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ABSTRACT

ANALYSIS OF ERLANG TRANSFER LINES

Nebahat Donmez
M.S. in Industrial Engineering
Supervisor: Assoc. Prof. Cemal Dinger

February, 1997

Transfer lines are widely used in the modeling and analysis of complex pro-
duction systems. The literature is mostly devoted to the analysis of transfer
lines with exponential processing times. However, most of the time a part is
processed through stages(phases) of exponential processing times. It is pos-
sible to model such systems by means of processing times that are k—Erlang
distributed. In the modeling and solution of these systems, significant dif-
ficulties arise due to the nature of the problem. In this thesis, we propose a
Markov model for transfer lines consisting of n. reliable machines with k—Erlang
processing times and finite buffers. The arrivals to the system is Poisson dis-
tributed. A program coded in C which is capable of solving the Markov model
of a three machine transfer line is also developed. Besides the commonly used
performance measures. such as utilization of the machines, mean throughput.
mean WIP level. we calculate the variance of WIP so that it is possible to

construct confidence intervals.

Key words: Transfer Lines, Markov Models, Erlang Distribution, Variance
of WIP Level.
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OZET

K-ERLANG ISLEM ZAMANLI SERI AKISLI IMALAT
SISTEMLERININ ANALIZI

Nebahat Donmez
Endistri Mihendisligi Bolumi Yiksek Lisans
Tez Yoneticisi: Dog. Dr. Cemal Dincer
Subat, 1997

Seri akigh imalat sistemleri karmagtk imalat sistemlerinin modellenmesinde
vayginca kullamlan alt modellerdendir. Bugiline kadar bayik ¢ogunlukla tssel
islem zamanh makinelerden olusan seri akish sistemler incelenmistir. Ancak.
bir ¢ok durumda islem zamanlar: ussel evrelerden olusmaktadir. Bu tir sis-
temleri k-Erlang dagilimi ile modellemek mumkundur. En genel haliyle bu
tur sistemlerin modellenmesi olduk¢a buyvik zorluklar icermektedir. Bu tez
calismasinda n tane k-Erlang islem zamanli makineden olusan, seri akish ve
sonlu ara stoklu. Ussel talep gelis zamanli bir sistemin Markov modellenmesi
Ouerilmektedir. 3 makineden olugsan sistemin Markov model ¢6zimi i¢in C
dilinde bir program kodlanmistir. Ayrica, geleneksel performans 6lgiitlerinden:
makine kullanimlari, ortalama liretim miktari. ve ortalama ara stok seviyelerinin
vam sira, ara stok seviyesinin varyanst da hesaplanmakta, boylelikle gliven

araligr hesaplamalarinin yapilmast mimkun kihinmaktadir.

Anahtar sézcikler: Seri Akigh Sistemler, Markov Modeller, Erlang Dagilimu,

Ara Stok Seviyesinin Varyansi
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Chapter 1

INTRODUCTION

[n this thesis, we investigate the performance measures of a tandem
queueing system with three machines with k-stage Erlang processing times.

and two finite storage buffers.

A queueing system can be described as customers arriving for service.
waiting for service if it is not immediately available and leaving the system

after being served. Such a basic system can be schematically depicted as in

Figure 1.1.

Service

——000000—= Facility 00 O0-

Discouraged
customers
leaving

Figure 1.1: Schematic diagram of a queueing process
A transfer line is a manufacturing system with a very special structure.
[t consists of material, work stations, and storage areas. Actually, it is a linear

network of service stations/machines (M, M. ..., M}) separated by buffer stor-

ages ( By, By. .., Bx_1). Material flows from outside the system to machine M, ,

1



CHAPTER 1. INTRODUCTION 2

then to buffer storage By, then to M;, and so forth until it reaches machine M,
after which it leaves the system. Material visits each work station and storage
area exactly once in a fixed sequence. Figure 1.2. depicts a transfer line. The

squares represent machines and the triangles represent buffers.

In the language of queueing theory a transfer line can be represented
as a finite buffer tandem queueing system. In that case. machines are called

servers, storage areas are called buffers, and discrete parts are called customers

or jobs.

M, _W M, _W M, W .......... By > My, W M,

Figure 1.2: Representation of a k-machine transfer line with £ — 1 intermediate

buffer storages

1.1 Related Literature

Transfer lines are studied due to their economic importance. They are
used in high volume manufacturing, particularly in automobile production. In
automobile production, the capital costs range from $5100.000 to $30.000.000.
Furthermore, transfer lines represent the simplest form of interactions of man-
ufacturing stages, and their decoupling by means of buffers. The study of

coupling and decoupling leads to application to more complex systems.

The earliest theoretical papers were published in 1950s in Russia.
Vladzievskii [19] is the first author to use probability theory to explain the
behaviour of automatic transfer lines. There are three major problems in the
design and operation of production lines. These are the number of stages in the
line. the location of buffers and the buffer sizes. Tools for the solution of these
problems did not appear until the 1980’s. Buzacott and Hanifin (9] describe
physical and mechanical issues , such as the transfer mechanism, shunt versus
series banks which determine the movement of material according to LIFO or

FIFO. and the design of the line in order to reduce the cycle time. Smunt and



CHAPTER 1. INTRODUCTION 3

Perkins [46] focus on asynchronous flow lines with reliable machines. Thev are
interested in line design, the problem of sizing and locating the buffers. and

task allocations to work stations.

Transfer line systems can be classified into three categories. Syn-
chronous systems are the systems in which operation times of the machines
are assumed to be deterministic and equal, and when machines are not under
vepair, they start and stop at the same instant. In asynchronous systems. ma-
chines are not constrained to start or stop their operations at the same instant.
Asynchronous systems are usually modeled with random operation times. Fi-
nallv. continuous models treat material flow as continuous rather than discrete.

The literature reviewed here and this study considers asynchronous transfer

lines.

1.1.1 Flow Lines with No Intermediate Storage

For transfer lines with reliable machines, Rao [43] and Lau [29] pro-
vicde explicit expressions for calculating the production rate for exponentially.

Erlang. uniform. and normally distributed processing times.

Hunt [23]. Hillier and Boling [23], Hildebrand [22] investigated the
threee machine transfer lines with no buffer. Muth [33], Rao [44. 45] obtained
nwmerical solutions for specific distributions of the processing times. Muth and
AlkafF [33] provided a unifying solution under the assumptions that machines

M, and M5 have special phase-type distributions and machine M, has a Laplace

transformable distribution.

Papadopoulos and O’Kelly [33] develop an exact procedure for the
analysis of a transfer line with reliable machines where the processing times are
exponentially distributed. The exact algorithm gives the marginal probability
distribution of the number of units in each machine, mean queue length. and

the throughput. Papadopoulos [37] also provides an algorithm for the efficient
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computation of the throughput rate of multistation reliable production lines

with no intermediate buffers by extending the work of Muth [33].

For the case of transfer lines with no intermediate buffer and unreli-
able machines, Buzacott [7] obtained a formula for the production rate under
deterministic processing times and general up and downtime distributions as-
sumptions. Commault and Dallery [12] propose a method for calculating the

production rate when uptimes are exponentially distributed.

1.1.2 Flow Lines with Finite Buffers

For transfer lines with reliable machines, Rao [44] analyzed two-machine
transfer lines with exponential and general processing time distributions. When
the processing time of the first machine is exponentially distributed and the
distribution of the processing time of the second machine is general, the line is
equivalent to an M/G/1/L queue. This equivalance also holds for the case of a
two-machine transfer line with general and exponential processing time distri-
butions for the first and second machine, respectively [14]. If the distribution
of the processing times of both machines is exponential. the analysis of the line

reduces to that of an M/M/1/L queue which has a simple geometric form.

For a two-machine flow line with reliable machines where the process-
ing time distribution of each machine follows a continuous phase-type distribu-

tion. the behaviour is characterized by a discrete state. continuous time Markov
process.
Altiok and Ranjan [2], Buzacott and Kostelski [10]. Gun and Makowski

[20] analyzed such systems using recursive and matrix geometric techniques

which will be discussed later in Chapter 2.

Buzacott [8] analyzes a two-station model with identical unreliable

machines and a finite buffer. He assumes that operation times and repair
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times are exponentially distributed whereas the probability of failure during
each operation is constant. He provides an exact solution of the model using

>-transforms and demonstrates that production rate is a saturating function of

storage space.

Gershwin and Berman [16] study the same model except that they
represent failure by an exponential distribution in time rather than a geometric

distribution in the number of parts produced.

Berman (4] generalizes the work of Gershwin and Berman [16] by al-

lowing Erlang distributed processing times.

Berg. Posner. and Zhao [3] investigate the effect of machine break-
downs on service and inventory levels and obtain the stationary distribution of

the inventory process for different assumptions.

Di Mascolo, Frein, and Dallery {31] develop a general purpose an-
alvtical method for performance evaluation of multistage kanban controlled
production system. Their approximation method can be extended to complex

manufacturing systems with different assumptions.

Besides studies on computing the commonly used performance mea-
sures of transfer lines. recently much work is devoted to the optimal location
and sizing of buffer inventories. Jensen, Pakath. and Wilson [26] develop a
dvnamic programming model and an efficient solution procedure to solve this
problem. Lau [28] studies how an unpaced transfer line’s utilization is affected
by different patterns of allocating processing time variances among the sta-
tions. He shows that the results in the literature on variance allocation are
ambiguous and often contradictory. He provides extensive results to demon-
strate three desirable variance allocation characteristics he identifies: bowl;
which indicates that the interior stations should be allocated less work than
the end stations, symmetry, and spike; which suggests that the only variability
can be concentrated into only one station and all the other stations have zero

variability. Later, Pike and Martin [41] show that bowl phenomenon exists

and determine optimal bowl configurations. Park [39] provides a two-phase
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heuristic algorithm for determining buffer sizes of production lines.

For the exact analysis of transfer lines with more than two machines,
the literature is sparse. For asynchronous lines, Gershwin and Schick [17] ex-
tended their analytic solution of two-machine, finite buffer model with the

assumptions that all machines are unreliable and they all have equal and con-

stant service times.

Although exact solutions of two-machine transfer lines are avilable for
a wide range of models. the work done up to now indicates that it seems hope-
less to expect to obtain exact solutions of transfer lines with more machines
except for some limited cases of three-machine transfer lines even when more

powerful computers become available. Therefore, the use of approximate solu-

tions are necessary to study longer lines.

Most approximate methods rely on decomposition where the idea is to
partition the original system into a set of smaller subsystems which are easier

to analyze. Decomposition methods will be presented in Chapter 2.

Altiok [1]. Hillier and Boling [23]. Perros and Altiok [40], Pollock. Birge
and Alden [42]. and Takahashi. Miyahara and Hasegawa [43] analyze flow lines
with exponential processing times. In all these papers the subsystems are
tinite single server queues with lost arrivals and exponential processing times.
C'onsequently. they are equivalent to a two-machine line decomposition with

exponential characterization of the upstream machines.

Pollock. Birge and Alden [42], and Takahashi. Miyahara and Hasegawa

[43] also consider an exponential characterization of the downstream machine.

Perros and Altiok [10] analyze transfer lines using decomposition where
the downstream machines are characterized by phase-type distributions. Later,

Altiok [1] extended this method to the case of transfer lines with phase-type

processing time distributions.

Altiok and Ranjan {2],and Gun and Makowski [21] study decomposi-

tion methods for transfer lines where both the upstream and the downstream
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machines of each decomposed line is characterized by phase-type distributions.

Besides these, several authors derived simple approximation formulas
for estimating the production rate of a flow line with reliable machines in which
all stations are identical. Knott [27] provides an approximation formula for the
case of two-machine flow lines with identical Erlang distribution. Muth [34]
obtained a formula in the case of flow lines with any number of machines but

no intermediate storage. Later, Blumenfeld [5] extends Muth'’s formula to flow

lines with intermediate buffers.

Decomposition methods for flow lines with unreliable machines and

reliable machines are based on the similar principles.

Gershwin [13] developed a decomposition method for synchronous trans-
fer lines. Afterwards, Dallery, David and Xie [13] developed an algorithm,

called the DDX algorithm, for Gershwin’s decomposition technique.

For asynchronous transfer lines, Choong and Gershwin [11] extended
Gershwin's decomposition technique for lines in which all machines could have
different speeds, failure rates, and repair rates and all the distributions of

processing times, uptimes and downtimes are assumed to be exponential.

Glassey and Hong [18] extend the work of Gershwin [15] and develop
a decomposition method for an unreliable n—stage transfer line with (n — 1)
interstage storage buffers. Their method is based on the examination of the
n—stage line and the decomposed lines, and the relationship between the failure

and repair rates of the individual stages and the aggregate stages. they show

that their method performs better.

Springer [47] proposes a decomposition method for approximating the
throughput rate and the WIP level of finite-buffered exponential queues in se-
ries. The approximation decomposes the network into individual finite-buffered

queues which are linked together through a set of nonlinear equations.

All the literature review up to here concentrated on the methods to

analyze the steady-state average production rates and steady-state average
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buffer levels of transfer lines. Yet, the variance of the throughput and of the

buffer levels during a time period is also important.

This issue has been neglected so far. Only a few papers deal with the
calculation of the variance of the behaviour of a transfer line over a limited
time period. Miltenburg [32], and Lavenberg [30] treat two-machine transfer

lines. They obtained results that are difficult to use and extend.

Variability issue is very important because of the fact that the standard
deviation of production can be high. This variability is an inherent character-
istic of production systems. Prediction of this variability is as important as the
prediction of the mean since if both the mean and the variance are calculated.

then an interval estimate for the actual throughput and the buffer levels during

a period of time can be calculated.

Basically. this is the motivation for the work done in this thesis. Fur-
thermore. as the literature review emphasizes, there are few and limited at-
tempts to analyze the exact analytic solution techniques of transfer lines with
more than two machines and finite buffers. Second chapter is devoted to the
analysis and solution techniques of transfer lines with different characteristics.
[ the third chapter experimental results are discussed. Finally. last chapter

covers the conclusion and future research.



Chapter 2

ANALYSIS OF TRANSFER
LINES

2.1 Solution Techniques

2.1.1 Exact Solution Techniques

Exact analytic solutions are important because they are better than
simulations or approximations when the models constructed fit real systems
closely and they provide useful qualitative insight into the behaviour of the
systems. [urthermore. they are the vital parts of the decomposition and ag-

oregation methods that are described later in this chapter.

Most of the results pertaining to the exact analysis of the transfer line
models are based on Markovian analysis. In order to be able to analyze the
behaviour of the transfer line by a Markov process, the distributions have to
be of special form. such as exponential or, more generally, continuous phase-
tvpe distributions in the case of continuous time models; geometric or.more
precisely discrete phase-type distributions in the case of discrete time models.

Nevertheless, there are some exceptions most often encountered in transfer
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lines with no intermediate storage [14].

In order to be able to fully understand the discussion related to Markov

processes, we are providing some information about the definitions and classi-

fications.

A stochastic process is the mathematical abstraction of an empirical
process governed by probabilistic laws. A stochastic process can be best defined
as a set of random variables, { X(t),t € T }. defined over some index set or
parameter space T. X(t) represents the state of the process at time ¢ and 7 is
sometimes also called the time range of the process. The process is classified

as a discrete-parameter or continuous-parameter process as follows:

(i.) If T is a countable sequence, for example,

or

then the stochastic process { X(¢),t € T } is said to be a discrete-parameter
process defined on the index set T';
(ii.) If T is an interval or an algebraic combination of intervals, for example,

T={t:—oc<t<+oo}

or
T={t:0<t< +oo0},

then the stochastic process { X(t),¢t € T } is called a continuous-parameter

process defined on the index set T'.

A discrete-parameter stochastic process { X(t),t = 0,1,2.... } or a

continuous-parameter stochastic process { X(¢),t > 0 } is said to be a Markov
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process if, for any set of n time points ¢, < ¢, <'--- < ¢, in the index set or time
range of the process. the conditional distribution of X(t,) . given the values of
X(£). X(¢2). X(¢3), ..., X(ta-1) , depends only on X(¢,-;). the immediately

preceding value; for any real numbers r,.z,. ..., Zn,

Pr{ X(ta) < 2o | X(t1) = 210 .. X(tnt) = 20y }
= Pr { ‘Y(tn) <r, l -Y(tn—l) =Tn-1 }

Markov processes are classified according to the nature of the index

set of the process and the nature of the state space of the process.

A real number r is said to be a state of a stochastic process { X(¢).t €
T } if there is a time point ¢ in T such that the P{r —h < X(¢) < z + h} is
positive for every A > 0 . The state space is composed of the set of all possible
states. If the state space is discrete. the Markov process is generally called a

Markov chain . Table 2.1. summarizes our classification scheme for Markov
processes.

Continuous time Markov processes are naturally obtained when all
the distributions in the original model are erponential distributions due to
the famous lack-of-memory property of the exponential distribution. Hence.
exponential distribution has been widely used in the literature. Yet. it is not
always an appropriate candidate for representing actual distributions of real
life systems especially when the distributions encountered in real systems have
coefficients of variation far from one which is the coefficient of variation for
exponential distribution. In order to overcome this difficulty, non-exponential

distributions are represented as a mixture of exponential distributions.

The simplest distribution of this form is the Erlang distribution. A
Hypo-Erponential distribution of order k consists of a series of k exponen-
tial distributions with rates i, ga. ..., ur. Special case of Hypo-Exponential

distribution is called k—Erlang distribution which consists of & exponential

distributions with common rate gy = g, = --- = pp = p. The random vari-

able associated with the Erlang distribution is the sum of k£ independent and

identical exponential random variables.
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Type of Parameter

State Space Discrete Continuous
Discrete Discrete-parameter Continuous-parameter
Markov chain Markov chain
(C'ontinuous Discrete-parameter Continuous-parameter
Markov process Markov process

Table 2.1: Classification of Markov Processes

Another distribution used in the modeling of the stochastic systems
is the Corian distribution. The Coxian distribution is more general than the

Hypo-Exponential distribution since it also allows branching probabilities as

shown in figure 2.1.

I la, I,

Figure 2.1: Coxian distribution with s phases

The most general form of distributions that are mixtures of exponential
distributions is phase-type distribution . A continuous phase-type distribution

with s phases(stages) is represented in Figure 2.2.

If we want to give a physical interpretation of this distribution in
terms of an overall task that consists of a set of s exponential subtasks. The

processing time of subtask j is exponentially distributed with rate yu;.

The first subtask to be completed is subtask j with probability co ;.
Upon completion of subtask j . either subtask k is performed, with probability
cjx . or the overall task is completed. with probability c;o. The branching and

transition probabilities satisfy co1 +---+cos = l.and ¢ji+--+¢;s+cj0 = 1.

Phase-type distributions give rise to Markovian processes by extending
the original state space to incorporate the detailed information of which stage

each distribution is currently in. The increase in the size of the state space
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Figure 2.2: Phase-type distribution with s phases

is the price to pay to handle more realistic models having non-exponential

distributions.

Similarly. discrete phase-type distributions can be defined. In that

case. the geometric distribution plays the same role as the exponential distri-

bution of continuous case.

Definition: A probability distribution F(-) on [0.x) is a distribution
of phase type (PH distribution) if and only if it is the distribution of the time
nntil absorption in a finite Markov process having the states {1,...,m + 1}

with infinitesimal generator

T T°

=10

where the non-singular m x m matrix T satisfies T;; < 0. forl < i <
m.and T;; > 0, fori # j. Moreover, Te+T° = 0, and the initial probability
vector of Q is given by (a,am41) with ae+an,s1 = 1 and states 1,...,m are
all transient, so that absorption into the state m + 1 , from any initial state, is

certain. The pair («,T ) is called a representation of F(-).
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The generalized Erlang distribution of order k with parameters A, ..., A«

has the representation a = (1,0,...,0) and

- A
-A2 A
T =
—Ak-1 Ao
- Ak
In special k—Erlang distribution, we have Ay = Ay =--- = X\,

Discrete PH-distributions are defined by considering an m + 1 state

Markov chain P of the form

T T°
0 1

where T is a substochastic matrix, such that I- T is nonsingular. The initial
probability vector is (&,am41). The probability density {pc} of phase type is
given by

Py = anqr,

P. = a T 'T° | for k > 1.

In the analysis of two-machine flow lines with reliable machines having
continuous phase-type distribution, any numerical technique for discrete space
Markov processes can in principle be used. However, it is important to recog-
nize that the Markov process has a very special structure and one must take
advantage of it. Let PH; refer to the phase-type distribution of machine 1/;
for i = 1.2. and let s, be the number of phases of PH;. We can characterize
the behaviour of such a system by a discrete state, continuous time Markov
chain and then analyze this system to calculate the steady-state probabilities

of the Markov chain and derive all the performance measures.

The state of the Markov process can be expressed as (n, ji,j2), where

n is the number of parts currently present in the buffer and j; is the current
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phase of service of machine M;, ¢+ = 1.2. n can take on integer values from
0 to N. j; can take on integer values from 0 to s, where j; = 0 represents the
case of blocking of machine M;. Similarly, j, can take on integer values from

0 fo s,, but in that case j, = 0 represents starvation of machine M.

If the state space is partitioned according to the values of n, and p
denotes the steady-state probability vector and p, denotes the portion of that

vector that corresponds to a buffer content of n, we can write

Po
P
p= )
Pv
Note that pp. n = 1....,.V =1, is of size 5,5, while pg and py are of size

=) and s, respectively.

Let Q denote the infinitesimal generator of the Markov chain. The

steacdy-state probability vector p of the Markov chain is the solution of the

equation

Q'p=0.
In addition, p also satisfies the normalization equation

p=1.
Matrix QT is a block tridiagonal matrix with the following special

structure
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[ B, 40 0 0
Co B A 0
0 C B A0
QT = .
0 C B 4 0
0 C B Ay
.0 OCNBNJ

where A, B, C are square matrices of size (5152, $152) ; Bo and By are square
matrices of size (s, s1) and (s2, s2): Ao, Co. Ay, and Cy are of size (s;s,. s1).

(51. 5152). (82, 8182), (S152, 52) respectively.

QT has this special structure because the Markov chain associated
with a two-machine transfer line is a generalized birth-death process. Transitions
occur only between states that are neigbours of each other with respect to the
value of n . That is, the only possible transitions from a state (n. j;. ;) are to
state (n',j;,j;) such that n' = n,n — 1,n 4+ L. Moreover, transition rates are
independent of n , for I < n < N —1. Because of the special block tridiagonal
structure of Q,T . equation Q7p = 0 can be decomposed into the following set

of equations. which we call transition equations,

Bopo + Aop1 = 0.

Copo + Bp1 + Ap2 = 0.

CoPn-1 + Bpn + Appy1 = 0. 1 < n <N - 1.
Cpyx-2 + Bpy-1 + Axvpy = 0,

Cvpyv-1 + Byvpy = 0.

The special structure of the matrix QT led to two solution techniques

that make use of this special structure. These are the recursive technique and

the matrir geometric technique.

For matrix geometric technique the reader is referred to Neuts [36].

The principle of the matrix geometric solution can be briefly described as
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follows. The first step is to show that the set of transition equations can be
transformed into an equation of the form

Npn. + Mpp-y =0,
where the matrices N and M are of size(s;s2. s152) and N is invertible. If we
define a matrix R as R = —N"'M , we have

Pr = Rpa-1. 1 < n <N
For the boundary states, if we also define matrices S and U such that p, = Spo
and py = Upy-1. Po can be determined by solving an equation of the form
Zpo = x which is obtained from the basic set of transition equations. Then,

the remaining probabilities can be obtained. For more details, see Gun [19]

and Gun and Makowski [20].

The recursive technique can be applied to Markov processes that sat-
isfv the condition that there exists a subset of states. boundary states. such that
the probabilities of all other states can be obtained recursively from the prob-

abilities of the boundary states. The recursive technique can be implemented

using the following algorithm [10].

(1) Reduction step-determine M boundaries and derive a recursive

schetne, to calculate all other state probabilities from the boundary state prob-
abilities. Then. express all state probabilities as linear combinations of the
boundary values. In order to find the coefficient of a particular boundary value
in the linear expression. set that boundary value to 1 and all other boundary
values to 0, and then follow through the recursive scheme. This is done M
times. corresponding to the M boundaries. There will be M equations not
used in the calculation of the state probabilities in terms of the boundary val-
ues. M — 1 of these equations together with the normalizing equation give.
after substituting expressions in terms of boundary state probabilities for non-

boundary probabilities, M equations for the M boundary state probabilities.

(2) Solution step -determine the M boundary state probabilities by

<

solving the set of M equations.

(3) Evaluation step -from the recursive scheme, determine the re-

maining state probabilities. Key to the use of this recursive algorithm is the
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cdetermination of how many boundaries to use and which specific states to be

chosen as the boundary states.

2.1.2 Approximate Solution Techniques

Most approximate methods are based on decomposition. Each decom-
position method involves three steps. First step is the characterization of the
subsystems, then a set of equations is derived to determine the unknown pa-

rameters of each subsystem. Finally, an algorithm is developed to solve these

equations.

The aim of the first step is to define how the original line is decomposed
into subsystems and to characterize each subsystem. The subsystems must
have exact solutions. The second step aims to establish relationships between
quantities pertaining to different subsystems so as to derive the parameters

of each subsystem from the parameters and performance measures of other

subsystems.

Most decomposition methods in the literature decompose a A’ —machine
tlow line into a set of A" —1 subsystems where each subsystem is associated with
a buffer of the original line. In some methods. the subsystem is a two-machine
line while in others it consists of a single server queue with a finite buffer.
Since the subsystems are always simpler than the whole line, they cannot ex-
hibit the same behaviour. Moreover. some of the equations used to determine
the parameters may be approximate, even within their assumptions. Thus. de-
composition methods are approximations. For the principles of decomposition

methods for flow lines with reliable machines. the reader is referred to Hillier

and Boling [23].

The decomposition approach decomposes the original A —machine line
into a set of ' — 1 two-machine lines. Each two-machine line is associated with

a buffer of the original line. Let L denote the original line and L(z,:+1) denote
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the two-machine line associated with buffer B; ;. Let subscripts u and d refer
to objects and parameters of the upstream and downstream machines. Machine
M,(i.i141) is the upstream machine, and My(z,¢+1) is the downstream machine

of line L(i,7 + 1). The decomposition approach is depicted in Figure 2.3.

[ -E

e

uct.2) Mac1.2)>

[ e ]

Mu(2.3) Myc2.3)
M, (3.4) Mycs.ay

[ Gan ]

Mica.s) Myca.s)

Figure 2.3: Flow line decomposition

The basic idea in decomposition is the definition of upstream and
downstream machines for each two-machine line L(:.1 + 1) such that the be-

haviour of material through its buffer is close to the behaviour of material in

buffer B; 4, in line L.

Upstream and downstream machines of each two-machine line sum-
marize the effects of the entire up and downstream portions of the line, respec-
tivelv. on the buffer. For example. machine ., (¢,: 4 1) represents the portion
of the line L upstream of buffer B;;i,, that is, machine }M; to machine M.
Likewise. machine My(i,i + 1) represents the portion of line L downstream of
buffer B, 41. that is. machine My, to machine My. In the literature, these

machines are usually called equivalent machines, pseudo-machines, or virtual

machines.
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Furthermore, there are alternative decomposition methods which de-
compose a Kh'—machine line into a set of A" — 2 three-machine lines. This
approach may result in more accurate results. Nevertheless, it requires repet-

itive solutions of three-machine subsystems which are too complex to solve in

general as discussed before.

2.2 Problem Definition and Solution Proce-

dure

We investigate the behaviour of a transfer line with three machines
and two finite buffers. Since, the machines are assumed to be reliable. the only
source of randomuess in the system is the random machine processing times

which are assumed k—stage Erlang distributed.

There are mainly four factors to be considered in choosing a distri-
bution function. These are. factor 1, its ease of mathematical manipulation;
factor 2. its ease of fitting, that is, of determining its parameters from standard
summary statistics (such as mean, variance. range, etc.) of empirical data; fac-
tor 3. its resemblance to empirical distribution from actual data; and factor 4.

its consistency with the “principle of entropy marimization™ .

Regarding the last factor. information theory recommends that. for
a given set of statistical conditions, a distribution function that maximizes
the ‘entropy” should be adopted, subjected to the satisfaction of the given
conditions. A non-technical interpretation of entropy maximization is that the
selected distribution function fully reflect the information given on the random

variable but should not impose on it any additional assumptions.

Exponential distribution scores very well on factors 1, 2 and {. Re-
garding factor 4, if only the mean of a non-negative random variable is known,

the exponential distribution maximizes the entropy.



CHAPTER 2. ANALYSIS OF TRANSFER LINES 21

The Erlang distribution is often used to represent processing times in
unpaced line models since it can assume a wide range of different skewness
and: therefore, be suitable for fitting real-life empirical distributions of pro-
cessing times [29]. Moreover, since the sum of k independently and identically
distributed exponential random variables with mean 1/ku yields a k—Erlang
distribution with parameter u, Erlang allows us to describe queueing models
where the service may be a series of identical phases. Hence, the most impor-
tant reason why the Erlang distribution is useful in queueing analyses is its

relation to the exponential distribution which is the only continuous distribu-

tion with Markovian property.

The underlying assumptions of our model are as follows. Considering
the material. it consists of discrete parts and there is only a single kind of

material in the system. Each piece of material visits the machines and buffers

in exactly the same sequence.

The machines are not constrained to start or stop their operations
at the same instant: therefore, it is an asynchronous transfer line. Machine
processing times are k—stage Erlang distributed and the time between part

arrivals to the system is exponentially distributed with parameter \.

Some models of flow lines have machines that can fail. When a fail-
ure occurs, machine cannot process any material, so the buffer upstream can-
not lose material and the buffer downstream cannot gain material. Systems
in which machines cannot fail are called Flow Lines with Reliable Machines

(EFLRM)'s. Our research assumes that the svstem is FLRMs.

Whenever machine M; processes material, it reduces the level of buffer
B;_1; and it increases the level of buffer B;,;;. On the other hand, when
machine M; takes an especially long time to process a part, and its neighbour

machines work normally, the level of buffer B;_;; increases and the level of

bufter B;;,, decreases.

If this situation persists, buffer B;_;; may become full or buffer B;

may become empty. In this case, one of the neighbour machines of M, is not
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able to operate; either machine M4, is starved or machine M;_, is blocked.
In real life systems, it is possible that raw material is absent, or the means of
removal of finished goods fail. We asume that the calling population is infinite

and the last machine is never blocked.

Considering the operating policy, in our system, machines are not al-
lowed to be idle if they can be operated. That is, whenever a machine is neither
blocked nor starved, it is used for an operation Buzacott...[30]...(198'2) demon-
strates that this is the optimal operating policy for a two-machine line when

the performance measure is the system production rate.

Quality is not treated in the model presented here. All parts are
assumed perfect. There is no inspection procedure, no rework, and no rejects.

Furthermore. the material in the storage buffers is assumed to be nonperishable.

The transfer line system we investigate is depicted in Figure 2.4. where

~'s indicate that the system is saturated.

TRES \Vﬂi/ o= b IEZ — L
ﬁ/ vl Mel wea

Figure 2.4: 3-machine saturated k-Erlang transfer line with Poisson () arrivals

(=
-

This system i1s modeled as a discrete state space continuous time

Markov chain.

Markov chain models of transfer lines are difficult to treat due to their
large state spaces and their indecomposability. When the system is modeled
as a discrete state Markov chain. the number of distinct states is the product

of the number of different machine states. and the number of distinct buffer

levels.

Many models of queueing networks are decomposable; that is, portions

of the system can be treated as if they are isolated from other portions. The
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mathematical models break up into smaller models, with simple relationships
among them. Yet, the Markov chain models of transfer lines do not have this

property. No exact decomposition exists.

Before presenting the states of Markov chain model of this transfer line,
it is worth addressing the following fact again. A k—Erlang distribution with
parameter u/k is represented as the sum of k independently and identically
distributed exponential random variables with mean 1/u. Hence, this relation
allows us to describe the service system as a series of identical phases that have

exponential processing times with parameter u . This is shown in Figure 2.5.

k-Erlang ()—/k )

Figure 2.5: Use of the Erlang for phased service

By the help of this observation, even though the service may not actu-
ally consist of phases. in the state representation of the Markov chain. we also
denote the phases of the services so that we can exploit the Markovian property
of exponential distribution by means of this phased service idea. Therefore,

the state representation is as follows:

(ny1; i, Bi,najia, By ng: 13)

where n;. n,, and n3 denote the states of the machines respectively. n,. and n,
can take on values 1. 0, and b where 1 denotes that machine is up and working,.
0 denotes that machine is idle, and b denotes that machine is blocked. Yet. ns
can take on values 1 and 0, but not b because of the fact that it is a saturated
transfer line. {;, i, and i3 represent the stages of the services for the machines
respectively. B; is the size of the finite buffer in front of the second machine,

and B; is the size of the finite buffer in front of the third machine.
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The following is the all possible states of the Markov chain model of

the transfer line.

1. (0:0.0,0;0,0,0;0)

2. (1:4,0,0:0,0,0;0) k=12,...,K

3. (L:k.B,151,0,0;0) kl=12,...,K,B =0,1,...,B

4. (0:0,B,.1;1.0,0;0) l=12,...,K,B =0,1,...,B

5. (0:0.0.0;0, B, 1;j) J=12...,K,B, =0,1....,C

6. (1:£.0.0;0.B,1;)) kg =12....K,B, =0,1,.... C

. (0:0.By.1;1. By, 1) lj=12.....,K B =0.1...., B
B, =0.1,.... C

S. (LA By, 1By, 157) kly=12....K,B =0.1..... B
B, =0.1,....C

9. (b:0.B.1:1.0,0:0) [ =1.2,...,K

10. (6:0.B.1:1.B,.1:)) L) =1.2.... K .B, =0,1..... C

L. (0:0.By.6:0,C. 1) J=12,....K B =0,1..... B

12, (L:k.By.6:0.C,15)) kyyg =1.2..... K.B =0,1....,B

13. (6:0.B.56:0,C.1:)) J=L12....K

In order to calculate the performance measures of the system. the
steady-state probabilities of the Markov chain are calculated. The Markov
chain has a steady-state distribution because it is an ergodic Markov chain.
Miltenburg [32] proves that for finite-size buffer inventories. the states of a A’
station transfer line constitute an ergodic Markov chain. Qur state represen-
tation differs from the others in the literature that we also keep track of the

phases. However, this representation of phases do not violate the ergodicity
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and there is also an embedded pure birth process if we just consider the process

of passing from one phase to the other.

To obtain the steady-state distribution, instead of studying the system
by means of the transition equations, we use the balance equations, which

equate the rate of leaving a state with the rate of entering it.

For a discrete state, continuous time Markov chain, the balance equa-

tion is in the from

Ip;(t
(F:it( ) - %:/\ijpo‘(t)

where \;; > 0. # . and
i == Aji

J#

In steady state dp,;/dt = 0. and the negative term of the balance equa-

tion can be moved to the left side. so it becomes

PiY_ A =3 \ip;

J#i Y
The left side is the rate of the system leaving state ¢, and the right

side is the rate of entering 1t.

While writing the balance equations, one has to consider two events.

These are the arrival process. and the service process.

For the arrival process, we identify the following probabilities:

TABLAAL)!
P{An arrival occurs in At} = f._._%’_)_

-\At ¢ 0
P{No arrivals occur in At} = E——%—A—z—
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In the above equations, for the term e 4! we can make the following

approximation by using Taylor’s series expansion:
20 ki _1\k 2 3
R L S R

~ 1 — At

Hence, if we approximate e *®! by 1 — \A¢, we get the following

probabilities.

P{An arrival occurs in At} = AA{(1 — AAt)

P{No arrivals occur in At} = 1 — AAt

For the service process, for each phase of the service we identify the

following probabilities:

L . e"HA A
P{Service completion in At} = i

P{No service completion in At} =

where g is the rate of exponential distribution.

For these equations, an approximation similar to that of the arrival

process is made. Thus. if we approximate e=#&! by | — uAt, we get the fol-

fowing probabilities:
P{Service completion in At} = uAt(1 - plt)
P{No service completion in At} = 1 ~ u\t
The balance equations are generated by an algorithm coded in the

programming language C. This system of linear equations is solved by the op-

timization software CPLEX because of its speed. Then, performance measures
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are calculated by another program again coded in C. The codes of these pro-

grams are not provided with the thesis work and they can be obtained directly

from the author.



Chapter 3

EXPERIMENTAL RESULTS

This chapter covers the experimental results of our studv. We solve
different problems so as to observe the effect of K'; the number of phases in
the Erlang service. the effect of buffer sizes B; the size of the first buffer and
(’: the size of the second buffer, and the effect of the machine processing rates:
ft1- ft2. p3. on the performance measures. The size of the balance equations

generated for several problems varies between 200 and 6000.

We are interested in mainly four performance measures. These are the
utilization of the machines. mean throughput, mean Work-In-Process inventory

(WIP). variance of Work-In-Process inventory.

Machine utilization is calculated as the percentage of time that a ma-
chine is working; that is neither blocked nor idle. High machine utilization is
assumed to be good because it amortizes the cost of the machinery faster. Nev-
ertheless. by forcing a machine to run so as to amortize its cost and increase its
utilization, one is simply transferring a machine asset into an inventory asset.
Hence. it is important to differentiate the most beneficial policy, whether to

increase utilization or decrease inventory.
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Work-In-Process is the amount of semi-finished product currently resi-
dent on the factory floor. A semi-finished product is either being processed or is
waiting for the next processing operation. We investigate both the mean value

and the variance of Work-In-Process inventory so that confidence intervals for

WIP can be constructed.

The throughput is the number of parts produced per unit time. The
reciprocal of the throughput is the production time per unit of the product. For
transfer lines, the throughput approximates the reciprocal of the cycle time.
Mean value of the throughput is the expected number of parts produced per
nnit time in the system. In the long run, when the system achieves a steady
state. the mean throughput is equal to the effective arrival rate which is the
product of arrival rate, A. and the percent idle time of the first machine. It is

also equal to the product of the processing rate and the utilization of the last

machine of the line.

First of all. the effect of machine processing rates is investigated for
~'=2 and A'=3. The graphs of the performance measures are shown in figures
3.1. to 3.6. For both A'=2 and A'=3 cases. if the rates of the machines are
increased simultaneously, utilization of the machines decreases as expected. It
is also important to note that utilization of the three machines are almost equal
since their processing times are independent and identically distributed with
the same rate. Furthermore, utilizations of the machines stay almost constant
with respect to changing buffer sizes. This can be explained as that for these
cases, rather than the buffer sizes, machine processing rates play significant role
in determining the utilizations. Later, we observe the same thing for different
I\ values as well. For mean throughput, the graph is not given. However, the
tables that summarize the results of all experiments are provided at the end of
this chapter. For both cases, mean throughput increases when the processing
rate increases for all machines. For the expected value of WIP. as the processing
rate increases, the expected value of WIP decreases. This is intuitive because
when machines are faster, the part travels through the transfer line faster.
Moreover. it can be observed that expected value of WIP is a linear function

of the buffer size. Although variance of WIP is the same for processing rates
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[ = p2 = i3 = 2/unit time and g; = g2 = g3 = 3/unit time for K'=2, the
variance is larger when u; = py = g3 = 3/unit time for the transfer line where
the machine processing rates are 3—Erlang distributed. Variance of WIP tends
to increase as processing rate of the machines increases. Another important
observation is that variance of WIP is an exponential function of the buffer
sizes. Keeping these observations in mind, although high processing rate gives
smaller mean WIP values, one should try to balance the effect of increasing
processing rate on the variance of WIP and the mean value of it when the

concern is to keep the interval that the value of WIP lies small.

As a next step, to observe the effect of K, performance measures for
~'=2 and A'=3 are compared. These are illustrated in figures 3.7 to 3.9. For
the case of A'=3. utilization of the machines is higher than that of K'=2 case.
This 1s expected because as the number of phases is increased, the part spends
more time on each machine keeping it busy. Furthermore, utilizations of all
machines are almost equal again for both cases. Mean throughput drops when
we increase A since the time it takes for a part to be processed through the
transfer line increases, causing the number of parts produced per time to fall.
Expected value of WIP is greater when K increases. On the other hand,
variance of WIP decreases as the number of stages of the Erlang distribution is
increased. That is. when A is increased. more WIP is carried. but the deviation
from this value is less. Hence, if the aim is to keep a stable WIP level, although

it may be a little bit high. smaller K values should be chosen.

In order to see the effect of buffer sizes, we investigate the performance
measures for the case when the size of one of the buffers is fixed and the other
is vatied. The results of different problems are represented in tables 3.1. to
3.22. Whereas, we only provide the graphs for the cases B=4, and C is varied,
('=1. and B is varied; B=5. and C is varied, C'=5, and B is varied: B=6. and
(" 1s varied, C'=6. and B is varied. These graphs are given in figures 3.10. to
3.13. For all cases. utilization is almost equal for the case where C is fixed,
B is varving and the case where B is fixed, C is varying. For all performance
measures, the following is observed. When the size of one of the buffers is set to

a constant value. ¢, and the size of the other buffer is varied, the performance
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measure is better until the point where B = C = ¢ for the case where B is fixed
and (' is changing, and after that point performance measures are better for the
case where (' is constant and B varies. Another observation is that for the case
where (' is constant, and B is varied, performance measures are always around
a stationary value. Whereas, for the opposite case, although the utilization
and mean throughput are almost constant, expected WIP increases linearly
while variance of WIP exhibits an exponentially increasing behaviour as dis-
cussed previously. Moreover, although buffer sizes are increased, throughput
stavs almost the same for both cases. Hillier and So [24] prove that percent-
age increases in throughput decrease as buffer capacities increase. Hence. our

finding also supports this observation.

These observations lead to the following observation. If the processing
rates of the machines are equal and if there is restricted available space for
buffers. i.e. when a total amount must be allocated between the two buffers,
the first buffer always should get more if we want to reduce the expected value
of WIP and the variance of it. For example, if the total available space is 12
parts for h'=3, A=1/unit time, g, = p, = pz=2/unit time case, B=9. C'=3
combination gives an expected WIP value of 3.73741 and a variance value of
0.25579. However, B=3, C'=4 gives 3.95295 and 1.35911 respectively. Finally,

B=7.('=3 gives 1.16362 and 2.79884 respectively.

Finally, we try 0 processing rate combinations, such as y; < py < ps,
[y >y > s, p > p2 < gz, and gy < pgp > ps . Obviously, the utilization
of the machines are higher for smaller processing rates. For p; < py < pz. we
performed experiments to see the effect of changing buffer sizes. Again until
the intersection point. performance measures are better for the case where
is constant and B is varying. All the previous discussion related to changes
in buffer sizes for constant processing rates are also valid for u; < py < ps
and others. It is worth in noting that expected value of WIP is again a linear
function of buffer size while the variance of WIP is increasing exponentially

with the increasing buffer size. The plots of these experiments are given in

figures 3.19. to 3.20.
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After these observations, we compare different processing rate combi-
nations for the case where C=6, B is changing. We do not consider B=6, C
is changing case because the former performs better as discussed before. The
plots for these experiments are given in figures 3.21. to 3.23. In the plots,
notation is as follows. a, b, c denotes that x4y = a/unit time, g, = b/unit time,
jt3 = c/unit time respectively. For machine utilizations, obviously one get the
highest utilization if the processing rate of that machine is kept low. For mean
throughput, p; = 4/unit time, g, = 3/unit time, u3 = 2/unit time gives the
best result and g; = 3/unit time, g, = 2/unit time, g3 = 4/unit time gives
the second best. Expected value of WIP is the smallest for the case where
(= 2/unit time, g, = 3/unit time, g3 = 4/unit time and it is the highest
when g, = 4/unit time, p, = 3/unit time, g3 = 2/unit time. This may be due
to the fact that if the first machine of the transfer line is the fastest, and the last
machine is the slowest, although parts pass to successive machines faster. they
will wait in the buffers for the completion of processing of parts already residing
on the successive machines because those are slower. Consequently, if machine
load allocation is considered for a fixed available amount, g1 < s < ug gives
the best WIP value. gy = 3/unit time, g = 2/unit time, g3 = 4/unit time
combination gives the second best value in terms of the expected WIP. Yet.
for the variance of WIP, y; = 4/unit time, g» = 3/unit time, g3 = 2/unit time
combination gives the smallest value whereas gy = 2/unit time. g, = 3/unit
time. w3 = 4/unit time results in the highest value and g; < p2 < w3 com-
bination leads to the second highest value. Hence, if the concern is to keep
the WIP at a small and stationary value one should choose y; = 3/unit time.

{2 = 2/unit time., uz = -4/unit time combination.

There are many alternative experimental design procedures. Neverthe-
less. only a few of them are presented because of space considerations. However.

with the available code any kind of relationship can be investigated further.
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Figure 3.1: Utilization of machines for K=2. A=1. and varying buffer sizes and
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Figure 3.2: Expected WIP for K=2, A=1, and varving buffer sizes and machine

processing rates
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Figure 3.3: Variance of WIP for K=2. A=1. and varving buffer sizes and ma-
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Figure 3.4: Utilization of machines for K=3, A=1, and varying buffer sizes and

machine processing rates
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Figure 3.5: Expected WIP for K=3, A=1, and varving buffer sizes and machine

processing rates
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Figure 3.6: Variance of WIP for K=3, A=1, and varying buffer sizes and ma-

chine processing rates
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Figure 3.11: Expected WIP for K=3, A=1. y=2/unit time, and varying buffer

sizes
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Figure 3.14: Expected WIP for K=3, A=1. u=2/unit time, and varying buffer

sizes



CHAPTER 3. EXPERIMENTAL RESULTS 40

Variance of WIP

)

Nt ———y
\
\

VG[.BU.O N b O O®ON

—
///
’/
-7 C=4, varying
= a
= 8
3 3 2 ]
e 8y €9 29 &7 29 2q
e} s} 5 5 o) S
> > > > > >

Varying buffer sizes

Figure 3.15: Variance of WIP for K=3, A=1, p=2/unit time. and varyving buffer
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Figure 3.16: Utilization of machines for K=3, A=1, x=2/unit time, and varying

buffer sizes
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Figure 3.17: Expected WIP for K=3, A=1, ¢=2/unit time, and varying buffer
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Figure 3.13: Variance of WIP for K=3, A=1, y=2/unit time, and varying butfer

sizes
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Figure 3.19: Expected WIP for K=3. A=1. y; = 2/unit time. g, = 3/unit

time. p3 = 4/unit time, and varying buffer sizes
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Figure 3.22: Expected WIP for K=3. C=6. A=1, and varying buffer sizes and

machine processing rates
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N =2, N=\1/unittime, u,,p2.p3 = 2/unittime
Utilization Expected WIP | Variance of WIP | Mean throughput

B =3[ m/cl:0.49973 3.05119 1.71333 0.49972
C =31} m/c2: 049974

wm/e 3: 0.49972
B =4 m/cl:0.49995 3.22636 2.35004 0.4999-4
C =4 | m/c2: 0.49991

m/c 3: 0.49994
B =5 | m/c1: 0.49993 3.39548 4.25338 0.499938
C =5 | m/c2: 0.49993

m/c 3: 0.49998
B =6 | m/c 1: 0.49999 3.36303 5.93383 0.49997
C =6 | m/c2: 0.49997

m/e 3: 0.49997
B =7 [ m/c1: 0.49998 3.73032 7.89185 0.-19997
C =7 | m/fc2: 0.49997

m/e 3: 019997
B =8 | m/c 1: 0.19999 3.89739 10.12822 0.49997
C =8 | m/c2: 0.49997

wm/e 30 0.49997
B =9 | m/c 1: 0.49999 4.06483 12.6-4311 0.49997
C =9 | mfc2: 0.49999

m/e 3 0.19999

Table 3.1: Performance measures for A'=2, 4 = 2 /unit time. varying but

identical buffer sizes

N =2 N= 1 unittime, py.u>.u1 = 3/unittime
["tilization Expected WIP | Variance of WIP | Mean throughput

B = 3 [ m/c I: 0.39996 2.24963 2.35495 0.59992
C =3 | m/fc2: 0.39996
m/c 3: 0.39993

B =4 m/e 1: 040000 2.37015 3.35739 0.59992
C =4 | m/ec 2 039990
m/e 3 0.39999

B=5 m/e 1: 0.39999 2.18963 4.36783 0.39993
C =5 | m/fc2: 0.39999
m/c 3: 0.39999

B =6 | m/c 1: 0.39999 2.60897 5.93791 0.59993
C =6 | m/c 2: 0.40000
m/e 3: 0.39999

C B =7 [ m/cl: 0.39999 2.72326 T.613813 0.59993
C =7 | m/e 2: 010000
m/e 3 0.39999

B =8 | m/cl: 0.30099 2.34760 915851 0.539998
C =8 | m/c 2: 040000
m/« 3: 0.39999

B=29 m/c 1: 0.40000 2.96695 11.50923 0.59998
C =9 | m/c 2: 0.4000V0
m/ec 3: 0.39999

Table 3.2: Performance mrecasures for A'=2. ' = 3 /unit time, varying but

identical buffer sizes
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N =3, N=1/unittime, py.p2,u3 = 2/unittime

Utilization Expected WIP | Variance of WIP | Mean throughput

B=4 /e 1 0.59994 3.95232 1.35631 0.39995
C =4 | m/c2: 0.59993
m/c 3: 0.59993

B =151 m/cl:0.59996 4.16361 2.7983- 0.39997
C =5 | m/c2:0.59996
m/c 3: 0.50995

B =6 | m/c 1: 0.39996 4.37328 4.57078 0.39996
C =6 | m/c2: 0.59995
/e 3: 0.59994

B =7 | m/c1: 0.59996 +4.38278 6.67338 0.39997
C =7 | m/e2: 0.59995
m/e 3: 0.59995

B =8 | m/c 1: 0.5999 4.79211 9.10815 0.39996
C =8 | m/c2: 0.530995
m/e 3: 0.39994

| B =9 [ m/c1:0.30837 197557 11.87326 0.39991
[ € =9 [ m/c2: 0.530094
f m/ec 3: 0.59834

Table 3.3: Performance measures for h'=3, p
identical buffer sizes

= 2 /unit

N =23 \=1/unittime. wy,p2,u3 = 3/unit time

Utilization

Expected WIP

Variance of WIP

Mean throughpu

m/ec 3 0.49998

B =4 m/e 1 0.49993 3.17167 2.85185 0.49997
C =4 | m/fc2: 04998
m/e 3: 0.49997

B =5 ] m/c 1 0.49998 3.34593 4.33281 0.49997
C =5 | m/e2: 0.49997
m/e 3: 0.49997

B =26 m/cl: 0.49993 3.52020 6.09333 0.49997
C =06 | m/c 2: 0.49997
m/e 3: 0.19997

[B=7T m/c1: 0.49999 3.69443 8.15162 0.49997
LC =7 | m/c2: 049997
i m/e 3 049997

{ B=238 m/e 1 0.499938 3.36366 10.49251 049997
; € =8 | m/e2: 049998
! m/e 3 049997

| B=19 | m/e1: 049993 1.0-4235 13.12134 0.49997
! C =9 | m/c2: 0.19998

Table 3.4: Performance measures for A'=3, p
identical buffer sizes

= 3 /unit

46

time. varving but

time. varyving but
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KN =3, A= l/unittime, py.puz,u3 = 2/unittime

: 0.59991

Utilization Expected WIP | Variance of WIP | Mean throughput

B =3 [ m/c1:0.39971 3.94940 1.35150 0.39981
C =4 | m/c2: 059972
m/c 3: 0.59972

B =4 | m/c1: 0.59995 3.73677 0.25311 0.39992
C = 3 | m/c 2: 0.59991
m/e 3: 0.59998

B =3 | m/cl: 0.59970 4.15993 2.79363 0.39979
C =5 | m/c2: 059971
m/c 3: 0.59969

B =5 | m/c1: 0.59999 3.73735 0.25530 0.39994
C =3 | m/c2: 059995
m/e 3: 0.59991

B =3 | mm/c 1: 0.39970 4.36964 4.56315 0.39979
C =6 | m/c2: 0.59971
m/c 3: 0.59969

B =6 m/c 1: 0.59993 3.73744 0.25576 0.39994
C =3 | m/c2:0.59996
m/c 3: 0.59991

B =3 | m/c l: 0.39970 4.57923 6.67416 0.3997Y
C =7 | m/c2: 0.59970
m/e 3: 0.39969

B =7 [ m/cl: 0.59998 3.73739 0.25390 0.39993
C =3 | m/e2: 059994
! m/c 3: 0.59990

B =3 m/e 1 0.594970 4.78870 9.11130 0.39479
C =8 | m/c2:0.59970
m/e 3: 0.59969

B =8 | wm/c1:0.59993 3.73741 0.25379 0.39994
C =3 | m/c2: 0.59995
m/e 3: 0.59991

B =3 | m/c1:0.59970 1.00832 11.87986 0.39979
C =9 | m/ec2: 039969
m/e 3 0.530969

B =9 | m/c1: 059998 3.73741 0.25579 0.39991
C =3 | m/c2: 0.50995

3

Table 3.3: Performance measures for K'=3. p

S1708

2 /unit time, varving buffer
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K =3, \=10/unittime, py.p2,u3 = 2/unittime
Litilization Expected WIP | Variance of WIP | Mean throughput
B =3 [ in/c1: 0.33492 5.8-1431 0.68977 0.58167
C =4 | m/c2: 0.88734
m/e 3: 0.877
B =4 [ m/c1: 0.90190 5.65212 1.26821 0.57346
C = 3 | m/c2: 0.388315
m/c 3: 0.56019
B =3 | m/c I; 0.85401 617855 0.39020 0.58922
C =5 | m/c2: 0.89315
m/e 3: 0.88333
B =5 [ m/c1:0.91264 5.85120 1.94654 0.57231
C =3 | m/c2: 0838528
m/c 3: 0.85347
B =3 | m/c1: 0.38643 6.38906 1.16364 0.58992
C =6 | m/c2: 0.89643
m/e 3: 0.33433
B =6 | m/c 1: 0.92000 6.11289 2.44452 0.58290
C =3 | m/c2: 087571
m/c 3 0.37435
B =3 | m/c 1: 0.85469 6.931536 2.05035 0.60306
C =7 m/c2: 0.839801
m/e 3: 0.90460
B =7 ] m/cl: 092437 5.27304 346149 0.58357
C =3 | m/c2: 0.39230
m/e 3 0.87536
B =3 | m/c1: 0.38395 7.07223 3.163938 0.60103
C =8 | m/c2: 0.89379
wm/e 3: 090153
i B =8 | m/c1: 0.92450 63.43605 4.307538 0.533360
| C =3 | m/ec2: 0.839180
l m/c 3 0.87540
B =3 | m/c 1: 0.8¥09% 722336 110163 0.50006
C =9 | m/c2: 0.39456
wm/c 3: 0.90009
B =9 | mn/c1:0.92450 6.651222 5.50126 0.58373
C =3 | m/c2: 0.89186
m/e 3: 0.87560

18

Table 3.6: Performance measures for A'=3, A\ = 10/unit time.x = 2 /unit time.

varving buffer sizes
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N="0 N = 1Junittime. py.uo. ur = 2]unit teme
{riilization Expected WIP Vartance of WIP Mean theoughput
=1 m/c 1. 0 %9997 416297 2.7I6Re 0 29904
T =135 mfc 2 0.59992
mfc 2 0.99991
H=2:5 mjfc 1. 0.50998 3.95204 1.35831 0.39997
= 14 mjc 2: 0.59998
mfc 2: 0.5399%€
B = mfc 1 0.59992 4.372€0 4.56310 0.39934
i =a mfe 2 0.52991
m/c 3: 0.59991
B =0 m/c I° 0.99998 2.95301 1 25302 0.29997
€: =14 m/fc 2: 0.59997
m/fc ?: 0.59996
B =1 mfc1: 0.99992 4.58203 6.67262 0.39934
<=7 mjc 2: 0.599933
m/c 2 059991
B =7 mfc 1. 0.52997 3.95305 1.3%343 0.39998
=4 m/fc 2: 0.59998
mjfc t 0.50997
1B =1 infc t. 0.50992 4.73142 9.197¢93 0.29994
== mjc 2: 0.59992
mfc 2 0.53391
13 =38 m/c 1. 0.59997 3.95295 1.33911 0.1339937
=4 mfc 2: 0.50006
m/fc 2 0.9999%
B = mfcl: 0.59992 %.00092 11.873% 025294
C =9 mfc 2: 0.59992
m/fc ?: 0.59991
13 =9 mfc 1: 0.99997 195206 1.23311 0.29997
("= 4 mfc 2: 0.3999€
mfc 2 0.99995
[able 3.7: Performance measures for K'=3. ¢ = 2 /unit time, varving buffer
S1Z20eS
N =3 A= l/umittime, uy.pr.p41 = 2/umittzme 1
Ltihzation Expected WIP Variance of WIP Mean throughput
B =2:5 mjc 1: 0.3099% 1.2732% 4.57033 0.23739¢ 1
L mfc 2: 0.39995 !
w/c 2 0.59004 |
B =1 mfc 1 0.5939¢ 416265 2.7987) 0 19997 ;
T =35 mfec 2: 0.59996 i
m/fc 2 0.5999% .
B =5 mjfc 1: 0.2009¢ 4.382¢6 6.671335 0 159596 |
<=7 m/fc 2: 0.5999% '
mjfc 2 0.59994 :
D=7 m/c 1: 0.590%€ 416362 2.73884 0.3300¢ B
< =15 mfc 2 0.5999% :
m/c ¥ 0.59994 |
B==s m/fe 1: 0.5393¢ 4.79207 3.10809 0.29996
=N mfc 2: 059904
mfc 050074
B =8 mfc 1 0.39096 116364 2.TORAS 0.23926
! =5 mje 20 059995
mfc b 0.99994
B =73 mfc 1 0.5900¢ 300142 11.87247 0 1593¢
=9 mfc 2: 0 5299%
mfc* 0.59704 !
B =9 mfc 1: 0.5999¢ 4.167204 2 T98RA 0.2339%¢ :
=5 | mfc2: 0.599%€ !
mfc 2 0.39004 !
o K o ¥ e — —
l'able 3.3: Performance measures for N'=3. j =

S1ZCs

2 /unit time. varving buffer
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N =3, \=1/unittime, py,uz,p1r = 2/unittime
Uitilization Expected WIP | Variance of WIP T Mean throughput

B =6 | m/cl:0.5999 4.58282 6.67335 0.39997
C =7 | m/c2: 0.59995

m/c 3: 0.59995
B =7 | m/c1: 0.59996 4.37326 4.57079 0.39996
C =6 | m/c2: 0.59995

m/e 3: 0.59994
B =6 | m/c1: 0.59996 4.79222 9.10805 0.39997
C =8 | m/c2: 0.59996

m/c 3: 0.59995
B = 8 | m/c 1: 0.5999% 1.37328 4.57074 0.39996
C =6 | m/c 2: 0.59995

m/c 3: 0.59994
B =6 | m/c1: 0.59996 5.00159 11.87337 0.39997
C =9 [ m/c2: 0.59995

m/e 3: 0.59995
B =9 | m/cl: 0.39996 1.37326 4.57079 0.39996
C =6 | m/c2: 0.59995

m/c 3: 0.59994

Table 3.

9: Performance measures for h'=3. y =

30

2 /unit time. varving buffer

S1Z0sS
R =3 \=1/unittime, pr.p2.p3 = 2f/unittime
Utilization Expected WIP | Variance of WIP | Mean throughput
B =7 [ m/c1: 059996 4.79206 9.10824 0.399968
C = 8 | m/c2: 0.59995
m/e 3: 0.59094
B =8 | mn/c1: 0.39996 5.482457 8.67401 0.39996
C =7 | m/e2: 0.59994
m/e 3: 0.59994
B =7 | m/c1: 0539996 5.00151 11.87352 0.39996
C =9 | m/c2: 0.59995
m/c 3: 0.59994
’ B =9 [ m/c1: 0.59996 4.38276 65.67391 0.39997
| C =7 1 m/fe2: 0.539995
! m/e 3 0.59995

Table 3.

10: Performance measures for A'=3. ;¢ = 2 /unit time. varving butfer

S1268
KN =3, \=1/unittime, py,p2,p3 = 2/unittime
Utilization Expected WIP | Variance of WIP | Mean throughput

B = 8 [ m/c 1: 0.59996 5.00147 11.87363 0.39996
C =9 | m/c 2: 0.59994

m/c 3: 0.59994
B =9 | m/c I: 0.59996 1.79201 9.10819 0.39995
C = 8 | m/c 2: 0.59995

m/c 3: 0.59993

Table 3.11: Performance measures for A'=3, ¢ = 2 /unit time, varying buffer

sizes
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N =3, \=1/unittime. py =2/unittime, uy = 3/unittime. pyy = 4/unit time
Litilization Expected WIP | Variance of WIP [ Mean throughput
B =3 | m/c1: 0.59999 2.77134 6.73317 0.39997
C =6 | m/c2: 0.39998
m/c 3: 0.29999
;f B =6 m/c 1: 0.59999 2.32942 2.40359 0.39997
| € =3 | m/c2: 039998
; m/e 3 0.29999
i B =4 m/c 1: 0.59999 2.77133 6.78313 0.39997
] C =6 | m/c2: 0.39998
i m/c 3: 0.29999
| B=6¢6 m/c 1: 0.59999 2.47872 3.61357 0.39997
‘ C =4 | m/c2: 0.39998
L m/e 3: 0.29999
B =5 | m/c1: 0.59999 2.77133 6.78313 0.39997
C =6 | m/c2: 0.39993
m/c 3: 0.29998
B =6 | m/c1: 0.59999 2.62402 5.07375 0.39997
C =5 | m/c2: 039998
: m/e 3 0.29999
[ B=¢ m/e 1: 0.59999 2.77133 6.78318 0.39997
¢ C =6 | m/c2: 0.39999
: m/e 3 0.290999
P B =7 | m/cl:0.59999 2.77133 6.733138 0.39997
i C =6 | mfc2: 0.39998
: m/e 30 0.29999
| B=26 | m/ct:0.59999 2.91363 8.74330 0.39997
, C =7 | m/c2: 0.39998
: m/e 3: 0.29999
B =8 | m/c1: 0.59999 2.77132 6.78315 0.39997
' C =6 | m/c2: 039998
: m/ec 3 0.29999
i B=¢ m/c 1: 0.59999 3.06394 10.95563 0.39997
L C =8 | m/c2: 0.39993
| m/e 3: 0.29999
| B=9 T m/cl: 059999 277132 6.73315 0.39997
] € =6 | m/c2: 0.39993
! m/e 3: 0.29999
B =6 | m/c 1: 0.59999 3.21324 13.41860 0.39997
C =9 | m/c2:0.39998
m/ec 3: 0.29999

Table 3.12: Performance measures for A'=3.
and varving buffer sizes

A =1 /unit time. g < py < 3.
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N =3 N= 1 unittime, py = Afunittime. up = 3/unittime. u3 = 2/unit time
Utilization Expected WIP | Variance of WIP | Mean throughput

B =3 | m/c1: 042820 5.51679 2.33643 0.569-43
C =6 | m/fc2: 057114
m/e 3: 0.835414

B =06 | m/c 1: 0.42895 4.36783 0.34618 0.55722
C =3 | m/c2: 0.56417
m/c 3: 0.83583

B =4 | m/c1: 0.42860 5.45188 2.33933 0.56671
C =6 | m/c2: 056973
m/c 3: 0.85007

B =6 | m/cl: 042879 4.77093 0.33785 0.56153
C =4 | m/c 2: 0.56694
m/e 3: 0.34230

B =5] m/cl:0.42363 5.45609 2.37377 0.56670
C =6 | m/c2: 0.56962
m/c 3: 0.85005

B =6 | m/cl: U2716 5.20027 1.70465 0.57925
C =5 | m/c2: 057663
m/e 3: 0.868383

B =6 [ m/c1: 0.42862 5.45632 2.39207 0.56659
C =6 | m/c 2: 0.56962
m/c 3: 0.34938

B =7 | m/c1: 0.42362 5.45705 2.39819 0.56660
C =6 | m/c 2: 0.56962
m/c 3: 0.3.4990

B =6 | m/c 1: 0.42860 5.73337 4.43026 0.56305
C =7 | m/c2: 0.57026
m/ec 3: 0.85207

B =8 [ m/c 1: 0.42862 5.43726 2.900:16 0.56660
C =6 | m/c 2: 0.56962
m/e 3: 0.84990

{ B =6 | m/c1: 042355 6.06768 6.23685 0.57043
C =8| mfc2: 057143
m/e 3: 0.85564

B =9 | m/c I: 042361 5.45728 2.90131 0.56660
C =6 | m/c2: 0.56961
m/c 3: 0.34990

B =06 | m/c1:0.42852 6.28824 8.16643 0.57006
C =9 | m/c2: 057108
m/ec 3: 0.33509

Table 3.13: Performance measures for A'=3. A = 1 /unit time. jy > 1y > puz.

and varving buffer sizes
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N =3, N=tfunittime. ) = 3/unittime, uy = 2/unittime, uy = 4/unit time
Ultilization Expected WIP | Variance of WIP | Mean throughput

B =3 [ m/c1: 049632 3.27201 3.09792 0.50847
C =06 | m/c2:0.75360
/e 3: 0.33135

B =61 m/cl: 049973 3.08069 1.33024 0.49971
C =3 | m/c2: 0.74960
m/c 3: 0.37478

B =4 | m/c1:0.49319 3.26294 3.13643 0.49348
C =06 | m/fc2: 074774
m/c 3: 0.373386

B =6 [ w/c1: 049973 3.15526 1.33488 0.49971
C =4 | m/c2: 0.74559
m/c 3: 0.37473

B =5 | m/c 1. 0.19937 3.29061 320734 0.49936
C =06 | m/e2: 0.71906
m/e 3: 0.37452

B =6 | m/c1: 0.49973 3.22983 247756 0.49971
C =5 | m/c2: 0.74559
m/c 3: 0.37478

i B=26 | m/c1: 049973 3.30450 3.23867 0.49971
C =6 | mn/c2: 0.74959
m/c 3: 0.37478

B =7 | m/c1: 0.49936 3.31118 3.29107 0.49933
C =6 | in/c2: 0.74931
! m/c 3: 0.37487

B = 6 | m/c L: 0.19973 3.37912 117770 0.49971
C =7/ m/c2: 071959
m/c 3: 0.37478

(B =8 | m/c1: 0.49993 331445 3.31009 0.49991
C =6 | m/c2: 0.74990
! /e 3: 0.37493

, B =06 | m/cl: 049973 3.45374 5.23485 0.49971
i C =8 | m/e2:0.74939
; m/e 3: 0.37478

i B=9 [ m/c1: 0.49939 3.31518 3.31962 0.49985
| € =6 | m/c2: 074994
! m/c 3: 0.37439

f B =6 | m/cl: 049973 3.52336 6.43011 0.49971
| C =9 | m/c2: 074959
! m/c3: 0.37478

53

Table 3.14: Performance measures for A'=3. \ =1 /unit time. yy > 1y < py.

and varving buffer sizes
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N =3, \=1/unittirmme, py =2/unittime. uyy = 4/unittime, u3 = 3/unit time
Utilization Expected WIP | Variance of WIP | Mean throughput

B =3 [ m/c 1: 0.59999 3.31498 8.33663 0.399499
C =0 | wm/c2: 0.29999
m/c 3: 0.39999

B =6 | m/c1:0.59999 2.69320 2.74580 0.39999
C =3 | m/c2: 0.29999
m/ec 3: 0.39999

B =4 | m/:1: 0.59999 3.31495 8.33661 0.39999
C =6 | m/c2: 0.29998
m/ec 3: 0.39998

B =6 [ m/c 1: 0.59999 2.90045 41.28083 0.39998
C =4 | m/c2: 0.29998
m/e 3: 0.39998

B =5 | m/cI: 0.59999 3.31497 8.33662 0.39993
C =6 | m/¢ 2: 0.209938
m/c 3: 0.39998

[ B=26 | m/cl: 0.59999 3.107v2 6.14441 0.39993
' C =5 | m/ec2: 0.29098
i m/e 3: 0.39998

B =6 | m/c 1: 0.59999 331497 8.33662 0.39993
C =6 | m/c2:0.299938
m/c 3: 0.39998

B =7 [ m/cl: 0.59999 3.31496 8.33661 0.39993
* =6 | m/c2: 0.29998
m/e 3: 0.39998

B =6 [ m/c 1: 0.59999 3.55221 10.85740 0.399938
C =17 | m/c2: 0.29998
m/c 3 0.39998

[ B =8 | m/cl:0.59999 3.31496 $.33661 0.39993
|| C =6 | m/c 2: 0.29993
: m/e 3: 0.39993

B =6 | m/c L: 059999 352047 13.70679 0.39998
[ C =8| m/c2 029998
' m/c 3 0.39993

B =0 [ m/c 1: 050999 331496 333661 0.39993
C =6 | m/ec 2: 0.29993
m/c 3: 0.39993

B =20 ] m/c I: 0.50999 393671 16.38482 039995
| € =9 | m/c2: 0.29998
i m/c 3 030908

Table 3.15: Performance measures for A" = 3. A = 1 /unit time. 1y < gy > py

. and varving buffer sizes
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KN =2, N=1/unittime, uy = up = pu> = 2/unit time
Utilization Expected WIP | Variance of WIP | Mean throughput
B =2 m/c1:0.49863 3.02739 1.72124 0.49862
C =3 | m/c2:0.49863
m/e 3: 0.49862
B =3 ] m/cl: 049972 2.36-469 0.838537 0.49970
C =2 | mfc2:0.49974
m/e 3: 0.49970
B =2 | m/c L: 0.49863 3.21166 2.83146 0.49365
C =4 | m/c2: 0.49864
ni/c 3: 0.49865
B = 4 | m/c I: 0419995 236671 0.89309 0.49931
C =2 ! m/c2: 0.49937
m/c 3: 0.19981
B =2 | m/c1:0.49863 3.338036 +4.24052 0.49363
C =35 | m/c2: 019866
m/e 3: 0.49368
B =5 | m/c 1: 0.49993 2.36920 0.90359 0.50004
C = 2 | m/e 2: 0.50007
/e 3: 9.50004
B =2 m/cl: 049863 3.54752 5.92748 0.49351
C =06 | m/c2: 0.49864
m/c 3: 0.49361
B =6 | m/c1: 0.49999 2.37010 0.90932 0.500038
C =2 | m/c2: 0.50011
/e 3: 0.50008
B =2 | m/c1: 0.49363 3.71538 7.89460 0.49363
C =7 | m/c2: 049863
m/c 3 0.49363
B =7 | m/cl: 0.49999 2.3675-¢ 0.39742 0.49935
C =2 | m/c2: 0.49991
m/e 3 0.49985
B =2 m/e 1 0.49863 3.38263 10.13916 0.49363
C =8 | m/c 2: 0.49866
m/e 3 0.49363
B = 8 [ m/c 1: 8.50000 2.86752 0.839752 0.49933
C =2 | m/e2: 0.49939
m/e 3: 0.49933
B =2 | m/c1:0.49863 4.05032 12.66367 0.49863
C =9 | m/c2: 0.19865
! m/e 3: 0.49863
B =9 | m/cI: 030000 2.36770 l 0.89732 0. 19988 |
C =2 | m/fc2: 0.49994
i m/c 3: 0.49998 l

Table 3.16: Performance measures for N'=2. g = 2 /unit time. varyving buffer

sizes
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N =2, \=1/unittime, p; =pz = p3 = 2/unittime

Utilization Expected WIP | Variance of WIP | Mean throughput

B =3 [ m/c1: 049953 3.22123 2.84249 0.49955
C =4 | m/c2: 0.49973
m/c 3: 0.49955

B =4 | m/c1: 0.49995 3.05403 1.72760 0.49994
C =3 | m/c 2: 0.49995
m/e 3: 0.49994

B =3 | in/c 1: 0.49973 3.39201 4.24637 0.49973
C =5 m/c2: 0.49973
w/e 3 0.49973

B =5 | m/c 1: 0.49999 3.03477 1.73078 0.49999
C =3 | m/c¢ 2: 0.50001
m/e 3 0.49999

B =3 | m/cl: 019973 3.53949 5.92769 0.49972
C =6 | m/c2: 0.49973
m/e 3: 0.49972

B =6 [ m/c 1: 0.49999 3.05453 1.73009 0.49996
C =3 | m/c 2: 0.49997
m/c 3: 0.49996

B =3 | m/c 1: 0.49973 3.72681 T.88744 049972
C =7 | m/c 2: 049973
m/e 3 0.49972

B=7 m/e 1 0.19993 3.03520 1.73414 0.50001
C =3 | m/e 2: 0.50002
m/e 3: 1.30001

[B=3] m/cl: 019973 389412 10.125%7 0.49972
P C =8 | m/e2: 040973
! m/c 3 019972

’ B =8 | m/e 1: 0.49999 3.03450 1.73014 0.49995
C =3 | m/c 2: 049997
, m/e 3 049995

[B=3T] wm/c1: 049973 1.06142 12.6:4271 0.49972
j € =9 [ m/c2 049973
| m/e 30 0400972

B =9 ] m/ 1: 049999 3.05436 1.73023 0.49997
F'C =3 | m/fe 20 049997
I! m/e 30 00997

56

Table 3.17: Performance measures for N'=2. y = 2 /unit time. varving buffer

S1Z08
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KN =14 N=1/unittime. py = uz = ur = 2f/unittime
Utilization Expected WIP | Variance of WIP | Mean throughput
B =5 | m/ci: 0.66662 4.53626 1.55442 0.33329
C =5 | m/c2: 0.66639
m/c 3 0.66658
B =06 | m/cl:0.61402 4.47787 3.74985 0.32199
C =6 | m/c2: 0.66657
m/c 3: 0.6-1398
B =7 ] m/ct: 0.66661 4.98003 5.31851 0.33323
C =7 ]| m/c2: 0.66656
m/c 3: 0.66656
B =8 | m/cl: 0.66660 5.201384 T.T1324 0.33323
C = 8 | m/c 2: 0.66657
m/e 3: 0.66656
[B =9 m/c1: 066661 5.42370 10.46333 0.33323
C = 9 | m/fc 2: 0.66656
m/e 3: 0.66656
1. s Y. Parfor e) es fi "= =" 1 1 i
[able 3.13: Performance measures for A'=4. g =2 /unit time. varving buffer
~1Z0S
i N =4 N=1/unittime. uy = > =y =3funittime
) Utilization Expected WIP | Variance of WIP | Mean throughput (parts/unit time)
i B=5 | m/cl: 057136 3.90583 3.39936 U12351
1 C =5 | mfe2: 057134
! m/e 3: 057103
i B =6 | m/ctl:0.57136 411332 5.26239 0.12551
i C =6 | m/e2: 0571}
: m/e 3 057103
B =7/ m/cl1:0.57136 1.32083 7435265 0. 12351
L C =7 | mfc2: 037134
' m/e 3: 057134
B =8 | m/c 1: 0.5:136 4.52833 9.97651 0.42851
i C=8[m/c205713
| m/e 3: 0537134
B =9 ] m/cl:057138 1.73582 12.52676 012851
C =9 | mfc2: 057134
m/c 3: 0.57134

Table 3.19: Performance measures for A'=4, p

size

=3 /unit time, varying bulfer
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K =2 N=1/unittime. B=2.C =2

Litilization Expected WIP T Variance of WIP | Mean throughput

o = py =y =2 m/jc 1: 0.49860 2.85295 0.85920 0.-19854
{per nnit time) m/ec 2: 0.49862
m/c 3: 0.49854

gy =py=puy =3 m/c 1: 0.39969 2.12295 1.55347 0.49951
(per unit time) m/c 2: 0.39969
m/c 3: 0.39967

pp =y = puy =4 m/c 1: 0.33324 1.65611 1.63215 0.66644
(per unit time) m/c 2: 0.33323
m/c 3: 0.33322

Hy =gy =pur =35 m/c 1: 0.23567 1.34399 1.52199 0.71415
{per unit time) m/c 2: 0.28567
m/c 3: 0.28566

W = uy =1 =6 m/c 1: 0.24998 1.12444 1.37025 0.74988
{per unit time) m/c 2: 0.24997
m/c 3: 0.24997

T m/c 1: 0.22222 0.96316 1.22236 075771
{per unit time) m/c 2: 0.22221
m/c 3: 0.22221

=2 =1 =8 m/c 1: 0.20000 0.81031 1.09123 0.59992
(per unit time) m/c 2: 0.19998
m/c 3: 0.19998

MR m/c 1. 0.18182 074412 0.9:837 081314
(per unit time) m/c 2: 0.13180
m/c 3: 0.18181

] = p2 = pr =10 m/c 1: 0.16667 0.66690 0.338201 0.33330
{per unit time) m/c 2: 0.16666
m/c 3: 0.16666

1 = po =1 = 15 m/c 1: 0.11765 0.43593 0.5:092 0.53230
(per unit time) m/c 2: 0.11765
m/c 3: 0.11764

) = py = par =20 m/c 1: 0.09091 0.32214 0.41109 0.90900
{per unit time) m/c 2: 0.09090
n)/c 3: 0.09090

i =s2=u =30 m/< 1: 0.06250 0.21077 0.25673 0.93735
; {per unit time) m/e 2: 0.06250
i m/c 3: 0.06249

EPaS————T} m/c 1: 0.04762 0.15635 0.15416 0.95240
{per unit time) m/c 2: 0.04762
m/c 3: 0.04762

py = p = pr =30 m/c 1: 0.03346 0.12419 0.142383 0.96130
(per unit time) m/c 2: 0.03846
m/c 3: 0.03346

o == = 100 m/e 1: 0.01961 0.05109 0.06613 0.93000
' (per unit time) m/c 2: 0.01960
! m/c 3: 0.01960

|y = gy = =500 m/c 1: 0.00393 0.01204 0.01225 0.29500
! {(per unit time) m/c 2: 0.00398
g m/c 3: 0.00398

[ ol = p; =p: = 1000 | m/c 1: 0.00200 0.00601 0.00607 0.99700
(per unit time) m/c 2: 0.00200
n/c 3: 0.00199

= > = pua = 5000 lIl/C 1: 0.00040 0.00120 0.00120 0.99999
{per unit time) m/c 2: 0.00040
m/e 3: 0.00040

[1 = 2 = 3 = 10000 | m/c 1: 0.00020 0.00060 0.00060 0.99999
{per unit time) m/c 2: 0.00020
m/c 3: 0.00020

I sy = w2 = p2 = 100000 | m/c 1: 0.00002 0.00006 0.00006 0.99999
(per unit time) m/c 2: 0.00002
m/c 3: 0.00002

Table 3.20: Performance
varying processing rates

measures for A'=2/unit time, A=1/unit time, and
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K =3, \=1/unittime. B=3,C=3

Utilization

Expected WIP

Variance of WIP | Mean throughput

Wy =g =g =2 m/c 1: 0.59971 353383 0.21601 0.30979
(per unit time) m/c 2: 0.59970
m/c 3: 0.59968
py = py = pr =3 m/c 1: 0.49995 2.99620 1.66350 019994
{(per unit time) m/c 2: 0.49994
m/c 3: 0.49994
jy =2 =p3 =4 m/c 1: 0.42856 2.44400 2.44433 0.57136
{per unit time} m/c 2: 0.42855
) m/c 3: 0.42352
Hy =y =pur =5 m/e 1: 0.37497 2.03699 2.37338 0.62490
(per unit time) m/c 2: 0.37495
m/c 3: 0.37494
=2 = 0 =10 m/c 1: 023076 1.05201 1.67399 0.56913
(per unit time) m/c 2: 0.23074
m/c 3: 0.23074
pyp = gy =y =13 mjc 1: 0.16667 0.68377 1.11557 0.83325
(per unit time) m/c 2: 0.16666
m/c 3: 0.16663
= py = pa =20 m/c 1: 0.13043 0.50700 0.80063 0.36940
(per unit time) m/c 2: 0.13042
/e 3: 0.13041
= gy = pr =30 m/c 1: 0.09090 0.32889 0.43729 0.90900
(per unit time) m/c 2: 0.09090
m/c 3: 0.09090
[ i =pr=p =40 m/c 1: 0.06977 0.24234 0.34022 0.93013
{per unit time) m/c 2: 0.06976
m/c 3: 0.06976
= gy = v =50 m/c 1: 0.05661 0.19153 0.25790 0.94333
{per unit time) m/e 2: 0.05660
m/e 3: 0.05660
il =12 =u: =100 | m/c 1: 0.02912 0.09303 011146 0.07067
(per unit time) m/c 2: 0.02912
I m/e 3: 0.02912 J
(] = g2 = pr = 500 m/c 1: 0.00596 0.01813 0.01396 0.99333
(per unit time) m/c 2: 0.00596
m/c 3: 0.00596
=y = g = 1000 m/e 1: 0.00299 0.00901 0.00920 0.99667
(per unit time) m/c 2: 0.00299
! m/c 3: 0.00299
)y = py = pr = 5000 m/c 1: 0.00060 0.001380 0.00130 0.999490
(per unit time) m/¢ 2: 0.00060
m/c 3: 0.00060
1= 5; = g = 10000 | m/e 1: 0.00030 0.00090 0.00090 0099099
(per unit time) m/e 2: 0.00030
| m/¢ 3: 0.00030
’T, = jiy = pa = 100000 | m/e 1: 0.00003 0.00009 0.00009 29999
(per unit time) m/c¢ 2: 0.00003
m/e 3: 0.00003
Table 3.21: Performance measures for A'=3/unit time. A=1[/unit time. and

varying processing rates
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KN=4, \=1/unittime, B=4, C =4
Utilization Expected WIP | Variance of WIP | Mean throughput
My = py == 2 m/c 1: 0.66659 4.31269 0.19036 0.33329
(per unit time) m/c 2: 0.66659
m/c 3: 0.66658
Hy=py=pur1=3 m/c 1: 0.57137 3.69833 1.86464 0.42351
{per unit time) m/c 2: 0.57135
m/c3: 0.57133
gy =y =gy =4 m/c 1: 0.49998 3.15307 2.83267 0.19995
(per unit time) m/c 2: 0.49995
m/c 3: 0.49995 J
= =pi=5 m/c 1: 0.44141 2.50166 3.32845 055516
{per unit time) m/c 2: 044437
m/c 3: 0.44437
)y =y =gy =86 m/c 1: 0.39997 2.34431 3.43236 0.59938
(per unit time) m/c 2: 0.39992
m/c 3: 0.39992
BT m/c L: 0.36362 2.05601 335723 0.63623
{per unit time) m/c 2: 0.36359
m/c 3: 0.36359
Hy =y =g =8 m/c 1: 0.33332 1.832195 3.19702 3.66653
(per unit time) m/c 2: 0.33328
m/c 3: 0.33329
My =pr=p2 =9 m/c 1: 0.30768 1.63011 3.00233 0.69219
{per unit time) m/c 2: 0.30763
m/c 3: 0.30764
= py = w2 = 10 m/c 1: 0.2857 1.47104 2.79933 0.71413 ‘i
{per unit time) m/c 2: 0.28568 i
m/c 3: 0.28367 i
py =gy = pr =13 m/c 1: 0.21051 0.97029 1.94735 0.78934 ]
{per unit time) m/c 2: 0.21049 II
m/c 3: 0.21049 J
f = py = pr =320 m/ec 1: 0.16663 0.71341 1.41081 0.33315 |
(per unit time) m/c 2: 0.18663 i
m/c 3: 0.16663 i
oy = py = =30 m/c1: 0.11783 0.45952 0.34983 0.83215
(per unit time) m/c 2: 0.11762
m/c 3: 0.11762
7 =g =1 =10 m/c 1: 0.09090 0.33610 0.55216 0.90900 j
(per unit thoe) m/e 2: 0.09090 i
m/c 3: 0.09090 i
=g =5 =50 m/c 1: 0.07 107 0.26450 043277 0.0258% i
{per unit time) m/e 2: 0.07406 :
/e 3: 0.07-107 i
[y =y =p: = 100 m/c 1: 0.03346 0.12672 0.17463 0.96100 1
(per unit time) m/c 2: 0.03845
m/c 3: 0.03844
py = py = pr = 500 m/c 1: 0.00794 0.02430 0.02850 0.99250
{per unit time) m/e 2: 0.00793
m/c 3: 0.00794
[0y = pa = w2 = 1000 | m/c 1: 0.00398 0.01209 0.01270 0.99750
(per unit time) m/c 2: 0.00398
m/c 3: 0.00399
w1 = pp =y = 3000 m/c 1: 0.00030 0.00240 0.00239 0.99990
(per unit time) m/c 2: 0.00080
m/c 3: 0.00080
Tl = i3 = f13 = 10000 | m/c I: 0.00040 0.00120 0.00120 0.99999
(per unit time) m/c 2: 0.00040
m/c 3: 0.00040
1 = 2 = p3 = 100000 | m/c 1: 0.00004 0.00012 0.00012 0.99999
(per unit time) m/c 2: 0.00004
m/c 3: 0.00004

Table 3.22: Perforinance measures for A'=4/unit time, A=1/unit time, and

varving processing rates
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K =5 A=1/unittime, B=5,C=5
Utilization Expected WIP | Variance of WIP | Mean throughput

(= py =pr =2 m/c 1: 0.71414 4.69638 0.78935 0.23564
(per unit time) m/c 2: 0.71413
m/c 3: 0.71411

Hy =pur=pu3 =3 m/c 1: 0.62491 4.25242 2.43856 0.37493
(per unit time) m/c 2: 0.62490
m/c 3: 0.62489

py = pz2 =pu3 =4 m/c 1: 0.55549 3.77273 3.72344 0.44434
{per unit time) m/c 2: 0.55544
m/c 3: 0.55542

pHy =p2 =p3=>5 m/c 1: 0.49996 3.32833 4.46277 0.49991
{per unit time) m/c 2: 0.49992
m/c 3: 0.49991

N =rn2 =41 =6 m/c 1: 0.45451 2.94301 1.78032 0.54535
{per unit time) m/c 2: 0.45447
m/c 3: 0.45446

T m/c 1: 0.41663 261719 132733 0.58323
(per unit time) m/c 2: 0.41659
m/c 3: 0.41639

=2 =g =8 m/c 1: 0.38457 2.31325 151781 0.61523
(per unit time) m/c 2: 0.38453
m/c 3: 0.38452

MET T L) m/c 1: 0.35712 2.11267 1.52385 0.64274
{per unit time) m/c 2: 0.35709
m/c 3: 0.35708

My = [y = p3 = 10 m/c 1: 0.33331 1.91728 4.29054 0.66654
{per unit time) m/c 2: 0.33329
m/c 3: 0.33327

) = py = py =15 m/c 1: 0.24997 1.28059 3.12933 0.74932
(per unit time) m/c 2: 0.24996
m/c 3: 0.24994

oy = py = =20 m/c 1: 0.19997 0.94290 2.30588 0.79976
(per unit time) m/c 2: 0.19995
m/c 3: 0.19994

() = p2 =y =30 m/c 1: 0.142384 0.60465 1.39420 0.85693
{per unit time) m/c 2: 0.14283
m/c 3: 0.14283

=y =pr =40 m/c 1: 0.11111 0.44007 0.946253 0.38872
(per unit time) m/fc 2: 0.11110
m/c3: 0.11109

1 =2 =12 =50 m/< 1: 0.09091 031422 0.69130 0.90900
(per unit time) m/c 2: 0.09091
m/c 3: 0.09090°

i1 = 52 = sa = 100 m/c 1: 0.04760 0.16231 0.263%9 0.95160
{per unit time) m/c 2: 0.04759
m/c 3: 0.04738

1 =12 = g2 = 500 | mjc L: 0.00990 0.03057 0.03527 0.99000
(per unit time) m/c 2: 0.00990
m/c 3: 0.00990

iy = py = pa = 1000 m/c 1: 0.00498 0.01516 0.01651 0.99400
(per unit time) m/c 2: 0.00498
m/c 3: 0.00497

W1 = 52 = pa = 5000 | m/c 1: 0.00100 0.00300 0.00299 0.99990
{per unit time) m/c 2: 0.00100
m/c 3: 0.00100

Hp = py; = p3 = 10000 m/c 1: 0.00050 0.00150 0.00150 0.99999
(per unit time) m/c 2: 0.00050
m/c 3: 0.00050

11 = w2 = p3 = 100000 | m/c 1: 0.00005 0.00015 0.00015 0.99999
(per unit time) m/c 2: 0.00005
m/c 3: 0.00005

Table 3.23: Performance measures for A'=4/unit time, A=1/unit time, and

varying processing rates



Chapter 4

CONCLUSION

In this thesis, we develop a Markov model to calculate some impor-
tant performance measures of a transfer line with three machines and two finite
buffers where processing times of the machines are k-Erlang distributed. The
literature is mostly devoted to transfer lines consisting of machines whose pro-

cessing times are exponentially distributed. We also calculate the variance of

WIP as well as the commonly used performance measures.

We perform several experiments to see the effect of important system
parameters on the performance measures. Consequently, we arrive conclusions
regarding the transfer line design with respect to changing parameters. In the
experiments, we varied K; the stage of the Erlang distribution. from 2 to 6.
and B and C; buffer sizes, from 2 to 9. For future research, many experiments
can be performed to better see and evaluate the relationships between param-
eters by extending the ranges of these values. Moreover, transfer lines with n
machines whose processing times are k-Erlang distributed, and (n — 1) buffers
can be analyzed. To do this, our solution for three machines can be extended
by implementing available decomposition techniques. Moreover, performance

measures of such a transfer line can be investigated under the assumption that
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the processing times of the machines are phase-type distributed. Finally. stud-
ies on locating and sizing of buffers can be extended both under the assumptions

of our system and the phase-type distributed processing times assumption.

Moreover. we solve the model by generating the balance equations by a
computer program coded in C, and then solving these equations using CPLEX.
However, one can also try to observe the special properties of the stochastic

matrix of the Markov model and exploit them.

We calculate the mean throughput. machine utilizations. expected
value of WIP level. and also the variance of WIP. Another important per-
formance measure is the variance of throughput. Hence. as a next step this
measure can be calculated for transfer lines under a wide variety of assumptions

on processing time distributions and number of machines in the line.
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