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ABSTRACT
EXPERIMENTS WITH TWO-STAGE ITERATIVE SOLVERS AND 

PRECONDITIONED KRYLOV SUBSPACE METHODS ON NEARLY 
COMPLETELY DECOMPOSABLE MARKOV CHAINS

Wail Gueaieb
M.S. in Computer Engineering and Information Science 

Supervisor: Assistant Professor Dr. Tuğrul Dayar 
.June, 1997

Preconditioned Krylov subspace methods are state-of-the-art iterative solvers 
developed mostly in the last fifteen years that may be used, among other things, 
to solve for the stationary distribution of Markov chains. Assuming Markov 
chains of interest are irreducible, the ¡problem amounts to computing a pos­
itive solution vector to a homogeneous system of linear algebraic equations 
with a singular coefficient matrix under a normalization constraint. That is, 
the (n X 1) unknown stationary vector x in

Ax =  0, ||a:||̂ =  1 (0 .1 )

is sought. Here A =  I  — , an n x n singular M-matrix, and P  is the one-step
stochastic transition probability matrix.

Albeit the recent advances, practicing performance analysts still widely pre­
fer iterative methods based on splittings when they want to compare the per­

formance of newly devised algorithms against existing ones, or when they need 

candidate solvers to evaluate the performance of a system model at hand. In 
fact, experimental results with Krylov subspace methods on Markov chains, 
especially the ill-conditioned nearly completely decomposable (NCD) ones, are 
few. We believe there is room for research in this area siDecifically to help us 

understand the effect of the degree of coupling of NCD Markov chains and their 

nonzero structure on the convergence characteristics and space requirements 
of preconditioned Krylov subspace methods.
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The work of several researchers have raised important and interesting ques­
tions that led to research in another, yet related direction. These questions 
are the following: “How must one go about partitioning the global coefficient 
matrix A in equation (0.1) into blocks if the system is NCD and a two-stage 
iterative solver (such as block successive overrelaxation— SOR) is to be em­
ployed? Are block partitionings dictated by the NCD normal form of F  neces­
sarily superior to others? Is it worth investing alternative partitionings? Better 
yet, for a fixed labelling and partitioning of the states, how does the perfor­
mance of block SOR (or even that of point SOR) compare to the performance of 
the iterative aggregation-disaggregation (lAD) algorithm? Finally, is there any 
merit in using two-stage iterative solvers when preconditioned Krylov subspace 
methods are available?”

Experimental results show that in most of the test cases two-stage iterative 
solvers are superior to Krylov subspace methods with the chosen precondition­
ers, on NCD Markov chains. For two-stage iterative solvers, there are cases 
in which a straightforward partitioning of the coefficient matrix gives a faster 
solution than can be obtained using the NCD normal form.

Key words: Markov chains, near complete decomposability, stationary iter­
ative methods, projection methods, block iterative methods, preconditioning, 
ill-conditioning.



ÖZET

İKİ SEVİYELİ DOLAYLI ÇÖZÜCÜLER VE İYİLEŞTİRİLMİŞ KRYLOV 
ALTUZAY YÖNTEMLERİ İLE NEREDEYSE BÖLÜNEBİLİR MARKOV 

ZİNCİRLERİ ÜZERİNDE DENEYLER

Wail Gueaieb
Bilgisayar ve Enformcitik Mühendisliği, Yüksek Lisans 

Tez Yöneticisi: Yrd. Doç. Dr. Tuğrul Dayar 
Haziran, 1997

İyileştirilmiş Krylov altuzay yöntemleri çoğunlukla son onbeş yılda geliş­
tirilmiş, başka şeyler yanında, Markov zincirlerinin durağan dağılımlarını elde 
etmede kullanman en son dolaylı çözücülerdir. İlgilenilen Markov zincirlerinin 
indirgenemez olduğu varsayılırsa, problem tekil bir katsayı matrisine sahip bir 
türdeş lineer cebirsel denklemler takımına bir normalleştirme şartı altında po­
zitif bir çözüm vektörü hesaplamaktan ibarettir. Yani,

Ax =  0, ||.t ||i =  1 (0.1)

deki (n X l ) ’lik bilinmeyen durağan vektör x aranmaktadır. Burada A -  I -P '^
n X n tekil bir M-matrisi ve P  bir-adımhk rassal geçiş olasılık matrisidir.

Son gelişmelere rağmen, mesleklerini icra eden başarım çözümleyicileri, yeni 
tasarlanmış algoritmaların başarımını var olanlarla kıyaslamak istediklerinde, 
veya eldeki bir sistem modelinin başarımını değerlendirmek için aday çözücülere 
gerek duyduklarında, hala çoğunlukla bölmeye dayanan dolaylı yöntemleri ter­
cih etmektedirler. Esasında, Markov zincirleri, özellikle de hastalıklı neredeyse 
bölünebilir olanları üzerinde Krylov altuzay yöntemleri ile deneysel sonuçlar 
pek azdır. Biz bu alanda, özellikle de neredeyse bölünebilir Markov zincir­
lerinin bağlanma derecelerinin ve sıfırdan farklı yapılarının iyileştirilmiş Krylov 

altuzay yöntemlerinin yakınsama özellikleri ve yer gerekleri üzerindeki etkilerini 
anlamamıza yardım edecek araştırmalar için yer olduğuna inanıyoruz.

Bazı araştırmacıların çalışmaları başka fakat ilintili yönde araştırmaları ne­
den olan önemli ve ilginç sorular ortaya çıkardı. Bu sorular şunlardır: “Eğer
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sistem neredeyse bölünebilirse ve (blok ardcırda üst yumuşatma— SOR gibi) 
iki seviyeli bir dolaylı çözücü kullanılacaksa, (0.1) denklemindeki global kat­
sayı matrisi A ’yı nasıl parçalara ayırmalı? P ’nin neredeyse bölünebilir normal 
yapısının zorunlu kıldığı blok ayrıştırmalar diğerlerine oranla mutlaka daha mı 
üstündür? Alternatif ayrıştırmalara yatırım yapmaya değer mi? Hatta, durum­
lar sabit adlandırılıp ayrıştırıldığında blok ardarda üst yumuşatmanın (hatta 
nokta ardarda üst yumuşatmanın) başarımı dolaylı birleştirme-ayrıştırma al­
goritmasının başarımı ile nasıl kıyaslar? Son olarak, iyileştirilmiş Krylov al- 
tuzay yöntemleri varken iki seviyeli dolaylı çözücüleri kullanmanın bir değeri 
var mıdır?”

Deneysel sonuçlar pek çok test vakasında iki seviyeli dolaylı çözücülerin 
seçilmiş iyileştiriciler için Krylov altuzay yöntemlerine göre neredeyse bölünebi­
lir Markov zincirlerinden daha üstün olduklarını göstermektedir. İki seviyeli 
dolaylı çözücüler için, katsayı matrisinin basit bir ayrıştırılmasının neredeyse 
bölünebilir yapısının kullanılarak bulunacak bir tcineden daha hızlı çözüm ver­
diği vakalar vardır.

Anahtar kelimeler. Markov zincirleri, neredeyse bölünebilirlik, durağan do­
laylı yöntemler, projeksiyon yöntemleri, blok dolaylı yöntemler, iyileştirme, 

hastalıklılık.
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Chapter 1

Introduction and Overview

1.1 Markov Chains

1.1.1 Definitions

Understanding the behavior of physical systems is often achieved by modeling 
the system as a set of states which it can occupy and determining how it moves 
from one state to another in time. If the future evolution of the system does 
not depend on the past history but only on the current state, the system may 
be represented by a stochastic process. Stochastic processes arise extensively 
throughout queueing network analysis, computer systems performance evalu­
ation, large scale economic modeling, biological, physical, and social sciences, 
engineering, and other areas.

A stochastic process is a family of random variables {X { t ) , t  € T } defined 
on a given probability space and indexed by the parameter i, where t varies 
over some index set (parameter space) T [36]. T is a subset of {—oo, +oo) and 
is usually thought of as the time parameter set. X(t)  denotes the observation 
at time t. If the index set is discrete, e.g., T =  {0 ,1 , . . . } ,  then we have a 
discrete (-time) stochastic process; otherwise, if T is continuous, e.g., T =  {t : 
0 <  if <  d-oo}, we call the process a continuous (-time) stochastic process. The 
values assumed by the random variable X{t)  are called states. The set of all



possible states represent the state space S of the process. This state space may 
be discrete or continuous.

A Markov process is a stochastic process whose next state depends on the 
current state only, and not on the previous states. By this, it is said to satisfy 
the “Markov property.” When the transitions out of state X{t)  depend on 
the time i, the Markov process is said to be nonhomogeneous. However, if 
the state transitions are independent of time, the Markov process is said to be 
homogeneous. If the state space of a Markov process is discrete, the Markov 
process is referred to cis a Markov chain. Throughout this work, we concentrate 
on discrete-time Markov chains (DTMCs) and continuous-time Markov chains 
(CTMCs) with finite state space.

To satisfy the Markov property, the time spent in a state of a Markov 
chain must satisfy the memoryless property: At any time i, the remaining 
time the chain will spend in its current state must be independent of the time 
already spent in that state. This means that this time must be exponentially 
distributed for CTMCs and geometrically distributed for DTMCs. These are 
the only distributions that possess the memoryless property.

1.1.2 Discrete and Continuous Time Markov Chains

In this section, we will provide formal definitions of DTMCs and CTMCs.

For a DTMC, is usually represented by Xn (n =; 0 ,1 ,. . .)  as we observe 
the system at a discrete set of times. {X „, n =  0 ,1 , . . . }  is called a stochastic 
sequence. A DTMC satisfies the following relationship for all natural numbers 
n and all states x„.

Prob{Xn+i =  Xn+ilXo =  = x i , . . . ,  =  x „}

=  Prob{X„.^i =  x„+i|.Y„ = x „ }, n > 0. (1.1)

CHAPTER 1. INTRODUCTION AND OVERVIEW 2

The conditional probabilities Prob{Xn+i =  Xn+ilA"« =  3r„} are called the 
single-step transition probabilities, or just the transition probabilities, of the 
Markov chain.
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For a time homogeneous DTMC, transition probabilities are independent of n, 
and hence may be written as

Pij =  Prob{Xn+i =  j\Xn =  Vn = 0,1------ and i j  e  S. (1.2)

The matrix P  whose i,;th element is given by p,j, for all i and j ,  is called the 
transition probability matrix, or the chain matrix [36]. P is a stochastic matrix, 
i.e., its elements pij satisfy the following two properties

0 ^ Pij ^  Ij Vi,j  6 <5, (1-3)

=  (1.4)
j

Let Xj(n) =  Prob{Xn =  i ) ,  Vj G S. Note that X)jg5 7rj(n) =  1. Then 
7r(n) = (7Ti(n), 7T2(̂ )) · · · ? ^«(^)i · · ·) denotes the state probability vector at step 
n. Note that we shall adopt the convention that all probability vectors are 
row vectors. All other vectors will be considered to be column vectors unless 
specifically stated otherwise. The probability of being at a particular state j  
just after the nth transition may be expressed as

~  1) PiA >  1·
i'€5

Equation (1.5) can be rewritten in matrix form as

7r(n) =  7r(n — 1) P, n > 1.

(1.5)

(1 .6)

Analogously, a CTMC may be described as

Prob{X{tn+i) =  a:n+i|X(io) =  ^OiNi{ti) =  Xi, . . .  ,X{tn)  =  Xn}

= Prob{X{tn+i) = Xn+i\X{trx) = Xn}, n > 0. (1.7)

For the transition probabilities, we write

Pij(sJ) = Prob{X{t) =  j\X{s) =  i}, t , s > 0 ,  i , j e S .  (1.8)

When the CTMC is homogeneous— and that is what we are interested in— 
these transition probabilities depend only on the difference At =  t ~ s ,  and not 
on s and t. So we can rewrite equation (1.8) as

Pij(At) =  Prob{X{s  +  At) =  _;|X(s) =  s ,A t  >  0, i , j  € S.
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For a better understanding of the relationship between CTMCs and DTMCs, 
consider the time axis as a sequence of mutually disjoint sufficiently small in­
tervals so that there is at most one transition in each subinterval. At the end 
of each At  time interval, there is exactly one transition, and hence the system 
behaves like a DTMC.

Let 'Kj{t -f- At) =  Prob{X{t  -f- At)  =  ji}, Vj G S. Note that +
At)  =  1. Then 7r(i -f At)  denotes the state probability vector at time t A At.

We determine the probability of being in state j  at time i -|- A i by

7Tj(i At)  =  ^  ̂ ^ 0 ) Vj ^ S .
ies

This can be written in matrix form as

7r(i -I- At)  =  Tc{t) P{At) ,  t, At >  0.

Here P{At)  is the one-step transition probability matrix for the interval At 
whose ¿jth entry is given by p,j(A i).

Let qij{t) be the rate at which transitions occur from state i to state j  at time 
t. The transition rate is an instantaneous quantity that denotes the number of 
transitions that occur per unit time.

Um f o r . # j .

This leads to the following transition probability

Pij{t +  At) =  qij{t)At +  o{At),  for i ф j,

where o(A i) is the '‘ little oh” notation such that o{At) tends to 0 faster than 
A i.

,. o(At) 
hm = 0.д<—0 A i

Starting from the concept of probability conservation, we can write 

1 -P i i { t , t  +  At)  =  X ;p o ( i , i  +  Ai)

=  I^ [9 o (0 A i + o(Ai)]
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Dividing by At  and taking the limit as At  0, we obtain

quit) =  lim  ̂  ̂  ̂ Ai '■

Hence,

im < i—0 I
pii{t,t +  At) -  1

At
=  limAi—0 A i /

9.-.(0 =  - J 2 qij{t)· (1.9)

The matrix Q{t) whose ¿jth element is qij{t) is called the infinitesimal gen­

erator matrix, or transition rate matrix, for the CTMC. In matrix form, it
IS

where P{t , t  +  A i) is the transition probability matrix whose ijith element is 
P i j { t , t  +  At)  and I  is the identity matrix. When the CTMC is homogeneous, 
the transition rates qij are independent of time, and the transition matrix is 
simply written as Q.

The matrix Q has row sums of 0 as each of its diagonal elements is the 
negated sum of the corresponding off-diagonal elements (of that row). From 
equation (1.9) we get

qu — ~^^^qij· (1.10)

1.1.3 Probability Distributions

Determining the stationary distribution of a Markov chain is the core of this 
study. As defined in the previous section, for a DTMC, 7r,(n) denotes the 
probability that a Markov chain is in state i at step n, i.e.,

7T,(n) =  Prob{Xn =  *}, n > 0, i € <S.

Definition 1.1 (Stationary distribution) [36] Let P be the transition prob­

ability matrix o f a DTAIC, and let the vector z whose elements zj denote the 
probability of being in state j  be a probability distribution; i.e.,

Zj € IR, 0 <  Zj <  1, and ^  zj =  1.
j

Then z is said to be a stationary distribution if and only if zP  =  z.



D efin ition  1.2 (Lim iting distribution) [36] Given an initial probability dis­

tribution 7t(0), if the limit

lim ^(n),
n—*-oo

exists, then the limit is called the limiting distribution, and we write

7T = lim 7r(n).n—►OO ^

The limiting distribution is also known as the steady-state, or equilibrium, dis­
tribution. Informally speaking, the steady-state distribution is the probability 
distribution which, if it exists, the process will reach after sufficiently many 
transitions, independently of the initial probability distribution, and will re­
main in that distribution for all further transition steps. We will come back to 
this in later sections.

Now, taking the limit as n oo of both sides of equation (1.6), we obtain

7T =  ttP, =  IIttIIi =  1. (1.11)
i€S

CHAPTER 1. INTRODUCTION AND OVERVIEW 6

Analogously to DTMCs, a stationary probability vector for a CTMC can 
be defined as any vector z such that zQ =  0, ||z||i =  1. The steady-state
distribution of a CTMC, if it exists, is written as

7T = lim 7r(i) i-.oo ^

and is independent of the initial probability distribution 7t(0). Recall that 7r,(i) 
is the probability that a CTMC is in state i at time t, i.e..

x.(i) =  P rob {x { t )  =  i}, Vi e <s.

Then,

7T,(i d- Af) =  7r,(i) f 1 -  X ] <7.j(0^M +  [ Y .  3ki 

Since qa{t) =  -  9>i(0j we have

{t)-Kk(t) Af A o{At).

iTi{t + At) = Ti{t) -I- At A o{At),



CHAPTER 1. INTRODUCTION AND OVERVIEW

and

[  TTi{t +  At) -  o{At)
i™  [ -----------X t----------- j  = i n  + At  /  ’

i.e.,

d-iriit)
dt

=  Y^<lki{,t)Trk{t).

In matrix notation, this gives

dTr{t)
dt

When the Markov chain is homogeneous, we may drop the time parameter t 
from the transition matrix Q and simply write

diT{t)
dt =  Tr(i)Q.

If the limiting distribution tt exists, then after sufficiently long time t, 7r(t) 
w'ill converge to tt and dTr[t)/dt will be equal to 0. Hence, for a homogeneous 
CTMC,

^Q =  0, ^TT,· =  ||7t||i =  1.
ies

( 1 .1 2 )

1.1.4 Numerical Properties

As we discussed in section (1.1.2), the transition matrix P is a stochastic matrix 
(see equations (1.3) and (1.4)). Besides, P  is singular, and its order is equal to 
the cardinality of S. Note that equation (1.11) is an eigensystem in which the 
unit left-hand eigenvector of P, corresponding to the unit eigenvalue (=  1), is 
sought.

To proceed further, we need to introduce the definitions of the spectrum 
and the spectral radius of a matrix.

The spectrum of a matrix A is the set of all eigenvalues of A, and it is 
denoted by cr{A). In mathematical notation,

(7(A) =  {A|Ai? = Ai?, 0}.
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It is worth mentioning that the spectrum of a matrix A is equal to the spectrum 
of the transpose of A. In other words, cr(/l) =  a{A^).

The spectral radius oi a matrix A is the largest eigenvalue of A, in magnitude, 
and it is denoted by p{A). In mathematical notation,

p{A) =  rnax{|A|,A G cr(A)}.

One way of solving equation (1-11) is to transform it to a homogeneous 
linear system

x ( P - / )  =  0, | | 7 r | | i  =  l,

where tt is the unknown vector.

Unlike P, the infinitesimal generator matrix Q has row sums of 0 (see equa­
tion (1.10)). Equation (1-12) represents a homogeneous system of linear equa­
tions with Q as the coefficient matrix and tt as the unknown vector.

D efinition 1.3 (M -m atrix) [10] Tn ATmatrix A is any finite square ma­

trix with nonpositive off-diagonal elements and nonnegative diagonal elements 
which may be written in the form

A = r l - G ,  G > 0, r >  p{G),

where r is a real scalar (r G IR), G is a square matrix, and I  is the identity 
matrix.

The matrix —Q heis nonpositive off-diagonal elements. Let’s illustrate how 
—Q can be written in the form —Q =  r l  — G. Let G =  r l  A Q, where 
r =  rnax,g5 |çü| > 0. The matrix ( l / r )G  is a stochastic matrix, hence p{G) < r. 
So all the conditions are satisfied and —Q is verified to be an M-matrix.

For determining the stationary distribution vector of a Markov chain, a 
DTMC formulation may be transformed to a CTMC formulation and vice 
versa.

D T M C C T M C



D T M C  = »  CTM C : tt =  ttP  = >  0 = ttQ, where Q ^ P -  I,

C T M C  D TM C  : 0 =  kQ r  = ttP, where P = {l/fi)Q +  I  and
H =

1.2 State Classification
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In order to be able to classify the states of a Markov chain, we need to introduce 
some new definitions. Without loss of generality, the following definitions will 
be valid for DTMCs only. However, it is easy to figure out the corresponding 
homogeneous CTMC definitions since we remarked the relationship between 
the two types.

Let be the probability of going from state i to state j  in n steps. Then 

=  Prob{Xm+n =  j  I Xm =  m,n =  0,1,2-----, i j e s .

We define

I U  =  J

\ 0, if i ^  j

Now we are ready to introduce the Chapman-Kolrnogovov equation for Markov 
chains:

pS? =  H  p\k PkT‘  ̂ for 0 < / < n. 
kes

In matri.x notation, it may be written as

p(n) _  p(i)p{n-i)^

where is the matrix of n-step transition probabilities with entries p\j  ̂ for 
all i i j  G S. pVI is obtained by raising P to the nth power. In other words,
p{n) _  pn

If the steady-state distribution tt of a DTMC exists, then

lirn p i") =  lim P" =
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and hence

\imp\f=^TTj, V i J e S .

1.2.1 Definitions

Classifying states of Markov chains requires some definitions to be made, and 
we mainly follow [10] in that respect.

> State j  is said to be accessible from state i if 3n > 0 for which >  0.

> two states i and j  are said to communicate if state i is accessible from 
state j  and state j  is accessible from state i.

> A nonempty set C C is said to be closed if and only if Vi € C and 
Vj 0 C, j  is not accessible from i.

> A Markov chain is said to be irreducible if all states communicate with 
each other.

> A state is said to be recurrent if the process, once in that state, returns 
to that state with probability 1. If the probability of returning to 
that state is strictly less than 1, then the state is said to be transient. 
Mathematically speaking, we can write

E p!.”  = oo
n = l

oo

E p!
n = l

(n) < oo

i is recurrent.

i is transient.

> A recurrent state i for which p„ =  1 is said to be an absorbing state.

c> If the mean time to return to a state is finite, the state is said to be 
positive recurrent, or recurrent nonnull. Otherwise, if the mean time 
to return to a state is infinite, given that the state is recurrent, then 
the state is said to be null recurrent.

> If all states of a Markov chain are positive recurrent, null recurrent, 
or transient, then we respectively have a positive recurrent, null re­
current, or transient Markov chain.
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t> The period of state i, written d(i), is the greatest common divisor of 
all integers n > 1 for which > 0. If = 0 for all n > 1, then 
we define d{i) =  0.

> A Markov chain in which each state has period 1 is said to be aperiodic^ 
or acyclic; whereas, a Markov chain in which each state has the same 
periodicity and this period is greater than 1, is said to be periodic^ or 
cyclic.

> A positive recurrent, aperiodic state is said to be ergodic.

> If a Markov chain is irreducible, positive recurrent, and aperiodic, 
then it is said to be an ergodic Markov chain.

> A Markov chain with a finite state space S is said to be regular if

lim >  0.
n — ►CO

Hence, a steady-state distribution exists for a regular Markov chain.

> A Markov chain with a finite state space is said to be doubly stochastic

Z] Pik = '^Pkj = V yi,j e s.
kES k£S

1.2.2 Following Properties

In this section we will derive some important properties as a consequence of 
the definitions provided in the previous section.

• If two states communicate, then they are of the same type. That is, they 
are both either positive recurrent, null recurrent, or transient.

• States that communicate have the same periodicity.

• If the state space S is finite, then at least one of the states is positive 
recurrent.

• If the state space S is finite and the Markov chain is irreducible, then 
every state in S is positive recurrent.
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• No state of a Markov chain with a finite state space can be null recurrent.

• If 7T is the stationary distribution for a Markov chain, then itj =  0 if state 

j  is transient or null recurrent.

• If a Markov chain does not have any positive recurrent states, then the 
Markov chain does not have any stationary distribution. Besides, the state 
space of such a chain has to be infinite.

• Suppose 7T and ir' are two diiferent stationary distribution vectors for a 
Markov chain. Then there exists infinitely many stationary distribution 
vectors for the chain. In essence, any convex combination of tt and x' is 
also a stationary distribution for the Markov chain.

• Let C be any irreducible closed set of positive recurrent states in a Markov 
chain. Then there exists a unique stationary distribution tt for the chain 
that is concentrated on C. Stationary distribution probabilities for states 
outside C are all 0.

• Let S =  St U Snr U Spr, be the state space of a Markov chain, where St is 
the set of transient states, S„r is the set of null recurrent states, and Spr is 
the set of positive recurrent states. The following is a summary regarding 
the stationary distributions of the chain:

> If Spr =  0, then there is no stationary distribution.

> If Spr ^  0, then there is at least one stationary distribution.

> If Spr ^  0, and Spr is irreducible and closed, then there is a unique 
stationary distribution concentrated on Spr·

> If Spr — OiCi and Cif)Cj =  0 for all i , j ,  then there is a unique station­
ary distribution vector tt,· concentrated on C, for all i. Furthermore,

7T= 5 ]  Of,’Ti,

where a, >  0 for all i and X], a, =  Í, is also a stationary distribution 
vector.

• Any irreducible, positive recurrent Markov chain ha  ̂ a unique stationary 

distribution.
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• If 7Г is a steady-state distribution for a Markov chain, then тг is the only 
stationary distribution.

• A regular Markov chain is irreducible, positive recurrent, and aperiodic.

• A steady-state distribution exists for an ergodic Markov chain.

One of the most important theorems in the domain of Markov chains is the 
Perron-Frobenius theorem. This theorem is very helpful because of its strong 
application to stochastic matrices (see [-36, 17]).

Theorem 1.4 (Perron-Frobenius) [36] Let .4 > 0 6e an irreducible square 
matrix of order n. Then,

1. » A  has a positive real eigenvalue, Ax, such that Ax =  p{A).

• To p{A) there corresponds an eigenvector x > 0, i.e..

Ax =  Axx and X > 0.

• p{A) increases when any entry of A increases.

• p{A) is a simple eigenvalue of A, i.e.. Ax is a simple root of

det{XI — Л) =  0.

2. Let S be a matrix of complexed-valued elements and S* obtained from S 
by replacing each element by its modulus. If S* < A, then any eigenvalue 
p o f S satisfies

\p\ <  Ax.

Furthermore, if for some p, j^ij =  A x ,  then S* 
p =  A x e ' ^ ,  then

S = é^DAD~\

= A. More precisely, if

where D* = I .
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3, if A has exactly p eigenvalues equal in modulus to Aî  then these numbers 
are all different mid are the roots of the equation

=  0.

When plotted as points in the complex plane, this set of eigenvalues is 
invariant under a rotation of the plane through the angle 2Tr/p but not 
through smaller angles. When p > I then A can be symmetrically permuted

A =

form

0 A i2 0 0 ^
0 0 A23 0

0 0 0 ·· Ap-i,p
Ap\ 0 0 0 /

in which the diagonal submatrices are square and the only nonzero 
submatrices are A12, A23, · · ·, Ap-\̂ p, Ap\.

1.3 Decomposable Probability Matrices

A special case of particular interest in Markov chains is when the chain is 
reducible. In such a case, the probability matrix may be transformed to a 
particular nonzero structure and is said to be decomposable [36].

D efin ition 1.5 (D ecom posable M atrix) A square matrix A is said to be 
decomposable if it can be brought by symmetric permutations o f its rows and 
columns to the form

A =
U 0 
W  V

( U 3 )

where U and V are square nonzero matrices and W  is, in general, rectangular.

If a Markov chain is reducible then there exists at least one ordering of the 
state space such that the probability matrix is in the form of (1.13). If U and
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V are of orders nj and U2, respectively, where n {— rii + « 2) is the total number 
of states, then the state space may be decomposed to two disjoint sets

Hi =  {si ,S2, . . . , i !ni } ,  and

H2 =  {-Sni+l) · · · .-Sn})

where Sj’s {i =  1,2, . . . , n )  are the states of the Markov chain. For the time 
being, let’s suppose that VF ^  0, i.e., there exists at least one nonzero entry in 
W . Observing the nonzero structure in (1.13), we can see that once the process 
is in one of the states of Bi, it can never pass to a state in B2· Consequently, 
Bi is known to be an isolated, or an essential set. On the other hand, being 
in one of the states of the set B2 guarantees staying in that set until the first 
transition to one of the states of Bi. Then set B2 is said to be transient, or 
nonessential. In the particular case where W  =  0, the matrix is said to be 
completely decomposable. In this case, both Bi and B2 are isolated.

The matrix U may be decomposable, and hence can be permuted to the 
form in (1.13). If we continue in this pattern, the matrix A may be brought to 
a special form called the normal form of a decomposable nonnegative matrix, 
given by

A =

A ll 0 0 0 0 0

0 A 22 0 0 0 0

0 0 0 Akk 0 0

Afc+l,! Afc+1,2 ... .■ · Ak+i,k 0

Am,l Arn,2 Am,k Am.k+l

\

/

. (1.14)

The diagonal blocks An (z =  1, . . .  ,m) are square nondecomposable matri­
ces. All the blocks to the left of the first k diagonal blocks (i.e.. An for i =
1 .2 . .  . . ,  k), and to the right of all diagonal blocks, are 0. For the submatrices to 
the left of the last m — k diagonal blocks (i.e., A.y for i =  A: -)-1, . . . ,  m, j  =
1 . .  . . .1  — 1), there exits at least one nonzero submatrix per row of blocks. 
Therefore, the diagonal blocks possess the following characteristics:

• An·, i = I , . .. ,k : isolated and nondecomposable.
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• An, i =  k +  I , . .. ,m : transient, and again, nondecomposable.

This is quite logical and easy to figure out bearing in mind the nonzero structure 
of (1.14).

A probability matrix having the form in (1.14) according to the Perron- 
Frobenius theorem has a unique eigenvalue of multiplicity k. Besides, there 
exist k linearly independent left-hand eigenvectors corresponding to this unit 
eigenvalue. The last m — k entries of all these eigenvectors are all O’s as they 
correspond to transient states. Further details and proofs may be found in [36].

1.4 NCD Markov Chains

Consider a probability matrix having the form in (1-14). If we introduce 
“small” perturbations on some of the zero off-diagonal blocks to make them 
nonzeros (still conserving its stochastic properties (1.3) and (1.4)), the matrix 
is no longer decomposable and the Markov chain becomes irreducible. How­
ever, since the perturbations are small, meaning that the introduced nonzero 
entries have small values compared to those within the diagonal blocks, the 
matrix is said to be nearly decomposable. If, now, the nonzero elements in all 
the off-diagonal submatrices are small in magnitude compared with those in 
the diagonal blocks, then the matrix is said to be nearly completely decompos­

able (NCD). In NCD Markov chains, the interactions between the blocks is 
weak, whereas interactions among the states of each block are strong.

For an example, consider the following simple completely decomposable 
probability matrix:

P  =
1.0 0.0
0.0 1.0

If we introduce small perturbations to the elements of P giving it the form

1.0 — Cl Cl
P  =

C2 1.0 — C2
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such that 1.0 — €i ^  and 1.0 — C2 >· C2, then the system becomes nearly 
completely decomposable.

Interestingly, NCD Markov chains arise frequently in many applications. 
It was noticed that a small perturbation in the matrix leads to a larger per­
turbation in the stationary distribution causing the computation of the sta­
tionary vector to be usually not as accurate as it is for ordinary irreducible 
Markov chains. Hence, NCD Markov chains are known to be ill-conditioned. 
Throughout this work, we are mainly concerned with NCD systems. We will 
come back to this in later chapters where we present different iterative solu­
tion techniques and compare and contrast their cornpetitivity in computing the 
stationary probability vector of finite NCD Markov chains.



Chapter 2

Numerical Solution Methods

Many advanced scientific problems are practically impossible to solve analyti­
cally. As an alternative, numerical methods were introduced and they showed 
to be very efficient in solving a wide range of problems. We are interested in 
using numerical techniques to compute the stationary distribution vector of 
a finite irreducible Markov chain [2.3, 18, 9, 27, 21]. Our aim is to solve the 
homogeneous system of linear algebraic equations

Ax =  0, ||i||, = 1, ( 2 . 1)

where A is a (n x n) singular, irreducible M-matrix [7] and x is the unknown 
(n X 1) positive vector to be determined. Since our problems stem from Markov 
chain applications, the coefficient matrix A is taken as A =  I  — in case 
the one-step transition probability matrix is provided, or as A =  —Q^ if we 
are supplied with the infinitesimal generator matrix. The solution vector x 
corresponds to (the transpose of the stationary distribution vector of the 
Markov chain). This explains the normalization constraint in equation (2.1) 

which also guarantees the uniqueness of the solution. The Perron-Frobenious 
theorem guarantees the existence of the solution since A is an M-matrix [7]. 
In the rest of this chapter we discuss the numerical techniques used to solve 
equation (2.1).

18
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2.1 Direct Methods

Numerical methods that compute solutions of mathematical problems in a fixed 
number of floating-point operations are known as direct methods. The classical 
Gaussian elimination (GE) is a typical example of direct methods and it is 
suitable for irreducible Markov chains [36]. For a full (n x n) system of linear 
equations, the total number of operations required by GE is O(n^). The space 
complexity is O(n^). As it can be seen, these complexities grow rapidly with 
the problem size making GE (and direct methods in general) not suitable for 
large sparse matrices. Another problem with direct-solving methods is that the 
elimination of nonzero elements of the matrix during the reduction phase often 
results in the creation of several nonzero elements in positions that previously 
contained zero. This is called fill-in, and in addition to making the organization 
of a compact storage scheme more difficult (since provision must be made for 
the deletion and insertion of elements), the amount of fill-in can often be so 
extensive that available memory is quickly exhausted. Moreover, altering the 
form of the matrix may cause buildup of rounding errors [10].

It is known that if the coefficient matrix A is irreducible, there exist [24] 
lower and upper triangular matrices L and U such that

A = LU.

This LU decomposition is not unique. It is called the Doolittle decomposition 
if the diagonal elements of L are set to 1, and the Grout decomposition if the 
diagonal elements of U are set to 1. Usually, Gaussian elimination refers to the 
Doolittle decomposition.

Once an LU decomposition has been determined, a forward substitution 
step followed by a backward substitution is usually sufficient to determine the 
solution of the linear system. For example, suppose that we are required to 
solve Ax =  b where A is nonsingular, b ^  0, and the decomposition of A =  LU 
is available so that LUx =  b. The idea is to set Ux =  z, then the vector z 
may be obtained by forward substitution on Lz — b. Note that both L and 
6 are known. The solution x may subsequently be obtained from Ux = z by 
backward substitution since by this time both U and 2 are known.
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However, for homogeneous system of equations (i.e., 6 = 0) with a singular 
coefficient matrix, the last row of U (supposing that the Doolittle decompo­
sition is performed) is equal to zero. Proceeding as indicated above for the 
nonhomogeneous case, we get

Ax =  LU X =  0.

If now we set Ux =  z and attempt to solve Lz =  0. we end-up finding that 2 = 0 
since L is nonsingular (det(i) =  1). Proceeding to the backward substitution 
on =  2 =  0 when = 0, we find that it is evident that may assume 
any nonzero value, say x„ = r¡. Hence, the remaining elements of x can be 
determined in terms of tj. The solution vector is then normalized if required. 
Note that for homogeneous linear systems the elimination is only needed to be 
carried out for the first n — 1 steps.

In the Doolittle decomposition L~  ̂ exists and is called the multiplier matrix. 
L~  ̂ is lower triangular and its ¿th column is composed of the multipliers that 
reduce the ith column below the main diagonal of .4 to zero to form the matrix 
U [36]. This phase is called the reduction phase.

Assume that U and L overwrite the upper triangular (including the diag­
onal) and the strictly lower triangular (excluding the diagonal) parts of A. 
Let Â ^̂  represent the altered coefficient matrix at the kth. step of the forward 
elimination. Then

Wa - — o
Hj ) i < k , Wj

al; ' + P i k 0 k̂j i > k , ' i j

where the multipliers are given by

(fc-l), (t-l)
=  -a]k ¡Hk ■

(k)The elements are called the pivots and must be nonzero if the reduction is 
to terminate satisfactorily. For purposes of stability, it is generally necessary 
to interchange the rows of the matrix so that the pivotal element is the largest 
in modulus in its column in the unreduced portion of the matrix (called partial 
pivoting). This ensures that the absolute values of the multipliers do not exceed
1. For some cases, it is necessary to interchange both rows and columns so that 
the pivotal element is the largest among all elements in the unreduced part of
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the matrix {full pivoting). However, for irreducible Markov chains no pivoting 
is necessary.

2.2 Iterative Methods

The term iterative methods refers to a wide range of techniques that use suc­
cessive approximations to obtain more accurate solutions to a linear system 
at each step. Iterative methods of one type or another are tire most com­
monly used methods for obtaining the stationary probability from either the 
stochastic transition probability matrix or from the infinitesimal generator. 
This choice is due to several reasons. First, in iterative methods, the only 
operations in which the matrices are involved are multiplications with one or 
more vectors. These operations conserve the form of the matrix. This may 
lead to considerable savings in memory required to solve the system especially 
when dealing with large sparse matrices. Besides, an iterative process may 
be terminated once a prespecified tolerance criterion has been satisfied, and 
this may be relatively lax. For instance, it may be wasteful to compute the 
solution of a mathematical model correct to full machine precision when the 
model itself contains error. However, a direct method is obligated to continue 
until the final operation has been carried out.

In this chapter we discuss three types of iterative methods: stationary iter­
ative methods, block iterative methods, and projection methods. Throughout 
our work we experimented with the (point) successive overrelaxation (SOR) 
method [.36, 4] as a stationary technique. Two types of block iterative methods 
were considered: block SOR and iterative aggregation-disaggregation (lAD) [22, 
33, 12]. As for projection techniques, we chose to implement and experiment 
with the methods of Generalized Minimum Residual (GMRES) [25, 30, 31], Bi­

conjugate Gradient (BCG)  [15, 4], Conjugate Gradient Squared (CGS) [32, 37], 
Biconjugate Gradient Stabilized (BCGStab) [37], and Quasi-Minimal Residual 
(QMR) [13, 14]. SOR and the two block iterative methods we used are part of 
the Markov Chain Analyzer (MARC.A) [35] software package version 3.0.
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2.2.1 SOR: A  Stationary Iterative Method

Stationary iterative methods are iterative methods that can be expressed in 
the simple form [4]

or(^+i) =  r:c(^) +  c, k =  0 A , . . .  (2.2)

where neither T  nor c depend upon the iteration count k. Equation (2.1) can 
be written in the form above by splitting the coefficient matrix A. Given a 
splitting

A = M -  N

with nonsingular AI, we have

{M - N ) x  =  0,

or
Mx  =  /Vx,

which leads to the iterative procedure

A· =  0 ,1 , . . . ,  (2.3)

where x̂ ^̂  is the initial guess. Note that in our case the vector c appearing 
in equation (2.2) is just the zero vector. The matrix T =  ,M~^N is called the 
iteration matrix.

For convergence of equation (2.3) it is required that lim .̂_oo T'̂  exists (since 
j.(k) _  rpk \  necessary, but not sufficient, condition for this to be satisfied

is that all the eigenvalues of T must be less than or equal to 1 in modulus, i.e., 
p{T) <  1, where p{T) is the spectral radius of T. When p{T) =  1, the unit 
eigenvalue of T  must be the only eigenvalue with modulus 1 for convergence.

In order to have a better understanding of the convergence properties^ of 
stationary iterative methods, we adopt the following definitions and theorems 
(from [36], pp. 169-173).

Definition 2.1 (Semiconvergent Matrices) A matrix T is said to he semi-

convergent whenever limjt-.oo exists. This limit need not be zero.

^Readers interested in learning more about the convergence behavior of stationary itera­
tive methods are advised to see [36].
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D efin ition  2.2 (R egu lar and W eak R egular Splittings) A splitting A =

M  — N is called a regular splitting, if M~^ >  0 and yV > 0. It is called a weak 
regular splitting if A I >  0 and AI~^N >  0.

D efin ition  2.3 (C onvergent Iterative M ethods) An iterative method is said 
to converge to the solution of a given linear system if the iteration

associated with that method converges to the solution for every starting vector 
arW.

Let 'y{A) denotes the maximum magnitude over all elements in cr(A)\{l}, 
where cr{A) stands for the set of eigenvalues of / 1, i.e.,

7 (A) = max{|A|, A € <r(A), A 1}.

Note that 7 (A) =  p{A) iff  1 ^ c’-(A).

T h eorem  2.4 T is semiconvergent iff all of the following conditions hold 

L p { T ) < l .

2. If p{T)  =  1, then all the elementary divisors associated with the unit 
eigenvalue o f T are linear.

3. If p[T) =  1, then A G cr(T) with |A| =  1 implies that A =  1.

In general, stationary iterative methods differ in the way the coefhcient 
matrix is split. This splitting uniquely defines the iteration matrix and hence 
determines the convergence rate of the method. For the SOR method with 
relaxation parameter u, the splitting is

A =  { - D  -  L) -  d— ^ D  + U),
LÜ UJ

(2.4)

where D, —L, — U ^  represent respectively diagonal, strictly lower triangular, 
strictly upper triangular parts of A. The method is said to be one of overre­

laxation if tu >  1, and one of underrelaxation if tu < 1. For tu =  1, the method

~L and U should not be confused with the lower and the upper triangular matrices of the 
LU decomposition.
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reduces to another stationary iterative method called Gauss-Seidel (discussed 
in [11]). In our case, it is clear that {^D  — L) is nonsingular. Since A is an M- 
matrix, i^D  — L)~^ >  0 regardless of the value of u;. However, {^ ^ D  + U) >  0 
is true only for 0 < u; <  1 which makes (2.4) a regular splitting. The iteration 
matrix for {forward) SOR is then given by

TsoR = i - D  -  L ) ~ H ^ - ^ D  + U).U> U)

The iteration may be expressed as

[ \j=i J=.+1
I =  1,2, . . . ,n .

or in matrix form as

a;(*'+i) =  (1 -  +  u  . (2.5)

A backward SOR rela.xation may also be obtained by rewriting equation (2.5)
as

,(fc+i) ^ ( n  -{D -  ioL)-^[{l -  u)D  +  uU]x^D_ (2.6)

The pseudocode for the SOR algorithm is given below. The algorithm below 
is for any linear system of the form Ax =  6.

It can be verified for equation (2.6) that the solution vector x (which is the 
transpose of the stationary probability vector) is the eigenvector corresponding 
to a unit eigenvalue of the SOR iteration matrix. It is worth stressing that for 
the SOR method, it is not necessarily true that the unit eigenvalue is the 
dominant eigenvalue, because the magnitude of the subdominant eigenvalue 
depends on the choice of the relaxation parameter (see [36] p. 131).

The SOR method converges only if 0 < u; < 2. The optimal value of u  
is that which maximizes the difference between the unit eigenvalue and the 
subdominant eigenvalue of TsoR- Therefore, the convergence rate of SOR is 
highly dependent on u. In general, it is not possible to compute in advance the 
optimal value of u>. Even when this is possible, the cost of such computation 
is usually prohibitive.

Table 2.1 shows a summary of the operations per iteration and the storage 
requirement for the SOR method. Only the space required to store the matrices
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Algorithm: SOR

1. Choose an initial guess to the solution x.
2. for A: =  1 ,2 ,...

for i =  1 ,2 ,. . . ,  n 
cr =  0
for j  =  1 ,2 ,... , i -  1 

a = a + OijXj

3.
4.
5.
6 .

7.
8 .

9.
1 0 .

11.

12 .

13. end
14. check convergence; continue if necessary
15. end

end
for = 2 + 1 , . . . ,  n

a = a + aijXj '
end
<7 =  ( 6 ;  -  c r ) / a , i  

(A:) ( A -1) , / (it-l)x

Method
Inner

Product SAXPY

Matrix-
Vector

Product
Precond

Solve
Storage

Requirement
SOR 0 1 1 “ 0 matrix+n

Table 2.1: Summary of Operations and Storage Requirements for SOR.
“The method performs no real matrix-vector product or preconditioner solve, but the 

number of operations is equivalent to a matrix-vector multiply.

and vectors that appear in the outermost loop of the algorithm is considered. 
The SAXPY  column gives the number of vector operations (excluding inner 
products) per iteration, n denotes the order of the coefficient matrix. Step 
12 of the algorithm contains 1 vector addition. Steps 6, 9, and 12 compute 
together one component of the corresponding matrix vector product.
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2.2.2 Block Iterative Methods

The second type of iterative methods we experimented with is block iterative 
methods. Block iterative methods follow a decompositional approach to solving 
systems of linear equations. If the model is too large or complex to analyze as 
an entity, it is divided into subsystems, each of which is analyzed separately, 
and a global solution is then constructed from the partial solutions. Ideally, the 
problem is broken into subproblems that can be solved independently, and the 
global solution is obtained by concatenating the subproblem solutions. When 
applied to NCD Markov chains, the state space may be ordered and partitioned 
so that the stochastic matrix of transition probabilities has the form

Pn y 71 --

ni

Pll
P21

n-2

Pl2

P22

n,v

Pin

P2 N

Pnn

Til

ri2 (2.7)

î vi P n 2 ■ ■ ■ ^NN y «iV 
in which the nonzero elements of the off-diagonal blocks are small compared 
to those of the diagonal blocks. The subblocks Pa are square and of order n,·, 
for i =  1,2, . . . ,A f  and n =  E H i Let P =  diag(Pn, ^¿2, · · ·, /̂V/v) +  E. 
The quantity ||P||c>o is called the degree of coupling and it is taken to be the 
measure of the decomposability of the matrix [12]. Obviously a zero degree of 
coupling (i.e., ||P||.x, =  0) implies a completely decomposable matrix. We can 
also partition the coefficient matrix A (whether it is taken as —Q^ or /  — P^) 
to have a form as in (2.7).

Let the coefficient matrix A be partitioned as
/ ^11 A i2 1̂/V

A21 A22 A2N

An2 · · • Â '̂ \

\

(2 .8)

To study the convergence of block iterative methods consider the splitting 
A =  M  — Â , where A has the form in (2.8) and M  is a nonsingular block 
diagonal matrix such that

M  =  diag(.4ii, A22, · · ·, A, f̂ ’̂ ). (2.9)
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T h eorem  2.5 [22] Let B be a transition matrix of a finite homogeneous

Markov chain. Consider A = I — partitioned as in (2.8) and the split­

ting A =  M  — N defined in (2.9). If each matrix An. I < I < N, is either 
strictly or irreducibly column diagonally dominant, then p{M~^N) =  1.

In nearly completely decomposable systems there are eigenvalues close to
1. The poor separation of the unit eigenvalue results in slow rate of con­
vergence for standard matrix iterative methods. Block iterative methods in 
general do not suffer from this limitation which makes them suitable for such 
systems. In general block iterative methods require more computation per it­
eration than stationary iterative methods, but this is usually offset by a faster 
rate of convergence. In the following subsection we will discuss the two block 
iterative methods we experimented with: block SOR and iterative aggregation- 
disaggregation (lAD).

B lock  SO R

Let us partition the defining homogeneous system of equations .4x = 0 as

=  0.

( A n A i2 Aiy ^ T \ Xl

A2I A22 A2N X2

 ̂ Ayi A y 2 A y y  y

We now introduce the block splitting:

A =  Dy — {Ly  -h Uy),

where Di  ̂ is a block diagonal matrix and L.v and Uy are respectively strictly 
lower and upper block triangular matrices. VVe then have

D y =

Dn 0 
0 D22

0 0

0
0

D yy

\
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0 0 · ·· 0 ^  ̂ 0 f 12

Lu =
L21 0 · ·■ 0

, Un =
0 0 · ■ · U2N

Lni Ln2 ■.. oj vO 0 0 /

In analogy with equation (2.5), the block SOR method is given by 

X<‘ «>  =  (1 -  U.)x<‘ · + U, +  t/„x<‘ > )} .

If we write this out in full, we get 

J*+i) _  n , a JD■ r "  =  (1 -  - ) x i ‘ >+ u, I A 7 ' ( i ;  £ „ x ; ‘ * ·' + E  t / , - “ ’
l \j=i ;=i+i

'tj^j

where the subvectors x, are partitioned conformally with Da for i =  1 ,2 ,. . . ,  N. 
This implies that at each iteration we must solve N  systems of linear equations

¿ =  1, 2. iV, ( 2 . 1 0 )

where

1—1 iV
x, = ( l - u , ) D „ x W + u ,  E  . = =  1 .2 , . . . ,/V.

\ j = l  j= > + l  /

The right-hand side Zi may always be computed before the ¿th system has to 
be solved.

The pseudocode of block SOR is given by the following algorithm. Table 2.2 
provides the number of operations per iteration in addition to the storage 
requirement of the method. Operations in steps 6, 9, and 11 are equivalent to 
1 SAXPY  and 1 matrix vector multiplication, where each of the vector length 
and matrix order is n. Step 12 solves a preconditioned system and is considered 
as 1 Precond Solve. The two vectors that we need to store are x and 2.

If the matrix A is irreducible (which is the case in our experiments) then it 
is clear from (2.10) that at each iteration we are going to solve N  nonhomo- 
geneous systems of equations with nonsingular coefficient matrices. This can 
be achieved by employing either direct or iterative methods. Different criteria 
may affect the choice of the method to be used for solving a diagonal block 
as there is no requirement to stick to the same method to solve all diagonal
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Algorithm: Block SOR

1. Choose an initial guess to the solution x.
2. for A: =  1 ,2 ....
3.
4.
5.
6 .

7.
8 .

9.
10 .

11.

1 2 .

13. end
14. check convergence; continue if necessary
15. end

for i =  1 ,2 , . . . ,  iV 
.̂ =  0

for j  =  1 .2 ,... — 1
__________________A. .ADr-Lijdyj

end
for j  =  i + I , . . . ,  N 

________
end
z,· =  uJZi + (1 -  u)Aiixf~'·'' 
solve Dux̂ l"̂  =  Zi

blocks; we will come to the implementation details later in this chapter. In 
general, for a given coefficient matrix A, the larger the block sizes (and hence 
the smaller the number of blocks), the fewer the (outer) iterations needed to 
achieve convergence [36]. The reduction in the number of iterations is usually 
offset to a certain degree by an increase in the number of operations that are 
to be performed at each iteration. However, this is not always true as it is 
highly dependent on the matrix structure.

Method
Inner

Product SAXPY

Matrix-
Vector

Product
Precond

Solve
Storage

Requirement
Block SOR 0 1 1 ,ya matrix+2n

Table 2.2: Summary of Operations and Storage Requirements for Block SOR 
at iteration k.

“ Since blocks in the partition are not necessarily of the same size, the size of the operands 
in the given counts are most likely different.
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Iterative Aggregation-Disaggregation (lA D )

Suppose we have an NCD Markov chain characterized by a probability matrix 
P having a block structure as in (2.7), and let the stationary distribution of 
P, IT (i.e., 7t P  =  7T, ||7r||i =  1), be partitioned conformally with P such that

7T =  ( 7 T i , 7 r 2 , . . . , 7 r i v ) ·

For each diagonal block Pa, in the transition probability matrix P, there 
exists a stochastic complement Su [21, 36] given by

5., =  +

where

P „: Hi X {n — rii) matrix is composed of the ¿th row of blocks of P with P,·,· 
removed,

P îi (n — n,·) X n,· matrix is composed of the ¿th column of blocks of P with P,·, 
removed,

P,: (n — Hi) X (n — rii) is the principal submatrix of P with ¿th row and ¿th 
column of blocks removed.

The stochastic complement reflects the behavior of the system within the 
corresponding block of states. Each stochastic complement is, itself, a stochas­
tic transition probability matrix of an irreducible Markov chain whose state 
space is composed of the states of the block. The probability that the sys­
tem is in a certain state of block ¿ given that the process is in one of the 
states of that block, can be determined from the conditional stationary prob­
ability vector of the ¿th block, 7r,/||7r,||i. This can be computed by solving 
(7r¿/||7r,||i)5',·,· =  7r,/||7r,||i. As can be inferred, a stochastic complement may 
be too expensive to compute as it has an embedded matrix inversion. One 
way to overcome this problem is to approximate P,·, by accumulating the off- 
diagonal mass P„ into the diagonal block P„ on a row-by-row basis. This can 
be achieved in various ways. An approximation to the conditional station­
ary vector of the corresponding block can then be found by solving the linear 
system as described before.
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It is possible to compute the probability of being in a given block of states if 
we have an Af x stochastic matrix whose ijth element denotes the probabil­
ity of transitioning from block i to block j .  This matrix is called the coupling 
matrix and it characterizes the interactions among blocks. To construct this 
matrix, we need to shrink each block Pij of P  down to a single element. This 
is accomplished by first replacing each row of each block by the sum of its 
elements. Mathematically, the operation performed for each block is e. In 
what follows, e is a column vector of I ’s whose length is determined by the 
context in which it is used. The sum of elements of row k of block Pij gives 
the probability of leaving state k of block i and entering one of the states of 
block j .  To determine the total probability of leaving (any state of) block i to 
enter (any state of) block j ,  we need to sum the elements of P,j e after each of 
these elements has been weighed by the probability that the system is in (one 
of the states of) block i. These weighing factors may be obtained from the ele­
ments of the stationary probability vector; they are the components of 7r,/||7r, ||i. 
Hence the ij’th element of the coupling matrix is given by c,j =  (’r./||7r.||i)P,je. 
The stationary vector of the coupling matrix gives the stationary probability 
of being in each block of states. More precisely, the multiplicative constants 
mentioned before, form the elements of the stationary vector of the coupling 
matrix. However, forming the coupling matrix recjuires computing the sta­
tionary vector. This can be achieved by approximating the coupling matrix by 
starting with an approximate stationary vector and improving the approximate 
solution iteratively [12, 33, 36].

The following is an lAD algorithm in which point SOR is used to solve 
diagonal blocks.

In the lAD algorithm, steps 2 and 3 form the aggregation step. Step 4(b), 
which is nothing but a block SOR iteration, forms the disaggregation step. 
Diagonal blocks in step 4(b) are solved using either Gaussian elimination or 
point SOR, depending on the memory available. An approximation to the 
stationary distribution of the stochastic complement of P„ is computed in 
step 2 as In step 3, approximates the weighing factors
(IIttiIIi , llTTalli,. . . ,  ||5r/v||i). In the lAD algorithm, the residual error (i.e., ||7r(/- 
P)||) decreases by a factor of ||jB|| at each iteration [12].
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Algorithm: lAD

1. Choose an initial guess , tt̂ )̂ to the solution x.
for ’̂ =  1 ,2 ,...

2. Construct the coupling matrix such that

X

o 
( -̂1)

X
3. Solve the eigenvector problem 

for
4. (a) Compute the row vector

(fc) ^
Jk-i)

ı>гr■·||.
<r(fc-l)

IFw II
(b) Compute the N systems of equations

.W ^ ;ri'=>P„ +  ( l - u ; ) .~ P ( / - P , , )x;

end

\i<í j>¿

for x|^\ f =  1 ,2 , . . . ,  iV.
5. Check for convergence; continue if necessary

One of the crucial steps in the lAD algorithm is solving equation =
subject to ||î **''||i =  1 (step 3 of the lAD algorithm). The coupling matrix 

is a singular irreducible stochastic matrix of order N  whose states form a 
single communicating class. Consequently Ĉ ^̂  has a unique unit eigenvalue 
and (N — 1) other eigenvalues close to 1. The smaller the degree of coupling 
the closer these other eigenvalues to 1. A careful inspection leads us to notice 
that the whole problem boils down to solving the system of linear equations

(/_CW)2'(^W)3’ = 0, Ik(*=)||i = i. (2.11)

which is similar to the original problem (i.e., (I — P)^ x^ = 0, subject to the 

normalization constraint (|x||i =  1).
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Method
Inner

Product SAXPY

Matrix-
Vector

Product
Precond

Solve
Storage

Requirement
lAD 1 ( iV + 1 )“ 2 matrices°-f-N-|-2n

Table 2.3: Summary of Operations and Storage Requirements for lAD at iter­
ation k.

“Since the number of blocks and the order of diagonal blocks in the partition are not 
necessarily of the same size, the size of the operands in the given counts are most likely 
different.

*Two square matrices of orders n and N.

Table 2.3 shows the number of computations and the storage required by 
lAD for the outer loop. The matrix vector products required for building the 
coupling matrix in step 2 are equivalent to 1 order n matrix vector product. 
The same argument is valid for the matrix vector products in step 4(b). There 
is roughly 1 inner product of length n, which comes from step 2. The 2 order 
n SAXPY  operations come from step 4(b). Step 3 consists of solving a linear 
system of order N and is 1 Precond Solve. Step 4(b) solves N linear systems of 
order n, each, rising the total number of Precond Solve to V  + 1. To perform 
these operations, the coupling matrix and the transition matrix, and vectors 
C  and T are needed to be stored.

There is no requirement to solve equation (2.11) with the same method 
used to solve the original problem. We choose to use Gaussian elimination 
(GE) for several reasons. ( /  — is a singular M-matrix with 0 column
sums. For such a matrix, GE preserves column diagonal dominance throughout 
its computation so that the multiplier element at each step is bounded by 1 
thereby avoiding the need of pivoting. This follows from the fact that at 
each step the pivot has the largest magnitude among all elements lying in the 
unreduced part of its respective column. Besides, iterative methods tend to 
converge slowly as all the nonunit eigenvalues of are close to 1. On the 
other hand, (ordinary) GE suffers from unstability in the presence of rounding 
errors on such coupling matrices [12, 10].
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Partitioning Techniques

Three block partitioning techniques are considered. The first one, near-complete 
decomposability test (ncd test), determines the strongly connected components 
of the transition probability matrix by ignoring the elements that are less than 
a prespecified decomposability parameter 7. If the matrix is not already in the 
form (2.7), then symmetric permutations are applied to put it into the form 
in which the diagonal blocks form the strongly connected aggregates. These 
strongly connected aggregates are determined using Tarjan’s algorithm. The 
parameter 7 is taken as an approximation of the degree of coupling.

The two other partitioning techniques are based on straightforward algo­
rithms. The equal partitioning has \/n equal sized blocks of order y/n if n is a 
perfect square. If n there is an extra block of order n — (\/nJ^· The
second straightforward partitioning, other, has nb blocks of orders respectively 
1, 2, . . . ,  nè if n =  i (and possibly an extra block of order n — ^ ”=1 i if
the difference is positive). This leist partitioning ensures that there are about 
\ /^  blocks and the largest block solved is of order roughly \ /^ . All three 
partitionings are part of MARC A [34].

2.2.3 Projection Methods

Projection methods differ from stationary and block iterative methods in that 
successive approximations are computed from small dimension subspaces. Pro­
jection methods, themselves, differ from each other in the w'ay subspaces are 
selected and solution approximations are extracted from them. .A projection 
step is defined formally with two objects; a subspace 1C of dimension m from 
which the approximation is to be selected and another subspace £  (of the 
same size m) that is used to set the constraints necessary to extract the new 
approximated solution vector from 1C [24, 28]. Consider the linear system

Ax =  b. ( 2.12)

Throughout this section we will base our discussion on equation (2.12) though 
it does not exactly correspond to our real problem (see equation (2.1)). To
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make it so, we just have to set the right-hand side vector 6 to 0 and satisfy the 
normalization constraint for the computed approximation.

Let V =  [ui,U2, . . .  ,tv ] and W  =  [a;i,u;2) · · · ,<̂ m] be respectively the bases 
of fC and C. Then we can write the approximate solution a.s x = Vy, where 
y is now a vector of IR'". This gives us m degrees of freedom, and in order to 
extract a unicjne y we require that the residual vector b — Ax be orthogonal to 
£ . i.e.,

b — AVy ±  O’,·, i =  1, 2 , . . . ,  m.

In matrix form this can be written as

W'^{b-  AVy) =  0,

which yields,

y = [W^AV]~\v^b.

Thus the minimum assumption that must be made in order for those projection 
processes to be feasible is that AV  be nonsingular. If we start with 
as an initial approximate solution to the system, then niay be adjusted 
by a vector 6 such that i  is a solution, i.e., =  6. If we set
ro =  b — then

+ S) =  b => Ax̂ '̂  ̂+  A 6 = b => A6 =  b -  Ax̂ ^̂  = J'o,

and hence the projection step is applied to the system A 6 — tq to compute the 
unknown vector 6. It follows that a general projection algorithm is as follows;

Algorithm; Prototype Projection Method

Until Convergence Do;
1. Select a pair of subspaces fC and £ , and an initial guess x.

2. Choose bases V =  [ui, U2i · · ·, ^m] and W  =  [a>i,u.’2, . . .  , 0;^] for IC and C.

3. Compute

r b — Ax,

y [W'^AV]~\v'^r,

X X +  Ay.
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Let {x-,y) denote the inner product of vectors x and y. For a matrix A we 
will denote by ||x||̂  the A-norm of vector x, defined by ||x||4 =  {Ax, x)^^ .̂

Projection methods are classified in two main groups [24, 28]. The first is 
when the Krylov subspace K, is taken as K, = C = span{ro, Atq, . . . ,  Vo} 
and V =  W  is an orthogonal basis of fC. This represents the class of Galerkin 
projection methods (also known as orthogonal projection methods). In this type 
of methods, each iteration minimizes ||x — x||  ̂ in the direction of the residual 
vector r (=  b — Ax). The second type of projection methods is when C =  AK  = 
span{ArQ, A^xq, . . . ,  A'^ro] (and hence W  = AV).  Each iteration of this kind 
of methods minimizes the 2-norm of the residual vector, i.e., ||6— /Ixljj = 
mimgx: ||6 — Ax||2· This explains why these methods are referred to as the 
minimal residual methods.

It is well known that orthogonal projection methods generally converge 
faster than minimal residual methods for symmetric positive definite matri­
ces [24]. This is not the case for nonsymrnetric problems as the A-norm may 
be degenerate if the coefficient matri.x is not positive definite.

Suppose we are going to use a projection method to solve the eigensystem 
Ax =  A,x, where \i is the fth largest eigenvalue of A in modulus. Let m 
be the dimension of the Krylov subspace. Then the rate of convergence [36] 
of the method will be |Am+i/A,|. When the eigenvector corresponding to the 
dominant eigenvalue is required, this convergence factor is given by |A„, -i-i/Ai j. 
Recall that our goal is to solve an eigensystem of a stochastic matrix for an 
eigenvector of unit 1-norm corresponding to the dominant eigenvalue. Since 
the dominant eigenvalue of a stochastic matrix is 1, the convergence factor is 

simply |Ato+i |.

Generalized Minimal Residual (GMRES)

The Generalized Minimal Residual method lies in the class of minimal residual 
methods and is designed to solve unsymmetric linear systems. The GMRES 
version [4] discussed in this section is based on the Amoldi method which 
is a modified Gram-Schmidt orthogonalization procedure applied to the Krylov
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subspace span{ro, A ro,. . . ,  A^ V q} to form the basis of the subspace and store 
it in a Hessenberg matrix.

The GMRES iterates are constructed as

+  yiV(0

where yk are the coefficients that minimize the residual 2-norm ||6 — Ax*'̂ ||2. 
The GMRES algorithm has the property that this residual norm can be deter­
mined before computing the iterate. This enables us to postpone the expensive 
operation of forming the iterate until the residual norm is deemed small enough. 
To control the storage requirements, restarts are used, i.e., the iterate is formed 
after each m iterations. At each restart a new basis of the Krylov subspace is 
formed. The crucial element for successful application of GMRES(m) resolves 
around the decision of when to restart, that is the choice of rn. Obviously if 
no restarts are used (i.e., m = n), GMRES. and all orthogonalizing Krylov 
subspace methods, converge in n steps. However, because of storage limitation 
this may not be feasible for a large n.

We are providing the pseudocode [4] for the restarted GMRES(m) algorithm 
with preconditioner M. The main idea behind preconditioning is to retrans­
form the linear system so that the difference between the dominant and the 
subdominant eigenvalues of the preconditioned coefficient matrix is larger than 
what it used to be in the original system. We will come back to preconditioning 
techniques later in this chapter.

Table 2.4 shows the number of operations and storage requirement for GM­
RES at iteration i. In the table we do not consider steps 14 through 16 as they 
depend on the way the algorithm is coded. In our code, for instance, we do 
not store matrices J i , . . . ,  Jj explicitly and the Jacobi rotations are performed 
on the nonzero elements which are the only values we store. The i +  1 inner 
products, reported in the table, come from steps 9 and 12. Computing the 
new approximation in step 17 (or 19) requires i SA X PY . The other i SAXPY 
operations come from step 10. One matrix vector product and one Precond 

Solve come from step 7. To perform these operations we need to store matri­
ces A and iVf, the first z' +  1 vectors of the Krylov subspace basis, the first i 
vectors of /7, and vectors s, cu, x, and .As can be seen from Table 2.4,
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the amount of computation and storage required by GMRES in one iteration 
increases linearly with the (inner) iteration count i. This is regarded as the 
major drawback of the method.

Method
Inner

Product SAXPY

Matrix-
Vector

Product
Precond

Solve
Storage

Requirement
GMRES(m) i +  1 2i 1 1 2 matrices-f 

(n +  m)i -f- on

Table 2.4: Summary of Operations and Storage Requirements for GMRES(m) 
at iteration i.

BiConjugate Gradient (BCG)

The BiConjugate Gradient method is an orthogonal projection method and it 
takes an advantage over GMRES by reducing the storage demand [4]. This 
is achieved by replacing the orthogonal sequence of residuals (formed by GM­
RES to build the basis of the Krylov subspace) by two mutually orthogonal 
sequences of residual vectors

rW = -  a. V ’·’,

The two sequences of search directions are

p(i) ^  ^  p ( ‘ ) =

To ensure the bi-orthogonality relation

_  pb) ji\pU) — Q for i ^

we set

a,· =
pb)^Ap(i) ’ 3i =

It is observed that the convergence behavior of BCG is quite irregular. The 
method breaks down when 0. Another possible breakdown
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Algorithm: Preconditioned GMRES(m)

1. Choose an initial guess to the solution x.
2. for j  =  1 ,2 ,...
3. Solve r from M r =  b — Ax̂ ^̂

=  r/||r||,
s := ||r"

4.
5.
6 .

7.
8.

9.
1 0 . 

11. 

12.

13.
14.
15.

16.
17.
18. 
19.

2̂ 1
for i =  1 ,2 , . . . ,  m

Solve ui from M u  =  Av̂ '̂  
iov k =  1, 2, . . .  ,i 

hk,i =  (u,v(D)  
u =  u —

end
.̂+1,1' =  ||‘*̂||2

ii'Pply <7i, . ■., Ji—i on î h\ i , . . . ,  
construct J, acting on ith and (i +  l)st component 
of such that {i +  l)st component of is 0 
s :=  J{S
if s{i +  1) is small enough then (UPDATE(x,i) and quit)

end
UPDATE(x,m)

20. end

In this scheme UPDATE(x,z) 
replaces the following computations:

Compute y as the solution of Hy = s, in which 
the upper i x i triangular part of H has /i,j as 
its elements (in least squares sense if H is singular), 
s represents the first i components of s 
a-O) =  a;(o) q. +  · · · +  yiV̂ *̂
5 " » )  =  ||6 - / t i l l ,

if X is an accurate enough approximation the quit 
else =  X
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1.

2 .
3.
4.
5.
6 .

7.
8 .

9.
1 0 . 

11. 

12.

13.
14.
15.
16.
17.
18.
19.
20. 

2 1 . 

22

Algorithm: Preconditioned BCG

Compute =  b — for some initial guess
Choose (for example, 
for z = 1 ,2 ,...

Solve A/^h-i) =  r ( - i )
Solve iV/^iO-i) _  ji(i-i)
p,_i =
if pi_i =  0, method fails 
if z =  1

o(0 -  r('-i)
:  i ( - )

else
/?t-l =  pi-\! pi-2 
pi') =
p(0 _  ¿(.-1)

endif
qi') =  Ap̂ '̂
q(') =  A ^ f^
Oii =  /3.-1
xi') — x(*-l) -(- Oiipi')
;·(·) =  7~(‘-l) a,gO)
f( ‘) =  r(‘ -i) +  

end

situation is when pi‘)^qi') ^  0. To increase the effectiveness of BCG, variants 
such as CGS and BCGStab have been proposed.

Table 2.5 shows the number of operations and the storage requirement for 
BCG per iteration. The 2 inner products come from steps 6 and 18. The 
5 SAXPY  come from steps 13, 14. 19, 20, and 21. The algorithm contains 
2 matrix vector products in steps 16 and 17 (one with A and one with A^). 
Steps 4 and 5 correspond to solving two linear systems (with .M and as 
coefficient matrices). We need to store matrices A and M, and 9 other vectors 
that we use in the algorithm.
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Method
Inner

Product SAXPY

Matrix-
Vector

Product
Precond

Solve
Storage

Requirement
BCG 2 5 1/1 1/1 2 matrices-f-9n

Table 2.5: Summary of Operations and Storage Requirements for BCG at 
iteration i. means “a” operations with the matri.x and “6” with its
transpose.

Conjugate Gradient Squared (CGS)

Consider the residual vector r*') computed at the ¿th iteration of BCG. This 
vector may be written as a product of and an ¿th degree polynomial in 
T [4] such that

r('  ̂ =  Pi{A)A^K

The same polynomial is applicable to (i.e., r*d = P¿(^A)P° )̂.

As it can be inferred, the role of the polynomial P i{A )  is to reduce the 
initial residual to in i iterations. Therefore, applying the same polyno­
mial twice (i.e., rh) =  will logically reduce much faster. This
approach leads to the Conjugate Gradient Squared method.

The rate of convergence of CGS is generally twice that of BCG. However, 
this is not always the case since a reduced residual vector may not be re­
duced any further. This explains the highly irregular behavior of CGS. More­
over, rounding errors are very likely to occur in CGS as local corrections to the 
current solution may be very large, and hence the finally computed solution 
may not be very accurate [4]. Another property which seems to be paradoxic 
at first glance is that the method tends to diverge if we choose to start with an 
initial guess close to the solution. For what concerns the time complexity, CGS 
is almost as expensive as BCG. However, it is worth mentioning that CGS does 
not involve computations with A^.

Table 2.6 shows the number of operations and the storage requirement for 
CGS per iteration. The 2 inner products come from steps 4 and 16. The 6
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1.

2.

3.
4.
5.
6 .

7.
8.

9.
1 0 . 

11. 

1 2 .

13.
14.
15.
16.
17.
18.
19.
20. 

2 1 . 

22. 

23.

Algorithm: Preconditioned CGS

Compute = 6 — Ax̂ ^̂  for some initial guess 
Choose (for example, =  /-(*̂ 1).
for i =  1 ,2 ,...

pi-i =
if />,■_! =  0, method fails 
if i =  1

u(i) =  
pU) =  

else
,d| —1 — Pi—\/pi—'2

p ( > )  =  . „ ( · )  +

endif
Solve Alp =  p̂ '̂
V — Ap
ai =  pi^i/r'^v
^0) - -  u(·) _ OiV
Solve AIu =  
xO) =  x('-U +  a{U
q = All
ri>) — p(i-i) _
check convergence; continue if necessary 

end

SAXPY operations come from steps 11, 12, 17, 18, 19, and 21. Each of steps 
15 and 20 contains 1 matrix vector product. In each of steps 14 and 18, the 
algorithm solves a linear system. The algorithm requires storage for matrices 
A, iV/ and 10 other vectors.

BiConjugate Gradient Stabilized (BCGStab)

The BiConjugate Gradient Stabilized method was developed so that it is as fast 
as CGS while avoiding the often irregular convergence patterns of the latter [4]. 
It can be then said that BCGStab is suitable for nonsymmetric linear systems. 
The idea behind this method is to use an ¿th degree polynomial other than P, 
(say Qi) to further reduce the residual vector [37]. In other words, instead of
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Method
Inner

Product SAXPY

Matrix-
Vector

Product
Precond

Solve
Storage

Requirement
CGS 2 7 2 2 2 matrices-flOn

Table 2.6: Summary of Operations and Storage Requirements for CGS at 
iteration i.

Method
Inner

Product SAXPY

Matrix-
Vector

Product
Precond

Solve
Storage

Requirement
BCGStab 2 matrices-t-9n

Table 2.7: Summary of Operations and Storage Requirements for BCGStab at 
iteration i.

writing the residual as rb) = Pf[A)H^\ we write ;-b) =

Table 2.7 shows the number of operations and the storage requirement for 
BCGStab per iteration. Each of steps 4 and 14 contains 1 inner product 
whereas step 19 contains 2. The highest number of SAXPY  operations that 
the algorithm may perform per iteration is 6, which comes from steps 10, 15, 
20, and 21. The algorithm performs 2 matrix vector multiplications in steps 13 
and 18. Steps 12 and 17 correspond to solving 2 linear systems. It is necessary 
to store the matrices A, M  and 9 additional vectors. BCGStab requires slightly 
more computations per iteration than CGS and BCG as it requires two matrix- 
vector products and four inner products.

Quasi-Minimal Residual (QMR)

The Quasi-Minimal Residual method [13, 14] attempts to overcome the prob­
lems of irregular convergence behavior and breakdowns observed in some of 
the projection methods such as BCG. QMR uses a least squares approach sim­
ilar to that followed in GMRES. However, GMRES uses an orthogonal basis



CHAPTER 2. NUMERICAL SOLUTION METHODS 44

1 .

2.

3.
4.
5.
6 .

7.
8 .

9.
1 0 . 

1 1 . 

1 2 .

13.
14.
15.
16.
17.
18.
19.
20. 

21 . 

22.

23.
24.

Algorithm: Preconditioned BCGStab

Compute =  b — Ax̂ ^̂  for some initial guess 
Choose (for example, 
for i =  1 ,2 ,. ..

Pi-i =
if pi-i =  0, method fails 
if i =  1

pU)  =  AO)

else
A - i  =  {Pi-\/ Pi-2){0Ci-l/l^i-l)
p(i) =  ^(.-1) +

endif
Solve Alp =
V =  .4p
a,· =  pi-i/r'^v
s =  — aiV ‘̂^
check norm of s; if small enough: set a:*') =  x(‘ -0  -p ^^d stop
Solve M s =  s
t =  As
u>i — t^s/i^t
xL) =  x(‘ ~̂ '> +  Oip  +  uJiS

rO) =  5 — Uit
check convergence; continue if necessary 
for continuation it is necessary that Ui A 0 

end

for the constructed Krylov subspace whereas QMR uses a bi-orthogonal one. 
Thereby, the obtained solution is viewed as quasi-minimal residual solution, 
which explains the name.

To avoid breakdowns, QMR uses look-ahead techniques which makes it more 
robust than BCG. These techniques enable QMR to prevent all breakdowns 
except the so-called “incurable breakdown” . The version of QMR [4] we used 
in our experiments is simpler than the full QMR method with look-ahead, but 
it is still more robust than BCG. The algorithm we used includes a relatively 
inexpensive recurrence relation for computing the residual vector at the expense 
of a few extra vectors of storage and vector update operations per iteration. 
It also avoids performing a matrix-vector product to compute the residual 
vector. A full-fledged implementation of QMR with look-ahead is available
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Algorithm: Preconditioned Q M R  without Look-ahead

1 .

2.

3.
4.
5.
6.

7.
8.
9.
1 0 . 

1 1 . 

1 2 .

13.
14.
15.
16.
17.
18.
19.
20 . 

21. 

22.

23.
24.
25.
26.
27.

28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.

C om p u te  =  6 — for som e initial guess 
^;(i) =  solve Miy =  pi =
C h oose  for exam ple 
Solve M 2Z =  (̂ 1 =  ||2r||2
7o =  1; 7o =  - 1  
for f =  1 , 2 , . . .

i f  Pi =  0 or (fi =  0 m ethod fails
u (‘ ) =  i ;0)/p,·; y =  y/pi
U,(’> =  Z = z/C
Si =  z^y; if Si =  0 m ethod fails
solve iM2y =  y
solve M Jz — z
if i — 1

p(\) ^  y. q(i) ^ I
dsG

qi') =  z -  {piSi/ei-i)q^‘~'̂ '>
en d if 
p =  Ap̂ '^
a — g6) pj if =  0 m ethod fails 

=  e,/(5,; if ,d, =  0 m ethod fails
r;0+i) =  p  —

solve Aliy =  yO+i)

P.+i =  II2/II2
¿ ;( ‘ +i) nz - A,u;6)
solve AI2 z =

6+1 =  ll~Hl2
Oi =  p ,·+ ı/(7¿_ı|/?,·|); 7,- =  1 / ^ 1  -r Of; if 7,· =  0 m ethod fails
Pi =  -pi-ip>7ilU3nf-i)
l it  =  I

SU  = pip̂ ^̂ ; =  Pip
else

d(0 = r,.p(‘) +  (0 ,_ i7 .fd (-O
s(‘) =  7,p + (0,_i7,)2s6 - i)

en d if
a;(·) =  x i ' -U  +  ¿(O
^(0 _  ^(»-0 — 5(0
check convergence; continue if necessary 

end
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2.2.4 Stopping Criteria

One of the most critical steps in iterative methods is to decide when to stop 
the iteration. A good stopping criterion should

1. identify when the error — x is small enough to stop,

2. stop if the error is no longer decreasing, or decreasing too slow, and

3. limit the maximum amount of time spent iterating.

Ideally the iteration should stop when the magnitudes of entries of the error 
ehl fall below a user supplied threshold. Nevertheless, since the exact solution 
X is generally not known, it is practically not feasible to compute eh). Instead, 
the residual vector =  b — .4x^1 which is more readily computed, is used. 
We will later show how we can bound in terms of

The stopping criterion we used in the projection methods of interest is

stop if i > maxit or < stopJol,

where

• i is the iteration count,

• maxit is the maximum number of iterations the algorithm will be permit­
ted to perform, and

• stopJol is the user-specified parameter which should be less than 1 and 
greater than machine eA

The user may choose the value of stop.tol as the approximate uncertainty 

in the entries of A and b relative to ||A|| and ||6||, respectively. The stopping 
tolerance stopJol we used in our experiments is 10“ °̂ which means that we are 
considering the entries of A (our b is 0) to have errors in the range ±10“ °̂|| A||.

^On a machine with IEEE Standard Floating Point Arithmetic, s: — 2~~‘* «  10“  ̂in single 
precision, and e =  »  10“ ®̂ in double precision.

'‘The norm of the vector is not important as long as we are consistent.
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We should point out that the stopping criterion we use for GMRES is slightly 
different than the one stated before. In GMRES we use the previously men­
tioned criterion as a convergence test at the end of each restart, but at each 
inner-loop termination we compare (and not ||r*d||̂ ) with stopJol since
it is readily available.

Since ||ê ‘ |̂|, which is known as the forward error, is hard to estimate di­
rectly, we usually use the backward error as a tool to bound the forward 
error. The norm wise backward error is defined [3] as the smallest possi­
ble value of rnax{|| /̂l||/||.4||, ||¿6||/||6||} where ¡s the exact solution of 
(A 4- =  (6-b (i6) (here 6 A  denotes a general matrix, not 6 x  A  ■, the same
goes for (56), and it can also be written as ||6 — .4x*‘ '||/||A||. The backward error 
is more practical to use than the forward error as it can be easily computed 
from r-b).

d·)

hence

,(0|

b) -  X =  A-^(Ax(·) - 6 ) ,

<  ||A-i H |.4xC)-6||
... Ilr(d|i-1 1

(2.13)

(2.14)

For a singular matrix A, the group inverse A^ can replace A~  ̂ in equa­
tions (2.13) and (2.14). The expression ||A“ |̂| · ||.4|| is referred to as the 
condition number of A. From equation (2.13) we can see that if the algo­
rithm stops due to the test ||rb)|| < stopJol. the forward error can be upper- 
bounded by stopJol \\A~̂ \\. There also exist the concepts of relative for­
ward error, defined by | | e b ' | | / | | x b ) | | ,  and relative backward error, defined by 
||6— Axbf||/(||A|| · ||arb)||). Directly from equation (2.14) we can upper-bound 
the relative forward error in the following way:

l l - ( ' ) | |  ................  | | r ( ‘)|l

||i«|| .............. ll·-‘ ll·ll·'<■'IΓ
We are reporting the relative backward error in all the experiments we con­

ducted (see appendix A).

The stopping criteria we used in SOR and the block iterative methods we 

discussed are respectively

stop if  i >  maxit or ||xbl — xb“ '̂ ||̂  < stopJol,
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and

stop  if  i >  maxit or <  stopJol or

(||x·̂ '̂  — x '̂ ^̂ 11̂  < stopJoli and ||r̂ ‘  ̂ — A' <  stopJol2).

In the experiments we set stopJol, stop-tol\, stopJol^ to 10~^°, 10“ ®, 10“ ^̂ 
respectively. stopJoC  forces the algorithm to terminate when the norm of the 
residual is decreasing too slowly while the difference between two successive 
iterates is relatively small enough.

Different stopping criteria has been suggested for the convergence test of 
iterative methods. Several criteria are discussed in [.3]. Unfortunately, there 
is no single stopping criterion known to be suitable for all iterative methods. 
Hence, selecting the most appropriate one is a difficult decision to make during 
the implementation of the solver. However, knowing the solvers and their 
byproduct helps. The amount of computation required by the convergence 
test is another constraint which should be taken into consideration.

2.2.5 Preconditioners

A very important issue in iterative methods in the concept of preconditioning. 
Although preconditioning can be used in all iterative methods, we employed 
it in projection methods only. The idea behind preconditioning is to acceler­
ate the convergence process by redistributing the eigenvalues of the coefficient 
matrix so that the difference between the dominant and the subdominant eigen­
values becomes larger without changing the solution vector sought. Therefore, 
the need for a preconditioner becomes vital when dealing with NCD systems.

Again let us consider the system of linear equations

Ax =  b.

This can be transformed into the right-preconditioned equivalent system

A M ~\ M x) =  6,

or into the left-preconditioned equivalent system

M~^Ax =  M~^b,
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where the preconditioned matrix M  (also called preconditioner) has the prop­
erty that it is a cheap approximation of A. The more M  resembles A, the 
faster the method converges [20]. In the case of right-preconditioning the 
system AM~^y =  b is solved for the unknown y =  iV/x, and the final solu­
tion X is obtained through the post-transformation x = \I~^y. To use right­
preconditioning, M  should also be chosen so that M~^v is cheap to compute 
for any arbitrary vector v.

In the left-preconditioning case, the system is solved based on imposing 
the necessary stopping constraints on the preconditioned residual vector r = 

Ax). In this case, M~^ rnay not be formed explicitly and the precon­
ditioned residual is computed by solving the system Mr =  b — Ax. Therefore, 
the preconditioner M  should be chosen so that solving any linear system of the 
form M v =  u for any vector v cheap.

Various types of preconditioners have been (and are still) developed (see [29, 
6]). Their efficiency is highly dependent on the system to be solved and it is 
quite difficult to forecast which preconditioner is the best for a given system. 
In this study, we are only considering preconditioners obtained from incom­

plete LU factorization (ILU) [8]. First, an LU decomposition of the coefficient 
matrix A is initiated. Throughout the decomposition, nonzero elements are 
omitted according to different rules. These rules characterize the ILU  type. 
Thus, instead of ending up with an exact LU decomposition, what we obtain 
is of the form

A =  LU +  E,

where E, called the remainder, is expected to be small in some sense. L and 
U respectively are lower and upper triangular matrices. In all the projection 
methods we implemented, we stick to left-preconditioning and take M = LU, 
thereby the fest choice on the preconditioner M  is to take it equal LÜ.

Recall that the coefficient matrices appearing in the systems of interest are 
irreducible M-matrices. It has been shown that incomplete LU decompositions 

exist for such matrices (in exact arithmetic) and that they are even more stable 
than the complete LU decomposition without partial pivoting (see [20] p. 152).
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Theorem 2.6 If A is an M-matrix, then the construction of an incomplete LU 
decomposition is at least as stable as the construction of a complete decompo­

sition without pivoting.

Three types of incomplete LU factorizations are considered. The first im­
poses on the computed preconditioner the same nonzero structure as the orig­
inal matrix and is called ILU{0). The second is called ILUTH  and is a 
threshold-based approach. The third forces the computed factors to have at 
most a prespecified fixed number of nonzero elements per row and is called 
ILU K .

The ILU(O) Incomplete Factorization

The idea of ILU{0) is to drop all fill-in elements which occur during the LU 
decomposition (recall that a fill-in element refers to a nonzero element intro­
duced in the matrix which holds the LU factors in a location where there was 
initially a zero element in the original matrix). Thus, if we denote by N Z{A ) 
the nonzero structure of A., i.e., the set of all pairs (¿, j )  such that a,j 7̂  0 then 
ILU{0) can be described as follows:

Algorithm: ILU{0) 

ior i =  2 , . . . .  n
for Ar =  1, . . . ,  f — 1 and for (¿, k) € NZ{A) 

compute aik =  a,i·/Okk 
for 7 =  A -h 1,.. ·, n and for ( i .j )  E N Z(A) 

compute a,j := aij — aikOkj
end

end
end

The ILUTH Incomplete Factorization

In ILU TH , the decomposition takes place in a row-by-row manner. The drop­
ping rule of this preconditioning technique is to zero out all elements having
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an absolute value less than a prespecified threshold. The only exception is that 
the dropping rule does not apply for the diagonal elements which are kept no 
matter how small they become. The dropping rule is applied just after the mul­
tipliers are formed, once, and applied one more time right after the reduction 
of a row is over. We experimented with two different threshold values, 10~̂  
and 10~ ,̂ for each Krylov subspace solver. In the ILUTH  algorithm provided, 
Oj, denotes the ¿th row of A.

A lgorithm : ILUTH  

for i =  1, . . . ,  n
uJ — CLi*
for k =  1, . . . ,  z — 1 and when Uk 0 

'■= ^kl^kk
Apply the dropping rule to Uk 
li Uk ^ ^

uj uj — (jJk * Uk,
endif

end
•Apply the dropping rule to row u 
¡ij :=  for ;  =  1, . . . ,  f -  1 
Uij :=  LOj for j  =  i -f 1, . . . ,  n 
a; := 0

end

The ILUK Incomplete Factorization

The last type of incomplete factorization that we consider is based on the idea 
of keeping at most a prespecified fixed number of nonzero elements in each 
reduced row. This method enables the user to control the number of fill-ins 
allowed. Therefore, it is suitable in case there is only a fixed amount of memory 
available to store the incomplete factors L and U. Each time a row has been 
reduced, a search is conducted to find the K  largest elements in absolute value. 
All other elements in the row are annihilated. As for / LUTH, the diagonal 
elements are preserved regardless of their magnitude. Again, in the algorithm 

we use a,·, to denote the fth row of A.
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A lgorithm : ILUK  

for i =  1, . . . ,  n
UJ =
for k =  1, . . . ,  i — 1 and when u-'k ^  0 

<^k/o.kk
u )  o j  — u>k *  U k .

end
Apply the dropping rule to row u  
lij :=  Wj for i  =  1, . . . ,  i -  1 
Uij :=  iOj ioT j  =  z + 1, . . . ,  n 
u :=  0 

end

Finally, we should stress that not much work has been done in studying 
what constitutes a good incomplete factorization for Markov chain models. 
The concept is still in its infancy in this domain and further studies are still 
needed.

2.3 Implementation Considerations

In this section we focus on various aspects that should be taken into account 
during implementation phase. As we are dealing with large sparse systems^, 
the first thing we should be thinking of is to find an efficient storage scheme. 
One popular scheme is the one we used, which is known as the compact sparse 
row (CSR) format [26, 36]. This format uses a real (double-precision) one­
dimensional array aa and two integer arrays ja  and ¿a. Array aa is of size nz 
(the number of nonzero elements in the matri.x) and is used to hold the nonzero 
elements of the matrix. The elements are stored by rows in such a way that 
elements of row i come before those of row z -|- 1, but the elements within a 
row need not be in order. Array ja  holds the column position of each element, 
i.e., ja (k ) gives the column position of the element stored in the ^th position 
of aa (aa{k)). Array ja  is also of size nz. Array ia is a pointer array whose

^The average order of the problems we experimented with is 33,278; the largest matrix 
is o f order 104,625.
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Ith element indicates the position in aa and ja  at which the elements of the 
/th row begin. The size of ¿a is n +  1, where n is the order of the matrix and 
ia{n +  1) =  n2 +  1. In this way, ia{l +  1) — ia{l) always gives the number of 
nonzero elements in row /, / =  1, 2, . . . ,  n.

To illustrate the use of the CSR format, consider the following matrix

A =

Then one possible way to store this matrix in the CSR format is

- 2.1 0.0 1.7 0.4 \
0.8 - 0.8 0.0 0.0
0.2 1.5 -1 .7 0.0

1 0.0 0.3 0.2 —0.5 y

Real array aa : -2.1 1.7 0.4 -0.8 0.8 -1.7 0.2 1.5 -0.5 0.3 0.2
Column array ja  : 1 3 4 2 1 3 1 2 4 2 3
Pointer array ia : 1 4 6 9 12

In addition to its efficiency, the CSR format can be easily used for imple­
menting matrix-vector operations. This property makes it very adequate for 
iterative methods.

Unless otherwise specified, by reductions we mean row-reductions. This 
strategy is used to take full advantage of the row-by-row storage of the CSR 
format.

The code is implemented in Fortran 77, and as it only supports static mem­
ory allocation, two one-dimensional arrays are defined at the beginning of the 
program to hold double precision and integer values. The dimensions of these 
arrays are set to 3,500,000 for the double precision array and 2, 100,000 for 

the integer array.

The initial approximation is always chosen to have a uniform distribu­
tion, i.e., =  1/n , i =  1, 2, . . .  , n, where n is the vector length.

In order to regulate the amount of fill-in produced, ILUTH  is implemented 
in such a way that before the reduction of any row, the number of free entries 
in the double precision work array is divided by the number of rows still to
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be reduced. This gives us the maximum number of nonzero elements that we 
allow to be stored for that row. If the reduction leads to a number of nonzero 
elements higher than the precomputed one, the threshold is multiplied by 10 
and the dropping rule is applied again. This is repeated until the number of 
nonzero elements in a given row becomes less than or equal to the maximum 
number allowed. The first row of the matrix is not reduced, and the method 
is forced to fail if the magnitude of any reduced diagonal element is less than
10-3oo_

The way IL U K  is implemented is to compute the /\th largest value, in 
magnitude, say max, in the reduced row. Then, all the elements having an 
absolute value less than max are set to 0. If the number of nonzero elements 
in the row is still higher than A', the reduced row is scanned from left to right 
zero out any element having an absolute value equal to max until the number 
of nonzero elements decreases to K. As in ILU TH , the reduction does not 
include the first row of the matrix and the method fails if any reduced diagonal 
element is found to be less than

In block iterative methods we have attempted at solving diagonal blocks, 
and the coupling matrix in lAD, directly by Gaussian elimination. The memory 
needed to solve the coupling matrix is set aside at the beginning and what is 
left is used for the diagonal blocks. If there is not enough space for solving 
the coupling matrix, the method fails. Blocks of order 1 and 2 are treated 
separately. In two-stage solvers (block iterative methods), we obtain the LU 
decompositions of as many diagonal blocks as possible given available memory 
and do this in such a way that smaller blocks are treated first, leaving the big 
blocks to be solved using point SOR when there is insufficient memory. In 
order to accelerate this process we use a considerably large tolerance 10“  ̂ with 
the point SOR algorithm when solving diagonal blocks. The SOR algorithm 
is always used with the optimal relaxation parameter a; (up to one digit after 
the decimal point). This is achieved by repeating the same experiments with 
different values of u.

As an attempt to minimize the probability of underflow and overflow, each 
row of the coefficient matrix is multiplied by the inverse of the largest value in 
magnitude in that row (the absolute value of the diagonal element). This is
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called a scaling operation and it just retransforms the system to a more suit­
able form without altering the global solution. Another way to limit the effect 
of underflow and overflow and to control the irregular convergence behavior 
of some iterative methods up to a certain extent, is to normalize the solution 
vector at each iteration. The drawback of this strategy is that it may lead to 
considerable loss of precision due to roundings that occur at each iteration. In 
block iterative methods and point SOR (which are part of MARCA) the coef­
ficient matrix is scaled and the solution vector is normalized at each iteration. 
Nevertheless, in the projection methods we implemented, the coefficient matrix 
is not scaled and the solution vector is only normalized at the termination of 
the algorithm.



Chapter 3

Models Used

In this chapter we will discuss the problems we used in our numerical studies. 
Seven models are considered, six of which appear in [34] and one is discussed 
in [2, 5]. All seven models rise from Markov chain applications. Three of 
these are chosen and two ill-conditioned test cases from each one are generated 
giving us a total of thirteen test cases. From these thirteen cases, twenty seven 
sparse [1] test matrices are obtained with which to experiment. A few of the test 
matrices have symmetric nonzero structures (Appendix B shows the nonzero 
structures of the transposed infinitesimal generator matrices, which are formed 
from the stochastic test matrices). The majority of the test matrices would be 
ranked among the largest of the matrices considered in the Matrix Market [19].

3.1 Complete Buffer Sharing With Pushout 
Thresholds in ATM Networks

Broadband Integrated Services Digital Networks (B-ISDNs) are to support 
multiple types of traffic such as voice, video, and data. The Asynchronous 
Transfer Mode (ATM) is the support technique of choice for B-ISDNs by the 
standards committees. In this mode of operation, all information is carried 
using fixed size packets (called ‘cell’s) so as to share the network among multiple 
classes of traffic. Since multiclass traffic will be carried on B-ISDNs, different

57
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quality of service requirements will be imposed by different applications.

One type of congestion control for ATM networks deals with discarding cells 
at ATM buffers in order to guarantee a prespecified cell loss rate. One bit in 
each ATM header is reserved to assign the space priorities of cells. This bit 
indicates whether the given cell is high or low priority. Priority cell discarding 
is a buffer management scheme in which higher priority cells are favored in 
receiving buffer space. An efficient technique for determining the cells to be 
discarded when congestion occurs is the complete buffer sharing scheme with 
pushout thresholds.

In the system under consideration, there are two classes of traffic arriving to 
an ATM buffer of size K. Time is divided into fixed size slots of length equal 
to one cell transmission time. The arrival of traffic class / (=  1, 2) to the buffer 
is modelled as a Bernoulli process with probability of cell arrival pi in a slot.

The states of the corresponding queueing system may be represented by the 
ordered pair where i and j  are the number of class 1 and class 2 cells in
the buffer, respectively [2, 5]. Let k (=  i + j )  denote the total number of cells in 
the buffer at state Then, a natural state space ordering that places the
states with the same number of total cells in the buffer (i.e., k) consecutively, 
gives rise to a block matrix with J2k=o(k +  1) =  +  2)/2 states.
The first block consists of the state (0,0) (i.e., the state in which the buffer 
is empty), the second block has states (0,1), ( 1,0), the third block has states 
(0,2),(1,1),(2,0), and so on. The ^th block has ¿' + 1 states. That is, we have 
the following ordering:

(0,0) ^  (0,1) ^ (1,0) X (0,2) X (1,1) X (2,0) X · · · X {K,  0)

During a time slot, no cells, one cell, or two cells may arrive. If one or 
two cells arrive, then this happens at the beginning of a slot. A cell departure 
occurs by the end of the slot if the buffer has at least one cell at the beginning 
of the slot. Hence, an arriving cell cannot be transmitted before the end of the 
next slot. With these assumptions, a cell is discarded if and only if two cells 
arrive to a full buffer. The pushout threshold for class 2 cells is given by T2 and 
the pushout threshold of class 1 cells is given by Ti (=  K  — T2). If two cells
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arrive to a full buffer (i.e., г +  =  A ), then a class 2 cell is discarded if > T2,
otherwise a class 1 cell is discarded if j  < T2. When j  =  T2, the lower priority 
traffic class cell is discarded. One may view the system as if there is temporary 
space to store up to two arrivals while the buffer is full and a decision as to 
which class of cell will be discarded is made.

It is assumed that at steady-state the head of the queue (i.e., the cell that 
will be leaving the buffer at the end of the current time slot— if there was one 
to begin with) is a type 1 cell with probability i/{i +  j )  and it is a type 2 cell 
with probability j/ {i +  j ) .

The DTMC corresponding to these assumptions is block tridiagonal (with 
the exception of the first row of blocks) where each diagonal block is tridiagonal 
and has a different block size. Depending on the selected threshold, the nonzero 
elements in the last row of blocks change making it very difficult to apply 
analytical solution techniques to such a system with control.

To study the effect of the threshold, three test cases are generated. In 
all these test cases, K  and T2 are fixed to 200 and 20, respectively. In the 
first test case, which we call easy, we set p\ =  0.99 and p2 =  0.99. The 
second test case, medium, is more ill-conditioned and is generated by choosing 
Pi =  0.1 and P2 =  0.5. Setting pi and p2 respectively to 0.1 and 0.9 gives us 
a third even more ill-conditioned test case which we call hard. The coefficient 
matrices of the three test cases are of the same order n =  20,301 and have 
the same number of nonzero elements nz =  140,504, bandwidth, and nonzero 
structure. Tables 3.2, 3.3 and 3.4 show the results of ncd test, equal and 
other partitionings (discussed in section 2.2.2) applied to the three coefficient 
matrices. 7 is the decomposability parameter used in ncd test, equal and 
other partitionings are identical in the three cases since the matrices are of 
the same order. Based on the results of ncd test we decided to experiment 
with two permuted versions of easy: with 7 = 10“ “* we obtained the easy.gm^ 

test matrix and with 7 =  10“  ̂ we obtained easy.gmS. As can be seen from 
Table 3.2, choosing 7 =  10“  ̂ causes the coefficient matrix to be partitioned 
into blocks of size 1 with the exception of one block which is of size 2. Such 
cases are not interesting and we do not consider them in our experiments. 
Besides, round-off errors due to input/output operations caused some elements
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of the permuted stochastic matrices of medium and hard read from input files, 
to differ from their values computed on computer. This prevented us from 
experimenting with the permuted versions of medium and hard. Tables 3.1 
and 3.5 give information about the symmetric nonzero structure status and 
the bandwidth^ of the five test matrices. Since easy, medium., and hard test 
matrices have the same nonzero structure, their results are given in the first 
row as pushout threshold.

symmetric
n nz nz structure

20,301 140,504 no

Table 3.1: Characteristics of the Pushout Threshold Problem.

7
number of 

blocks
smallest 

block size
largest 

block size
10- “* 308 1 5,050
10"^ 4,060 1 162
10~2 20,300 1 2

number of last
blocks block size

equal 143 137
other 201 0

Table 3.2: Partitioning Results for the easy Test Case.

7
number of 

blocks
smallest 

block size
largest 

block size
10-^ 4 1 20,295
10-2 720 1 19,477
10-1 20,300 1 2

Table 3.3: Partitioning Results for the medium Test Case.

‘ We adopt the convention that higher and lower band widths do not include the diagonal.
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7
number of 

blocks
smallest 

block size
largest 

block size
lO"“» 2 1 20,.300
10-3 1.34 1 20,168
10-3 2,286 1 18,016

Table 3.4: Partitioning Results for the hard Test Case.

matrix
lower

bandwidth
higher

bandwidth
pushout threshold 201 201
easy.gm4 20,103 20,103
easy^gmS 381 .381

Table 3.5: Lower and Higher Bandwidths of the Pushout Threshold Test Ma­
trices.

3.2 A Two-Dimensional Markov Chain Model

As the title suggests, a two-dimensional Markov chain is considered in this 
problem. In the first dimension of the chain, the state variable assumes all 
values from 0 through Nj;. Similarly, in the second dimension, the state variable 
takes on values from 0 through Ny. The state space is sketched in Figure 3.1.

This two-dimensional Markov chain model allows for transitions from any 
non-boundary state to adjacent states in the North, South, East, West, North- 
East, North-West, South-East and South-West directions. However, in the 
model we used in our experiments, only transitions to the South, East and 
North-West are permitted (taking the others to be 0). From any non-boundary 
state (Uju), transitions to the South are assigned the value v, transitions to 
the East are assigned the value 2025.0, and transitions to the North-West 
are assigned the value u [-34]. The state space of the Markov chain is of size 
(A(c 4- l)(A ’j, -f 1). The values of and Ny are both set to 128, yielding a ma­
trix (2D) of order n =  16,641 and number of nonzero elements nz =  66,049. 
The partitioning results of the 2D test matrix are illustrated in Table 3.7. 
These results suggested experimenting with two more test matrices, 2D.gm3



CHAPTER 3. MODELS USED 62

and 2D-gm2, formed by permuting the 2D matrix using decomposability pa­
rameters 7 =  10“  ̂ and 7 =  10~ ,̂ respectively. The characteristics of the three 
test matrices and their bandwidths are reported in Tables 3.6 and 3.8.

0 0 0 0 o o o 0
o o o o o
o o o o o o o o
o o o o o

© c3 o o o o
0 o- O o o o o
0 c ' (i 0̂ o o o 0
Figure 3.1: A Two-Dimensional Markov Chain Model Model.

symmetric
ri nz nz structure

16,641 66,049 no

Table 3.6: Characteristics of the Two-Dimensional Markov Chain Problem.

3.3 An NCD Queueing Network of the Cen­

tral Server Type

The model illustrated in Figure 3.2 represents the system architecture of a time- 
shared, multiprogrammed, paged, virtual memory computer. The system [34] 

consists of
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number of smallest largest
7 blocks block size block size

10“ ^ .513 1 16,129
10-2 5,913 1 11,449

number of last
blocks block size

equal 129 0
other 182 170

Table 3.7: Partitioning Results for the Two-Dimensional Markov Chain Prob­
lem.

matrix
lower

bandwidth
higher

bandwidth
2D 65 129
2D-gm3 16,504 16,633
2D.gm2 13,404 13,533

Table 3.8: Lower and Higher Band widths of the Two-Dimensional Markov 
Chain Test Matrices.

• a set of Nt terminals from which Nt users generate commands.

• a control processing unit (CPU),

• a secondary memory device (SM),

• a filing device (FD).

A queue of requests is associated with each device and the scheduling is as­
sumed to be FCFS (first-come, first-served). When a user generates a command 
at the terminal, it remains inactive until the system responds. Symbolically, 
this user enters the CPU queue. The system behaves in such a way that af­
ter a certain time period, called the compute time, either a page fault or an 
input/output (file request) occurs. In the case of a page fault, the process 
currently in the system enters the SM queue, otherwise, in the case of a file 
request, it joins the FD queue. Processes that terminate their service at the
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Figure 3.2: An NCD Queueing Network of the Central Server Type Model.

SM or FD queue return to the CPU queue. A command commit is symbolically 
represented by a departure of the process from the CPU to the terminals.

Let no, ni and U2 respectively be the number of processes in the CPU, SM 
and FD queues at a certain time. Then the degree of multiprogramming at that 
moment is given by r] =  uo + rii + n 2- Let q{r]) and r(?;) respectively
denote the mean service time at the CPU, the mean compute time between two 
page faults, and the mean compute time between two i/o  requests. It follows 
that the probabilities that a process leaving the CPU will be directed to the 
SM or to the FD queue are, respectively, given by pi{rj) =  {po{v)q{v))~^ and 
P2(r}) =  ipoip)r{T]))~^. The probability that a process leaving the CPU to the 
terminals is given by po{r}) = [po{v)c{r}))~^ =  1 -  (pi(7?) +  p^ip)), where c{t}) 
is the mean compute time of a process [24].

For experimental purposes, we assigned a specific value for each parameter. 
The rate at which processes move from the CPU queue to the SM device is 
taken to be pi{T])po{n) =  100(t; / 128) "̂ .̂ The mean compute time between two 
i/o  requests r{rj) is taken as 20 ms so that P2(p)po{v) =  0.05, and the mean 
compute time of a process c{p) is equal to 500 ms giving Po{p)po{v) -  0.002. 
The mean think-time of a user at a terminal is estimated to be on the order 
of A“ ‘ =  10 s. The mean service time of the SM is taken as = 5 ms

and that of the FD to be {p2{v))~'  ̂ =  30 ms. The Markov chain state space is 
of size total number of users in the system (Nt) wa.s set to .50
yielding a matrix (ncd) of order n =  23,426 and number of nonzero elements 

nz =  156,026.
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symmetric
n nz nz structure

23,426 2.56,026 yes

Table 3.9: Characteristics of the NCD Queueing Network Problem.

7
number of 

blocks
smallest 

block size
largest 

block size
10-5 3 1,275 20,825
10- “ 51 1 1,326
10-3 51 1 1,326

number of last
blocks block size

equal 154 17
other 216 206

Table 3.10: Partitioning Results for the ncd Test Case.

Two more ill-conditioned test cases are generated from this model. The 
first one (ncd.altl) is obtained by setting the mean service time of the FD 
to {fi2{ri))~^ =  3,000 s. The second test case [ncd.altS) is even more ill- 
conditioned than ncd-altl and is generated by making the mean think-time 
of a user at a terminal =  10,000 s. Naturally, the three test matrices, 
ncd, ncd-altl, and ncd-alt2, have the same order, number of nonzero elements, 
and nonzero structure. We also experimented with ncd-gm4 (a permuted ver­
sion of ncd obtained by choosing lO"'* as the value of 7 in the ncd test of 
ncd), ncd-altl-gm7, ncd.altl-gmS and ncd.altl-gm4 (three permuted versions 
of ncd-altl respectively by assigning 10“ ,̂ 10~® and 10“ “* to 7 in the ncd test 
of ncd-altl), and ncd-alt2-gm7 and ncd-alt2-gm6 (two permuted versions of 
ncd-alt2 obtained respectively by assigning 10“  ̂ and 10~® to 7 in the ncd test 
of ncd-alt2). The characteristics, partitioning results, and band widths of all 
the test matrices for this model are reported in Tables 3.9, 3.10, 3.11, 3.12, and 
3.13. Test matrices ncd-gm5 and ncd-alt2-gm8 are not interesting because of 

their block structures (see Tables 3.10 and 3.12).
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7
number of 

blocks
smallest 

block size
largest 

block size
10-^ •51 1 1,-326
10“ ® 51 1 1,326
10-5 150 1 1,225
10-^ 1,.326 1 51
10-^ 1,-326 1 51

Table 3.11: Partitioning Results for the ncd.altl Test Case.

7
number of 

blocks
smallest 

block size
largest 

block size
10-® 3 1,275 20,825
10-^ 25 406 3,6-54
10-® 51 1 1,-326
10-5 51 1 1,326
lO-'· 51 1 1,-326
10-5 51 1 1,326

Table 3.12: Partitioning Results for the ncd-alt2 Test Case.

3.4 A Telecommunication Model
A telecommunication problem is modeled to study the effect of impatient tele­
phone customers on a computerized telephone exchange [34]. The model is 
shown in Figure 3.3. In this model each customer makes a request for service. 
Then the customer has to wait a certain period for a reply. If the reply has 
not arrived at the end of that period, the customer has the right to either give 
up and leave the network, or wait for some period of time before trying again.

All customers have to pass by station S2 which is dedicated to a special 
processing task. These customers are processed by a single server according 
to a processor sharing discipline. Each customer may wait in 52 for a certain 

time which is defined as an upper bound on its service duration: whenever its 
patience is exhausted, the customer simply gives up processing (with a fixed 

probability 1 — h).
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matrix
lower

bandwidth
higher

bandwidth
ncd, ncdMltl, ncd-alt2 460 460
ncd.gm-i 1,326 1,326
ncd.altl-gm l 1,37.5 1,.375
ncd.altl-gm5 1,374 1,.374
ncd.altl.gm i 701 701
ncdMlt2.gml 2,980 2,980
ncdMlt2-gmQ 1,325 1,.325

Table 3.13: Lower and Higher Bandwidths of the NCD Queueing Network Test 
Matrices.

In case the customer decides to keep trying, it joins an infinite server station 
51 where it remains for a certain period, called the thinking-time, before joining 
back station 52 for another attempt.

We are interested in studying the number of customers in 51 and 52 in the 
long run. Let i and j  be the number of customers in 51 and 52, respectively. 
Then a state of the network may be described by the pair When j  > 1,
the rate of

• service completions in 52 is /i,

• departures due to impatience is j r .

Figure 3.3: Telecommunication Model.
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When i >  1, the rate of departures from 51 is ¿A. External arrivals to 52 are 
assumed to have a Poisson distribution of rate A.

As we are interested in finite Markov chains, we let K l  and K2 be the 
maximum sizes of 51 and 52, respectively. Customers arriving to a full station 
are lost. It is important to choose large values for A'l and K2  so that the 
probability of saturation is negligible. In that case, the truncation of the state 
space will have little effect, and hence, the resulting steady-state probabilities 
may be taken as an accurate approximation of those of the infinite capacity 
network.

The following are realistic values which we took from [24] to use in our 
experiments:

A =  0.6, fj, =  1.0, r =  0.05, h =  0.85, A - 5.0.

The state space of the Markov chain is of size (/\ l - f l ) ( / t '2+ l ) .  We set K l  = 3 0  
and K2  =  660 which gave a matrix telecom on the order of n =  20,491 with 
nz =  101,041 nonzero elements. Results of ncd test, equal and other partition­
ings are shown in Table 3.15. Based on this ncd test, we decided to experiment 
with two permuted versions of the original matrix using decomposability pa­
rameters 7 =  10“  ̂ to obtain the telecom-gm2 test matrix and 7 = 10“  ̂ to 
obtain telecom-gm 1. It is obvious that the three test matrices; telecom, tele- 
com-gm2 and telecom-gml, have the same order, number of nonzero elements, 
and partitioning results. Tables 3.14 and 3.16 reports the symmetric nonzero 
structure status and the bandwidths of the three test matrices.

symmetric
n nz nz structure

20,491 101,041 no

Table 3.14: Characteristics of the telecom Problem.



CHAPTER 3. MODELS USED 69

number of smallest largest
7 blocks block size block size

10-'“* 1,981 1 31
10- ' 14,389 1 28

number of last
blocks block size

equal 144 42
other 202 190

Table 3.15: Partitioning Results for the telecom Problem.

matrix
lower

bandwidth
higher

bandwidth
telecom 31 60
telecom-gm2 18,750 18,7.50
telecom.gml 9,171 9,171

Table 3.16: Lower and Higher Bandwidths of the Telecom Test Matrices.

3.5 A Queueing Network with Blocking and 
Priority Service Model

The model we shall discuss now is an open queueing network of three finite 
capacity queues and two customer classes. Class 1 customers arrive from the 
exterior to queue 1 according to a Poisson process Ai. Similarly, class 2 cus­
tomers arrive from outside the network to queue 2 according to a Poisson 
process, but this time at rate A2. At this stage, any customer (from either 
classes) is lost if upon arrival it finds the buffer full. The servers at queues 1 
and 2 provide exponential service at rates /¿i and /¿2 respectively. After being 
served, customers of either of these queues try to join queue 3. If queue 3 is full, 
class 1 customers are blocked (blocking after service) and the server at queue 
1 must halt. This server cannot resume serving any other customer unless a 
slot becomes available in the buffer of queue 3 and the blocked customer is 
transferred. On the other hand, when a class 2 customer has been served at 
queue 2 and finds the buffer at queue 3 full, it is simply lost. Queue 3 provides
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exponential service at rate |.lз̂  to class 1 customers and rate ^3̂  to class 2 
customers. Customers departing after service at queue 3 leave the network. 
Figure 3.4 illustrates this model. Ck — I, k =  1,2.3 denote the finite buffer 
capacity at queue k.

loss loss

Figure 3.4: An ATM Queueing Network Model.

The states of the Markov chain underlying this model, may be represented 
by four-component vectors [34]. Components 1 and 2 may be used to denote the 
number of customers in queue 1 and 2 respectively. Components 3 and 4 may

be used to represent the number of class 1 and class 2 customers, respectively, 
present in queue 3.

We assigned the following values to the parameters indicated on Figure 3.4: 

Ai — 1.0, A2 =  2.0, /ii =  3.0, fj.2 = 4.0, /¿3, =  5.0, /.132 =  6.0.

The state space is of size CiC’2C3(C3 + l ) / 2, so setting each of Ci and C2 to 
15 and C3 to 30 leads to a matrix (qnatm) of order n =  104,625 and number 
of nonzero elements nz =  593,115. Out of this qnatm matrix, another test 
matrix {qnatm.gml) was formed by permuting qnatm using a decomposabil- 
ity parameter 7 =  10“ .̂ Additional information about the two matrices are 
illustrated in Tables 3.17, 3.18, and 3.19.



CHAPTER 3. MODELS USED 71

symmetric
n nz nz structure

104,625 .593,115 no

Table 3.17: Characteristics of the ATM Queueing Network Problem.

number of smallest largest 
7 blocks block size block size

10- 1 91,800 1 4.50

number of last
blocks block size

equal 324 296
other 457 429

Table 3.18: Partitioning Results for the ATM Queueing Network Problem.

3.6 A Multiplexing Model of a Leaky Bucket 
in Tandem

One of the major problems in ATM networks is to control the congestion of 
intermediate buffers with fast and simple mechanisms. Several policies were 
proposed and evaluated with diverse probabilistic hypothesis. The simplest 
mechanism is the leaky bucket [34]. The problem is to determine the behavior of 
this mechanism under external arrivals. The external arrival stream is modeled 
as a Poisson process. An evaluation of this mechanism will allow it to be 
compared with other more complex mechanisms.

lower higher
matrix bandwidth bandwidth
qnatm 2,728 5,.385
qnatm.gml 6,974 6,975

Table 3.19: Lower and Higher Bandwidths of the ATM Queueing Network Test 
Matrices.
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The traffic source is of an M /Z i/l /C  type. This queue is of size C cells 
and has a single server with service time D (which will be taken as a unit 
time). The arrivals that are modeled as a Poisson process have rate A. Then 
the model may be viewed as a 1-dimensional discrete time Markov chain (with 
time unit D) with state descriptor Np which is the number of cells produced 
by the Poisson source at time t,

The leaky bucket has a finite size of K  cells and a service time T'D = 
TD{\ — e), where T' is an integer. The state of the system is described by 
the state variable k which is the buffer occupancy (in terms of the number of 
cells).

The values used for the described parameters are

C =  K  =  T =  4, A = 0.85, e =  0.4959.

The leaky matrix we generated from this model has order n = C * x / i ' x T ( l  — 
e) =  8,258 and number of nonzero elements nz =  197,474. This matrix is 
severely ill-conditioned (i.e., NCD up to machine precision). VVe could not 
experiment with any of the permuted versions of leaky due to the round-off 
error problem mentioned in section 3.1. Some properties of the matrix are 
provided in Tables 3.20, 3.21, and 3.22.

symmetric
n nz nz structure

8,258 197,474 no

Table 3.20: Characteristics of the Leakv-Bucket Problem.

3.7 Mutex—A Resource Sharing Model
In this model, M  distinguishable processes share a certain resource [34]. Each 
of these processes alternates between a sleeping state and a resource using 
state. However, only P  processes may concurrently use the resource, where 
1 < P < M . If a process currently in the sleeping state tries to move to the
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7
number of 

blocks
smallest 

block size
largest 

block size
10-^ 193 1 8,057
10"® 225 1 8,016
10-^ 225 1 8,016
10-® 265 1 7,976
10-5 318 1 7,923
10- ‘‘ 400 1 7,832
10-3 531 1 7,692
10-2 778 1 7,427
10- ‘ 7,386 1 507

number of last
blocks block size

equal 91 158
other 129 2

Table 3.21: Partitioning Results for the Leaky-Bucket Problem.

lower higher
matrix bandwidth bandwidth
leaky 191 435

Table 3.22: Lower and Higher Bandwidths of the ¡eaky Test Matrix.

resource using state while there are P  processes already using the resource, it 
simply fails to access the resource and remains in the sleeping state. Notice 
that when P =  I this model reduces to the usual mutual exclusion problem, 
whereas when P =  all the processes are independent. Let A, be the rate at 
which process i awakes from the sleeping state wishing to access the resource 
and let /.li be the rate at which this same process releases the resource when 
it has a possession of it. Figure 3.5 provides a graphical illustration of this 
model. Each process i is modelled by a two-state automaton Ai. The function 
/  takes the value 1 when access is permitted to the resource and takes the 
value 0 otherwise.

To experiment with this model, we set A, =  l/i and = i, for i =  
1, 2, . . . ,  M. Parameters P  and M  were fixed to 8 and 16, respectively. These
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4ii

Figure 3.5: A Resource Sharing Model (Mutex).

values lead to a matrix [ mutex) of order n =  (^ ) ~  39, 203 and number
of nonzero elements nz =  563,491.

symmetric
n nz nz structure

.39,20.3 .563,491 yes

Table 3.23: Characteristics of the Mutex Problem.

Two more ill-conditioned test cases are generated from this model. The 
first one [mutex-altl) is obtained by setting /z, =  10^f. The second test case 
(mutex^altS) is even more ill-conditioned than the first and is generated by 
setting A,· =  and /i,· =  10  ̂¿. As the values of P  and M  are fixed, the
three test cases have the same order, number of nonzero elements, and nonzero 
structure. The partitioning results of these matrices are shown in Tables 3.24, 
3.25 and 3.26. Permuting with decomposability parameter 7 = 10“ *"
led to an additional test matrix {mutex-altL·gm6) which we also used in our 
experiments. However, we could not experiment with the permuted versions of 
mutex and mutex-alt2 respectively with decomposability parameters 7 = 10“  ̂
and 7 =  10“ ® due to the i/o  round-off error problem discussed in section 3.1. 
The nonzero structure symmetry information and the bandwidths of all the 
test matrices generated from this model are provided in Tables 3.23 and 3.27.
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number of smallest largest
7 blocks block size block size

10-3 256 1 256

number of last
blocks block size

equal 198 394
other 280 143

Table 3.24: Partitioning Results for the mutex Test Matrix.

number of smallest largest
7 blocks block size block size

10"® 256 1 256

Table 3.25: Partitioning Results for the mutex.altl Test Matrix.

number of smallest largest
7 blocks block size block size

10-^ 2.56 1 256

Table 3.26: Partitioning Results for the mutex-alt2 Test Matrix.

lower higher
matrix bandwidth bandwidth
mutex ,rnutex-altl ,mutex.alt2 13,495 13,495
mutex.altL·gm6 23,049 23,049

Table 3.27: Lower and Higher Bandwidths of the Mutex Problem Test Matri­
ces.



Chapter 4

Numerical Results

In this chapter we report and interpret the numerical results of the different 
solvers employed on the 27 test cases generated. All the results are summarized 
in tables in Appendix A. We generated and stored all the test matrices in the 
Harwell-Boeing format using MARCA. All code is written in Fortran and com­
piled in double precision with gl7  on a SUN Sparcstation running Solaris 2.5. 
The numerical experiments are timed using a C function that reports CPU 
time.

For each problem solved, the true residual and the relative backward error 
in the solution are computed. The true residual is computed as ||Ai||̂ , where 
X is the normalized approximate solution upon termination. The relative back­

ward error [16] is computed as |M¿||oc/(ll l̂locP■|loo)· Table 4.1 provides the 
notation used in the tables of results. If a method terminates at iteration k, 
then the column heading ||r|| denotes ||r(̂ ''||2 for GMRES and for the
other projection methods. These norms are incurred by the respective meth­
ods and need not be computed separately. Due to this, we compare ||r***||2 
(and not Ijr^̂ l̂l )̂ with the stopping tolerance 10“ °̂ at each (inner) iteration 
of GMRES. At the end of each restart the true residual is calculated explicitly 
from the current approximation (yet unnormalized) and then compared with 
the tolerance. If BCGStab converges due to the convergence test ||5||,̂  <  10“ °̂ 
(see BCGStab algorithm in Chapter 2), then ||r|| stands for ||5||̂  upon termi­
nation. In this case a superscript “s” (i.e., )̂ is inserted in the corresponding
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n Order of the coefficient matrix
nz Number of nonzero elements in the matrix
nzlu Number of nonzero elements after the incomplete LU factorization
cu Optimal relaxation parameter for point and block SOR
7 Decomposability parameter
Time Time (in seconds) taken by the method or the preconditioner,

but not both
MFlops Number of mega floating point operations
#  it Number of iterations performed
||r|| Infinity norm of the residucd incurred by the method upon

termination (exception for GMRES and BCGStab)
II AxII True residual upon termination
Bk. Err. Relative backward error upon termination 
||Ax|| Inifinity norm of the last two successive iterates

(exception for point SOR)
#  Bl. Number of diagonal blocks solved iteratively

(including blocks of size 1 and 2)
Partition. Partitioning technique used

Table 4.1: Notation Used in the Tables of Results.

cell. The column heading ||Ax|| denotes the infinity norm of the difference 
between the last two approximations except for point SOR in which it is re­
ported every 10 iterations, and hence represents ||x̂ '’  ̂ — where p is
the greatest multiple of 10 less than or equal to the number of iterations taken 
by point SOR upon termination. In other words, if point SOR terminates in / 
iterations then p =  max{10f, where lOi < I and i G IN}. An asterisk (i.e., *) 
following the iteration number means that the method failed to converge in at 
most that many number of iterations. The results of QMR 1 are reported only 
for mutex.altl test matrix as it is the only matrix for which it converged with 
(at least) one of the preconditioners used.

The dimension of the Krylov subspace we used for GMRES is 20 (i.e., m — 
20). With each projection method, we used two different thresholds for the 
ILU TH  preconditioner: 10"^ and 10“ .̂ In ILUK, we allowed a maximum of 
10 nonzero elements per row of the preconditioned matrix (i.e., K  =  10). The 
time taken by partitioning the matrices did not exceed 1 second except for test 
matrices generated from the qnatm, mutex, and leaky problems. Partitioning 
qnatm and qnatm,.gml test matrices took o.l and 3.7 seconds respectively.
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The times taken to partition mutex.alt 1 and mutex-altL·gm6 were 5.1 and .3.4 
seconds, respectively. Partitioning leaky using ncd test with 7 = 10“  ̂ and 
7 =  10~  ̂ each took 2.4 seconds.

The first thing we notice in the results of the easy test case is that lAD 
failed with all the partitionings used due to a reducible coupling matrix (see 
Table A.l) . However, block SOR performed rather well especially with ncd test 
7 =  10~  ̂ and other partitionings. This may be explained by examining the 
nonzero structure of the matrix (see Appendix B). The easy matrix is block 
tridiagonal (with the exception of the first row of blocks) where diagonal blocks 
are tridiagonal with increasing block sizes as we go down the matrix. This en­
ables the other partitioning to gather most of the nonzero elements within a 
block row in the diagonal block. The ncd test with 7 = 10~  ̂ gives a simitar 
partitioning to other (see the nonzero structure of easy.gmS) and hence a close 
performance (see Table A.3). We just wanted to show by experimenting with 
ncd test 7 =  10“  ̂ that a partitioning technique may lead to poor performance 
if it does not take full advantage of the divide-and-conquer nature of block 
iterative methods. For this particular partitioning all the diagonal blocks had 
size 1 except one which was of size 2 (see block SOR 7 =  10“  ̂ in Table A.l). 
The results of GMRES, CGS, and BCGStab are satisfactory for this test case. 
Each of them converge with all the preconditioners used, however they required 
longer time, in most of the converging cases, than block SOR due to the pre­
conditioning time overhead for I  LUTH  (10“ )̂. I LUTH  (10~^), and I LU K  
( 10). It is important to notice that CGS and BCGStab with ILU K  converged 
in only 1 iteration; 2 iterations are needed for GMRES. This suggests that the 
preconditioned matrix formed by IL U K  is quite well-conditioned.

BCG converged in only five test cases. The residual infinity norm that 
comes as a byproduct of BCG is observed to be unstable and oscilating too 
much which illustrates the irregular convergence behavior of BCG especially 

with NCD problems.

In the 2D matrix, BCGStab with I LUTH  (10"^) outperformed all the other 
solvers by converging in 4.9 seconds (see Table A.6). In fact, this is one of the 
two cases where a Krylov subspace method outperformed all block iterative
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methods. The second test case is mutex-altI.gm6. It can be seen from Ta­
ble A .6 that block SOR and lAD required a relatively long time to converge 
with ncd partitionings 7 =  10“  ̂ and 7 =  10“  ̂ though they both needed 2 
iterations to converge. The ncd test with y =  10“  ̂ partitioned the matrix 
to 512 diagonal blocks of size 1 and one last block of size 16,129, and simi­
larly ncd test with 7 =  10“  ̂ partitioned the matrix to 5,192 diagonal blocks 
of size 1 and one last block of size 11,449. These partitionings do not take 
any advantage of the divide-and-conquer nature of block iterative methods; we 
can easily deduce that the 2 iterations were entirely used to solve the large 
block in each partitioning and this may explain the relation between the low 
iteration number and the long time to converge. Note that equal and other 
partitionings converged in less time (but took larger number of iterations) as 
they partitioned the matrix more uniformly. The true residual calculated after 
240 iterations of GMRES with I LUO before normalizing the solution vector 
was 0.63 X 10“ °̂ (<  10~^°) causing the algorithm to terminate. However after 
normalizing the solution vector, the true residual and the relative backward 
error turned out to be respectively 0.26 x 10“ ® and 0.20 x 10“ ®, which are 
both larger than 10“ °̂. Periodic normalization of the approximate vector, as 
suggested in MARCA, may alleviate this problem.

The major inconvenience of QMR (1,2, and 3) that is observed in 2D and 
most of the test cases is its convergence behavior. The residual infinity norm 
in QMR tends to decrease in the first few iterations but stagnates thereafter. 
This behavior is observed in most of the test cases with all the preconditioners 
used. In ill-conditioned problems the residual may not be an accurate indicator 
of the number of correct digits in the approximate solution (see [24] p. 1168). 
This may explain why there were some cases (such as 2D with QMR 2, ILUTH  
(10“ ®)) for which although the implicit residual norm automatically computed 
by the method did not indicate convergence, the true residual turned out to be 
less than the tolerance. This suggests that an alternative stopping criterion, 

such as the one used in MARCA for two-stage iterative methods, might be 
employed for Krylov subspace methods. However, even with block iterative 
methods, we noticed two cases (ncd-gm4 and leaky) where the method had 
not converged but the true residual was less than the tolerance. See Tables 
A. 10 and A .27 for block SOR with other and lAD with ncd test 7 = 10“ ®
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partitionings, respectively. The alternative stopping criterion seems to be a 
better test for convergence but still does not solve all problems.

The equal partitioning of the ncd test matrix led to a reducible coupling 
matrix causing lAD to fail in this case (see Table A.9). With ncd test 7 = 10“ “* 
and oth er partitionings lAD outperformed block SOR though both methods 
followed the same strategy in solving the diagonal blocks (i.e., same blocks are 
solved iteratively in both methods). This shows the advantage of lAD over 
block SOR in solving the coupling matrix directly, in the aggregation step, 
when it is not too large. In this case it was of order 51 and 216 for ncd test 
7 z= 10“ “* and other  partitionings, respectively. The ncd test case is one of 
several test cases which demonstrates the superiority of BCGStab over the 
other projection methods.

The block SOR method with ncd test 7 =  10“ * and equal partitionings 
applied to the telecom  test matrix converged when the difference between two 
successive iterates is still greater than the tolerance (see Table A. 18). In these 
two particular cases, it is the alternative stopping criterion that caused the 
iteration to terminate. When cross validating the solution vectors obtained 
we noticed that for the ncd test 7 =  10“ * partitioning, the approximate so­
lution had five decimal digits in common with the solution computed by lAD 
7 = 10“ ,̂ whereas for the equal partitioning there were six digits in common. 
In this test case, lAD turned out to be far superior to block SOR for each 
partitioning taking into account the time to converge, the true residual, and 
the relative backward error. This again shows the advantage of the aggregation 
step in solving the coupling matrix directly when it is of reasonable order. See 
especially lAD results with ncd test 7 = 10“ ,̂ equal, and other  partitionings 

in Table A .18.

The qnatm  and m utex were the two largest problems we considered in our 
study. Interestingly, for m utex and m utex-altU gm O  point SOR outperformed 
all other solvers in terms of computation time (see Tables A.23 and A.25). 
These were the only test cases where point SOR is superior to other solvers. 
The coupling matrix obtained from the qnatm  problem by the ncd test 7 =  10“ * 
partitioning, and hence that of q n a tm .g m l, was very large (of order 91,800) 
causing the solution time of lAD to be unreasonably long (see Tables A.21
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and A.22). Nevertheless, we still could find at least one partitioning for block 
SOR with a satisfactory convergence time. Investigating the performance of 
the projection methods on these two problems we notice GMRES, CGS, and 
BCGStab are very satisfactory in terms of time taken by each solver (excluding 
preconditioning time). However, the wide bandwidth and the size of each 
matrix caused the preconditioning time taken by I L U T H  and IL U K , and 
hence the overall solution time, to be dramatically large.

We should point out that the ILU O  preconditioner led to better overall 
solution time than all the other preconditioners in 16 test cases (out of 27 
with which we experimented). IL U T H  (10~^) was the best preconditioner 
in 8 cases whereas each of IL U T H  (10~^) and I L U K  (10) was the best in 
only one case. The problem with ILU К  is the large time overhead to form 
the preconditioner. The test cases in which I L U T H  (10“ )̂ led to an overall 
solution time less than ILUO  are those in which the test matrices are of medium 
order (around 20, 000), have narrow bandwidth, and are either relatively more 
ill-conditioned than the generator matrix coming out of the seven problems 
(such as medium, hard, and ncd-alt2) or very sparse (such as 2D  in which the 
average number of nonzero elements per row is roughly 4).

The leaky matrix is the most ill-conditioned case in our test suite. In the 
ncd test partitioning with 7 = 10“ ®, the matrix was partitioned to 19-3 diago­
nal blocks; the largest block was of order 8.057 and there were 192 blocks of 
very small sizes. Choosing 7 = 10“  ̂ led to a partitioning of 7,386 diagonal 
blocks; the largest block was of order 507 and the rest of the blocks had very 
small sizes. As a consequence of these two unbalanced partitionings, block 
SOR and LAD could not benefit from the divide-and-conquer nature of block 
algorithms. Hence, the time taken for solving the diagonal blocks was biased 
towards solving the largest block in both partitionings. Going back to aggre­
gation in lAD, these two unbalanced partitionings made it a detrimental step 
rather than an accelerator for convergence. This may be the reason behind 
the poor performance of LAD with these two partitionings in contrast to the 
performance of block SOR with the same partitionings (see Table A.27). equal 

and o th er  provided more balanced partitioning patterns in terms of block sizes. 
As a result, they gave smaller solution times than ncd test partitionings in both
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block methods. Besides, the aggregation step caused lAD to outperform block 
SOR with equal and other partitionings. It is worth pointing out that LAD 
with the ncd test 7 =  10“  ̂ partitioning did not converge in 1,000 iterations 
but upon termination the true residual and the relative backward error were 
both less than 10“ °̂. The alternative stopping criterion used in block iterative 
methods seems to be more suitable for the convergence test, however it does 
not solve all problems. Point SOR was not as efficient as block methods in this 
severely ill-conditioned problem. All incomplete LU factorizations, and hence 
all preconditioned Krylov subspace methods failed due to extremely small pivot 
elements (less than machine precision).

4.1 The Effect of 111-Conditioning

In this section, we investigate the convergence behavior of point SOR, Krylov 
subspace, and block iterative methods on artificially more ill-conditioned prob­
lems. As it is mentioned in Chapter -3, three problems are selected for this 
purpose. The medium and hard test matrices are two more ill-conditioned 
versions of easy. Similarly, ncd-altl, ncd-alt2, mutex.altl, and mutex-alt2 are 
more ill-conditioned versions of ncd and mutex test matrices, respectively.

Comparing the results of easy, medium, and hard, we see that Krylov sub­
space methods performed worse as the matrix becomes more ill-conditioned 
(see Tables A .l, A .4 and A.o). The same behavior is observed for point SOR 
and block methods. When we go from easy to medium and from medium to 
hard, whenever the method converged the number of iterations for convergence 
almost always increased. Also it is interesting to notice that lAD failed due to 
a reducible coupling matrix in easy for all partitionings. The different block 
structure for ncd test coupled with different nonzero values of easy seems to 
be the cause. However, lAD converged for medium with all but one of the 
partitionings and especially equal and other with which it converged in a very 
short time, hard with ncd test 7 = lO“ “*, 7 =  10“  ̂ and 7 = did not
converge possibly because point SOR did not converge either for the original 

matrix (i.e., hard).
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From the pushout threshold example, it looks like ill-conditioning the prob­
lem affects the performance of the Krylov subspace methods, and point and 
block SOR adversely. Nevertheless, a close investigation of the results of ncd, 
ncd-altl, and ncd-alt2 shows that this is not always the case (see Tables A.9, 
A. 11 and A. 15). Projection methods performed better for ncd.altl than for 
ncd in all but two of the converging cases. In addition to that, BCG, QMR 2, 
and QMR 3 with IL U K  (10) converged for ncd.altl whereas none of them had 
converged for the ncd case. Block SOR with ncd test 7 =  10“ “* partitioning 
converged in 27.2 seconds for ncd whereas it only needed 4.5 seconds to con­
verge with ncd.altl. Similarly, lAD converged in 21.0 seconds for ncd but only 
5.1 seconds were recjuired for convergence with ncd.altl. Using the other par­
titioning, block SOR and lAD also performed better with ncd.altl than with 
ncd. On the other hand, Krylov subspace methods showed very poor perfor­
mance when applied to ncd.altS (which is more ill-conditioned than ncd.altl) 
in that only three converging cases are recorded. The only improvement we 
can see in block iterative methods is with the equal partitioning. Block SOR 
and lAD took less time to converge with eqrtal for ncd.altS than for ncd and 
ncd.altl. Point SOR did not converge with any of the three matrices. It is 
worth emphasizing that none of the block methods converged for ncd.alt2 with 
ncd test 7 =  10“ * partitioning. This value partitions the matrix to 3 diago­
nal blocks of size 1,275, 1,326 and 20,825. This unbalanced partitioning and 
solving the largest block iteratively with tolerance of 10“* are most likely to 
be the reasons behind the poor performance of block SOR and LAD for this 
test matrix.

For the mutex.altl test matrix all Krylov subspace methods performed at 
least as good as they did for the mutex matrix (see Tables A.23 and A.24). In 
addition, we should point out the considerable improvement in solution time 
of QMR 1 with ILU TH  (10“ )̂ and QMR 3 with ILUO and ILUTH  (10“ )̂ for 
mutex.altl, as they had not converged for mutex. Interestingly, in mutex.altl 
and mutex.alt2 the preconditioners formed by ILUTH  using threshold values 
10“ * and 10“ * were e.xactly the same and that is why we report the results 
of only one threshold for these two matrices. The results of Krylov subspace 
methods when applied to mutex.alt2 are slightly less competitive than those 
for mutex.altl though they performed better in few cases (see Tables A.24 and
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A.26). It is quite interesting to see BCG with ILUO and ILU K  ( 10) and QMR 
3 with ILUO converged for mutex.alt2 when they did not converge for mutex 
and mutex-altl. Furthermore, for the mutex problem, point SOR, block SOR, 
and lAD took less time to converge as the matri.x became more ill-conditioned.

For the six artificially more ill-conditioned test cases, we observe different 
convergence behavior for different types of solvers. In some cases, more ill- 
conditioning helps a given solver to converge faster. Hence, more ill-conditioning 
does not always imply worse performance. However, in general we cannot 
predict how the performance of a method changes with the degree of ill- 
conditioning.

4.2 The Effect of Reordering

In this section we study the effect of reordering the Markov chain state space 
on the convergence behavior of the solvers of interest.

In some problems, we observed that permuting the coefficient matrix to 
a wider band form causes Krylov subspace solvers to perform worse. This 
behavior is clear in the easy (Tables A .l, A .2 and .A.3), 2D (Tables .A.6, A .7 and 
A.8), and mutex-altl (Tables A.24 and A.25) test matrices though permuting 
mutex-altl caused BCG, QMR 2, and QMR 3 to fail in some cases. Although 
easy.grn4 and easy.gmS are reordered versions of the same matrix easy and 
lAD fails with all the partitionings in the original ordering, it is very interesting 
to see that the 7 =  10“ “* ordering with equal and other partitionings gave 
converging lAD iterations. Theoretically, for ncd test partitionings, the smaller 
the degree of coupling of the coefficient (or stochastic) matrix is, the fewer 
iterations lAD requires to converge. Nevertheless, this was not the case for 
lAD in 2D-gm2 test matrix with ncd test 7 =  10“  ̂ partitioning since it took 
more iterations to converge than with ncd test 7 = 10“  ̂ partitioning. The 
reason behind this is that LAD with ncd test 7 =  10“  ̂ partitioning solved 
all diagonal blocks iteratively. We recall that a relatively large tolerance (i.e., 
10“ )̂ was used for solving diagonal blocks iteratively.
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For other matrices such as ncd (Tables A.9 and A .10), telecom (Tables A .18, 
A .19 and A.20), and qnatm (Tables A.21 and A.22). permuting the matrix to a 
wider band form caused Krylov subspace methods to perform better in terms of 
the number of iterations taken to converge. However, increasing the bandwidth 
of a matrix generally increased the preconditioning time dramatically and hence 
led to a longer overall solution time despite possible decrease in the number of 
iterations. For ncd^altl and ncd.alt2 we could not see a clear difference in the 
behavior of projection methods as they performed better in some cases and 
worse in others (see Tables A.11-A.17). Point SOR required smaller solution 
time when permuted versions of qnatm and mutex-altl were used, however 
the solution time increased when easy and 2D were permuted. For all other 
permuted matrices point SOR did not converge. It is quite interesting to 
see that permuting a matrix did not cause any nonconverging point SOR to 
converge. Furthermore, we observed that equal and other partitionings on the 
permuted coefficient matri.x gave smaller solution times than with the original 
(nonpermuted) coefficient matrix in many test cases for both block iterative 
methods. See, for instance, block SOR with equal in Table A.7 and lAD with 
other in Table A .10.



Chapter 5

Conclusion and Future Work

In this thesis, we compare and contrast the competitivity of projection meth­
ods, block iterative methods, and point SOR in computing the stationary prob­
ability vector of finite nearly completely decomposable (NCD) Markov chains. 
The methods are tested on 27 test cases arising from 7 real life problems. 
Among these there is a severely ill-conditioned matrix (i.e., NCD up to ma­
chine precision).

The numerical experiments show that block iterative methods are in general 
superior to Krylov subspace methods and point SOR for the test cases used. 
It is noticed that the more balanced, in terms of block sizes, the partitioning 
is, the more these methods take advantage of their divide-and-conquer nature, 
and hence the shorter time they need to converge. The iterative aggregation- 
disaggregation (lAD) algorithm proves to be very competitive with block SOR. 
In case the coupling matrix is of reasonable size, lAD usually gives satisfactory 
performance. However, the drawback of lAD is that it may fail or require an 
unreasonably long time to converge if the coupling matrix is reducible or of 
very large size. In addition, it is shown that straightforward partitionings are 
very competitive with those of ncd test. Out of 27 test cases, equal and other 
partitionings each outperformed ncd test partitionings in 8 cases.

86



CHAPTER 5. CONCLUSION AND FUTURE WORK 87

Among the projection methods of interest, it is clear that BCGStab per­
forms the best. It converged for all the test matrices with at least one pre­
conditioner. Its convergence time is always the shortest or very close to that 
of an outperforming projection method. GMRES and CGS come second with 
the former being more costly in terms of memory requirements and number of 
flops per iteration. BCG and QMR perform rather poorly as they converged 
only for very few test cases. Point SOR did not give satisfactory results either; 
it converged in only 12 cases.

When the coefficient (or stochastic) matrix is extremely ill-conditioned (such 
as leaky), incomplete LU factorization may fail causing preconditioned Krylov 
subspace methods to fail too. Moreover, it is shown that ILUQ may be very 
efficient as a preconditioner if the matrix is quite large, not very narrow banded, 
or not extremely sparse as 2D.

Ill-conditioning a given problem does not always imply worse performance. 
It is shown that in some cases ill-conditioning the problem helps the solver 
to converge faster. Permuting the coefficient matrix to a wider banded form 
usually affects the performance of Krylov subspace methods adversely in terms 
of overall computation time, though the method may converge in less iterations. 
This is due to the longer preconditioning time required for a wider banded 
matrix when ILUTH  and I LU K  are used. In some cases, equal and other 
partitionings benefit from reordering the state space and improve the solution 

time significantly.

As for further research directions, it is quite important to test other precon­
ditioners with Krylov subspace methods and study how the behavior of these 
methods are affected. For block iterative methods, other straightforward par­
titionings may be worth investigating. Since the coupling matrix in lAD is a 
reduced order stochastic matrix, it would be interesting to study the effect of 
solving the coupling matrix using the lAD method itself, especially for large 

NCD svstems.
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Tables of Results
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easy n = 20,301 = 140,504
Freconditioner nzlu Time "MFlops

'ILUO ............... T40,504 UTo ■ o:'2
ILUTH (10-·^) 60,097 5.9 0..3
ILUTH UO“ '') 110,010 6.1 0.5
ILUK (10) 201,187 18.5 9.8

Method Preconditioner Time #  it r Ax Bk. Err.

GMRES 
(m = 20)

ILUO ■ ■ ..... 2:6 7 ■ 0.65e -  12 ■ 0.23c -  15 ■■■0.69c -  16
ILUTH (10-") 4.7 14 0.60e -  12 0.50c -  12 0.L5c- 12
ILUTH (10-^) 1.8 5 0.64e -  13 0.40c -  13 0.12c- 13
ILUK (10) 1.0 2 '0:0DV- 12 0.26c -  13 0.80e -  14

BCG
ILUO 297.9 “ 500=‘ 0 .l2e-06 0.40c -  09 0.T2c- 09
ILUTH (10“ ") 225.7 500* 0.57e + 00 0.54c -  02 0.19c- 01
ILUTH (10-^) 270.6 500* 0.46e -  03 0.51c -  04 0.16c -  04
ILUK (10) 348.0 500* 0.1.3e-01 0.19c -  02 0.8.5c -  03

CGS
ILUO 2.4 4 0.62e — 10 0.37c -  13 'U T lc- 13
ILUTH (10-^) 3.6 8 0.20e -  10 0.17e- 10 0.51e- 11
ILUTH (10--^) 1.7 3 0.45e -  13 0.26c -  13 0.79c -  14
ILUK flOl 0.8 1 0.13e- 10 0.31c -  12 0.94c -  13

BCGStab
ILUO 2.6 4 0.47e -  12 0.96e — 15 0.29e -  15
ILUTH (10"'^) 6.8 15 0.69e -  10 0.57c -  10 0.17c- 10
ILUTH (10-^) 1.5 3 O.lle -  10* 0.64e- 11 0.20c- 11
ILUK (10) 0.8 1 O .lle - 12 0.58c -  14 0.18c -  14

QMR2
ILUO 359.0 500* 0.30e -  08 0.5lc -  11 0.15c -  11
ILUTH (10-^) 286.3 500* 0.3le -  09 0.28e -  09 0.86c -  10
ILUTH (10-^) 331.1 500* 0.38e -  08 0.24c -  08 0.74c- 09
ILUK (10) 4.5 5 0.46e -  10 0.18c -  10 0..5.5C -  11

QMR .3
ILUO 367.4 “ oOÔ 0.38c -  06 O.l2c-09 0.35c -  10
ILUTH (10-G 286.3 500* 0.53e -  03 0.51c -  03 0.24c -  03
ILUTH (10-^) 38.3 42 0.80c -  10 0.59e -  10 0.18c- 10
ILUK cm “ 1071 24 0.32c -  10 0.2.5c -  11 0.75c -  12

SOR
w Ax 11 Time | j f it .4x Bk. Err.
1.0 I 0.64e -  11 I 4.8T 3 i | U.tiDe -  12 | 0.2ie 

Block SOR
Partition. u Ax Time # i t Ax Bk. Err. #  Bi.
7 = 10-“« 1.0 0.61c- 11 6.1 n

i 0.60c -  15 0.18c- 15 206
7 = 10"^ 1.0 0.28c -  10 2.1 7 0.1.5c- 14 0.47e — 15 3,861
7 = 10"'̂ 1.0 0.36c- 10 8.0 24 0..34C -  12 O.lOc- 12 20,300
equal 1.0 0.11c -  10 3.9 7 0.10c- 14 0.31c -  15 0
other 1.0 0.84e — 11 1.9 ■ T 0.8le -  15 0.25e — 15 2

lAD
Partition. u) Ax Time # it .4x | | Bk. Err. #  Bl.
7 = 10-“* failed (coupling matrix reducible)
7 = 10-" J failed (coupling matrix reducible)
7 = 10-' failed ^coupling matrix reducible)
equal failed (coupling matri.x reducible)
other failed (coupling matri.x reducible)

Table A.l: Numerical Results for easy.
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easy.gm4 n = 20,301 nr = 140,504
Preconditioner nzlu Time M Flops
ILUO ■■I40;'504· ■■■ 0.5 ■■■■0.2”
ILUTH (10-^) 62,678 13.4 0.4
ILUTH OO"^) 112,427 13.9 0.8
ILUK (10) 202,541 35.3 14.8

1 Method Preconditioner Time # it r| IM̂ II 1 Bk. Err.

GMRES
[m = 20)

TETJO -----3 X 8 ■ 0'.21e -  12 ■ O .lle - 15 ■ 0.33e -  16
ILUTH (10-^) 4.9 14 0.25e- 11 0.16e- 11 0.50e -  12
ILUTH (10-·^) 2.2 6 0.24e -  13 0.14e -  14 0.43e -  15
ILUK (10) 4.0 9 0.22e -  10 0.18e- 15 0.56e ~ 16

BCG
ILUO .300.5 ~5(5ir' 0.37e + 00 0.53e -  04 0.176-04
ILUTH (10-^) 226.3 500’ 0.40e + 01 0.40e -  02 0.266 -  01
ILUTH (10-^) 273.9 500· 0.56e — 02 0..58e -  03 0.196 -  03
ILUK (10) 3.53.0 500’ 0.92e -  03 0.81e-08 0.2.56 -  08

CGS
ILUO 3.1 5 0.22e -  12 0.45e -  10 0.14e — 16
ILUTH (10-‘") 3.7 8 0.59e — 10 0.39e- 10 0.126- 10
ILUTH (10-^) 1.7 3 0.35e — 11 0.63e -  12 0.196 -  12
ILUK (10) 1.5 2 0.28e -  10 0.49e -  16 0.1.56- 16

BCGStab
ILUO 2.8 5 0.91e- IP 0.95e — 15 0.296 -  15
ILUTH (10-") 11.1 24 0.49e -  10 0.81e -  10 0.2.56 -  10
ILUTH (10-·^) 1.8 3 O.T2e -  11 0.72e -  12 0.226 -  12
ILUK (10) 1.5 2 0.25e -  10 D'.48'e -  16 0.15e — 16

QMR 2
ILUO 360.1 “ 50r 0.14e-07 ■"0.16e -  10 0.486 -  10
ILUTH (10-" ) 288.0 500· 0.18e -  08 0.20e -  08 0.626 -  09
ILUTH (10-^) .333.9 .500’ 0.58e -  07 0.61e-09 0.196-09
ILUK (10) 415.1 "IHir 0.63e -  09 0.1.5e -  13 0.456 -  14

QMR 3
ILUO 366.6 “ 5iHF11:2-96- -  03 ir39e -  06 0.126-06
ILUTH (10-") 293.5 500· Cl.32e -  08 0.21e-08 0.656 -  09
ILUTH (10-^) 342.2 .500· 0.26e -  03 0.79e -  04 0.386 -  04
ILUK (10) 421.2 0.17e -  02 0.38e -  08 0.116-08

SOR
U Ax Time # it Ta-I Bk. Err.
1.0 I 0.2V'e -  07 I 29.2 I 20V | U.ooe -  11 | O.l.Se -  IF 

Block SOR
Partition. UJ Ax Time # it Ax Bk. Err. ^ T B ir
7 = 10-·» 1.0 0.616 -  11 5.8 7 0.59e -  15 0.186- 15 206
7 = 10-^ 1.0 0.286 -  10 1.9 7 0.1.56 -  14 0.46e -  15 3,861
7 = 10-'^ 1.0 0.646 -  10 7.5 24 0.61e -  12 0.19e -  12 20.300
equal T i r 0.9.56- 11 12.6 42 0.166 -  14 0.50e -  15 0
other 1.0 0.236 -  10 14.1 62 0.21e -  14 0.65e -  15 2

lAD
Partition. u) Ax Time # it .4x | | Bk. Err. #  Bl.
7 = 10-·* failed (coupling matrix reducible)
7 = 10-^ failed (coupling matrix reducible)
7 = 10-^■ ■ fai ed (coupling matrix reducible)
equal 1.0 0.126- 10 8TT 0.216- 14 0.636 -  15 0
other ~ n r 0.766 -  11 6.9 7 0.74e -  lo 0.22e -  lo 2

Table A.2: Numerical Results for easy.gm^.
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easy.gmS n = 20,301 = 140,504
Freconditioner nzlu Time M Flops

TEUi) 140;5O4' ... 0.2
ILUTH (10-^) 60,097 6.0 0.3
ILUTH (10-^) 108,100 6.1 0.4
ILUK (10) 200,614 18.4 8.6

Method Preconditioner Time #  it r i Ax Bk. Err. 1

CnVIRES 
(m = 20)

TCTJi)-------------- JT ------j«r-i ■ 0 .ire -T 2 0.14e — 15 ■ 0.42e -  16
ILUTH (10-^) 4.7 14 0.60e -  12 0.50e -  12 O.L5e -  12
ILUTH ao--^) 1.8 5 0.75e -  13 0.45e -  13 0.14e -  13
ILUK (10) 1.1 2 0.8.3e -  12 0.28e -  13 0.8.5e -  14

BCG
ILUO .36.7 61 0.l3e -  11 0.74e — 14 D:23e -  14
ILUTH (10-^) 226.6 500’ 0.99e -  04 0.82e -  04 0.25e -  04
ILUTH (10"^) 271.3 500’ 0.17e-06 0.57e -  04 0.18e-06
ILUK (10) 21.2 30 ' 0.92e -  10 O .lle - 10 0.3.3e -  11

CGS
ILUO 2.5 4 D726e - T 1 0.91e — 15 0.28e -  15
ILUTH (10-^) 3.7 8 0.20e -  10 0.17e- 10 0.51e- 11
ILUTH (10-'^) 1.7 3 0.32e -  13 0.19e -  13 0.57e — 14
ILUK (10) 0.8 1 0.68e -  11 0.16e -  12 0.49e -  13

BCGStab
ILUO 2.5 4 0.93e -  13 “D72'4e·- 14" 0.73e — 15
ILUTH (10-^) 6.7 15 0.69e -  10" 0.15e — 09 0.47e -  10
ILUTH (10-^) 1.5 3 0.94e- 11" 0.55e -  11 0.17e- 11
ILUK (iO) 0.8 1 0.32e -  13 0.39e -  14 0.12e- 14

QMR 2
ILUO 358.9 500* 0.70e -  09 O.20e -  11 0.60e -  12
ILUTH (10-^) 287.8 .500’ 0.77e -  09 O.lOe-08 0.32e -  09
ILUTH (10-") .329.6 500’ O.lOe-07 0.17e -  06 0.52e — 07
ILUK Uo) 12.7 15 0.99e -  10 0.25e -  10 0.78e -  11

QMR 3
ILUO 367.2 500’ 0.37e -  03 0.53e -  04 0.17e- 04
ILUTH (10-") 292.6 500’ 0.27e -  08 0.22e -  08 0.67e — 09
ILUTH (10-·^) 337.2 500’ 0.20e -  03 0.77e -  04 0.52e -  04
ILUK (10) 419.3 500’ 0.62e -  09 0.39e -  10 O.T2e -  10

SOR

1 Ax Time 1# 1 \Ax 1 Bk. Err. 1
L M J U.44e -  TUI1 -isvei 180 1rO.Tle- 11 rir.TIe -  11 1

Block SOR
Partition. Ax Time # it .Ax Bk. Err. #B l.
7 = 10~‘* 1.0 0.61e -  11 5.8 7 O.GOe — 15 0.18e- 15 206
7 = 10-·' 1.0 0.28e -  10 1.9 7 0.1.5e -  14 0.46e -  15 3,861
7 = 10-" 1.0 0.55e — 10 7.5 24 0.52e -  12 0.16e- 12 20, .300
equal 0.60e -  l l 4.4 10 0.20e -  14 0.60e -  15 IT
other 1.0 0.84e -  11 1.8 7 0.81e -  15 0.2.5e -  15 2

lAD
Partition. u Ax Time | #  it Ax Bk. Err. #  Bl.
7 = 10"“ failed (coupling matri.x reducible)
7 = 10-·' ■ ■■ failed (coupling matri.x reducible)
7 = 10-''̂ ··“ failed (coupling matri.x reducible)
equal failed (coupling matrix reducible)
other failed (coupling matri.x reducible)

Table A.3: Numerical Results for easy.gmS.
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medium n = 20,301 «2 = 140,504
Freconditioner nzlu Time MJb’lops
ILUI) ............ 140,'504 . . o :o “ W
ILUTH (10"·'') 155,313 5.8 0.7
ILUTH (10-^) 275,253 6.4 1.5
ILUK (10) 201,189 19.8 10.8

1 Method Preconditioner Time #  it r Aj  1 1 Bk. Err. 1

GMRES 
(m = 20)

TETJD TT D T 90e-ll ■ 0.26e- 11 D'.TJ0e -  11
ILUTH (10-·^) 6.7 15 0.32e- 11 0.48e -  15 0..5.3e -  15
ILUTH (10-^) 10.4 19 0.48e -  10 0.50e — 14 0.55e -  14
ILUK (10) 5.4 12 0.73e- 11 0 .l2 e - 13 0 .l3 e - 13

BCG
ILUO 298.7 O.l7e + 03 0.15e -  02 O.12e + 00
ILUTH (10-^) .309.8 500* 0.1.5e-03 0.29e -  08 0.32e -  08
ILUTH (10-^) 396.7 500* 0.39e -  02 0.26e -  08 0.28e -  08
ILUK (10) 343.4 500’ 0.15e + 00 O.lOe -  03 0.12e-03

CGS
TTUD 291.6 500* 0.16e + 15 0.23e -  02 O.lOe+ 00
ILUTH (10-") 6.8 11 O.lle -  11 0.3.3e -  15 0.37e -  15
ILUTH (10-^) 4.0 5 0.17e -  10 0.3.5e -  16 0.38e -  16
ILUK (iO) 5.5 8 O.lle -  11 O.lOe -  14 0.20e -  14

BCGStab
ILUO 17.5 30 0.35e — 10̂ 0.92e — 11 O.lOe -  10
ILUTH (10-") 6.6 11 0..50e -  10̂ O.lOe -  13 o.lle -  13
ILUTH (10-^) 3.2 4 0.14e -  10 0.73e -  16 0.80e -  16
ILUK (10) 4.5 7 0..34e -  10̂ 0.57e -  13 0.6.3e -  13

QMR 2
ILUO 366.3 0.2-5e — 05 0.35e -  06 0.39e -  06
ILUTH (10-^) 376.8 500* 0.18e-07 0.28e- 11 0.30e -  11
ILUTH (10-^) 463.4 500* 0.76e -  06 0.30e -  12 0.33e -  12
ILUK (“1^ 410.2 500* O.l.Se -  07 0.21e -  10 0.23e -  10

QMR3
ILUO 368.2 0.90e -  04 0.62e -  04 0.17e- 03
ILUTH (10-") 378.7 500* 0.45e -  04 0.51e — 07 0.56e -  07
ILUTH (10-^) 465.9 500* 0.99e -  07 0.39e -  13 0.43e -  13
ILUK (10) 412.4 500’ 0.91e -  07 0.15e — 09 0.17e -  09

SOR

1 Ax Time #  it .4x Bk. Err. 1
1 1.1 1 O.lOe -  09 | 51.4 | 352 | U.40e -  40T 0'.44e -  iUI

Block SOR
Partition. (jj Ax Time # it Tx Bk. Err. #  Bi.
7 = 10-^ 1.0 0.8.5e -  10 219.5 13 0.14e -  10 0.1.5e -  10 3
7 = 10-'" ' 1.0 0.93e -  10 343.0 24 0.21e- 10 0.23e -  10 707
7 = 10-‘ 1.1 0.97e -  10 19.6 57 0.34e- 11 0.37e- 11 20,300
equal w 0.18e -  11 4.5 2 0.28e — 15 0.31e- 15 0
other 1 :2 “ 0.38e -  10" 43.0 218 0.17e -  10 U.lSe -  10 2

lAD

Partition. LJ Ax Time w Îx Bk. Err. #  Bi.
7 = 10"^ 1.0 0.82e -  10 220.0 13 0.14e- 10 0.15e- 10 3
7 = 10"'" 1.1 0.61e- 10 .320.0 10 0.13e- 11 0.14e -  11 707
7 = 10“ ^ 1.0 requires unreasonably long time
equal 0 .l3 e - 14 5.7 T 0.59e -  16 0.6-5e -  16 0
other i r r 0.85e“-1 0 " 4.7 10 0.55e -  11 0.60e — 11 2

Table A.4: Numerical Results for medium.
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hard n = 20,301 nz = 140,504
rreconditioner nzlu Time MFlops
ILUO 140;'504 0:5 .... (T.T
ILUTH (10-^) 237,472 6.5 1.1
ILUTH (10-^) 860,386 12.4 10.5
ILUK (10) 201,187 17.7 8.4

Method Preconditioner Time # i t T A x Bk. Err.

GMRES
(m =  20)

ILUO ■ ■■■ I I O T T · 480 UDOe -1 0 ' 0.45c -  10 ■lT52e -  08
ILUTH (10-") 184.1 360 0.41e- 10 0.21e -  10 0.24e -  08
ILUTH (10-^) 35.2 40 0.13e -  11 0.38e -  12 0.43e -  10
ILUK (lO) 163.2 “ 340” 0.86e -  10 0.34e -  10 0.38e -  08

BCG
ILUO 297.1 “ 500* 0.82e +  06 0.14e-02 0.64e -  01
ILUTH (10-'^) 374.2 500* 0.31e + 03 0.12e- 02 0.6.5e -  01
ILUTH (lO--") 839.7 500* 0.47e +  00 0.67e -  03 0.5.5e -  01
ILUK (10) 346.0 500* 0.74e +  03 0.77e -  03 0.57e- 01

CGS
ILUO 291.2 500* 0.30c T 0 i 0.34e -  03 “0:9'8e -  01
ILUTH (10-^) 364.0 500* 0.32e +  17 0.15e- 02 b.7.3e -  01
ILUTH (10-· )̂ 37.2 23 0.14e- 10 0.42e -  11 0.48e -  09
ILUK (lO) 337.8 “ 500* 0.11e+ 15 O.lle -  02 0.1.3e +  00

BCGStab
ILUO 43.1 73 0.3le -  10* 0.15c — 10 0.17e — 08
ILUTH (10-") 40.5 55 0.3 l e -  10̂ 0.16e- 10 0.18e- 08
ILUTH (10-^) 22.7 14 0.98e -  10 0.29e- 10 0.33e -  08
ILUK (10) 40:2" 59 0.55e — 10̂ 0 .26c — 10 0..30e -  08

QMR 2
ILUO 358.6 “ 500* 0.27e -  04 0.25e — 04 0..30e -  01
ILUTH (10~O 4.36.8 500* 0.27e -  04 0.23e -  04 0.28e -  01
ILUTH (10-^) 900.1 500* 0.78e -  08 0.2.3e -  08 0.27e -  06
ILUK (10) 410.6 “ 500* 0.26e -  04 0.2le -  04 0.44e-01

QMR 3
ILUO 699.2 500* 0.45e -  04 D'.3'2e -  04 O.2le-01
ILUTH (10-") 773.0 500* 0.26e -  07 0.14e- 07 0.15c -  05
ILUTH (10--^) 2010.0 500* 0.15e- 08 0.46e -  09 0.53c — 07
ILUK (lOl 733.7 500* 0.59e -  07 0.24e -  07 0.24e -  05

SOR
UJ Ax Time #  it Ax Bk. Err.
1.0 I 0.57e -  06 I 147.0 | 1,000’  | U.97e -  07 | 0.42e -  04 

Block SOR
Partition. u Ax Time # it Ax Bk. Err. #  Bl.
7 = lO-'* 1.0 requires unreasonably lon  ̂ time
7 = 10“ ^ 1.0 requires unreasonably lon  ̂ time
;=Tib^^··· 1.0 requires unreasonably lon  ̂ time
equal 1.0 0.77e -  06 338.7 1,000* 0.33e -  07 0.52c -  Oo 0
other 1.0 0.78e -  06 185.1 1,000* 0.72e -  07 0.23e -  04 2

lAD
Partition. ijj Ax Time #  it ||/l.r Bk. Err. #  Bl.
7 = 10"“ 1.0 requires unreasonably long time
4 = 10 -·'" ' 1.0 requires unreasonably lon  ̂ time
4 = 10-' ■■ 1.0 requires unreasonably long time
equal 1.0 failed (coupling matrix reducible)
other 1.4 0.93e -  lO 1 31.6 1 112 | 0.14e -  10 | 0.15e -  08 | 2"

Table A.5: Numerical Results for hard.
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2D n — 16,641 ru =  66,049
Preconditioner nzlu Time M H ops
rn:"o 66,049'· ...  0'.2 0.05
ILUTH (10-^ ) 99,997 2.6 0.40
ILUTH a o -^ ) 138,392 2.7 0.60
ILUK (10) 165,819 9.0 4.80

M ethod 1 Preconditioner Time 1 #  it ||r|| .Ax 1 Bk. Err. 1

GM RES 
(m  =  20)

"lEIJi)-----------------■■ '67.4'■ ^ 4 ir■ " o r o ^ n i r ■"0:26e·- 09 ■ 0.20e -  08
ILUTH (10 -^ ) 6.2 20 0.32e -  12 0 .1 9 e -  12 0 .1 5 e -  11
ILUTH (10-^ ) 2.9 10 0.54e -  13 0.79e -  14 0.63e -  13
ILUK (10) 4.2 13 0 .1 7 e -  12 0.47e -  12 0 .3 7 e -  11

BCG
ILUO 166.6 ■“ oOU" 0.77e 4- 04 0.70e -  02 0.99e -  01
ILUTH (10 -" ') 199.0 500’ 0.73e +  00 0.44e -  03 0.56e -  01
ILUTH (10 -^ ) 230.5 500’ 0.36e -  03 0.98e -  04 O .lO e -0 2
ILUK (lO ) 252.1 ■~50(r 0.18e +  02 O .l le - 0 2 0.15e -  01

CGS
ILUO 164.4 500"' 0.25e +  14 O .lle  -  01 O .l le +  00
ILUTH flO-'^) 4.8 12 O . l l e -  10 0.50e -  11 0.40e -  10
ILUTH (10-^ ) 2.4 5 0.42e -  11 0.52e -  12 0.41e -  11
ILUK (10) 4.1 8 0 .1 9 e -  10 0 .3 2 e -  10 -O '6 'e  -  09

BCGStab
ILUO 12.7 38 0.66e -  10" 0.70e -  10 0.55e -  09
ILUTH (10 -^ ) 4.6 12 0 .1 9 e -  10" 0 .8 9 e -  11 0.70e -  10
ILUTH (10-^ ) 2.2 5 0.36e -  10" 0.44e -  11 0.35e -  10
ILUK (10) 3.8 8 0.65e -  11" O .lle  -  10 0.90e -  10

Q M R 2
ILUO 217.3 “ 500* 0.30e -  04 0.2(je -  04 ■ 0 :i2 e -0 '2
ILUTH (1 0 -" ) 248.1 500’ 0.55e — 09 O.ole — 09 0.40e -  08
ILUTH (10-^ ) 281.0 500· o . l l e - 0 9 0.26e -  10 0.20e -  09
ILUK (10) 304.7 500’ 0.14e -  09 0.24e -  09 0 .1 9 e -0 8

Q M R 3
ILUO 224.0 “ 500* 0.34e -  04 0.30e -  04 0.20e -  02
ILUTH (1 0 -" ) 252.9 500’ 0.87e -  08 0 .4 1 e -  08 0..32e -  07
ILUTH (10-^ ) 286.1 500* 0.15e -  07 0.18e -  08 0 .1 4 e -0 7
ILUK (10) 308.5 500’ 0.31e -  09 0.54e — 09 0.4.3e -  08

SOR
1 u 1 A x Time Ax Bk. Err. 1
1 1.4 1 U.64e -■(191I 29.'61 314 1rn.Yle -  i r rU.57e -  10 1

Block SOR
Partition. u Aa;|| Time # i t — p l [ Bk. Err. #  Bl.
7 =  10"^ 1.0 0.26e -  15 62.3 2 0.22e -  17 0 .1 7 e -  16 512
7 =  1 0 - ' ■■ 1.0 0.60e -  15 35.1 2 0..30e -  17 0.24e -  16 5,192
equal r r i “ 0 .9 1 e -  10 33.0 rT99“ 0 .6 0 e -  11 0.48e -  10 0
other 1.2 0 .9 8 e -  10 .35.1 205 0.79e -  11 0.63e -  lO 2

lAD
Partition. u A x Time # i t i4x Bk. Err. #  Bl.
7 =  10-^ 1.2 o . l l e  -  13 62.5 2 0.16e -  15 0.12e -  14 512
7 =  1 0 ' - ^ 1.1 0.79e -  15 121.4 2 0 .7 2 e -  17 0.57e — 16 5,192
equal 0.65e — 10 9.5 39 0.22e — 11 0.17e -  10 0
other T X 0.80e -  10 lo .g· .39- 0.26e - I ' l 0.21e -  10 2

Table A.6: Numerical Results for 2D.
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2D.gm3 n =  16,641 nz = 66,049
Freconditioner nzlu Time M Flops
lUOO ............... 66,049 ■ ■ 0/2 0.05'
ILUTH (10-'") 202,660 13.1 0.90
ILUTH (10~^) 509,417 15.0 3.40
ILUK (10) 161,144 29.2 8.40

1 Method Preconditioner Time | #  it r Ax Bk. Err. 1

GM RES 
(m  =  20)

" m r o '145:6 ' 0 .1 2 e -  08 0.14e -  08 O .l le - 0 7
ILUTH (10-'^) 100.1 260 0.34e -  10 0.37e -  10 0.29e -  09
ILUTH (10-^) 103.3 180 0.18e -  10 0.3.5e -  10 0.28e -  09
ILUK (10) 85.5 “ 24T 0 .1 2 e -  10 0 .1 4 e -  10 O .l le - 0 9

BCG
ILUO 168.5 “ oIHF 0.26e +  04 0.53e -  02 0.28e -  01
ILUTH (1 0 -") 277.1 500* 0.13e +  01 0.47e -  02 0.37e -  01
ILUTH (10-^) 517.0 500* 0.76e -  05 0.14e -  04 O . l le - 0 3
ILU k (10) 246.2 500“ 0..50e +  01 0.45e -  02 0.33e -  01

CGS
ILUO 167.6 500* 0.89e +  15 TOJe ■- 02 0.27e -  01
ILUTH (10“ ") 15.8 29 0.67e -  10 0.72e -  10 0.58e -  09
ILUTH (10-^) 27.6 28 0.30e -  11 0.57e -  11 0.45e -  10
ILUK (10) 20.2 41 0.6.3e -  10 0.7.3e -  10 0..58e -  09

BCGStab
ILUO 30.0 88 0.44e -  lO"' 0 .5 1 e -  10 ITTOe -  09
ILUTH (1 0 -") 14.6 27 0.27e -  10̂ 0.29e -  10 0.23e -  10
ILUTH (10-^) 28.3 29 0 .2 7 e -  12" 0..50e -  12 0 .4 0 e -  11
ILUK (10) 21.3 43 0.90e -  10 O.lOe -  09 0.8.3e -  09

Q M R 2
ILUO 249.8 “ 500* ■0;i2e -  03 O .lle -  03 0.86e -  02
ILUTH (10-·^) 324.0 500* 0.30e -  08 0.32e -  08 0.2.5e -  07
ILUTH (10-^) .5.52.5 500* 0..32e -  07 0.59e -  07 0.47e -  06
ILUK (10) 293.0 500* 0.17e -  03 0.20e -  03 0.18e -  02

Q M R 3
ILUO 221.5 “ oOO*“0Tl6e -  03 O .L5e- 03 0.84e -  02
ILUTH ( i O ^ 330.1 .500* 0.44e -  07 0.47e -  07 0..38e -  06
ILUTH ( lo - '^ r .5.59.6 •500* 0.T2e -  06 0.22e -  06 0.17e -  05
ILUK (10) 300.3 "TOO* 0.l2e -  03 0.13e -  03 0 . l 3 e - 0 2

SOR
L i ^  . Aar Time # i t Ax Bk. Err.
1 1.0 1 O .1 3 e -0 6  1I 86.5 1T,W (5*·r0:82e - 08 1 0.65e — 07 1

Block SOR
Partition. \jj Ax Time # i t Ax Bk. Err. # B 1 .
7 = 10“ ^ 1.0 0.58e -  15 .55.5 2 0 .1 7 e -  17 0 .1 4 e -  16 512
7 =  10-^ 1.0 0.72e -  15 31.9 2 0 .1 .3e- 17 O.lOe -  16 5,192
equal T I T 0.88e — 10 23.0 ~TIT 0.28e -  11 0.23e -  10 r
other 1.2 0.99e -  10 .54.7 297 0.45e -  11 0.35e -  10 T

lAD
Partition. OJ Aa: Time #  it Ax Bk. Err. #  Bl.
7 =  10-^ 1.0 0.58e -  15 55.0 2 0.24e -  17 0 .1 9 e -  16 512
7 =  lO-"* 1.0 0.61e -  15 146.5 2 0 .2 8 e -  17 0.22e -  16 5,192
equal 1.2 0.77e -  10 10.7 30 0 . l 2 e -  l l 0.93e -  11 0
other 1.3 0.89e -  lO 11.6 27 0.9.5e -  12 0.75e — 11 2

Table A.7: Numerical Results for 2D-gm3.
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2D-gm2 n =  16,641 ru 66,049
Freconditioner nzlii Time M Flops
ILUO ■ 66sD5r 0.2 ■■"0.05
ILUTH (10-^) 173,390 9.2 0.80
ILUTH (10-^) 492,850 12.0 2.80
ILUK (10) 162,834 51.1 6.50

1 Method Preconditioner | Time #  it r Ax Bk. Err.

GMRES 
( rn = 20)

■"TEIJO--------------■TToTT'TOIT■ 0.27e-'10 ■lT40e-'10 ■ 0.29e -  09
ILUTH (10-") 12.7 36 0.41e- 12 0.36e -  12 0.29e- 11
ILUTH aO"·^) 11.4 20 0.16e- 10 0.40e -  10 0..32e -  09
ILUK (10) 108.9 ^00" 0.37e -  10 0.49e -  10 0.39e -  09

BCG
ILUO 169.8 “ 500" ̂ 0.79e + 01 lT.48e -  02 0.43e -  01
ILUTH (10-") 253.9 .500' 0.95e -  03 O.lle -  02 0.56e -  02
ILUTH ao-^) 490.8 500* 0.47e + 01 0.20e -  02 0.27e -  01
ILUK (10) 263.2 “ 500" 0.8le + 02 0.35e -  02 ir.2'8e“ -0 1

CGS
ILUO 167.6 ■^00" O.l8e + 08 0.45e -  02 0.29e -  01
ILUTH (10-·^) 8.5 17 0.14e- 10 0.13e- 10 O.lOe-0 9
ILUTH ao-·") 17.3 18 0.94e -  12 0.23e- 11 0.18e- 10
ILUK (10) 245.6 50O* 0.80e T 09 0.14e -  01 0.1.5e + 00

BCGStab
IL U 0 25.2 74 0.73e -  lO* 0.99e -  10 0.79e -  09
ILUTH (10-") 8.4 17 O .lle - 10" 0.94e- 11 0.74e -  10
ILUTH (10-^) 15.5 16 0.20e -  10 0.48e -  10 0.38e -  09
ILUK (10) 18.2 36 0.88e -  lO 0.12e -  09 D'.'9'2e“-0 9 ·

QMR 2
"TTUD 216.3 500’ 0.48e -  04 0.64e -  04 0.55e -  03
ILUTH (10-^) 301.4 500’ 0.62e -  08 0.55e -  08 0.44e -  07
ILUTH (10-·^) 545.3 500’ 0.18e- 09 0.44e -  09 0..3.5e -  08
iLuK ( 10) 296.0 ■oOO" 0.83e -  06 O.lle — 05 "o:87e·- 05

QMR 3
'ILUO 221.5 “ 500" 0.60e -  05 O.lOe -  04 0 .8 le - 04
ILUTH (10-^) 306.2 500’ 0..38e -  08 0.34e -  08 0.27e -  07
ILUTH aO"^) .544.2 500’ O.lle -  06 0.27e -  06 0.21e-05
ILUK (10) 305.2 500’ 0.80e -  06 0.97e — 06 0.77e -  05

SOR
1 a t TT"1 Time 1 1 .4a: 1 Bk. Err. 1
1 1.0 1 0.72e -  07"1 86;n1 nUTJe -  08 1 0.3.5e -  07 1

Block SOR
Partition. UJ Ax Time i n r Ax Bk. Err. #  Bl.
7 = 10-^ 1.0 0.31e- 10 245.0 15 0.55e -  11 0.44e- 10 513
7 = 10“ ·̂ 1.0 O.lOe -  14 31.3 2 0.35e -  17 0.28e -  16 5,192
equal X T 0.96e — 10 35.7 I7l 0.37e- 11 0.30e-T0" 0
other 1.4 0.73e -  09 46.7 234 0.41e -  10 0.33e -  09 2

lAD
Partition. A x] Time in r Ax Bk. Err. #  Bl.
7 = 10-^ 1.1 0.91e -  10 232.5 13 0..50e- 11 0.40e -  10 513
7 = 10-^·" 1.0 0.79e -  15 106.1 2 0.39e- 17 0.31e- 16 5,192
equal X T 0.92e -  10 10.3 29 0.12e -  11 0.96e- 11 0
other fix 0.65e -  10 11.0 31 0.92e -  12 0.73e- 11 2

Table A.8: Numerical Results for 2D^gmi
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ncd n =  23,426 =  156,026
F reconditioner nzlu Time l̂l·’lops

i r u o 156:026 r~i).5 "■■■ 0.2
ILUTH (10-^) 45,523 r  19.0 0.3
ILUTH aO“ )̂ 154,747  ̂ 19.2 0.7
ILUK (10) 233.882 40.3 14.8

Method Preconditioner Time #  it r Ax Bk. Err.

GMRES 
(m = 20)

1EIR5 “ 5DiF' '0:45e -  05 O.l4e-05 0.29e -  05
ILUTH (10“ 1 211.9 500'* 0.46e -  06 0.68e -  06 0.48e -  05
ILUTH (10-1 253.7 500'’ 0.19e- 06 0.57e -  07 0.35e -  07
ILUK (10) 210.0 380 0.98e -  10 0.12e-08 0.71e-09

BCG
ILUO .339.7 “ 501T' 0.82e — 01 0.22e — 04 U.91e -  03
ILUTH (10-1 238.6 500*' 0.58e -  03 0.77e -  04 0.53e -  03
ILUTH (lO-^i .3.37.9 500*' 0.17e- 01 0.52e -  04 0.18e -  03
ILUk (10) 404.5 500* 0.46e -  01 0.21e- 05 O .lle -05

CGS
ILUO 329.5 0-58e + 03 T.25e -  04 ~0'.24e -  03
ILUTH (10-'1 230.1 500* 0.61e- 01 0.47e -  05 0.21e -  04
ILUTH (10-1 328.7 500* 0.93e + 05 0.12e-04 0.26e -  04
ILUK (10) 54.6 69 0.17e- 11 0.57e- 11 0.34e- 11

BCGStab
ILUO "45.9 69 0.82e -  10" 0.20e- 11 1)ri2e- 11
ILUTH (10-1 235.5 500* 0.57e — 06 0.42e -  06 0.29e -  06
ILUTH a o -1 36.5 55 0.50e -  10* 0.62e- 11 0.37e- 11
ILUK (10) 120.4 151 0.63e -  lO* 0.27e -  09 0.16e-09

QMR 2
ILUO 409.0 “ SUiT 0.65e — 05 0.29e -  05 0.28e -  04
ILUTH (10-1 308.1 500* 0.16e- 04 0.95e -  05 0.99e -  04
ILUTH (10-1 406.4 500* 0.13e- 07 0.90e -  09 0.54e -  09
ILUK (10) 476.5 i m r 0..54e -  07 0.13e-05 O.80e -  06
ILUO 416.6 liJiF 0.93e -  08 0.43e -  09 0.26e -  09

QMR 3 ILUTH (10-1 313.1 500* 0.50e — 05 0.25e -  05 0.41e-04
ILUTH a o -1 413.1 500* 0.27e -  05 O.lOe-05 0.46e -  05
ILUK (10) 482.5 liJ ir 0.18e-06 0.29e -  05 0.62e -  05

SOR
1 Lj Ax| Time #  it Ax Bk. Err. 1
1 1.0 1 0.36e- 04 1 173.4) 1,0001 0.30e -  06 1 0.18e -  05 |

Block SOR
Partition. u IIA1I Time J B i r " Bk. Err. T B T
7 = 10-“ 1.0 0.4.5e -  10 27.2 21 0.23e -  16 0.14e- 16 1
equal 1.0 0.12e -  04 222.1 1,000“ 0.54e -  07 0.35e -  07 0
other 1.0 0.97e -  04 208.1 1,000“ 0.33e -  06 0.30  ̂-  06 2

lAD
Partition. u Ax Time #  it Ax Bk. Err. #  Bl.
7 = 10-“ 1.0 0 .9 1 e -ll 21.0 4 0.38e -  16 0.23e -  16 1
equal 1.0 failed (coupling matrix reducible)
other 1.8 0.99e -  10 1 182.3 1 580 1 X).89e -  12 | 0.54e -  12 | T

Table A.9: Numerical Results for ncd.
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ncd-gm4 n = 23,426 nz = 156,026
rreconditioner nzlu Time

"rruo T56;026 ■■ 0.5 ■ ■■ 0.2
ILUTH (10"'^) 45,523 41.7 0.3
ILUTH (10-^) 403.855 42.9 1.9
ILUK (10) 226,244 104.8 50.5

Method Preconditioner Time #  it r Ax Bk. Err.

GMRES 
(m = 20)

TTUO “TTTT FJ60·'U lTe -  10 ■ l):i5e -  13 T O le -  14
ILUTH (10-^) 209.5 500"■ 0.46e -  06 0.68e -  06 0.48e — 05
ILUTH (10-^) 327.5 500'■ 0.70e -  06 O.lOe -  07 0.62e -  08
ILUK (10) 141.3 260 0.61e- 11 0.46e -  12 0.28e -  12

BCG
ILUO 331.3 (J.32e- 01 0.86e -  05 0.79e — 05
ILUTH (10-'") 251.2 500· 0.25e- 01 0.21e- 02 0.27e -  01

T u m T o F T 514.9 500· 0.15e -  02 O.lOe-0 6 O.lOe-0 6
ILUK (10) 391.0 500· 0.16e- 02 0.37e -  05 0.38e — 05

CGS
ILUU F J O " 59 0.52e — 10 0.25e -  13 0.15e — 13
ILUTH (10-^) 230.6 500· 0.41e -  02 0.47e -  05 0.25e -  04
ILUTH (10-^) 111.0 112 0.89e -  10 0.16e- 12 0.98e -  13
ILUK (10) 43.0 57 0.77e- 10 0.58e- 11 0.35e- 11

BCGStab
ILUO 30.1 46 0.36e -  10" 0.18e — 13 O.lle — 13
ILUTH (10-") 234.7 500* 0.42e -  06 0.28e -  06 0.18e -  06
ILUTH (10-^) 53.3 53 0.93e -  10̂ 0.52e -  12 0.31e- 12
ILUK (10) 49.9 65 0.97e -  lO 0.20e -  lO 0.12e -  lO

QMR 2
ILUO 410.7 ~50F 0.43e -  06 0.21e- 09 0.13e-09
ILUTH (10-^) 305.8 500* 0.83e -  05 0.50e -  05 0.85e -  04
ILUTH (10-^) •583.4 500* 0.82e -  09 0.7.5e- 11 0.45e- 11

TETJKTHJ) 459.0 “ 500= 0.53e -  07 0.40e -  08 0.24e — 08

QMR 3
ILUO 405.3 “ 500= 0.13e-08 0.30e -  06 0.2.5e -  06
ILUTH (10-^) 308.8 500* O.lOe -  04 0.35e -  05 0.59e — 04

T u Jt h T T F T .591.6 500* 0.81e-05 0.23e -  06 0.18e- 06
ILUK (1(T1 466.4 "300= 0.24e -  04 0.83e — 06 0.29e — 05

SOR
OJ Ax| Time ^  it ll/lxll Bk. Err.
1.0 I Q.48e -  04 I 157:7] l,00O1 0.39e -  06 | 0.16e -~D5~ 

Block SOR
Partition. (jj Ax Time # it Ax Bk. Err. #  Bl.
7 = 10-"* 1.0 0.45e -  10 24.0 21 0.24e -  16 0.14e -  16 1
equal T T 0.98e -  10 39.0 53 O.50e -  14 0.30e -  14 u
other 0.36e -  07 577.9 1,000* 0.21e- 10 0.13e -  10 2

lAD
Partition. u Ax Time # it Ax Bk. Err. I T B T
7 = 10-"* 1.0 0.90e- 11 18.4 4 0.38e -  16 0.2.3e -  16 1
equal 1.4 0.90e- 10' 22.8 20 0 .l6e- 13 0.94e -  14 0
other x r o . i 3 e - r r 6 0.25e -  16 0.15e- 16 2

Table A. 10: Numerical Results for ncd.gm4·
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ncd-altl n = 23,426 =  156,026
Freconditioner nzlu Time MFlops

TTUO............... T5B;026 ■ 0.5 0'.2
ILUTH (10-^) 45,523 18.9 0.3
ILUTH (10-^) 89,732 19.1 0.4
ILUK (10) 234,088 30.1 4.1

Method Preconditioner Time ^ It r Ax Bk. Err.

GMRES 
(m = 20)

IL'UO ■■ ~501T' 0.31e -  06 0.20e -  07 0.12e-07
ILUTH (10-") 207.0 500'’ 0.15e -  06 0.77e -  07 O.lOe -  06
ILUTH a0~^) 224.0 500"‘ 0.13e -  05 0.32e -  06 0.24e -  06
ILUK (10) 11.1 20 0.98e -  14 0.66e- 14 0.33e -  14

BCG
ILUO ■339.0 ‘ 0.64e -  03 0.74e -  07 0.44e -  07
ILUTH (10-^) 237.8 500* 0.13e + 05 0.17e -  05 0.54e -  04
ILUTH (10-'^) 280.2 500* 0.34e -  06 0.19e- 09 0.95e- 10
ILUK (10) 9.0 11 0.44e -  11 0.60e -  13 0.30e -  13

CGS
ILUO 328.9 “ 500* 0.16e + 15 0.12e- 05 ■0752e -  05
ILUTH (10-'") 230.2 500* 0.14e + 11 0.19e-05 0.58e -  04
ILUTH (10-'^) 271.2 500* O.lSe + 10 0.13e-05 0.62e -  05
ILUK (10) 3.3 4 0.62e -  10 0.48e -  16 0.24e — 16

BCGStab
ILUO 55.4 83 0.49e -  10* 0 .l3 e - 13 0.63e -  14
ILUTH (10-") 236.6 500* 0.21e -  06 0.13e- 07 0.70e — 08
ILUTH (10-^) 65.3 117 0.21e -  10^ 0.93e -  14 0.46e -  14
ILUK (10) 3.3 4 0.40e -  10 0.47e -  16 0.23e -  16

QMR 2
ILUO 408.8 500* 0.13e — 04 0.41e -  05 0.15e -  03
ILUTH (10-") .308.9 500* 0.80e -  04 0.44e -  05 0.18e- 04
ILUTH (10-^) 347.0 500* 0.80e -  08 0.14e- 11 0.72e -  12
ILUK (10) 10.8 11 0.43e -  11 0.78e -  13 0.39e -  13
ILUO 416.9 500* 0.24e -  05 0.30e — 06 0.13e-05

QMR 3 ILUTH (10-") 312.6 500* 0.47e -  05 0.17e- 05 0.22e -  05
ILUTH (10-^)" 357.1 500* 0.22e -  05 0.17e- 08 0.84e -  09
IL U K T lO l 15.7 16 0.37e -  10 0.31e -  T2 0.15e- 12

(jj A i Time
SORin r .4x Bk. Err.

1.0 I 0.39e -  03 I 167.7 I 1,0001 O-SOe -  08 I U.87e 
Block SOR

Partition. (jj Ax Time ~ w ir Ax Bk. Err. #B1.
7 = 10"^ 1.0 0.38e- 11 15.6 7 0.48e- 16 0.24e -  16 1
7 = 1 0 -^ 1.0 0.14e- 10 19.4 16 0.41e- 16 0.21e- 16 5
7 - lC r ^ ” 1.0 O.lSe -  10 4.5 17 0.39e -  16 0.20e -  16 101
equal T r 0.35e -  03 222.9 1,000* 0.45e -  07 0.71C-07 0
other " x r 0.71e-T0'· 2.4 r 0.78e- 15 0.39e -  15 2

lAD
Partition. (jj Ax Time Bk. Err. ^ B T
7 = 10" 1.0 0.60e -  11 20.7 4" 0.48e -  16 0.24e -  16 1
7 = 1 0 - '~ 1.0 0.34e -  11 17.7 3 0.48e -  16 0.24e -  16 5
7 = 10-“* 1.0 0.34e- 11 5.1 3 0.48e -  16 0.24e -  16 101
equal 1.0 0.31e-05 n r o “ l,O00* 0.45e -  08" 0.22e -  08 0
other 0.4.5e -  lO 6.1 7 O.Sle — 15 0.15e -  15 2

Table A .11: Numerical Results for ncd^altl.
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ncd^alt E gm l n =  23,426 712 = 156,026
Preconditioner nzlu Time Mjb'lops

ILUO 156,026 ....0.5 0.2
ILUTH (10-'“=) 45,522 41.5 0.3
iLUTH ho-^) 224,927 42.0 0.9
ILUK (10) 229,615 67.0 1.3.7

Method Preconditioner Time #  it r Ax Bk. Err.

GMRES
{m = 20)

TITUO ■ 69;2 140 0.75e — 11 ■DЗЗ¿ -  17 i r r i e -  17
ILUTH (10-") 200.4 500-■ 0.1.5e- 06 0.78e -  07 0.99e -  07
ILUTH ao-^) 259.5 500-■ 0.86e -  06 0.14e- 09 0.71e- 10
ILUK (10) 266.2 500'' 0 .27e-07 0.67e- 17 0.33e- 17

BCG
ILUO 326.9 ■0.12e -  05 0.52c -  09 0.26e —
ILUTH (10-^) 232.9 500- 0..3.5e + 04 0.14e- 04 0.67e — 04
ILUTH (10-^) 1.50.6 200 0.47e -  10 0.17e- 11 0.86e -  12
ILUK (10) .386.0 500“ 0.68e -  05 0.42e -  12 0.21e -  12

CGS
ILUO 28.4 44 0.87e -  10 ■ 0.26e -  16 0.13e- 16
ILUTH (10-· )̂ 226.4 500“ 0.28e+ 11 0.21e -  05 0.63e -  04
ILUTH (10-^) 364.0 500“ 0.65e + 00 0.18e -  07 0.92e -  08
ILUK (10) 139.2 185 0.87e -  10 0.51e- 16 0.26e -  16

BCGStab
ILUO 29.2 45 0.73e -  10* 0.22e — 16 O.lle -  16
ILUTH (10-") 231.4 500“ 0.18e- 06 O.lOe -  07 0.56e -  08
ILUTH ao-^i 42.5 57 0.48e -  10" 0.49e -  14 d.25e -  14
ILUK (10) 300.6 0.59e — 10" O.lle -  15 0.54e -  16

QMR 2
ILUO 401.1 “300= O.T2e — 05 0.43e- 11 ■D.22e- 11
ILUTH (10-'") .303.6 500“ 0.35e -  04 0.62e -  05 0.17e-04
ILUTH (10-^) 447.5 500“ 0.68e -  09 0.37e- 11 0.18e- 11
ILUK (10) 465.1 “ SDIT 0.32e -  04 0 .l6e- 13 0.78e -  14

TLUO 406.9 "3Dir 0.62e -  04 o;32e -  08 ■0.l6e -  08
QMR 3 ILUTH (10-") 306.8 500“ 0.52e -  05 O.lle -  05 O .lle-0 5

ILUTH ao-^) 4.52.1 .500“ O.lle -  04 0.94e -  08 0.48e -  08
ILUK (10) 470.5 “ 500= 0.14e-04 T)774e -  14 0.37e -  14

SOR
(jJ Ax Time # it Ax Bk. Err.

rr.O 1 0.34e -  03 1 159.4 I l,000T0:6le -  08T0.T9e -  08 I
Block SOR

Partition. u Ax Time #  it Ax Bk. Err. #  Bl.
7 = 10-·' 1.0 0.38e -  11 14.5 7 0.48e -  16 0.24e -  16 1
7 = 10-^ 1.0 0.14e- 10 18.5 16 0.41e- 16 0.21e -  16 5
7 = 1 0 ^ 1.0 0.93e -  10 8.6 39 0.L5e- 16 0.74e -  17 101
equal 1.0 0.99e -  10 12.4 9 0.2le -  14 O.lOe -  14 0
other 1.0 0.57e -  10 7.0 2 0.13e — 15 0.64e — 16 2

lAD
Partition. (jj Axil Time #  it Ax Bk. Err. # B 1 .
7 = 10-·'' 1.0 0.60e- 11 18.6 4 0.48e -  16 0.24e -  16 1
7 =  10“ ^ 1.0 0.34e- 11 15.8 3 0.48e -  16 0.24e -  16 5
7 =  10-“* 1.0 0.34e- 11 7.2 3 0.48e -  16 0.24e -  16 101
equal 0.26e -  10 11.0 3 O.lOe -  14 0.94e -  15 0
other T IT 0.74e -  11 10.0 2 0.27e — 16 0.14e -  16 2

Table A. 12: Numerical Results for ncd-altl.gm7.
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ncd-altl^gm5 n = 23,426 =  156,026
Preconditioner nzlu Time "RTFIdps

lUUO 156,026 0.8 ■ 0.2
ILUTH (10-·^) 45,522 41.7 0.3
ILUTH ao-^ ) 224,927 42.1 0.9
ILUK (10) 229,599 69.8 13.7

1 Method Preconditioner Time 1 #  it r p x  Bk. Err.

GMRES 
{m — 20)

ILUO ■“ 5Ü3· “ T2ÏÏ· 0.41e -  10 0 .l2 e - 16 0.59e -  17
ILUTH (10-^) 200.6 500-' 0.15e- 06 0.78e -  07 0.99e- 07
ILUTH (10-·^) 259.2 500’' 0.86e -  06 0.14e -  09 0.71e- 10
ILUK (10) 266.1 500’‘ 0.66e -  07 0.21e -  16 O.lOe- 16

BCG
ILUO 327.9 • 0.94e-02 0.47e -  08 lT.'24e-08
ILUTH (10-^) 232.2 500*' 0.31e + 04 0.18e-05 0.54e — 04
ILUTH (10-^) 161.2 215 0.60e -  10 0.15e -  10 0.76e- 11
ILUK (10) 386.6 500* 0.52e + 02 0.93e -  12 0.46e -  12

CGS
ILUO 28.3 44 0.68e -  10 0.26e — 16 T nü i -  16
ILUTH (10-") 225.9 500* 0.81e + 04 0.39e — 05 0.82e -  04
ILUTH (10-'') 366.1 500* 0..56e -  07 0.98e -  13 0.49e -  13
ILUK (10) 207.0 269 0.34e -  10 0.53e -  16 0.26e -  16

BCGStab
ILUO 29.8 46 0.73e- 10* 0.22e -  16 O.lle -  16
ILUTH (10-^) 235.3 500* 0.29e -  06 0.13e- 07 0.86e -  08
ILUTH (10-") 42.6 58 0.82e- IV 0.85e -  15 0.42e -  15
lL(JK (10) 154.5 203 0.37e -  10* 0.16e- 15 0.79e -  16

QMR 2
ILUO" 399.6 “TOO* 0.53e -  08 0.36e- 11 0 .1 8 e -ll
ILUTH (10-^) 304.0 500* 0.31e -  04 0.48e -  05 0.13e-04
ILUTH (10-^) 184.2 206 0.65e -  10 0.30e -  10 0.15e- 10
ILUK (10) 467.4 “ 5DÎT 0.25e -  04 TTiie -1 3  ■0.53e -  14
ILUO 408.3 0.64e -  04 0.33e -  08 0.17e-08

QMR 3 ILUTH (10-") .306.6 500* 0..52e -  05 O.lle -  05 O.lle-0 5
ILUTH (10-^) 454.3 500* O .lle - 04 O.lle -  07 0.56e -  08
ILUK (10) 466.1 500* O.lSe -  04 0.81e- 14 0 .4 le - 14

SOR
U Ax Time ^ it Ax ! Bk. Err. 1

UAJ 0.34e - 03 1158.6 11,0001 0 .6 le -08  11 0.49e -  08 1
Block SOR

Partition. UJ Ax Time i n r Ax Bk. Err. T b t
7 = 10-^ 1.0 0..38e- 11 14.6 7 0.48e -  16 0.24e -  16 1
7 = 10-'’ 1.0 0.14e- 10 18.5 16 0.41e- 16 0.21e- 16 5
7 = 10-“ 1.0 0.93e -  10 8.4 39 0.15e- 16 0.74e -  17 101
equal TO " 0.71e -  10 10.2 6 Ü.16e — 15 0.82e — 16 0
other 1.0 0.50e — 11 7.5 2 o.lle — 15 0.56e -  16 2

lAD
Partition. <jj Ax Time #  it Ax Bk. Err. l^ B T
7 = 10-' 1.0 0.60e- 11 18.5 4 0.48e -  16 0.24e -  16 1
7 = 10-^·" 1.0 0..34e- 11 16.1 3 0.48e -  16 0.24e -  16 5
7 = 10-^"" 1.0 0.34e- 11 7.1 3 0.48e -  16 0.24e -  16 101
equal 1.0 0.28e -  11 11.0 3 0.43e -  16 0.21e -  16 0
other TO " 0.74e -  11 10.2 2 0.27e -  16 0.14e -  16 2

Table A .13: Numerical Results for ncd-altTginS.
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ncd-altEgm^ n =  23,426 nz = 156,026
rreconditioner nzlu Time ■Al Flops
ILuu 165,026 O ' ■ 0.2
ILUTH (10-^) 45,523 22.5 0.2
ILUTH (10-^) 360,452 23.3 1.5
ILUK (10) 232,567 36.2 5.6

1 Method Precoiiditioner Time #  it. .. '’-1 .. \\Ax Bk. Err. 1

G ¡VIRES
ILUO 250.0 500* O.lle -  04 0.87e -  12'Ti;43e -  12
ILUTH (10-^) 199.3 500'• 0.15e -  06 0.77e -  07 O.lOe-0 6

(m = 20) ILUTH ( 10-^) 299.2 500'' 0.84e -  06 0.16e-09 0.80e- 10
ILUK ( 10) ¿65.2 “ SUIT’D.2le -  04 ■■0:2'2e -  12 O.lle -  12
ILUO 157.7 243 U.29e — 10 ■ 0.77e- 14 D.38e -  14

BCG ILUTH (10-^) 228.3 500’■ 0.52e + 03 0.65e -  05 0.66e -  04
ILUTH (10-^) 197.7 208 0.84e -  10 0.28e -  10 0.14e- 10
ILUK (10) 386.7 ” 50iF U.66e + 00 0.12e -  10 0.58e- 11
il Uo 320.3 0.23e -  05 O.lOe- 15 0.51e- 16

CGS ILUTH (10-") 224.2 500· O.lOe + 09 0.15e -  05 0.50e -  04
ILUTH (10-^) 465.8 500* 0.98e + 05 0.38e -  06 0.86e -  05
ILUK ( 10) 277.1 O.80e -  10 O.lSe -  16 0 .9 le - 17
ILUO 328.8 “ SOiT" 0.83e -  08 0.22e -  16 Urrie -  16

BCGStab ILUTH ( 10-^) 231.4 500* 0.42e -  06 0.17e- 07 0.93e -  08
ILUTH (10-^) 49.7 54 0.62e -  10* 0.13e- 13 0.66e -  14
ILUK (10) 159.6 ~ 7 W 0.65e -  10* ' 0.l2e -  16 T.'59e- 17
ILUO 201.0 249 0.95e — 10 0.40e -  14 O.20e -  14

QMR 2 ILUTH (10-^) 301.3 500· 0.51e- 04 0.57e -  05 O.lOe-0 4
ILUTH (10-·^) 353.7 500· 0.46e -  09 0.84e- 11 0.42e- 11
ILUK ( 10) 466.0 ~50(J* 0.35e -  03 0.13e- 12 0.67e -  13
ILUO 406.5 0.46e -  04 DT9e -  11 ■0.96e -  12

QMR 3 ILUTH (10-^) 277.7 500· 0.16e — 05 0.25e -  05 0.28e -  04
ILUTH (10-'") 563.7 500· 0.16e-04 0.96e -  08 0.48e -  08
ILUK (10) 467.8 500* 0.21e -  05 0.57e -  15 0.24e -  15

SOR
(jJ Ax Time # -it- Ax Bk. Err.

1 1.0 1 0.39e -  03 1 157.0 1 1,000·! 0.71e -  08 | 0.64e -  08 |
Block SOR

Partition. u Ax Time I R t Ax Bk. Err. T B T
7 = 10-^ 1.0 0..38e- 11 8.4 7 0.48e -  16 0.24e -  16 1
7 = 10-^ 1.0 0.14e- 10 12.2 16 0.41e- 16 0.21e -  16 5
7 = 10" “ 1.0 0.18e- 10 4.1 17 0.39e -  16 0.20e -  16 101
equal 1.0 0.84e -  lO 3.4 10 0.86e -  15 0.43e -  15 0
other 1.0 0.36e -  10 1.6 2 0.15e -  17 0.73e -  18 2

lAD
Partition. UJ Ax Time #  it Ax Bk. Err. T b t

7 = 10-" 1.0 0.60e- 11 14.0 4 0.48e -  16 0.24e -  16 1
7 = 10-^ 1.0 0.34e- 11 12.4 3 0.48e -  16 0.24e -  16 5
7 =' 1 0 ^ 1.0 0.34e- 11 4.8 3 0.48e -  16 0.24e -  16 101
equal 1.0 O.lOe -  10 5.3 5 0.82e — 15 0.41e -  15 0
other T IT 0.15e -  11 4.3 2 0.32e -  16 0.16e -  16 2

Table A. 14: Numerical Results for ncd^altL·gm4 ■
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ncd.altS n =  23,426 nz =  156,026
Preconditioiier nzlu Time A/li-lops

TLUO 156,026 0.5 0.2
ILUTH (10-·") 45,523 17.4 0.3
ILUTH (10-^) 154,747 17.7 0.7
ILUK (10) 234,073 45.3 18.6

1 Method Preconditioiier Time r Ax 1 Bk. Err.

GMRES
269.4 500- 0.18e -  06 0.65e -  08 0.47e -  07

ILUTH (10-^) 221.0 500’* 0.21e -  07 0.12e-07 0.21e -  07
(m = 20) ILUTH aO"^) 267.3 500-' 0.48e -  06 O.lOe -  06 0.1.3e-06ILUK ( 10) 292.2 ' 0.37e -  09 O.OOe -  15 0.33e -  15

ILUO 342.2 “ SUIT''0.i2e + 05 TT.15e -  04 lT.4.5e -  03
BCG ILUTH (10-^) 251.4 500'' 0.24e + 02 O.lOe-0 2 0.72e -  02

ILUTH (10-^) .340.0 500’' 0.36e -  03 0.52e -  06 O.lOe -  05
ILUK, (10) 398.3 "SDIF ■0.36e -  01 0.35e -  10 0.18e- 10
ILUO .335.5 500* lT74eTW ~ 0.14e — 04 ”(J.'92e -  04

CGS ILUTH (10-^) 2.50.1 500* 0.58e -  03 0.96e -  05 0.98e -  05
ILUTH 335.3 500* 0.28e + 07 0.68e -  06 0.13e-05

ILUK (10) 212.1 273 0.30e -  10 0.13e- 17 O'.'̂ Se -  18
ILUO 302.3 443 O.OOe -  10* ^.41 e -  12 0.20e -  12

BCGStab ILUTH (10-") 257.6 500'· 0.66e -  05 0.12e -  08 0.60e -  09
ILUTH (10-' )̂ 125.0 183 0.41e- 10" 0.12e -  11 0.58e -  12
ILUK (10) 396.0 500* 0.61e-09 0.14e- 16 0.73e- 17
ILUO 422.5 500* 0.23e -  05 ■OOe -  06 0.35e -  05

QMR 2 ILUTH ( 10-^) 330.4 500* 0.89e -  05 0.28e -  05 0.27e -  04
ILUTH (10-^) 418.7 500* 0.12e-05 0.46e -  07 0.26e -  07
ILUK (10) 477.0 500* 0.62e -  05 0.53e- 11 0.27e- 11
ILUO 424.9 “ 5DU* 0.58e -  05 0.20e -  05 ■■0:2le -  04

QMR 3 ILUTH (10-^) 333.3 500* 0.30e -  05 0.18e -  05 0.31e -  04
ILUTH (10-^) 421.2 500* 0.40e -  05 0.45e -  06 0.69e -  06
ILUK (10) 479.7 500* 0.50e -  06 0.80e -  12 0.40e -  12

SOR
U Ax Time Ax Bk. Err.

r x o '  1 0'.28'e“ 0'31 176.2 11,0001 0.17e-■ 07 1O.17e-07 1
Block SOR

Partition. u i\x Time # it Ax Bk. Err. “# B T
7 = 10-« 1.0 0.32e -  02 1995.9 100* 0.63e -  08 0.42e -  08 1
7 = 10- ' 1.0 0.15e- 10 164.6 2 0.24e -  17 0.12e- 17 0
7 = 10-« 1.0 0.68e -  10 48.2 20 0.13e- 16 0.67e -  17 1
equal 1.0 0.69e -  lO 2.0 5 9.32e -  14 ^.16e -  14 0
other' 1.0 0.24e -  03 207.6 l,00O* 0.18e -  07 0.13e- 07 2

lAD
Partition. LJ i i ^ Time w JE H U Bk. Err. IT B F
7 = 10-«“ 1.0 0.32e -  02 1708.6 100* 0.63e -  08 0.42e -  08 1
7 = 10- ' 1.0 0.22e -  11 169.7 2 0.32e -  17 0.16e- 17 0
7 = 10-« 1.0 0.19e- 10 36.6 3 0.17e- 17 0.85e -  18 1
equal 0.87e -  10 T IT \T W 0.28e -  14 0.14e -  14 0
other 0.99e -  10 169.7 'T W 0.l3e — l2 0.65e -  13 2

Table A.15: Numerical Results for ncd.altS.
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ncd-alt2-gm  7 n = 23,426 n: =  156,026
Preconditioner nzlu Time Ml'Iops

TLDO"· ^36,026 0.8 0.2
ILUTH (10-") 55,133 43.6 0.3
ILUTH (10-^) 397,998 44.8 2.0
ILUK (10) 230,063 102.2 48.6

1 Method Preconditioner | Time #  it r\ Ax Bk. Err. |

GMRES 
(m = 20)

T m o -------------- 242.2 ' 0.18e- 03 0.30e -  07 "0 .24e-06
ILUTH (10-^) 205.3 500"' 0.23e -  07 0.13e-07 0.2.3e -  07
ILUTH (10-^) 3.53.8 500"■ 0.58e -  06 0.13e-07 0.19e-07
ILUK (10) 266.9 “ 5DiT■ 0.49e -  04 0.54e -  08 ■u:-J7^-08

BCG
Il Uo 332.9 ■ 0.23e + 01 0.13e — 06 0.39e -  06
ILUTH (10-^) 243.3 500* 0.31e + 02 0.24e -  02 0.13e-01
ILUTH (10-^) 521.7 500* 0.31e + 04 O .lle - 04 0.25e -  04
ILUK (10) O.lOe- 01 ■■0.'92e -  09 0.46e -  09

CGS
ILUO' 198.2 0.72e -  10 0.18e — 15 U:89e -  16
ILUTH (10-^) 238.7 500* 0.22e -  07 0.33e -  07 0.17e-07
ILUTH (10-^) 187.9 187 0.80e -  10 0.44e -  13 0.22e -  13
ILUK (10) 382.3 500* 0.55e + 03 0.18e- 05 0.92e -  06

BCGStab
ILUU 171.5 258 0.77e -  lU" U.18e -  15 I 0.90e- 16
ILUTH (10-") 246.7 500* 0.30e -  06 O.lOe-0 8 0.52e -  09
ILUTH (10-^) 215.8 214 0.71e- 10* 0.40e -  13 0.20e -  13
ILUK (10) 237.6 304 0.34e -  10* 0.36e -  17 0.18e- 17

QMR 2
ILUO 398.9 “ 500* 0.20e "03 O.31e-07 0.8.5e -  07
ILUTH (10-^) 309.9 500* 0.91e- 05 0.23e -  05 0.30e — 04
ILUTH (10-^) 575.2 500* 0.89e -  05 0.31e-07 0.18e-07
ILUK (10) 457.3 “ 500* 0.27e -  03 0 .l5 e - 10 0.7.5e- 11
ILUO 403.8 “ 500* 0.73e -  04 0.94e -  07 0.64e -  06

QMR 3 ILUTH (10-") 312.3 500* 0.13e- 04 0.29e -  05 O.lle-0 4
ILUTH (10-^) 583.2 500* 0.T2e-04 0.43e -  06 0.57e -  06
ILUK (10) 467.3 “ 500* 0.17e- 04 0.16e -  09 0.82e -  10 ■

SOR
u A j || I Time | # it Ax Bk. Err.
1.0 I 0.86e -  04 | 15.5.4 | 1,0001 0-47e -  07 | 0.32e -  06 

Block SOR
Partition. U Ax Time Ax Bk. Err. #  Bl.
7 = 10-^ 1.0 0.15e- 10 100.1 2 0.24e -  17 0.12e- 17 0
7 = 10-" 1.0 0.68e -  10 35.2 20 0.13e- 16 0.67e -  17 1
equal 1.0 0.28e -  05 589.4 l,00O* 0.13e-08 0.65e -  09 0

1.0 0.16e — 05 5M.5 1,000* 0.54e -  09 0.27e -  09 2
lAD

Partition. (jj Ax Time A x Bk. Err. #  Bl.
7 = 10-'' 1.0 0.22e- 11 105.7 2 0.32e- 17 0.16e- 17 0
7 = 1 0 ^ ~ 1.0 O.lOe -  10 28.7 3 0.17e -  17 0.85e -  18 1
equal ~n r 0.20e -  03 669.9 1,000* 0.63e -  07 0.37e -  07 1
other 0.12e -  02 64o!6 1,000* 0.25e -  06 0.20e -  06 2

Table A. 16: Numerical Results for ncd.alt2-gm7.
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ncd-alt2-gm6 n = 23,426 nr =  156,026
Preconditioner nzlu Time Ml'lops

T L W ............. 156,026 o .r .... 0.2
ILUTH (10-^) 55,023 41.3 0.3
ILUTH (10-^) r414,292 42.7 2.1
ILUK (10) 231,189 97.6 48.4

1 Method Preconditioner Time # it r Bk. Err. 1
'T L W ...... 242.1 500'' 0.26e -  03 0.35e -  07 O.30e -  06

GMRES ILUTH (10-1 205.1 500'' 0.23e -  07 0.13e-07 0.23e -  07
(to = 20) ILUTH (10-1 318.7 500’■ 0.65e -  06 O.lOe-07 0.13e-07

ILUK (10) 266.6 500'■ 0.18e -  04 0.39e -  09 O.lOe-0 9
ILUO 331.7 lO iF ■ 0.12e + 03 "0:29e -  06 0.22e -  05

BCG ILUTH (10-1 244.7 500·' 0.71e + 01 0.19e-02 0.34e -  02
ILUTH (10-^) 527.3 500· 0.47e + 03 0.41e- 05 0.14e-04
ILUK (10) 394.0 “ 500* 0.25e + 01 O.lOe- 08 0.52e -  09
ILUO 327.3 “ 300* 0.29e -  02 O.20e -  07 O .lle - 07

CGS ILUTH (10~1 237.6 500* 0.14e -  03 0.43e -  05 0.36e -  05
ILUTH a0~^) 508.0 500* 0.87e -  01 0.14e-05 0.58e -  05
ILUK (10) 386.8 “ 500* 0.51e + 03 0.27e -  10 0.13e- 10
ILUO 80.0 “ T2r 0.40e — 10® 0.40e -  16 0.2(Je -  16

BCGStab ILUTH (10-1 245.2 500* 0.14e- 06 0.22e -  08 O .lle-0 8
ILUTH ( 10-^) 149.3 147 0.30e -  10 6.30e -  13 0.15e- 13
ILUK (10) 386.4 “ 500* 0.14e- 07 0.l2e -  16 0.61e- 17
ILUO 398.0 500* 0.31e- 03 0.45e -  07 0.37e -  06

QMR 2 ILUTH (10-1 308.9 500· 0.15e -  04 0.46e -  05 0.61e -  08
ILUTH a o - ') 587.3 500* 0.13e -  04 0.12e -  06 0.62e -  06
ILUK (10) 458.5 “ 500* 0.74e -  02 0.63e- 11 0.32e- 11
ILUO 403.6 “ 500* 0.88e -  04 0.81e- 06 0.50e -  05

QMR 3 ILUTH (10~1 313.8 500* 0.24e -  04 0.83e -  06 0.82e -  06
ILUTH (10"1 594.7 500* 0.87e -  05 0.77e -  07 0.37e -  06
ILUK (10) 468.1 “ 500* 0.'22e-04 ■■oi9e -  og· 0.95e -  lO

SOR
1 u> 1 Ax Time # it Ax Bk. Err. 1
1 1.0 1 0.82e - 04 j1 15.5X1 1,0001 0.47e -  07 11 0.32e-061

Block SOR
Partition. UJ Ax 1 Time i n r Ax Bk. Err. #  Bl.
7 = 10-" 1.0 0.15e- 10 125.0 2 0.24e- 17 0.12e- 17 0
7 = lO"*" 1.0 0.68e -  10 .34.0 20 0.1.3e- 16 0.67e -  17 1
equal 1.4 0.48e -  10 28.7 37 0.61e — 15 0.3le -  15 0
other 1.0 0.72e — 10 7.3 2 0.24e — 17 0.12e — 17 2

lAD
Partition. U) Ax Time Bk. Err. #  Bl.
7 = 10" ' 1.0 0.22e -  11 130.7 2 0..32e- 17 0.16e- 17 0
7 = 10-*" 1.0 O.lOe -  10 32.6 3 0.17e- 17 0.8.5e -  18 1
equal I X 0.87e -  lO 20.8 18 0.28e -  13 0.14e -  13 0
other i x O.lOe-1 2 9.2 2 0.24e -  17 0.12e -  l7 2

Table A.17: Numerical Results for ncd.alt2-gm6.
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telecom n = 20,491 =  101,041
Freconditioner nzlu Time Ml'lops

T i u r ' "TOT,'041 ■0.3 ■■ 0.1
ILUTH (10-^) 82,521 1.3 0.3
ILUTH (10-^) 181,126 1.5 0.7
ILUK (10) 204,807 5.3 3.2

1 Method Preconditioner Time #  it ] n . IIAxll 1 Bk. Err. 1
■T17tJ0............. 197.1 500'’ 0.25e -  05 0.75e -  05 0.89e -  04

GMRES ILUTH (10-") 190.5 500’’ 0.61e-06 0.70e -  06 0.69e -  04
(m = 20) ILUTH (10-^) 224.2 500’' 0.13e-05 0.12e-05 0.26e -  05

ILUK (10) 231.5 “ 30(?‘ 0.43e- 06 0.88e -  06 0.25e -  05
ILUO 240.1 ~50iF■ 0.79e + 04 ■ 0 .l7 e -0 3 0 .l3 e -0 l

BCG ILUTH flO-") 223.1 500*' O .lle -02 0.37e -  04 0.23e -  03
ILUTH ( 10-' )̂ 307.3 500* 0.36e + 01 O .lle - 03 0.15e -  03
ILUK (10) 328.9 500’ 0.19e + 00 6.l2e -  03 0.28e -  02
ILUO 236.0 “ 501? 0.40e +11 T5:34e -  03 O.lOe-0 1

CGS ILUTH (10-") 218.8 500’ 0.34e -  03 0.72e -  04 0.39e -  03
ILUTH (10-^) 26.9 44 0.97e -  10 0.16e -  09 O.lOe-0 9
ILUK (10) 321.3 “ 501? 0.13e+ 16 0.26e -  03 0.18e-01

TLUO 241.6 T̂OÔ 0.32e -  02 O.20e -  04 0.79e -  03
BCGStab ILUTH flO"") 221.9 496 0.79e -  10 0.65e -  10 0.61e- 10

ILUTH (10-^) 44.4 72 0.26e -  10* O.lOe- 10 0.99e- 11
ILUK (10) .328.8 500’ 0.14e-06 0.76e -  07 0.93e -  07
ILUO 299.4 “ 500* 0.39e -  05 0..55e -  05 0:27e -  03

QMR 2 ILUTH (10-") 282.6 500’ 0.85e -  05 0.57e — 05 0.14e-04
ILUTH (10-^) 368.6 500’ 0.76e -  07 0.30e -  07 0.29e -  07
ILUK ( 10) 389.5 500’ 0.1.5e-07 0.71e- 09 0.67e -  09
ILUO 305.3 “ 500* 0.46e -  05 0.68e — 05 O.lOe-0 3

QMR 3 ILUTH (10-^) 288.3 500’ 0.64e -  05 0.71e -  05 0.77e -  02
ILUTH (lO-·") 374.9 500’ 0.31e -  05 0.38e -  05 0.51e -  05
ILUK (10) 393.9 500’ 0.13e -  05 0.40e -  05 0.45e -  04

SOR
1 ^ Ax Time #  it Ax Bk. Err.
1 1.0 1 0.63e -  04 1 122.9 | l,O001 O.lle - 05 1 0.12e -  05 |

Block SOR
Partition. u 'Ax Time # it Ax Bk. Err. # B 1.
7 = 10"·̂ 1.6 0.86e -  10 55.6 303 0..38e -  12 0.36e -  12 1,337
7 = 10-1 1.2 0.49e -  08 2.53.2 956 0.18e -  08 0.17e-08 14,139
equal 1.4 0.17e-08 99.0 0.15e- 10 0 .1 4 e -10' 0
other 1.6 0.64e -  10 221.4 “ 466“ O'.TO'e- 1'2“ 0.92e — 13 2

lAD
Partition. u Ax Time w Ax Bk. Err.
7 = 10“ ^ 1.0 0.23e -  13 3.1 1 0.18e- 15 0.17e -  15 1,337
7 = 10-1 1.0 0.37e -  14 60.3 1 0.65e -  17 0.61e -  17 14,139
equal " n r 0.93e -  lO 10.4 7 0.22e -  12 0.21e -  12 0
other 0.91^ 16.7 21 O.lle -  12 0.99e — 13 2

Table A. 18: Numerical Results for telecom.
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telecom.gm2 n = 20,491 101,041
Freconditioner nzlu Time M Flops

TEUB 101,041 ‘0.3 ~ D .l
ILUTH (10-^) 183,997 3.0 0.6
ILUTH aO"^) 375,622 3.6 1.5
ILUK ( 10) 199,053 7.5 3.2

1 Method Preconditioner Time #  it L . ...^ Ax Bk. Err.

GMRES
■"lEUO........... ioo;3 500'* O .lle - 04 lL38e -  06 0.38e -  06

ILUTH (10-^) 214.5 500'• 0.60e -  06 0.78e — 06 0.73e -  04
(m = 20) ILUTH (10-·^) 278.7 500’‘ 0.25e -  05 0.50e — 06 0.69e -  06

ILUK (10) 222.3 " W ' 0.41e -  05 0.38e -  06 0.41e-06
ILUO 234.7 0.45e + 07 0.13e -  03 ■U'.12e -  01

BCG ILUTH (10-^) 298.4 500·■ 0.24e -  02 0.51e — 03 0.12e -0 2
ILUTH (10--^) 4.50.3 500·' 0.56e -  03 0.1.5e- 03 0.30e -  03
ILUK (10) 314.4 500* 0.14e + 03 0.33e -  03 O .lle-0 1
ILUO 231.9 “ W 0.55e+ 15 0.19e- 03 ■0:85e -  02

CGS ILUTH (10-^) 291.2 500- 0.12e + 00 0.45e -  04 0.54e -  03
ILUTH (10-^) 36.1 41 0.43e -  10 0.9.5e- 11 0.90e- 11
ILUK (10) .308.7 500* 0.35e -  04 0.52e — 06 0.50e -  06
ILUO 212.5 448 0.13e -  10' tm F ^ n r· rO.lOe -  10

BCGStab ILUTH (10-^) 387.6 500* 0.17e -  05 0.14e-05 O.lOe-04
ILUTH (10-^) .55.0 62 0.76e -  10 0.88e -  11 0.83e- 11
ILUK (10) 206.6 330 0.26e -  10* ■ 0.23e -  12 U:2'2e -1 2
ILUO 293.5 500* 0.26e -  03 0.20e -  04 0.25e -  04

QMR 2 ILUTH (10-") 3.56.1 500* 0.62e -  05 0.63e -  05 0.10e-04
ILUTH aO"^) .509.2 500* 0.64e -  07 0.63e -  08 0.60e -  08
ILUK (10) 373.6 TOO* 0.12e-03 0.80e -  05 O.lle-0 4
ILUO 302.8 “ SOiT 0.20e -  04 0.99e -  05 0.23e -  04

QMR 3 ILUTH (lO"·“') 363.7 500* 0.33e -  05 0.43e -  05 0.14e-03
ILUTH (10-^) 515.0 500* O.lle -  08 0.23e -  09 0.22e -  09
ILUK (10) 382.2 “ 500* 0.39e -  04 0.35e — 06 0.33e -  06

SOR
1 u Ax Time #  it Ax Bk. Err. 1
1 1.0 1 O.77e-04 |irU .o l 1,0001 0.l2e -  05 1 0.14e-05 1

Block SOR
Partition. UJ Ax Time Ax Bk. Err. # B 1.
7 = 10-'̂ 1.6 0.86e -  10 51.7 303 0.38e -  12 0.36e -  12 1,337
7 = 10 ^ 1.2 0.45e -  06 246.0 1, 000* 0.14e-07 O.l.Se- 07 14,139
equal 1.3 0.75e -  lO 41.1 47 0.70e- 12 0.66e — 12 0
other 1.4 0.84e- 10 103.9 L54 0.32e -  12 0.3le -  12 2

lAD
Partition. u Ax Time # it Ax Bk. Err. T T B ir
7 = 10“ " 1.0 0.23e -  13 2.9 1 0.18e- 15 0.17e- 15 1,337
7 = 10“ ' 1.0 0.39e -  14 41.9 1 0.67e -  17 0.63e- 17 14,139
equal r i x 0.78e -  10 20.9 16 0.82e -  13 0.77e- 13 0
other T X 0.18e — 10 15.7 11 0.79e — 13 0.75e -  13 2

Table A. 19: Numerical Results for telecom^gm2.
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telecom^grn 1 n = 20,491 nz =  101,041
Preconditioner iizlu 'lime M Hops

TTUD-------- TUT, 041 0.3 0.1
ILUTH (10-·") 212,153 4.1 0.6
ILUTH (10-"*) 362,354 5.1 1.3
ILUK (10) 204,386 16.0 8.7

1 Method Preconditioner Time #  it r Ax Bk. Err. 1
ILUO 189.4 500'' 0.46e -  05 0.43e -  05 O.18e-03

GMRES ILUTH (10~^) 224.3 500’' 0.80e -  06 0.71e- 06 0.49e -  04
(m = 20) ILUTH (10-^) L52.7 280 0.17e -  10 0.28e -  11 0.26e- 11

ILUK (10) 223.8 ■ 0.80e -  05 i r i 2e -  06 0 .l2e -06
ILUO 230.3 ~500''lT.T4e + 04 0:i5e -  01

BCG ILUTH (10-") 319.7 500*■ 0.T2e + 02 0.89e -  03 0.32e -  02
ILUTH (10-^) 435.1 500·' 0.86e -  02 O .lle - 03 0.15e-03
Il UK (10) 317.9 “ 500" 0.l0e + 01 0.39e -  04 O.40e -  04

i r u o  ■ 234.5 “ 300" 0.73e + 12 0.20e -  03 0.79e -  02
CGS ILUTH (10-") 161.5 252 0.77e -  10 0.35e -  10 0.33e -  10

ILUTH (10-·^) 31.4 36 0.82e -  10 0.21e -  10 0.20e -  10
ILUK (10) 317.9 “ 50iP 0.59e+ 10 0.20e -  04 0.21e -  04
Il Uo 233.6 “ 500" 0.86e -  05 r0.46e -  05 0.57e -  05

BCGStab ILUTH (10-^) 320.0 500* 0.47e -  05 0.48e -  05 0.13e-04
ILUTH (10-^) 40.5 47 0.61e- 10" 0.69e- 11 0.65e- 11
ILUK (10) 166.9 261 0.98e -  10 0.66e -  13 0.62e -  13

ir u o 290.7 “ 500" 0.28e -  04 U.24e- 04 0.41e- 02
QMR 2 ILUTH (10-^) 379.5 500* 0.83e -  05 0.57e -  05 0.50e — 04

ILUTH ao-^ ) 497.8 500* 0.43e -  08 O.lOe -  08 0.98e -  09
ILUK (10) 376.1 “ 500" 0.16e-07 0.18e- 10 0.17e- 10
ILUO 300.6 “ 500* 0.18e- 04 O.l2e-04 0.38e -  03

QMR 3 ILUTH (10-^) 386.9 500* 0.71e -  06 0.42e -  06 0.39e -  06
ILUTH ao-^) 502.8 500* 0.31e -  08 0.83e -  09 0.78e -  09
ILUK (10) .387.1 500* 0.31e -  05 0.76e -  08 0.71e-08

SOR
U Ax Time # it Ax Bk. Err.

1 1.0 1 0.l3e -  03 1 112.0 1 1,000*1 0.12e -  05 | O.lOe -  05 |
Block SOR

Partition. u “ HATT Time # it Ax Bk. Err. #  Bi.
7 - 10~̂ 1.6 0.86e -  10 51.6 303 0.38e -  12 0.36e -  12 1,337
7 = 10-1 1.2 0.49e -  08 232.2 956 0.18e -  08 0.17e-08 14,1.39
equal 1.5 0.18e- lO 152.2 “ m " O.lOe- 12 0.18e- 12 0
other 1.7 0.87e -  10 213.4 0.31e -  12 0.29e -  12 2

lAD
Partition. u Ax Time #  it Ax Bk. Err. T B I T
7 = 10-^ 1.0 0.23e -  13 2.7 1 0.18e- 15 0.17e -  15 1,337
7 = i0^^~ 1.0 0.37e -  14 56.8 1 0.65e -  17 0.61e- 17 14,139
equal 1.5 0.73e -  n r 21.8 19 O.lOe -  11 0.98e -  l2 0
other 1.3 0.99e -  10 19.3 18 0.24e -  12 0.22e -  12 2

Table A.20: Numerical Results for telecom-gml.
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qnatm n =  104,525 nz =  593,115

rreconditioner rizlu Time M Flops
i r u o ■ o93,115 2.0 ..... 0.5
T l u t h T T F T 1.020,335 798.4 6.6
ILUTH ao-^) 1.073,171 1,064.9 11.0
ILUK (10) 1.046,092 952.4 12.8

1 Method Preconditioner Time l O r  Tf fjAT Bk. Err. 1

GMRES 
(rn = 20)

TEUO 1,117.0 ■~5mr' 0.27e -  04 0.18e -  03 ■ ’O’.We -  02
ILUTH (10-^) 204.3 80 0.30e -  10 0.20e -  10 0.62e -  10
ILUTH (10-'") 207.0 80 0.47e -  10 0.32e -  10 0.95e -  10
ILUK (10) ro o x 40 “0739e -  10 0.19e- 10 ■ 0;56e -  10

BCG
ILUO 1,395.0 “ 50iP' 0.27e-01 0.43e -  02 ■ O.lle+ 00
ILUTH (10-^) 1,759.0 500* 0.20e + 01 0.22e -  02 0.27e + 00
ILUTH (10-^) 1,787.0 500’ 0.73e -  06 0.64e -  06 O.lOe -  05
ILUK (10) 1,768.0 “ SOiT 0.20e -  01 O.lOe- 02 O.lOe+ 00

CGS
ILUO 105.2 38 0.33e -  10 0.22e — 10 0.66e — 10
ILUTH (10-^) 87.7 25 0.21e -  10 0.14e- 10 0.43e -  10
ILUTH (10-^) 86.1 24 0.64e- 10 0.45e -  10 0.14e- 09
ILUK (10) 8T X 23 0.54e- 11 0.26e- 11 TT.79e- 11

BCGStab
ILUO T2 0 " 45 0.78e -  10* 0.52e — 10 O.lOe-0 9
ILUTH (10“ )̂ 87.1 25 0.17e- 10* O .lle -  10 0.34e -  10
ILUTH (10-^) 87.3 24 0.80e -  10 0.54e -  10 O.lOe-0 9
ILUK (10) 86.4 24 0.93e- 11 0.45e- 11 0.14e- 10

QMR 2
ILUO 1,706.0 “Tmr 0.32e -  08 O.60e -  08 0.18e- 07
ILUTH (10-^) 2,068.0 500’ 0.38e -  08 0.36e -  08 O.lle -  07
ILUTH UO-' )̂ 2,109.0 500* 0.87e -  09 0.58e — 09 0.18e- 08
ILUK (10) 2,095.0 “ 50r 0.18e-08 0.17e-08 0.52e -  08
I L U O ------- 1,731.0 “ 500* 0.2le -  07 0.14e-07 '0.43e -  07

QMR 3 ILUTH (10-^) 2,092.1 500* 0.24e -  07 O.lOe -  07 0.48e -  07
ILUTH (10-^) 2,130.0 500* O.lOe-07 0.70e -  08 0.21e -  07
ILUK (10) 2, 121.0 “ 500* 0.49e -  07 0.28e -  07 0.86e -  07

SOR
u Ax Time Ax Bk. Err.

1 1.2 1 U.22e -  OITlI 93.41 134 10.24e - 10 1rU.73e -  TDI

Block SOR
Partition. u Ax Time #  it Ax Bk. Err. IT B IT
7 = 10-* 1.1 0.66e -  10 76.6 44 0.32e- 11 0.98e- 11 91,350
equal ~T?r 0.90e -  10 111.6 113 0.22e — 10 0.66e — 10 0
other 1.2 0.86e -  10 130.1 n r a r 0.24e -  10 0.73e -  10 2

lAD
Partition. (jj Ax Time W Ax Bk. Err. #  Bl.
7 = 10~‘ 1.0 requires unreasonably lon  ̂ time (coupling matrix very large)
equal 0.89e -  10 112.7 o r 0.78e -  11 0.23e — 10 0
other T T 0.93e -  10 110.5 57 0.13e- 10 0.38e -  10 2

Table A.21: Numerical Results for qnatm.
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qnatm-gml n =  104,625 =  593,115

Preconditioner nzlu Time Mtlops
T IT F  ■■■ 593,115 ■■ 2;o 0.5
ILUTH (10-") 950,290 1,679.4 4.9
ILUTH (10-^) 1,005,767 2,308.0 8.3
ILUK (10) 1,045,181 2,262.6 61.3

1 Method Rreconditioner Time it r| Ax | Bk. Err. I

GMRES
(m =  20)

TTETJ 8̂ ■ 40- 0.27e -  10 U.56e -  10■D.17e-09
ILUTH (10-") 73.9 31 0.12e -  11 0.89e -  12 b.26e- 11
ILUTH (10-^) 74.9 31 0.20e -  11 O .lle - 11 0.34e- 11
ILUK (10) 51.3 20 0.39e -  10 0..30e -  10 0.92e -  10

BCG
ILUO 1,389.0 500"■ 0.62e -  01 O.lle -  02 TT.TSe -  01
ILUTH (10-") 1,697.0 500*‘ 0.46e -  03 0.24e -  03 O.lle -  02
ILUTH (10-^) 1,741.0 500*‘ 0.23e -  01 0.63e -  03 0.37e -  01
ILUK (10) 1,787.0 0.66e -  02 0.15e- 02 0.72e- 01

CGS
ILUO 61.6 22 0.43e — 11 D .80e- 11 D'.Y4e -  10
ILUTH (10-^) 51.6 15 0.94e -  10 b.69e -  10 0.21e -  09
ILUTH (lO-'^i 49.3 14 0.89e -  10 0.46e -  10 0.14e- 09
ILUK (10) 50.5 14 0.45e- 11 lT 78e- 11 0.24e -  10

BCGStab
ILUO 6^ 25 0.43e -  10" 0.8Ue -  10 0.24e -  09
ILUTH (10-'=) 52.3 15 0.37e -  10 0.27e -  10 0.82e -  10
ILUTH (10-^) 53.6 15 0.96e -  10 0.54e -  10 0.16e -  09
ILUK (10) 47.7 13 0.70e -  10 0.66e -  10 0.20e -  09

QMR 2
ILUO 1,713.0 “ so r 0.21e -  08 0.38e -  08 0.12e-07
ILUTH (10-·^) 2,025.0 500* 0.42e -  09 0.31e -  09 0.93e -  09
ILUTH (10-^) 2,065.0 500* 0.40e -  09 0.22e -  09 0.68e -  09
ILUK (10) 2, 106.0 0.42e -  09 0.93e -  09 0.12e -  08
ILUO 1,7.32.0 500* 0.28e -  08 0.51e-08 0.16e- 07

QMR 3 ILUTH (10-'") 2,041.0 500* 0.32e -  08 0.23e -  08 0.70e -  08
ILUTH (10-· )̂ 2,082.0 500* 0.25e -  09 0.14e-09 0.41e- 09
ILUK (10) 2,125.0 “ oDIT 0.52e -  08 TT3'8e-08 0.12e-07

SOR
UJ Ax Time Ax Bk. Err.

UAJ 0.26e-091I 58.9 I 84 I 0.32e'- 11 r0:98e -  111

Block SOR
Partition. UJ Ax Time # it .4x Bk. Err. # B 1.
7 = 10~‘ 1.1 0.66e -  10 71.7 44 0.32e- 11 0.98e- 11 91,350
equal 1.3 0.60e -  10 44.4 35 0.87e- 11 0.26e -  10 0
other 1.3 0.74e -  10 43.5 34 O.20e -  11 0..59e- 11 2

lAD
Partition. UJ Ax Time #  it Ax Bk. Err. #  Bl.
7 = 10-* 1.0 requires unreasonably long time (coupling matrix very large)
equal T T 0.87e -  10 90.4 ^15^ U :37e- 11 O.lle -  10 0
other hTT 0.45e -  10 93.8 36 0.69e- ll 0.21e -  lO T

Table A.22: Numerical Results for qnatm.gml.
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mutex n =  39,203 nz =  563,491

Freconditioner iizlu rime Ml· lops
■'ILUO Tb'3,491 ■ 2.5 “ DU
ILUTH ( 10-·̂ ) 301,347 814.8 0.9
ILUTH aO"^) 496,693 r  876.9 3.0
ILUK (10) 392,037 1,215.4 15.8

Method Preconditioner Time #  it r Ax Bk. Err. 1

GMRES 
(m = 20)

'TLUO................— TTU- nr '0.27e -  11 ■ 0.24e -  11 U.30e -  11
ILUTH (10-") 9.6 10 0.35e -  11 0.77e- 11 0.93e- 11
ILUTH (lO--") 13.7 12 0.27e -  11 0.27e- 11 0.33e- 11

TLUK (10) T O “ 15 lT 54e- 11 ■ 0 .80e-ll· 0.58e- 11

BCG
ILUO 1,030.0 “ 5Dir' 0.95e -  02 0.49e -  02 O .lle -0 1
ILUTH (10-'^) 775.1 500· 0.32e -  01 0.61e- 02 0.84e -  01
ILUTH (10-^) 972.9 500· 0.82e -  05 0.82e -  05 0.99e -  05
ILUK (10) gsfnr “ 5UiT“DTTSe + 00 0.13e- Ol TJU Je“-  01

CGS
ILUO 9.^ 5 0.58e -  10 0.52e -  10 0.63e -  10
ILUTH (10-^) 7.9 5 0.15e- 10 0.32e -  10 0.39e -  10
ILUTH ao-^) 11.4 6 0.93e -  10 0.93e -  10 O .lle -0 9
ILUK (10) 13.4 8 O.SOe -  10 0.44e -  10 0.54e -  10

BCGStab
ILUO 9.9 5 0.37e -  10 0.33e -  10 (T.'40e -  10
ILUTH (10-·^) 7.2 5 0.92e -  10" 0.20e -  09 0.25e -  09
ILUTH (10-'^) 11.4 6 0.34e -  10 0.33e -  10 0.41e -  10
ILUK (10) ITT 8 0.90e -  10" 0.79e -  10 0.96e -  10

QMR 2
ILUO 1,099.0 "UDiT 0.28e -  08 l):2.5e -  08 0.30e -  08
ILUTH (10-^) 891.1 500* 0.28e -  09 0.62e -  09 0.75e -  09
ILUTH a o - ') 1,083.0 500* 0.12e-08 0.12e-08 0.14e -  08
ILUK ( 10)— 970.5 500· 0.44e -  09 0.39e -  09 0.48e -  09

QMR 3
ILOO ------ 1,108.0 “ s o r 0.79e -  03 ITTOe -  03 0.26e -  02
ILUTH (10-^) 895.2 500* 0.95e -  08 0.21e -  07 0.26e -  07
ILUTH (10-^) 1,063.0 500* 0.39e -  03 0.21e -  03 0.27e -  02
ILUK (10) 965.9 “ SOR' 0.14C-06 0.13e-06 0.16e -  06

SOR
(jJ Ax Time Ax Bk. Err.

L U J 0.93e - 02 1 9.T1 19 1|0.34e- 12 1'U.'41e -  12 1

Block SOR
Partition. u Ax Time Ax Bk. Err. I T B T
7 = 10"^ 1.1 0.68e -  10 78.3 11 0.57e -  12 0.69e -  12 50
equal 1.1 0.54e — lO 11.6 15 0.25e — 13 0.30e -  13 0
other 1.1 0.36e -  lO 11.6 18 0.40e -  12 0.48e -  12 2

lAD
Partition. u Ax Time #  it Ax Bk. Err. #  Bl.
7 = 10"^ 1.1 0.88e -  11 156.4 11 0.15e- 12 0.18e- 12 60
equal T T 0.56e -  10 102.3 10 0.47e -  13 0.57e — 13 0
other r r r 0.21e — lO 95.6 12 0.20e -  12 0.24e -  12 2

Table A.23: Numerical Results for mutex.
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mutex.altl n =  39,203 nz = 563,491

Freconditioner nzlu Time iVl Flops
i r u o  ~ ‘ 563; 491 2.6 .... 0.6
ILUTH (10“ ·") 301,347 814.4 0.9
ILUK (10) 392,037 1,163.9 15.8

1 Method Preconditioner Time #  it | r Ax Bk. Err. 1

GMRES 
(m = 20)

TTUO------------- T7l— W 0.26e -  12 ■ O.'lOe -  12 UTTe -  13
ILUTH (10-^) 3.3 3 0.27e- 12 0.64e -  12 0.4.5e -  12
ILUK (10) 16.9 16 0.88e -  11 0.84e -  14 0.60e -  14

BCG
ILUO 1,028.0 “ 501? ■ 0.28e -  02 0 .l4e -02 O.lle-0 2
ILUTH (10-") 779.1 500* 0.30e -  07 0.87e -  07 0.62e -  07
ILUK (10) 858.6 500* 0.19e + 00 0.21e-04 0.L5e-04

CGS
ILUO 6.3 3 0.40e- 11 O.lOe — 11 O.lle -  11
ILUTH (10-^) 3.4 2 0.79e -  16 0.19e- 15 0.13e- 15
ILUK (10) 10.5 6 O .lle - 11 0.13e- 14 0.90e -  15

BCGStab
ILUU 5.4 3 0.78e -  10" 0.31e -  10 0.22e -  10
ILUTH (10-") 2.7 2 0.71e- 13̂ 0.17e- 12 O.T2e- 12
ILUK (10) 9.5 6 0.51e- lU 0.49e -  14 0.35e -  14

QMR 1
iruo'· 1,143.0 '~5W 0.36e -  08 ■0Tl4e -  08 O.lOe -  08
ILUTH (10-") 6.1 3 0.92e -  10 0.22e -  09 0.16e- 09
ILUK (10) 964.9 ■"30iT 0.30e -  04 0.14e-06 O.lOe -  06

QMR 3
ILUO W T 16 0.96e -  10 0.38e -  10 0.2?e- lO
ILUTH (10-") 6.1 3 0.92e -  10 0.22e -  09 0.16e- 09
ILUK Uo) 97iJ:9" 500* 0.27e -  04 0.14e -  06 O.lOe -  06

SOR
Time W lUa:] 1 Bk. Err. 1

1 1.0 1 0.82e-10'l ■■'5:21 10 10.r2e-14 nJ.82e-151

Block SOR
Partition. (jj Ax Time Ax Bk. Err. IT B T
7 = lO"*" 1.0 0.54e -  12 76.2 8 0.41e- 16 0.29e -  16 50
equal \t w 0.27e -  10“ 4.5 3 0.76e- 13 0.54e -  13 0
other T T 0.82e-"nr 6.8 10 0 .l2 e - 14 0.82e -  15 2

lAD
Partition. u Ax Time # it Ax Bk. Err. I T B r
7 = 10-*̂ 1.0 0.47e- 10 146.3 8 0.14e- 13 0.97e -  14 60
equal 1.0 0.36e -  11 94.1 2 0.41e- 14 0.29e -  14 0
other 0.36e -  l l 84.8 4 O .lle - 15 0.76e -  16 2

Table A.24: Numerical Results for mutex.altl.
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mutex^altl-gm6 n =  39,203 nz =  563,491

Freconditioner nzlu Time M Flops
TLUO 563,491 2.3 ■0.6
ILUTH (10"") 322,876 1,126.8 1.3
ILUTH (10-^) 464,251 1,127.3 1.9
ILUK (10) 382,280 1,547.8 83.7

Method Preconditioner Time ■ in r r Ax Bk. Err.
"ILUO ■ ■TiTB' 9 Tl.S le- 13'■ (T31e -  18 ■"0:22e-18

GMRES ILUTH (10-^) 5.2 5 0.45e -  12 0.71e -  15 0.50e — 15
(m = 20) ILUTH (10-^) 4.7 4 0.17e -  13 0.64e -  15 0.45e -  15

■ ILUK (10) 10.7 10 0.20e -  12 0.23e -1 5 0.16e- 15
ILUO fai ed (d:¡vision by 0 at step 12 of BUUT--------

BCG ILUTH (10-") 828.6 500* 0.20e -  05 0.53e -  08 0.37e — 08
ILUTH (10-'") 945.9 500* 0.34e -  02 0.21e -  03 0.15e- 03
ILUK (10) ^75:8“ “ 501? (TB'Se -  03 0.40e -  06 0.28e -  06
ILUO 8.4 4 O.lOe — 11 0.26e -  18 0.18e- 18

CGS ILUTH (10-") 5.1 3 0.34e -  15 0.54e -  18 0.38e -  18
ILUTH (10-^) 3.9 2 O .lle - 13 0.42e -  15 0.30e -  15
ILUK (10) 12.1 7 0;38e -  10 0.43e -  13 0.31e- 13

T L W  ■ 7.5 4 0.38e -  10̂ ITOOe·- 17 0.69e — 17
BCGS ta.b ILUTH (10-") 4.4 3 O.T2e- 10" O.lOe -  13 0.14e- 13

ILUTH (10-^) 3.1 2 0.38e -  10" 0.15e- 11 O.lOe -  11
ILUK ao)— 13.1 8 0.22e -  13" 0.26e -  16 O.lSe- 16'
ILIIO ------- failed due to c = 0 at step 20 in QMR

QMR2 ILUTH (10-^) 955.0 500* 0.67e -  06 o .l le -0 8 0.75e — 09
ILUTH ao-·^) 1,047.0 500* 0.16e -  07 0.T2e-08 0.86e -  09

TLUK (10 ) failed due to c = 0 at Step 20 in QMR
ILDD 1,170.0 500* 0.47e -  06 0.48e- 11 0.20e- 11

QMR 3 ILUTH (10-·") 946.1 500* 0.21e -  07 0.33e -  10 0.23e -  10
ILUTH (10-·^) 1,057.0 500* 0.19e-08 0.74e -  10 0.5.3e -  10

.11 UK (10) failed due to 6 = () at Step 20 in QMR

SOR
1 u Ax 1 Time i n r Ax Bk. Err. 1
1 1.0 1 not available 1 4.5 1 8| 0.43e -  15 1 0.30e

Block SOR
Partition. UJ Ax Time # it Ax Bk. Err. #B1.
7 = 10-*̂ 1.0 0.13e- 11 77.3 8 0.17e- 14 0.12e- 14 52
equal x r 0.50e -  12 64.5 8 0.27e -  16 O.lOe -  16 22
other 1.0 0.39e -  12 66.6 8 0.16e- 16 0.12e -  16 14

lAD
Partition. UJ Ax Time Ax Bk. Err.
7 = 10"*̂ 1.0 O.lle -  10 142.2 8 0.89e -  14 0.64e -  14 62
equal 1.0 0.23e -1 0 134.9 8 0.86e -  14 0.61e — l4 41
other № 0.13e- 11 136.2 8 0.44e -  15 0.31e -  l5 24

Table A.25: Numerical Results for mutex.altL·gm6.
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mutex-alt2 n = 39,203 = 563,491

Freconclitioner nzlu i line Mlr’lops
■ILUO........ 063T491 2.0 •■■O'.G”
ILUTH (10-") 301,347 S03.7 0.9
ILUK (10) 392,037 1.158.4 15.8

1 Method Preconditioner Time #  it jir Ax Bk. Err.

GMRES
(m = 20)

ILUO - U T ~ i r "0:32e -  12 ■ 0.28C-T5·· 0.20e — 15
ILUTH (10-^) 2.5 2 0.48c -  13 O .lle - 12 0.81e- 13
ILUK (10) 17.0 16 O.lOc -  11 0.22e -  18 0.16e -  18

BCG
ILUO 23.1 11 0.37c -  10 0.14e -  09 0.97c -  10
ILUTH (10-^) 774.3 500* 0.61c -  04 0.26e -  04 0.18C-04
ILUK 2tl.U 15 U.95C -  10 O.ole -  10 U.36e -  10

CGS
TTUD 6.3 3 0.93c -  12 0.55e — 15 0.39e -  15
ILUTH (10“ )̂ 1.9 1 0.76c -  15 0.18e- 14 0.13e- 14
ILUK (IH) 21.6 13 0.56c — 15 0.66e -  14 0.47e -  14

BCGStab
ILUO 5.4 3 0.40c -  IP 0.24e — 14 0.17e — 14
ILUTH (10-") 1.9 1 0.17c -  15 0.40e -  15 0.28e -  15
ILUK (10) 15.3 9 0.63c -  11 0.37c -  15 0.26e — 15

QMR 2
ILUO ~7m r “ 3TT 0.73e — 10 O.lle -  l l 0.79e -  12
ILUTH (10-") 889.0 500* 0.37c -  09 0.13e -  08 0.96e -  09
ILUK (10) 49.5 25 0.92c -  11 0.12e- 11 0.85e -  12

QMR 3
il Uo 94.8 41 0.93c -  10 0.70e -  10 0.50e -  10
ILUTH (10-") 894.0 500* 0.17c -0 9 0.69e -  09 0.49e -  09

TIT K (10) 980.1 500* 0.21c -  03 0.20e — 09 0.14C-09

SOR
1 ^ 1 1 Time 1 #  it i|.4a:| 1 Bk. Err.
1 1.0 1 not available 1 4.7 1 9 0.50e -  16 1 0.35e -  16 1

Block SOR
Partition. u Ax Time # it Ax Bk. Err.
7 = 10-^ 1.0 0.88e -  10 68.2 5 0.31e- 13 0.22e -  13 47
equal T IT 0.22e -  15" 3.9 2 0.17c- 17 0.12e -  17 0
other 1.0 0.l5e - I T 6.2 9 0.50e — 16 0.35c -  16 2

lAD
Partition. ijj Ax Time # it .4x Bk. Err.
7 = 10"»· 1.0 0.24e -  10 134.9 6 0.96e -  14 0.68e -  14 57
equal TTT 0.79e -  15 92.1" 2 0.37e -  li 0.26e — 17 0
other 1.0 0.50e -  14 r'82.9" 3 0.50e — 16 0.35e — l6 2

Table A.26: Numerical Results for mutex-alt2.
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leaky n = 8 ,2 o S  =  197,474

SOR
(jj Ax Time # it Ax Bk. Err.

|1.0| U.17e- 09 1 409 11 0.7oe -  10 1"0.3«e-U9 1

Block SOR
Partition. UJ Ax Time Ax Bk. Err. I T B r
7=10-;* 1 1.0 0.98e -  10 115.9 14 0.41e -  10 0.21e -  09 192
7 = 10-^ 1.0 0.94e -  10 33.3 142 O .lle - 10 0.53e -  10 7,324
equal 1.1 0.96e -  10 25o^ 0.83e -  10 0.42e -  09 89
other 1.0 0.99e -  10 73.8 313 0J7e -  10 0.39e -  09 109“

lAD
Partition. u Ax Time #  it Ax Bk. Err. #  BI.
7 = lO-" 1.0 0.41e + 00 267.0" 1, 000* 0.21e- 16 O.lle -  15 192
7 = 10"‘ 1.0 requires unreasonably Ion  ̂ time
equal 1.0 0.82e -  10 20.3 70 0 .3 4 e^ rr 0.18e -  10 s r
other 1.0 0.78e- 10 24:9- 80 0.28e -  11 0.14e — 10 TDiT

Table A.27: Numerical Results for leaky.
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n .  20.301 n z -  I40J04

w 10*

Figure B .l: Pushout Threshold.

■ t t . U I  n z - « i . 0 l ·

Figure B.4; 2D.
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Figure B.7: ncd. Figure B.IO: ncd_altl_gm5.

Figure B.8: ncd_gm4. Figure B .ll: ncd_altl_gin4.

Figure B.9: ncd_altl_gm7. Figure B.12: ncd^It2_gm7.
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Figure B.13: ncd_alt2_gm6. Figure B.16; telecom^ml.

n-l04. l2fl  n z - f i n . l t l

Figure B.14: telecom. Figure B.17: qnatm.

Figure B.15: teIecom.gm2. Figure B.18: qnatm^ml.
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Figure B.19; mutex.

■ -90.203 n z -8 i3 .i0 t

.t.3S$ n z - 107.474

Figure B.21: leaky.
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