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ABSTRACT

R O BUST SOLUTIONS T O  SINGLE AN D  M ULTI-PERIOD  
M ACH IN E L A Y O U T  PROBLEMS W IT H  INTERVAL FLOW S

Özgür Atilla Tüfekçi 
M.S. in Industrial Engineering 

Supervisor: Assoc. Prof. Barbaros Ç. Tansel 
September, 1997

Design clecisous are genevcUly given in the early stages when there is a great 
deal of inexactness in the data gathered. In this study, we consider the plant Uiyout 
problem witli inexactness in material flow quantities with the aim of designing robust 
layouts. Material flow quantities are assumed to lie in a priori specified intervals 
based, for example, on low ¿md high demands. The robustness criterion we use is to 
minimize the maximum I’egret. We extend our work to the multi-period case where 
a distinction is made l)etween reversible and irreversible layout decisions.

Key words: Plant Layout, robust optimization , inexact data.
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ÖZET

M A L ZE M E  AKIŞLARININ A R ALIK  D EĞ ER LER İYLE  
TA N IM LAN D IĞ I T E K  V E  ÇOK D Ö N EM  M A K İN E  YERLEŞİM  

PROBLEM LERİNE DAYANIKLI Ç Ö ZÜ M LER

Özgür Atilla Tüfekçi
Endüstri Mühendisliği Bcilümü Yüksek Lisans 
Tez Yöneticisi: Doç. Dr. Barbaros Ç. Tansel 

Eylül, 1997

Makine yerleijirn problemlerinde tasarım kararları, genellikle eldeki verinin 
yetersiz olduğu ön safhalarda verilir. Bu çalışmada, dayanıklı çözümler üretmek 
amacıyla, malzeme akış miktarlarının belirsiz olduğu durumlarda makine yerleşim 
problemleri İncelenmektedir. Malzeme akış miktarlanmu, akışların en az ve en çok 
olduğu durumlara karşılık gelen alt ve üst değerleri arasında önceden bilinmeyen 
bir değer alacağı varsayılmıştır. Dayanıklılık ölçütü olarak en fazla kaybı enazlama 
seçilmiştir. Çalışmada geri dönülebilir ve dönülemez kararların birbirinden ayrıldığı 
çok dönem problemine de yerverilrniştir.

Anahtar sözcükler: Makine yerleşimi, dayanıklı eniyileme, belirsiz veri.
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Chapter 1

IN TR O D U C TIO N

1.1 Introduction

In this thesis, the plant layout problem with imprecise data is investigated, with the 
aim of designing robust layouts. Plant layout problem is the problem of determining 
the relative locations of a given number of machines among the candidate locations. 
The objective is the minimization of the total material handling cost which is defined 
as the product of material flow and distances between the machines.

We consider plant layout problems with inexactness in material flow quantities. 
Layout decisions are generally given when neither the products nor the process plans 
are complete. Forecasting errors as well as fluctuations in demand are possible 
sources of uncertainty. As the planning horizon for the layout gets longer, even the 
product mix may change. Alternate and probabilistic routings make matters worse. 
As a result, the layout decisions are given with a great deal imprecision in material 
flow data. We express the data in terms of intervals specified by the lowest and 

highest values that the actual value can take. We assume that it is not possible to 

attribute probabilities to realizations of the material flow data.



In case of uncertainty, optimality with respect to an objective does not make 
much sense. The designer is usually interested in the robustness of the layout in 
that the layout should be good enough whatever data is realized. We will be using 
minmax regret criterion as our robustness measure.

With short planning horizons, the set of products is generally known with 
certainty. Estimation of production volumes then turns out to be the only source of 
inexactness. In this case we model the problem as a single period layout problem. 
On the other hand, longer horizons are subject to changes in the product mix and 
higher variability in production volumes. Dynamic layout decisions are needed in 
this kind of environments. We model this problem as a multi-period layout problem 
and differentiate the decisions as reversible and irreversible decisions. Robustness 
of the irreversible decisions is the major issue in the multi-period case.

In Chapter I, we introduce the literature on inexact data as well as the plant 
layout problem and state our motivation. In Chapter II, single period plant layout 
problem is defined and an algorithm is proposed to find a robust solution. Chapter 
III is a similar work for the multi-period problem. Then comes the conclusion in 
Chapter IV.
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1.2 Literature related to “inexact” data

Mathematical programming models usually have the problem of noisy, erroneous 
or incomplete, i.e “inexact” data irrespective of the application domain. Cost of 
resources, demand for the products, returns of financial instruments are examples 
of data that are not known with certainty. In the literature many different ways 

of handling this imprecision are proposed. A brief survey of what has been done 

so far will be given in this section. Figure A .l shows the classification in terms of 
approaches whereas Figure A.2 is a classification in terms of data representation 

types.
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Imprecision in data can be dealt with reactively or proactively. Reactive “post 
optimality” studies develop a deterministic model and use sensitivity analysis 
to discover the effect of data perturbations on the model. Sensitivity analysis just 
measures the sensitivity of a solution to changes in the input data and offers local 
information near the assumed values. It provides no mechanism by which this 
sensitivity can be controlled. To do this a proactive approach is needed.

Proactive approaches can be classified with respect to the environments they are 
used in. There are two different kinds of environments: Risk and Uncertainty 
situations. In risk situations, the link between decisions and outcomes is 
probabilistic. In uncertainty situations, it is imj^ossible to attribute probabilities 
to the possible outcomes of any decision.

In risk situations, a standard and simple approach is to replace the random 
parameters by their expectations and solve a deterministic model. This approach, 
called Expected Value Approach, has the disadvantage of ignoring much 
information contained in the probability distribution. Dantzig (1955), stimulated by 
discussions with A. Ferguson for the problem of allocation of carrier fleet to airline 
routes, extends LP models to include anticipated demand distributions in allocation 
problems. His studies can be considered as the beginning of stochastic modeling. 
His model is a classical two-stage stochastic program with simple recourse, where the 
allocation decisions are the first stage “design” decision variables and the resulting 
excess or shortage are the second stage “control” decision variables which depend 
on both the allocation plan and the realized demand. Design variables are the 
decision variables whose optimal values are not conditioned on the realization of 
uncertain parameters and they can not be adjusted once a specific realization of the 

data is observed whereas control decision variables are subject to adjustment once 
the uncertain parameters are observed. The optimal values of the control variables 
depend both on the realization and on the optimal values of design variables. For 
example, in the context of production processes, design variables determine the



size of the modules whereas the control variables denote the level of production in 
response to changes in the demand.

Dantzig (1955) establishes theorems on the convexity of expected objective 
functions and reduces the two stage stochastic problem into a standard LP. He also 
constructs similar theorems for m-stage case admitting that it has no significant 
computational value in this case. Wagner (1995) calls this type of stochastic models 
Static Stochastic Planning Models .

Continuous distributions cause severe modeling problems when correlations exist 
for the random variables. Instead of using continuous distributions as Dantzig 
does, depending on the problem, one can choose to state risk in terms of scenarios 
where a scenario is defined as a particular realization of data. Modeling risk by a 
small number of versions of the problem which correspond to different scenarios is 
called Scenario Analysis . Suppose that Q = {1 ,2 ,3 ,..., S'} is a set of scenario 
indices. With each scenario index s € D, there is an associated set {d*, Bg, Cg, e«} of 
realizations for parameters related to control variables and control constraints and 
a probability pg. If one knew which scenario would occur, he could solve easily the 
corresponding deterministic problem obtained by replacing the parameter set with 
the values corresponding to that scenario. These solutions are called Individual 
Scenario Solutions and are of no help to the decision maker as it is not known 
which one will occur. Besides, there is no prescription as to how they can be 
aggregated to obtain a single policy that can be used by the decision maker. The 
major aim in scenario analysis is to study possible situations in terms of scenarios 
and to come up with a solution that can perform rather well under all scenarios. 
From now on all the models will be using scenario analysis unless otherwise stated.

Suppose that the deterministic optimization problem has the following structure:

Mill cx +  dy
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Aa- =  b 

Bx +  Cy =  e 

x , y > 0

X e R^\y e R̂ ^

Then Static Stochastic Planning Model can be constructed as:

CHAPTER 1. INTRODUCTION

Min ^  dsysPs +  cx
s = l

Ax =  b.....structural constraints

B s X  +  C'sî/s =  CsVs G 0 ......... control constraints

x,ys ^ 0 Ws Ç. D

The particular block structure of this model is amenable to specially designed 
algorithms. Another approach that is often used with multi-period stochastic models 
is to use rolling horizon. After the model is run, the decisions for the first time period 
are implemented. Then the first stage risk parameters are realized, the model is 
adjusted and rerun. This approach is called Static Stochastic Planning Model 
With Rolling Horizon .

The model used in Static Stochastic Model and Rolling Horizon are the same, 
only the results are used differently. Advantage of rolling horizon approach is that 
it allows the decision maker to use the information gained as time passes although 
the design variables still remain fixed.

Escudero (1993), gives several stochastic multistage formulations of the 

production planning problem. By changing the control variables, many different 
recourse models are introduced for different cases of the problem. Full recourse



models are introduced where all variables are control variables. The main difference 
between the model given by Escudero and the models told above is that it 
is multistage. Escudero considers the “regret” associated with the solutions of 
the models introduced. Regret is defined as the difference between the cost of 
implemented solution and the individual optimal solution corresponding to the 
scenario which actually occurred and the regret distribution is defined as the 
distribution function of regret. The models are stated to produce solutions whose 
regret distribution most closely approximates the zero-regret distribution in the 
sense of minimal /1 distance between the inverse of regret distribution and the inverse 
of zero regret distribution.

D ynam ic Stochastic Program m ing (DSP) formulation allows design vari
ables to react to information gained as scenarios unfold. It allows the decision maker 
the fullest response to changes in these parameters. The essential feature of DSP 
approach is the structuring of problems into stages, which are solved sequentially 
one stage at a time. Often the stages represent time periods in problem’s planning 
horizon. Associated with each stage of the optimization problem are the states of the 
process. The states reflect the information required to fully assess the consequences 
the current decision has upon future actions. The final general characteristic of 
DSP approach is the recursive optimization procedure which builds to a solution 
of the overall N-stage problem by first solving one stage problems until the overall 
optimum has been found. The basis of the recursive optimization is the “principle 
of optimality” : an optimal policy has the property that whatever the current state 
and decision, the remaining decisions must constitute an optimal policy with regard 
to the state resulting from current decision. Unfortunately DSP models are larger 
than the previous formulations and are difficult to solve.
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Birge (1995), judges the value of stochastic models over deterministic models and 

states that stochastic models are more valuable as they have the capability to give 

solutions which hedge against multiple possible future outcomes when compared 

with deterministic LP models which tend toward extreme point solutions that rely 
on a limited set of activities. Birge gives a financial planning model to prove his
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claim.

Mulvey, Vanderbei, and Zenios (1995), bring robustness criteria into stochastic 
models. They name their work as R obust O ptim ization (R O ) and differentiate 
it from stochastic models although their models are usually stochastic in nature with 
some verifications from the above Static Stochastic Models to achieve robustness. 
Their approach integrates goal programming formulations with a scenario based 
description of the problem data in order to generate a series of solutions that are 
less sensitive to realizations of data from a scenario set. An RO model is:

M i n f { x ,  yi, ...,ys) + Wg(zi, Z2, ..., ẑ )

Ax =  b.....structural constraints

BgX +  Csys + Zg = Cs\/x G ......... control constraints

XiVs > 0 Vs €

Robust Optimization (RO) is an extension of Static Stochastic Models with two 
major distinguishing features. First of all, feasibility is generally overemphasized 
in optimization problems. It may not be possible to get a feasible solution to a 
problem under all scenarios or the decision maker may be willing to sacrifice from 
feasibility for a better solution. RO allows for infeasibilies in the control constraints 
by introducing a set 2ti, 2̂,..., of error vectors that measure infeasibility and add 
a component to the objective function that penalizes this infeasibility (infeasibility 
penalty function). The specific choice of penalty function gi ẑi ẑ ·̂,..., Zg) is problem 
dependent, quadratic penalty function being applicable where both positive and 
negative violations are equally undesirable.

The second feature of RO that differentiates it from Static Stochastic Models 

is the introduction of higher moments in f{x ,yi,...,yg). Expected value function 

ignores the risk attribute of the decision maker and the distribution of the objective 
values. Two popular alternative approaches are mean-variance models where the 
risk attribute is equated with variance and Von Neumann-Morgenstern expected



utility models. The primary advantage of expected utility model over mean variance 
approach is that asymmetries in the distribution are captured. The models told till 
RO optimize only the first moment of the objective function, ignoring the decision 
maker’s preferences toward risk. Hence they assume an active management style 
where the control variables are easily adjusted as the scenarios unfold. Large 
changes in the objective values may be observed among different scenarios, but 
their expected value will be optimal. The RO Model on the other hand minimizes 
higher moments, e.g. the variance, leading to a more passive management style. 
Since the objective value will not differ substantially among different scenarios, less 
adjustment is needed for control variables. Hence recourse decisions are implicitly 
restricted in RO. However, this will occur at a cost.

The RO Model has a multi criteria objective form with first term measuring 
optimality robustness second term penalizing infeasibility. The goal programming 
weight w is used to derive a spectrum of solutions. RO suffers from choice of this 
parameter w like other multi criteria programming models.

Dembo (1991), proposes another approach named Scenario Optimization. 
First a solution is computed to the deterministic problem under all scenarios, then 
a coordinating or tracking model is solved to find a single policy.

CHAPTER 1. INTRODUCTION 8

A scenario problem is:

Vg = mmcsX

Ax = b

BgX =  Cg

X > 0

and a possible coordinating model is:

m in ^  lldso; -  Ui|| +  -  tg
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Ax =  b 

X > Q

Instead of norm minimization which is a non differentiable function, other 
functions can be used.

This model is a special case of RO where only design variables and structural 
constraints are present. The main advantage of Dembo’s approach is that if all of 
the scenarios are known beforehand, they can be solved for once and for all. And 
at each period coordination problem with current best estimates of the scenario 
probabilities can be solved to determine the policy. The work required is multiple 
of that required for a scenario subproblem. Its major limitation is ignorance of 
adjustment to uncertain parameters by the use of control variables. But the model 
is easy to solve and has been successful in many applications.

Rockafellar and Wets (1991), propose solving a large deterministic equivalent of 
a multistage stochastic model obtained by scenario subproblems and nonanticipality 
constraints linking them. Their approach is called Scenario Aggregation (SA). 
Nonanticipality constraints ensure that if two different scenarios s and s’ are 
indistinguishable at time t on the basis of information available about them at 
time t, then the decision to be made should be the same at time t. They propose a 
“hedging” algorithm for solving the problem by a decomposition technique.

Some implementations of SA assume that the behavior of the random variables in 
all future stages can be predicted well and uses all the information on future events 
to hedge the decision made today. However in any cases estimates of the random 
parameters in future stages are extremely poor. For such situations, instead of 

using a multistage model like SA, a two stage model like SO can be used in a rolling 

horizon fashion.

Uncertainty situations were defined as those in which it is impossible to attribute
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probabilities to the possible outcomes of any decision. This can occur, for example, 
when the outcome of a decision depends on the decision of a competitor or on 
future external event which are not repeatable. In uncertainty situations, data can 
again be described in terms of scenarios, but this time there are no probabilities 
associated with each scenario representing its likelihood of occurrence. In addition 
to scenario analysis, interval analysis can also be used. In interval analysis, the 
interval, described by a lower and an upper bound, represents the range in which the 
true value lies. Another approach which captures interval analysis as a special case is 
to describe the data in a given convex set. Here the uncertain parameters are known 
to lie in some set described by exact functional relations. For example, the prices 
of electricity, coal, oil and gas are interrelated and a production planning problem 
can be modeled such that the objective value coefficients is a vector depending on 
energy prices and is constrained to lie in a set that reflects all realistic relations 
between these prices.

It is possible to convert an uncertainty problem into a risk problem, for example 
by subjective estimation of probabilities or by assigning equal probabilities to all 
possible outcomes of a decision (Laplace). When used appropriately this can be a 
valuable simplification. Assigning probabilities may make the decision maker feel 
comfortable, but one should be careful that the model reflects reality.

One possible uncertainty decision criterion is pessim istic decision criterion. 
The pessimistic decision criterion or what is sometimes called minimax or maximin 
criterion assures the decision maker that he will earn no less (or pay no more) 
than some specified amount. It is a very conservative approach in that it 
anticipates the worst that might well happen. This criterion is best suited for 
those situations where the probabilities can not be easily evaluated and the decision 
maker is conservative. Falk (1975), in his technical note, seeks maximin solution 
to linear programming programs whose objective function coefficients are known 
to lie in a given convex set. Falk represents optimality criteria that characterize 

the desired solution strengthening Solyster’s (1973-74a-74b) studies. His work is 

computationally implementable.
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On the other hand, optimistic decision criterion or maximax minimax 
criterion, assures the decision maker that he will not miss the opportunity to achieve 
the greatest possible payoff or lowest possible cost. However, this decision making 
behavior usually involves the risk of a large loss. The approach is optimistic in that 
the best (maximum profit or minimum cost) is anticipated. The optimal strategy is 
then the best of the anticipated outcomes.

Another criterion, Hurwicz is a compromise between the pessimistic and 
optimistic criteria with weighting at the discretion of the decision maker.

One other possible criterion is minimax regret. Regret is used in the same 
meaning as defined previously. In this approach the first step is to compute 
regret associated with each combination of decision and possible outcome. The 
minimax criterion is then applied to the regret values to choose the decision with 
the least maximum regret. A decision using this criterion will be more conservative 
than maximax and less conservative than maximin, since it gives weight to missed 
opportunities.

Rosenhead et al (1972), proposes a Robustness-Stability approach. He 
distinguishes plans from decisions by defining a plan as a set of prospective decisions 
to be implemented at different future dates. At any point in the life of a plan, 
some decisions may be changed depending on what uncontrollable and unpredictable 
events occur. As these events unfold, more information becomes available and the 
unimplemented stages of the plan are reconsidered and modified. If the possibility 
of revision is not considered in earlier implemented decisions of a plan, there may 
no longer be adequate residual flexibility. Gupta and Rosenhead (1968), Rosenhead 
et al (1972) define robustness as a measure of the useful flexibility maintained by 

a decision for achieving near optimal states and consider it as a suitable criterion 
for sequential decision making under uncertainty. In mathematical notation; let 
D{di} be a set of short term decisions and be the set of alternative plans.
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Any initial decision will restrict the attainable plans to a subset Si of S. Suppose 
some subset S~ of S is currently considered “good” or acceptable w.r.t. some 
satisficing criteria, then robustness of di is r* =  n{Si~)ln{S~). Alternatively let 
V{sj) be the value (e.g cost ) of the plan Sj , then a modified robustness index is 

n = T,sjQS- y (s j)  which is more suitable if variations of value within
S~ are too high.

Rosenhead et al, defines one more decision criterion “ stability “in the following 
way: an initial decision (or decisions) is stable if the system modified by this 
decision has a long run performance which is satisfactory if no further stage of the 
plan is implemented. Both robustness and stability are criteria for the choice of 
initial decision from the decision set rather than the plan set.

The main assumption implicit in robustness analysis is that solutions which 

appear “good” in terms of the predicted values are more likely to be good under 
the conditions which are eventually realized. This assumption is very questionable. 
Robustness measured based on S may produce decisions which are robust only to 
uncertainty in coefficients for which the solution is insensitive and of course this is 
not the major motivation.

Rosenblatt and Lee (1987) extend the robustness approach to layout problems. 
According to their approach robustness of a layout is an indicator of flexibility in 
handling demand changes and is measured by the number of times that the layout 
has a total material handling cost within a prespecified percentage of the optimal 
solution under different demand scenarios. So it is aimed to select a layout that has 
the highest frequency of being closest to the optimal solution even though it may not 
be optimal under any demand scenario. Being within a few percentage of optimal 

is perceived as satisfactory given the level of inaccuracy of the available data during 

the design phase.

Kouvelis et al (1992) further extend the concept of robustness for layout problems
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with long planning horizons and for multi period layout designs. For multi-period 
dynamic layout designs they generate the sequence of robust layout which also satisfy 
the restriction that difficult to relocate processes should remain at the same positions 
in multi-period layouts. More information will be given about their work in the 
following sections.

As stated previously in interval analysis, uncertainty can also be described in 
terms of intervals. Ishibuchi and Tanaka (1990) convert linear programs with interval 
objective functions into multi objective problems with two objectives: optimization 
of the worst case and average case by use of order relations. The solution sets of the 
original problems with interval objective functions are defined as the pareto optimal 
solutions of the corresponding multi objective problems.

Demir (1994), Tansel and Demir (1996) deal with locational decisions where 
uncertainty is represented by intervals. “Weak” , “Permanent” and “Unionwise 
permanent“ optimality criteria are defined on the basis of how much of the region 
of uncertainty a given solution optimally accounts for. The weak solution set 
consist of the locations which qualify as optimal for at least one realization of 
data. Permanent solutions are optimal for all data realizations, but they may not 
exist. Unionwise permanent solutions are collections of solutions at least one of 
which is optimal for every realization of data. Methods are given to construct small 
cardinality unionwise permanent solutions. A permanent solution, if it exists, is a 
robust solution with zero regret. In case it does not exist approximately permanent 
solutions are proposed which minimize the maximum violation in the necessary and 
sufficient conditions characterizing permanent solutions. Alternative approaches are 
implementing all solutions contained in a unionwise permanent solution or solving 
an auxiliary optimization problem which minimizes maximum regret by use of 

unionwise permanent solutions.

Inuiguchi and Sakawa (1995) deal with general linear programming problems 
with interval objective function coefficients. They develop parallel concepts with
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Tansel and Demir. Permanent solutions are called “necessarily optimal” and weak 
solutions are called “possibly optimal” . They present a new treatment of interval 
objective function by introducing min max regret criterion as used in decision theory. 
Obviously necessarily optimal solution gives zero regret solution if it exists. They 
try to narrow the search space by using the properties of minimax regret solution 
and the relations with possibly and necessarily optimal solutions. They propose 
a method of solution by a relaxation procedure. We will be making use of their 
approach.

Inuiguchi and Sakawa’s solutions are more reliable than the solutions of the multi 
objective approach by Ishibuchi and Tanaka as the second one is reasonable only 
in the sati,sficing scheme. In addition to that, minimax regret formulation provides 
a solution which minimizes the worst difference of objective value. Since all the 
possibly optimal solutions are considered, the minimax regret formulation is closer 
to the formulation in optimizing scheme than the multi objective formulation.

1.3 Plant Layout Problem

Plant layout problem is often defined as the problem of determining the relative 
locations of a given number of machines among the candidate locations.

Generally two different approaches are used in stating the problem, one is 
qualitative and the other is quantitative. In the qualitative approach, the objective 
is the maximization of some measure of closeness ratings. ALDEP (Seehof and 
Evans 1967) and CORELAP (Lee and Moore 1967, Moore 1971) are computerized 
packages that work with this approach.

A typical quantitative objective is the minimization of the total material handling 
cost. In manufacturing systems, material handling cost is incurred for routing raw 
materials, parts, sub assemblies and other materials between different departments
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(or machines). According to Tompkins and White (1984) “It had been estimated 
that between 20% and 50% of the total operating expenses within manufacturing 
are attributed to material handling. Effective facilities planning can reduce these 
costs by 10% to 30% and thus increase productivity.”

Material handling cost is defined as the product of material flow and distances 
between the machines. Material flow is calculated by using the production volumes 
and routes used in manufacturing these products. Flow data can be represented 
in terms of the actual amount of material moved or it may denote the number of 
trips performed by the material handling device between the machines. Distances 
between the machines can be expressed in terms of the actual distances or the travel 
time between the machines. Choices depend on the system that is investigated.

Heragu (1992) classifies the layout problem into three with respect to the physical 
environment: single-row layout problem, multi-row equal-area layout problem and 
multi-row unequal-area layout problem. In case of single-row layout, the machines 
are arranged linearly in one row. In multi-row, the machines are arranged linearly 
in two or more rows. The machines may be of equal or unequal area.

Based on the length of the planning horizon, Palekar et al (1992) classifies plant 
layout problems into two categories: Single Period Layout Problem (SPLP) and 
Dynamic Plant Layout Problem (DPLP). SPLP focuses on finding a layout for a 
single period while DPLP’s objective is to find a layout schedule for all periods in 
the planning horizon. The DPLP is further classified into two classes of problems: 
deterministic or stochastic according to the degree of risk with which the input 
information is known. Stochastic DPLP is the most complex as well as the most 
general of all cases. All other models may be viewed as special cases of the problem. 

Although Palekar skips the Single Period Stochastic case, there are also studies 
related to this model like Rosenblatt and Lee’s which we will mention.

Traditionally, the layout problem has been modeled as a quadratic assignment
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problem : Q A P . The name is so given because the objective is a second degree 
quadratic function of the variables and the constraints are linear functions of the 
variables controlling the assignment of machines to locations. Given a set A  =  

and nxn matrices W  =  (wij), D = {dki) and Ixn vector C =  (cj), QAP 
can be stated as :

n n

M iU a e A  Y ,  Y  Wijda(i)a{j) +  Y  Cia{i)
¿=1

where A is the set of all permutations of N. In layout problems W  is the flow matrix, 
D is the distance matrix, and C is the vector denoting constant cost of assignment. 
The objective is to And an assignment of all facilities to all locations such that the 
total cost of the assignment is minimized. The linear terms can be elliminated from 
the problem by redefining the flow matrix.

QAPs is an NP-hard problem. This follows from the fact that TSP is a special 
QAP. On the other hand, any QAP can be solved by enumerating all of its n! feasible 
solutions. The best known algorithins (usually branch-and-bound type algorithms) 
have reportedly been successful mostly for instances of size n <  15. For n > 17, 
solution times of these algorithms tend to be prohibitive except for a few cases 
(Amcaoglu and Tansel 1997). The interested reader can refer to Pardalos, Rendl 
and Wolkowicz (1994) for a survey of the literature on QAP.

Other mixed-integer models, some of which are linearizations of the QAP, are 
also developed. In addition to that there are also some graph-theoretic models. 
Heragu (1992) presents a model with absolute values in the objective function and 
constraints for both single row and multi-row layouts problems.

Computerized packages are also available such as CRAFT (Buffa, Armour, 
Buffa 1964) and COFAD (Tompkins and Reed 1976). Three dimensional plant 

layout packages have also been developed, for example CRAFT3D (Cinar 1975) and 

SPACECRAFT (Johnson 1982) are these sort of packages.



CHAPTER 1. INTRODUCTION 17

Rosenblatt (1986) deals with the dynamic nature of the problem. A deterministic 
environment is assumed, where the number of orders and the quantities, arrival 
and due dates for different products are known for a given finite horizon. In 
this environment Rosenblatt determines what the layout should be in each period, 
or to what extent, if any changes in the layout should be made. He introduces 
rearrangement costs . Assuming T periods, the maximum number of combinations 
that need to be considered is (n!)^ which makes total enumeration prohibitive. 
Therefore a dynamic programming approach is suggested to solve the problem either 
in an optimal or heuristic manner when the number of departments is large.

Usually the environment is not deterministic for the layout designer. According 
to Kouvelis et al (1992) “The layout designer faces the difficult task of developing 
a system that is capable of handling a variety of products with variable demands 
at a reasonable cost. Alternate and probabilistic schedule and inventory constraints 
further complicate the task. To make matters worse, in some cases the required input 
data to layout decision process, e.g, the part production volumes, may be highly 
inaccurate. That might result from either the use of historical analogy approach in 
collecting the data or the usual forecast inaccuracies to large planning horizons used 
for layout design purposes.”

Rosenblatt’s deterministic approach is not suitable for the environment described 
above. Palekar et al (1992), deal with situations where changes in product mix, 
machine breakdowns, seasonal fluctuations and demand are only probabilistically 
known (Stochastic DPLP). Like Rosenblatt’s, this model also captures the relocation 
cost incurred whenever a layout is changed from one period to the next. The 
objective is minimizing the sum of expected material handling cost and relocation 
costs. An exact method and heuristics are suggested to solve the model.

Kouvelis and Kiran (1991) consider two cases in highly nondeterministic 
environments. In the first case, a layout cannot be changed in the planning horizon. 
During the layout design phase the product mix is uncertain, but once realized.
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the product mix is expected to remain stable over the planning horizon. This is 
applicable in automated environments with high installation costs and times such 
as coordinate measurement machines, automated washing and deburring stations. 
In the second case, layout decisions are considered dynamically. The planning 
horizon is divided into smaller periods in which the product mix is stable and 
different layouts are specified for each planning period. This case is motivated 
by Flexible Manufacturing Systems which consist of cells of physically identical 
machines performing a variety of operations. Changes in the product mix of the cells 
in each period imply sub-optimality of a static layout. Their model is a modification 
of QAP with an added constraint for part production rate requirement. They give a 
solution method based on generating nondominated layouts and extend their work 
to multi-period case.

As mentioned above, high uncertainty and fluctuations mostly appear in FMS 
as they are designed to handle changes both in the type and volumes of parts 
produced. Alternative routing is possible in an FMS environment since machines 
are able to perform different operations when properly tooled and tool exchange 
times are negligible. This further complicate the problem. Tansel and Bilen (1996) 
review the literature on the FMS layout problem with emphasis on mathematical 
programming based models and analytical approaches. In addition, they discuss 
dynamic aspects, robustness and material handling issues that relate to FMS layout.

Rosenblatt and Lee (1987) consider the single period layout problem under risk 
and bring the robustness concept into picture. Their definition of robustness follows 
the concept of robustness developed by Gupta and Rosenhead (1968) and Rosenhead 
et al (1972). They measure robustness of a layout by the number of times that the 
layout has a total material handling cost within prescribed percentage of the optimal 
solution under different demand scenarios.

With the same measure, Kouvelis, Kurawarwala, Gutierrez (1992) generate 
robust single layout designs for different demand scenarios by using a modification



CHAPTER 1. INTRODUCTION 19

of the Gilmore-Lawler branch and bound procedure. Their optimal layout lies in 
a prescribed p% of the optimal layout under each scenario. The approach is quite 
successful as QAP has a large number of solutions close to the optimal. They also 
generalize the approach to multi-period layout designs to come up with dynamic 
layout plans. They make a clear distinction between reversible and irreversible 
layout decisions. They also develop bounds on the error of the robust solutions for 
multi-period problems and describe a heuristic approach to generate robust layouts 
for large size manufacturing problems.

1.4 Motivation

As stated above, material handling costs constitute a large portion of the operational 
expenses. Hence the topic deserves considerable attention. Like other design 
problems, in the plant layout problem decisions are made in the early stages when 
the products and the process plans have not been determined completely. As a 
result these decisions are made with a great deal of uncertainty in the information 
gathered. Uncertainty may arise due to forecasting errors or fluctuations in demand. 
Sources of fluctuations in demand may be some external factors such as changes 
in the customer’s preferences, competitors’ policies, general state of the economy 
or internal factors such as price-quantity discounts and previous performance. As 
the planning horizon gets longer, it is quite reasonable that the product mix may 
change. New products may be introduced and some products may be dropped from 

the product mix.

We assume that with short planning periods, the set of products is known with 
certainty, and that the uncertainty is only in the estimation of production volumes. 
We then model the problem as a single period problem. This is applicable to the 
cases where change over costs/times are high and a layout cannot be changed in the 

near future.
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However layout problem with longer horizons cannot be modeled in this way. 
As the horizon gets longer, it is very likely that the product mix may change. The 
variability in production volumes will also be higher. In these circumstances, a static 
layout probably will not have a satisfactory performance over the whole planning 
period. A possible solution is dividing the planning horizon into smaller planning 
periods and assuming that the product mix is stable over each planning period 
over the planning horizon. This case is especially applicable to FMSs which consist 
of cells of physically identical machines performing many operations. Operation 
allocation decisions made in each period cause a significant change in the product 
mix of the cell which in turn implies suboptimality of a static layout. Following 
Kouvelis et al we will differentiate the currently preferred future decisions and the 
irreversible location decisions that must be implemented at the beginning of the 
planning horizon.

As summarized in the literature survey, there are many different ways of dealing 
with uncertainty in data. One way is transferring the problem to “risk” and using 
probability tools. This requires a great deal of information on the distribution of 
the variables and probabilities are generally diflficult to estimate. It should not 
be forgotten that assigning subjective probabilities does not make the data more 
“precise” just because one feels more comfortable with numbers. Suppose that 
probabilities are assigned successfully. Unless independence and no correlation are 
assumed, it becomes computationally very difficult to solve the problem.

In uncertainty situations, data is generally stated either in terms of scenarios or 
in terms of intervals. Scenario analysis requires the generation of reasonable number 
of scenarios from a possible realization set. This is by itself another task which is 
an art more than a science. We choose to structure the problem by using data 
intervals in which the true values lie. Such an interval is usually easy to construct 
by considering both the worst and best case effects of the factors. Data can be 

discrete or continuous. In case it is discrete, it is also possible to represent it in 

terms of scenarios, since there is a finite number of them. For the single period 
case, whether the flow data is discrete or continuous does not make a difference for
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the solution procedure proposed. Only the boundaries are important in this case. 
Therefore we do not make a distinction between them. In the multi-period case, the 
only difference is that in one of the steps of the proposed algorithm we solve an IP 
rather than an LP.

For many layout problems simple optimization is not enough to represent the 
purposes of the designer. Rosenblatt and Lee (1987) state that robustness of layout, 
in cases of demand uncertainty, is more important for the operations manager. Our 
definition of the robustness criterion is minimizing maximum regret that can be 
faced due to a possible realization of data. This criterion is closely related to the 
one developed by Kouvelis et al (1992). They state robustness as being within a 
prescribed percentage of the optimal solution under all demand scenarios. Although 
they stop at a satisficing point, theoretically minimum percentage solution they can 
achieve should be equivalent to the min max regret solution. In the multi-period 
case robustness criterion to the irreversible decisions allows for maximum degree of 
flexibility for future layout decisions. And this, we believe, is the most crucial point 
in these kind of problems.



Chapter 2

SINGLE PERIOD CASE

2.1 Problem Définition and Formulation

The problem is determining the relative location of a given number of machines 
among candidate locations such that the layout is somehow “good” for each 
realization of demand. We will assume that the number of locations and machines 
are the same. This assumption can be relaxed by assigning dummy variables.

As stated previously, flow data, which can be represented either in terms of 
actual material flow or number of trips performed by the material handling device, 
is calculated by using the production volumes and routes used for manufacturing. 
Therefore uncertainty in demand causes fluctuations in the material flow data. 
Denote by wij the per period flow between machine i and j. Then Wij lies in 
the interval [wij_,w~j] where vjij_ shows the min flow and Wij~ shows the maximum 
flow between the machines.

Let VF be an n by n flow matrix [wij] and D be the set of realizable flow matrices. 

Some W  from Q, will be chosen by the nature. Put W- — [wij_] and W~ =  [tUij“ ]. 

Then e  : W . < W <  W~}

2 2



CHAPTER 2. SINGLE PERIOD CASE 23

Let M  be the set of machines \M\ = n and L be the set of locations |L| =  n. 
Let dij be the distance between locations i and j. Let a(k) be the location to which 
machine k is assigned such that k G M  and a{k) G L. Given W  E Cl, the total cost 
of the assignment a=(a(l),..,a(n)) is:

f (a ,W )=  Wijd(a(i),a{j))
l< i , j < n

Define
Z{W ) = M inaeAYwijd{a{i),a{j)) (1)

where A is the set of all possible assignments. Thus, Z(W ) is the best possible 
performance of the layout if the nature chooses W  and if we locate the machines 
optimally relative to nature’s choice. Since we do not know the nature’s choice a 
priori, we will not, in general, be able to correctly select the correct assignment. 
Suppose that we select the assignment a and nature chooses W. Then the regret of 
having chosen the assignment a is f{a , W) — Z[W ). If the nature makes its worst 
choice relative to a, the maximum regret associated with a is :

M axw euU i<^.W )-Z{W )) (2)

Let MR{a) be the maximum objective function value of (2). Then the problem we 
want to solve is :

Miua^AM R{a) (3)

Any optimal solution to (3) is a robust solution to the layout problem.

Theorem I The problem

MinaeAMaxwenifiO", ~ ^ {^ ) )
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is equivalent to the problem

MiuaeAMaxweQ^ifi«·^ -  Z{W ))

where Ll* is defined by 0* =  {W\wij =  Wij_ or 10 Wij

Proof : Suppose a is an optimal solution to problem (1) such that Z(W ) =  /(a , W) 
and we have chosen the layout a. It is enough to show that there is an optimal 
solution W* to

M a xw eQ fia ,W )-Z (W )

such that W* is an element of fi*.
When a and a are given, (4) is equal to :

(4)

=  M axiyen ^ u ;ij(d (a (z),a (i)) -  d (a (i),a (;)))

Hence W* can be obtained as :

^ij =

Hence W* € i)* □

W i j -  if
w if

d{a{i),a{j)) -  d{d{i),d{j)) <  0 
d{a{i), a{j)) -  d{d{i), d{j)) > 0

By the previous theorem, which is modified from Inuiguchi and Sakawa (1995), 
material flow data can be represented by using scenarios instead of the interval
representation. This makes it possible to use the work done by Kouvelis et al (1992). 
They generate layouts that lie in a prescribed p% of the optimal layout under a set 
of scenarios. Iteratively decreasing the p value in their study gives minmax regret 
solution. On the other hand, the number of scenarios will be a huge number and 

hence does not have a practical use at all. Therefore we develop a different approach 

for solving the problem.
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2.2 Reformulation

Writing explicitly, the problem becomes :

MinaeAMaxweuiJia, 1̂ )  -  Min^^Afia, W ))

changing the inner minimization by - maximization;

MiuaeAMaxwmfia, W) + Max^^A ~ f{a, W)

since /(a , W) is a constant with respect to a we can write,

=  MinaeAMaxweaMaxi^Ai fia , W) -  /(a , W )) 

By interchanging the inner maximizations :

=  MinaeAMaxi^AMaxw€Q{f{a^ ~ /(«> ^ ) ) (5)

Let be an enumeration of all assignments and take two assignments, say
and â . The regret associated with selecting aP instead of under a specific scenario 

W  is :

Then the maximum regret associated with selecting aP instead of under all 
realizations of flows, MR{aI',a^) = M axw ^uR ioP^ W) can be found by inserting: 
maximum{wij) = w~j when d((a^(i), a^(j)) — d{{a^{i),a'^{j)) > 0 
minimum{wij) =  Wij_ when d((a'’ (i),a^(j)) — d((a^(z),a^(j')) < 0

Then the maximum regret associated with choosing a\ MR{a^) =  MaxkM R{a\a^), 
can be found by the following procedure:
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Procedure I

1. Find MR(a\a^)Vk : 1 < k < nl and k ^  i.

2. Find an â * such that :

MR{a\a^*) > MR{a\a^) V / '

Then MR{a^) =  MR{a\a^*)

In fact, possible number of assignments may be much less than n! if there are 
some special constraints such as those that permit the location of some facilities 
next to or away from each other.

To find an assignment that gives minimum maximum regret, one possible way 
is repeating the above process for each assignment. This has a complexity of n! 
X ?r! assignments. The following algorithm, which is modified from Inuiguchi and 
Sakawa (1995), is proposed to lower the calculations. The algorithm is derived based 
on a relaxation procedure. Inuiguchi and Sakawa deal with the linear programming 
problem with interval objective function coefficients and apply the minmax regret 
criterion when the solution set is the set of possibly optimal (weak) solutions. Due 
to the nature of our problem we can not make use of the possibly optimal set but 
instead we enumerate on A, the set of all assignments of N. One other major 
distinction between their algorithm and ours is that they are working with LP 
problem. Hence they use an LP formulation in Step 4 although they still can not 
escape from enumeration in Step 2. Since the sets A and W* have a finite number 
of elements, this algorithm terminates in finite number of iterations.

Algorithm I

Step l.Set =  0, f =  1. Choose an assignment a° € A arbitrarily.



CHAPTER 2. SINGLE PERIOD CASE 27

Step 2.Using Procedure I, find the maximum regret associated with this 
assignment, keep the scenario and the assignment which gives this regret, that is 
find MR{a°), W* and a* such that MR{aP) =  / ( « “ , W^) — / ( a ‘ ,

Step 3.1f >  MR(a^), then a® is the optimal assignment. If not, go to Step 4.

Step 4.Solve the following relaxation of problem (5). In other words, find the 
assignment a which minimizes the maximum regret under the resricted scenario and 
assignment sets.

Min,^AMax^<:i<t{fia, W^) -  f{aC W^))

i.e.
MiUaeA r

s.t

f { a , W ^ ) - f { a C W ^ ) < r j  
Let (a*,r*) be an optimal solution.
Set = r * — t +  1? return to Step 2.

Proof of optimality for Algorithm I
i) If optimal is found when i =  1 then r° =  0.

By definition
> 0

and the optimality condition in Step 3 guarantees

M i7(a°) < r"

MR{a°) < 0

MRia°) =  0

replacing ;

(6) and (7) give

(6)

(7)
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i.e. a° is the zero regret solution which is surely optimal.
ii) If the optimum is found when t > 1, it is enough to show that for optimal

=  r° =  MR*

where MR* — Mina^AMR{a), i.e. the regret associated with the optimal solution. 
By this definition;

MR{a°) > MR* (8)

r" =  Min,^AMaxwJ,aJiW\x) -  f{W \a^)

Inner maximization is a relaxation of the maximization in the original problem. 
Hence

MR* > r°

and the optimality condition gives:

> MR{a°).

(9)

(10)

(8), (9), (10) give
MR(a^) > MR* > r° > MR{a°) 

proving the required equality. □

2.3 Exploiting the Layout Structure

Since the algorithm proposed is enumerative in nature, anything that can help 
lowering the calculations may be of great use. The first thing that comes to mind 
is making use of the layout structure.

One commonly used structure in layout problems is the grid structure with 
rectilinear distances. By simple inspection, it can be seen that this structure has 
a nice “symmetry property” which causes many of the possible layouts to have the 

same distance matrix. We call two layouts L and L' distance invariant if the
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distance matrices associated with L and L' are identical.

For example, for the 2x4 grid, Figure 1 shows two possible layouts where the 
squares represent the locations and numbers represent the machines (e.g. in Layout 
2 machine 1 is located in the 5th location).

1

cl

2

c2

3

c3

4

c4

5 6 7 8

^ X

5 6 7 8 1 2 3 4

c5 c6 c7 c8

Layout 1 Layout 2

Figure 2.1: Two possible layouts for 2x4

These two layouts which are symmetrical with respect to the x axis are distance 
invariant. Hence they are “the same layouts” with respect to the computations in 
our algorithm. For any given two row grid, by taking the symmetric with respect 
to the X axis, we can always find one other layout that is distance invariant. For a 
given three row grid, x axis is replaced by the middle row. Of course the same is 
true for two column (or three) grid and y axis (middle column).

In case the grid structure is cubic, the number of layouts that yield the 
same distance matrix increases to four which can be obtained by simultaneous 
perpendicular rotations. Due to the special structure of 2x2 and 3x3 grids, the 
number of distance invariant layouts is eight for them.

The set of all layouts can be partitioned into distance invariant classes. We can 
not computationally differentiate any of the layouts within each distance invariant 
class. Therefore we can perform the computations by taking arbitrarily one layout 
from each class which reduces the computations i o l jk  where k is the cardinality of 

a distant invariant class. Note that the cardinality of each class is the same.
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Table 2.1: Classification of the Layouts for the 3x3 Grid
Group 1 Group 2 Group 3

1234 1243 1423
1324 1342 1432
2143 2134 2314
2413 2431 2341
3142 3124 3214
3412 3421 3241
4231 4213 4123
4321 4312 4132

For the 2x2 grid ?r! =  24 layouts can be classified into three groups such that 
layouts within each group, eight members each, have the same distance matrices. 
Table 2.1 shows this classification.

Suppose we select 1234, 1243, 1423, the first elements of each class in the Table 
2.1. Figure 2.2 shows these layouts.

1 2

3 4

1 3

4 2

Layout 1 
1234

Layout 2 
1243

Layout 3 
1423

Figure 2.2: Three layouts for the 2x2 grid that are not distance invariant

Consider Layout 1 and 2, only the following entries differ in their corresponding 

distance matrices.

¿13 — ¿31 — 1 ¿13 — ¿31 — 2

du = d\̂  = 2 d\̂  = d\̂  = l
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2̂3 ~  3̂2 “  2 <¿23 =  <¿32 =  1

¿24 = ¿42 “  1 ^24 “  ^42 “  ^

Define

Z}+  ̂ =  {¿¿i : d i f  =  dij  ̂ +  1 } =  {<̂ i3 ,4 i , c?24,c?42}

= {dij ■ diĵ  =  dip + 1 } = {¿14, ¿41 , ¿23, <̂42}

Then the maximum regret associated with selecting Layout 1 instead of Layout 2 
is:

M i2 (l ,2 )=  wij~ -  Y  wij_
dijSDf̂  dijSD'̂ 2

In general, MR{k, 1) k and I € {1 ,2 ,3 } can be calculated from the following general 
formula:

MR{k, 1) — Y^ wij~ — Y^ wij _

then Maximum regret associated with each layout can be calculated as follows:

MR{1) =  max(MR{l,2),MRil,3))

MR{2) = m ax{M Ri2,1), M R{2,3))

MR{3) = 7nax{MRi3,1), M R(‘S, 2))

And minimum regret solution is found by :

M in{M R(l), MR{2), MR{Z))

That means we can solve any 2x2 grid problem by solving six equations and four 
comparisons without using Algorithm I. Definitely as the size of the grid increases, 
the solution becomes complex. Still, the symmetry is of quite use. 3x3 grid case has 
the same properties as the 2x2 case (symmetry with respect to the axis and origin). 
This means that the cardinality of each distance invariant class is eight. This lowers 

the complexity by 1/8.
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Table 2.2: Number of iterations for Algorithm I
Test Problems

n 1 2 3 4 5 6 7 8 9 10
5 10 5 4 8 11 5 7 10 8 3
6 7 6 8 10 22 18 16 13 7 4
7 28 . 11 33 38 98 51 22 57 49 25
8 75 67 33 18 54 116 35 39 64 40
9 114 280 30 111 120 81 34 73 71 47

Table 2.3: CPU Times for Algorithm I
Test Problems

n 1 2 3 4 5 6 7 8 9 10
5 0.08 0.02 0.03 0.05 0.09 0.03 0.05 0.08 0.06 0.02
6 0.59 0.48 0.71 0.96 2.87 2.14 1.78 1.35 0.59 0.29
7 53.64 15.5 67.51 83.59 222.03 130.64 38.29 156.01 123.1 45.79
8 3167 2685 1019 479 1973 5411 1101 1267 2513 1315
9 17253 35074 478 5735 6670 2984 595 2446 2324 1114

2.4 Computational Work

To test the performance of the proposed algorithm, ten test problems are generated 
for n € {5 ,6 ,7 ,8 ,9 } machines. Fixed flow amounts /¿j and percentages pij 
i =  ,n } and j  =  are randomly generated in the interval [0,100].
then the upper and lower bounds for the flows are found as follows:

l U i j -  =  (1 -  P i j /100) * f i j  

%  =  (1 +  P i j /100) * f i j

The layouts all of which have grid structures are given in Bl-5. Distance matrices are 
found using these grid structures and assuming rectilinear distances. Thus formed 
test problems are solved by using a C code on Sun Sparc Server lOOOE. Table 2.2 

shows the number of iterations reached and Table 2.3 shows the CPU times in 

seconds. CPU times bigger than one thousand are rounded to nearest integers.

The number of iterations done in the iteration of Algorithm I can be found 

as follows:
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Table 2.4: CPU Times for complete enumeration
Test Problems

n 1 2 3 4 5 6 7 8 9 10
5 0.34 0.39 0.37 0.37 0.37 0.37 0.38 0.37 0.37 0.37
6 28.33 28.27 28.31 28.31 28.34 28.31 28.37 28.32 28.3 28.29
7 3138 3139 3141 3142 3142 3139 3139 3139 3138 3138

In Step 2, approximately C{n,2) subtractions, multiplications, additions and 
comparisons are done for each possible assignment. Then the maximum is found by 
using n! comparisons, which makes 4n!(7(77,2) +  n! operations.

Step 3 is a single comparison, hence we ignore it.

In Step 4, for a single assignment t times C{n,2) subtractions, multiplications 
and additions are done and t comparisons are performed to find the maximum of 
these quantities.This is repeated for each assignment and the minimum value is 
found by using n! comparisons. The total number of operations for Step 3 makes 
i^C{n,2)t + t)n\ + n\.

Assuming T iterations are done until optimal is found, total number of operations 
for Algorithm I becomes T’?r![4C'(n, 2) +  (3C'(n,2) +  1)(T + l ) /2  +  2]. On the other 
hand if complete enumeration were used, this number would be 4n!^C(n, 2) +  nP as 
it would mean repeating Step 2 n\ times.

Using these total operation numbers, we compared Algorithm I and complete 
enumeration with the worst performing runs in Table 2.2: 7.5 and 9.2. In run 7.5 
Algorithm I achieves a computational gain of 25.6% and in run 9.2; the gain increases 
to 91.7%. The relative computational performance of Algorithm I is expected to 

increase as the number of machines increases. However Algorithm I also becomes 

prohibitive with a large number of machines since it is also based on an enumeration
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procedure. We also compared CPU times required for Algorithm I and complete 
enumeration. Table 2.4 shows the CPU times for complete enumeration for five, six 
and seven machines. For eight machines complete enumeration requires more than 
48 hours, therefore it is no longer eflficient for more than seven machines.

It is also seen from Table 2.4 that CPU times for complete enumeration for 
a particular machine are very close to each other. However both the number of 
iterations required (Table 2.2) and CPU times (Table 2.3) for Algorithm I vary a 
lot. This is caused by the structural differences between the two methods. Complete 
enumeration covers all of the search space to find the optimal solution. However 
Algorithm I begins from an arbitrary assignment and covers some portion of the 
search space until the optimality condition is satisfied. The set of assignments 
covered is equal to the number of iterations done which is problem dependent. 
However note that even the largest number of iterations required is much less than 
the n! assignments covered by complete enumeration.



Chapter 3

M ULTI-PERIOD CASE

3.1 Problem Statement

In case of short planning periods, it is reasonable to assume that the product mix 
is known with certainty like we did in the single period problem. We then leave 
demand fluctuations as the only source of uncertciinty. This assumption becomes 
unrealistic if the planning horizon gets longer. As the planning horizon becomes 
longer, demand predictions are worse and it is more likely that new products will 
be produced and some existing products will not be produced any more. In this 
environment, a dynamic layout plan is expected to perform better than a static one. 
A common solution is dividing the planning horizon into smaller periods. The set of 
products and their production volumes are estimated for each period assuming flxed 
product mix within each period. It is allowed to design different layouts for each 
planning period. This is suitable for applications like FMSs where the relocation 
costs are not significant. However the designer should not forget that the layout 
decisions for the current period significantly affect relayout options in the future. 
Relocating some general purpose equipment like heat treatment ovens, furnaces or 
large testing equipment may lead to severe disruptions or may be totally impossible.

Due to the reasons stated above, the layout decisions are separated into two

35
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categories: currently preferred future decisions and irreversible decisions that must 
be implemented at the beginning of the planning horizon. Once the irreversible 
decisions are given, the subsequent layout decisions can be reviewed as the 
information is updated. The robustness criterion which is applicable for the 
irreversible decisions allows for maximum useful flexibility for future decisions. To 
clarify the idea, we introduce some definitions.

Machines which cause severe disruptions or are impossible to relocate are 
called monuments whereas the machines that can be relocated easily are called 
relocatables. We assume that the cost associated with relocating this second 
category of machines is negligible. Then what we mean by a robust layout is that 
the location of monuments is done in such a way that a relayout in the best possible 
way is least restricted. We clarify this definition while formulating the problem.

Suppose that M  =  {1 ,..., ?ii, rii + 1 ,.., 72} is the .set of machines where the first ni 
elements denote the monuments and the remaining indices denote the relocatables.

Let a =  (« 1 , 0 2 ) be an assignment vector where:

oi =  (a (l), =  ihe assignment vector o f monuments

a2 =  (a(ni +  1),..., a(?r)) =  the assignment vector o f relocatables

Two assignments are said to be in the same family if each monument is located 
in the same location in both assignments, i.e. assignment a‘ is in the same family 
as assignment â  iff a] — a{. Suppose X(a^) is the family associated with aj such 
that A(aj) =  {a =  (« 1 , 0 2 ) : «i =  Oi}· Observe that |A(ai)| — (n — ni)!. Then 
A =  {A(a|),..., A(af^"’ ‘̂ ^)} is the .set of families. The decision we seek for the multi
period problem is not the actual layout that is going to be implemented, but the 

family in which it is in.
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3.2 Problem Formulation

Using the same notation with the single period part, given PU Ç , the total cost 
of an assignment a is:

f { a , W ) =  Wijdia{i),a{j))
l<iyj<n

and

Z{W)  =  MinaeAY^Wijd{a{i),a{j))
hj

Z(W)  being the best possible layout that could be achieved if we knew which PU € 0  
the nature would chose. As it is not possible to know the nature’s choice a priori, 
in general we will not be able to correctly choose the assignment oi. However, once 
we select oi, the monuments are fixed at ai. If the nature chooses PU, then we can 
optimally select 02 conditional on oi and W.  Thus, we solve :

E  Wijd(a{i), a(j)) ( 1)

where ^ 2(0 1 ) is the set of all possible assignments on the available set of locations 
when the location specified by cii are removed from the set L.

Define F{a\,W) to be the minimum objective function value of (1). Thus, 
T’(ai, PU) is the best performance of the layout if we fix the monuments at a\ and the 
nature chooses the flows PU. The regret of having located the monuments at Oi is 
F (ai, PU) — z[W).  If the nature makes its worst choice relative to oi, the maximum 
regret associated with ai is:

Ma x w e u { F { a u W) - z { W) )  (2)

Let MR{a\) be the maximum objective function value of (2). The problem we want 

to solve is :
MinaieAiMR{ai) (3)

where Ai is the set of all possible assignments of ni machines in n available locations 
in L. Any optimal solution to (3) is a robust solution to the design portion of the
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layout problem. There is no need to specify 02 until W  becomes known. That is, 
there are many possible optimal choices of 02 once aj is picked. Hence in this case 
robustness is defined with respect to oi only.

3.3 Reformulation

Let « 2? ···> enumeration of / 12(0 1 ) and 0 ’'(a i) =  {IT  € H :
/(a{^,a2 ,lT ) =  M m i< i< („_ „i)!/(a f,4 , IT)}. Note that 0 ‘ (ai), i G {1 ,..., (?2 -  Ui!)} 
is a cover of 0.

Let MK^(a^) be the maximum regret associated with family A(ai) when the set
is restricted to ii ’’ (af), i.e.

M ir (a f ) =  W ) - z { W ) ) .

The maximum regret associated with family A(aj) is:

MR{a\) =  -  z{W)

=  Maxi<r<{n-ni)\M RI {a\).

(4)

(5)

Finally we should find the family that minimizes the maximum regret. In other 
words, we want to solve:

(6)

Once we find MR''{a\) V A: it is easy to find MR{a\) by solving (5). However, solving 
for MR{a\) needs further study:
From (4):

=  Afaa:jygQr(„fc)(/(aj,02, IT) — ^ ))·

Changing the minimization by -maximization;

M E ! (ill) ~ ^̂ ®iyen’'(a*)/(̂ i> ̂ 2) ^) 4" ~  /(o, W )
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which is equivalent to:

MBIia'l) =  â , W) -  f(d, W)).

Interchanging the maximizations;

MB!{4) = W) -  f(d, W))

MFC{a\) = MaXi^iMaxwUiA, 4 , W) -  f{a, W))

s.t.

f{a^, « 2> '^) <  /(« i>  ! < * < ( « -  « 1 )!
which says that we can find MRI{a\) by enumerating on d G A , i.e. the assignment 
set. Using these derivations the following procedure is developed for finding MR{a’{).

Procedure II

l)Let be the enumeration of all assignments. Let

MK{a\,a^) =  M a xw ifia la l, W) -  f{aC W ))

s.t.

/ ( « 1 , « 2> < / ( « 1 > 4^ W) 1 < i  < (n -  ni)!

Then MR'{a\) =  Maxi<j<n\MRI{a\.,a^)

2)Find MRia’l) = MaXrMRL{a'l)

After finding MR{a\), we can enumerate on the family set to solve (6). The 
following algorithm which is quite similar to Algorithm I is proposed to lower the 

computations.
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Algorithm II

Step l.Set r° =  0, i =  1. Choose a family a° arbitrarily.

Step 2.Using the Procedure II, find the maximum regret associated with this 
family, keep the scenario and the assignment which gives this regret, that is find 
M i?((a°)),IU ‘ and ah

Step 3.1f >  MR(a^), then aj is the ojDtimal family. If not, go to Step 4.

Step 4.Solve the following relaxation problem. In other words, find the 
family Afaj) which minimizes the maximum regret under the resricted scenario and 
assignment sets.

MinkMin^^x^^k)Maxi<j<t{f{a, W^) -  f{a\  VF))

i.e.

s.t.

/(a , W^) -  f{a\  W^) <  r j  =  1 ,..., t 
Let (a*,r*) be the optimal solution 
Set Oj =  a*,r° = r*,t — t 1, return to Step 2.
If the flow data is discrete, in finding the maximum regret in Step 2, we solve the 

maximization problem (13) as an IP, otherwise it is a LP.

3.4 Computational Work

Using the test problems generated for the single period case, two different types of 

computational study are carried out.
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Table 3.1: Number of iterations for Algorithm II
Test Problems

n 1 2 3 4 5 6 7 8 9 10
5 6 5 4 6 12 8 5 11 9 3
6 8 8 10 9 7 12 12 9 11 5

Table 3.2: CPU Times for Algorithm II
Test Problems

n 1 2 3 4 5 6 7 8 9 10
5 127 101 83 123 261 168 103 241 194 62
6 8116 7969 11473 9410 6469 15803 15644 9596 13108 3750

In the first study, previously generated test problems for five and six machines 
are solved using Algorithm II assuming that three of the machines are relocatables 
and the rest are monuments. Algorithm II is coded in C and CPLEX Mixed Integer 
Library is employed for solving the optimization problem in Procedure II. Programs 
are run on Sun Ultra Enterprise 4000.

Table 3.1 shows the number of iterations used until optimal solution is found in 
each run. Table 3.2 is composed of the CPU times rounded to the nearest integers. 
If these tables are compared with Table 2.2 and Table 2.3 in single period case, an 
increase in CPU times and in general a decrease in iteration numbers is observed.

The increase in CPU times is due to increasing computational burden in Step 
2. The subproblem in Step 2 is now solved for each member of a family instead of 
a single assignment. In addition to that in single period case maximum regret for 
a pair of assignments is found by using simple computations, now an optimization 

problem is solved via CPLEX Library.

Contrary to CPU times, number of iterations used decrease significantly in 
many of the runs. Instead of choosing an optimal assignment among all possible 
assignments, we are now searching for an optimal family. In other words, a solution 

is composed of a set of assignments rather than a single solution. Hence it is now
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Table 3.3: Monument-relocatable combinations for five machine case
Combinations monuments relocatables no of families

Cl 1 4 5
C2 2 3 20
C3 3 2 60
C4 5 0 120

more likely to find a solution which is closer to optimal for all realizations of data.

As stated previously, computational comparison of Algorithm I and II shows 
a great deal of increase in the computational work of Step 2. However it is not 
so for Step 4 in which only the order of operations change with a bit more added 
comparisons. Much of the work is now done in Step 2 and the required number of 
iterations decrease. Therefore without any further computational study we can say 
that Algorithm II is obviously much better than complete enumeration which calls 
Step 2 jP(n,ni) times.

To have a better idea about the computational performance of the algorithm 
a second type of study is designed. This time all possible monument-relocatable 
combinations are investigated for the five machine problems. Table 3.3 shows these 
combinations together with the corresponding number of families. Four monument- 
one relocatable case is skipped as it is the same as five monument case.

Figure 3.1 shows the number of iterations faced in the graphical form, concluding 

that, in general, the number of iterations required increases as the number of families 
increases. Cpu times given in fhgure 3.2 follow a strictly decreasing pattern. As the 
cardinality of families, i.e. the number of assignments within each family increase, 
computational burden for each iteration becomes so high that although the iteration 
required decrease, the computation time increases significantly.

One other observation that can be made using these runs is about the degree of
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Figure 3.1: Iterations for all combinations of five machine

robustness gained as the number of relocatables increase. Our measure of robustness 
is the maximum regret that can be encountered. Figure 3.3 is a graph showing the 
maximum regret values for each of the cases in Table 3.3. As expected, there is a 
decrease in maximum regret as the flexibility increases. There are a few exceptions 
where the maximum regret stays stable.
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Figure 3.2: CPU Times for all combinations of five machine

Figure 3.3: Maximum regrets for all combinations of five machine



Chapter 4

CONCLUSION

In this thesis, we consider the plant layout problem, where the material flow 
quantities are inexact. This inexactness is modeled in terms of intervals specified 
by the lowest and highest values that the actual value can take. No probabilities 
are attributed to realizations of material flow data. A robust layout is defined to be 
one which performs rather well whatever data is realized. Minmax regret criterion 
is used as the robustness measure. Thus, our approach is fundamentally different 
from the ones existing in the literature although it makes use of some of the ideas 
in different works.

Like other design problems, layout decisions are given in the early stages of 
system development when there are so many sources of imprecision. We believe that 
it is easier for the designer to represent the data as a priori specified intervals, based 
for example on low and high demands rather than reducing the possible realizations 
into a few scenarios.

For the simple period case, a robust layout is found by the use of an intelligent 
search algorithm which is based on solving a relaxation of the original problem. 
The proposed algorithm finds the optimal solution via covering some portion of the 
search space until the optimality condition is satisfied. The algorithm is compared

45
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with complete enumeration by using the test runs that are generated randomly. It 
is seen that the proposed algorithm greatly outperforms complete enumeration both 
in terms of total number of elementary operations as well as in observed CPU times. 
This follows from the fact that the proposed algorithm covers, on the average, a very 
small portion of the search space whereas the complete enumeration must cover all 
the entire search space.

In the multi-period case, machines are classified into two classes: monuments 
and relocatables. The location of monuments constitutes the irreversible decisions 
that must be made at the beginning and the relocatables are located with respect 
to the data realized. In other words, it is allowed to design different layouts for 
each planning period by changing the location of relocatable machines once the 
monuments are fixed. Then a robust solution locates the monuments in such a way 
that relayout in the best possible way is least restricted. The increased flexibility 
and the chance of partial adjustment according to the data realized decreases the 
maximum regret values that can be incurred.

In the existing study, it is assumed that the relocatables can be moved without 
any additional cost. For future research it is possible to incorporate relocation costs 
into the formulation to obtain a more realistic model.

The intelligent search algorithms used in single and multi-period cases are known 
to perform much better than complete enumeration. However they are also based on 
explicit enumeration procedures and hence they become prohibitive for large number 
of machines. As future research, other algorithms, perhaps based on enumeration 
techniques may be proposed.
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Imprecise Data

Imprecise Data

Reactive Proactive

Risk

.expected value problem 

.static stochastic planning 

models
.dynamic programming 

.robust optimization 

.scenario optimization 

.scenario aggregation

_ Uncertainty

.convert to risk

.pessimistic approach

.optimistic approach

.Hurwicz

.minimax regret

.robustness-stability

.order relations 

.permanent -weak-union

wise permanent solutions

Figure A .l: Classification in terms of approaches
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1 2 3

4 5

Figure B .l: Layout for five machines

1 2 3

4 5 6

Figure B.2: Layout for six machines

1 2 3 7

4 5 6

Figure B.3: Layout for seven machines
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Figure B.4: Layout for eight machines

1 2 3

4 5 6

7 8 9

Figure B.5: Layout for nine machines


