b)
thresholding and (c),(d) curve-fitting methods.
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R=5cm d=10cmTheta=0deg Noise Sld=1e-4 volt R=5cm d=10cm Theta=Odeg Noise Std=1e-4 volt

(a) (b)
R=5cm d=10cm Theta=0 deg Noise Std=1e-4 volt R=5cm d=10cm Theta=Odeg Noise Sld=1e-4 volt

(c) id)

Figure 3.25: CRLB, bias, bias-variance combination versus hoi with (a),(b)
thresholding and (c),(d) curve-fitting methods.
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Chapter 4

LOCATION AND RADIUS OF 
CURVATURE ESTIMATION

In this chapter, the radius of curvature estimation is extended to include es­
timation of target location. We investigate the case in which the sensors are 
rotated around their centers as shown in Figure .3.14 and estimate:

• The distance between the center of the object and the central sensor, 
ho\ +  R-

• The normal angle of the central sensor, 0.

• The radius of curvature, R.

4.1 Algorithm for Location and Radius of 
Curvature Estimation

We have the following measurements:

ho =  r — R-\- iUo{r, 01R)
hr =  V"r2 -f — 2dr sin^ — R-\- iOr{r, 0, R)
hi =  Vr'^ +  d'̂  +  ‘¿dr sin — i? -f to;(r, 0, R) (4.1)
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where ‘Wo{r̂ 6̂  R)  ̂ Wr{r̂ 6̂  R) and iui{r^6^R) are spatially uncorrelated zero- 
mean white Gaussian noise. Suppose the following vectors are defined:

^ A 
Z =

Hq

h( r , 0 , f i )  =

r - R

hr \Zr  ̂ +  — 2dr sin 0 — R
_ hi _ \ / +  d'̂  +  2dr sin 0 — R

(4.2)

In [1], it is shown that for Polaroid transducers the noise correlation coefficient 
is small since most of the noise on the sensors is dominated by the thermal noise 
in the electronics. Because of this, tOo(r, 0, i2), 0, R) and ro;(r, R) can be
modeled as uncorrelated Gaussian noise. Hence, the error correlation matrix, 
its inverse, and the probability density function of z are taken as follows;

C =
<̂ lo 0 0
0 ^Ir 0
0 0 <  J
1 0 0
0 1 0
0 0 1

1 r If-'
27t|C|

exp|

(4.3)

(4.4)

p(i\r,e,R) =  ^ e x p { - i [ z - h ( r , ( ? , J ? ) ] ’ 'C - ‘ | i -h ( r ,« , i i ) ] } ( 4 .5 )

The r, 0 and R values maximizing Equation 4.5 are the maximum likelihood 
estimators which can be found by taking the inverse of z =  h(?", 0, R) as follows;

r =

e =  sin -'

it =

2(R +  2{hi +  hr)ho -  2hl -  hj -  hi 
2hr +  2hi — 4ho 

hj  — "b ~  hr}R
4d(/io T R) 

(A;_+ hj) -  2{hi +
4:ho — 2{hr T hihi')

(4.6)

(4.7)

(4.8)

The algorithm to localize the object is outlined below;

• Noisy values of the distances are generated using Equation 4.1.

• By using these noisy values;

— Radius of curvature,

— Deviation angle (azimuth) of the central sensor.
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— The distance between the centi'al sensor and the object 

are calculated by using Equations 4.6-4.8.

• Noisy values of the normal angles of the left and right sensors are found 
as explained in the radius of curvature estimation algorithm.

• The sensors are rotated by their normal angles.

• New measurements are taken and the new estimates are made by using 
the above equations.

4.2 Simulation Results

Figures 4.1-4.3 show the simulation results obtained in a noiseless environ­
ment. Figures 4.4-4.7 show the same simulation results obtained by using a 
100-iteration Monte Carlo simulation study in a noisy environment. For cill 
simulation results, the curve-fitting method is used in order to estimate the 
TOF.

Figure 4.1 shows the dependence of the estimates to the transducer sepa­
ration d. The estimates before and after rotation are the same. Figure 4.1(a) 
illustrates the dependence of the estimation of range to the transducer sep­
aration d. As d increases, the error decreases. The average error is 0.03%. 
Figure 4.1(a) illustrates the dependence of the angle estimate to d. As d in­
creases, the estimate improves. The average error over d is 0.0%. Figure 4.1 
illustrates the dependence of the radius of curvature estimation to d: Again as 
d increases, the error decreases. The average error over d is 0.6%.

Figure 4.2 displays how the estimates depend on the true distance between 
the central sensor and the object, hoi- Figure 4.2(a), 4.2(b) and 4.2(c) show 
the dependence of the distance, the angle and the radius of curvature to hoi·, 
respectively. The average errors for the distance, the angle and the radius of 
curvature estimates are 3.6%, 0.0% and 0.2%, respectively.

Figure 4.3 illustrates the dependence of the estimates on the true radius, 
R. Figure 4.3(a) shows the dependence of the distance to R. The average 
error is 0.0%. Figure 4.3(b) shows the dependence of the normal angle to R. 
Figure 4.3(c) shows the dependence of the radius of curvature estimation to 
the true radius. The average error is 0.0%.
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(b)
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Figure 4.1: Location and radius of curvature estimation versus d in a noiseless
environment with the curve-fitting method when sensors are rotated around
their centers (note that both estimates are the same).
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Figure 4.2: Location and radius of curvature estimation versus koi in a noiseless
environment with the curve-fitting method when sensors are rotated around
their centers (note that both estimates are the same).
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d=10cm ho1=100cm ThQta=*Sdeg Noise=0

--------------- r1

r2

15
R (cm)

(a)
da:iOcm ho1=100cm Theta=5deg Noise=0

(b)
d»10cm ho1*=100cm Theta=5deg Noise=0

(c)

Figure 4.3: Location and radius of curvature estimation versus i? in a noiseless
environment with the curve-fitting method when sensors are rotated around
their centers (note that both estimates are the same).

49



Figure 4.4 shows the dependence of the estimates to d in a noisy environ­
ment. Figure 4.4(a) illustrates that as d increases the estimate after rotation 
improves. The estimation before rotation improves up to d =  12 cm, and after 
that value it gets worse since the target is now located either at very low SNR 
regions of the sensitivity pattern or outside it (as d increases the normal angles 
of the left and right sensors increase). The average error before rotation is 
5.96% and the error after rotation is 0.05%. Figure 4.4(b) illustrates the de­
pendence of the normal angle to d. The error figures before and after rotation 
are 6.0% and 0.0% respectively. Figure 4.4(c) illustrates the dependence of the 
radius of curvature estimation to d. The average error before rotation is 11.4% 
and the average error after rotation is 1.2%. Note that the standard deviation 
of the estimates after rotation are lower than those before rotation by a factor 
of four approximately.

Figure 4.5 shows the dependence of the estimates to the distance /i„i in 
a noisy environment. For small values of hoi, the normal angles of the left 
and right sensors are high and the estimates are not very good. For large val­
ues of hoi, the normal angles decrease and estimations im2?rove. Figure 4.5(a) 
illustrates the distance estimation. Figure 4.5(b) illustrates the angle estima­
tion. The average error before rotation is 6.0% and alter rotation it is 0.0%. 
Figure 4.5 illustrates the radius of curvature estimation. The average error 
before rotation is 19.0% and after rotation it is 0.0%. Note that the stcindard 
deviations after rotation are lower than those before rotation.

Figure 4.6 shows the effect of i? in a noisy environment. As R increases, 
all three estimates improve. Figure 4.6(a) illustrates the range estimate. Fig­
ure 4.6(b) illustrates the azimuth angle estimate. The average error before 
rotation is 0.4% and after rotation it is 0.0%. Figure 4.6(c) illustrates the 
radius of curvature estimation.

Figure 4.7 shows the effect of the azimuth angle 0 in a noisy environment. 
Up to =  6° the estimates improve, but after that value the target is either 
outside the sensitivity region or within a very low SNR region. Figure 4.7(a) 
illustrates the distance estimate. The average error before rotation is 5.71% 
and after rotation it is 0.0%. Figure 4.7(b) illustrates the angle estimation. 
Figure 4.7(c) illustrates the radius of curvature estimation. The average error 
before rotation is 85.6% and after rotation it is 0.6%. Note that again the 
standard deviations after rotation are smaller than those before rotation.
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R=5cm ho1=100cm Theta=5deg Noise Std»1 e—6 volt Avr_r1 *»9S.74cm Avr_r2=1 OS.OScm

(a)
R=5cm ho1=100cm Thota»5dog Noise Std»1 o—6 volt Avr_Theta1 =5.3dog Avr_Thota2=5.00deg

(b)
R»5cm ho1—100cm Theta=5deg Noise Std—1 e—S volt Avr_R 1 =4.43cm Avr_R2=«5.06cm

(c)

Figure 4.4: Location and radius of curvature estimation versus d under noise
with the curve-fitting method when the sensors are rotated around their centers
and a 100-iteration Monte Carlo simulation study is employed.
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(a)

(b)
R=5cm d«=10cm Theta>>5deg Noise Std=1 o—6 volt Avr_Rl =4..06cm Avr_R2=5.06cm

(c)

Figure 4.5: Location and radius of curvature estimation versus hoi under noise
with the curve-fitting method when the sensors are rotated around their centers
and a 100-iteration Monte Carlo simulation study is employed.
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Figure 4.6: Location and radius of curvature estimation versus R  under noise
with the curve-fitting method when the sensors are rotated around their centers
and a 100-iteration Monte Carlo simulation study is employed.
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(a)
R=5cm d=»10cm ho1*i100cm Noise Std=1 e—6 volt

(b)
R=5cm d=10cm ho1=a100cm Noise Std*=1 e—6 volt Avr_Rl =9.20cm Avr_R2a=5.03cm

(c)

Figure 4.7: Location and radius of curvature estimation versus 6 under noise
with the curve-fitting method when the sensors are rotated around their centers
and a 100-iteration Monte Carlo simulation study is employed.
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4.3 The Comparison of the Estimation Errors 
with the Cramer-Rao Lower Bound

As explained in the radius of curvature estimation section, in order to evaluate 
the performances of the estimators, the results are compared to the CRLB 
which sets a lower bound of the variance of unbiased estimators [31]. In this 
section, we combine the variance and bias values to compare to this lower 
bound. The derivation is provided in the Appendix.

Figures 4.8-4.11 show how the Cramer-Rao lower bounds V J^ , V J^ , V J ^  
and +  62(r), ^cr| -f -f- 62(R), which are the combinations of
biases and variances, are affected by d, hoi, R a-nd 6. The simulation results 
are presented both for the thresholding method and the curve-fitting method. 
The first columns of the figures illustrate the results of the thresholding method, 
and the second columns show the results of the curve-fitting method.

Figure 4.8 and 4.9 illustrate the effect of d. Figures 4.8(a),(c) and (e) il­
lustrate the results with thresholding method. When Figures 4.8(a) and (e) 
are compared to Figures 4.9(a) and (e), a 3-fold difference can be observed. 
When Figure 4.8(c) and 4.9(c) are compared, the difference is 10-fold. Fig­
ures 4.8(b),(cl) and (f) illustrate the result with the curve-fitting method. When 
Figures 4.8(b) and (f) are compared to Figures 4.9(b) and (f), it is observed 
that they are very close to each other. When Figure 4.8(d) and 4.9(d) are 
compared, a 2-fold difference can be observed. From these results, it is con­
cluded that the curve-fitting estimator is more accurate than the estimator 
with thresholding. Figure 4.9 illustrates that for the thresholding method the 
bias term, and for the curve-fitting method the variance term is dominant.

Figure 4.10 and 4.11 illustrate the effect of ho\. Figure 4.10(a),(c) and 
(e) illustrate the results with thresholding. When Figures 4.10(a) and (e) are 
compared to Figures 4.11(a) and (e), it is seen that they are nearly the same. 
Figure 4.10(c) and Figure 4.11(c) show a 10-fold difference. Figures 4.10(b),(d) 
and (f) illustrate the results with curve-fitting. When Figures 4.10(b) and (f) 
are compared to Figures 4.11(b) and (f), they seem to be the same. When 
Figure 4.10(d) and 4.11(d) are compared, a 5-fold difference can be observed. 
It is concluded that the estimator with curve-fitting has higher performance. 
Again, the bias term is dominant for the thresholding method, and variance 
term is dominant for the curve-fitting method.
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R = 5 c m  h o 1 » 1 0 0 c m  T h e ta sO  d e g  N o is e  s td s 1 e -4  volt R * 5 c m  h o ls lO O c m  T h e ta = 0  d eg  N o ise  s td » 1 e -4  volt

(«)

(c)
RaScm ho1»100cm ThetasO deg Noise std*1e-4 volt

(b)

id)
R=5cm hoi«100cm Theta»0 deg Noise std«1e-4 volt

( e ) ( / )

Figure 4.8: CRLB versus d. First column is with thresholding and second 
column is with curve-fitting.
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R a S c m  h o 1 = 1 0 0 c m  T h e ta > O d e g  N o ise  s t d s ie - 4  vo lt R=5cm  holalO O cm  Thela=O deg Noise s td *1 e -4  volt

(a)
R=5cm holalOOcm ThetasO deg Noise Stds1e-4 volt

(c)
R«5cm ho1»100cm Theta°Odeg Noise std»le-4 volt

(b)
R=5cm ho1*100c(n ThelasOdeg Noise stdc1e-4 volt

id)
R=5cm holslOOcm Theta*Odeg Noise std»1e-4 volt

(e) i f )

Figure 4.9: Bias, bias-variance combination, standard deviation versus d with
thresholding (first column) and curve-fitting methods (second column).
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R = 5 c m  d s lO c m  T h e ta » 0  d eg  N o is e  s t d s 1 e -4  vo lt R = 5 c m  d = 1 0c m  T h e la * 0  d e g  N o ise  s td = 1 o -4  volt

(a) (b)

100 110 120 130 140 150 160 170 180 190 200

(c)
R»5cm dsiOcm ThetaaO deg Noise std»ie-4 volt

(d) ■
R=5cm d=10cm Thela=0 deg Noise std=1e-4 volt

(e) i f )

Figure 4.10: CRLB versus hoi. First column is with thresholding and second 
column is with curve-fitting.
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(c) {d)
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( e ) i f )

Figure 4.11: Bias, bias-variance combination, standard deviation versus /i„i 
with thresholding (first column) and curve-fitting methods (second column).
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Chapter 5

SMOOTHING OF THE 
ESTIMATES USING 
EXTENDED KALMAN  
FILTERING

In this chapter, an extended Kalman filter (EKF) is used to estimate the loca­
tion and radius of curvature of the target. The case in which the sensors are 
aligned is investigated as shown in Figure 3.1. Appendix B gives a brief sum­
mary of extended Kalman filtering. A more detailed treatment can be found 
in [32].

5.1 Algorithm

The following procedure is used to estimate the location and the radius of 
curvature of the cylindrical object.

• The state vector is defined as follows:

x{k) =
r{k)
e(k)
R{k)

(5.1)
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• The observation model is

z{k) =
^ol (^)
h,T\ (A/·) 
hn{k)

=  h [x(^)] +  w{k) (5.2)

where

h [x(fe)]
__________ r{k) -  R{k)

y/r (̂k) +  (P — 2dr{k) sin 0(k) — R(k) (5.3)
Ĵr' (̂k) +  ¿2 +  2dr{k) sin 0{k) — R{k)

Since the target is assumed to be stationary, the state transition model
I S

x(^ +  l)  =  Fx(it) +  v(A:) =
r{k) Vr{k)
e{k) + ve{k)
R{k) _ _ VR{k)

(5.4)

where vr, Vr and ve are the additive process noise for radius, range and 
angle, respectively. F matrix in this case is an identity matrix. Note that 
the state model is linear but the observation model is nonlinear.

The Jacobian matrix H is found as follows:

H(A:) =  Vh(A:) =

- 1

- 1

1

r ( k ) - d s \ n B ( k )
0

d r ( k )  cos 0 {k )
\ J r ( k y - \ - d ? —2 d r { k )  sin 9 ( k ) , /r ( f c ) 2 + d 2 - 2 d r ( k )  sin e { k )

- 1
d r ( k )  cos 6 { k )

y j r [ k Y - \ - d ? - \ - 2 d r { k )  s i n 6 ( k ) \ J г(A:)^+<¿^+2c/г(A;) s n i 6 { k )

(5.5)

where r{k) and 0{k) are the predicted values of range and normal angle.

5.2 Simulation Results

Figure 5.1(a), (b) and (c) show the measurement residuals of hoi, Ki  ¿'■nd hn, 
respectively. All three figures illustrate that innovations are white as expected. 
When a three degree-of-freedom chi-square test is applied, it is observed that 
one out of 30 points falls outside of the 97.5% confidence region. Although 
the maximum error allowed is 2.5%, the innovations with error 3.3% can be 
considered as white Gaussian distributed since only 30 iterations are processed. 
The details of chi-square test are given in Appendix C.
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Figure 5.2 illustrates the estimated and predicted states. Figure 5.2(a),
(b ) , (c) illustrate how the estimation of the range, normal angle and radius of 
curvature improve as the number of steps increase, respectively. For Figures 5.1 
and 5.2, d =  10 cm, R = 5 cm, hoi =  100 cm, 0 =  0°, measurement noise 
standard deviation =  10"® V, the variance of the radius noise =  10“  ̂ cm  ̂and 
the variance of the angle noise =10“ '* racF.

Figure 5.4(a), (b) and (c) illustrate how the range, angle and radius estima­
tions are affected by d. For small values of d, the radius and range estimation 
are not accurate. The average error is about 0.8% for the range, and 10% for 
the radius. For Figure 5.4, i? =  5 cm, hoi =  100 cm, 0 =  0°, measurement 
noise standard deviation =  10“ ® V, the variance of the radius noise = 10“ ® 
cm® and the variance of the angle noise =10“ '·* rad®.

Figure 5.5 presents the effect of R on the estimations. Figure 5.5(a), (b) and
(c) illustrate the effect of R on the range, angle and radius, respectively. All 
of the three estimations are very accurate for different values of R. The errors 
on the range and radius of curvature are about 0.6% and 5%, respectively. For 
P’igure 5.5, d =  10 cm, hoi =  100 cm, 0 =  0°, measurement noise standard 
deviation =  10“ ® V, the variance of the radius noise =  10“ ® cm® and the 
variance of the radius noise =10“ “* rad®.

Figure 5.6 shows how hoi affects the estimation. Figure 5.6(a) is drawn 
for the range estimation and the average error is about 1.2%. Figure 5.6(b) is 
for the azimuth angle estimation. Figure 5.6(c) is for the radius of curvature 
estimation and the average error is about 18%. For Figure 5.6, d =  10 cm, 
i? =  5 cm, 9 =  0°, measurement noise standard deviation =  10” ® V, the 
variance of the radius noise =  10“ ® cm® and the variance of the angle noise 
=10“  ̂ rad®.

Figure 5.7 displays the effect of 6 on the estimation process. Figure 5.7(a),
(b) and (c) illustrate how the range, angle and radius estimations cire affected 
by 9. As 9 increases, the estimations degrade a little due to increase in un­
certainty on the measured values. For Figure 5.7, d =  10 cm, R =  5 cm, 
hoi =  100 cm, measurement noise standard deviation =  10“ ® V, the variance 
of the radius noise =  10“ ® cm® and the variance of the angle noise =10“ ‘* rad®.

Figure 5.3 illustrates the range, angle and radius estimations respectively 
by using extended Kalman filtering and raw data over a single data sequence. 
That is, in the first case, estimates are smoothed by the EKF, in the second, 
estimates are directly derived from the raw data.
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(a)
Moasurement Residual for hrl (cm)

(b)
Measurement Residual for hl1 (cm)

(c)

Figure 5.1: Measurement residuals of Kalman filtering for d =  10 cm, R  =  5
cm, hoi =  100 cm,  ̂ =  0°, measurement noise std =  10“ ® V, variance of radius
noise =  10“  ̂ cm^, variance of angle noise =  10"'* rad .̂
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True Range = 105 cm

(a)
True Angle «= O deg

(b)
True Radius » 5 cm

(c)

Figure 5.2: Estimated and predicted values of Kalman filtering for d =  10 cm,
/{  =  5 cm, hoi =  100 cm, 6 =  0°, measurement noise std =  10"® V, variance of
radius noise =  10"® cm®, variance of angle noise = 10"^ rad®.
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Figure 5.3: Kalman filtering and estimates by one raw data sequence versus 
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Chapter 6

EXPERIMENTAL RESULTS

In this chapter, two different set-ups using transducers at different frequencies 
are employed to verify the simulation results. In the first set-up, Panasonic 
transducers are used to estimate the position and radius of curvature using the 
algorithm mentioned in Chapter 4. In the second, Polaroid transducers are 
used to estimate the position and radius of curvature estimation using an EKF 
described in Chapter 5.

6.1 Experimental Set-up with Panasonic 
Transducers

The set-up is constructed for 2-D applications. Since the Panasonic transducers 
are manufactured separately as transmitter and receiver with different charac­
teristics, the same transducer was not used as both transmitter and receiver. 
Because of this, two different transducers, with very close vertical separation, 
are used to transmit and receive the echoes. In this case, the pair can be con­
sidered as a transmitter/receiver transducer. The experimental set-up consists 
of three such pairs as shown in Figure 6.1. The aperture radius of each Pana­
sonic transducer is a =  0.65 cm, the resonant frequency is fo =  40 kHz and 
Oo =  54°. The block diagram for the hardware is shown in Figure 6.2.
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Figure 6.1: The exi^erimental set-up consisting of Panasonic transducers.

Figure 6.2: The block diagram of experimental set-up with Panasonic trans­
ducers.
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6.2 Experimental Results

6.2.1 Thresholding Method

In this section, the set-up with Panasonic transducers is used in order to in­
vestigate the results of position and radius of curvature estimation when the 
thresholding method is employed to estimate the time-of-flight (TOP). During 
the process of data collection, the transducers’ line-of-sights were maintained 
perpendicular to the target surface since this way, the SNR is maximized. Ta­
bles 6.1-6.8 illustrate the estimation results.

Tables 6.1 and 6.2 show the estimates for ho\ =  500 mm and ho\ =  600 mm, 
respectively. True radius i? =  75 mm and true azimuth angle  ̂ =  0° for the 
two cases. As the transducer separation d increases, the standard deviations of 
the estimated range and radius decrease, but there is not an observable trend 
in the standard deviation of 0. The error for hoi =  500 mm is about 1.3% in 
the estimated radius and 0.9% in the estimated range. The error for hoi =  600 
mm is about 1.3% in the radius estimation but it is about 1.8% in the range 
estimation. Also, the standard deviations are larger for hoi — 600 mm than 
for hoi =  500 mm.

Tables 6.3 and 6.4 illustrate the above results for true radius R =  48 mm 
and true angle 9 =  0°. Again, the standard deviations of the range and radius 
decrease as the separation d increases and the deviations are less for hoi =  500 
mm. The error in the range is 0.5% for hoi =  500 mm, and 0.8% for hoi — 600 
mm. The error in the estimated radius is 4.4% for hoi =  500 mm, and 4.6% 
for hoi =  600 mm.

Table 6.5 displays the estimation results for hoi =  500 mm, R =  25 mm 
and 9 =  0°. The error for the radius is 4.0% and it is 0.1% for the range.

With the help of Tables 6.1-6.5, it is concluded that as d increases the esti­
mations improve, as hoi increases the estimations degrade and as R increases 
the standard deviations of the range and radius of curvature estimations de­
crease.

Tables 6.6 and 6.7 show the estimated results when the target is a plane. 
The radius of curvature estimations and standard deviations are large. By 
looking at the radius estimates, it is confidently concluded that the object is a 
plane.
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Finally, Table 6.8 illustrates the effect of the azimuth angle. As the azimuth 
angle increases, the standard deviations tend to increase. Also, the estimates 
degrade as the true azimuth angle 0 increases. The average error in the angle 
estimation is about 16%.

d (mm) E {r ]  (mm) CTr (mm) E{0]  (deg) ae (deg) E{R}  (mm) o-R (mm)
250 571.90 16.96 0.23 0.19 76.76 15.88
300 569.74 10.88 0.07 0.13 74.18 9.81
350 569.78 7.38 -0.06 0.15 73.66 6.82
400 569.73 5.27 0.11 0.19 73.89 8.09
450 570.07 4.93 -0.19 0.19 74.74 7.23

Table 6.1: Experimental results when hoi =  500 mm, R = 75 mm,  ̂ =  0° and 
the thresholding method is used.

d (mm) E{r}  (mm) Ur (mm) E{0) (deg) o-e (deg) E{R}  (mm) c t r  (mm)
250 661.73 15.93 0.36 0.16 73.26 15.17
300 663.84 15.15 0.21 0.10 74.87 13.90
350 661.98 13.02 -0.14 0.17 73.15 13.08
400 664.07 12.77 0.10 0.15 74..32 11.21
450 664.86 11.42 -0.43 0.15 74.45 9.91

Table 6.2: Experimental results when hoi 
the thresholding method is used.

600 mm, R = 75 mm, 0 =  and

d (mm) E {r }  (mm) (7r (mm) E{9} (deg) ere (deg) E{R]  (mm) j (Th (mm)
200 550.39 29.88 -2.10 0.41 50.18 28.77
250 548.97 8.39 2.48 0.12 48.18 7.73
300 552.19 8.50 0.01 0.20 51.50 8.18
350 549.55 5.23 -0.19 0.09 48.93 4.62
400 555.66 7.62 -0.06 0.18 55.18 6.75
450 549.97 7.06 -0.32 0.18 49.58 6.20

Table 6.3: Experimental results when hoi =  500 mm, R =  48 mm,  ̂ =  0° and 
the thresholding method is used.
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d (mm) E {r }  (mm) CTr (mm) E{0]  (deg) (deg) E{R}  (mm) an (mm)
200 636.97 27.52 -0.49 0..30 40.38 26.88
250 637.96 24.18 -0.56 0.33 41.79 23.01
300 645.36 16.90 -0.11 0.12 49.16 15..38
350 643.29 13.03 -0.25 0.16 47.22 11.72
400 648.86 14.04 -0.18 0.19 52.30 12.68
450 643.10 10.26 -0.21 0.22 46.99 9..34

Table 6.4: Experimental results when hoi — 600 nim, i? =  48 mm, 0 =  0° and 
the thresholding method is used.

d (mm) E {r }  (mm) (7r (mm) E { e }  (deg) <̂e (deg) E{R}  (mm) cTfl (mm)

250 524.72 6.31 0.09 0.13 26.40 6.00
300 529.16 8.23 0.03 0.21 27.61 7.88
350 525.41 5.16 -0.18 0.13 24.03 4.64
400 522.92 7.03 0.35 0.23 24.85 6.89
450 522.91 3.85 -0.23 0.18 24.87 3.85

Table 6.5: Experimental results when ho\ =  500 mm, R — 25 mm, 0 — 0° and 
the thresholding method is used.
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d (mm) E {r }  (mm) (Tr (mm) E m  (deg) (̂ 9 (cleg) E{R}  (mm) an (mm)
200 2824.56 '789.76 0.10 1.95 2.344.87 789.74
250 2527.98 270.57 -0.98 0.17 2048.72 266..34
.300 1-531.40 476.66 -0.40 0.90 1051.84 475.77

Table 6.6: Experimental results when the thresholding method is used to esti­
mate the radius of curvature of a plane at hoi =  500 mm and  ̂=  0°.

d (mm) E {r }  (mm) (7r (mm) E{0}  (deg) CT9 (deg) E{R}  (mm) an (mm)
200 3122.65 860.69 -0.01 4.12 2-545.12 848.52
250 2561.10 693.35 -0.98 1.78 1981.51 688.54
300 13-54.48 480.81 -1.20 3.14 775.72 476.15

Table 6.7: Experimental results when the thi'esholding method is used to esti­
mate the radius of curvature of a plane at ho\ =  600 mm and  ̂ =  0°.

e (deg) E {r }  (mm) (7r (mm) E m  (deg) ere (deg) E{R}  (mm) an (mm)
0 522.92 7.03 0.35 0.23 24.85 6.89
3 522.96 3.19 2.53 0.10 24.65 0.35
5 522.66 4.79 4.11 0.19 24.43 4.76
8 524.12 6.02 6.76 0.18 22.98 5.89

Table 6.8: Experimental results when the thresholding method is used to esti­
mate the radius of curvature of a cylinder at ho\ =  500 mm, d =  400 mm and 
R =  25 mm.
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6.2.2 Curve-fitting Method

In this section, the experimental results of estimation with the curve-fitting 
method are presented. The set-up with Panasonic transducers is used and the 
transducers are rotated around their centers. Tables 6.9-6.16 summarize the 
e.xperimental results.

Table 6.9 illustrates the estimation results for ho\ =  500 mm, R =  75 mm 
and 0 =  . As d increases, the standard deviations decrease for the range
and radius. The average error for the range is about 0.9% and it is 1.1% for 
the radius. Table 6.10 shows the results for hoi — 600 mm, R = 75 mm and 
<1 =  0°. Again as d increases, the standard deviations decrease. The range and 
radius errors are about 1.4% and 2.7%, respectively.

When Tables 6.1, 6.2 and 6.9, 6.10 are compared, it is observed that the 
standard deviations of the range, radius and angle estimates are comparable 
for the thresholding and curve-fitting methods.

Table 6.11 and 6.12 illustrates the results of r =  48 mm and <1 =  0° for 
hoi =  500 mm and hoi =  600 mm, respectively. As d increases, standard 
deviations decrease and they are comparable to the results of the thresholding 
method (Tables 6.3 and 6.4). The error in the range is 0.4% for hoi =  500 mm 
and 0.7% for hoi =  600 mm. The error in the radius is 3.5% for hoi =  500 mm 
and 6.9% for hoi =  600 mm.

Table 6.13 displays the effect of d for hoi =  500 mm, R =  25 mm and 
в — 0°. The error for the radius is 3.3%, and it is 0.5% for the range.

Tables 6.14 and 6.15 illustrate the estimation results when the target is a 
plane. The radius of curvature estimations and standard deviations are huge. 
As in the thresholding case, it is concluded that the target is a plane.

Table 6.16 shows the effect of the inclination angle. As the angle increases, 
the standard deviations increase. Also, the estimates degrade as the true in­
clination angle в increases. The average error in the angle estimation is about 
11.4%.
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d (mm) E {r }  (mm) (Tr (mm) E {» ]  (deg) (Te (deg) E {R }  (mm) o-R (mm)
250 569.47 15.64 0.24 0.18 74.71 14.60
.300 57T40 12.94 0.05 0.15 76.71 11.64
350 570.58 8.04 -0.09 0.15 74.-59 7.25
400 569.45 8.75 0.12 0.18 73.57 8.02
450 569.51 8.36 -0.21 0.18 74.30 7.17

Table 6.9: Experimental results when ho\ =  500 rnrn, E. 
the curve-fitting method is used.

75 mm, 0 =  0° and

d (mm) E{r}  (mm) <Tr (mm) E{0}  (deg) ao (deg) E {R}  (mm) an (mm)
250 664.49 21.71 0.13 0.24 75.80 20.85
300 664.04 16.43 0.23 0.13 75.14 15.23
350 667.68 17.49 -0.16 0.15 77.44 15.78
400 665.78 14.47 0.08 0.19 75.70 12.87
450 666.00 12.06 -0.40 0.20 75.40 10.53

Table 6.10: Experimental results when hoi =  600 mm, R =  75 mm, 0 
the curve-fitting method is used.

0° and

d (mm) E{r}  (mm) (7r (mm) E{0}  (deg) ae (deg) E {R }  (mm) (TR (mm)
200 550.93 30.18 -2.25 0.44 50.64 29.27
250 548.92 8.-56 2.45 0.13 48.15 8.01
300 550.10 10.62 -0.05 0.21 49.69 10.01
350 549.22 6.56 -0.20 0.11 48.81 5.89
400 556.30 8.05 -0.11 0.21 55.92 7.35
450 549.95 7.39 -0.31 0.19 49.80 6.48

Table 6.11: Experimental results when hoi — 600 mm, i? =  48 mm, 0 =  0° and 
the curve-fitting method is used.

77



d (mm) E^{r} (mm) CTr (mm) E{0} (deg) erg (deg) E {R }  (mm) (7r (mm)
200 635.59 25.49 -0.60 0.25 38.99 24.81
250 645.27 29.32 -0.52 0.31 49.20 28.24
300 644.99 17.84 -0.12 0.13 48.92 16.29
350 648.39 14.86 -0.27 0.16 51.74 13.44
400 649.20 12.85 -0.16 0.24 52.76 11.83
450 643.41 12.84 -0.24 0.22 47.16 11.63

Table 6.12; Experimental results when ho\ =  600 mm, i? =  48 mm, 0 =  0° and 
the curve-fitting method is used.

d. (mm) E {r]  (mm) Ur (mm) E{0) (deg) ag (deg) E {R ] (mm) (Tn (mm)
250 520.75 8.96 0.06 0.17 22.56 8.49
300 524.91 11.04 0.01 0.24 23.64 10.34
350 526.53 8.63 -0.15 0.17 25.30 7.53
400 522.81 6.76 0.39 0.26 24.76 6.66
450 520.93 5.73 -0.29 0.12 23.46 4.91

Table 6.13: Experimental results when hoi =  bOO mm, R = 25 mm,  ̂ =  0° and 
the curve-fitting method is used.
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d (mm) E {r }  (mm) Cr (mm) E {e]  (deg) ae (deg) E {R } (mm) a-R (mm)
200 2860.72 559.80 0.10 0.47 2381.13 559.73
250 2471.04 465.58 -0.85 1.09 1991.88 462..32
300 1610.82 99.42 -0.27 0.37 1130.96 99.40

Table 6.14: Experimental results when the curve-fitting method is used to 
estimate the radius of curvature of a plane at hoi =  500 mm and =  0°.

d (mm) E {r }  (mm) (Jr (mm) E W  (deg) ae (deg) E {R ] (mm) an (mm)
200 3503.52 4330.69 -0.31 0.79 2924.89 4929.26
250 2644.16 685.01 -0.54 1.76 2065.07 678.08
300 1467.02 103.38 -1.22 0.21 886.53 101.96

Table 6.15: Experimental results when the curve-fitting method is used to 
estimate the radius of curvature of a plane at hoi =  600 mm and 0 = .

e (deg) E {r ]  (mm) Gr (mm) E {e]  (deg) (re (deg) E {R } (inm) gr (mm)
0 522.81 6.76 0.39 0.26 24.76 6.66
3 522.73 4.35 2.52 0.14 24.50 4.10
5 524.19 5.54 4.20 0.21 26.01 5.30
8 525.91 6.41 6.81 0.20 24.71 6.19

Table 6.16: Experimental results when the curve-fitting method is used to 
estimate the radius of curvature of a cylinder at hoi =  500 mm, d =  400 mm 
and r =  25 mm.
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REMARKS:

• When the transducer separation d exceeds 20-22 cm, the transducer can­
not observe the object with the linear configuration. Because of this, all 
experimental data is collected when the object and the transducers are 
perpendicular to each other.

• The transducers are maintained perpendicular to the object surface while 
experimental data is taken.

6.3 Experimental Set-up with Polaroid Trans­
ducers

The set-up is constructed for 3-D sonar applications. The system consists of 
five Polaroid transducers, each of which can be used both as transmitter or 
receiver. One of them is at the center, and the others symmetrically surround 
the central sensor as shown in Figure 6.3(a). The separation between the fixed 
central sensor and each surrounding sensor can be adjusted manually between 
7.5 — 12 cm. The central sensor can be moved backward and forward, so that 
the others are perpendicular to the target, by a single stepper motor, as shown 
in Figure 6.3(b). A 12-bit 4 channel A /D  converter, Metrabyte DAS-50 IMUz, 
samples the analog signals reflected by the target. The aperture radius of the 
transducers is a =  2 cm, the resonant frequency fo =  49.4 kPIz, and Oo =  12°.

6.3.1 Experimental Results with the EKF

In this section, the simulation results of the EKF for the position and radius of 
curvature estimation are verified using the set-up with Polaroid transducers.

Figures 6.4 and 6.5 illustrate the Kalman filtered results of the experimental 
data for R = 5 cm, d =  7.5 cm, hoi =  100 cm and 0 = 0°. R =  5.1 cm, hoi ~  99 
cm and  ̂ =  0.1° are taken as the initial conditions. Figures 6.4(a),(b) and (c) 
show the innovations for hoi, hri and hn respectively. Figure 6.5(a),(b) and
(c) illustrate that the estimates for range, angle and radius are close to the real 
values. When a three degree-of-freedom chi-square test is applied, it is observed 
that four out of 30 points (the error is 13.3%) falls outside the 97.5% confidence 
region which means the innovations are not white Gaussian distributed.
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(a) (b)

Figure 6.3: Two extreme positions of the sensing device.

Figures 6.6 and 6.7 display the Kalman filtered results of the experimental 
data for / 7 — 10 cm, d =  7.5 cm, hoi =  100 cm and 0 = 0°. R =  10.2 cm, 
hoi — 99 cm and 0 =  0.1° are taken as the initial conditions. Figures 6.6(a) 
and (c) illustrate that the innovations for hoi ^nd hn are white sequences, 
but Figure 6.6(b) shows that the innovation for hri is not a white sequence. 
Figure 6.7 illustrates that the estimated values do not convergé to the real 
values. Since all of the innovations are not white sequences, this result is 
expected. When a three degree-of freedom chi-square test is applied, it is 
observed that six out of 30 points (the error is 20%) fall outside the 97.5% 
confidence region, that is, the innovations are not white Gaussian distributed.

Figures 6.8 and 6.9 illustrate the Kalman filtered results of the experimental 
data for R = 5 cm, d =  7.5 cm, hoi =  140 cm and 0 =  0°. R =  5.1 cm, 
hoi =  139 cm and 0 =  0.1° are taken as the initial conditions. In Figure 6.8, 
all of the innovations seem to be white sequences. Also, the estimated values 
are close to the true values. When a three degree-of freedom chi-square test is 
applied, it is observed that one out of 30 points fall outside the 97.5% confidence 
region and the innovations are white Gaussian distributed.

When the simulation results (Figures 5.2) and the experimental results 
(Figure 6.5) are compared, a huge difference is observed. There are two main 
reasons for this: First, the curve-fitting method is used for the simulations 
and the thresholding method is used for the experimental results. Second, the
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process noise standard deviation is tuned to be 10 ® V in the simulations but 
it is different for the real data.

6.4 Discussion

The experimental results indicate that the radius of curvature estimation can 
be used to classify the target primitives into three categories as plane, edge or 
cylinder. In order to assess the type of the object by estimating its curvature, 
all reflectors are assumed to be curved. A continuum of reflector types are 
considered, i? =  0 for an edge-like reflector going all the way up to R =  oo 
for a plane-like reflector. The classification procedure, consistent with the 
experimental results, is illustrated in Figure 6.10. The uncertainty region of 
each radius estimate is considered to be between [R — SaR, R +  So·«] assuming 
zero mean Gaussian distributed estimation error. In the figure, an changes 
with the type of object (reflected signal depends on the type of the object) and 
seems to increase with radius of curvature.

Given two targets with constant curvature, if there is overlap between their 
uncertainty regions, then these targets may not be distinguished for estimates 
which fall within the overlap region.
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(a)
Measurement Residual for hri (cm)

(b)
Measurement Residual for hll (cm)

(o)

Figure 6.4: Measurement residuals of the Kalman filter for d =  7.5 cm, R = 5 
cm, hoi =  100 cm, 9 =  0®, variance of radius noise =  10“  ̂ cm^, variance 
of angle noise =  10~  ̂ rad^, initial estimates R — 5.1 cm, hgi =  99 cm and 
9 =  0.1°.
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True Angle *= O deg

True Radius =* 5 cm

Figure 6.5: Estimates of the Kalman filter for d =  7.5 cm, R  — b cm, ho\ =  100
cm, <? =  0°, variance of radius noise =  10“  ̂ cm^, variance of angle noise =  10“ “̂
rad^, initial estimates R  =  5.1 cm, hoi =  99 cm and 0 =  0.1°.
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(a)
Measurement Residual for hr1 (cm)

(b)
Measurement Residual for hl1 (cm)

(c)

Figure 6.6: Measux’ement residuals of the Kalman filter for d =  7.5 cm, 72 =  10 
cm, hoi =  100 cm, 0 =  0°, variance of radius noise =  10“  ̂ cm^, variance of 
angle noise =  10“  ̂ rad^, initial estimates R =  10.1 cm, hoi — 99 cm and
e = 0 .1°.
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(a)
T r u e  A n g le  (d o g )

(h)
True Radius *= 1 O cm

(c)

Figure 6.7: Estimated values of the Kalman filter for d =  7.5 cm, i? =  10 cm,
hoi — 100 cm, 9 =  0°, variance of radius noise =  10“  ̂ cm^, variance of angle
noise =  10” '* rad^, initial estimates R  =  10.1 cm, hoi — 99 cm and 6 =  0.1°.
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Measurement Residual for ho1 (cm)

(«)
Measurement Residual for hri (cm)

(b)
Measurement Residual for hl1 (cm)

(c)

Figure 6.8: Measurement residuals of the Kalman filter for d = 7.5 cm, R =  5 
cm, hoi =  140 cm, 6 =  0°, variance of radius noise =  10~  ̂ cm^, variance 
of angle noise =  10“ '* rad ,̂ initial estimates i? =  5.1 cm, hoi =  49 cm and
e =  0 .1°.
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True Range « 140 cm

(a)
True Angle » O deg

(b)
True Radius <= 5 cm

(^)

Figure 6.9: Estimated values of the Kalman filter for d =  7.5 cm, R  — b cm,
ho\ =  140 cm, 0 =  0°, variance of radius noise =  10“  ̂ cm^, variance of angle
noise =  10“  ̂ rad^, initial estimates i? =  5.1 cm, ho\ =  139 cm and 6 =  0.1°.
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Uncertainty Uncertainty
Cylinder
R=2.5

Cylinder
R=4.8

Cylinder
R=7.5

Plane

-0.5 0 0.5 1.5 2.5 3.0 3.5 5.5 6.6 7.5

R(cra)
9.5 00

Figure 6.10: Target discrimination using radius of curvature estimation.
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Chapter 7

CONCLUSION AND  
DIRECTIONS FOR FUTURE 
WORK

In this chapter, some conclusions are presented by summarizing the contents 
and contributions of the thesis and some suggestions for future work are made.

7.1 Summary of Thesis

In this study, the estimations of the location and radius of curvature of cylindri­
cal objects are made by using the equations from geometry and the estimates 
are smoothed by using extended Kalman filtering. A tri-auriil sensor consisting 
of three transmitting/receiving transducers is composed to perform the estima­
tions. The main goal of the thesis is to improve radius of curvature estimation. 
This is done by obtaining sufficient data and rotating the transducers in order 
to make them perpendicular to the object. This way, SNR is increased and the 
estimation accuracy is improved. Two methods are used to rotate the transduc­
ers. First, the peripheral transducers are rotated around their joints. Second, 
the transducers are rotated around their centers. Also, the thresholding and 
curve-fitting methods are used to estimate TOF. In order to assess the per­
formance of the estimator, the bias-variance combinations of both estimators 
are compared to the CRLB. Finally, in order to verify the simulation results, 
experimental data is collected using both Panasonic and Polaroid transducers.
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The main conclusions of this thesis are as follows:

• The estimation with rotated configuration gives much better results than 
the estimation with linear configuration.

• The simulation results and the CRLB comparison test show that the 
curve-fitting method works better that the thresholding method.

• The experimental results illustrate that the thresholding and curv'e-fitting 
methods give comparable results.

• The extended Kalman filtering smoothes the estimates considerably.

• The radius of curvature estimation can be used to differentiate the dif­
ferent types of reflectors such as edges, cylinders and walls.

• The estimations are made for convex {R > 0) reflectors but they are 
eciually applicable for concave {R < 0) reflectors.

7.2 Directions for Future Work

The following are the main directions of future research:

• Sensory information from different types of sensors such as sonar, infrared 
and laser can be fused to estimate the location and radius of curvature 
of cylindrical objects more accurately.

• Location and radius of curvature estimation can be extended to spherical 
targets in 3-D.

• The adjustable tri-aural sensor can be used on a mobile robot for map­
building and robot navigation. •

• The method can be generalized to extended surfaces with spatially vary­
ing curvature where the curvature can be both concave and convex.
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CRAMER-RAO LOWER 
BOUNDS

Appendix A

In the following, the comparison of the standard deviation of the bicised radius 
estimator with the Cramer-Rao lower bound (CRLB) is explained for different 
cl, R and hoi ■

• In the measurements, zero-mean spatially uncorrelated additive white 
Gaussian noise is assumed:

hoi =  r -  R + iVo{r, 0, R)

hoT =  x/r^ -f — 2dr sin0 — R + ti>r(r, R)

hoi — -1- -b 2dr sin 6 — R -f xoi{r,6,R) • (A .l)

ho\ r -  R
 ̂ A 

Z = Hqj- h(r, « , / ! )  = •v/r'̂  -f- cP — 2dr sin 0 —R

ôl x/r^ -f cP 4· 2d?· sin 9 —R

(A.2)

• As explained in the text, the r, 9 and R values maximizing Equation 4.5 
are the maximum likelihood estimators which can be found by taking the

A A

inverse of z =  h(r, R) as follows:

r =
2(P +  2[hoi +  hor)hoi — — hh — h

6 =  sin-1

2hor “l· 2hoi — 4/ioi 
~ 4- 2(jioi — hpr)R

^d{hoi +  R)

(A.3)

(A.4)
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ii ^  f e +  / . ; , ) -  2 f e + < /n
4^oi “  2(hoT +  hoi)

• The biases oi the three estimations are defined as:

(A.5)

6(r) =  E { f } - r

b{e) =  E { 0 } - e
h{R) = E { R } - R

Here, £ '{ .}  is the expectation operator.

• The variances of the estimators are found:

(A.6)

^1

4

var [r(z) — 7"]

[e(t) -  o\ 
[A(z) -  b ]

var

var (A.7)

• CRLB for the variance of an unbiased estimator is given as follows:

(jj > J''
aj >

4  > (A.8)

here and are the diagonal elements of the inverse of the
Fisher information matrix.

• The Fisher information matrix J and its inverse are given as follows:

J =

Jn =  

J22 =  

J33 =

Til J\ 2 «̂ 13

J21 J22 T23 (A .9)

T31 J32 J33 _

■ J " P^ p ^  ■

P^ J22 J23 (A.IO)
J31 J32 J33

d ip  {r, e ,R )
dr dr

d ip  {r, e , R ) ,d li{r ,e ,R )
de 09

dh ^ir,0 ,R l^_,dh irA R )
OR OR
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J l 2 —  J 2 I  —
dh^ir,0,R )^_,dh(r,0 ,R )

dr 80
_  dh^{r,0,R) ydh(r,0,R)

Ji3 — J31 — ------- -̂------- C -----——-----dr dR
T _  7 _ d h ^ {r ,e ,R )^ _ ,d h (r ,0 ,R )h ,  _  J 3 3 = -----------------c

where

C =

c - i  =

< ^ l o 0 0

0 < ■ 0

0 0

1
0 0

0
1

<^Wr
0

0 0
1

Let us abbreviate some of the expressions as follows;

. A 5 / i i  D A 5 /^ 2  ^  A dhz^1 =  D\ — Ui =

Ao =

As =

dr
d h
80

dĥ
dR

Bo =

B .=

dr
dh2

81x2
m

dr  
„  A <9/i3 

80

dR(7 .=

(A .ll)

(A.12)

(A.13)

By taking appropriate derivatives, above parcirneters Ccin be found as 
follows:

Ai =  1

Ao =  0

1 B ,=
r — d sin 0

Cl =  ■
y/r“̂ -{■ d? — 2dr sin 0

0 B2 =
—dr cos 0

C2 - ;
y/r'̂  d? — 2dr sin 0

-1 Bs = -1 C3 = -

r +  d sin 0
\/r  ̂+  cP +  2dr sin 0 

+dr cos 0
\/r̂  +  +  2dr sin 0

1 (A. 14)

With these derivations the elements of the Fisher information iruitrix C cin  

be found easily:

Jn

J 2 2

J 3 3

Af Bl Cl
Wl

Cl
Wo

Al Bl___ I  ̂ I ^

/t2 /t2 q-2
W o W r wi

< 0  < r
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J l 2 =

J3I =

y A 1 A 2  B 1 B 2  C 1 C 2«̂ 21 — — 5----- 1----- ;----- 1-------—
< 0  ^Ir <

2I1A3 B\Bz C\C'z
J i z  —  — 7,------- 1------------ ----------- 1--------- 7,—

J 2 2  =  J '.
A2/I3

32

(7̂̂Wr

+ ^  +ŴrtUo

W i

C 2 C 3 (A.15)
W l

By using the elements of the Fisher information matrix, the diagonal 
elements of the inverse Fisher information matrix are evaluated:

=

=

=

J22J33 P23

|J|
J \ \ J 3 3 — P'̂ 13

'•'I
J11J22 — J\2

|j|
(A.16)
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Appendix B

EXTENDED KALMAN  
FILTER ALGORITHM

The extended Kalman filter (EKF) is a nonlinear estimator which recursively 
calculates a minimum variance estimate for a state by using observations which 
are nonlinearly related to this state. The EKF has many application areas such 
as location estimation problems in mobile robot systems, aerospace navigation 
and process control [33, 34, 35, 36].

The notation of Bar-Shalom [32] is used to provide the details of the ex­
tended Kalman filtering. Also the paper by H. VV. Sorenson [37] is very helpful.

Firstly, notation will be established and process and observation models 
will be given. In general, both the process model and the observation model 
can be nonlinear.

• The state or process model is

x(A: +  l ) -  i[k ,x {k )]+ v {k )  (B .l)

where 'v{k) is the zero-mean, additive, white Gaussian process noise with

E[v(A:)v(i)] = Q(A:)4j (B.2)

and Skj is the Kronecker-delta.

• The observation model is

z{k) =  h [k, x(Â;)] -f- w(A:) 
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where ’w(k) is zero-mean, additive, white Gaussian measurement noise 
with

E [v/{k)w{j)] = R{k)6kj (B.4)

• is estimate of the state vector x ( j)  at time step j  given all 
observations up to time step k.

• P(j|/j) is the conditional covariance matrix of x ( j)  given all observations 
up to time step k.

E X T E N D E D  K A L M A N  FILTER A L G O R IT H M  ;

1. Estimate the state x(A:|A:) at time tk-

2. Predict the state at time tk+i given the measurements up to time tk'.

Si{k + l\k) = i[k,x{k\k)] (B.5)

3. Predict the measurement at time given the measurements up to time 
tk'.

7i{k 4-11^) — h 1, x(A: 4- |̂ ’)] (B .6 )

4. Calculate the measurement residual or the innovation sequence:

r{k + 1) = z{k + 1) -  z{k + l\k) (B.7)

5. Estimate the state covariance P(A:| )̂ at time tk.

6. Calculate the Jacobian of h{k 4-1) at x =  x{k +  1|A;) using steps 2 and 
5:

dh{k 4-1)
4-1) = d X

(B.8)

7. Predict the state covariance:

F{ k  +  l \k)  =  P{k\k)  +  q{ k )

8. Calculate the residual covariance:

S{k +  1) -  H{k -b l)P(fc|^)H'(A: -bl)  -f R(^·)

(B.9)

(B.IO)
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9. Calculate the filter gain:

W {k  +  1) =  P(A: +  1| )̂H'(A· +  l)S{k +  l ) - i  (B . l l )

10. Update the state covariance:

P{k +  l\k +  l ) = P { k  +  1|A:) -  W{ k + l)S{k +  1)W'(A: +  1) (B.12)

11. Update the state using steps 4 and 9.

x(A: +  1|A; +  1) =  x{k  +  1|̂ ·) +  W {k +  1) r {k +  1) (B.1.3)

12. Go to step 1.
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CHI-SQUARE DISTRIBUTED 
RANDOM VARIABLES

Appendix C

In this appendix, the convergence test of the extended Kalman filter algorithm 
is provided. The notation of Bar-Shalorn is used [38].

The following criteria are most commonly used for the consistency of a 
filter;

• The state errors should be zero-mean.

• The innovations should have the same property.

• The innovations should be white (uncorrelated in time).

The first criterion cannot be tested in real data applications. The last two are 
the consequences of the first one and can be tested in real data applications [38].

For a consistent filter, the normalized innovations squared, as given below,

e fik )^ r {k )S -^ {k )r {k )  (C.l)

must have a chi-square distribution with degrees of freedom, where is 
the dimension of the measurement vector z. In this study, since there are three 
measurements, =  3.

Let u be ?r-dimensional Gaussian random vector with covariance matrix ,C. 
When the following is calculated, a scalar quantity is obtained.

u =  (u — u )'C "^ (u  — u) (C-2)
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where u is the mean vector.

V is the sum the squares of n independent, zero mean, unity variance Gaus­
sian random variables, v is called a chi-square distributed random variable 
with n degrees of freedom.

The proof of this can be given as follows:

X  =  C — u) (C.3)
E[x] =  0 (C.4)

E[xx'] =  I (C.5)

The components of x are independent since the covariance matrix is  diag-
onal, and

y =  x 'x  =  ¿  X?
?:=i

(C.6)

where

X i  ~  ^ / " ( 0 , 1 ) (C.7)

In order to measure the performance of the estimator, the statistical table 
for chi-square distribution [38] is used as follows:

Q{x) ^  P{y > x) (C.8)

where y is chi-square distributed random variable with m. degrees of freedom:

y ^ X m (C.9)

The confidence region of this random variable can be found by using the 
statistical table [38]. For example, the 95% confidence region for is given as 
follows:

[y2(0.025),x'(0.975)] =  [0.05,7.38] (C.IO)

This means that when the value

e,(k) =  r'(k)S-^(k)r(k) (C .l l)

is calculated, it is likely to fall between 0.05 and 7.38 95% of the time. In other 
words, out of 100 samples of a chi-square random variable with two degrees- 
of-freedom, about five are expected to fall outside this interval.

100



Appendix D

COMPUTER PROGRAMS

In this chapter, the computer programs used for the simulations are presented. 
The programs are written in C programming language. There are basiccilly 
two programs. First program simulates the location and radius of curvature 
estimations and CRLB with the thresholding and curve-fitting methods. Sec­
ond program is for the extended Kalman filtering. The two programs produce 
MATLAB files to show the results graphically.
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PPOĈHAM 1;

»include <stdio,h>
»include <math.h>
»include <9tdlib.h>
»include<3tddef,h>
»define RAND_MAX (2147483647)
»define Random_Seed 0 /* 0 ■ randomize ♦/

v2 - v2 * fac * std + m; 
return v2;

>
else
{

iset ■ 0;
return (gset ♦ std) + ra;

>

double c,Amax,rmin,pc,fo,var,R;

double N ( double m, double std)

/♦ calculates two normal (mean m, variance std**2) values, returns one ♦/
{

double fac, ul, u2, vl, v2, s; 
int u;
static int iset ■ 0; 
static double gset;

if (iset ■» 0)

s ■ 0; 
do 
{

u » rand 0;
ul * (double) u/ RAND.MAX; 
u ■ rand 0;
u2 = (double) u/ RAND.MAX; 
vl » 2 * ul - 1; 
v2 ■ 2 * u2 - 1; 
s “ vl ♦ vl + v2 * v2;

} while (s > 1);

fac « sqrt ((-2 * log (s)) / s);

gset ■ (vl » fac); 
iset » 1;

void set_seed (void)
/♦ routine to set seed of random number generator in a 'random' fashion bj 
using the time ♦/

{
Brand ((unsigned int) time(NULL));

}

/* This Function Calculates The Signal Value At A Specific Time ♦/

double f( double p, double A, double rm, double r, double tetha, double t, 
double to, double foo, double devT, double dev)
{
return(p*A*pow(rm,3/2)/pow(r,3/2)*exp(-pow(tetha/devT,2)) 
*exp(-pow((t-to-3/foo)/dev,2))*sin(2*H_PI*foo*(t-to)));
>

/· This Function Finds Noisy Time Of Flight */

int fl(double truet, double tidiv, double trh, double tetl,double hg )
{
int i,j;
double k,h[50000];
k=floor(truet*tidiv+0.5) ;
i»0; j«0;
do{
if(i<«k)
h[i]*0 + N(0,var);

else
h[i]*f (pc ,Amax,rmin,hg,tetl, i/tidiv,k/tidiv,fo,6.5*M_PI/180,1/fo)+N(0,var) ; 
if (h[i]>trh)

return(j);}
İ + + ;

}while(i<»50000 j*»0);

}
/♦This function is for curve fitting */
double function(double time, double distance, double angle, double tdiv, 
int coun)

{
double a,b,c,fun[5],cur[5],delta,j; 
int i; 
delta * -1; 
j*coun; 
do 
{
for(i«0;i<3;i++)
{fun[i]»f(pc,Amax,rmin,distance,angle,(j-2.5*i)/tdiv,time, 
fo,6.5^M_PI/180,l/fo)+N(0,var); 
cur[i]«(j-2.5*i)/tdiv;}
a»((fun[0]-fun[1])♦(cur[O]-cur[2])-(fun[0]-fun[2])♦(cur[0]-cur[l] ) )
/((cur[0]-cur[1])♦(cur[1]-cur[2])♦(cur[0]-cur[2])); 
b»((fun[0]-fun[l])-a+(cur[0]*cur[0]-cur[l]*cur[l]))
/(cur[0]-cur[l]);
c*fun[0]-a*cur[0]♦cur[0]-b^cur[0]; 
delta»b^b-4*a^c;

>while(delta < 0 ); 
return((-b+sqrt(delta))/(2^a));
>

/♦ This Function is For Drawing The Signal ♦/ 

void draw(double truet, double tidiv, double trh, double tetl 

101

char ofileClO],int lenght,double hg2)
{
FILE ♦fout; 
int i,j;
double k,ho[50000]; 
fout*fopen(ofile,"w"); 
fprintf(fout,"A»[ \n"); 
k*floor(truet^tidiv); 
for(i»0;i<=lenght;i++){

if(i<-k)
ho[i]*0 + N(0,var); 

else
ho[i]»f(pc,Araax,rmin,hg2,tetl,i/tidiv,k/tidiv 
fo,6.5^M_PI/180,l/fo)+N(0,var); 
fprintf (fout, "*/,f \n”,ho[i]) ;> 
fprintf(fout,"] ; \n plot(A); \n grid; \n") ; 
fclose(fout);
>

mainO
<

int i,j,1,V,count,count1,method,rot,count2,count3,count4,
count5,count6;
int lent,lentl;
double B,k,hl,hr,ho,ro,tet,d,Rl[l000] ,R2[1000],r[200],r2[200] , 
angle[200],angle2[200],alp,x,rl,rr,a,b,hl2,hot,hit,hrt,hr2,
tr2,hr2n,tr2n,hol,tl2,tl2n,hl2n,phi,cl,c3,R21,rr2,zl,beta,
c2,R2r,tetg,rg;
double z,al,bl,a2,a3,a4,alpl,too,til,trr,tll2,variable[200],sura, 
sum1,sum2,sum3,sum4,suraS,suraS,tog,hr1,t etn,alphan,et an, 
ho2,to2,to2n,ho2n,rl2g,rl2,rr2g;
double hoa[50000],hla[50000],hra[50000],hl2a[50000],trhold,timediv. 
Radius,Radius2,distance,distance2, ang, zoig2,meem ,mean2,mean3, 
mean4,means,means,std,std1,std2,std3,std4,stdS,std6,hog,toog, 
hlg,hrg,bias,bia83,bias5,stb,stb3,stbS,A,Al,CRb,toln,holn,tol,
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rol,hll,tll,rll,alpha,eta,hlln,hrln,tlln,trln,trl,гг1,А2,В1,В2, 
C,Cl,C2,kl,k2,k3,k4,k5,k6,CRb2,CRb3,detJ,el[l00],e2[100], 
вЗ[100],mel,me2,me3,vel,ve2,ve3,vtotall,vtotal2,vtotal3;

char letter,input [10];
FILE *fou;
if ( !Randoro_Seed) aet.seedO ;

else srand(Random_Seed);

t (theta), s (std) : ");
/* Takes The True Values */ 
printf("Choose The Variable d, R, 
scanf ("*/,c",tletter) ; 
printf(" enter the file name 
scanf("5is", input) ;
printf(" 1 (thresholding) or 2 (curvefitting) :"); 
scanf ("’/,d",¿method);
printf("1 (rotation around joint) or 2 (rotation around center) :"); 
scanf ("*/,d" ,ftrot) ;
printf("enter the lenght of the variable : "); 
scanf ("*/,d" ,¿lent) ;
printf("enter the iteration number : "); 
scanf ("'/d",&lentl); 
switch(letter){ 
case 'd' :
printf("enter hoi:"); 
scanf("*/,lf", 4hol); 
printf(" enter R:"); 
scanf ("*/,lf " , 4R) ; 
printf("enter noise std :"); 
scanf ('"/.If",ftvar) ; 
printf("enter theta: "); 
scanf ("'/.If " ,4tet) ;
printf(" enter the start point for d : ");
scanf ("’/,If " ,ftd) ;
for(i»0;i<lent;i++)
variable[i]*d+i;
break;

printf("enter hoi:"); 
scanf ('"/.If " , thol); 
printf("enter d:"); 
scanf ("7,lf" , 4d) ; 
printf("enter noise std :"); 
scanf ('"/,If " ,4var); 
printf("enter theta: "); 
scanf ("y.lf" ,4tet);
printf("enter the start point for the radius :");
scanf("'/.lf",4R);
for(i“0;i<lent;i++)
variable[i]»R+i;
break;

case 'r' :
printf(" enter R:") ; 
scanf ('"/.If", 4R): 
printf("enter d:"); 
scanf ("*/,lf", 4d); 
printfC'enter noise std :"); 
scanf ("'/,If " ,4var); 
printf("enter theta: "); 
scanf ("'/.If" ,4tet) ;
printf(" enter the start point for r : ") ;
scanf ("/.If",4hol);
for(i*0;i<lent;i++)
variable[i]*hol+5*i;
break;

case 's' :
printf("enter hoi:"); 
scanf ('"/.If", 4hol); 
printf(" enter R:"); 
scanf ('"/.If", 4R); 
printf("enter d:"); 
scanf ("'/.If ", 4d) ;
printf("enter theta: "); 

scanf ("'/.If " ,4tet) ; 
for(i*0;i<lent;i++) 
variable[i]»0.00001*i;

");
break; 
case 4': 
printf(" enter R: 
scanf ("'/.If " , 4R) ; 
printfC'enter d:") ; 
scanf ("'/.If ", 4d) ; 
printf("enter noise std 
scanf ("’/.If", 4var) ; 
printf("enter hoi:"); 
scanf ("'/.If " , 4hol);
printf(" enter the start point for theta : ");
scanf ("’/,If " ,4tet) ;
for(i»0;i<lent;i++)
variable[i]=tet+i;
break;

>

/* Assigns Constants */

c-34350;
fo=50000;
Amax»l;
rrain»10;
sum=0;
suml"0;
sum2»0;
sum3»0;
sum4*0;
sum5“0;
3um6*0;
count*©;
count 1*0;
count2*0;
count3»0;
count4*0;
counts»©;
counts»©;

timediv*1000000; 
fou*fopen(input,"w"); 
fprintf(fou,"A»[ \n ");

vtotall»©; 
vtotal2»0; 
vtotal3»0; 
for(l»0;Klent ;!+♦)
{
switch (letter) {
case 'd' :
d»variable[l];
fprintf(fou,"’/,If '/,lf '/.If
tet»tet*M_PI/180;
break;
case 'R' :
R»variable[l];
fprintf (fou,"’/,If ’/.If ’/.If
tet»tet*M_PI/180;
break;
case 'r' :
hol»variable[lJ;
fprintf (fou, "’/.If ’/.If ’/,lf '
tet»tet*M_PI/180;
break;
case 's' :
var»variable[l];
fprintf (fou. "’/.If ’/.If ’/.If '
tet»tet*M_PI/180;
break;
case 't' :
tet-variable[l]*H.PI/180; 
fprintf (fou. "’/.If ’/.If ’/.If ■ 
break;

hog»hol;
rg»hol+R;
tetg»tet;

,R,hol+R,tet);

,R,hol+R,tet);

,R,hol+R,tet);

,R,hol+R,tet);

,R,hol+R,tet*180/M.PI);
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pc«0.44946*R-0.022471;
tol»2*hol/c;
togatol;
Radiu3=0;
Radius2“0; 
ang»0; 
ang2»0; 
distancesQ; 
distance2»0; 
std»0; 
stdl*0: 
std3*0 
std4«0 
std5=0 
std6*0

if(var>0) 
trhold=6*var; 
else
trhold»le-9;

/* Monte Carlo*/

mel»0; me2“0; me3“0; 
for(v«0;v<lentl;V++)
{
j*fl(tol,timediv,trhold,tet,hol+R);
drav(tol,timediv,trhold,0.0,"outl.m",10000,hol+R);
if(method*·!)
{toln*j/timediv; 
holn»c*toln/2;} 
else
{toln»function(tol,hol+R,0.0,timediv,j); 
holn*c*toln/2;}

el [’.0 “hoi-hoIn;

rol*hol+R;
/♦printf("holn ;'/,lf \n",holn);*/

/* Calculates the true hll and til */ 
hll*3qrt(pow(rol,2.0)+pow(d,2.0)+2*d*rol*sin(tet))-R;
tll»2*hll/c;
rll*hll+R;

/* Calculates the true hrl and trl */
hrl-sqrt(pouCrol,2.0)+pou(d,2.0)-2*d*rol*sin(tet))-R;
trl*2*hrl/c;
rrl*hrl+R;

/* calculates the true alpha and eta */ 
alpha*asin((rll*rll+d*d-rol*rol)/(2*d*rll)); 
eta»asin((rrl*rrl+d*d-rol*rol)/(2*d*rrl));

/* Calculates Noisy hll and til */ 
j»f1(til,timediv,trhold,alpha,hll+R); 
if (method**!)
{tlln»j/timediv;
hlln*c*tlln/2;}
else
{t1ln*function(til,hll+R,alpha,timadiv,j); 
hlln*c*tlln/2;>
/♦printf("hlln :'/,lf \n",hlln);·/

/♦ Calculates Noisy hrl and trl */ 
j*fl(trl,timediv,trhold,eta,hrl+R); 
if (method**!)
{trln*j/tiraediv;
hrln*c*trln/2;>
else
{trln*function(trl,hrl+R,eta,timediv,j); 
hrln*c“trln/2;}

e2[v]*hrl-hrln;
e3[v]*hll-hlln;

ho2n=c*to2n/2;}
>

/»First calculation of the estimated radius, distance and angle ♦/ 
R1[v]*((hrln*hrIn+hlln*hlIn)-2*(holn*holn+d*d))
/(4»holn-2*(hrln+hlln));
r [v]*(2*d*d+2*(hiIn+hrIn)*holn-2*holn*holn-hlln*
hlln-hrln*hrln)/(2*hrln+2*hlln-4*holn);
angle[v]*180/M_PI*asin((hlln*hlln-hrln*hrln+2*
(hlln-hrln)*Rl[v])/(4*d*(holn+Rl[v])));

Radius*Radius+Rl[v];
distance*distance+r[v]; 

ang»ang+angle[v];

/♦ calculates noisy */

rol*holn+Rl[v]; 
rll*hlln+Rl[v]; 
rrl*hlln+Rl[v];

/* calculates noisy theta,alpha end eta*/

tetn*asin((rll*rll-rol*rol-d*d)/(2*d*rol)); 
alphan»asin((rll*rll+d*d-rol*rol)/(2*d*rll)); 
etan*asin((rrl*rrl+d*d-rol*rol)/(2*d*rrl));

/*The value of ho2 and to2 in the presence of white noise */ 
if (rot**2)
{ho2*hol;
to2»2*ho2/c;
j*fI(to2,timediv,trhold,0.0,ho2+R); 
if(method**!)
{to2n*j/timediv;
ho2n*c*to2n/2;>
else
(to2n*function(to2,ho2+R,0.0,timediv,j);
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/*The Value Of hl2 And tl2 In The Absence Of Noise*/ 
if (rot**2)
{hl2«hll;
tl2*2*hl2/c;>
else
{hl2*sqrt(rll*rll+6*rll*sin(alphan))-Rl[v]; 
rl2g»hl2+Rl[v];
hl2*sqrt((hi1+R)*(hll+R)+6*(hll+R)*sin(alpha))-R; 
tl2-2*hl2/c;}

/*printf("hl2 :'/,lf \n",hl2);*/

/*Calculation Of hl2 In The Presence Of White Noise */

j*fl(tl2,tiraediv,trhold,0.0,hl2+R); 
if (method**!)
{tl2n*j/timediv;
hl2n*c*tl2n/2;}
else
{tl2n*function(tl2,hl2+R,0.0,timediv,j); 
hl2n*c*tl2n/2;>
/*printf ("hl2n :7,lf \n",hl2n);*/

/* The Second Calculation Of The Radius Of Curvatur 
by Using Left sensor */

if(rot**l)
{rl2*hl2n+Rl[v]; 
a-(rl2g*rl2g-rll*rll)/(2*rl2g); 
b*(6+2*rll*sin(alphan))/(2*rl2g); 
z»(3-a*b)/(b*b-l)-sqrt(a*a-6*a*b+9)/(b*b-l);
/*printf("z :'/,lf \n",z) ;*/ 
phi*acos(3/(3+z));
/*printf ("phi :7,lf \n",phi):*/
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cl=sqrt(pow(3+z,2.0)-3*3); 
c3“d-z;
R21»sqrt((rl2-cl)*(rl2-cl)+c3*c3-2*rl2*c3*sin(phi))-holn;
}

/♦ The Value Of hr2 And tr2 In The Absence Of Noise*/ 
if (rot**l)
{hr2»sqrt(rrl*rrl+6*rrl*sin(etan))-Rl[v]; 
rr2g=hr2-*-Rl[v] ;
hr2=sqrt((hrl+R)♦(hrl+R)+6*(hr1+R)*sin(eta))-R;

tr2*2*hr2/c;}
else
{hr2»hrl; 
tr2=»2*hr2/c;}

/♦Calculation Of hr2 In The Presence Of White Noise ♦/

j»fI(tr2,timediv,trhold,0.0,hr2+R); 
if (method··!)
{tr2n»j/timediv;
hr2n»c*tr2n/2;}
else
{tr2n»function(tr2,hr2+R,0,0,tiraediv,j); 
hr2n*c*tr2n/2;>

/* The Second Calculation Of The Radius Of 
Curvature by Using Right sensor ♦/

if(rot**!)
{rr2*hr2n+Rl[v];

a*(rr2g*rr2g-rrl*rll)/(2*rr2g); 
b*(6+2*rrl*sin(eta))/(2*rr2g);

zl*(3-a*b)/(b*b-l)-sqrt(a*a-6*a*b+9)/(b*b-l); 
beta»acos(3/(3+zl)); 
cl»sqrt(pow(3+zl,2.0)-3*3); 
c2*hr2n-cl;

c3»d-zl;
R2r*3qrt((rr2-cl)*(rr2-cl)+c3*c3-2*(rr2-cl)*c3*sin(beta))-holn;>

/* The second calculation of radius, distance and angle */ 
if (rot*=2)

{R2[v]*((hr2n*hr2n+hl2n*hl2n)-2*(ho2n*ho2n+d*d)) 
/(4*ho2n-2*(hr2n+hl2n));

r2 [v] = (2*d*d+2*(hl2n+hr2n)*ho2n-2*ho2n*ho2n-hl2n* 
hl2n-hr2n*hr2n)/(2*hr2n+2*hl2n-4*ho2n);

angle2[v]»180/M_PI*asin((hl2n*hl2n-hr2n*hr2n+2*
(hl2n-hr2n)*R2[v])/(4*d*(ho2n+R2[v])));> 
else
{R2[v]«(R21+R2r)/2;
r2[v]*0;

angle2[v]*0;>

Radius2»Radius2+R2[v]; 
distance2»distance2+r2[v];

ang2»ang2+angle2[v]; 
mel«mel+el[v]; 
me2*rae2+o2[v]; 
rae3»me3+e3[v];

}

mean*Radius/lent1; 
raean2«Radius2/lentl; 
mean3*distance/lent1; 
mean4=distauice2/lentl; 
mean5»ang/lent1; 
mean6»ang2/lentl; 
mel«mel/lentl; 
me2*me2/lentl; 
me3»me3/lentl; 
if(raean>=0)
{ sum*sum+mean; 

count++;} 

if(raean2>®0) 

{suml»3uml+mean2;
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count!**;} 
if(mean3>»0)
{sum3*sum3*niean3;
counts**;> 
if(mean4>*0)
{sum4»sum4*raean4;
count4++;} 
if(mean5>*0)
{sum5*sura5*raean5; 
counts**;} 
if(raean6>*0)
{sum6=sum6*mean6;
counts**;} 

ve!»0; 
ve2*0; 
ve3»0;
for(v«0;v<lent!;V**) 
{std«std*pow(R![v]-mean,2); 
stdl«std!*pow(R2[v]-mean2,2); 
std3»std3*pow(r[v]-mean3,2); 
std4*std4*pow(r2[v]-moan4,2); 
std5*std5*pow(angle[v]-meanS,2); 
std6«std6*pow(angle2[v]-meanS,2); 
ve!*vo!*pow(e![v]-me!,2); 
ve2“ve2*pow(e2[v]-me2,2) ; 
ve3»ve3*pow(e3[v]-me3,2) ;> 

ve!»ve!/lent!; 
ve2»ve2/lent!; 
ve3“ve3/lent!; 
if (ve! < 0.0000002) 
ve!»0.0000002; 
if (ve2 < 0.0000002) 
ve2»0.0000002; 
if (ve3 < 0.0000002) 
ve3-0.0000002;

std»sqrt(std/lentl); 

stdl-3qrt(std!/lent!); 

std3*sqrt (std3/lent!); 
3td4»sqrt(std4/lent!);

std5»sqrt(stdS/lent!) ;
8tdS»sqrt(std6/lent!); 
bias«mean-R; 
bias3«mean3-(hog*R); 
bias5»mean5-tetg*!80/H_PI; 
stb*sqrt(std*std*bias*bias);
8tb3*sqrt(std3*std3*bias3*bias3); 
stb5»sqrt(std5*stdS*bias5*bias5);

vtotal!«vtotal!*ve!; 
vtotal2*vtotal2*ve2; 
vtotal3*vtotal3*ve3;

A*!;
B«((hog*R)-d*sin(tetg))/(sqrt((hog*R)*rg+d*d-2*d*rg*sin(tetg))); 
C»(rg*d*sin(tetg))/(sqrt(rg*rg*d*d*2*d*sin(tetg))); 
B!»-d*rg*cos(tetg)/(sqrt(rg*rg+d*d-2*d*sin(tetg))); 
C!*d*rg*cos(tetg)/(sqrt(rg*rg*d*d*2*d*sin(tetg)));
A2— !;
B2— !;
C2— !;
k!»A*A/ve!*B*B/ve2*C*C/ve3; 
k2-B!*B!/ve2*C!*C!/ve3; 
k3»A2*A2/ve!*B2*B2/ve2*C2*C2/ve3; 
k4«B*B!/ve2*C*C!/ve3; 
k5-A*A2/ve!*B*B2/vo2*C*C2/ve3; 
kS-B!*B2/ve2*C!*C2/ve3;
det J»k!·(k2*k3-k6*kS)-k4*(k3*k4-k5*kS)*kS*(k4*k6-k2*kS); 
CRb-(k2*k3-k6*k6)/(detJ);
CRb2-(k!*k3-kS*k5)/(detJ)*!80/M_PI;
CRb3«(k!*k2-k4*k4)/(detJ);
CRb»sqrt(CRb);
CRb2-sqrt(CRb2);
CRb3-sqrt(CRb3) ; 
tet«tetg*!80/M_PI;
printf("me!-'/.lf \n me2-y.lf \n me3-7.1f \n vol-'/.lf \n ve2-7.1f\n ve3-7.1f 
\n detJ-7.1f\n CRb!-7.1f \n CRb2-7.1f \n CRb3-7.1f \n k!-7.1f \n k2»7.1f \n k·
\n k4»7.1f \n kS-7.1f \n kS-7.1f \n ",me!,me2,me3,ve!,ve2,ve3,dotJ,CRb,CRb: 

k!,k2,k3,k4,k5,kS);
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fprintf(fou," y.lf y.lf y.lf y,lf y,lf ’/.If '/.if '/.if '/.if '/,if y.if y,if y.if yjf 
y,lf y,lf y.lf y.lf y.lf y.lf y.lf y.lf y.lf y,lf Xlf y,lf y,lf -.variableCl] .mean, 

mean-std,mean+std,std,mean2,raeam2-stdl ,mean2+stdl ,stdl ,mean3,mean3-std3, 
mean3+std3,std3,mean4,mean4-std4,mean4+std4,std4,mean5,meafl5-std5,raeaii5+stdS, 
stdS,means,mean6-std6,mean6+8td6,atd6,bias,stb) ; 
printf("deg \n" »variable[1] ) ;
printfC'Rl :y,lf \n R2 I'/.lf \n rl r’/ l f  \n r2 \n angle! ¡Xlf
\n angle2 r'/.lf \n " ,mean,mean2,mean3,mean4,mean5,mean6);

fprintf (fou,-/.If  y,lf y,lf y,lf y.lf ‘/.If ’/.If '/.If '/.if '/.if y,lf '/.if \n",CRb,
CRb2,CRb3,stb,stb3,stb5,bias,bias3,bia35,std,5td3,stdS) ;

}
vtotall*vtotall/lont; 
vtotal2=vtotal2/lent; 
vtotal3*vtotal3/lent; 
fprintf(fou,"] \n B*[ \n"); 
f or(l«0;Klent ;1++)
{
switch (letter) { 
case 'd' : 
d»variable[l]; 
tot=tet*M_PI/180; 
break; 
case 'R' :
R*variable[l] ;
tet»tet*M_PI/180;
break;
case 'r' :
hoi»variable[l] ;
tet“tot*M_PI/180;
break;
case 's' :
var*variable[l] ;
tat»tet*M_PI/180;
break;
case 't' :
tet»variable[l]*M.PI/180;
fprintf(fou,"'/.lf y,lf y,lf ",R,hol+R,tet*180/H.PI);

>
hog»hol; 
rg»hol+R; 
tetg«tet;
A»l;
B«((hog+R)-d*sin(tetg))/(sqrt((hog+R)*rg+d*d-2*d*rg*sin(tetg))); 
C«(rg+d*sin(tetg) )/(sqrt(rg*rg+d*d+24'd*sin(tetg)) ) ; 
Bi«-d»rg*co3(tetg)/(sqrt(rg*rg+d-"d-2*d*sin(tetg))) ; 
Cl»d*rg*co3(tetg)/(sqrt(rg*rg+d+d+2*d+sin(tetg)));
A2»-l;
B2»-l;
C2«-l;
kleA*A/vtotall*B*B/vtotal2+C*C/vtotal3;
k2»Bl*Bl/vtotal2+Cl*Cl/vtotal3;
k3«A2*A2/vtotall+B2*B2/vtotal2+C2’»C2/vtotal3;
k4=B*Bl/vtotal2+C'*Cl/vtotal3;
kS*A*A2/vtotall+B*B2/vtotal2+C*C2/vtotal3;
k6»Bl*B2/vtotal2+Cl*C2/vtotal3;
detJ=kl*(к2*кЗ-кб+к6)-k4*(кЗ*к4-к5*кб)+kS+(k4*k6-k2*k5); 
CRb»(k2»k3-k6*k6)/(detJ);
CRb2-(kl*k3-k5*k5)/(detJ)*180/M.PI;
CRb3»(kl*k2-k4*k4)/(detJ);
CRb»sqrt(CRb);
CRb2-sqrt(CRb2);
CRb3»sqrt(CRb3);
fprintf (fou,"·/,If '/.If ’/.If ’/.If \n",variable[l] ,CRb,CRb2,CRb3) : 
printf (fou,"'/,lf '/.If ’/.If ’/.If \n",variable[l] ,CRb,CRb2,CRb3) ;

sum*sum/count; 
suml»suml/countl; 
sum3»sum3/counts; 
sum4»sura4/count4;
3um5»sum5/count5; 
sum6«sum6/count6;
printf ("Average Radius! : */,lf \n Average Radius2 ; ’/.If \n ",sum,sum!); 
printf ("Average distance! : */,lf \n Average distaлce2 : ’/,lf \n ",sum3,sum‘
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printf ("Average angle! : '/.If \n Average angle2 : '/.If \n ",sum5,sum6);

/«fprintf(fou, "] \n hold on; plot(A(:,4),A(:,!)); plot(A(:,4),A(:,5),'c— ');
plot(A(:,4),A(:,6),'y-',A(: ,4),A(:,6),'yo'); plot(A(:,4),A(:,7) ,'y-' ,A(: ,4) , 
A(:,7),'yo'); plot(A(:,4),A(:,9),'y-.'); grid; plot(A(:,4),A(:,!0),'y-.', A( :, 
,A(:,!0),'y+') ; plot(A(:,4),A(:,!!),'y-,A(:,4),A(:,!!),'y+') ; hold off; 
pause; figure(2); hold on; plot(A(:,4),A(:,2)) ;
plot(A(: ,4),A(:.!3),'C“ '); plot (A( : ,4) ,A(:, !4) ,'y-» ,A(: ,4) , A(: , !4) , *yo') ; 
plot(A(: ,4),A(: ,!5),'y-',A(:,4),A(:,!5),'yo'); 
plot(A(:,4),A(:,!8),'y-.',A(:,4),A(:,!8),'y+'); 
plot(A(:,4),A(:,!9),'y-.',A(: ,4),A(:,!9),'y+0; plot (A(: ,4) , A(:, !7) ,'y-.') ; 
grid; hold off; pause; figureO); hold on; plot(A(: ,4) ,A(: ,3)) ;
plot(A(:,4),A(:,2!),'c— '); plot(A(:,4),A(:,22),'y-',A(:.4),A(:,22),'yo'); 
plot(A(:,4),A(:,23),'y-',A(:,4),A(:,23),'yo'); 
plot(A(:,4),A(:,26),'y-.',A(:,4),A(:,26),'y+'); 
plot(A(:,4),A(:,27),'y-.',A(:,4),A(:,27),'y+'); 
plot(A(:,4),A(:,25),'y-.’); grid; hold off; "); ♦/

/♦ This part will be used only for CR */
fprintf(fou,"] \n hold on; plot(A(:,4),A(:,3!)); plot(B(:,!),B(:,2),'-.') ; 
hold off; grid; pause; figure(2); hold on; plot(A(:,4),A(:,32)); 
plot(B(:,!),B(:,3),'-.') ; hold off; grid; pause; figure(3); 
hold on; plot(A( : ,4) ,A(: ,33)) ; plot (B( :,!) ,B( : ,4) ,'-.*) ; hold off; grid; 
pause; figure(4); hold on; plot(A(:,4),A(:,34)); plot(A(:,4),A(:,37),'c-.') ; 

plot(A(:,4),A(:,40),'y-',A(:,4),A(:,40),'yo'); grid; hold off; pause; 
figure(5); hold on: plot(A(:,4),A(:,35)); plot(A(:,4),A(:,38),'c-.');

plot(A(:,4),A(:,4!),'y-',A(:,4),A(:,4!),'yo') ; grid; hold off; 
pause; figure(6); hold on; plot(A(:,4),A(:,36)); plot(A(:,4),A(:,39),'c-.'); 

plot(A(:,4),A(;,42),'y-',A(:,4),A(:,42),'yo'); grid; ");

fclose(fou);

>
P R O G R A M  2 :

•include ./cbraat/cbmat.h"
•include <3tdio.h>
•include <math.h>
•include <stdlib.h>
•include<stddef.h>
•define RAND.MAX (2!47483647)
•define Random.Seed 0 /* 0 =« randomize */

double c,Amax,rmin,pc,fo,var,R;

mainO
{
matrix.t F,H,x_est,x_pred,z_pred,P_est,P_pred,v_res,S_res,
W.gain,QQ,RR,zz,F_T,H_T,W.T,S_I,tXX!,tXX2,tX,tZX,tXZ, 
tZZ,tmpmsr;
int i,j,1,V,count,count!,method,rot,count2,counts,count4, 
count5,counts,method2;
int lent,lent!,XDIM,ZDIM,steps,dumm!,dumm2,dummS;
double B,k,hl,hr,ho,ro,tet,d,R![!000],R2[!000],r[200],r2[200], 
angle[200],angle2[200],alp,x,rl,rr,a,b,hl2,hot,hit,hrt, 
hr2,tr2,hr2n,tr2n,ho!,tl2,tl2n,hl2n,phi,c!.c3,R21,rr2, 
z!,beta,c2,R2r,tetg,rg,nu;
double Z,a!,b!,a2,a3,a4,alp!,too,tll,trr,tll2,variable[200], 
sum,sum!,sura2,sum3,sum4,sum5,sumS,tog,hr!,tetn,alphan, 
etan,ho2,to2,to2n,ho2n,rl2g,rl2,rr2g;
double Rk[!00],rk[!00],tetk[!00],hoa[50000],hla[50000],hra[50000], 
hl2a[50000],trhold,timediv,Radius,Radius2,distance,distance2, 
ang,ang2,mean,mean2,means,mean4,mean5,means,std,std!,std2, 
std3,std4,std5,3tdS,hog,toog,hlg,hrg,bias,bias3,bias5,stb, 
stb3,8tb5,A,A!,CRb,to!n,ho!n,to!,ro!,hl!,tl!,rl!,alpha,eta, 
hl!n,hr!n,tl!n,tr!n,tr!,rr!,A2,B!,B2,C,C!,C2,k!,k2,k3,k4,k5, 
kS,CRb2,CRb3,detJ,radiu3_noise,diSt.noise,angle_noise,qx,dl,
d2,d3,d4,kstd!,kstd2,kstdS,km!,km2,km3,dumm4,dummS; 
char letter,input[20],input![20],input2[20];
FILE *fou, «fou!, «fou2; 
if (IRandom.Seed) set.seedO;

else srand(Random.Seed);
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read the data : ”); 

write the results : ");

/ * Takes The True Values ♦/

printf("Choose The Variable d, R, r, t (theta), s (std) : "); 
acanf ("'/,c" ,¿letter) ; 
printf("enter the filename 
scanf ("*/,3", input2); 
printf("enter the filename 
scanf ("/,s",inputl); 
printf("enter the iteration number 
scanf ("’/.d" .¿lentl); 
printf("enter d: "); 
scanf ("'/,If " ,ftd) ; 
printf ("enter R : ."); 
scanf ("'/,If " ,4R) ; 
printf("enter hoi :"); 
scanf ("*/,If " ,fchol) ; 
printf("enter theta:"); 
scanf ("*/,lf" ,ttet) ; 
rol=hol+R;

/* Assigns Constants * /  
c-34350; 
fo»50000;
Amax=l; 
rmin=10; 
sum=0; 
suml»0; 
sum2*0; 
sum3=0; 
sum4*0; 
sum5»0; 
sum6*0; 
count»0; 
coant 1*0; 
counr.2*0; 
count3»0; 
count4*0;

count5*0; 
count6*0; 
timediv*1000000; 
fou2*fopen(input2,"r") ; 
foul*fopen(inputl,"u"); 
fprintf(foul,"B=[ \n ");

hog*hol; 
rg»hol+R; 
tetg*tet;
pc-0.44946*R-0.022471; 
tol*2*hol/c; 
tog*tol;
Radius»©;
Radius2»0; 
ang»0; 
ang2»0; 
distance»©; 
distance2»0; 
std»0; 
stdl*0; 
std3»0 
std4*0 
std5»0 
std6»0

/* For Kalman Filtering

tmpmsr»mat_neu(lentl+5,3);

XDIM=3; ZDIM=3; 
nu*10;
x_est»mat.new(XDIM,1); 
x_pred*mat_neu(XDIM,1); 
F»mat.new(XDIM,XDIM); 
H=mat_new(ZDIH,XDIM); 
P_est*mat_new_diag(0.O.XDIM); 
zz»mat_new(ZDIM,1); 
z_pred»mat_new(ZDIH,1); 
v_res»oat_neu(ZDIH,1);

P_pred»mat.new_diag(0.0,XDIM); 
S_res*mat_new(ZDIM,ZDIM); 
W_gain*mat_new(XDIM,ZDIM); 
qq»mat_new(XDIM,XDIM); 
RR*mat_new(ZDIH,ZDIM);
/♦ Temporary stuff */
F_T » mat_new(XDIM, XDIM);
H_T * mat_new(XDIM, ZDIM);
W_T - mat_new(ZDIM, XDIM);
S_I * mat_new(ZDIM, ZDIM); 
tXXl - mat_new(XDIM, XDIM); 
tXX2 - mat_new(XDIM, XDIM); 
tX - mat.new(XDIM, 1); 
tZX - mat_new(ZDIM, XDIM); 
tXZ » mat_new(XDIM, ZDIM); 
tZZ » mat_new(ZDIM, ZDIM);
/ * Process Noise */

for (i - 0; i < XDIM; ++i)
for (j - 0; j < XDIM; ++j) 

e(QQ. ii j) · 0-0;

e(qq, 0, 0) -  0.001;
e(qq, 1 , 1) -  0.001;
e(qq, 2 , 2) -  0.0001;

/ * Initialization of state prediction covariance */

kml»0; km2»0; km3»0; kstdl*0; kstd2*0; kstd3*0; 
for(v»0;v<(lentl+l);v++)
{
fscanf(fou2,"’/,d y.d y.d y.d y,lf Xlf ’/.If ’/.If '/.If 
\n " .¿steps,4dumml,ftdumro2,4dumm3,4holn,4hrln, 

4hlln,tdum.’n4,4dumm5) ;

holn»holn/10
hrln*hrln/10
hlln»hllr./10

/* Calculates the true hll and til ♦/
hil»sqrt(pou(rol,2.0)+pow(d,2.0)+2*d*ro1*
sin(tet))-R;
tll»2*hll/c;
rll*hll*R;

/* Calculates the true hrl and trl * /
hrl»sqrt(pow(rol ,2.0)+pow(d,2.0)-2*d’*'rol’»
sin(tet))-R;
trl»2*hrl/c;
rrl*hrl+R;

e(tmprasr,v,0)»holn; e(tmpmsr,v,l)*hrln; 
e(tmpmsr,v,2)»hlln;

for (i » 0; i < XDIM; ++i)
for (j - 0; j < XDIM; ++j) 

e(P_est,i,j)*nu*e(qq,i,j);
kml»kml+holn; km2*kra2+hrln; km3*km3+hlln;

>
kml*kinl/(lentl+l); km2*km2/(lentl + l) ; km3*km3/(lentl + l) ;

f * Some Parts of Jacobian Matrices ♦/

F»mat_new_diag( 1.0 , 3);

e(H, 0, 0)*-l; e(H, 0, 1)*1; e(H, 0, 2)-0; e(H, 1 ,0)»-l; e(H,2,0)*-l;

for(v»0;v < (lentl+1) ;v++)
{
k3tdl»kstdl+pow((e(tmprasr,v,0)-hol),2.0) ; 
kstd2»kstd2+pow((e(trapmsr,v,l)-hrl),2.0);



kstd2=kstd2+pow((e(tmpmsr,v,2)-hll),2.0) ;
>
kstdl=sqrt(kstdl/(lentl+l)); 
kstd2=sqrt(kstd2/(lentl+l)); 
k;itd3=sqrt(kstd3/(lentl + l)) ;

for (i » 0; i < ZDIM; ++i)
for (j = 0; j < ZDIM; ++j) 

e(RR, i, j) » 0.0; 
q (RR, 0, 0) - kstdlt-kstdl; 
e(RR, 1, 1) «kstd2*kstd2; 
e(RR, 2, 2) «k3td3*kstd3;

for(v=0;v < lentl;v++)
{

holn=o(tmpmsr,v,0) ; hrln«»a(tmpmsr,v, 1) ; 
hlln=e(tmpmsr,v,2);
printf("holn : '/.If \n hrln : 7,lf hlln : 
e(tmpmsr,v,0),e(tmpmsr,v,1),e(tmpmsr,v,2));

if(v*=0)
{
e(x_est,0 ,0)=4.9 ; 
e(x_est,1 ,0 )»5 5 .1; 

e(x_est ,2,0)=»0.01;
}
/* Noisy Measurements ♦/ 
e(zz,0,0)“e(tmpmsr,v+l,0) 
e(zz,1,0)»e(tmpmsr,v+1,l) 
e(zz,2,0)=e(tmprasr,v+l,2)

/♦ State Prediction * /

e(x_pred,0,0)» e(x_est,0,0) 
o(x_pred,1,0)· e(x_est,1,0) ; 
e(x_pred,2,0)= e(x_est,2,0) ;

e(z_pred,0,0)=e(x_prad,l,0)-o(x_pred,0,0); 
e(z_pred,l,0)»sqrt(pow(e(x_pred,l,0),2.0)+d*d-2*

d*e(x_pred,1,0)*sin(e(x_pred,2,0)))-
e(x_pred,0,0);
e(z_pred,2,0)»»3qrt(pcw(o(x_pred,l,0) ,2.0)+d*d+ 
2>»d*e(x.pred,l,0)*sin(e(x_pred,2,0)))- 
e(x_pred,0,0);

/* Measurement Residual */

qmat_sub(v_res,zz,z_pred);

/* Evaluation of Jacobians */

e(H, 1, l)=*(e(x_pred, l,0)-d*sin(e(x_pred,2,0))) 
/sqrt(pow(e(x_pred,I,0),2.0)+d*d-2+d* 
e(x_pred,l,0)*sin(e(x_pred,2,0))); 
e(H,1,2)=(-d*e(x_pred,1,0)*cos(e(x_pred,2,0)))
/sqrt (pow(e(x_pred, 1,0) ,2 .0)+d*d-2*d·* 
e(x_pred,l,0)*sin(e(x_pred,2,0))); 
e(H,2 ,1 )* (e(x.pred,1 ,0 )+d*s in(e(x_pred,2 ,0 )))  
/sqrt(pow(e(x_pred,1 ,0 ),2.0)+d*d+
2*d*e(x_pred,1,0)*sin(e(x_pred,2,0))); 
e(H,2,2)»(d*e(x_pred,1,0)*cos(e(x_pred,2,0))) 
/sqrt(pow(e(x_pred,1,0),2.0)+d*d+
2*d*e(x_pred,l,0)*sin(e(x_pred,2,0)));

/* State Prediction Covariance */

qraat_trans(F_T,F); 
qmat_rapy(tXXl,F,P_est); 
qmat_mpy(tXX2, tXXl,F_T); 
qmat_add(P_pred,tXX2,QQ);

/* Residual Covariance */

qmat_trans(H_T, K); 
qmat_rapy(tZX, H, P.est);

/* Measurement Prediction */

12(i

qmat_mpy(tZZ, tZX, H_T); 
qmat_add(S_res, tZZ, RR);

/♦ Filter gain ♦/

figure(6); hold on; plot(B(:,1),B(:,7),'y-'); plot(B(:,1),B(;,12) ,'c-.'); 
hold off; grid;"); 
fclose(foul); 
fclose(fou2);

qmat.mpy(tXZ, P_pred, H_T); 
if (qmat_inv(S_I, S_res ) «■ SINGULAR)

fprintf(stderr, "Singular Inversion of S\n"); 
qmat_mpy(W_gain, tXZ, S_I);

/* Updated State Estimate * /

}

qmat_mpy(tX, W.gain, v_res); 
qmat_add(x_est, x_pred, tX);

/♦ Updated State Covariance ♦/

qinat_trans(W_T, W_gain) ; 
qmat_mpy(tXZ, W.gain, S.res); 
qmat.mpyCtXXl, tXZ, W_T); 
qmat_sub(P_est, P.pred, tXXl); 
fprintf(foul,"'/.d '/.g '/.g '/.g '/.g */.g V.g y.g y.g y.g 
y.g y.g y.g y.g y.g \n", V, o(v.res,0,0),
e(v_res,1,0),e(v_res,2,0),e(x_est,0,0), 
e(x_est,1,0),180/M_PI*o(x.est,2,0), 
e(x_est,l,0)-R,holn,e(x_pred,0,0), 
e(x_pred,1,0),e(x.pred,2,0)*180/M_PI,
R, rol, tet*180/M_PI);
printf("'/.d '/.g */.g ’/.g ’/.g '/.g y.g \n",v,e(v.res,0,0), 
e(v_res,1,0),e(v_res,2,0),e(x.est,0,0), 
e(x.est,l,0),180/M_PI*e(x.est,2,0));

}
fprintf (foul,"]; figured); plot(B(:, 1) ,B(: ,2)) ; grid; pause; 

figure(2); plot(B(: ,1) ,B(: ,3)) ; grid; pause; figured); plot(B(:, 1) ,B(: ,4)); 
grid; pause; figure(4); hold on; plot(B(:,1),B(:,5),'y-'); 
plot(B(:,l),B(:,10),'r-.'); grid; hold off; pause; figure(5); hold on; 
plot(B(:,1),B(:,6),'y-'); plot(B(:,1),B(:,11),'c-.'); grid;hold off; pause;
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