
й : 885a:T-öä«r£0 ; еи ш i&mwi
ШО ÎÏS rrasiÄTSO« ΐό à ? О Й Ш Х М М В Ш

Cri '·Ρ ̂ ГГ "TU π Г ' - D Λ jD T ?. 'T Λ ν !P ^ ,<4, ■ _ /. >■*.. · „ «ti· ;»· «h.

w»'»w'*^, vV·̂ ' w · іЩ.»***

·,0 ‘ 4“2 '- P ̂ 4 .̂0 A f. 2̂) ?f Vrr-f {Cí '"^50^ í P - iO Ξ

Λ̂ .·̂ -ruv- 1Μ̂ *.'!Τ!_ΓΓ= Cr ΞΝ3 ίΛΗ·:.Ρ;3ίί'Λ ¿i-'D SC!E?-:OE

'.r o;¡ 'JM;V£rí3íT7
f'’'': .̂-._-;TíAL. FüLF'LLívÍ£?·■■; ;

. ” . O ^

:· f ,$. c"TP C ̂ S j'V Ξ

/5 Э 5 * ·

'С •;й‘■ Д, •h-ij/ І ñ

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bilkent University Institutional Repository

https://core.ac.uk/display/52928382?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

AN OBJECT-ORIENTED STRUCTURED QUERY
LANGUAGE AND ITS TRANSLATION TO A

FORMAL ALGEBRA

A THESIS

SUBMITTED TO THE DEPARTMENT OF COMPUTER

ENGINEERING AND INFORMATION SCIENCE

AND THE INSTITUTE OF ENGINEERING AND SCIENCE

OF BILKENT UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTER OF SCIENCE

Al· Q-\Xr4yc*̂ r

By
All Gürhan Gür

September, 1997

ψ \
7 í ·
•9 7
GZ

■V-V>,

60 Г) /I /?'
U б 4 lî

11

I certify that I have read this thesis and that in my opinion it is fully adequate,
in scope and in quality, as a thesis for the degree of Master of Science.

Prof. Dr. M/Erol Arkun(Advisor)

I certify that I have read this thesis and that in my opinion it is fully adequate,
in scope and in quality, as a thesis for the degree of Master of Science.

'A) ^-^^6
Asst. Prof. Özgür Uluso;

I certify that I have read this thesis and that in my opinion it is fully adequate,
in scope and in quality, as a thesis for the degree of Master of Science.

Dr. Reda Alhajj

Approved for the Institute of Engineering and Science:

Prof. Dr. MehmeL
Director of Institute of Engin^ring and Science

Ill

Abstract
AN OBJECT-ORIENTED STRUCTURED QUERY LANGUAGE

AND ITS TRANSLATION TO A FORMAL ALGEBRA

Ali Gürhan Gür
M.S. in.Computer Engineering and Information Science

Supervisor: Prof. Dr. M. Erol Arkım
September, 1997

A declarative query capability has been accepted as a fundamental feature
of any database management system. This thesis proposes an extension of the
standard query language SQL, SQ L /00, designed for querying object-oriented
databases. It has additional constructs to deal with the rich data model intro­
duced by object-orientation. S Q L /00 rests on a formal object-oriented query
algebra that is highly expressive and open to optimization. Formal definitions

of syntax and semantics are presented. The mapping of S Q L /00 queries into

object algebra is provided by a syntax-directed translation scheme. A proto­
type system that evaluates SQ L /00 queries is designed. The system starts
with a translator that translates an S Q L /00 query into an equivalent object

algebra expression. This algebra expression is parsed and an Object Algebra
Tree (OAT) is generated which will be used a.s the internal representation.

OAT Trees can be used as the input and output of a query optimizer module.

The result of the query will be evaluated by traversing the tree and evaluating

each node using proper functions that execute object algebra operations. A

survey of existing object-oriented query languages in the literature is also pro­

vided. Their characteristics are identified, compared and contrasted, in order

to present the necessary background.

Keywords: object-oriented database, query language, query algebra, SQL,

translation.

IV

ö z e t
NESNESEL YAPILI BİR SORGULAMA DİLİ

VE BİÇİMSEL BİR CEBİRE ÇEVİRİSİ

Ali Gürhan Gür
Bilgisayar ve Enformatik Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Prof. Dr. M. Erol Arkım
Eylül, 1997

İfadesel bir sorgulama yeteneği, herhangi bir veri tabanı sisteminin temel bir

özelliği olarak kabul edilmiştir. Bu tezde, standart sorgulama dili SQL’in bir
uzantısı, SQ L /00 , nesnesel veri tabanlarını sorgulamak amacıyla önerilmiştir.
Bu dil nesnesel yaklaşımın getirdiği zengin veri modeliyle ilgilenmek için ek
yapılara sahiptir. SQ L /00, ifade gücü yüksek, optimizasyona açık, nesnesel
bir sorgulama cebirine dayanır. Dilin sözdizimsel ve anlamsal tanımları sunul­
muştur. S Q L /00 sorgularının nesnesel cebire eşlemesi sözdizimine dayalı bir

çeviri düzeninde verilmiştir. S Q L /00 sorgularını değerlendiren bir prototip

sistem tasarlanmıştır. Sistem bir S Q L /00 sorgusunu karşılık gelen cebirsel

ifadeye çeviren bir çevirmenle başlar. Bu cebirsel ifade çözümlenerek içsel

temsilci olarak kullanılacak olan nesnesel cebir ağacı (OAT) oluşturulur. O.AT
ağaçları sorgu iyileştiren bir bölüm için girdi ve çıktı olarak kullanılabilir. Ağaç
üzerinde dolaşarak her düğüm için uygun olan cebirsel işlemi gerçekleştirecek

fonksiyon çalıştırılmak suretiyle sorgu sonucu hesaplanır. Ayrıca literatürde

bulunan nesnesel sorgu dillerinin genel bir özeti verilmiştir. Gerekli zemini

sunmak amacıyla, bu dillerin özellikleri belirlenmiş, kıyaslanmış ve karşılaş-

tırılmıştır.

Anahtar kelimeler: nesnesel veri tabanı, sorgulama dili, sorgulama cebiri,

SQL, çeviri.

To my family,

who make this,

and all things,
possible...

VI

Acknowledgem ents

It is a great pleasure to acknowledge my debt to the people involved, directly
or indirectly, in my study which led to the production of this thesis.

I owe a great deal to the guidance and encouragement of my supervisor.
Prof. Dr. M. Erol Arkun. It has been a privilege to work with him during my
years in Bilkent University. Without his clear thinking, understanding, great
patience and faith in me this thesis would never have happened.

y\sst. Prof. Reda Alhajj has always made himself available to answer my
questions and to discuss my ideas, and his time and support is sincerely ap­

preciated.
I would also like to thank the other member of my commitee Asst. Prof. Özgür

Ulusoy, who made useful comments about my work.
I owe special thanks to my colleague Çağlar Günyaktı and other friends

Ümit V. Çatalyürek and Hakkı Tunç Bostancı for their endless intellectual
and moral support during the development of this thesis.

To my family and friends, thank you for your help, for your support, for

sharing my anxiety, for patiently urging me to finish, for sticking with me

during some very difficult times and never having doubted me - even when 1

did myself. My parents’ patience, understanding and infinite moral support
have helped make the completion of this thesis a reality.

Contents

1 Introduction 1

2 Related Work - 4
2.1 .Data Model Issues 4
2.2 Query Language Issu es ... 7
2..3 A Survey of Existing S y s te m s .. 8

2..3.1 Object SQL of IR IS .. 8
2.3.2 EXCESS of EXODUS 9

2.3.3 O a S Q L o fO i... 10
2.3.4 ORIONQL... 11

2.3.5 ONTOS S Q L ,..................................... 11
2.3.6 CQL■|■■|■ of O D E .. 12

2.3.7 OQL[C++] .. 12
2.3.8 Other Proposals.. 12

2.4 Comparison of Query Languages.. 13

3 Background 16
3.1 Data M o d e l.. 16

3.1.1 Informal D escrip tion .. 16
3.1.2 Example D a ta b a se ... 17
3.1.3 Basic N ota tions... 19

3.2 Object A lg e b ra .. 20

3.2.1 Informal D escrip tion .. 20

3.2.2 Object Algebra Operations... 22

4 Query Language 25
4.1 Informal D escrip tion ... 25

VII

CONTENTS vin

4.1.1 Basic queries 25
4.1.2 Method c a l l in g .. 26
4.1.3 Complex objects 26
4.1.4 Object id e n t i ty .. 27

4.1.5 Class h ie ra rch y .. 27
4.1.6 Inheritance .. 28
4.1.7 Multiple dom ains.. 28
4.1.8 Subqueries in FROM-clauses.. 29
4.1.9 Subqueries in VVFIERE-clauses.. 30
4.1.10 Quantifiers... 30
4.1.11 Aggregate functions... 30
4.1.12 Set operations... 31

4.2 Syntax and Semantics 31
4.2.1 Overview 32
4.2.2 FROM-clauses... 33
4.2.3 WHERE-clauses 34
4.2.4 GROUP BY-clauses 37

4.2.5 HAVING-clauses.. 38

4.2.6 SELECT-clauses 39
4.2.7 Set Operations 40

5 Implementation 41
5.1 System O verv iew 41

5.2 Data Model Representation 41

5.3 S Q L /00 to Algebra T ra n s la to r .. 45

5.4 Algebra Parser and Tree Generator .. 46

5.5 Query Evaluator 47

6 Conclusions and Future Work 49

A SQL/OO Syntax 54

B SQL/OO to Algebra Translator 57

List o f Figures

3.1 Example Database Schem a... IS

.5.1 System O verv iew .. 42
5.2 Class definition of A C la s s .. 43
5.3 ' Class definition of ACObject ... 44
5.4 Class definition of AMessage ... 45
5.5 Class definition of OATNode.. 47
5.6 Class definition of AOperand .. 48

IX

List o f Tables

2.1 Data Model F ea tu res ... 13
2.2 Query Language Features 14
2.3 Data Modification Features ... 14
2.4 Query Domain, Range, Image C lasses... 1.')

Chapter 1

Introduction

Object-Oriented Database Management Systems (OODBMSs) [6, 25, 15, 11,
21, 31] became popular in the mid-eighties, as a result of the sharply increased

popularity of the object-oriented programming languages. Early efforts at
OODBMSs, and query languages of them, centered around making particular
object-oriented languages persistent [2]. These persistent languages provided
support for user queries through the programming language itself, or simple
preprocessor extensions of it. The queries written in these languages were

therefore completely non-declarative. It was commonly believed that this was
a sufficient querying capability for OODBMSs.

This belief no longer holds and declarative query capability, one of the most
important reasons why Relational DBMS technology is so popular, has been
accepted as a fundamental feature of OODBMSs. There are several propos­
als for declarative object-oriented query languages in the literature based on

different object models and implementation schemes [iO, 24, 4, 9, IS, 7]. In

this thesis, a survey of existing query languages for object-oriented systems

is provided. Common and different characteristics found in these systems are
identified, compared and contrasted. A comparative analysis of the features,

strength and weaknesses of existing languages are given in a tabular fashion.

An object-oriented query language needs to rest on an object-oriented al­

gebra which provides an abstract execution engine with which queries can be

expressed using algebraic operations. An algebraic background is important in

expressive power of the query language, as well as in the optimization of queries.

A form'd! object-oriented datg model and a query algebra had been proposed

in [3]. This algebra is very strong in terms of expressive power. However, for

CHAPTER 1. INTRODUCTION

real-world users of a database system, a formal algebra is too difficult to use. In
this thesis, we present a high-level object-oriented query language, SQ L /00 ,
which rests on this data model and query algebra. In defining S Q L /00 , one
of our goals was to stick as closely as possible to the standard query language

SQL [19], both in syntax and semantics, and extend it naturally in order to in­
corporate object-oriented concepts. Hence the required effort for existing SQL
users to learn S Q L /00 will be minimized.

In designing our language, care was taken to obtain a language that is closed

and adequate with respect to its underlying object-oriented data model. With
closure we mean that the result of a query can be represented in the data model
itself, i.e. as a derived class, properly placed in the class hierarchy. Closure
is important in the context of query composition and view definition. With
adequacy we mean that our language provides constructs to handle all features

supported by the data model. In particular, we provide logical predicates and
quantifiers adequate for handling complex structures, restructuring techniques
and an inheritance mechanism.

The mapping of S Q L /00 queries into object algebra is provided in terms of
a translation scheme. The translation is syntax-directed, with translation rules

associated with grammar productions. A translator which excepts SQ L /00
query expressions in text form and translates them into equivalent object al­
gebra expressions is implemented using YACC [20], a compiler compiler. The
translator parses the input expression and generates the equivalent algebra ex­
pression using grammar actions that implement translation rules. In order to
execute a query given in text form, it should be translated into an internal rep­

resentation. With this intention a second parser is implemented. This parser

excepts an object algebra query expression in text form and generates an object
algebra tree (OAT), which serves as the internal representation. An OAT is
an operator tree, with internal nodes representing algebra operations and leaf
nodes representing input data operands. A prototype system that evaluates

user queries is designed. Internal representations of the data model and the

query model is defined using C-f—b [30] class structure. The modules which

translate S Q L /00 queries into internal representations are implemented.

CHAPTER 1. INTRODUCTION

The organization of this thesis is as follows. The related work in the liter­
ature is reviewed in Chapter 2. A survey of current user query languages for
object-oriented database systems is presented, together with their character­
istics and drawbacks. This survey does not include all object-oriented query

languages, however the ones which mostly mentioned in the literature and well
documented are selected. The reference data model and a formal object alge­
bra which lies in the background of this thesis is presented in Chapter 3. The
object-oriented user query language, which is the main contribution of this
thesis is described in Chapter 4. The prototype implementation experience is
discussed in Chapter 5. Finally the conclusions and future work is summarized
the in Chapter 6.

Chapter 2

R elated Work

111 this chapter we present the necessary background knowledge about object-
oriented database systems and their cpiery languages. First we identify the
common features supported by most object-oriented data models, and the vari­
ations. Then we discuss the characteristics of query languages and present a
survey of various object-oriented query languages which are most referenced in

the literature.

2.1 D ata M odel Issues

The proliferation of object-oriented systems is largely due to the data model­

ing power, behavior modeling power and the extensibility provided by these

systems. A typical object-oriented system allows users to define new entity-

types, their attributes and behavior, that is the static and dynamic properties
of entity types. It resembles abstract data types found in programming lan­
guages. The following features are found in many, object-oriented data models

and can be considered as the essential elements that should be found in every

object-oriented data model [6].

Object and Object Identity Real world entities are represented by complex

objects in object-oriented data models. Each object has a a unique identifier

called an object identifier. Object identifiers are vehicles for object sharing and

recursive data structure.

Attributes and Methods Each object may have one or more attributes and
one or more methods which operate on the values of the attributes. The value
of an attribute may be an object or a collection of objects.

Encapsulation and Message Passing Attributes of an object can be accessed
only via the defined methods. These methods form the public interface of the
object and encapsulate the object attributes. A method is invoked by passing
a message (i.e., the method name and the parameters if any) to the object.

Class A class is like an abstract data type in programming languages and

every object is an instance of a class. Objects in the same class have the same
attributes and methods.

Class Hierarchy and Inheritance A class can be defined as a subclass of an­
other class. A subclass inherits all the attributes and methods from the super­
class. Consequently, an object of a subclass can be used wherever an object of

the superclass is expected. The inheritance relationships between classes form
a graph called a class hierarchy.

Overloading, Overriding and Dynamic Binding Different methods can be as­

sociated with a single overloaded message name, and inherited methods can
be overridden. System dynamically determines which method should be irsed
according to the object class.

Despite the sharing of a set of common features, there are some differences
that distinguish one object-oriented data model from another. The following

is a list of the common differences found in existing models.

CHAPTER 2. RELATED WORK 5

Objects and Values Some systems support values in addition to objects. Val­

ues do not have an explicit identifier and are identified by their contents. For

example, in some systems integer, real, string and boolean are not considered

as classes, but as base values. Some systems allow constructed values, such as

tuples.

CHAPTER 2. RELATED WORK

Direct Attribute Access and Message Passing Some systems do not allow ob­
ject attributes to be accessed directly. Some systems allow a selected set of

attributes of an object to be accessed directly. Others allow all attributes of

an object to be accessed directly. In the latter case, an object is like a tuple
with a set of associated methods.

Object Ownership and Sharing Support of complex objects arises the concept

of object ownership. Some systems support additional constructs to identify

whether an object reference in another object is owned or shared. Other sys­
tems treat complex objects as sharable, and values as non-sharable objects.

Class and Extent In some systems every class is associated with a user ac­
cessible collection called a class extent. An extent contains all instances of a

class, and generally referred by the class name. Some systems do not support
extents, however a user defined collection can be used as an extent.

Inclusive Extent and Exclusive Extent If the extent of a subclass is a subset of
the extent of its superclass(es), it is called an inclusive extent. On the contrary,

if the extent of a superclass does not include the extents of its subclasses, it is
called as an exclusive extent.

Single Inheritance and Multiple Inheritance Some systems restrict all sul)-

classes to have only one superclass. These models are said to support single

inheritance. Others allow more than one superclass for a subclass. In other

words, they support multiple inheritance.

Single Root and Multiple Roots For many systems, the class hierarchy is
rooted at one class. There are systems that do not support a particular class

of which all other classes are subclasses. Systems belonging to the first case

have a single root. Those belonging to the second case have multiple roots.

Single Type or Multiple Type of Collection Class All object oriented data

models support set as a collection class. For many systems set is the only

collection class. However some systems have extra collection classes like list

and bag {multiset).

CHAPTER 2. RELATED WORK

2.2 Q uery Language Issues

This section discusses the approaches used by existing query languages in ex­
pressing complicated queries [10]. It explains the different constructs and points
out the proper combinations of these constructs.

In relational context, queries are applied to relations and return relations
again. In general, we can formulate a relation as a set of tuples. Hence rela­
tional query languages operate on sets and tuples. However object-orientation

allow more complex structures and different collection types. Object-oriented
query languages operates on collections of complex objects, but there are differ­
ences among object-oriented query languages about range, image and domain
classes of c[ueries. A range denotes the kind of the output collection of a query,

such as a set, a bag, or a list. The element type of the output collection is

referred as the image. A domain is a collection of objects on which a cpiery
will be evaluated. These specifications are closely related with the data mod­
els underlying the query languages. A domain can be a class extent, a ’’real”
collection, or both depending on the data model. The image of a query can be
an object or a value. While some languages can return new objects and values,

others can return only existing ones.

Most of the query languages support multiple domains. One advantage of

having multiple domains is to minimize complicated nesting of queries. In
object-oriented models one domain can depend on another domain. This hap­
pens when one domain refers to a collection and another domain refers to a
nested collection of each object in the first collection (e.g. the first domain

could be a set of Student objects and the second domain referred to a set

of Course objects belonging to the current Student object being processed).

This dependence relationship is referred tp as dependent domains. For an
extent-based model, multiple domains can be useful even without the support

of dependent domains, because dependent domains can be expressed using a

membership test in the selection specification. For a non-extent-based model,

multiple domains should come with dependent domain, otherwise nested col­

lections cannot be handled easily.

In relational query languages (e.g. SQL and QUEL), nested subqueries

are allowed only in the WHERE-clause and cannot appear in the SELECT

or the FROM-clauses. This restriction does not create any serious problems.

because the relational model only supports atomic valued attributes which re­
quires minimal structuring power. In object-oriented query languages, nesting
subqueries in the selection specification of a query serves the same purpose
as in the relational context. Nested queries can be correlated or independent.

Many object-oriented query languages allow query composition in the image

specification of a query so that results of a complex structure can be returned.
Nesting of queries in the domain specification depends whether the result of a
query can be used as a domain of another query.

Object-oriented data models subsume the relational model, so an object-
oriented query language should similarly subsume relational completeness. Most
object oriented languages support five basic relational algebra operation with

additional semantics, therefore they can express all queries that can be e.x-
presses in the relational algebra. However union and difference operations are

not supported by all languages.
Existential and universal cpiantifiers can simplify complex queries. Aggre­

gate functions return a value from a collection and have been shown very useful
in earlier data models.

While some languages are designed only for querying a database, some oth­

ers can be used for data definition and data modification purposes as well.
However data modification facilities are very limited. Dynamic schema evolu­
tion is supported by ORION only.

2.3 A Survey o f E xisting System s

CHAPTER 2. RELATED WORK 8

2.3.1 Object SQL of IRIS

The IRIS DBMS [22, 23] heis been developed at Hewlett-Packard Laboratories.
It is intended to meet the needs of office information and knowledge-based

systems, engineering test and meaisurement, as well as hardware and software

design. It supports persistence, concurrency, recovery, rules, inference, novel

data types, clustering, long transactions and version control. The database

can be accessed through two programming language interfaces, C-IRIS and

Lisp-IRIS, and a query language Object SQL (OSQL) that can be used as a

stand-alone interactive interface and a language extension.

The IRIS data model is a functional data model. Relationships between

classes can be modeled using independent functions not associated with any
class. They are presented by values similar to tuples where retrieval is not
done by field names but pattern matching. IRIS functions may be defined
intensionally (i.e. using formula) or extensionally (i.e. without any formula but
solely by explicit setting and updating of their values for particular arguments).

The result of a function can be a base value or a set. Composition of functions is
not limited to single-valued functions. Multi-valued functions can be composed
together with the result being the union of the individual results. The data
model also supports inverse attribute relationships.

Object SQL (OSQL) [9] is not a simple query language but a vehicle lan­
guage for the database model. It is largely influenced by the relational paradigm
and its standard SQL. As SQL, OSQL serves as a data description, data ma­

nipulation and query language. In the initial version of OSQL, some complex

problems have to be solved by a call to external functions which have to be writ­
ten in a foreign programming language. Thus, it has the traditional impedance
mismatch problem. In later versions [5], OSQL has evolved to include general
computational primitives and is now a computationally complete, extensible

database language.

OSQL has an SQL-like syntax. An OSQL query is a sequence of function
declarations followed by a select-from-where block. Alternative keywords are
offered where the existing keyword would be misleading. As in SQL, a select-
from-where block implicitly constructs and returns a set of tuples. However,
the constructed set does not belong to the type, hierarchy. Functions are the

major modeling constructs of OSQL. User-defined functions can be invoked in

select-from-where blocks.

Quantification and aggregate functions are not supported but can be aug­

mented using functions. Structuring power is good except that it does not
support new objects as the result of a query. Computational power is high.

Usability can be improved if some unnecessary restrictions are removed.

2.3.2 EXCESS of EXODUS

CHAPTER 2. RELATED WORK ̂ 9

EXCESS [14] is the query language of EXODUS database system. It is based

on the EXTRA data model. EXTRA model supports not only objects but

also values which are entities that do not respect the object encapsulation

CHAPTER 2. RELATED WORK 10

and identity principles. Values are typed, objects belong to classes. EXTRA

supports complex structures obtained by tuple, set and array constructors.
The type system is based on a type lattice with multiple inheritance.

The EXCESS query language has a QUEL syntax. It allows modification
of a database as well as querying. It also provides facilities to define new func­
tions, these functions cannot be associated with classes but only to types. Both
data and functions can be queried. Objects are queried through appropriate
methods, values are queried according to their structure and appropriate func­

tions. Hence encapsulation principle is not violated. EXCESS also supports
aggregates and aggregate functions. The output of a query is a set of tuples.

The characteristics of EXCESS is very similar to OSQL since both use a
relational query processor. Structuring power of EXCESS is good but new

objects cannot be created as the result of a query. Computational power is

high. Usability is acceptable.

2.3.3 O2SQL of O2

0-2 [8] is an object-oriented database system developed in Altair and has been

later turned into a commercial product marketed by O2 Technology. O2 is

designed to be a general purpose database system for various kinds of applica­
tions. It supports a database programming language called O2C and a query
language O2SQL [7]. It supports persistence, concurrency, transactions, version
control and distribution.

The O2 data model features object identity, abstract typing, encapsulation,

multiple inheritance and late binding. It supports all three kinds of collections

and class extents as an option.

O2SQL works in two modes: the interactive mode is for ad hoc queries, and
the programming mode is for embedding into programming languages. Encap­

sulation can be violated in the interactive mode but not in the programming

mode. The query is functional in nature. The syntax is SQL-like. It supports

both multiple and dependent domains. A query returns a set of objects or
values. Returned objects are that already exist in the database, while new

values can be built.

O2SQL is designed as a retrieval oriented language, thus its computational

CHAPTER 2. RELATED WORK 11

power is poor. The query language is good in terms of functionality and us­
ability.

2.3.4 ORIONQL

ORION [24] has been developed at MCC for CAD/CAM, artificial intelligence,
multimedia and office information applications. ORION supports persistence,
concurrency, transactions, recovery, composite objects, version control, dy­
namic schema evolution and multimedia data management.

The ORION Query Language (ORIONQL) proposal [25] has the basic SQL
select-from-where structure. Unlike many systems, ORION data model sup­
ports exclusive extents. Hence querying a family of classes requires a cla,ss

hierarchy operator which extends the evaluation to the extents of all sub­
classes.

Attributes can be directly accessed from the query language and hence
encapsulation is not supported. Multiple and dependent domains are sup­

ported in the FROM-clause using ‘is-in’ operator, which can also be used in
the VVHERE-clause to specify a membership relationship.

Structuring power of the language is not good. Computational power is
unsatisfactory except the schema evolution feature. Usability is the strong

point of the language.

2.3.5 ONTOS SQL

ONTOS [4] is a commercial product from Ontologie. It aims to provide stor­

age and retrieval mechanism for advanced applications. ONTOS operates in a

multi-user, distributed homogeneous environment where transaction manage­

ment and concurrency control are supported.

ONTOS SQL is an embedded query language for C+-f·. ONTOS SQL is

designed as a simple retrieval-based query language. The result of queries are
limited to two forms: a list of strings, a list of lists of objects. It supports

multiple domains but not dependent domains. Since class extents are not

supported by the data model, the lack of dependent domains decreases the

expressive power.

Both structuring an computational powers of the language are insufficient.

Usability is acceptable in a limited scope.

CHAPTER 2. RELATED WORK 12

2.3.6 CQL“|—f~ of ODE

ODE [2] is an object-oriented database system developed in AT&T Bell Labs.

The object model of ODE is ba.sed on C-1-+ [30]. The ODE Database is de­
fined, queried and manipulated in the database language 0-(--|- [1] which is an
extension of C-1--I-.

CQL-f--t- [18] is proposed as a declarative front end to the ODE system.
It uses an SQL-like syntax for defining classes, querying, displaying, and up­
dating objects. Only tuples can be returned as the result of a query. Thus

structuring power is poor. Computational power is good, however usability
can be improved.

2.3.7 OQL[C++]

OQL[C-|-+] [12] is an effort to extend C-t--h with an object query capability. It
uses the C-|--f [30] type system as an object data modèl. The standard select-

from-where structure of SQL is used for embedding queries in C-f-|- programs.

Certain C-1-+ expressions can be used in the formulation of queries.
OQL[C-h-|-] supports the creation of new objects as the result of a query.

New objects are created by calling a constructor in the select-clause, hence the
structure of new objects should be predefined. Structuring and computational
power are the strong points, however usability is poor.

2.3.8 Other Proposals

Bussche and Heuer [13] propose an extension of relational SQL to query object-

oriented database systems. They present a mapping from an object-oriented
data model to the nested relational data model, and define the semantics of
their object-oriented extension of SQL by translating into the nested relational
algebra. In this mapping of the object-oriented model to the nested relational

model, object identifiers are stored in relations as an identifying attrihute.

Initially the uniqueness of object identifiers are assured, however restructuring

of nested relations through unnest operation causes duplication of top level

attributes including the identifying attribute.

The object-oriented data model and query language proposed by Sarkar and

Reiss [29] is an elegant proposal. It is a rule based language translated into

CHAPTER 2. RELATED WORK 13

an algebra that support operations on different collection types. This OQL
avoids the dichotomy of values versus objects, is proved closed and complete,
supports recursive queries, has support for complex ownership and sharing.
However it is proposed as yet another query language with its own syntax
completely different from any other known language.

Object comprehensions [17] is a new query notation which is developed from
list comprehensions. Comprehensions are constructs based on the standard
mathematical notation for sets, and widely used in functional programming
languages. It is a clear and expressive query language.

2.4 C om parison of Query Languages

In previous sections, the features of various object-oriented query languages are
presented. The purpose of this section is to summarize the study in a tabular
fashion.

Table 2.1 gives a summary of the data model characteristics of the object-
oriented query languages surveyed in this chapter.T’ and ‘E’ in the ‘Class E.x-

tents’ row stand for inclusive extent and exclusive extent respectively, where

‘0 ’ means that class extents are supported as an option. ‘M’ and ‘S’ in the
‘Inheritance’ row stand for multiple inheritance and single inheritance. While
‘M’ and ‘S’ in the ‘Root Class’ stand for multiple roots and single root. ‘S’, ‘B’
and ‘L’ in the ‘Collection Classes’ row stand for set, bag and list respectively.
A‘-|-’ means that the data model supports other collection classes.

O RIO N O N T O S IRIS 02 E X T R A O D E R ef

O bjects Y Y Y Y Y Y Y
Base Values Y Y Y Y Y Y Y
T uples N N Y Y Y Y N
C om p lex O bjects Y Y Y Y Y Y Y
M essage Passing Y Y Y Y Y Y Y
E ncapsu lation N Y N N Y Y Y
C lasses Y Y Y Y Y Y Y
Clciss E xtents E 0 I I 0 I 0 I I I
Inheritance M s M M M M M
R oot Class S s M s M s s
C ollections S s L -t- s B s B L S A s s

Table 2.1: Data Model Features

CHAPTER 2. RELATED WORK 14

Table 2.2 summarizes the features supported by the query languages. Mul­
tiple domains are supported by all languages. OSQL does not support depen­
dent domains, since class extents are supported by its data model, this does

not cause a problem. However the absence of dependent domains is a prob­

lem for ONTOS SQL where class extents are optional. None of the surveyed
languages, except OQL[C-l--l-], can return new objects as the result of a query.

O R I O N O N T O S

S Q L

O S Q L O 2 S Q L E X C E S S O Q L [C + +] C Q L - f + S Q L / 0 0

M u l t i p l e D o m a i n s Y Y Y Y Y Y Y Y

D e p e n d e n t D o m a i n s Y N N Y Y Y Y N

R e t u r n i n g N e w O b j e c t s N N ' N N N Y N Y

N e s t e d Q u e r i e s N N Y Y Y N Y Y

E x i s t e n t i a l Q u a n t i f i e r Y N N Y N Y Y Y

U n i v e r s a l Q u a n t i f i e r Y N N Y Y Y N Y

A g g r e g a t e F u n c t i o n s Y N N N N N N Y

S e l e c t i o n Y Y Y Y Y Y Y Y

P r o j e c t i o n Y Y Y Y Y Y Y Y

C a r t e s i a n P r o d u c t Y Y Y Y Y Y Y Y

U n i o n Y N N Y Y N Y Y

D i f T e r e n c e Y N N Y Y N Y Y

R e c u r s i o n Y N N N N N N N

Table 2.2: Query Language Features

Table 2.3 shows the modification features of the query languages. ONTOS
SQL and O2SQL are developed for retrieval purposes only and do not support

any modification on the database. OSQL, EXCESS, OQL[C-|-+] and CQL-I-+

support features for in.sertion, deletion and update of objects. However only

ORION allows schema evolution with existing data.

O R I O N O N T O S

S Q L

O S Q L O 2 S Q L E X C E S S O Q L [C - f - f] C Q L 4 - + S Q L / 0 0

I n s e r t i o n N N Y N Y Y Y N

U p d a t e N N Y N Y Y Y N

D e l e t i o n N N Y N Y Y Y N

S c h e m a E v o l u t i o n Y N N N N N N Y

Table 2.3: Data Modification Features

CHAPTER 2. RELATED WORK 15

Table 2.4 presents the supported collection classes for domain, range and
image specifications of query. The collection class set is supported by all lan­
guages. List is supported by some languages but bag is generally not supported.
When different collection classes are supported, they can be used in domain,

range and image specification. ONTOS being an exception, restricts the image
class to string and the range class to list. In CQL-I--1- only constructed values
out existing values can be returned. OQL[C-f-f] is the only language that can

return newly created objects.

O R I O N O N T O S

S Q L

O S Q L 0 2 S Q L E X C E S S O Q L [C + + J C Q L - | - - f S Q L / 0 0

D o m a i n

C 1 a s s

S e t Y Y Y Y Y Y Y Y

B a g N Y N Y N N N N

L i s t N V N Y N N N N

R i x n g e

C h \ s s

S e t Y N Y Y Y Y Y Y

B a g N N N Y N N N N

L i s t N Y N Y N N N N

I m a g e

C l a s s

N e w O b j e c t N N N N N Y N Y

E x i s t i n g O b j e c t V N Y Y Y Y N Y

N e w V a l u e N Y Y Y Y N Y N

E x i s t i n g V a l u e Y N Y Y Y N N N

Table 2.4: Query Domain, Range, Image Classes

Chapter 3

Background

In this chapter we present the underlying data model and object algebra [3]
related to our query language proposal.In Section 3.1 we describe the refer­
ence object-oriented data model that we will use throughout the thesis. The
reference data model presented here includes the significant features found in
most object-oriented data models, some of which are summarized in Chap­
ter 2. Next in this chapter, we give an informal description of the model in

Section 3.1.1. An example database is defined in Section 3.1.2 that will be
used to illustrate the introduced concepts. The basic notations about the data
model is enumerated in Section 3.1.3.

The query model and object algebra is explained in Section 3.2. An informal
description of the algebra operations given in Section 3.2.1 is followed by their
formal definitions presented in Section 3.2.2.

3.1 D ata M odel

3.1.1 Informal Description

The reference data model supports objects, classes and methods. An object

has an identity, a state and behavior. The identity of an object distinguishes it

from other objects in the database and provides for object sharing. The state

of an object is a set of values, one for each of the instance variables of its class.

A value may be either a single value or a set of values drawn from a particular

domain. A domain is either atomic, or non-atomic. An atomic domain may be

one of the conventional domains, such as integers, strings, etc. On the other

16

CHAPTER 3. BACKGRO UNO 17

hand, a non-atomic domain includes the set of objects of a class represented
by their identities. The state of an object is reachable via the behavior, which
is defined as methods applicable to the object.

Objects are collected into classes. A class has a set of instance variables,

a set of superclasses, a set of methods and a set of objects as its instances.
Instances of a class have the same state structure and behaviour definition.
The state structure is defined by the set of instance variables, which reflects
properties of objects in the class. The set of methods applicable to objects in
the class denotes their behaviour. Instance variables can be accessed only via
methods defined in the class, hence encapsulation and information hiding is
supported. The set of superclasses provides reusability through inheritance. If
a class appears in the superclasses set of another class, the latter class is called
a subclass of the former one. A class can have more than one superclass and

should inherit and support both state structure and behavior of its superclasses.
As a consequence of inheritance, an object can be used wherever an object of
its superclass is expected. There is a root class in the model which is a subclass
of no class and a direct or indirect supercleiss of all other classes. The root class

includes the definition common to all the classes found in the schema.

The main features supported by the reference data model can be summa­

rized as follows:

• object identity
• class hierarchy
• multi-methods

• static type checking

• complex objects
• multiple inheritance

• method overloading

• dynamic binding

• classes
• encapsulation
• message passing

• class extents

3.1.2 Example Database

The example database is a simplified university administration system that

records information about students and staff members of a university, its aca­

demic departments and courses. The relationships between classes defined in

the schema are graphically shown in Figure 3.1.

The class Person has two subclasses: Student and Staff. Assistant inherits

from both Student and Staff to represent students doing part-time teaching.

Every person and academic department is given an address which is an object

of class Address. Every staff member and student are associated to an academic

CHAPTER 3. BACKGROUNO 18

Figure 3.1: Example Database Schema

department of class Department via instance variables works-in and student-in
■ respectively. A student has an advisor among staff members. Courses taken

by each student is also recorded, by a set-valued instance variable courses. A

course is an instance of the class Course. Each course is instructed by a staff

member [instructor) and assisted by an assistant [assistant). A course may
have a set of prerequisite courses [prerequisites). Each department has a head

staff member associated by the instance variable Aead. The birthdate of each

person is also stored as an object of class Date.

In the figure each node represents a class. OB.JECT is the root class. A

node is subdivided into three levels, the first of which contains the name of

the class, the second the instance variables and the third the methods. Each

instance variable and method is represented by a pair name : domain such

that name is the instance variable or method name domain is the underlying

domain. A domain specified between braces indicates that the corresponding

CHAPTERS. BACKGROUND 19

instance variable is set-valued. The nodes may be connected by two types of

arc. The node which represents class Ci may be connected to the node which
represents class C2 by means of:

• a thin arc, indicating that C2 is the domain of an instance variable iv of
Cl, or that C2 is the class of the result of a method m oi C\.

• a bold arc, indicating that C2 is a superclass of Ci.

If the domain of an instance variable or a method is an atomic domain (for

example integer, string etc.), only the name of the corresponding class is given.
Atomic classes are not explicitly shown as nodes in the schema.

3.1.3 Basic Notations

The following notation adopted from [3] is used related to a class C:

• messages{C) denotes the set of messages used to invoke any of the meth­

ods defined in or inherited by class C. A method is invoked via a corre­
sponding message and retrieves either a stored value from an object, i.e.

the value of an instance variable, or a derived value.

• Lariabtes{C) denotes the set of all instance variables defined in or inherited
by class C. For any instance variable iv, domain{iv) and value{iv) denote

the domain and the value of instance variable iv. •

• instances{C) denotes the set of objects in class C but not in any of its
subclasses. An object has an identity and a value. For any object o,

value{o) and identity{o) are used to denote the value and the identity of

object o, respectively.

• Tinstances{C) denotes the set of total instances of class C, which is defined

to include instances of class C and all its direct and indirect subclasses.

Formally speaking:

T^nstancesiC) = instances{C) T, nstances iS,)

where S = {8 1 , 8 2 , ■. 5’coni(5)} is the set of direct subclasses of class C\

i.e., C € supers{8i).

CHAPTERS. BACKGROUND 20

• supers{C) denotes the set of direct superclasses of class C.

• Me{C) denotes the set of message expressions of class C, which is defined

as:

— messages(C) C Me{C)

— if X € Me{C) and x returns a value from Tinstances{Ci),
then {x € messages{Ci)) Q Me{C).

The number of messages constituting a message expression x is denoted

by len{x). When received by an object, a message expression results in the
execution of the methods underlying the constituting messages and in the same
sequence. The underlying methods are executed as if they all form a single
method invoked by the message expression. A message expression returns
either a stored or a derived value.

3.2 O bject A lgebra

3.2.1 Informal Description

In the underlying object algebra, an operand consists of a pair of sets, a set
of objects and a set of message expressions. Since a class has a defined set of
objects and a derived set of message expressions, a class can be an operand.

The result of an operation as well has a pair of sets derived in terms of the

pair(s) of operand(s). Hence the result of any query operation can be placed as

an operand of another operation, maintaining the closure property. The object

algebra includes the five basic operators of the relational algebra in addition

to nest, one-level project and aggregate function applications.
The selection operation has a single operand and produces an output con­

sisting a pair, where the included objects are those satisfying a stated predicate

expression. Although the set of objects in the output pair is restricted, however

the message expressions of the output is the same as that of the operand.
A predicate expression is built using object variables, message expressions

and constants, besides quantifiers may be used in a predicate. An object vari­

able is bound by the set of objects of the operand. An object variable followed

by a message expression returns either a stored or a derived value. A returned

CHAPTER 3. BACKGROUND 21

value can compared with another value or constant by using conventional com­
parison operators in addition to C, 6 and ^ added to support set-based

comparisons and = , = and = for identical, shallow-equal and deep-equal com­

parisons of objects, respectively. So predicates within an object-oriented con­
text are more powerful than in the relational model where only atomic values
are compared.

The project operation restricts the accessible part of each of the objects
in the operand by eliminating some of the message expressions used in reach­

ing the contents of an object. The same set of objects from the operand is

maintained in the result, however only a stated set of message expressions can
be used to deal with these objects. On the other hand, the inverse project
operation extends the set of message expressions in the operand to include
more message expressions applicable to objects of the operand, i.e. gives more

facilities to the user.
The one-level project operation is used to bring values found at different

levels of nesting within an object to the same level of nesting. Similarly to
the project operation, a set of message expressions is stated with the operand.

While the project operation does not evaluate any message expression, the one-
level project operation evaluates the provided message expressions resulting in
new objects, and a new set of message expressions is derived to be used dealing
with those objects. Hence derived values are handled by this operation as well
as the stored values.

Although many relationships between objects are represented within the

.objects themselves, an explicit operation is required to handle cases when a

relationship is not present in the model. Both the cross-product and the nest
operations are defined to introduce such relationships. While the cross-product
operation is defined to be associative, the nest operation is not. However, the
two operations are equivalent under certain conditions [3]. Associativity of the

cross-product operation is achieved by defining the operation in four different

forms depending on the domains of the instance variables of the operands.

The cross-product operation creates new objects, out of objects in the

operands, and also a set of message expressions is derived to handle these

objects. The nest operation also introduces missing relationships by extending

the value of each object in the first operand to include a reference to object(s)

in the second operand. It is a special case of cross-product operation, but the

CHAPTERS. BACKGROUND 9 9

difference is that here always the first operand is extended regardless of the
underlying domains of the instance variables in the operands. On the contrary,
the unnest operation is used to drop a present relationship. This operation is
defined using the project operation.

Set operations union, intersection and difference are also supported. Their
definitions are extended to handle both sets in an operand.

The aggregate operation allows to have the result of the application of an
aggregate function used as an operand. A given aggregate function is evaluated
on the result of a given message expression for the group of objects that return
the same values for the elements of a given set of message expressions.

3.2.2 Object Algebra Operations

Let A and B be valid algebra operands, which are defined to have pairs of sets,

(ff instances (A), Me{A)) and {Tin3tances[B), AR{B)), respectively. /1 and B may
be classes or outputs from other queries. The algebra operations are defined
as follows:

• Selection:

A[p\ = { { o \o e 7 maianccs (^ p(o)}, M.{A)) (1)

where p is a predicate expression.

• Projection:

.4|M] = (T,·nstanccs (4), M) (2)

where M C Me{A).

• One-level projection:

A\[M] = ({ol 3oi e Tinstances{A) A valut{o) = (oi iV/)},

{.r I 3 x 1 € M with Xi returning a stored value, aq = (aq m) A

len{xi) = len{x2) + 1 A 3 x3 G Me[A) A X3 = (x2 x) A x = (m x4)}

U {x I 3xi G M with X\ returning a derived value, len{x) = 1 A

Voi G Tinstancea (A)3o € Tinstances{A\[M]) such that O l Xi = ox}) (3)

where M C i\R{A).

CHAPTERS. BACKGROUND 23

• Cross-product:
Case 1: if 3x,· € Me{A),len{xi) = 1 A G Me{B)Cen{xj) = 1

A x B = ({o|3o, € înstances (A)3 o ,e înstances {B)A

value{o) = identity{oi) .identity {02)} ,

(miMe(A)) U K M e iB))) (4)

Case 2: if Vxj· G Me(A),/en(x,·) > 1 A 3xj G Me{B),len{xj) = 1

/ I x B = ({o|3o, ^ ^m5<ances(-̂) 3c>2 G Tiyistances (5) A

value[o) = value{o]).identity {02)}

NU{A)'\J {m2i\C{B))) (0)

Ca5e 5: if 3x,· G Me(x4),/en(xi) = 1 A Vxj G AIe{B), len{xj) > 1

A y. B — ({i l̂ 3oj G Tinn̂ iijiceâ A) 3o-2 G înstances [B)A

value[o) = identity [o]).v alue[o2)},

(mj U yV/e(B)) (6)

Cfl.se i/; ifVx,· G Me{A),len{xi) > 1 A Vxj G Me{B)Jen{xj) > 1

A x B = ({o|3oi € 3o2 G Tinstances {B)A

value{o) = ya/tie(oi).t;a/ue(o2)},

M,(A)UM e(B)) (7)

where mi and nxi are messages with domains being Tinatances{A) and

Tinstanccs[B), respectively.

• Ne.st:

.4 > > B = ({o| 3oi G TinatancesiA) 3c>2 G Tijiatancesi B) A

value{o) = value(oi).identity {02)},

yV/e(.4)U (m M «(5))) (8)

where m is a message with underlying domain TinatancesiB).

• Unnest:

A « B = A[M,{A) - {mMa{B))] (9)

where m G AIe{A) is a message with underlying domain Ti,iatanc^a{B).

CHAPTERS. BACKGROUND 24

• Union:

AG B — {Tinatances -̂̂ ̂u Tin.iance,(5), M e(A)nM e(5)) (10)

Difference:

A B = ({o I O G Tinstances {A)Aoi înstances (B)}, M.(A)-M,(B)) (11)

• Intersection:
A O B = A - { A - B) (12)

• Aggregation:

A{X, f ,Xi) = {{o\{omi) CTinstances{A) A {oms) = /{{{oi x,)\

0\ G T intan cesi^) A Vc>2 G (onZi), (02 X) = (t>i .Y)})},

(mi Me(-4)) U {m3}) (13)

where -Y C yV/e(/l), ;c,· € Me{A), f is an aggregate function and mi is
a message with domain TinatanceaiA). The operation is applied on A by

evaluating the function / on the result of the message expression ;c, for

all objects that return the same values for elements of the set of message
expressions X.

Inverse projection:

.4]iV/[= [A » B)\[messages{A)U{m2 Tnessages{B))][Me{A)Ui\'I] (14)

where M C AR[B) is the set of message expressions to be added to Me(.4),

and m 2 is a message in the result of A » B with domain Tinstances{B).

Chapter 4

Query Language

4.1 Inform al D escription

In this section we informally introduce our object-oriented database query lan­
guage. The following subsections demonstrate our language using queries on

the example database described in Section 3.1.2. The language’s exact syntax
and complete semantics in terms of its translation to the formal query algebra
will be defined in Section 4.2.

4.1.1 Basic queries

Our language uses an SQL-like syntax, with extended constructs to deal with

complex objects, method calls and object-orientation. Thus, typical select-

pjoject-join queries are expressed using standard SQL SELECT-FROM-VVHERE

clauses. The semantics of the SELECT-FROiM-VVHERE clauses are identical

with their semantics in the relational context from user’s point of view.

Q uery 1 Return the names of all senior students.

SELECT s.najne
FROM Student s
WHERE s.year = 4

In this basic query, classes and methods are used analogous to the relations

and attributes in relational SQL. The list of methods whose return values are

to be output is specified in the SELECT-clause; the list of clcisses against whom

2 0

CHAPTER 4. QUERY LANGUAGE 26

the query is formulated is given in the FROM-clause; and the VVHERE-clause
consists of a boolean combination of predicates, which’ specifies the selection
criteria. The actual result of a query is a pair of sets as in the object algebra.
However if it is a display query, a special method display{cl) is applied on all

objects in the first set in order to display the result. We call a query as a display
query, if it is not a subquery nested in another query. Method display{d) is
defined as a member of the root class O B JE C T and inherited by all other
classes. It takes an integer argument, d, which specifies the maximum depth
of nesting to display. When it is applied to an object, it displays the values of
the instance variables downto level of nesting. By default, it is called with
d = 1 that displays only the top.level instance variables.

4.1.2 M ethod calling

Encapsulation protects instance variables of an object from being accessed
directly. Such an access must be made via a method. The previous example
already showed the application of unary methods in queries, which returns the
values of corresponding instance variables. Consider the more general method

neLsalary{t), defined in the Staff class to return the net salary of a staff

member after deducting taxes at the rate of t.

Q uery 2 Return the names and net salaries of all staff members.

SELECT s.name, s.net_salary(0.15)
FROM Staff s

Thus in our object-oriented SQL, methods returning derived values, as well

as the ones returning stored values, can be used in both SELECT-clause and
WHERE-clause.

4.1.3 Complex objects

Support of complex objects implies that a method call may return an object.

The returned object can, in turn, receive another method call. This can go on

for several method calls until, for instance an atomic value is returned. This

sequential operation of methods is represented by a path expression that is a

variable name followed by a sequence of zero or more method names separated

by operators.

CHAPTER 4. QUERY LANGUAGE 27

Q uery 3 Return the students who study in the department of Computer Sci­

ence.

SELECT s
FROM Student s
WHERE s.student_in.name = "Computer Science"

In this query, the path expression s . s tuden t J .n . name represents the calling

of method name{) on the result returned by calling studenLin,{) on a Student

object s.

4.1.4 Object id en tity '

In object-oriented data models, objects are represented by their identities which

are essential for object sharing and representing cyclic relationships. Equality
between objects becomes equality between object identifiers.

Q uery 4 Return the assistants working and studying in the same department.

SELECT s
FROM Assistant s
WHERE s.student_in = s.works_in

For example, in this query, to determine the assistants working and studying
in the same department, two Department objects, returned by path expressions
s.studentjin and s.works_in, are compared using their object identifiers.

4.1.5 Class hierarchy

Recall that, our reference data model supports the class extends. The set
Tinstances{C) of any class C includes instances of that class, and all instances

of its direct or indirect subclasses. When we formulate a query on a class G.
the query is executed on all elements of the set Tin3tances[G).

Q uery 5 Return all male persons in the database.

SELECT p
FROM Person p
WHERE p.gender = "M"

CHAPTER 4. QUERY LANGUAGE 28

This query returns objects, satisfying the selection criteria, from Person^
Student, Staff, and Assistant classes.

4.1.6 Inheritance

The inheritance notion in object-oriented model implies that methods defined
in a superclass are inherited by all its subclasses, hence can be applied to
instances of these subclasses.

Q uery 6 Return staff members younger than ^0 years old.

SELECT s
FROM Staff s
WHERE s.age < 40

Here the method age{) defined in Person class is used on Staff objects, in
order to return younger staff members.

4.1.7 M ultiple domains

Although many relationships between objects are represented within the ob­

jects themselves, some queries may require relationships that are not repre­

sented in the modelingmodelling phase. Multiple domains in FROM-clause
allow relationships that are not present in the database schema to be estab­
lished.

Q uery 7 Returm the students studying in the same department as .John Doe
works in.

SELECT X

FROM Student x, Staff y
WHERE y.naine = "John Doe" AND x.student_in = y.works_in

In this example, the domain variable x iterates on objects in Student class
and y iterates on objects in Staff class. The missing relationship is established

applying studentJnQ and worksJn{) methods to objects x and y, respectively.

Besides, multiple domains are essential to allow constructing new objects out

of existing ones.

CHAPTER 4. QUERY LANGUAGE 29

Q uery 8 Return the couples living in the same address.

SELECT X, y
FROM Person x, Person y
WHERE y.gender = "M" AND y.gender = "F" AND x.address = y.address

Here the domain variables x and y both iterate on the same domain, but
independently from each other. One male and one female person, both living
in the same address are considered as a desired couple. A new class of objects
containing these couples are constructed and returned as the result.

4.1.8 Subqueries in FROM-clauses

Recall that the result of a query is a tuple of two sets: a set of objects, and a

set of message expressions. As it is proved in [3], we can derive a class from any
query result. Thus we can use SELECT-FROM-WHERE subqueries anywhere

.in query where we use a class name, especially in FROM-clause.

Q uery 9 Return the high honor students who study in Management depart­
ment.

SELECT c
FROM (SELECT s

FROM Student s
WHERE s.student.in.name = "Management") c

WHERE c.gpa >= 3.5

In this example, range of variable c is limited by .the inner subquery, which

returns only the Student objects studying in Management department. Then

high-honor students are selected from this intermediate result.

CHAPTER 4. QUERY LANGUAGE 30

4.1.9 Subqueries in W HERE-clauses

Subqueries can be used in WHERE-clauses, where set values are expected as
in the relational SQL.

Q uery 10 Return staff members who do not instruct any course.

SELECT s
FROM Staff s
WHERE s NOT IN (SELECT c.instructor

FROM Course c)

Here the required Staff objects are selected by testing their membership to
the result of inner subquery, which returns the set of instructors.

4.1.10 Quantifiers

Universal and existential quantifiers can be used to answer queries involving
knowing the number of elements in a collection that satisfy some particular
conditions. A set-valued instance variable as well as a class name indicating a
class extent can be used as the quantified collection.

Q uery 11 Return the courses which are not taken by any students.

SELECT c
FROM Courses c
WHERE FOR ALL s IN Student : c NOT IN s.courses

Q uery 12 Return the students who take a course instructed by his/her advisor.

SELECT s
FROM Student s
WHERE EXISTS c IN s.courses : c.instructor = s.advisor

4.1.11 Aggregate functions

Aggregate functions can be applied to all objects or groups of objects separated

by GROUP BY-clause.

CHAPTER 4. QUERY LANGUAGE 31

Q uery 13 Return all departments together with the average salary of staff
members working in that department.

SELECT s.works_in, AVG(s.salary)
FROM Staff s
GROUP BY s.works_in

In this example, staff members are grouped by their departments and aver­
age salary is calculated by applying AVG function to the result

4.1.12 Set operations

Binary set operations UNION, MINUS and INTERSECT can be applied on
the results of queries.

Q uery 14 Return all people who study or work in Computer Science depart­
ment.

SELECT s
FROM Student s
WHERE s.student_in.neime = "Computer Science"
UNION
SELECT t
FROM Staff t
WHERE t .works_in.name = "Computer Science"

In this example, the Student objects returned by the first SELECT-FROM-

VVHERE subquery and the Staff objects returned by the second subquery are
combined by the binary set operator UNION. The result of union operation in­
volves objects of Person class that is the nearest common superclass of Student
and Staff classes.

4.2 Syntax and Sem antics

In this section we describe the syntax, and semantics in terms of translation to

algebra. The syntax of the expressions are given using the BNF notation where

nonterminals are written in italics, terminals are capitalized and enclosed in

single quotations, optional parts are enclosed in square brackets. .4 complete

grammar of the language is also presented as an appendix.

CHAPTER 4. QUERY LANGUAGE 32

4.2.1 Overview

A typical query expression in our object-oriented SQL language has the general

format:

query-exp ::= ‘SELECT’ projection-list
‘FROM’ domain-list
[‘WHERE’ predicate-exp]
[‘GROUP BY’ path-exp-list
[‘HAVING’ having-predicate]]
[set-operator query-exp]

The various clauses correspond to various steps in the query expressed by
this expression, in the following order:

1. The FROM-clause expresses the cross-product of its arguments, which are
either class names or subqueries;

.2. The WHERE-clause expresses a restriction {selection) of the result of
the preceding step, the condition of which may involve method calls and

subqueries;

3. The GROUP BY-clause restructures (aggregation) the result of the pre­
ceding step;

4. The HAVING-clause expresses a further restriction (selection) on the the
groups formed in the preceding step;

5. The SELECT-clause expresses the one-level-project of the result of the
preceding step, as indicated by its arguments, which are message expres­

sions.

6. Finally, set-operators (union, intersection, difference) are applied.

In the remainder of this section we will inductively specify all possible query

expressions E, following the above order, and define their semantics by a query

Q(E) in the object algebra.

CHAPTER 4. QUERY LANGUAGE 33

4.2.2 FROM-clauses

Syntax: Consider a query expression E of the form:

SELECT ♦
FROM domain-list

A domain-list is a comma list of domain-items. A domain-item is a domain-
spec optionally followed by a domain variable. A domain-spec is either an
identifier specifying a class name, or is a subquery that is a query expression
enclosed in parenthesisparanthesis.

domain-list
domain-item
domain-spec

:= domain-item | domain-list domain-item
= domain-spec | domain-spec var-name
= class-name | ''(’query-exp'')''

Sem antics: For each domain-spec, Q{ domains pec) is defined as follows:

• if domain-spec is an identifier, then Q{domain-spec) is the class denoted
by the identifier and translated as:

Q[domain-spec) = class-name',

• if domain-spec is a subquery of the form {E'), then

Q{domain-spec) = {Q{E')).

Now for each domain-item, Q{domain-item) is defined as follows:

• if domain-item is a domain-spec followed by a range variable v, then

Q{domain-item) = Q{domain-spec)jv

where symbol jj is used in the object algebra to bound variables to objects

of an object algebra operand;

• otherwise, domain-item is just a domain-spec and

Q {do main-item) = Q {domain-spec)

Finally Q{E) is defined as follows:

CHAPTER 4. Q VERY LANGUAGE 34

• if domain-list consists of more than one domain-items, then

Q{E) = Q{domain-itemi) x · · · x Q{domain-itemn)

for all domain-items in domain-list;

• if domain-list has only one domain-item, then

Q{E) = Q {domain-item).

4.2.3 W HERE-clauses

Sim ple P red ica tes

Syntax: Consider a query expression E of the form:

SELECT *
FROM domain-list

WHERE search-condition

A search condition In its simplest form, a predicate expression is a simple

comparison of two operands using a binary comparison operator, which returns
a boolean value. The syntax of a simple predicate expression is:

predicate-exp ::= operand comp-operator operand

.An operand may be a literal, a path expression or a domain-spec.

operand ::= literal | path-exp \ domain-spec

A constant literal is either a single literal value from any of the atomic

domains, or a set literal that is a comma list of single literals enclosed in

braces. The keyword ‘NIL’ is also a valid literal that represents the empty set.

literal

set-literal

literal-list

:= integer-literal | real-literal

I string-literal | boolean-literal
I set-literal \ ‘NIL’

:= ‘{’ literal-iispy

:= literal-list ‘,’ literal

CHAPTER 4. Q VERY LANG UAGE 36

Finally boolean-literals and combination of predicate expressions using log­
ical connectives A N D , O R , N O T and paranthesis, are expected as valid predi­
cate expressions.

predicate-exp ;:= predicate-exp ‘A N D ’ predicate-exp
I predicate-exp ‘O R ’ predicate-exp
I ‘N O T ’ ‘(’ predicate-exp ‘)’
I ‘(’ predicate-exp ‘)’
I boolean-literal

Sem antics: By induction, we may assume that Q{E~'^) is already defined.
In general, Q{E) is defined using the selection operation as follows:

Q{E) = Q{E~'^)[Q{predicate-exp)].

For different forms of predicate expressions, <5(predicate-exp) is defined as
follows:

• if predicate-exp is a boolean-literal:

Q (T R U E) = T ,

g (F A L S E) = F ;

• if predicate-exp is a simple comparison:

Q{opi cop 0P2) = Q{opi)Q{cop) Q{op2)

where opi and op2 are operands, and cop is a comparison operator;

• if predicate-exp is a quantified predicate expression:

Q (F O R A L L y IN op : p) = Vo G Q{op) A Q{p),

<5(E X IS T S y IN op : p) = 3 y G Q{op) A Q{p),

Q{opi cop ALL 0P2) = V.t G Q{op2) A Q{opi) Q{cop) x,

Q{opi cop A N Y 0P2) = 3 a: G Q{op2) A Q{opi) Q{cop) x,

Q{opi cop SOME 0P2) = 3 x e Q{op2) A Q{opi) Q{cop) x,

g (E X IS T S (o p)) = 3.T G Q{op) A T

where v is a variable name, op, opi, op2 are operands, and cop is a com­

parison operator.

CHAPTER 4. QUERY LANGUAGE 35

A path expression is a variable name optionally followed by zero or more
method calls separated by dots. A method call is represented by the method

name. The parameters of the method call, if any, are specified as a list enclosed
in parenthesis following the message name. The syntax of a path expression is
recursively defined as follows:

path-exp
method-call
parameter-list

parameter

var-name \ path-exp method-call
method-name | method-name ‘(’ parameter-list ‘)’
parameter | parameter-list parameter

literal I path-exp

A comparison operator is one of the usual binary relational operators, in­
cluding the ones that compare set values. The negation of set comparators are
also available by the use of an optional preceding keyword ‘NOT’.

comp-operator ::= ‘= ’ | ‘< ’ | ‘> ’ | ‘< = ’ | ‘> = ’ | ‘o ’

I [‘NOT’] ‘IN’ 1 [‘NOT’] ‘CONTAINS’

I [‘NOT’] ‘IS SUBSET’ | [‘NOT’] ‘HAS SUBSET'

Now we will extend the definition of predicate expression to include quan­
tified predicates. S Q L /00 uses two different syntax to express quantified
predicates. In the first form, an existentially or universally quantified variable

that is an element of a set valued operand is declared and used in the predicate
expression that follows the declaration. The keywords EXISTS and FOR ALL
are used in this form of quantification.

predicate-exp ::= quantifier! var-name ‘IN’ operand ‘:’ predicate-exp
quantifier! ::= ‘FOR ALL’ | ‘EXISTS’

In the second form, no additional variable is used, however the first operand

is compared with elements of the second operand that has a set value.

predicate-exp ::= operand comp-operator quantifier2 operand

quantifier2 ::= ‘ALL’ | ‘SOME’ | ‘ANY’

The last type of predicate expressions is the traditional EXISTS predicate
that tests whether the enclosed set-valued operand has non zero number of

elements.

predicate-exp ::= ‘EXISTS’ ‘(’ operand ‘)

CHAPTER 4. QUERY LANGUAGE 37

• if predicate-exp is a combination of several predicate expression:

Q(piANDp2) = Q(Pi) A Q(p2),

Q{piORp2) = Q{pi) V Q{p2),

Q (N O T (p)) = - g (p) ,

Q{{p)) = {Q{p))

where p, p\ and p2 are predicate expressions.

Q(operand) is defined according to the following rules:

• if operand is a literal, then Q{operand) is defined as itself;

• if operand is a subquery of the form {E'), then

Q {operand) = {Q{E'))\

• if operand is a path expression, then Q{operand) is the path expression

itself.

Q{com,p-operator) is defined as the corresponding operator in object algebra,
may be with different syntax but the same semantics, for example: ^

g(<=) = <
Q (IN) = €

Q (IS S U B S E T) = Ç

4.2.4 GROUP BY-clauses

We now turn to GROUP BY-clauses, and show how their semantics can be

defined using the aggregate operation of the object algebra.

Syntax: Consider a query expression E of the form:

SELECT *
FROM domain-list
WHERE search-condition

GROUP BY grouping-list

A grouping-list is a comma list of message expressions.

CHAPTER 4. QUERY LANGUAGE 38

Sem antics: We will denote the part of E without GROUP BY-clause by
E~^. By induction, we may assume that Q[E~^) is already defined. In general,
a GROUP BY-clause is used together with an aggregate function call in E~^.
We define Q{E) as the application of aggregation operation to Q{E~^), such
that:

• if there is a call to an aggregate function / with parameter m in SELECT-
clause of E~^, then

Q{E) = Q{E~^){{Q{grou■ping-list)}J,m{))■,

• if there is no aggregate function call, then

Q{E) = Q{E~^){{Q{grouping-list)}, ic/, m())

where id is the identity function returning its argument as the result.

4.2.5 HAVING-clauses

After GROUP BY-clause there may be a HAVING-clause, which is used to
denote a further restriction on the groups constructed by the GROUP BY-
clause.

Syntax: Consider a query expression E of the form:

SELECT ♦
FROM domain-list
WHERE search-condition
GROUP BY grouping-list
HAVING having-condition

Having-condition is a predicate expression, similar to search-condition.

Sem antics: Let the part of E without HAVING-clause be denoted by E~'\

By induction, we may assume that Q{E~^) is already defined. Q{E) is defined

using the selection operation as:

Q{E) = Q{E ^)[Q{having-condition)]

CHAPTER 4. QUERY LANGUAGE 39

4.2.6 SELECT-clauses

In standard SQL, the SELECT-clause essentially expresses a projection opera­

tion. However in object-oriented SQL, it will be better to use one-level-project
operation, since it is more powerful than project operation in the sense that it
handles both stored and derived values, and may construct new structures.

Syntax: Consider a query expression E of the form:

SELECT project-list
FROM domain-list
WHERE search-condition
GROUP BY grouping-list
HAVING having-condition

A project-list either the special is a comma list of project-items. A project-
item is either a path expression or an aggregate function application. An

aggregate function is specified by the function name (one of MAX, MIN, AVG,
SUM,COUNT), followed by a path expression in paranthesis.

project-list
project-item
function-name

:= project-item \ project-list , project-item
:= path-exp | function-name ‘(’ path-exp'")'
:= ‘M A X ’ I ‘M IN ’ I ‘AVG’ I ‘S U M ’ I ‘C O U N T ’

Sem antics: Let E~" denote the expression obtained from E by replacing the

project-list with ‘*’. By induction, Q{E~“) is already defined in the previous

sections. Here Q{E) is defined using the one-level-project operation of the
algebra as:

Q{E) = Q{E~’’)l[Q{project-list)].

However the definition of Qfproject-list) depends on the number of domain

items specified in the FROM-clause. Recall that the one-level-project operation

requires a set of message expressions, and applies these message expressions

to all instances of the object algebra operand it is applied. These message

expressions are similar to path expressions, however they do not start with an

object variable. In other words, a message expression is the concatenation of

one or many message calls.

CHAPTER 4. QUERY LANGUAGE 40

If there is only one domain specified in the FROM-clause, the domain vari­
ables are eliminated from the path expressions in the project-list, leaving only
message expressions after translation.

If there is more than one domains specified in the FROM-clause, we know
that these domains are joined using the cross-product operation, forming a com­
plex structure with instance variables each from one domain. In other words,
the level of nesting is increased and the domain variables refer to instance
variables of the resulting complex structure. Since these instance variable are
reachable via corresponding messages, it will be suitable to substitute proper
messages instead of the domain variables in the projection-list.

If there is an aggregate function application in the SELECT-clause, it is
also substituted by the message name that returns the result of the function,
which is added by the aggregate operation.

4.2.7 Set Operations

We finally arrived at the last stage, set operations. The three basic set oper­

ations union^ difference and intersection can be applied orthogonally to the

query expressions.

Syntax: Consider a query expression E of the form:

Ei
set-operator

E2

where Ei and E2 are general query expressions and set-operator is one of

UNION, INTERSECT, MINUS.

Sem antics: By induction, Q{Ei) and Q{E2) are already known. Q{E) is

defined depending on the type of set-operator as:

g (E i UNION E2) = Q{Ey)UQ{E2)

g (E i INTERSECT E2) = Q{Ey)GQ{E2)

g (£ i MINUS E2) = Q { E y) - Q { E 2)

Chapter 5

Im plem entation

5.1 System O verview

A prototype system that evaluates SQ L /00 queries is designed. The system
consists of four modules each of which operates in a sequential manner as
shown in Figure 5.1. In this study, we implemented the modules contained in
the dotted rectangle. A framework that can be used in the implementation
of query optimizer and evaluator modules are also proposed, however their
implementations are left as future work.

5.2 D ata M odel R ep resentation

One of the important features of the underlying object algebra is that the
algebra operations can create new classes and objects out of existing ones.

Both the structure and the behavior of objects can be extended or restricted

by these operations, allowing dynamic schema evolution. Objects can migrate

from one class to another as a consequence of an algebraic operation, hence
they are not strongly typed. Therefore our data model representation should

handle these dynamic features of the algebra.
However data models of existing persistent systems do not provide us the

flexibility required to implement the algebra operations. Thus we decided

to define a data model representation that simulates the dynamic features of

the algebra. The data model representation is designed using C ++ classes.

Instances of C ++ classes which are defined as persistent, are assumed to be

41

CHAPTER 5. IMPLEMENTATION 42

Query Result

Figure 5.1; System Overview

persistent, meaning that they continue to exist after the program that created

them has terminated. Existing persistent extensions to C ++ have limitations
about the structure of drisses that are defined as persistent. They only allow
fixed sized data members, which is clearly not suitable for our task at hand.
One can propose to define an upper bound for variable sized data members,

but in some cases sizes can inevitably grow beyond bounds.

Each persistent object is identified by a unique identifier, which is a pointer

to a persistent object. Information about both the database clas.ses and the

database objects are stored as persistent C ++ objects.
A persistent class, called AClass is defined in order to hold database classes.

The class definition of AClass is given in Figure 5.2. AClass has members

CHAPTER 5. IMPLEMENTATION 43

that held necessary information related to a class. While the local properties
are hold as data members, properties depending on inheritance and nesting
hierarchies are returned by member functions that traverse these hierarchies
and calculate the results. For example, local messages defined for a class is held

in the data member locjnsgs, while all messages applicable to the instances
of the class including the inherited ones can be retrieved by a call to the
member function messages (). This member function traverses the inheritance
hierarchy by following the links held in supers data member, and returns the
union of messages held in each loc_msgs.

class AClass {
public :

string
set<AClass*>
set<AClass*>
set<AMessage>
set<AMessage>
set<A0bj ect*>
set<AClass*>
set<AClass*>
set<AMessage>
set<AMessage>
set<AMessage>
AMsgExpSet

};

name;
supers ;
subs ;
loc_iveirs ;
loc_msgs;
instances ;
all.supersO ;
all_subs();
messages 0 ;
IvarsO ;
TinstsO ;
MexpsO ;

// class name
// direct superclasses
// direct subclasses
// local instance variables
// local messages
// local instances
// all superclasses
// all; subclasses
// all messages
// all instance variables
// all instances
// all message expressions

Figure 5.2: Class definition of AClass

A database schema is stored in a dictionary that maps class names into

corresponding AClass objects. Database objects are stored as instances of the

AQbject persistent class. This class is actually a virtual base class for AAObject
and ACObject classes, which represent objects from atomic and non-atomic
domains respectively. Clcisses representing objects from atomic domains, i.e.

AAStrObject, AAIntObject, AARealObject .. .all derive from AAObject class.

Pointers to AObject objects serves ais object identifiers. An instance of AObject
has two data members: domain holds a pointer to an AClass object represent­

ing the domain class of the object; value holds the value of the object. While

value fields of AAObject objects are one of the types int, float, string and

CHAPTER 5. IMPLEMENTATION 44

boolean; value field of a ACObj ect is a vector of set of AOBj ect pointers, where
each element of the vector corresponds to an instance variable. The value of an
instance variable is represented as a set of pointers in order to homogeneously
handle both set valued and single valued instance variables. A single valued

instance variable can be represented as a singleton set. The class definition of

ACOBject class is given in Figure 5.3.

class ACObject : AObject {
public:

AClass *domain;
vector<set<AObject*» value;
virtual void displayC'int d) ;

};

// domain class of object
// value of object
// displays the object d levels

Figure 5.3: Class definition of ACObj e c t

A message in algebra is represented as an AMessage object. The class defi­
nition of AMessage is given in Figure 5.4. The message name is hold in name,
and the expected domain of the returned object is represented as a pointer to

an AClass object. Expected argument types are stored as an array of AClass

pointers in the declared order. If the message does not take any argument and
returns the value of an instance variable, the index of the vector entry in the
representation that corresponds to the instance variable is stored in ivarindx.
When a message returning the value of an instance variable is passed to an

object, this index is fetched from the proper message element stored in the

corresponding AClass object, and the value of the instance variable is accessed
using this index.

A message expression in the algebra is defined as a sequence of messages.

Possible cycles in the nesting hierarchy disallows the represention of message

expressions simply in a list structure. A tree structure with backwards links is

found to be a more proper representation for message expressions. Such a tree

can be used to represent a set of message expressions as well as a single one.
Thus we define another class AMsgExpSet that stores a set of message expres­

sions in a tree structure. Usual set operations are also defined on MsgExpSet
objects as member functions.

CHAPTER 5. IMPLEMENTATION 45

class AMessage {
public:

string
AClass
int

name;
♦domain;
numArgs;

vector<AClass*> argDomains;
int ivarindx;

// message name
// expected return type
// expected number of arguments
// expected argument types
// if returns inst.var., its index

};

Figure 5.4: Class definition of AMessage

5.3 SQ L/O O to A lgebra Translator

The first module accepts the user query in the form of an SQL/OO expression
and translates it to an equivalent query in the object algebra. The transla­
tion scheme is syntax-directed, with translation rules associated with grammar
productions. The translator is implemented using YACC [20], a compiler com­
piler. A similar translation scheme had been defined in [16] from the relational
SQL into the relational algebra. The source code of the translator is given

in Appendix B. The translation rules are already defined in Section 4.2 while

explaining the semantics of our language. Here we will present an example
translation in order to demonstrate the features of our translator. Consider
the following query:

Q uery 15 Return the couples living in the same address.

SELECT X, y
FROM Person x, Person y
WHERE y.gender = "M" AND y.gender = "F" AND x.address = y.address

The query is translated into the object algebra as follows:

(^(SELECT X, y
FROM Person x, Person y
WHERE y.gender = "M" AND y.gender = "F" AND x.address = y.address)

CHAPTER 5. IMPLEMENTATION 46

Q(Person X , Person y)
[Q{ y·gender = "M" AND y.gender = "F" AND x.address = y.address)]
!(0(X. y)l

Person'^x X Person'^y

[Q i y-gender = "M") A Q{ y.gender = "F") A Q(x.address = y.address)]
![{mi(),m2()}]

Person^x X Person^y

[y gender M ’’’’ A y gender{) = F ” A x address{) = address{)]

![{mi(),m2()}]

5.4 A lgebra Parser and Tree G enerator

This module accepts a query in the form of an object algebra expression as its
input, parses the expression into an internal representation. The representation
of a query by an operator tree is useful for manipulating the query expression
since the representation is tied very closely to the algebraic query expression.

Nodes in an operator tree represent query operators or access methods. Alge­

braic transformations can be applied on an operator tree in order to optimize
the algebraic query expression. Also a query represented as an operator tree
can easily be translated into an executable plan for query execution [28].

In our prototype system, a query is represented as an object algebra tree

(OAT). An object algebra tree is composed of data nodes and operator nodes,

connected by arcs. This representation generalizes algebraic operator tree rep­

resentations by treating algebraic operators, logical operators, comparison op­

erators and dot operator uniformly. Dot operator is used to apply message

calls to objects.
Data nodes represent data that is manipulated as part of executing the

query. A data node can represent a class of objects or a single object in the

database. Data nodes can occur as leaf nodes in an OAT. Operator nodes

represent actions that can be taken on data. An operation node will always

have at least one child node, representing the input to the operation. If the

CHAPTER 5. IMPLEMENTATION 47

input child is a data node, then the class or object represented by that node
serves as the input to the parent operation node. If the' input child is another
operation node, then the result of the child operation node serves as the input.

Nodes are labelled with syntactic query information. Operation nodes are

labelled with operation names. Data nodes are labelled with a class name or
a variable name for the data represented by the node. Nodes are connected
by arcs representing relationships between data and operations in a query. In
general, the root of an OAT is an operation node representing an algebraic
operation.

OATNode representation class is defined for OAT nodes. The class definition
is presented in Figure 5.5. The type of the node is held in type data member.
The label field holds the appropriate label depending on the type. This in­
formation is used during query evaluation in order to identify what operations

to perform with the children. Arcs are held as a list of pointers to OATNode
objects representing the child nodes.

class OATNode {
public:

string type;
string label;
list<OATNode*> children;

// node type
// node label

// links to children nodes

};

Figure 5.5: Class definition o f OATNode

5.5 Q uery Evaluator

The query evaluator module, which is not actually implemented in the scope

of thesis, is designed for executing a query passed in the form of an OAT. A

direct execution plan can be generated from an OAT. The query execution

represented by an OAT can be described as a top-down recursive execution.

This results from the fact that evaluation of an operation node requires the

data provided by the evaluation of its input child node(s).

All children of an operation node do not necessarily serve as input. Some

children represent other information used in the application of the operation.

CHAPTER 5. IMPLEMENTATION 48

For example, select operation requires only one operand, however an OAT node

representing a select operation have two children. The first child represents the
actual input of the operation, while the second child represents the predicate
expression used as the selection criteria. In query evaluation, input nodes are
evaluated once, however the subtree representing the predicate expression is
evaluated for each object in the input operand.

Evaluation of an operation node returns an object algebra operand, whose

representation class definition is presented in Figure 5.6.

class AOperand {
public:

set<A0bj ect*>
AMsgExpSet

Tinsts;
Mexps;

// set of objects
// set of message expressions

Figure 5.6: Class dehnition of AOperand

The result of an algebraic operation is calculated using the data members of
the algebra operands returned after the evaluation of its input children. The
execution of the query ends with the evaluation of the root operation node.

The actual result of the whole query is returned in the Tinsts data member of
the resultant operand object, which is a set of pointers to the representations

of database objects.
The actual implementation of the query optimizer and the query evaluator

is considered outside the scope of this work.

Chapter 6

Conclusions and Future Work

This thesis investigated the design and some aspects of the processing of query
languages for object-oriented database systems.

A survey of existing high-level object-oriented query languages is presented.
Their common and different characteristics are identified. This survey leads to
the design of a high-level query language for object-oriented database systems.
This query language, S Q L /00 , is developed as a natural extension of the

standard relational query language SQL. S Q L /00 rests on a formal data model
and query algebra previously proposed by Alhajj [.3]. The language is mapped
into the algebra using a syntax-directed translator.

Existing persistent systems were incapable of supporting all dynamic fea­
tures of the query model. A prototype system that simulates algebra operations

is designed using the C+-f class structure. In this framework, the internal rep­

resentations for data and query models are developed.
Also a prototype system that executes S Q L /00 and object algebra queries

is designed. Two parsers that translate user queries into internal representa­

tions are implemented.

As the future work and improvements, we can list the following:

• The data model representation can be extended in order to handle stored

methods defined for database objects, as well as the instance variables. •

• A query evaluator module can be implemented based on the proposed

framework, using the defined data model and the query model represen­

tations. A direct execution plan can be generated given the O.AT repre­

sentation of the query.

49

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 50

• A query optimizer module, which inputs and outputs queries represented
as OAT, can be implemented. Algebraic transformations can be performed
on the input OAT in order to find a more efficient query, which seems to
be a challenging problem itself. •

• The translation scheme defined from S Q L /00 to algebra can be extended
to translate other query languages into the object algebra.

Bibliography

[1] R. Agrawal, S. Dar, and N. Gehani. The 0 + + Database Programming
Language. Technical Report 2, AT&T Bell Labs, Murray Hill, N.J, 1993.

[2] R. Agrawal and N. H. Gehahi. ODE (Object Database and Environment):
The Language and the Data Model. In Proceedings ACM SIC MOD In­
ternational Conference on Management of Data, pages 25 - 40, Portland,

OR, June 1989.

[3] R. Alhajj. .4 Query Model and an Object Algebra for Object-Oriented

Databases. PhD thesis, Bikent University, Ankara, Turkey, February 1993.

[4] T. Andrews. The ONTOS Object Database. Manuscript.

[5] J. Annevelink, et.al. Object SQL - A Language for the Design and Imple­
mentation of Object databases. In [27].

[6] M. Atkinson, et.al. The Object-Oriented Database System Manifesto.
In Proceedings of the International Conference on Deductive and Object-

Oriented Databases, Kyoto, Japan, December 1989.

[7] F. Bapcilhon, et.al. A Query Language for the O2 Object-Oriented
Database System. In Proceedings of the 2nd International Workshop on
Database Programming Languages, June 1989.

[8] F. Bancilhon, C. Delobel, and P. Kanellakis, eds. Building an Object-

Oriented Database System - The Story of O2 · Morgan Kaufmann, San

Mateo, CA, 1992.

51

BIBLIOGRAPHY 52

[9] D. Beech. A Foundation for Evolution From Relational to Object
Databases. In Proceedings of the International Conference on Extend­
ing Database Technology, Vol. .303 of Lecture Notes in Computer Science,
pages 251-270, Springer-Verlag, New York, NY, March 1988.

[10] E. Bertino, et.al. Object-Oriented Query Languages: The Notion and the
Issues. IEEE Transactions on Knowledge and Data Engineering, 4(3):22.3-
237, June 1992.

[11] E. Bertino and L. Martino. Object-Oriented Database Systems: Concepts
and Architectures. Addison-Wesley, Reading, MA, 1993.

[12] J. A. Blakeley. OQL[C-t--|-]: Extending C-f-f- with an Object Query Ca­

pability. In [26].

[13] J. V. Bussche and A. Heuer. Using SQL with Object-Oriented Databases.
Infomation Systems, 18(7):461-487, 1993.

[14] M. J. Carey, et.al. A Data Model and Query Language for EXODUS. Tech­
nical Report CS-TR-734, University of Wisconsin, Madison, WI, 1987.

[15] R. G. G. Catell. Object Data Management: Object-Oriented and Extended
Relational Database Systems. Addison-Wesley, Reading, MA, 1991.

[16] S. Ceri and G. Gottlob. Translating SQL into Relational Algebra: Opti­
mization, Semantics, and Equivalence of SQL Queries. IEEE Transactions

on Software Engineering, ll(4):324-345, April 1985.

[17] D. K. C. Chan. Object-Oriented Query Langxiage Design and Processing.

PhD thesis, University of Glasgow, Glasgow, U.K., September 1994.

[18] S. Dar, N. H. Gehani, and H. V. Jagadish. CQL-I—1-: A SQL for the ODE

Object-Oriented DBMS. In Proceedings of the International Conference

on Extending Database Technology, Vol. 580 of Lecture Notes in Computer
Science, pages 201-206, Springer-Verlag, New York, NY, 1992.

[19] C. J. Date. A Guide to the SQL Standard. 2nd edition, Addison-Wesley.

Reading, MA, 1987.

20] C. Donnelly and R. Stallman. Bison - The YACC-Compatible Parser

Generator version 1.20. Free Software Foundation, December 1992.

BIBLIOGRAPHY 53

[21] A. Doğaç, M. T. Özsu, A. Biliris, and T Sellis, eds. Advances in Object-
Oriented Database Systems, Vol. 130 of NATO A SI Series F: Computer
and Systems Sciences. Springer-Verlag, New York, NY, 1994.

[22] D. H. Fishman, et.al. IRIS: An Object-Oriented Database Management

System. ACM Transactions on Office Information Systems, 5(l):48-69,
1987.

[23] D. H. Fishman. Overview of the IRIS DBMS. In [26].

[24] W. Kim. Features of the ORION Object-Oriented Database System.
In [26].

[25] W. Kim. Introduction to Object-Oriented Databases. Computer Systems.
The MIT Press, Cambridge, MA, 1990.

[26] VV. Kim and F. H. Lochovsky, eds. Object-Oriented Concepts, Databases
and Applications. Addison-Wesley, Reading, MA, 1992.

[27] W. Kim, ed. Modern Database Systems: The Object Model, Interoperability

and Beyond. ACM Press, Addison-Wesley, Reading, MA, 1995.

[28] G. A. Mitchell. Extensible Qxtery Processing in an Object-Oriented

Database. PhD thesis. Brown University, Providence, RI, May 1993.

[29] M. Sarkar and S. P. Reiss. A Data Model and a Query Language for
Object-Oriented Databases. Technical Report CS-92-57, Brown Univer­

sity, Providence, RI, December 1992.

[30] B. Stroustrup. The C-h-h Programming Language. 2nd edition, Addison-

Wesley, 1991.

[31] J. D. Ullman and J. Widom. A First Course in Database Systems.

Prentice-Hall, New York, NY, 1997.

A ppendix A

SQ L/O O Syntax

query-exp ::= {query-exp)
I query-exp set-operator query-exp

I ‘SELECT’ projection-list
‘FROM’ domain-list
[‘WFIERE’ predicate-exp]
[‘GROUP BY’ path-exp-list [‘HAVING’ haviny-predicate

_projection-list ;:=

I path-exp-list
I function-spec
I path-exp-list ‘,’ function-spec

path-exp-list ::= path-exp
I path-exp-list ‘,’ path-exp

path-exp ::= var-name
I path-exp ‘.’ method-call

method-call ::= method-name
I method-name ‘(’ parameter-list ‘)’

54

APPENDIX A. SQL/00 SYNTAX 55

parameter-list ::=

parameter

parameter

parameter-list parameter

literal
path-exp

function-spec ::= function-name ‘(’ path-exp ‘)’

function-name ‘MAX’ | ‘MIN’ | ‘AVG’ | ‘SUM’ | ‘COUNT’

domain-list domain-item
. I domain-list ‘,’ domain-item

domain-item

domain-spec

predicate-exp

domain-spec
domain-spec var-name

class-name

‘(’ query-exp ‘)’

operand comp-operator operand
quantifier! var-name ‘IN’ operand ‘:’ predicate-exp
operand comp-operator quantifier2 operand
‘EXISTS’ ‘(’ operand ‘)’
predicate-exp ‘AND’ predicate-exp

predicate-exp ‘OR’ predicate-exp

‘NOT’ ‘(’ predicate-exp ‘‘Y

‘(’ predicate-exp ‘)’
boolean-literal

operand

quantifier!

quant ifier3

:= literal

I path-exp

I domain-spec

:= ‘FOR ALL’ | ‘EXISTS’

:= *‘ALL’ I ‘SOME’ I ‘ANY’

APPENDIX A. SQL/00 SYNTAX 56

comp-operator

set-operator

having-predicate

literal

:= ‘ = > I ‘< ’ I ‘> ’ I ‘<=:’ I = > I

I [‘NOT’] ‘IN’
I [‘NOT’] ‘CONTAINS’
I [‘NOT’] ‘IS SUBSET’
I [‘NOT’] ‘HAS SUBSET’

;= ‘UNION’ I ‘INTERSECT’ | ‘MINUS’

:= function-spec comp-operator operand

:= integer-literal
I real-literal
I string-literal

I set-literal
I boolean-literal
I ‘NIL’

set-literal

literal-list

boolean-literal

class-name

oar-name

method-name

:= ‘{’ literal-list''}'

:= literal
I literal-list ‘,’ literal

:= ‘TRUE’ I ‘FALSE’

:= identifier

:= identifier

= identifier

A ppendix B

SQ L/O O to Algebra Translator

·/.·/.
‘/.token SELECT FROM WHERE GROUPBY HAVING
‘/.token UNION INTERSECT MINUS
‘/.token FORALL EXISTS ALL SOME ANY
‘/.token TRUE FALSE
‘/.token INTEGER REAL STRING IDENTIFIER
‘/.left OR
‘/.left AND
‘/.left NOT
•/.left ' = ' '<' LE GE NE IN CONTS ISSUE HASSUB
‘/.left ' + ’
‘/.left '/'
‘/.left UMIN
‘/.left ' . '

·/.{
ifinclude <iostreeun.h>
tfinclude "mystring.h"
#include "sql2alg.h"
»define YYSTYPE string

string result;
·/.}

57

APPENDIX B. SQL/00 TO ALGEBRA TRANSLATOR 58

y, start S

n
S: query_exp { result = $1]■;

query_exp:
(query.exp)

{ $$ = " (" + $2 + ") }

query_exp set_operator query_exp
{ $$ = $1 + $2 + $3 ; }■

SELECT project_list
FROM domain_list

{ $$ = " 0LP[{" + $2 + "}] " + $4; }
SELECT project_list
FROM domain_list
WHERE predicate_exp

{ $$ = " 0LP[{" + $2 + "}] SEL[" + $6 +"] " + $4; }
SELECT
FROM domain_list

{ $$ = $4; }
SELECT
FROM domain.list
WHERE predicate_exp

{ $$ = " SEL[" + $6 + "] " + $4; }

SELECT project_list
FROM domain.list
GROUPBY path_exp_list

{$$ = '· 0LP[{" + $2 + "}] AGG[{" +$6 + "}, "
+ get.funct($2) +"]" + $4; }

SELECT project.list
FROM domain.list
WHERE predicate.exp
GROUPBY path_exp_list

APPENDIX B. SQL/00 TO ALGEBRA TRANSLATOR 59

{ $$ = " OLP[{" + $2 + "}]>AGG[{" +$8 + "
+ get.funct($2) +"] SEL[" + $6 +"] " + $4; }

SELECT
FROM domain_list
GROUPBY path_exp_list

{ $$ = " AGG[{" +$6 + id]" + $4; }
SELECT
FROM domain_list
WHERE predicate_exp
GROUPBY path_exp_list

{ $$ = " ,AGG[{" +$6 + id] SEL[" + $6 +"] " + $4; }
SELECT project_list
FROM domain_list
GROUPBY path_exp_list
HAVING having_predicate

{ $$ = " OLP[{" + $2 + "}] SEL[" + $8+ "] AGG[{"
+ $6 + " + get_funct($2) + $4; }

SELECT project_list
FROM domain.list
WHERE predicate_exp
GROUPBY path_exp_list
HAVING having_predicate

{ $$ = " 0LP[{" + $2 + "}] SEL[" + $10 + "] AGG[{" + $8
+ + get_funct($2) +"] SELC" + $6 +"] " + $4; }

SELECT
FROM domain.list
GROUPBY path_exp_list
HAVING having.predicate

{ $$ = " SELC" + $8+ "] AGG[{" +$6 + id]"+ $4; }

SELECT
FROM domain.list
WHERE predicate_exp

APPENDIX B. SQL/00 TO ALGEBRA TRANSLATOR 60

GROUPBY path_exp_list
HAVING having_predicate

{ $$ = " SEL[" + $10+ "] AGG[{" +$8 + id] SEL['

+ $6 +"] " + $4; }

proj ect_list:
path_exp_list

I function_spec
I path_exp_list ' ,' function_spec

{ $$ = $1; }
{ $$ = $1; }

{ $$ = $1 + ", " + $3; }

path_exp_list:
path_exp

I path_exp_list ',' path_exp
{ $$ = $1; }

{ $$ = $1 + ", " + $3; }

path_exp:
var_name
path_exp '.' method_call

{ $$ = $1 + " 0 }
{ $$ = $1 + $3; }

method.call:
method_name

I method_name '(' paraio.list
{ $$ = $1 + " 0 }

{ $$ = $1 + "(" + $3 + ")

parajn_list:
pauraun.item

I param.list ',' param_item
{ $$ = $1; }
{ $$ = $1 + ", " + $3; }

param.item:
literal { $$ = $1; }

APPENDIX B. SQL/00 TO ALGEBRA TRANSLATOR 61

I path_exp { $ $ = $ 1 ; }

function_spec:
function_ncune ’ path_exp ')' { $$ = $1 + "(" + $3 + ")

function_name:
MAX { $$ = "maximum"; }
MIN { $$ = "minimum"; }
AVG { $$ = "average"; }
SUM { $$ = "sum"; }
COUNT { $$ = "count"; }

domain_list:
domain_item

1 domain_list ',’ domain_item
{ $$ = $1; }
{ $ $ = $! + " CP " + $3; >

domain_item:
domain_spec

I domain_spec var_naune
{ $$ = $1; >
{ $$ = $1 + $1; }

domain_spec:
class_name
'(' query_exp ')'

{ $$ = $1; }

{ $$ = " (" + $2 + ") "}

predicate_exp:
operand comp_operator operand { $$ = $1 + $2 + $3; }

I quantifier! var_name IN operand ':' predicate_exp
{ $$ = $1 + $2 + " ELT " + $4 + " & " + $6; }

I operamd comp.operator quantifier2 operand

APPENDIX B. SQL/00 TO ALGEBRA TRANSLATOR 62

{ $$ = $3 " X ELT " + $4 + "
EXISTS operand ')'

{ $$ = " EX X ELT " + $3 + " & T; }
predicate_exp AND predicate_exp { $$ = $1 +
predicate_exp OR predicate_exp
NOT ’ predicate_exp ')’
’(' predicate_exp ')'
boolean,literal

+ $1 + $2 + " X

" & " + $3; }
{ $$ = $1 + " I " + $3; }
{ $$ = " + $3; }
{ $$ = " (" + $1 + ") }

{ $$ = $1; }

operand:
scalar_exp
path_exp
domain_spec

{ $$ = $1; >
{ $$ = $1; }
{ $$ = $1; }

quantifier!:
FORALL
EXISTS

{ $$ = " FA }
{ $$ = " EX }

quantifier2:
ALL { $$ = '' FA "; >
SOME { $$ = '' EX "; }
ANY { $$ = '■ EX "; >

comp_operator:
> —)

LE
GE
NE
IN

{ $$

{ $$
{ $$

{ $$
{ $$

{ $$

{ $$

" > }
" <= "; }
„ >= "; }

" }
" ELT }

APPENDIX B. SQL/00 TO ALGEBRA TRANSLATOR 63

NOT IN
CONTS
NOT CONTS
ISSUE
NOT ISSUE
HASSUE
NOT HASSUE

{ $$
{ $$
{ $$

{ $$

{ U
{ $$
{ $$

" NEL }
" TLE }
" NTL }
" SUE }
" NSE }
" SUP }
" NSP }

set_operator:
UNION

I INTERSECT
I MINUS

{ $$ = " UNI }
{ $$ = " INT }
{ $$ = " DIF }

having.predicate:
function.spec comp_operator operand { $$ = $1 + $2 + $3; }

scalar.exp:
pareim_item ' + ’ param_item
pareun_item parajii_item
parajn_item param_item
parajn.item ’ / ’ parajn_item

param_item */,prec UMIN
' (' pair2Lin_item ’)'
literal

{ $$ = $1 + " + ".+ $3; >
{ $$ = $1 + " - " + $3; }
{ $ $ = $! + " * " + $3; }
{ $ $ = $! + " / " + $3; }
{ $$ = " + $2; >

{ $$ = " (" + $2 + ") }
{ $$ = $1; }

literal:
INTEGER
REAL
STRING
boolean.literal
set.literal

{ $$

{ $$

{ $$

{ $$
{ $$

yytext; }
yytext; }
yytext; }
$ 1 ; }

$ 1 ; }

APPENDIX B. SQL/00 TO ALGEBRA TRANSLATOR 64

set literal:
literal_list '}■ { $$ = " {" + $2 + "} }

literal_list:
literal

I literal_list ' , ’ literal
{ $$ = $1; }

{ $ $ = $! + " , " $3; }

boolean_literal:
TRUE

I FALSE { $$ = " F }

c lass_n ajn e;

IDENTIFIER { $$ = yytext; }

var_najne:

IDENTIFIER { $$ = yytext; }

najne.name;

IDENTIFIER { $$ = yytext; }

