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ABSTRACT

SCHEMA-BASED LOGIC PROGRAM TRANSFORMATION

Halime Buyukyildiz
M.S. in Computer Engineering and Information Science 

Supervisor: Ass't Prof. Pierre Flener 
August 1997

In traditional programming methodology, developing a correct and efficient 
program is divided into two phases: in the first phase, called the synthesis 
phase, a correct, but maybe inefficient program is constructed, and in the sec­
ond phase, called the transformation phase, the constructed program is trans­
formed into a more efficient equivalent program. If the synthesis phase is guided 
by a schema that embodies the algorithm design knowledge abstracting the con­
struction of a particular family of programs, then the transformation phase can 
also be done in a schema-guided fcishion using transformation schemas, which 
encode the transformation techniques from input program schemas to output 
program schemas by defining the conditions that have to be verified to have a 
more efficient equivalent program.

Seven program schemas are proposed, which capture sub-families of divide- 
and-conquer programs and the programs that are constructed using some gen­
eralization methods. The proposed transformation schemas either automate 
transformation strategies, such as accumulator introduction and tupling gen­
eralization, which is a special case of structural generalization, or simulate 
and extend a bcisic theorem in functional programming (the first duality law 
of the fold operators) for logic programs. A prototype transformation system 

is presented that can transform programs, using the proposed transformation 
schemcis.

Keywords: logic programming, program development, program transforma­
tion, program schema, transformation schema, generalization, duality laws.
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ÖZET

TASLAĞA DAYALI MANTIK PROGRAMI DÖNÜŞTÜRME

Halime Büyûkyıldız
Bilgisayar ve Enformatik Mühendisliği. Yüksek Lisans 

Tez Yöneticisi: YYd. Doç. Pierre Flener 
.Ağustos 1997

Geleneksel programlama metodolojisinde, doğru ve etkili program geliştirme iki 
aşamaya ayrılır: birinci aşamada, sentez aşaması denir, doğru, fakat yeterince 
etkili olmayabilen bir program yapılır, ve ikinci aşamada, dönüştürme aşaması 
denir, yapılan program daha etkili eşdeğer bir programa dönüştürülür. Eğer 
sentez aşaması belirli bir program ailesinin yapımını özetleyebilen algoritma 
plan bilgisini içeren program taslağı rehberliğindeyse, dönüştürme aşaması 
da giren program taslağından çıkan program taslağına tanımlanmış dönüşüm 
tekniklerini daha etkili eşdeğer bir program elde etmeyi sağlayacak gerekli 
koşulları tanımlayarak kodlayan dönüşüm taslakları kullanarak yapılabilir.

Böl-ve-fethet ve genelleme metodlarını kullanarak sen tezlenebilecek pro­
gram ailelerini temsil eden yedi program taslağı sunuluyor. Sunulan dönüşüm 
taslakları ya içine birikeç sokmak ve yapısal genellemenin özel bir hali olan 
çoğullama genellemesi gibi dönüşüm tekniklerinin otomasyonunu sağlar, ya da 
fonksiyonel programlamanın temel teoremlerinden birini (fold operatörlerinin 
ilk ikilik kuralını) mantıksal programlamaya geliştirerek uygular. Sunulan 
dönüşüm taslaklarını kullanarak program dönüştürebilen prototip bir sistem 
geliştirilmiştir.

Anahtar Sözcükler: mantıksal programlama, program geliştirme, program 
dönüştürme, program taslağı, dönüşüm taslağı, genelleme, ikilik kuralları.
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Chapter 1

Introduction

In traditional programming methodolog}', developing a correct and efficient 
program is divided into two phases: in the first phase, called the synthesis 
phase, a correct, but maybe inefficient program is constructed, and in the sec­
ond phaise, called the transformation phase, the constructed program is trans­
formed into a more efficient equivalent program. However, it is better to divide 
logic program development into 5 steps like Deville did in [16], as in the figure 
below:

Problem

Elaboration

Specification some informal language
t

Construction
t

Transformation(^Lx)gic Program Horn clause logic

Implementation

Transformation(^ Program Prolog, Mercury,...

Figure 1.1. Program Development Methodology
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The first step in Deville's program development methodology is the elabo­
ration of a specification of the problem given, and this is the step that can't 
be (semi-)automated. and the step where most of the mistakes in program de­
velopment occur. The second step is the construction of a logic program (logic 
description in [16]) from the specification of the problem. There is a consider­
able amount of w’ork in literature that try to (semi-)automate this process, and 
they have shown improvements in this subject (refer to [IS, 23. 22]). The third 
step is to derive a program from the logic program. This step deals with the 
computational and compiler-specific issues that make programming in a gi\en 
language different from programming in logic. There are also some works in 
literature that automate this step (e.g. the Mercury compiler or abstract in­
terpretation systems like Le Charlier's G.AI.A [35]). The two transformation 
steps in program development have the objective of increasing the efficiency of 
programs. Logic program transformation deals with logic, without any proce­
dural aspects, and therefore it will be easier to carry out while preserving the 
correctness. However, transforming programs written in a logic programming 
language deals with the operational semantics of that language, and must have 
a suitable introduction of control. Deville proposed this methodology of pro­
gram development, since it systematizes the logic programming adage "think 
logically first, then consider the procedural behaviour” .

In this thesis, I only deal with the declarative semantics of programs in 
program transformation. The research results for the logic program transfor­
mation step of the above methodology are presented, where some well known 
methods like generalization and the duality laws in functional programming 
are used in a schema-guided wa}'.

CHAPTER 1. lyTRODVCTION  2

The objective of this research is to pre-compile the logic program transfor­
mation techniques that are proposed in the literature, after constructing most 
general definitions of the notions in the schema-based logic program transfor­
mation. I first examine the work done in the logic program transformation 
area so as to properly define the underlying theory of this research. The def­
initions être constructed by extending the proposed ideas and methods in the 
schema-based logic program transformation literature. These definitions and 
a summary of the related work in logic program transformation are presented
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in Chapter 2. Generalization of the divide-and-conquer programs is worked 
out in this research. So, the program schemas, which abstract sub-families of 
divide-and-conquer programs are ne.xt proposed in Chapter 3.

I propose some generalization schemas that pre-compile the generalization 
methods proposed by Deville [16], namely tupling and descending generaliza­
tion. in Chapter 4. One more category is added, namely simultaneous tupling- 
and-descending generalization, which can be thought of as a combination of 
the other two. The generalization schemas are more general than the gener­
alization schemas that are proposed by Flener and Deville [20]. in the sense 
that they deal with the transformation of more generic program families, by 
benefiting from the strength of the extended theory.

I propose some more transformation schemas in Chapter 5 that simulate and 
extend a basic theorem in functional programming (the first duality law of the 
fold operators) to logic programs. These schemas result from the ideas captured 
during the pre-compilation of generalization techniques. The similarity of this 
work with the work done in functional programming helps us to automate these 
transformations easily.

.Although the transformation schemas proposed in this thesis only deal 
with the declarative semantics of programs, they are also evaluated by making, 
performance tests on the input and output programs of these transformation 
schemas in a logic programming language setting. The performance tests of 
the input and output programs of these transformation schemas for some se­
lected problems show that the post-optimizability conditions have a key role 
in ensuring an efficiency gain. The results of these performance tests and a 
detailed discussion are thereof given in Chapter 6.

Using the results of the theoretical part of this research and the evaluation 
of the transformation schemcis, a prototype transformation system is developed, 
which is the main practical objective of this research. This system is explained 
in detail in Chapter 7. It is shown that our transformation schemas can really 
be used in a real practical transformation setting.
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There exist a lot of future work directions of this research, since the con­
structed theory is new and seems to be powerful enough to pre-compile some 
more transformation techniques like loop merging. Some extensions in the the­
ory will also help to extend the prototype system so as to become a complete 
transformation system that can be integrated into a schema-beised logic pro­
gram development environment. The contributions of this research and the 
future work directions are summarized in Chapter 8.



Chapter 2

Basic Concepts

In this chapter, the most general definitions of the notions that are used 
throughout this thesis are presented (Section 2.1), then the related work done 
in logic program transformation is summarized (Section 2.2).

2.1 Terminology

I first define the notions; program and specification in Section 2.1.1. Next, the 
correctness and equivalence criteria of programs are presented in Section 2.1.2. 
The general definitions of the notions in program transformation are given in 
Section 2.1.3. Program schemais and the related notions are defined in Sec­
tion 2.1.4. I present the definition of a transformation schema in Section 2.1.5. 
Finally, problem generalization methods, which are used in this thesis, are 
discussed in Section 2.1.6.

2.1.1 Programs and Specifications

Definition 1 An atom is a first-order formula of the form r(<i,. . . , / „ ) ,  where 
r is a relation symbol of arity n, and h , . . . , i „  are terms constructed out of 
variables, constants, and function symbols.
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Exam ple 1 p{[HL\TL].R,[HL\TS]) and g([], 0) are atoms.

Definition 2 A typed definite clause is a formula of the form:

V.Vi : A’x........r (A 'i.. . . .  A J  ^  6 [A „  . . . ,  A'..]

where A’i . . . . ,A „  are the sorts (or: types) of A'l....... A'„, respectively, atom
r(A’i ___.A"̂ „) is called the head of the clause, and S[A’i .........A' ]̂ is called the
body oi the clause, which is a (possibly empty) conjunction of formulas, which 
are either atoms or disjunctions.

Exam ple 2 The formula below is a typed definite clause:

V£ : list(int). V S : nit. sum{L, S) *— L = [HL\TL]. sum{TL.TS).
S is HL + TS

Definition 3 A typed definite logic procedure is a finite set of typed definite 
clauses whose heads have the same relation svmbol with the same aritv.

Exam ple 3 Below is a typed definite logic procedure:

VL : list{int),VS : int. sum{L,S) <— L = [].5 = 0
VL : list{int),VS: int. sum{L, S) <— L = [HL\TL], sum{TL., TS).

S is HL + TS

Definition 4 A typed definite logic program is the union of a set of typed 
definite procedures.

Exam ple 4 Below is a typed definite logic program:

VA : int.VB : int. int-eqq{A, B) <— A = B 
V A :in t,V B :in t,V C :in t. add{A ,B .,C )^ A is B -{■ C

VL : list{int),VE : int. mem{L,E)*— L = [HL\TL]fintjeqq{H L. E)
VL : list {int),VE: int. mem{L,E)*— L = [HL\TL],mem{TL,E)



Throughout the thesis, the word program (respectively, procedure and 
clause) is used to mean typed definite logic program (respectively, procedure 
and clause), and I drop the quantifications wherever they are either irrelevant 
or known in context.

Definition 5 A non-primitive relation that appears in the clause bodies of a 
program, but does not appear in any heads of the clauses of that program is 
called an undefined (or open) relation, otherwise it is called a defined relation.

Definition 6 .An open program is a program where some of the relations are 
undefined. If all the relations in the program are defined, then the program is 
called a closed program.

Exam ple 5 The program below is an open program: 

sori(I ,5 )'< — T =  [ ] , 5 = [ ]
sort{L,S) ^  L = [HL\TL].sort{TL.TS),insert(HL.TS.S)

since the relation insert/S is undefined in the program. If we construct a new 
program by taking the set union of the program above and the program below:

insert{E, L. R) /. =  [ ] , /? = [£ ']  
insert{E ,L,R) ^  I  =  [HL\TL],HL > E ,R  = [E\L] 
insert{E, L ,R ) ^  L = [HL\TL], HL <  E,

insert{E ,T L ,T R ).R =  [HL\TR]

then the new program is a closed program, assuming =  / 2, > / 2, and < /2  are 
primitives.

Definition 7 A clause is said to be recursive iff its head relation also occurs 
in an atom of its body. A program is said to be recursive iff one or more of its 
clauses is recursive.

CHAPTER 2. BASIC CONCEPTS 7

Definition 8 [41] A program is tail recursive iff it has one and only one
recursive subgoal and its last clause has the form

r(t) ^  L,r{u)



where L is deterministic. When the last clause of a program has this form but 
the program has more than one recursive subgoal, the procedure is said to be 
semi-iail recursive.

Definition 9 A formal specification of a program for a relation r of arity 2 is 
a first-order formula written in the format:

: A". V i·': J.(A") [r(A. V) a ( A ,  Y)]

where -V and y  are the sorts (or types) of X  and V. respectively. Jr(A') de­
notes the input condition that must be fulfilled before the execution of the 
program, and O r(X ,Y) denotes the output condition that will be fulfilled after 
the execution.

Exam ple 6 Below is the formal specification of any program for the problem 
of sorting an integer list:

VZ- : list{int). V5 : list{int). true =>■ [sort{L,S) ^  

permuiation{L. S) A ordered{S)]

where L and S are integer-lists, the input condition of sort(L,S) is true, 
and the output condition of sort{L, S) is the conjunction permuiation{L. S) A 

ordered{S).

I give the definition of the formal specification of a relation r of arity 2 
for pedagogical reasons, the definition can be generalized to relations of arity 
n. Also, for some of the problems worked out in this thesis, sometimes I give 
informal specifications, which are rewritings of the formal specifications in a 
“natural” language.

CHAPTER 2. BASIC CONCEPTS 8

2.1.2 Correctness and Equivalence Criteria

In this section, I give correctness and equivalence criteria by using the notion of 
framework [21]. Throughout the section, when I write “a relation r” , it means



“a relation r of arity 2". but these definitions can be generalized for relations 
of arity n. In the definitions below. 1 do not consider niutuall}' recursive pro­
grams. However, these definitions can be reconstructed for mutually recursive 
programs as well.

D efin ition 10 (Frameworks [21])
A framework ^  is & full first-order logical theory (with identity) with an in­
tended model. An open framework consists of:

a (many-sorted) signature of

- both defined and open sort names:

- function declarations, for declaring both defined and open constant 
and function names;

- relation declarations, for declaring both defined and open relation 
names;

* a set of first-order axioms each for the (declared) defined and open func­
tion and relation names, the former possibly containing induction schemeis:

* a set of theorems.

Thus, an open framework T  is also denoted cis .^(11), where II are the open 
names, or parameters, of T . The definition of a closed framework is the same 
as the definition of an open framework, except that a closed framework has no 
open names. Therefore, a closed framework is just an extreme case of an open 
one, namely where II is empty.

The definitions of correctness of a logic program and equivalence of two 
programs are given only for programs in closed frameworks.

CHAPTER 2. BASIC COSCEPTS 9

E xam ple 7 (C losed Frameworks) A typical closed framework is (first-order) 
Peano arithmetic [21]: *

'T h e most external universzJ quantifiers will be omitted.
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Framework A 'A T :

SORTS:

FUNCTIONS:

AXIOMS:

Nat·,

0

+ ,*

^  Nat:
Nat —> Nat:
(Nat, Nat) —* Nat:

->0 = 5 (j) A s(a) =  s(b) —* a = b:
X + 0 = x:
X + s(y) = s(x + y):
X *0 — 0:
X * s(y) = X + X * y:
H(0) A {Wi.H(i) H(s(i))) ^  'ix.H(x).

This framework defines the abstract data type N"AT as follows: the sort Nat 
of natural numbers is constructed freely from the constructors 0 (-cro) and 5 
(successor): the freeness axiom for these constructors is the first axiom; the 
functions +  (sum) and * (product) on Nat are axiomatized by the next four 
axioms (in a primitive recursive manner). Note in particular that the last 
axiom in A ’A T  can be used for reasoning about properties of +  and * that 
can’t be derived from the other axioms, e.g. associativity and commutativity. 
This illustrates the fact that in a framework we may have more than just an 
abstract data type definition.

Definition 11 (Correctness of a Closed Program)

Let P be a closed program for relation r in a closed framework T. We say that 
P is (totally) correct wrt its specification Sr iff, for any ground term t oi X  such 
that Ir(t) holds, the following condition holds: P  h r(t,u) iff P" f= Or(t,u), for 
every ground term u of y .

If we replace ‘ iff’ by ‘ implies’ in the condition above, then P is said to be 
partially correct wrt 5r, and if we replace 'iff’ by ‘ if’ , then P  is said to be 

complete wrt Sr-

This kind of correctness is not entirely satisfactory, for two reasons. First, 
it defines the correctness of P  in terms of the procedures for the relations
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in its clause bodies, rather than in terms of their specifications. Second. P 
must be a closed program, even though it might be desirable to discuss the 
correctness of P without having to fully implement it. So. the abstraction 
achieved through the introduction (and specification) of the relations in its 
clause bodies is wasted. This leads us to the notion of steadfastness (also 
known as parametric correctness) [21] (also see [16]).

Definition 12 (Steadfastness of an Open Program)
In a closed framework .F, let:

• P  be an open program for relation r

• 9i , . . .  , 9m he all the undefined relation names appearing in P

• 5 i , . . . ,  be the specifications of 91, . . .  , 9m·

We say that P  is steadfast wrt its specification 5r in {5 i___, 5m } iff the (closed)
program P U Ps is correct wrt 5r, where P5 is any closed program such that

• Ps is correct wrt each specification S j {1 < j  < m)

• Ps contains no occurrences of the relations defined in P.

Let’s illustrate with an example the retison why we can’t rephrase the last 
sentence above as:

W’e say that P is steadfast wrt its specification 5r in { 5 i , . . . ,  5m} iff. 
for any closed programs P i , . .P m  that are correct wrt 5 i , . . . ,  5m, 
respectively, and that contain the open programs for 91, . . . ,  9m, we 
have that the (closed) program P U Pj U . . .  U Pm is correct wrt Sr-

Exam ple 8 I use propositional logic, since it helps to understand the example 
easily. Let the open program P  be:

r 4 -p ,9
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To show the steadfastness of P, suppose we choose the closed program Pp as

p i,s

where u is a primitive, and Pp is correct wrt Sp. Also suppose we choose the 
closed program Pg as

where v is a primitive, and P, is correct wrt 5 ,. To say that P is steadfast wrt 
Sr in {5p. 5 ,} ,  the (closed) program PU PpU Pg would have to be correct wrt 
Sr- But note that the set union P U PpU Pg has two different programs for 
proposition t, which makes the regular set union inapplicable in this context.

□

The steadfastness definition yields the following interesting property, which 
is actually a high-level recursive algorithm to check the steadfastness of an open 
program.

P roperty  1 In a closed framework P", let:

• P  be an open program for relation r of the specification Sr

• p i , . . .  ,pt be all the defined relation names appearing in P  (including r 
thus)

• qi,. . .  he a\\ the undefined relation names appearing in P

• 5 i , . . . ,  5m be the specifications of ___ q^.

For t >  2, the program P is steadfast wrt Sr in {5 i, . . . ,5 m }  iff every P, (1 < 
i < t) is steadfast wrt the specification of p, in the set of the specifications of all
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undefined relations in P,, where P, is a program for /),. such that P = U|=i ^i· 
When / =  1. the definition of steadfastness is directly used, since the only 
defined relation is the relation r. Thus, t =  1 is the stopping case of this 
recursive algorithm.

Example 9 I use propositional logic, since it helps to understand the e.xample 
easily. In a closed framework .P. let the open program P be:

p. w

p ^ q

To show the steadfastness of P, suppose we choose the closed program P$ as

q <- t

w

where t and v are primitives in P", and P$ is correct wrt 5«,· and 5,. By 
Definition 12, P  is steadf«ist wrt Sr in {5u,.5,} iiT the closed program P U P5 
is correct wrt St in T. By Definition 11, P U P$ is correct wrt 5r in P" iff the 
following condition holds:

{r  <— p, IT, p <— 9, 9 <— t, u; i·} l· r iff p· 1= Or

By resolution:

{p i— q.q ^  t,w ^  v} l· p,w iff p" ^  Op /\ Ou,

The formula above can be written as:

({p <— ^.9 ♦ - t} h p iff p· [= Op) A ({u· *— i'} h w iff p· f= Ô v)

The second part of the conjunction is true, since P5 is correct wrt Sw and 
t’ } is the program of w in P5.

By Definitions 11 and 12, the first part of the conjunction means that the 

program Pp below
p i - q
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is steadfast wrt Sp in {5 ,}  iff the closed program Pp U F, is correct wrt Sp.

q ^  t
where F, is

and it is correct wrt 5,.

If we use the property of steadfcistness, for t =  2. the program F is steadfast 
wrt Sr in iff Pp is steadfcist wrt Sp in {-S’,} .  After we prove the
steadfastness of Pp. t reduces to 1 and we directly use Definition 12 for proving 
the steadfastness of Pr wrt 5r in {5p, 5u·} where P = PpU Pr. The algorithm 
summarizes what we did bottom up in this example for proving steadfastness 
of F  wrt Sr in {5u.. ■?,}·

Thus, Property 1 proposes an efficient algorithm to prove the steadfastness 

of an open program. □

For program equivalence, we do not require the two programs to have the 
same models, because this would not make much sense in some program trans­
formation settings, where the transformed program features relations that were 
not in the initially given program. That is why our program equivalence crite­
rion establishes equivalence wrt the specification of a common relation (usually 
the root of their call-hierarchies).

Definition 13 (Equivalence of Two Open Programs)
In a closed framework F", let F and Q be two open programs for a relation r. 
We say that F  is equivalent to Q wrt the specification Sr iff the following two 
conditions hold:

(а) P  is steadfast wrt Sr in { 5 i , . . . ,  5m}, where 5 i , . . . .  5m are the specifica­
tions of Pi__ _ Pm, which are all the undefined relation names appearing

in F

(б) Q is steadfast wrt Sr in { 5 ( , .. · ,5 }}, where 5|,.. . .  S[ are the specifica­
tions of qi__ _ qt, which are all the undefined relation names appearing

in Q.
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Since the ‘is equivalent to" relation is symmetric, we also say that P and Q are 
equivalent wrt Sr-

Sometimes, in program transformation settings, there exist some conditions 
that have to be verified related to some parts of the initial and/or transformed 
program in order to have a transformed program that is equivalent to the 
initially given program wrt the specification of the top-level relation. Hence 
the following definition.

Definition 14 (C onditional Equivalence o f  Two Open Program s)
In a closed framework IF, let P and Q be two open programs for a relation r. 
We say that P is equivalent to Q wrt the specification Sr under conditions C 
iff P is equivalent to Q wrt 5r provided that C hold.

2.1.3 Transformation

In this section, I give the definitions of the following concepts: program trans­
formation, transformation techniques, transformation strategies, and transfor­
mation rules.

Definition 15 A program transformation is the replacement of a subset of the 
clauses of a program with another clause set such that the resulting program is 
equivalent to the initial program wrt the specification of the top-level relation.

Definition 16 A transformation rule is a rule that takes an input program 
and produces another program, which is equivalent to the input program wrt 
the specification of the top-level relation.

Example 10 An example transformation rule is replacing the clause of a pro­
gram that has the conjunction H — [],append{H,T, R) in its body, with a 
clause that is the same as the previous one, except that it has the literal 
R = T'm place of that conjunction. □
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A program transformation process starting from a given initial program Pq

can also be viewed as a sequence of programs Pq....... Fn« called transformation
sequence, such that program Pk+i. with 0 < k < n. is obtained from Ft by 
the application of a transformation rule, which may depend on Po....,Pk· 
However, the problem is that an efficiency improvement is not ensured by an 
undisciplined application of transformation rules one after another. So a better 
approach is using a transformation strategy.

D efin ition 17 .A transformation strategy is some form of a meta-rule that 
takes an input program and produces another program, which is equivalent 
to the first one wrt a given semantics, by applying a suitable sequence of 
transformation rules.

E xam ple 11 The loop merging str&tegy transforms the ‘"naive'’ program

.. .  , sum{L, 5), length{L, N )___

into the optimized program

p{L,R) *— .. .  ,sumLength(L,S^ N ),. . .

and generates a new program for sumLength from those for stirn and length.'

□

D efinition 18 A transformation technique improves program efficiency by us­
ing a combination of transformation strategies.

Efficiency improvement is the main objective of transformation techniques.

In the remaining part of this section, I present four basic transformation 
rules, namely unfolding, folding, definition introduction, and goal replacement 
for definite programs. The definitions below are similar to the definitions in
[41], but they are adapted to our terminology. The reader may refer to [41] for 
more transformation rules, the variations of the transformation rules below for 
different semantics, and their relevant properties.
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Definition 19 (Unfolding) Let Pk be the program {E\____ Er. C. Er+i, . . . .
Es} where E, (1 < i < s) is a clause, and let C be the clause H *— F, Л .6 ', 
where A is an atom and F  and G are conjunctions of atoms. Suppose that:

( 1) { E l , .. ·, D „}, with n > 0, is the subset of all clauses in a program Pj,
with 0 < j  < k, such that A is unifiable with htad{D\)....... head{D„),
with most general unifiers 6>i,. . .  , 6„, respectively, and

(2) Ci is the clause {H  <— F. body{Di),G)0i, for ?’ = 1___,n.

If we unfold C wrt A using D\____ E„ in Pj, we derive the clauses C\.......
and w'e get the new program Pk+i =  {Ei ...,E r ,C i, —  C„, Er+i... . .  E^}. A 
simpler terminology, like “to unfold C wrt A using Ej“ . can also be used.

Example 12 Let C =  p(A') <— q{t{X )),$ {X ) be a clause in Pk and let the 
definition of q in Pj, with 0 < j  < k, consist of the following clauses:

q{a) ^  
q{t{b)) ^  
q {t{a ))^  r{a)

Then, by unfolding C wrt ^(¿(.Y)) using Pj, the following clauses are derived:

p {b )^  3{b) 
p(a) r(a),s(a)

Thus Pk+i is obtained by replacing the subset {C } in Pk by the set of derived 
clauses above. □

Definition 20 (Folding) Let Pk be the program ( E j , . . . ,  Er,Ci....... C„, Er+i.
. . . , E i }  and let { E i . . . . , E „ }  be a subset of clauses in a program Pj, w’ith 
0 < j  < k. Suppose that there e.xists an atom A such that, for / =  0 , . . . ,  n:

( 1) head{Dj) is unifiable with .4 via a most general unifier

(2) Ci is the clause {H  <— F. body{Dj). G)0i, where F and G are conjunctions 
of atoms, and
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(3) for any clause D of Pj not in the subset {D i ,----Dn}, head(D) is not
unifiable with ,4.

If we fold using in Pj. we derive the clause H *-
F, A, G. call it C, and the neŵ  program is Pk+i =  {E i,.. ■ Er,C. Er+i, ...,E s}·

The folding rule is the inverse of the unfolding rule, in the sense that given a 
transformation sequence Pq. . . . ,  Pjt, Pk+\i w'here Pk+\ has been obtained from
Pk by unfolding, there exists a transformation sequence Pq, -----Pk, Pk+i, Pk̂
where (the last occurrence of) Pk has been obtained from Pk+i by folding.

Exam ple 13 The clauses

C, : p ( t ( X ) ) ^ 9(X ) , r (X )
C2 : p ( u ( X ) ) ^ 5(X ) , r (X )

can be folded using

A :  a ( X , i ( X ) ) ^ 9(A')
D2 : a ( X ,u (A ) ) f - s ( .Y )

thereby deriving

C : p { Y ) ^ a { X , Y ) , r ( X )

Notice that by unfolding clause C using {Di.Dz}^ w-e get again {C i ,C2}. □

Definition 21 (D efinition Introduction ) Let f); be the program {Ei, —  E„},  
a new program Pk+\ can be obtained by the set union of Pk and Pr where Pr 
is a program for relation r such that r does not occur in Po,-----Pk·

Exam ple 14 Let Pk be the program:

p < - q 
p *— fail

9 ^

By definition introduction. Pk+i will be the program:



CHAPTER 2. BASIC CONCEPTS 19

P

P

<7
n e w p

<1
fail

iff newp does not occur in Pq, -----P*. □

Definition 22 (Goal R eplacem ent) A replacement law is a pair S = T. 
where 5 and T are conjunctions of atoms. Let {A^i,-----A'„} be the set con­
taining the variables both in S and in T (i.e., vars{T) D i!ars(5)), and let us 
consider the following two clauses:

C s: p { X t . . . . ,X n )^ S  
Ct : p ( A , . . . . , A „ ) ^ r

where p is any new relation name. We say that S =  T is valid wrt the program 
Pk iff the program Pk U C$ is equivalent to the program Pk U Ct wrt the 
specification of the top-level relation. Let

C : H ^ F ,S ,G  

be a clause in Pk such that:

1. 5  =  T is a valid replacement law wrt Pk, and

2. vars(H, F, G) H rars(5) =  vars{H, F, G) fi var${T) =  { A j , . . . .  A’„ } .

By replacement of S in C using S =  T we derive the clause 

R : H ^  F T ,G

and we get Pk+i by replacing C by R in Pk-

Exam ple 15 (Goal Replacem ent [41]) Let Pk be the program below:

Cl : sublist(N, X, Y) «— length(X, N), append{V, A, W ), append{W, Z, Y) 
C2 ' append{L, R, Z) ^  L = [], Z = R
C3 : append{L,R,Z) L = [HL\TLlappend{TL, R,TZ), Z = [HL\TZ]
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The replacement law

append{\\ A', H"). apptnd( IT. Z, >') =  appeud(.\\ L. .U). append{ K. M. Y)

(which expresses a weak form of associativity of append) is valid wrt Pk. Indeed, 
if we consider the clauses;

Cs : p{X, V) *— append{ V, A'', IT), append{\\\ Z. i ')
Ct : p{X, Y) *— append{X, L. A/), append( A', M. T )

we have that PkUCs is equivalent to the program PkUCr wrt the specification 
of the top-level relation. Thus by goal replacement of

append{V, X, VV'), append(\V, Z. Y)

in Cl, we derive the clause:

C[ : sublist{N, X . T) length(X, N), append{X, L, A/), append{K, A/, Y)

□

In [9], I use the transformation rules unfolding and folding for proving the 
equivalence of the input and output programs of the transformations explained 
in the remaining chapters of this thesis. The definition introduction and goal 
replacement rules are used to define the transformation strategies that were 
proposed in the literature, as we will see in Section 2.2.1.

2.1.4 Program Schemas and Schema Patterns

I gave the definition of a program in Section 2.1.1. now I will give the definitions 
of a program schema and a program schema pattern.

Definition 23 In a closed framework P", a program schema for a relation r is 
a pair (T,C), where T is an open program for r, called the template, and C is 
a set of specifications of the open relations of T in terms of each other and the 
input/output conditions of the closed relations of T. The specifications in C, 
called the steadfastness constraints, are such that, in T is steadfast wrt its 

specification Sr in C.
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Exam ple 16 Let GT be the generate_and_test program schema for relation r 
of arity 2. then GT contains the template program:

V.V : X.'iY  : r(.V. Y) *— generator{X. >'), te*'ier(V')

Note that most programs can be classified as GT programs according to the 
template above, if no semantic constraints on the open relations are given. 
Informally, the semantics (i.e. meaning) of the template above is that, for a 
given input X  of type X. the relation generator generates a possible output 
Y of type 3̂  until Y satisfies the condition specified by the relation tester. So 
the steadfastness constraints of GT are:

T r { X )  => [generator(X. Y) O g { X ,  V')]

0 ,(A ',r )  => [tester{Y) ^  a (^ ,V ') ]

where Ir{X ) is the input condition of the relation r, and Or{X, K) (respectively, 
y')) is the output condition of the relation r (respectively, generator).

□

Definition 24 In a closed framework .F, a program P  for a relation r is an 
instance of program schema 5 = (T, C) for a relation r if it heis the form TUE. 
where E is a closed program defining all the open relations in T. such that E 
is totally correct wrt each specification in C (i.e., such that P is totally correct 
wrt its specification Sr ) ·

Exam ple 17 For instance, the closed program

r(A’, V') generator{X,Y').tester{Y) 
generatoi'{X,Y) *— perm{X,Y) 

tester{Y) <— ordered(Y )

is an instance of the generate-and-test GT schema in the list framework, as­
suming that perm and ordered are primitives. Q

Sometimes, a series of schemcis are quite similar, in the sense that they 
only differ in the number of arguments of some relations, or in the number of
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calls to some relations, etc. For instance, one may want to write a GT schema 
for relations having n result arguments. For this purpose, rather than having 
a proliferation of similar schemas. I introduce the notions of schema pattern 
(compare with [10]) and particularization.

Definition 25 A schema pattern is a schema where term, conjunct, and dis­
junct ellipses are allowed in the template and in the steadfastness constraints.

I do not formally define the ellipsis notation here, assuming that their se­
mantics is quite straightforward. For instance, T.Vi....... TXt is a term ellipsis,
and A{=i r{TXi,TYi) is a conjunct ellipsis.

Exam ple 18 The following is the template of a GT schema pattern, called 
GTP:

V.Y : A'.VVj,. . . ,  K  ■ X- r(X , Y i,...,Y n ) gentrator\{X, Vj), ie s ie r i(}j),

generato7'n{X. V'„). <esier„(V;)

□

Definition 26 A particularization of a schema pattern is a schema obtained by 
eliminating the ellipses, i.e., by binding the (mathematical) variables denoting 
their lower and upper bounds to natural numbers.

Exam ple 19 The schema GT is the particularization of GTP  for n =  1 (as­
suming that indexes are dropped when ellipses reduce to singletons). q

2.1.5 Transformation Schemas

In Section 2.1.3, I gave the definitions of a program transformation and a 
transformation technique. Now, it is time to give the definition of a transfor­

mation schema that is the counterpart of the transformation techniques in the 
strategy-based approach.
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D efinition 27 A transformation schema encoding a transformation technique 
is a 5-tuple (5 i , 52, A .O iziO ii), where Si and 2̂ are program schemas (or 
schema patterns). .4 is a set of applicability conditions, which ensure the equiv­
alence of the templates of and $2 wrt the specification of the top-level 
relation, and O12 (respectively, On) is a set of optiniizability conditions, which 
ensure the optimizability of the output program schema (or schema pattern) 
S2 (respectively, ^i).

The reader may find the example below too easy and providing not much ef­
ficiency gain as a transformation and little generic as a transformation schema, 
but I give this example so that the reader will have an intuitive understanding 
of the notion. Many realistic examples of transformation schemas will be found 
in the remaining chapters.

E xam ple 20 Let TS he the example transformation schema that is a 5-tuple 
(5 i . 52,.4 , 0 i2, 02i) i where Si has the template:

r(A',y·) ^  id{E).Z = [E lcom pi{Z ,X ,Y )

and the steadfeistness constraints of Si are the specifications of the relations r. 
id. and compi. Then. S2 has the template:

r (X  Y) ^  id{E). Z = [E],cowp2{X, Z,Y)

with a subset of the steadfastness constraints of 5i that are the specifications 
of relations r. id. and comp2.

The set .4 of the applicability conditions o{ TS contains the formula:

On{Z,X,Y)^Oc2{X-Z.Y)

where O.-i and Oc2 are the output conditions of compi and comp2·

O12. which is the set of the optimizability conditions of 2̂ in TS. is the set 
containing the formula:

2 = [£1 => |0„(2,.V,K) «■ }■ = |£|.V)1
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and O21. which is the set of the optimizability conditions of S\ in TS. is the 
set containing the formula:

Z  =  [£| => |Ort(.V, Z, >·) « .  1' =  1£|,VJ1

assuming that the two schemais are defined in the list framework. □

Definition 28 \  transformation schema (5 i .52, zl,O12. 021) is correct iff the 
templates of program schemas (or schema patterns) 5i and S2 are equivalent 
wrt the specification of the top-level relation under the applicability conditions 
.4.

In program transformation, for proving the correctness of a transformation 
schema (5 i ,52, i4,012, 021), I have to prove the conditional equivalence of Ti 
and T2, which are the templates of Si =  (Ti.Ci) and S2 =  (72, C2). I assume 
that the template T, of the input program schema 5,- =  (T,, C,) (where / =  1, 2) 
is steadfcist wrt the specification of the top-level relation, say 5r. in C,, then 
the correctness of the transformation schema is proven by establishing the 
steadfastness of the template 7} of the output program schema (or schema 
pattern) Sj = {Tj,Cj) (where j  =  1,2 and j  /  /) w'rt Sr in Cj using the 
applicability conditions A.

At the program-level, the transformation of a given closed program P for 
a relation r into a new closed program Q for r then reduces to:

(1) selection of an applicable transformation schema (5 i ,52, A ,O 12. 021). 
where 5i =  (7 i,C i) and S2 =  (72, 0 ) such that P  is an instance of 
Si (i.e., P = TiU E), or an instance of S2 (i.e.. P = T2 U E)\

(2) verification of the applicability of the transformation schema by verifi­
cation of whether E  satisfies the conditions A. in the considered closed 
framework i.e., whether E t-^ ,4;

(3) verification of the efficiency gain by the transformation schema by verifi­
cation of whether E satisfies the conditions On· or O21, in the considered 
closed framework i.e., whether E \~jr O12, or E \~jr O2T,
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(4) computation oi Q as an instance of 52. or 5i. i.e.. Q = T2 U E, or Q = 
TiUE:

(5) optimization of Q.

If schema-guided synthesis of P was performed (e.g.. if P  is a-priori known to 
be a particularization of 5i). then Q can be obtained automatically, namely Q 
will be the corresponding particularization of S2·

2.1.6 Problem Generalization

Not only in mathematics, but also in many fields of computer science, such as 
machine learning, theorem proving, and so on, generalization techniques are 
used to ease the process of solving a problem. Here generalization is used to 
transform a possibly inefficient program into a more efficient one. because the 
generalization process may provoke a complexity reduction by loop merging 
and because the output program may be (semi-)tail-recursive (which can be 
further transformed into an iterative program by an optimizing interpreter). 
The problem generalization techniques that are used in this thesis are explained 
in detail in [16], and using these techniques for synthesizing and/or transform­
ing a program in a schema-guided fashion was first proposed in [16, 17]. and 
then extended in [‘20].

Given a program, the generalization process works as follows: first the 
specification of the initial program is generalized, then a recursive program for 
the generalized specification is synthesized, and finally a non-recursive program 
for the initial problem can be written, since the initial problem is a particular 
case of the generalized one. The two generalization approaches used here are:

1. Structural generalization: The intended relation is generalized by gener­

alizing the structure (or: type) of a parameter. If a problem dealing with 
a term is generalized to a problem dealing with a list of terms, then this 
generalization is called tupling generalization.

2. Computational generalization: The intended relation is generalized so 
as to express the general state of a computation in terms of what has
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been done and what remains to be done. Ascending and descending 
generalizations are two particular cases of computational generalization, 
where in ascending generalization, information about what has already 
been done is also needed, but in descending generalization the information 
about what remains to be done is enough.

Definition 29 If output program schema (or schema pattern) of the transfor­
mation schema is obtained by any method of generalization described above, 
then the transformation schema is called a generalization schema.

In the remainder of this section. I illustrate the generalization process de­
scribed above on two examples: in the first one. I use tupling generalization, 
and in the second one, I use descending generalization.

Exam ple 21 (Tupling G eneralization) Let sortf2 be our initial problem, 
and its specification is:

sort{L,S) iff integer-list 5  is the sorted version of integer-list L in ciscending 
order.

Let's assume that sortf2 program below is constructed cis the initial program, 
which is not very efficient in time and space, although it is better than most 
of the sorf/2 programs that can be constructed.

sorf([],[])

sort{[HL\TL],S) partition{TL, HL, TLl,TL2).
sort{TLl,TSl),sort{TL2,TS2)y

appeml{TSl,[HL\TS2],S)

with a correct program for partition!A., which has the specification below:

partition{L, H, T\,T2) iff integer-list Tl has all the elements of integer-list L 
that are less than integer H, and integer-list T2 has all the remaining 
elements of L that are greater or equal to H.
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and a correct program for append/3, having the specification:

append{Ll. L2, L'i) iff list £3 is the concatenation of the lists Ll and L2.

Using tupling generalization, by generalizing the parameter L in the specifi­
cation, the sort/2 problem can be generalized to the sort.tupling/2 problem, 
which ha5 the specification below:

sortJupling{Ls, S) iff integer-list 5  is the concatenation of the sorted versions 
of the integer-lists in list Ls.

The next step in the generalization process is to synthesize a program for 
the generalized specification. Keeping the sort/2 program above in mind, the 
program for sort.tupling/2 is:

sort.h/p/inp([], []) *—

sort.tupling{[[]\TLs], S) *— sort.tupling{TLs, S) 
sort.tupling{[[HL\TL]\TLs]. [HL\TS]) partition{TL, H L,TLl,TL2).

TLl = I).
sort.tupling{[TL2\TLs], TS)

sort.tupling{[[HL]TL]]TLs], S) <— partition(TL, HL,TLl,TL2),
T L l^ U .
sort.tupling{[TLl, [HL]TL2]\T£s]. 5)

also with a correct program for partition/A.

Finally, the non-recursive program for the initial problem is: 

sort{L,S) <— sort.tupling{[L],S)

The resulting tupling generalized program is much more efficient than the 
initial program, both in time and space, since the call to append is eliminated, 
and the generalized program can be made semi-tail recursive, when L is the 

input parameter and 5  is the result parameter. □

Exam ple 22 (D escending G eneralization) Our initial problem is reverse/2, 
which has the specification below:
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revcrs((L, R) iff list R is the reverse of list L.

For the rever$e/2 problem, a “naive” program can be constructed as below: 

reyerse([], []) ♦—
rev€rse{[HL\TL], R) *— rex'trst{TL,TR).

HR =  [HL],app€nd(TR,HR. R)

with a correct program for append/3, which has the specification as the one 
given in Example 21.

The “naive” reverse program given above is not adequate, in the sense 
that it is not space efficient, since it generates too much intermediate data 
structures, and it will be time inefficient, if we don’t have a linear-time program 
for append. Using descending generalization principles, our initial specification 
of reversel'2 can be generalized to the specification Sreverae.drsc· namely:

revtrsejde$c{L, R, A) iff list R is the concatenation of list A to the end of the 
reverse of list L.

The reader, who may wonder how I achieve this generalization of the initial 
specification, can refer to [16] for details. I will explain other methods for 
descendingly generalizing a specification in Sections 2.2.2 and 4.2.1.

The next step in the generalization process is to develop a program for 
jc? which can be.

ret’erse_desc([], /?, R) <—
reversejdesc{[HL\TL], R, A) *— rtverstjdesc{TL. R,[HL\A])

Finally, the non-recursive program for the initial problem reverse/'l is:

r€vcrse{L, R) <— rcverse.desc{L, R. [])

The resulting descendingly generalized program is much more efficient than 
the initial program, both in time and space, since the call to append is elimi­
nated, and the generalized program can be made tail recursive, when L is the 
input parameter and R is the result parameter. □
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2.2 Related Work

The program transformation approach to the development of programs was 
first advocated by Burstall and Darlington [7] for functional programs that 
were written as sets of recursive equations. Burstall and Darlington divided 
the task of developing a correct and efficient program into two subtasks [7]:

1. develop an initial, maybe inefficient program whose correctness can be 
easily verified,

2. transform that initial program into a more efficient program.

Their transformation approach is based on the “rules+strategies” approach 
(i.e. they proposed transformation techniques that use a combination of some 
basic transformation strategies bcised on the transformation rules unfolding 
and folding). The extensive use of program transformation is strongly related 
to the development of functional and logic languages, since some simple tools, 
which will be explained in detail in Sections 2.2.1 and 2.2.2, can be easily used 
for program manipulations in these languages.

In this section, I present a summary of what has already been done in the 
logic program transformation area. I divided the transformation approaches 
into strategy-based approaches and schema-based approaches. However, most 
of the researchers in both fields work on program transformation in a given 
procedural semantics, which is the one of Prolog in most of the cases. I will 
later take a different approach, namely program transformation in declarative 
semantics. In Section 2.2.1. I present the strategy-based approaches to logic 
program transformation by using the categorization of Pettorossi and Proietti 
[41]. So, for a more detailed survey of strategy-based approaches to logic 
program transformation, the reader is invited to read [41], and similarly for 
transformation approaches in functional programming [42]. In Section 2.2.2.
I present the schema-bcised logic program transformation techniques found in 
the literature.
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2.2.1 Strategy-based Transformation Approaches

Before explaining the techniques that were proposed under the strategy-based 
approaches, I will first give the definitions of an unfolding tree, which represents 
the process of unfolding a given clause using a given program, and an unfolding 
selection rule, which definitions are taken from [41]. Then, I will give the 
definitions of some of the transformation strategies that were given in [41. 42]. 
since they were widely used in the techniques that I will explain.

D efin ition 30 (U nfold ing tree [41]) Let P  be a program and let C be a 
clause. An unfolding tree for PU {C }  is a (finite or infinite) non-empty labeled 
tree such that:

(i) the root is labeled by the clause C;

(ii) if M  is a node labeled by a clause D, then: 

either M has no sons.

or M  hcis n(> 1) sons labeled by the clauses D\,...,Dn  obtained by 
unfolding D wrt an atom of its body using P.

or M  has one son labeled by a clause obtained by goal replacement from 
D.

D efinition 31 (U nfolding selection  rule [41]) .An unfolding selection rule 
is a function that, given an unfolding tree and one of its leaves, tells us whether 
or not to unfold the clause in that leaf, and. in the affirmative case, tells us 
the atom wrt which that clause should be unfolded.

D efin ition 32 (G eneralization Strategy [42]) Given a clause C of the form

H *— , Am̂  B\ —  - Bn

we define a new predicate genp by a clause G of the form

genp{X\,. . .  ,Xk) GenAi....... GenAr
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where (Gen.4i-----GenAmW = A i,. . . .  Am- for a given substitution 0. and
{,Y i,___-Yfc} is a superset of the variables that are necessary to fold using a
clause whose body is GenAi___ ,GenAm- VVe then fold C using G and we get

H ^ g e n p iX г . ........

VVe finally look for the recursive definition of the predicate genp. A suitable 
form of the clause G introduced by the generalization strategy can often be 
obtained by matching clause C against one of its descendants, say D. in the 
unfolding tree, which is considered during program transformation. In partic­
ular, we will consider the case where:

1. £) is the clause K  <— E\.. . . ,  Em- ___*^r and D has been obtained
from C by applying no transformation rules, e.xcept rearrangement of 
goals and deletion of duplicate goals in a clause, which preserve the cor­
rectness in declarative semantics, to B\___,5 „ ;

2. for I =  1 , . . . ,  m, the atom Ei has the same predicate as .4,:

3. for z = 1, . . . ,  m, the atom Ei is not an instance of .4,:

4. the goal G enA i. . . ,  Gen Am is the most specific generalization of .4i____ .4^
and E l,. . . ,  Em'-

5. is the minimum subset of vars{GenAi... ,GenAm) (where
vars(<) denotes the set of variables occurring in term t), which is neces­
sary to fold both C and D using a clause whose body is GenA\....... Gen Am-

The loop absorption strategy, which is formally introduced by Proietti and 
Pettorossi [43], can be viewed as a particular case of the generalization strategy, 
which can be applied if the conditions 1. 2. 4. and 5 hold in the definition of 
the generalization strategy, and for i =  1 , . . . ,  m, £", is an instance of .4,.

The strategies above were also called auxiliary strategies [41]. since they 
can be used by a more general strategy, called the predicate tupling strategy.

Definition 33 (P red ica te  Tupling Strategy [42]) This strateg\·, also called 
tupling, for short, consists of selecting some atoms, say A\, with n > I,
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occurring in the body of a clause C. VVe introduce a new predicate neirp 
defined bv a clause T of the form:

neurp{Xi....,Xk) -4i,, .4n

where A’l , . . . .  .V* are the linking variables in C (i.e., the variables occurring in
.4 i,....... 4„, and also in the head and in the remaining atoms in the body of C).
We then look for the recursive definition of the predicate newp by performing 
some unfolding, and two more transformation rules (i.e, goal replacement and 
clause deletions, which were defined in [41]) followed by some folding steps 
using clause T. We finally fold the atoms .4 i,. . . ,  /4„ in the body of C using 
clause T.

Now. I explain some of the work done in the program transformation field 
using a strategy-bcised approach. The techniques can be categorized under the 
following titles: compiling control, composing programs, changing data repre­
sentation, recursion removal, annotations and memoing, and partial evaluation.

COMPILING CONTROL

Programs that are written with the left-to-right computation rule of Prolog in 
mind are often not very efficient, because of the amount of nondeterminism 
during the execution of these programs in Prolog.

Compiling control was defined as a different approach to program transfor­
mation [41], in the sense that a given program is transformed into a program 
that behaves under the naive evaluator (i.e. the execution mechanism) of Pro­
log as the given program would behave under an enhanced evaluator that uses 
a better control strategy.

The filter promotion strategy was proposed with a similar idea in functional 
programming by Bird [4], which is a general method to transform an input 
program into a more efficient program by exploiting the recursive structure 
in the dominant term of an algorithmic expression. In [41], Pettorossi and 
Proietti categorized the transformation technique that was proposed by Seki 
and Furukawa [49], as a technique similar to compiling control and the filter
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promotion strategy, for transforming generate-test programs into more efficient 
programs. However, I will categorize their method under synthesis of programs.

In [41]. basic techniques of compiling control are characterized as follows:

Given a program Pi, a set Q of queries, and a computation rule 
C. compiling control derives a new program P2 by first construct­
ing a suitable unfolding tree, say T, and then applying the loop 
absorption strategy.

COMPOSING PR O G R A M S

Compositional programming is a popular style of programming, which con­
sists of decomposing a given goal in smaller and easier subgoals, then writing 
programs to solve these subgoals, and finally composing these programs in 
an appropriate way [41]. However, the disadvantage of this style is that the 
composition of the programs that are written to solve the subgoals results 
in inefficient programs, since this composition does not take into account the 
interactions that may occur while evaluating these subgoals.

For functional and imperative programs, various transformation methods 
have been proposed in the literature, which can be classified under this cat­
egory. e.g., finite differencing [40], deforestation [59], and super-compilation 
[56, 51].

Loop merging, in Section 2.1.3, (also called loop fusion by Debray [14]) is 
one of the transformation techniques that wais proposed for improving pro­
grams that were written in compositional style. This technique transforms the 
program for a relation that is defined as the composition of two independent re­
cursive relations into a program where a new relation is introduced, which does 
all the computations done by these two recursive relations. Unnecessary vari­
able elimination is another technique, proposed by Proietti and Pettorossi [44], 
for deriving programs without unnecessary variables, and uses the predicate 
tupling strategy. A variable A' of a clause C is unnecessary if at least one of 
the following two conditions holds [44]:
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• A’ occurs more than once in the body of C (in this c<ise. A"” is a shared 
variable);

• A’ does not occur in the head of C (in this case. A"̂  is an eiisteniial 
variable).

The loop merging and the unnecessary variable elimination methods avoid 
multiple traversals of data structures as well as the construction of intermediate 
data structures.

CH ANGING DATA REPRESENTATION

Choosing the appropriate data representation is an important issue to develop 
an efficient program, but this is not an easy process in most of the cases, 
and, further, complex data representations complicate the correctness proofs 
of programs. Program transformation was proposed as a solution to the prob­
lem above. In logic programming, transformation of programs that use lists 
into equivalent programs that use difference-lists is the best-known example of 
program transformation by changing data representation.

A difference-list, denoted by L\R. where L and R are lists, can be used 
to represent a third list A'̂ , such that the concatenation of A  and R is L. .A 
single list can be represented by many difference-lists. The main advantage 
of difference-lists is that the concatenation of two difference-lists can be per­
formed in constant time, unlike in the simple list representation, where the 
concatenation of two lists takes linear time wrt the length of the first list.

Programs that use lists are often easier to write and understand than pro­
grams that use difference-lists. Let us illustrate this on an example for the 
reverse relation.

Exam ple 23 The program for reverse that uses simple lists was given in 
Example 22. The desired transformation can be achieved by applying the 
definition introduction rule, and introducing a new relation reverse.d with the 

following initial definition:

reversejd{X, L\R) reverse{X. >’ ). append{Y\ R, L)
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Performing some unfolding and goal replacement steps, a new program for 
reverse ji can be obtained, and finally, the transformed program, which uses a 
difference-list, can be written as:

reverse{L. R) <— reuerse_d(Z-,/Z\[]) 
rev€rsejd{[], L\L) <—

reverseJ{[HL\TLl L\R) ^  reverse J{TL, L\[HL\R])

□

In [31], Hansson and Tarnlund proposed a semi-automatic technique to 
derive a program using difference-lists from a program that uses simple lists, 
by introducing a function that maps a simple list to a difference-list. Their 
data structure mapping takes away the append procedure, which is the con­
catenation relation defined for simple lists. In [62], Zhang and Grant proposed 
an automatic transformation technique towards difference-list manipulation, 
which applies under control the transformation rules folding and unfolding, 
and some other transformation techniques. Their technique also made use of 
semantic information on the relations that are used in the program, e.g.. as­
sociativity. In [39], Marriott and Sendergaard proposed an automatic three 
staged transformation technique that transforms list-processing programs into 
programs that use difference-lists by first doing data flow analysis of the input 
Prolog program to determine whether the transformation is applicable to the 
input program. In this first part of the method, data structure transformation 
is performed by converting the append calls into v'ariations of append. Then, 
the most efficient version of append in that case is chosen for the procedural 
semantics preserving concatenation of difference-lists. Finally, the non-logical 
calls added during the previous stages are removed.

The new relation, which has to be introduced in all the methods {reversejd 
in our e.xample), can also be viewed as the invention of an accumulator vari­
able in the accumulation strategy, which was first introduced in [4] for trans­

forming functional programs. Simply put, the accumulation strategy achieves 
the generalization of the initial problem by the inclusion of an extra param­
eter, which is called accumulator. Indeed, in Example 23, the new relation 
reversejd(.X., L\R) can be written as reverse.acc{X, T, R), where R is the
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accumulator parameter. The reader may also notice that descending general­
ization also comes to the same conclusion with its different underlying idea. 
Also note that the accumulator strategy· and descending generalization provide 
more than a conversion to difference-list representation, since any difference 
structure can be represented by these methods. I will further discuss this in 
Sections 2.2.2 and 4.2.

RECURSION REMOVAL

Although recursion is the main control structure for declarative programs, the 
extensive use of recursive relations may lead to programs that are inefficient in 
time and space. In logic programming, recursion removal means transforming 
a recursive program into a tail recursive program.

In [13], Debray proposed a transformation technique to transform an almost- 
tail recursive program into a tail recursive one. He defined an almost-tail re­
cursive clause as a recursive clause where the atoms following the last recursive 
call in the body involve only primitive computations. So, a program is said 
to be almost-tail recursive iff all its recursive clauses are either tail recursive 
or almost-tail recursive, and there has to be at least one almost-tail recursive 
clause in that program. His technique introduces an auxiliary relation, like the 
definition introduction in transformation towards difference-lists, in the first 
stage. Then, the most efficient recursive program for the new relation is ob­
tained by using the unfolding/folding transformation rules. Finally, his method 
converts the new program to a tail recursive version, if it was not already, by 
using the syntactic structure of the recursive calls, and the semantic properties 
of the primitive operations, which are called lastly in the recursive clauses, e.g.. 
associativity, commutativity, and so on.

ANNOTATIONS and MEMOING

In the literature, the transformation techniques that make use of the extra- 
logical features of logic languages, like cuts, asserts, and so on, are also studied 
widely. These techniques are called program annotations, which was first used 
to define similar techniques in functional programming. Prolog program trans­

formation techniques that are based on the usage of the extra-logical predicates
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of Prolog, the computation, and the search rule of Prolog are explained in detail 
by Deville [16].

A typical technique, which was given in [16, 41]. transforms a given Prolog 
program into an efficient annotated program by adding the cut operator, which 
is denoted by Let us illustrate this on an example.

Exam ple 24 Let the input Prolog program be as follows:

r(X)<- A. Cl

r(A ^)^ not{A),C2

where Ci and C2 are conjunctions of atoms, A is an atom, and not(A) denotes 
the negation of the atom A. The program above can be transformed (if .4 has 
no side-effects) into

r{X)
r{X)

A ,!, Cl
C2

The output program is more efficient than the initial program, since it behaves 
like an if-then-else statement. q

Memoization is another technique that can be classified under program 
annotations, where the results of the previous transformations are stored in a 
table for further use.

PARTIAL EVALUATION

Partial evaluation [33] (also called partial deduction in the case of logic pro­
gramming) is a program transformation technique that takes as input a pro­
gram and a query, and produces an output program optimized for all instances 
of that query. For a detailed explanation and further references, the reader can 
refer to [41]. I will illustrate partial evaluation using the example which was 

given in [41].

Exam ple 25 Let the program P  be:
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P( [].!■)

9(7’,} · )
9 (r ,} · )

9(7’. }·) 
Y = b 
PiT.Y)

and let the query Q be <— p(X,a). If we use the unfolding strategy i' [41], 
which performs unfolding steps starting from the query <— p{X.a) until each 
leaf of the SLDNF-tree is either a success or a failure or has predicate p, then, 
finally, the SLDNF-tree in Figure 2.1 below will be obtained.

^  p(X, a)

□
(X/U)

a=b
failure (X/tHIT])

Figure 2.1. An SLDNF-tree of P  U {<— p(A', a)} using U

After collecting the goals and and the substitutions corresponding to the leaves 
of that tree, the output program of the partial evaluation of the program P 
and the query is cts follows:

P([],a)
P([7^|7'],a) P(T,a)

The final program does not contain the clauses for q, since p does not depend 
on q in the output program. □

There e.xist (semi-)automatic partial evaluators that use the idea of partial 
evaluation to transform programs into more efficient programs for the case 
where some information about the input parameters of the program is a-priori
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known, e.g.. Mixtus [48] (for a summary of Mixtus and its integration details 
into another transformation system, refer to Chapter 7).

2.2.2 Schema-based Transformation Approaches

Logic program schemas have proven useful in various fields of logic program­
ming: teaching logic programming to novices [25], synthesizing logic pro­
grams [52, 17, 19, 22], and also transforming logic programs [20, 24. 57. 58. 27]. 
The basic ideas for using schema,s for synthesizing and transforming programs 
were introduced first for functional programs, e.g., the transformation schemas 
for improving recursive functions [32].

The strategy-based approaches to logic program transformation, which were 
explained in Section 2.2.1, are actually sequences of transformation rules that 
are not predefined. A strategy thus needs a global plan for the application of 
transformation rules, since at each point a check must be made whether the 
application of a possible transformation rule will result in the most efficient 
program at the end. The schema-based approaches to program transforma­
tion, on the other hand, consist of a database of predefined transformations, 
which are called transformation schemas. There exist different definitions for 
the notion of transformation schema [57, 27]. However, our definition of a 
transformation schema in Section 2.1.5 is the most general one, in the sense 
that it is possible to represent all the transformation schemas in the literature 
up to now by our definition.

Most of the transformation schemas that I am going to explain are repre­
sented cis higher-order logic programs. So, the selection of the applicable trans­
formation, which is the first step of the transformation at the program-level, 
becomes the most time-consuming step, because of the higher-order matching 
that has to be performed.

Since Gegg-Harrison did not give a unified definition for transformation 
schemas in [27], and represented the transformation schemas either as a triple 
(an input program, an output program, and the conditions, which have to 
be satisfied for achieving that transformation), or as a quadruple (two input
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programs, one output program, and applicability conditions if they exist). I 
will not repeat his definitions here. However, it is better to examine the def­
inition of the transformation schema that was first proposed by Fuchs and 
Fromherz [24], and Wcis then extended by V'asconcelos and Fuchs [57. 58] by 
also augmenting the program schema representation, since their representa­
tion is more formal and easy to examine, and also because Gegg-Harrison's 
work can be represented using their transformation schema definition. Below 
is their definition of transformation schemas (which they called schema-based 
transformation) [57]:

A transformation schema J  is a quadruple of the form

(< Gl, . . . , Gn Si, . . . , Sn H\, . . . , Hm >,< T\,. . . , T,n >)

where < G\,...,Gn > and < H\,. . . ,  Hm > are conjunctions of 
subgoals, and < 5 i , . . . , 5 „  > and < Ty, —  Tm > are input and 
output program schemas respectively.

The applicability conditions of their transformation schemas are either implic­
itly checked, or attached to the program schema representations, since they did 
not have a fifth component for them in their transformation schemas. If n = 1 
and 77? =  1 in the definition above, which means that an individual procedure 
is transformed into another one, this can be represented in our transformation 
schema definition by taking the input program schema as {C i} U and the
output program schema as {C2] UTi, where Ci is the clause r(.\’i ___,A’;t) *—
G i(A 'i___ ,AT), and C2 is the clause r,(.Y i,. . . ,  ,V;) <— //i(A ''i.......... V/). where
r, is the new relation, which is introduced by the transformation, and k and 
/ are respectively indexes indicating the number of arguments of the relations 
r and r<. For the cases where t? > 1 and t?? > 1. since we allow nested pro­
grams (where the relations are defined cis an instance of a program schema in 
the extension of these programs), the transformation schema above also can 
be represented in our notation, where the input program has as the template
the single clause r(.Y i,. . . ,  A'jt) <- G 'i(A 'i,. . . ,  AT),. . .  ,G„(.\T,-----AT) and the
extension { 5 ? , . . . ,  5n}. and the output program hcis as the template the single 

clause r<(.Yi, —  Xi) <— H i{X i,... ,X i ) , . . . ,  Hm{Xi, ■ ■ ■ ,Xi) and the exten­
sion {T i , . ..,Tm}· This will cause us to extend the definition of schema-based
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transformations to capture recursive schema-based transformations.

In [57], Vcisconcelos and Fuchs categorized the work done in the schema- 
based logic program transformation field into three categories, depending on 
the integration of the transformation steps in program construction [5Sj:

( 1) efficiency issues are considered during the program construction using 
the programming techniques that are standard logic programming con­
structs, and guarantee a good computational behavior of the constructed 
programs. For instance, Prolog programming techniques are extensively 
studied in the literature (e.g., [53]);

(2) efficiency issues are considered after ihe program is constructed, by trans­
forming the code of the program (i.e., the second transformation step in 
Deville's logic program development methodology);

(3) efficiency issues are considered during the synthesis of a program when­
ever possible, such that a program is synthesized using a program tech­
nique, and the information, which is gained during the synthesis of the 
logic program, will be used in transforming the logic program before trans­
lating it into a program, which is written in a given language. Actually, 
this category was born as a result of Deville’s methodology in schema- 
based logic program development (e.g., [19, 1, 20]).

I do not give examples of the work done under the first category, since these 
techniques fully meld the transformation step in the construction of programs. 
The transformation schemais that are proposed in this thesis fit into the third 
category, since this work is actually an extension of the ideas proposed in [20, 
1]. Most of the transformation schemas that will be explained in this section 

are examples of the second category. So, if I do not indicate under which 
category the work can be classified, then this means that the work is under 
the second category. Otherwise, 1 will explicitly indicate to which category the 
work belongs.

I will categorize schema-based approaches using the categorization made 
in Section 2.2.1 for strategy-biised approaches. However, nearly all the papers
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in the schema-beised logic program transformation literature can be classified 
under two categories out of the six categories in Section 2.2.1. namely recur­
sion removal and composing programs. There exist some exceptions, e.g.. the 
transformation schemas proposed by Seki and Furukawa [49] for reducing the 
amount of nondeterminism of generate-test programs, were classified under 
the category compiling control in Section 2.2.1. .As I indicated before, I will 
categorize their work as a method for synthesizing a program using program 
schemas.

RECURSION REM OVAL

In [5], Brough and Hogger proposed two transformation schemas, where the 
second one further improves the output program of the first one. if the applica­
bility conditions are satisfied. The first transformation schema transforms an 
input program, which has to be a member of a subclass of recursive programs 
for relations of arity 2, into an output program, which is also recursive and has 
a time complexity similar to the input program, by checking the applicability 
conditions, which are the associativity and the closeness property of the com­
putation relation, which is the last call in the body of the recursive clause of 
the input program. For instance, the almost-tail recursive programs, defined 
by Debray [1.3], are a subset of the input programs that can be transformed 
by this transformation schema. The second transformation schema takes as an 
input program the output program of the transformation schema mentioned 
above, and transforms it into a tail recursive program if the applicability condi­
tions, namely the right-identity and functionality properties of the computation 
relation, are satisfied by the input program.

In [6], the same authors proposed two more transformation schemas, where 
the second one is a more generic version of the first one, in the sense that the in­
put program family that can be transformed by the first transformation schema 
is a sub-family of the input program family that can be transformed by the 
second transformation schema. These schemas were constructed by investigat­
ing the analogy between grammars and logic programs, where they assumed 
the logic programs were fully declarative (i.e., their transformation schemas 
can be classified under the third category according to Vasconcelos and Fuchs'
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categorization). The first transformation schema, namely forward-simulation 
transformation, is the analogue of one of the important rules for grammars, 
namely the Grtibach-Foster transformation, which takes <is an input a left- 
recursixe grammar and produces as an output a right-recursive grammar. The 
normalized template of the input logic program schema analogue of the left- 
recursive grammar in the forward-simulation transformation can be represented 
in our notation as:

r ( X ) ^  d{X) 
r { X ) ^  r(>"),c(.Y,}")

Then, the template of the output program schema analogue of the right- 
recursive grammar is:

r [ T ) ^  d{X),s{X,T)  
s(T.T) ^
s { Y . T ) ^  c{Z,y) , s {X,T)

This transformation provides left-recursive elimination (i.e., provides tail re­
cursion by introducing an accumulator parameter). The second transformation 
schema wcis constructed by also using the analogy above for a class of programs 
that are larger than the input program family of the forward-simulation trans­
formation.

In [27], Gegg-Harrison proposed two transformation schemas for transform­
ing single recursive programs into tail recursive programs. The first transfor­
mation schema is the counterpart of the accumulation strategy in the strategy- 
based approaches. The applicability condition of the transformation schema is 
defined as the associativity of the computation relation in the input schema, 
which computes the final version of the result parameter. The second transfor­
mation schema was proposed to transform a single recursive program, which 
he called a. forward-processing program (i.e., a program that processes its input 
list from the head and one of the outputs, which is a number, from its actual 
value down to 0). into another .single recursive program, where the number 
argument is processed from 0 up to its actual value.
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In [24], Fuchs and Fromherz proposed a transformation schema that simu­
lates the accumulation strategy for transforming recursive list-processing pro­
grams into tail recursive list-processing programs. In [58]. Vasconcelos and 
Fuchs proposed an e.xtension of the transformation schema that was introduced 
in [24]. The applicability conditions of the transformation schemas above con­
sist of the needed declarative properties of the relations, and also the properties 
related to the operational semantics of Prolog.

In [20]. Flener and Deville proposed two transformation schemas that au­
tomate the tripling generalization and the descending generalization, which are 
explained in Section 2.1.6. So, they called these transformation schemas gener­
alization schemas. The tupling generalization schema can transform an input 
program, which is an instance of a program schema that abstracts a subclass 
of recursive programs, into an output tail recursive program iff some of the 
open relations of the input template satisfy some properties, which are the 
applicability conditions, e.g., associativity of the relation that computes the 

result parameter. The descending generalization schema transforms a single 
recursiv'e program into a tail recursive program iff the applicability conditions 
of the generalization schema are satisfied. They also indicated the analogy 
between the descending generalization schema and the accumulation strategy- 
in strategy-based approaches. So. these generalization schemas mechanize the 
generalization of a restricted sub-family of recursive programs, where this gen­
eralization process was thought to be necessarily under human control before 
Flener and Deville's work. The reason is mainly that the generalization pro­
cess introduces a new relation, which defines the generalized problem, and this 
definition introduction step (i.e., the eureka discovery step) needs human in­
teraction. Flener and Deville showed that this step can be eliminated by using 
the transformation schemas proposed for a restricted sub-family of programs.

Using the ideas in [20], Batu pre-compiled some more generalization tech­
niques for different families of programs. These generalization schemas can be 
found in [1]. The generalization schemas that will be presented in this thesis are 
actually extensions of Flener and Deville’s, and Batu’s generalization schemas 
by extending the program schema and the transformation schema representa­
tions, and the eureka discovery step is fully eliminated by the generalization
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schemas that we have in this thesis.

Note that the transformation schemas that are counterparts of tlie ac­
cumulation strategy can also be classified as ‘changing data representation', 
since these transformations represent the transformations towards difference- 
structures implicitly. The descending generalization of the relation reverse, 
which is given in Example 22, can be achieved by the transformation schemas 
that simulate the accumulation strategy, since reverse is a list-processing sin­
gle recursive program with append as the composition relation, which satisfies 
the applicability conditions of these transformation schemas.

COM POSING PROGRAMS

In [27], Gegg-Harrison proposed a set of transformation schemas that can trans­
form a program that is written in a compositional style into a more efficient 
program by merging the logic programs written for the subgoals, which are 
instances of the list-processing recursive program schemas, and they have com­
mon arguments.

In [58], Vasconcelos and Fuchs presented two transformation schemas in the 
appendix that were also pre-compiled in their transformation system, where 
the second one is more generic than the first one, and both are counterparts of 
the loop merging in the strategy-based approaches. The first schema can merge 
two programs manipulating the same single recursive data-structure, whereas 
the second one can merge two data-structure manipulating programs, even if 
these programs have different possibilities of recursions.

The loop merging example, namely Example 11, can be achieved by using 
the transformation schemas in [58]. I w’ill not illustrate the schemas above by 
an example, since their schema representations have to be explained in detail.

Later, in [47], Richardson and Fuchs proposed a methodology for develop­
ment of provably correct program transformation schemas, by abstracting the 
program transformation operations to transformation operations on program 
schemas. They have defined abstract unfold operation on program schemas to 
mirror the concrete unfold operations on programs. They also indicate a way
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to define the fold operation on program schemas. Unfortunately, much has to 
be done on this work to be useful, e.g., correctness proofs of these operations.



Chapter 3

Divide-and-Conquer Logic 
Program Schemas

The divide-and-conquer methodology is one of the most effective program con­
struction methodologies, since it is applicable to a large variety of problems, 
and the programs that are constructed by this methodology are easy to under­
stand. The divide-and-conquer methodology soWes a problem in three steps: [11]

i. divide a problem into sub-problems, unless it can be trivially solved;

ii. conquer the sub-problems by solving them recursively;

iii. combine the solutions to the sub-problems into a solution to the initial 
problem.

If a (sub)problem can be solved trivially (without dividing any more and re­
cursion), it is called a minimal case, otherwise it is called a non-minimal case.

The program schema patterns given in this chapter abstract sub-families of 
divide-and-conquer (DC) programs. They are restricted to binary predicates 
with .Y as the induction parameter and Y as the result parameter, to reflect 
the program schema patterns that can be represented by the prototype trans­
formation system explained in Chapter 7. Another restriction in the schema 
patterns is that when A' is non-minimal. then A" is decomposed into one head

47
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HX  and t tails T’.Yi,. . . ,  TXt. so that V is composed from one head HY (which
is the result of processing HX)  and t tails T)\......TV, (which are the results
of recursively calling the predicate with TXi ....... TXt. respectively) by p-fix
composition (i.e. Y is composed by putting HY between TYp-i and TYp).

These program schema patterns are called DCLR and DCRL (the reason 
why I call them DCLR and DCRL will be explained after I give the schema 
patterns). Template 1 (respectively, Template 2) is the template of the DCLR 
schema pattern (respectively, the DCRL schema pattern).

Logic Program Template 1

r(.Y ,F ) ^

minimal{X). 

solve{X, Y) 

r { X , Y ) ^

nonMinimal{X).

decompose{X. HX. T X i , . . T.Xt),

r{TX ,,TY ,)....... r{TX„TY,).

Lq =  e,

compose{Io, TY\, Li)------ compose{Ip-2, TYp-i, /p_i),

process{HX. HY).  compost[Lp-\, HY, Ip). 

compose{Ip, TYp, Ip+i),. . . ,  compose{It, TYt, 7<+i),

1" =  li<+i

Logic Program Template 2

r (A ',r ) e -
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rninimal(X). 

solve(X, Y)

г(Л-.У')

notiMi nimal{X).

d(compo$e{X, HX, T X i , . . TXt).

r (TX^.TVil . . . . r (TX, ,TY) .

It+i — c.

compose{TYt. It+i.It), · ■ ■ ,compose{TYp, Ip+i, Ip). 

process{HX. HY). compose{HY, Ip. Ip-i),

compose{TYp-i, Ip-i, Ip-2), · · ·, compose{TY\. Ii, / 0 ) ,

Y =  /0

The steadfastness constraints of these schema patterns (i.e., the specifi­
cations of the open relations in these templates) are the same, since these 
templates have the same open relations, and these constraints are shown in 
[21]. For example, the specifications of solve and decompose are:

VA' : A'. VV : >\ J,( A ) A Om{X) =» [solve{X, Y) ^  Or(X, V)

VA, T A i , . . . ,  Г А ,  : A .  У Я А  : ПЛ’. 0 „ m ( A )  =>

[decompose{X, HX, TX\, . . . ,  TXt) ^

( t
Dec{X, HX, TXx . . . . ,TXt )A  Д  ^r(TA.) A Д  Г  A, X A]

1=1 1=1

where I t is the input condition of the top level relation r. Or (respectively. От 
and Опт) is the output condition of г (respectively, minimal and nonMinimal), 
and -< is a well-founded order over the sort of the induction parameter Â .
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Now, I explain the underlying idea why we have two different schema pat­
terns for DC, and why we call them DCLR  and DCRL. If we denote the 
functional version of the compose predicate with -r. then the composition of V’ 
in template DCLR by kft-to-right {LR) composition ordering can be written 
as

= ((((((e ® TY\) 0 . . . )  e  n ; _ i )  0  HY) 0  r> ;)  0 . . . )  0  n ;  (3.1)

The composition of Y in DCRL by right-to-left (RL) composition ordering can 
be written as

r  = r r ,  0  (. . .  0  (n ;_ x  0  (HY  0  (rVp 0  ( . . .  0  (TY  0  e)))))) (.3.2)

Each example program in this chapter is an instance of a particularization 
of the schema pattern that it belongs to, namely for i =  2 and p varying 
between 1 and 3, for prefix, infix, and postfix composition, respectively.

Three problems (to give a better understanding of p-fix composition) are 
given for traversing binary trees. In all the problems, the constant void is 
used to represent the empty binary tree, and the compound term bt{L,E,R)  
is used to represent a binary tree of root E, left subtree T, and right subtree 
R. Because of properties of compose, we can construct two programs, which 
are instances of the DC schema patterns above, for each problem. For these 
problems, equations 3.1 and 3.2 can be further simplified resulting in an equal 
composition of the result parameter as:

Y = r n  © . . .  0  n ; _ i  0  HY  0  n ;  0 . . .  0

Exam ple 26 For the prefix traversal of a binary tree, we have the specification 
below:

prefix./lat{B, F) iff list F is the prefix representation of binary tree B.

where prefix representation means the list representation of the prefix traversal 
of the tree.
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Program 1 below is a program for the prefix.flatf'l problem, and it is an 
instance of the DCLR schema pattern.

prefix.flat{B, F) *—

В = void,

f  = []

preftT.flat(B, f') *- 

B = bt{.,

B = bt{L,E,R),

prefix.flat{L, FL),pre fix.flat{R . FR), 

/o = [],

HF = [E],append{Io,HFJi), 

append{Ii, FL, I2),append{l2, FR. / 3), 

F = / 3

Logic Program 1

Since Program 1 is an instance of the DCLR  schema pattern for t = 2 and 
p = 1 (i.e. prefix composition), the calls

compose{Io. r V i, / 1),.. . ,compose(Ip-2> TYp-i, Ip-\)

in the non-minimal case reduce to the empty conjunction (i.e. true), during 
particularization.

Program 2 below is another program for the prefix .flat/2 problem, and it 
is an instance of the DCRL schema pattern.



CHAPTER 3. DIVIDE-AND-COSQVER LOGIC PROGRAM SCHEMAS 52

prefix .flat(B . F ) <—

B =  void,

F = [ ]

prefix .fla i(B . F ) «—

B = bt{.,...),

B = bt{L, E , R),

prefix.fla t{ L, FL),pre f i x .fla t{R, FR ).

/3  =  [],

append{FR . /3, /2), append{FL , /2, /1), 

HF = [E].append(HF . h , /0),

F = /o

Logic Program 2

Similarly, for Program 2, which is an instance of the DCRL schema pattern, 
the calls

co7upose{TYp-i^ Ip-i, /p -2) , ----- compose{TY\, 1 1 , Iq)

in the non-minimal case reduce to the empty conjunction (i.e. true), during 
particularization.

Exam ple 27 For the infix traversal of a binary tree, we have the specification 
below:

in fix .fla t{B , F) iff list F  is the infix representation of binary tree B,
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where infix representation means the list representation of the infix traversal 
of the tree.

Program 3 below is a program for the in f ix .f la t/'2 problem, and it is an 
instance of the DCLR schema pattern.

infix. f lat[B,F) ^

B = void.

F = [ ]

infix. f lat{B.F) *—

B =  bt{ . . .),

B = bt{L.E,R),

infix.flat{L, FL), infix.flat{R, FR).

/ o = [ ] ,

append{Io. FL, /i).

HF = [E],append{h,HF.l2), 

append{l2, FR, /3),

F = h

Logic Program 3

Program 4 below is another program for the infix.flat/2 problem, and it 
is an instance of the DCRL schema pattern.

infix.flai{B, F)
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B =  void.

F = [ ]

infix.flat{B. F) *—

B = bt{L.E,R),

infix.flat{L. FL). infix.flat{R. FR),

h  = \l

append{FR, /3, /2),

HF  =  [E],append(HF. / 2, / 1), 

append{FL. / 1, /0),

F = I o

Logic Program  4

Exam ple 28 For the postfix traversal of a binary tree, we have the specifica­
tion below:

postfix-flat{B ,F)  ifflist F  is the postfix representation of binary tree B,

where postfix representation means the list representation of the postfix traver­
sal of the tree.

Program 5 below is a program for the post fix .fla t ¡2 problem, and it is an 
instance of the DCLR schema pattern.

postfix.flat{B, F)
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B =  void.

^  = (]

p o s t F )

B = bt{...,.).

B = bt{L.E.R),

post fix .flat{L . FL), post fix./lat(R. FR), 

/o =  [],

append{Io, FL, / 1), append{Iis FRy I-2),

HF  =  [E], appendihy HF, / 3),

F = h

Logic Program  5

Program 6 below is another program for the post f ix .  flat / 2  problem, and 
it is an instance of the DCRL schema pattern.

postf i x . f  lat{B. F)

B =  voidy

F = [ ]

postfix.flat{By F)

B =bt{.y .y .) .

B =  bt{LyEy R)y

postfix.flat{ L, FL)ypostfix.flat{Ry FR)y
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/3 = (].

HF = [ElappendiHF.l3,l2)^

append{FR. / 2, Ii),append{FL, / 1. /0).

F = I o

Logic Program 6

By the same reasoning that we use in explaining the instances of programs 
for prefix .fla tf ‘2.1 for post f i x . f l a t where t — 2 and p = 3 (i.e. postfix 
composition), both the calls

compose{Ip, TYp. Ip+i).........compose{It, TYf, ^t+i)

in DCLR  and the calls

compose{TY\. It+i, It)........ compo$e{TYp, /p+i, /p)

in DCRL reduce to the empty conjunctions (i.e. true), during particulariza­
tion.



Chapter 4

Problem Generalization 
Schemas

In Section 2.1.6, I summarized the logic program generalization techniques 
that were proposed by Deville in [16], and illustrated these techniques on two 
example problems. He proposed these techniques for logic program develop­
ment. As I mentioned in Section 2.2.2. these techniques were further used 
for computer-aided synthesis and transformation of logic programs [17. 20]. 
The main objective of this research is to extend the usage of these general­
ization techniques in schema-based logic program transformation, since in the 
referenced papers above, the automation of these generalization methods was 
proposed for restricted sub-families of DC programs.

In this chapter, I present the generalized generalization schemas that are 
constructed by extending the ideais proposed in [20, 1]. The generalized tupling 
generalization schemeis are given in Section 4.1 and the generalized descending 
generalization schemas are given in Section 4.2, together with the complexity 
analysis of these schemas. In Section 4.3, simultaneous-tupling-and-descending 
generalization schemas are given with their complexity analysis. For the cor­
rectness proofs of these generalization schemas, the reader is invited to con­
sult [9].

0 «
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4.1 Tupling Generalization

The definition of tupling generalization (TG) was given in Section 2.1.6. and the 
tupling generalization process was illustrated in E.xample 21 for the problem 
of sorting integer lists. In Section 2.2.2. the automation process of tupling 
generalization of a restricted sub-family of DC  programs, which wtis proposed 
by Flener and Deville [20], was summarized.

Thus, firstly in Section 4.1.1, I give two tupling generalization schemas. 
The time and space complexity analysis of the programs of these generalization 
schemas is discussed in Section 4.1.2.

4.1.1 Tupling Generalization Schemas

I do not separate the tupling generalized program schema pattern into two 
schema patterns, as the TGLR schema pattern and the TGRL schema pattern, 
like I did for the DC program schema patterns, since one of the objectives of 
tupling generalization is to reduce the number of recursive calls of the intended 
relation by generalizing the problem to a new single-recursive relation (i.e. the 
composition of the result parameter reduces to head-tail composition), which 
is achieved by generalizing the structure (or: type) of the induction parameter 
of the input relation. So, it is not too much helpful and meaningful to give two 
different tupling generalized program schema patterns, although it is possible. 
Therefore, in this section, I give only two TG transformation schemas (one for 
each DC program schema pattern), rather than four.

Take a relation r, which hcis the specification Sr as:

V.V : .T. V r  : I,(.V ) [r(.Y, Y) ^  Or{X. V')]

where X  and y  denote the types of .Y and V', 2r(-Y) denotes the input condition 
that must be fulfilled before the execution of the procedure, and C9r(-Y, V ) 
denotes the output condition that will be fulfilled after the execution.

If a program is given for r as an instance of DCLR (or DCRL), then the 
specification of the new tupling generalized problem of r, namely Sr.tupUng is:
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'iXs : listiX). V r  : y .  (V.V : ,V. X  € -Y5 =» J ,(A ')) => 

[r.tupling(Xs, V') {Xs  = [] A y  =  c)

V {Xs =  [-Yi, A'2, . . . ,  An] A A  Or{X,. Yi) A /1 =  V'l
1=1

A A a ( / . - i . v ; . / . )  A y  =  /„)] 
1=2

where Oc is the output condition of compose and n > 1.

The tupling generalization schemas are:

TG\ : ( DCLR^ TG, i4n. ^̂ <121 ) where 
All : - compose is associative

- compose has e as the left and right identity element, 
where e appears in DCLR  and TG
- VA : A . Tt{X )  a minimal{X) Or{X,e)
- VA : A . 2r(A ) [->minimal{X) ^  nonMinimal{X)] 

0(112 ■ partial evaluation of the conjunction
process{HX, HY). compose{HY\ TY, Y) 
results in the introduction of a non-recursive relation 

0(121 : partial evaluation of the conjunction
proc€ss{HX. HY). compose{Ip-i, HŶ  Ip)
results in the introduction of a non-recursive relation

TG2 : ( DCRL, TG, <4(2. 0 (212' 0 (22i ) w’here 
<4(2 : - compose is associative

- compose has e as the left and right identity element, 
where e appears in DCRL and TG
- VA : A!. Tt{X )  A minimal(X) =>· Or{X. e)
- VA : X. Jr(A’ ) [->mnH’ma/(A) nonMinimal{X)] 

0(212 : partial evaluation of the conjunction
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process{HX. HY). compose{HY, T) V) 
results in the introduction of a non-recursive relation 

0,221 : partial evaluation of the conjunction
process(HX, HY). compo$e{HY. Ip. Ip-i)
results in the introduction of a non-recursive relation

where the template of the common schema pattern TG is Logic Program Tem­
plate 3 below:

Logic Program Template 3

r ( -Y ,K ) -

rJupling{Xs.Y) <—

a:» =  11,

Y = e

rJupling(Xs.Y) *—

Xs  =  [A 'lrXs], 

minimal{X), 

rJupling{TXs, TY), 

so/i’e(A,//K), 

compose{HY, TY, Y)

rJupling{Xs,Y) <— 

As = [AITAs], 

non M inimal{X).,
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decompose(X, HX. TX\....... TXt).

minimal(TXi),___minimal(TXt).

rJupling(TXs^ TV),

process{HX, HY),

compose{HY, TY, Y)

rJupling(Xs. Y)

Xs =  [A 'lrXs],

nonMinimal{X),

decompose{X, HX, TX\,... ,  TXt),

minimal{T X\),___minimal[T Xp^\),

(n on M in im a l{T X p );n on M  inimal{T Xt)), 

r .tu p lin g {[T X p ,T X tlT X s], TY),

process{HX, HY),

compose{HY,TY, Y )

rJupling{Xs,Y) *—

Xs  =  [.Y|rA5],

nonMinimal{X),

decompose{X, HX, T X \ T X t ) ,

(nonMinimal{TXi)·,. . . ;  nonM ini mal{TXp-i)),

minimal[T Xp),-----minimal{TXt),
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minwîal{i\)....... p_i),

decompose(.\\ HX. L'l........C p_i, TA'p___ _ TXt),

r.tupling{[TXi........T A p.i, N\TXs], 1')

rJupling{Xs, Y) <—

-Ï5 =  [X\TXs]. 

no7iMinimal{X).

decompose{X. HX. TX\___ , TXt),

(nonMinimal{TX\)\. . .  : nonMinimal(TXp-\)), 

{nonMinimal[TXp)\. . .  : nonMinimal(TXt)). 

minimal{U\).. . . .  minimal{Ut),

decompose{N. HX. U\,-----Ut),

r.tupling{[TXi,. . . .  TXp.t.N. TXp.. . . .  rXiir.Yi!], Y)

Note that, in the TG template, I have only used = / 2, which is a built-in 
of all the logic program compilers, and all the open predicates of DCLR (or 
DCRL). and no other new predicates. In other words, Lavoisier’s Principle 
( “rien ne se crée, rien ne se perd" ) also applies to transformation schemas.

The applicability conditions of TG\ (respectively. TG2 ) ensure the equiva­
lence of the DCLR (respectively. DCRL) and TG programs for a given prob­
lem. The optimizability conditions ensure that the output program of these 
generalization schemas is more efficient than the input program. The opti­
mizability conditions, together with some of the applicability conditions, check 
whether the compose calls in the template TG can be eliminated. In the second 
clause of rJupling. the conjunction so/re(X. HY). compose( HY. TY. V) can be 
simplified to Y =  A, if relation r maps the minimal form of A'’ into e, and e is
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also the right identity element of compose. This is already checked by the sec­
ond and third applicability conditions of TGi and TG2· In the third and fourth 
clauses of rJupling, the conjunction process{HX. НУ),сотрозе{НУ\ТУ.У) 
can be partially evaluated, resulting in the disappearance of that call to compose. 
and thus in a merging of the compose loop into the г loop in the template 
DCLR (or DCRL). The optimizability condition 0 mi2 (or Оци) checks 
whether this compose call can be eliminated in the corresponding clauses.

In this section, I illustrate tripling generalization using the TG generaliza­
tion schemas on the prefix.flat and infix.flat problems.

Exam ple 29 The specification of the prefix.flat problem, and its DCLR 
and DCRL programs are in Example 26 in Chapter 3. These DC programs 
can be tupling generalized both resulting in Program 7 below, since the open 
relations in the schema pattern DCLR  (respectively, DCRL) satisfy the ap­
plicability conditions All (respectively, and the optimizability conditions 
0(112 (respectively, Oijia) of TGi (respectively, TG2)· So, the prefix.flat 
problem can be tupling generalized, resulting in the specification of a program 
for tupling generalized problem of prefix.flat as:

prefix .fla t.t{B s,F )  iff F  is the concatenation of the prefix representations 
of the elements in binary tree list Bs.

The word “concatenation" in the specification above reflects the composition 
done by the compose operators in Sr.tupiing· Then. Program 7 below is the 
tupling generalized program for prefix.flat as an instance of TG.

prefix.flat{B, F)

pre fix .fla t J{[B]  ̂F)

prefix.flatJ{Bs. F)

Bs = [].
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F = []

prefix.flatJ{Bs, F) *—

Bs = [B\TBs],

B =  void,

prefix.flatJ{TBs, TF),

^ ^  = 1).

append{HF, TF, F) 

prefix./lotJt{Bs,F) *—

Bs =  [B\TBs],

B =  bt{., .),

B =  ht{L,E, R),

L — void, R — void, 

prefix.flatI{TBs, TF),

HF  =  [f;], append{HF. TF, F) 

pre fix.flat.t{Bs, F) <—

Bs =

B = .),

B = bt{L,E, R),

{L = bt(.,.,.y,R = bt(...,.)), 

prefix.flatJ{[L, R\T5^], TF),
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HF =[E],app€nd{HF,TF,F)

Logic Program  7

The reader may notice that in Program 7 we have only five clauses, al­
though we have seven clauses in the TG template. The fifth and sixth clauses 
of prefix.flatJt reduce to false, during particularization, since the disjunction 
{7̂ on\Iinimal{TXi);. . . :  nonMinimal{TXp-i)) in the fifth and sixth clauses 
of rjupling in TG becomes an empty disjunction (i.e. false), because of p =  1 
in prefix.flat. □

Exam ple 30 The specification of the in fix .flat  problem, and its DC LR and 
DC RL programs are in Example 27 in Chapter 3. The in fix.flat  problem can 
also be tupling generalized using the TG transformation schemeis above result­
ing in Program 8 below, since the infix.flat and prefix.flat DC programs 
have the same open relations, which satisfy the applicability and optimizabil- 
ity conditions of the TG transformation schemas. So, the specification of the 
tupling generalized problem of infix.flat is:

in fix.flatJ{Bs,F)  iff F  is the concatenation of the infix representations of 
the elements in binary tree list B$.

Program 8 below is the tupling generalized program for infix.flat as an in­
stance of TG.

infix.flat{B, F)

in fix .fla t.t{[B lF )

infix.flat.t{Bs, F)

f  = II
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Bs =

B =  void,

in f ix.flat J{ TBs, TF).

/ / / ·  =  ().

append  ̂HF, TF, F) 

in fix .fla tJ{Bs, F) <—

Bs =  [5|rfis],

B = bt(.,

B = bt{L,E,R),

L = void, R =  void, 

infix.flatJ(TBs, T F).

HF = [E],apptnd(HF,TF,F) 

in fix .fla tJ {B s.F )  <—

Bs =

B = bt{ . , .).

B ^ b t{L ,E .R ),

L — void.

R = bt{.,.,.),

infix.flatJ{[R\TBs], T F),
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HF =  [£·]. app(ud{HF, TF. F) 

infix.flatJ(Bs,F)  <—

Bs = [B\TBs].

B = bt{ ^ .),

B = bt{L.E,R).

L = bt{____),

R =  void.

Ul = void.

N ^btiUi.E.R),  

infixJlatJ{[L.N\TBslF) 

infix.flat.t(Bs,F)  <—

Bs = [B\TBs].

B = bt{..

B = bt{L, E, R).

{L = bt{.. =  .)),

Ul = void. Ur = void,

N = bt(UL-E,UR), 

infix.flaU{[L. N, R\TBs], F)

Logic Program 8

□
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Although the tupling generalization schemas are constructed to tripling 
generalize DC programs (i.e. to transform DC programs into TG programs), 
these schemas can also be used in the reverse direction, such that they can 
be used to transform TG programs into DC programs, if the optimizability 
conditions for the corresponding DC program schema pattern are satisfied, 
since the applicability conditions hold in both directions. These generalization 
schemas can be used in the reverse direction, since it is sometimes possible that 
we have a TG program, which is not efficient (e.g.. the compose call in the non- 
mininial case of r.tupling cannot be eliminated), and we want to transform it 
to a more efficient program, which will be a DCLR program (most probably), 
since it is possible to eliminate the compose call in the non-minimal case in 
DCLR, because of the verification of the optimizability conditions Otm of 
TGi. Further discussion of this can be found in Section 4.1.2.

4.1.2 Complexity Analysis

In this section. I present the complexity analysis of the input and output pro­
grams of the tupling generalization schemas, and I will use this complexity 
analysis to discuss the efficiency gain obtained by the tupling generalization 
schemas.

I use the in fix .fla t  problem, whose informal specification is given in Chap­
ter 3. If the prefix.flat and post fix .fla t  DC programs are also tupling gen­
eralized and the complexity analysis is done for these problems, similar results 
will be obtained. Therefore, I consider only the programs for infix.flat here. 
Logic Program 9 below is the optimized version of Program 3. which is an 
instance of the program schema pattern DCLR for the infix.flat problem.

in fix .fla t{B , F)

B =  void. F =  []

infix.flat{B , F)
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B = 6/(1, £ ',/?),

infix.flat[L, FL)s infix.flai{R, FR), 

apptnd{FL. [£], I). append{l. FR. F)

Logic Program 9

Logic Program 10 below is the optimized version of Program 4, which is an 
instance of the program schema ])attern DC RL for the in fix.flat  problem.

infix.flat{B ,F) *— 

B =  void, £  = [ ]

infix.flat{B, F)

B = bt{L,E,R).

infix.flat{L, FL),  infix.flai(R, FR),  

I =  [E\FR],append{FL, L F)

Logic Program 10

If n is the number of elements in tree B, then Programs 9 and 10 have O(n^) 
time complexity in the worst case, because composition is done through append, 
whose complexity is linear in the number of elements in its first parameter. If 
we analyze the programs above in terms of space, and we assume h is the 
height of B, then these programs build a stack of h pairs of recursive calls, and 
create 2n intermediate data structures. However, since the conjunction HF = 
[E],append{HF, FR, I) in Program 4 could be partially evaluated, resulting 
in the equality /  =  [£|££], Program 10 has a better time complexity than 
Program 9 by a constant factor, which is not negligible in most cases.
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Program 8 in Section 4.1.1, which is an instance of the schema pattern TG 
for the infix.flat  problem, can be optimized, resulting in Program 11 below:

in fix .flat{B , F)

infix.flatJ{[B], F)

in fix.flatJ{Bs, F)

=  =  11
infix.flatJ(Bs, F)

Bs = [B\TBs],

B =  void,

infix.flatJ{TBs, F) 

infix.flatJL{Bs,F) *- 

Bs = [B\TBs\,

B = bt{L, E, R),

L = void, R =  void,

infix.flatJ{TBs, TF),  

F  =  [E\TF] 

in fix.flatJ{Bs, F) *—

Bs = [B|r5s],

B = bt{L,E,R),

L =  void,
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iufix.flatJ([R\TBs].TFl

F =  [E\TF]

infix.flatJ(Bs. F) <—

Bs =

B =  bt(L.E. R).

L =  bt{.. _).

R — void,

infix.flatJ{[L,bt{void, E. R)\TjB ]̂, F) 

infix.flatJ.{Bs, F) <—

Bs =  [S ir ^ i] .

B = bt{L,E, R),

( I  =  6 i ( . . . , - ) : /?  =  6/(_,

in f ix.flat JL{[L, bt{void, E. void), R\TjBi], F)

Logic Program 11

In Program 11, the calls to append have disappeared: the append loops have 
been merged into the infix.flat  loop in the templates DCLR or DC RL, and 
we have a linear time program. However, the space complexity of Program 11 
is worse than for the DC programs for the infix.flat problem: this program 
builds a stack of 0 (n) recursive calls, and it creates as many intermediate data 
structures. Fortunately, this program can be made tail recursive in the mode 

{in,out), as the l<ist five clauses are mutually exclusive.



Therefore, for input DC programs like the programs given for in f ix  .flat. 
which use append as the compose operator, the tupling generalization schemas 
result in an efficient TG program, since the optimizability conditions of these 
tupling generalization schemas are satisfied.

It is also possible that we have a program, which is an instance of the 
schema pattern TG, where the optimizability conditions 0ni2 (or 0 m 2) «no 
not satisfied, which means that the compose calls in some of the clauses of 
r.tiipling can not be eliminated. So, this TG program can be worse than the 
corresponding DCLR  program. In these situations, the tupling generalization 
schemas can be used in the reverse direction (i.e.. to transform TG programs 
into DC programs), and we will have a more efficient DC program as the output 
program of the transformation.
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4.2 Descending Generalization

I explained the idea of descending generalization in Section 2.1.6, and the 
descending generalization process was illustrated in Example 22 for the list 
reversing problem. In Section 2.2.2, I presented the automation process of 
descending generalization of a restricted sub-family of DC programs, achieved 
by Flener and Deville in [20].

Descending generalization can also be called the accumulation strategy (pre­
sented in Section 2.2.1 by giving example constructions of this strategy both 
in functional programming and in logic programming), since an accumulator 
parameter is introduced by descending generalization, and it is progressively 
extended to the final result. Descending generalization can also be seen as 
transformation towards difference-structure manipulation. In Section 2.1.6, the 
pair of parameters R and .4 in Example 22 can also be thought as representing 
the difference-list R\A, which it.self represents the difference between lists R 
and A, where A is a suffix of R. But descending generalization yields some­
thing more general than transformation to difference-list manipulation, since 
any form of difference-structures can be created by descending generalization.
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In Section 4.2.1. I give four descending generalization schemas, and ex­
plain how they ensure correct and efficient descending generalization in pro­
gram transformation. The time and space complexity analyses of the program 
schenitis of these generalization schemas are discussed in Section 4.2.2.

4.2.1 Descending Generalization Schemas

Four descending generalization schemas (two for each DC program schema 
pattern) are given. Since the conditions of each descending generalization 
schema are different, the proces.s of choosing the appropriate generalization 
schema for the input DC program is done only by checking the conditions, and 
then the eureka [20] (i.e. the specification of the generalized problem) comes 
for free.

The reason why we call the descendingly generalized (DG) program schema 
patterns 'DGLR' and 'DGRL' is similar to the reason why we call the divide- 
and-conquer program schema patterns DCLR and DCRL, respectively. In 
descending generalization, the composition ordering for extending the accu­
mulator parameter in the template DGLR is from left-to-right (LR) and the 
composition ordering for extending the accumulator parameter in the template 
DGRL is from right-to-left (RL).

The first two descending generalization schemcis are:

DGi : { DCLR, DGLR, Adg\, Odgin, Odgui ) where 
Adgi : - compose is cissociative

- compose has e as the left identity element, 
where e appears in DCLR and DGLR 

Odgu2 · - compose has e as the right identity element, 
where e appears in DCLR and DGLR 
and Jr(A') A minimal(X) =>· C?r(,V, e)
- partial evaluation of the conjunction 
process{HX, HY),  compose{Ap-\, HY\ 4p) 
results in the introduction of a non-recursive relation 

Odgui ’· ■ partial evaluation of the conjunction
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process{HX. HY),  compo$e{Ip-\. HY, Ip)
results in the introduction of a non-recursive relation

DG4 : ( DCRL. DGLR, OdgAî ·, 0 dg-\2\) where 
Adg4 : - compose is associative

- compose has c as the left and right identity element, 
where e appears in DCRL and DGLR 

Odg4\2 '■ - A minimal{X) => Or{X,e)
- partial evaluation of the conjunction 
process{HX. HY),  compose{Ap^i, HY, Ap) 
results in the introduction of a non-recursive relation 

Odg42i ■ - partial evaluation of the conjunction
process{HX, HY ), compose{HY, Ip, Ip-i)
results in the introduction of a non-recursive relation

These schemas have the same formal specification (i.e. eureka) for the relation 
r .descendingi:

\iX :X . 'iY ,A - .y .  Ir(X)
[rJescending^iX, Y, A) o  35 : y . Or{X, S) A Oc{A, S, V)]

where Oc is the output condition of compose, and Or is the output condition 
of r, the initial problem. Template 4 below is the template of the common 
schema pattern DGLR of DG\ and DGi.

Logic Program Template 4

r{X, Y) ^

r.descendingi{X, V’ e) 

r.descendingi{X,Y,A) *— 

minimal(X),

solve{X, S), co7vpose{A, S, Y)
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r.descendingi{X, Y, .4)

nonMinimal{X).

decompose{X, HX, T X \, -----TXt),

compose{A,e^ Ao).

r.descendingi{TXi, .4i, 4o)....... r.descendingi{TXp-i, i4p_i, i4p_2).

proces${HX, HY).  compose{Ap-1. HY, Ap),

r.descendingi{TXp, -4p+i, Ap)....... r.descendingi(TXt, i4i+i, i4(),

Y = At+i

Note that, in the DGLR template, I have only used all the open predicates 
of DCLR (or DCRL), and no other new predicates (other than primitive 
= 12).

For an input program, one of these generalization schem<is is applied, if both 
the applicability and the optimizability conditions of the selected generalization 
schema are satisfied. The applicability conditions of these two generalization 
schemas differ, since the composition ordering is also changed from RL to LR 
in DG4.

If the input program is a DCLR (respectively, DCRL) program for the 
generalization schema DG\ (respectively. DG.i) and the applicability conditions 
are satisfied, then the optimizability conditions Odg\\2  (respectively, 0 5̂412) 
have to be satisfied to yield a more efficient output DGLR program.

In the minimal Ccise of r.desccnding\., the simplification of the conjunction 
solve{X. S),compose{A, S.Y) can result in Y =  .4, if relation r maps the 
minimal form of X  into e. and e is also the right identity element of compose. 
This equality can be further compiled into the head of the minimal clause. The 

first optimizability condition of DG\ (or DG^) is defined to check w'hether the 
compose call in the minimal case of r.descending\ can be eliminated.
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In the non-minimal case of r.descendingi. the atom compos((A,e, .4o) can 
be further simplified to the equality A =  .4o. if compose has c eis the right iden­
tity element. The conjunction proce$${HX.HY),compose{Ap^\.H\\Ap) can 
be partially evaluated, resulting in the disappearance of that call to compose, 
and thus in a merging of the compose loop into the r loop in the template 
DCLR (or DCRL). The second optimizability condition of DG\ (or DGa) is 
defined to check whether the elimination of the compose call in the non-minimal 
case of r.descendingi is possible.

I illustrate descending generalization on the in fix .fla t  problem. The in­
formal specification of the infix.flat problem, and its DCLR  and DCRL 
programs are in Example 27 of Chapter 3.

Exam ple 31 The specification of a program for the LR descendingly gener­
alized problem of infix.flat is:

inf ix-flat.desci{B, F, A) iff list F  is the concatenation of list 4̂ and the infix 
representation of binary tree B.

Program 12 is the program for infix.flat as an instance of DGLR for < = 2 
and p =  2.

infix.flat{B,F)  <—

inf ix. flat.desci{B. F, [])

infix.flat.desci{B, F, .4)

B = void,

S = [].append{A,S, F)

inf ix.flat.desc\{B, F, A)

B = bt{.,.,.),
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B  =  bi{L.E. /?), 

append{A,[]. .4o). 

infii.flatjdcsc\{L. .4i. .4o),

HF — [E].append(Ai, HF, A2). 

infix.flat^desci(R. ¿43, .42),

F = A 3

Logic Program 12

Since the applicability conditions of DG\ (respectively, DG^) are satisfied for 
the input DCLR (respectively, DCRL) in fix.flat  program, the descendingly 
generalized infix.flat  program can be Program 12. However, for this prob­
lem, descending generalization of the infix.flat programs with the above DG 
transformation schemas cannot be done, since the optimizability conditions of 
DGi (respectively, DG4) are not satisfied by the open relations of infix.flat. 
In the non-minimal ceise of infix.flat.desci, partial evaluation of the con­
junction HF = [E].,app€nd{Ai, HF, A2) does not result in the introduction 
of a non-recursive relation, because of properties of append (actually, due to 
the inductive definition of lists). Moreover, append is called each time with 
the accumulator parameter, which increases in length, as the input induction 
parameter, which shows that this program is not a good choice as an out­
put descendingly generalized program for this problem. So, the optimizability 
conditions are really needed. q

The other two descending generalization schemas are:

DG2 : ( DCLR, DGRL, Ajg2, Odg2\2' Odg22\ ) where 
Adg2 ■ - compose is associative

- compose has e гıs the left and right identity element, 
where e appears in DCLR  and DGRL
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Ojg2i2 ■ ■ ^r(-V) A minimal{X) =» C?p(A'. e)
- partial evaluation of the conjunction 
process{HX, HY).  compose{HY, Ap,
results in the introduction of a non-recursive relation 

Odg22i ■ - partial evaluation of the conjunction
proce$${HX, HY),compose(Ip-i, HY. Ip)
results in the introduction of a non-recursive relation

DG3 : { DCRL, DGRL, Adgz. Odg3\2  ̂Odgsu) where 
Adg3 '■ - compose is associative

- compose has e as the right identity element, 
where e appears in DCRL and DGRL 

Odg3u ' - compose has e «is the left identity element, 
where e appears in DCLR and DGRL 
and Xt{X) a minimal{X) Or{X,c)
- partial evaluation of the conjunction 
process{HX, HY),  compose(HY, Ap, Ap-i)
results in the introduction of a non-recursive relation 

Odg32\ ' - partial evaluation of the conjunction
process{HX, HY),  compose{HY, Ip, Ip-i)
results in the introduction of a non-recursive relation

These schemas have the same formal specification (i.e. eureka) for the relation 
r.descendingi'·

'iX : X.'iY,A.y. Ir[X)^

[r.descending2[X, Y, A) ^  35 : 3̂ . a (  A, 5) A Oc{S, A, V)]

where Oc is the output condition of compose, and Or is the output condition 
of r, the initial problem. Template 5 below is the template of the common 
schema pattern DGRL of DG2 and DG3.

Logic Program Template 5

r(.Y ,y') ^
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r.de$ce7tding2{X. V, e) 

j'.de$cending2{X, V. A) *—

tninimal{X).

solve{X, 5 ), compose{S, -4, Y)

r.descendingziXs V. 4̂)

nonMinimal(X),

decompose{X\ HX, TX\, . . . ,  TXt),  

compose{e, /4, i4t+i),

rjdescending2{TXu At, , r.descending2(TXp, Ap, Ap^\),

process{HX. HY),  compose{HY, Ap, Ap_i),

r.descending2{TXp-i,  Ap-2·, -4p-i),. . . ,  r.desctnding2{TX\, Aq, Ai),

Y = Ao

Again, in the DGRL template, I have only used all the open predicates 
of DCLR (or DCRL), and no other new predicates (other than the primitive 

=  / 2).

If the input program is a DCLR (respectively, DCRL) program for the 
generalization schema DG2 (respectively, DGz) and the applicability conditions 
are satisfied, then the optimizability conditions Odg2i2 (respectively, Odgzn) 
have to be satisfied to yield a more efficient output DGRL program.

In the minimal case of r.descending2, the simplification of the conjunction 
solve{X, S),compose{S., A,Y)  can result in K = A, if relation r maps the 
minimal form of X  into e, and e is also the left identity element of compose. 
This equality can be further compiled into the head of the minimal clause. The 
first optimizability condition of DG2 (or DG3) is defined to check whether the
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compose call in the minimal case of r.descending2 can be eliminated.

In the non-minimal case of r.descending2, the atom compose(Ao,e. )') can 
be further simplified to the equality Y = Aq, if compose has e as the left identity 
element. The conjunction process{HX, HY),compose{HY, Ap, Ap-i) can be 
partially evaluated, resulting in the disappearance of that call to co77ipose. and 
thus in a merging of the compose loop into the r loop in the template DCLR  
(or DCRL). The second optimizability condition of DG2 (or DG3 ) is defined 
to check whether the elimination of the compose call in the non-minimal case 
of r jde$cending2 is possible.

Exam ple 32 The specification of a program for the RL descendingly gener­
alized problem of in fix.flat  is:

in fix-flatjde$C2{B, F.A) iff list F  is the concatenation of the infix represen­
tation of binary tree B and list .4.

Program 13 is the program for infix.flat as an instance of DGRL for t = 2 

and p = 2 .

infix.flat{B, F) <—

in f  ix.flat.deSC2{B. F, [])

in fix.flat.de$C2{ 5 , F, .4)

B = void.

=  [],append{S,A,F)

infix.flat.desc2(B, F, .4)

B = bt{., 

B ^ b t{L ,E , R),
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append{e. .4. A3), 

infix.flatjde$ci{R, .43),

HF  =  [E].append{HF,A2.A,).  

in fii.flatjdesc2{L, /lo> -4i),

F =  ,4o

Logic Program 13

Since both the applicability conditions and the optimizability conditions of 
DGi (respectively, DG3) are satisfied for the input DCLR (respectively, DCRL) 
in fix.flat  program, both descending generalizations of the in f  ix.flat  pro­
grams result in Program 13. The partial evaluation of the conjunction HF  =  
[£’]. append{H F. A ,̂ Ai) in the non-minimal case of inf ix.flat.desc2 results in 
a call to =  /2, as Ai =  [£|.42]. □

Although the descending generalization schemas are constructed to de- 
scendingly generalize DC programs (i.e. to transform DC programs into DG 
programs), these schemas can also be used in the reverse direction, such that 
they can be used to transform DG programs into DC programs, if the opti­
mizability conditions for the corresponding DC program schema pattern are 
satisfied, since the applicability conditions hold in both directions. If we have 
Program 12 for the infix.flat problem, and we want to transform it into a 
more efficient program, then the DC programs can be the best candidates if 
we have the descending generalization schemas above. This last sentence will 
be better understood in Section 4.2.2.

4.2.2 Complexity Analysis

In this section, I present the complexity analysis of the input and output pro­
grams of the descending generalization schemas, and I will use this complexity
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analysis to discuss the efficiency gain obtained by the descending generalization 
schemas.

For the comple.xity analysis of the programs of the descending general­
ization schemcis, I again use the in fix .fla t  problem, which was also used in 
Section 4.1.2 for the discussion of the tupling generalization schemais. I use 
Programs 9 and 10 in Section 4.1.2, which are the optimized versions of the 
infix.flat DCLR and DCRL programs.

As I discussed in Section 4.1.2. these programs have 0{n^) time complexity- 
in the worst case, if n is the number of elements in tree B. We analyzed these 
programs in terms of space in Section 4.1.2 where it was shown that their space 
complexities are also not very good. However, the RL version is better than 
the LR version, since the append call in the non-minimal case of the RL version 
can be eliminated.

Program 12 in Section 4.2.1 can be optimized, resulting in Program 14 
below.

infix.flat{B, F)

infix.flat.desci(B. jF, [])

infix.flat.desci(B, F, A)

B = void, F = A

infix.flat.desc\[B, F, .4)

B = bt(L,E. R),

infix.flat.desci{L. .4]. .4),

append{Ai, [£“], A 2),

infix.flat.desci{R, F, A )̂
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Logic Program 14

As I discussed in Example 31. in Program 14 the calls to append cannot be fully 
eliminated. Moreover, if we compare the time used by the append calls in Pro­
gram 9 (or 10) and Program 14, the time used by the call append(Ai, [E"]. .42) 
in Program 14 is higher than the time used by the append call in Program 9 
(or 10) by a (nonnegligible) constant factor. This time increase is caused by the 
increase in the length of the accumulator list, which is the induction parameter 
of append. So, Program 14 is less efficient than Program 9 (or 10). although 
its time complexity is also 0 {n )̂ in the worst case.

Program 13 in Section 4.2.1 can be optimized, resulting in Program 15 
below.

in F) *—

infix.flat.desc2{B, E. [])

infix.flatjdesc2{B, F, A)

B = void, F  = A

infix.flatjdesc2{B, E, A) 

E = 6<(I, E, E),

infix.flat.desc2{R, NeicA, .4 ),

infix.flat.desc2{L., E, [E|A’eu)A])

Logic Program 15

In Program 15, the calls to append have disappeared, and we have a linear time 
program. The space complexity of Program 15 is also better than the space 
complexities of Programs 9 and 10. Since an accumulator parameter is used, 
this program creates only h intermediate data structures, although it builds a
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stack of h pairs of recursive calls. However, the program for infix.flat.desc2 

can be made semi-tail recursive in the mode (in.out.in).

Therefore, for the input DC programs like the programs given for infix.flat. 
which use append as the compose operator, the descending generalization 
schemas DG2 and DG3 result in more efficient programs than the descend­
ing generalization schemas DG\ and DG^. If the compose operator of the 
input DC program that is an instance of the DCLR template (or DCRL) 
satisfies the optimizability conditions of DG\ (or DG4), then obviously the 
descending generalization schema DGi (or DG4) will result in more efficient 
programs than the descending generalization schema DG2 (or DGf).

If the descending generalization schemas are used in the reverse direction 
(i.e., to transform DG programs into DC programs), then for instance Pro­
grams 9 and 10 are more efficient in time and space than Program 14. So, it is 
still possible to gain efficiency by using the descending generalization schemas 
in the reverse direction. However, the DG\ generalization schema (respectively, 
the DG2 generalization schema), for an input program that is an instance of 
the DGLR  schema pattern (respectively. DGRL schema pattern), can be bet­
ter than the DG4 generalization schema (respectively, the DG3 generalization 
schema), for an input program that is an instance of the DGLR schema pat­
tern (respectively, DGRL schema pattern), or vice versa, depending on the 
optimizability conditions of the descending generalization schemas for the in­
put programs that are instances of the DGLR schema pattern (respectively, 
DGRL schema pattern).

4.3 Simultaneous Tupling-and-Descending 
Generalization

While working on constructing possible generalized generalization schemas for 
different input program schemas, we also tried to apply descending general­
ization to a tupling generalized problem, and vice versa. The generalization 
schemas that we explain in this section are the results of this work. We call
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them simultaneous tupling-and-descending generalization schemas, although 
the reader may notice by looking at the specification of the generalized problem 
that the process may also be thought of as applying descending generalization 
to a tupling generalized problem.

.As I did while explaining the tupling and descending generalization schemas, 
I will first give the simultaneous tupling-and-descending generalization schemas 
in Section 4.3.1. Then. I will discuss the efficiency gain that can be obtained 
with these generalization schemas by using the time and space complexity 
analysis of the programs of these generalization schemas in Section 4.3.2.

4.3.1 Simultaneous Tupling-and-Descending 
Generalization Schemas

Like I did in Section 4.2.1 for descending generalization, four simultaneous 
tupling-and-descending generalization schemas will be given; two for each DC 
program schema pattern. The first tw'o simultaneous tupling-and-descending 
generalization schemais are:

TDG\ : ( DCLR. TDGLR, Otdii'ii Ctji2i ) where 
Atdi : - compose is associative

- compose has e as the left and right identity element, 
where c appears in DCLR and TDGLR
- V.Y : X. Ir{X ) A mmima/(X) =» a (-Y ,e )
- V A ': X. Tt{X) [-'minimal{X) o  nonMinimal{X)\

Otdu2 '· partial evaluation of the conjunction
process{HX^ HY), compose{A, HY, .Veu^/l) 
results in the introduction of a non-recursive relation 

Otdui ' partial evaluation of the conjunction
process{HX, HY), compose(Ip-\, HY. Ip)
results in the introduction of a non-recursive relation

TDGi : ( DCRL, TDGLR, Atdii Otd4\2i Ctd42i ) where 
Atd4 · - compose is associative
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- compose has e as the left and right identity element, 
where c appears in DCRL and TDGLR
- V.Y : X. Ir {X )  A minimal{X) O r(X .()
- V A ': X. Ir {X ) => [->mintma/(A') nonMinimal[X)]

OtdAn ' partial evaluation of the conjunction
process(HX, HY), compose{A, HY. .Veir.4) 
results in the introduction of a non-recursive relation 

OtdA2\ '■ partial evaluation of the conjunction
process{HX, HY), compost{HY, Ip. /p_ i)
results in the introduction of a non-recursive relation

They have the same formal specification, namely Sr_td,· for the generalized 
problem:

V.Ys : list(X).WY, A : >\ (VX : X. X  € As => Jr( A )) =>

[r.t<ii(As, Y, A) (A s =  [] A y  = A)

V(As =  [Ai. A j , . . . ,  A,] A A  OriXi. V·;) A /, =  r, A

9

t= 2

A /,) A Oc{A, Iq, Iq+\) AY — /,+i)]
where Oc is the output condition of compose, and Or is the output condition 
of r, and 9 > 1. Template 6 below is the template of the common schema 
pattern TDGLR of TDG\ and TDG4.

Logic P rogram  Tem plate 6

r ( A , y ) ^

rJ d ,([A ],y ,e ) 

rJdi(Xs, Y, A) *—

A'. =  11,

Y = A
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rJ cit(X s,}:A ) ^

X s  =  [XITXsj, 

mintmal(X). 

soh €(X ,H y), 

compose(A. HY, XewA). 

r.tdx{TXs, Y. New A) 

r.tdi(Xs,Y ,A) ^

Xs  =  [.Y|rA'5], 

nonMinimal{X), 

decompose{X, HX, TXx, . . . ,  TXt), 

minimal{TXi), · · ·, miniTnal{TXt), 

process{HX. HY), compo$e{A, HY, NewA)^ 

rJdi{TXs. Y, New A) 

rJ d i{X s,Y A ) ^

Xs  =  [.Yir.Ys],

nonMinimal{X),

decompose{X, HX, T X , . . . . ,  TXt),

minimal{TXi), · · · > rninimal(TXp-i),

{nonMinimal{TXp) ; . . . ;  no72Minimal{TXt)), 

process(HX. HY), compose{A, HY, NewA),
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rJdtilTXp....... TXtlTXsl y\ XeirA)

rJdi(Xs,  V', A)

,V i =  (A 'lr.Vsl,

nonMinimal[X),

deconipose{X, HX, TX\....... TXt),

{nonMinimal{TXi) ‘, . . . ;  nonMinimal(TXp-\)), 

minimal[TXp)y. . . ,  minimal{TXt), 

minimal{Ui),... ,minimal{Up-i), 

dtcompose{N, HX, Ui,...·, Up-\,TXp, . . . ,  TXt), 

rJdiilTX , , . . . ,  TXp_г. N\TXs], Y\ A)

rJdi(Xs,Y,A)

Xs  =  [XirXi] ,

nonMinimal(X),

dtcompost{X, HX, TX i , . . . ,  TXt).

{non\finimal{TXi)]. . . ;  nonMinimal{TXp-\)),

{nonMinimal{TXp)·,. . . ;  nonMinimal{TXt)).

minimal{U\ ) , . . . ,  minimal{Ut)·,

decompose{N, HX,  i / j , . . . ,

r.tdi{[TXi, . . . ,  TXp.i, N, TXp, . . . ,  r.Y,|rX5], V', ,4)
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Like I did in the tupling and descending generalized program schemas, in the 
TDGLR template, I have only used all the open predicates of DCLR (or 
DCRL), and no other new predicates (other than primitive =  /2).

The applicability conditions of TDG\ (respectively. TDG^) ensure the 
equivalence of the DCLR (respectively. DCRL) and TDGLR programs for a 
given problem. The optimizability conditions ensure that the output TDGLR 
program of these generalization schemas are more efficient than the input DC 
programs. Like the optimizability conditions of the tupling and descending 
generalization schemas, the optimizability conditions, together with some of 
the applicability conditions, check whether the compose calls in the template 
TDGLR can be eliminated.

In this section, the example programs are given for the in fix .fla t  problem.

Exam ple 33 The specification of the left-to-right (LR) simultaneous tupling- 
and-descendingly generalized problem of in fix .fla t  is:

infix.flatJdi{Bs,F^A) ifflist F  is the concatenation of list A and the infix 
representations of the elements in binary tree list Bs.

Program 16 below is the program for in fix.flat eis an instance of TDGLR.

infix.flat{B. F)

infix.flatJdi{[B].F,[])

in fix.flat.tdi{Bs, F, .4)

F = A

in f ix.flat.tdi{Bs, F. .4) 

Bs = [B\TBs],
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B =  void.

HF = \],

append(A. HF, .Vi4). 

in fix .flat J.d\{T Bs, F. A\4) 

infix.flat.td\{B$, F. A) <—

Bs = [B\TBs\,

B  = 6i(_, .),

B  = bt{L,E,R),

L = void. R = void.

H F  = [£’], append{A. HF, NA), 

in fix.flat.td\{T Bs, F, NA)

infix.flatJ,d\{Bs,F,A) *—

Bs = [BYFBs],

B = 6<(_,

B = bt{L,E,R).

L = void,

R = bt{.,.,.),

HF = [E],append{A. HF, N A), 

infix.flat.tdi{[R\TBs], F, N A) 

infix.flat.td\{Bs,FsA) <—
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Bs = [B\TBsl

B  = bt{___ ),

B  = bi{L.E, /?).

L = bt{...,.),

R = void,

U = void,

N = bt{U.E,R),

infi,T.flatJdi{[L, F, .4)

in fix .flatJd i{Bs,F ,A )  <—

Bs = [B\rBs],

5  = 6<(.

B = bt{L,E,R),

L = bt{.,.,.),

U\ = void,U2 = void,

N = bt(UuE.U2), 

infix.flat.td\{[L, N, R\Tfis], F. .4)

Logic Program 16

Since the applicability conditions of TDGi (respectively. TDG4) are satis­
fied for the input DCLR  (respectively, DCRL) in fix .fla t  program, the si­
multaneous tupling-and-descendingly generalized in fix .fla t program can be



CHAPTER 4. PROBLEM GENERA LIZATIOS SCHEMAS 92

Program 16. For the in fix.flat problem, the generalization schemas TDG\ 
(or TDG4) cannot be applied, because the optimizability condition Otd\u (or 
OtdAu) is not satisfied by append, the compose relation of in fix .fla t. Q

The other two simultaneous tupling-and-descending generalization schemas
are:

TDG2 · ( DCLR, TDGRL. Atd2 Gtd2i2t Gtd22i ) w’here 
Atd2 ■ - compose is cissociative

- compose has e as the left and right identity element, 
where e appears in DCLR and TDGRL
- WX : X. Tt{X ) a  minimal{X) => Or{X,e)
- \fX : X. Jr{X) => [-’mini’ma/(A') nonMinimal{X)]

Otd2\2 '■ partial evaluation of the conjunction
process{HX., H Y), compose{HY, A, New A) 
results in the introduction of a non-recursive relation 

Otd22\ '· partial evaluation of the conjunction
process{HX, HY)^ compose{Ip-i, HY, Ip)
results in the introduction of a non-recursive relation

TDG:'3 { DCRL, TDGRL, Atds Otd3\2i Otd32\ ) where 
Atd3· - compose is «issociative

- compose has e as the left and right identity element, 
where e appears in DCRL and TDGRL
- V.Y : A*. J ,(A ') A minimaliX) ^  Or{X, e)
- V.Y : A’ . J,(.Y) [-m m im a/(A ') nonMinimal{X)] 

Otd3\2 : partial evaluation of the conjunction
process{HX, HY), compose{HY, A, New A) 
results in the introduction of a non-recursive relation 

<̂ <¿321 : partial evaluation of the conjunction
proce$s{HX, HY), compo$e{HY, Ip, Ip-i)
results in the introduction of a non-recursive relation

The specification of the generalized problem, namely Sr.td2 *̂ · 

VAs : list{X).W , A : y .  (VA : X. X  € As Ir{X )) =>
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[rJd2(Xs. Y. /1) ^  (A'5 = [) A V =  A)

\/{Xs = [,Vi,-Yj....... A',] A f\ O r{x,. y;) A / ,  =  y, A

A  v;, li) A O c (/„  -4, /,+ i) A y  = /,+i)]
1=2

where Oc is the output condition of compose, and Or is the output condition 
of r. and q > 1. Template 7 below is the template of the common schema 

pattern TDGRL of DG2 and DG3.

Logic P rogram  Tem plate 7

r ( X , y ) ^ -

r J d 2 ( [A ] ,y »  

rJd2{Xs,Y,A) <- 

X s =  0,

y  = A

rJd2{Xs, y, >1) ^

X s =  [X irX s], 

minimal{X). 

rJd2{TXs, New A. /1), 

solve(X ,H Y), 

compose{HY. N ewA, Y) 

rJdziXs.Y, A) *—

X s  =  [X\TXsl 

nonMinimal{X),
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decompose{X, HX. TX\ TXt),

minimal{TXi),___minimal(TXt),

rJd2{TXs, XewA. .4),

process{HX. HY). compose{HY. XewA, }’)

rJd^iXs, V' .4)

Xs =  [A 'lr.Yi],

nonMinimal{X),

decompose{X, HX, TX \, . . . ,  TXt),

minimal{TXi),___minimal{T Xp-i),

{nonMinimal{TXp);... \nonMinimal[TXt)), 

r . t d 2 { [ T X p , TAM rA i], New A, A), 

process{HX, HY). compo$e{HY, New A, Y) 

rJd2{Xs,Y,A) ^

X s  = (.Yir.Vi),

nonMinimal{X),

decompose{X, HX, T X i , . . T X t ) ,  

{n o n M in im a l{T X \n o n \ i in im a l(T X p - i) ) ,

minimal{TXp),.... minimal{TXt),

minimal{Ui)____ minirnal{Up-i),

decompo$e{N, HX, Up-\, T Xp, . . . , T  Xt),
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rjd^iiTXi, . . . ,  TXp.i. .vir.Y^], y; a )

rJd^iXs, V, A) <- 

Xs  =  [XirJYi],

nonMinimal{X),

decomposeiX, HX, TXy, . . . ,  TXt),

{nonMinimal{TX\)\. . . ;  nonMinimal{TXp-i)), 

{nonMinimal{TXp) ] . . . ;  nonMinimal{TXt)), 

minimal{Ui)^. . . ,  Tninimal(Ut), 

decompose{N, HX, Ui , . . Ut), 

r.td2{ [ T X u T X p . u  N, TXp, . . . ,  TXtlTXs], Y, A)

Again, in the TDGRL template, I have only used all the open predicates of 
DCLR  (or DCRL), and no other new predicates (other than primitive = /2).

The reader is invited to analyze the applicability conditions and the optimiz- 
ability conditions of TDG2 and TDGz·, like I did for the previous generalization 
schemas.

E xam ple 34 The specification of the right-to-left (RL) simultaneous tupling- 
and-descendingly generalized problem of m fix .fla t  is:

in f i x .  flat Jd2{Bs, F, A) iff list F  is the concatenation of the infix representa­
tions of the elements in binary tree list Bs and list A.

Program 17 below is the program for in fix.flat as an instance of TDGRL.

infix.flat{B , F)
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infix.flatJd2{[B], / ’.[]) 

infix.flatJd2{B$,F,A)

F =  A

infix.flatJd2(B$,F,A) <—

Bs = [B\TBsl 

B = void,

infix.flatJtd2{T Bs, N A, .4),

append{HF, N A, F) 

infix.flatJd2 {Bs, F, A) *—

Bs = [B\TBs\,

B = bt{.,.,.),

B = bt{L, E, R),

L = void, R = void, 

in f ix-flat Jtd2{TBs, N A, A), 

HF  = [£], append{H F, N A, F) 

infix.flatJd2{Bs,F,A) <—

Bs = [B\TBs],

B = bt{.,.,.),
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B = bt(L.E, R),

L = void.

R = bt{...... ),

infix.flatJd2{[R\Tfio'], .V.4, 4̂), 

H F = [E].app€nd{HF, NA. F) 

infix.flatJd2{Bs.F,A) *—

Bs = [51755],

B  = 6<(_, -),

B  = bt{L, E, 5 ),

L = bt{., -),

R = void,

U — void,

N = bt(U, E, R),

infix./latJ.d2{[L, A’|755], F, i4) 

infix.flat.td2{Bs,F,A) ·<—

Bs = [B\TBs],

B = bt{----- ),

B = bt{L,E, R),

L = bt{ . , . , .),

R = bt{.,.,.),



CHAPTER 4. PROBLEM GESERALIZATION SCHEMAS 98

L'l = void, L '2 — void,

/V = bt{U, E, R),

infix.flatJdzilL, IV, R\TBs], F, .4)

Logic P rogram  17

Since both the applicability conditions and the optimizability conditions of 
TDG2 (respectively, TDG3) are satisfied for the input DCLR  (respectively, 
DCRL) infix.flat program, both simultaneous tupling-and-descending gen­
eralizations of the in fix .flat  programs result in Program 17 above. Q

These simultaneous tupling-and-descending generalization schemas can also 
be used in the reverse direction (i.e., to transform TDG programs into DC 
programs); the reason for using these schemas in the reverse direction will 
become clear in Section 4.3.2, where the optimized versions of Programs 16 
and 17, and the complexity analyses of these in fix .flat programs, are given 
as well.

4.3 .2  Complexity Analysis

For the complexity analysis of the programs of the simultaneous tupling-and- 
descending generalization schemas, I again use the in fix.flat problem, which 
was also used in Sections 4.1.2 and 4.2.2 for the discussions of the tupling and 
descending generalization schemas. I use Programs 9 and 10 in Section 4.1.2, 
which are the optimized versions of the in fix .fla t DCLR and DCRL pro­
grams.

I will again summarize the time and space complexities of these DC pro­
grams. They have 0{n^) time complexity in the worst case, and build a stack 
of h pairs of recursive calls, and create 2n intermediate data structures, if n is 
the number of elements in tree B and h is the height of B.
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Program 15 in Section 4.3.1 can be optimized, resulting in Program 18 
below.

in fix.flat{B , F) <—

infix.flatJdi{[B], F, []) 

infix.flatJdi(Bs^F,A) <— 

Bs = [ ] , F = A  

infix.flatJdi{Bs, F, i4) *— 

Bs = [B\TBsl

B =  t’Oid,

infix.flatJ.di {TBs, F, i4) 

infix.flatJd\{Bs,F,A) <—

Bs = [B\TBs],

B =  bt{L, E, R),

L =  void, R =  void, 

append{A, [£̂ ], NA), 

in fix.flat Jd\ {TBs, F, NA) 

infii.flatJd\{Bs, F, A) *- 

Bs = \B\TBs\,

B = bt{L,E, R),

L = void.
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append{A, [f]. A'-4), 

infix.flatJdi{[R\TBs], F, A’.4) 

mfix.flatJ.d\{Bs, F, .4) <—

Bs = [B\TBs],

B = bt{L,E, R),

L = bt(., _),

R — void,

inf ix.flat Jdi{[L, bt{void, E. R)\T5 ]̂, F, A)

•4
inf ix-flat Jdi{Bs, F, A) *—

Bs = [B\TBs],

B = bt{L, E, R),

L = bt{.,.,.),

R = bt{.,.,.),

in fix.flat Jdi{[L, bt{void, E. void), R\T Fi], F, A)

Logic Program 18

Unfortunately, in Program 18, the calls to append cannot be fully eliminated, 
because of properties of append. The time used by the append calls in r.td\ is 
more than the time used by the append calls in the in fix .fla t DC programs, 
because the accumulator parameter, which is extended by the partial result, is 
input 3iS the induction parameter to each append call.

Program 16 in Section 4.3.1 can be optimized, resulting in Program 19
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below.

in fix .flat{B , F) <—

infix.flatJ.d,2{[B], F, []) 

in fix.flatJd2{Bs, F, .4) <—

Bs =  [ ] . F =  /1 

in fix.flatJd 2{B s,F .A ) <—

Bs = [B\TBs],

B =  void,

in fix.flatJd2{TBs,F, A) 

in fix .fla tJd 2{Bs, F, A) ♦—

Bs = [B\TBs],

B = bt{L, E, R),

L =  void, R =  void,

in fix .fla t Jd2{TBs, TF, A).

F =  [E\TF]

in f ix.flat Jd2{Bs, F, A) ♦—

Bs =  \B\TBs],

B =  bt{L, E, R),

L =  void.
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infix.flatJd2([R\TBs], TF, A),

F = [E\TF\

infix.flatJ,d2{Bs. F, .4) <—

Bs =

B = bt{L,E, ft),

L = bt{.,.,.),

R = void,

in f ix.flat Jd2{[L, bt{void, E, R)\T 5s], F, .4) 

infix.flatJd2{Bs, F, A) *—

Bs = [5 | r 5 s],

B = bt{L,E,R),

L = bt{.,.,.),

R = bt{.,.,.),

infix.flatJd2{[L, bt{void, E, void), R\T5 s], F, A) 

Logic Program 19

In Program 19, the calls to append have disappeared, and we have a linear 
time program. Although the space complexity of Program 19 is worse than 
for the DC programs for the infix.flat problem, this program can be made 
tail recursive in the mode [in,out, in), as the last five clauses are mutually 
exclusive.

Therefore, for the input DC programs like the programs given for in fix .fla t.
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which use append as the compose operator, the generalization schemas TDG2 
and TDG3 result in more efficient programs than the generalization schemas 
TDGi and TDG\. If the compose operator of the input DC program that is an 
instance of the DCLR template (or DCRL) satisfies the optimizability condi­
tions of TDGi (or TDGa), then obviously the generalization schema TDG\ (or 
TDG4) will result in more efficient programs than the generalization schema 
TDG2 (or TDG3).

If the TDG generalization schemas are used in the reverse direction (i.e., 
to transform TDG programs into DC programs), then for instance Programs 9 
and 10 are more efficient in time and space than Program IS. So, it is still 
possible to gain efficiency by using the TDG  generalization schemas in the 
reverse direction. However, the TDG\ generalization schema (respectively, the 
TDG2 generalization schema) for an input program that is an instance of the 
TDGLR  schema pattern (respectively, TDGRL schema pattern) can be better 
than the TDG4 generalization schema (respectiv-ely, the TDG3 generalization 
schema) for an input program that is an instance of the TDGLR  schema 
pattern (respectively, TDGRL schema pattern), or vice versa, depending on 
the post-transformation conditions of these generalization schemas for the in­
put programs that are instances of the TDGLR  schema pattern (respectively,
TDGRL schema pattern).



Chapter 5

Duality Transformation 
Schemas

In Chapter 3, while discussing the composition ordering in DC program schemas, 
the reader who is familiar with functional programming will notice the simi­
larities between composition ordering and the fold operators in functional pro­
gramming. A detailed explanation of the fold operators and their laws can be 
found in [3]. Now, I will only give the definitions of the fold operators, and 
their first law. The definition of foldr is as follows:

foldr f a  [xi,X2,· · · , ! « ]  =  f  x i i f  •T2( - - - ( /  Xn a)· ·· ))

An equivalent formulation, possibly easier to read, is:

foldr (©) a [xj,X2,--- ,^n] = xi 0 (x 2  0 ( - - . ( x n © « ) · · · ) )

where ©, like / ,  is just a variable that can be bound to a function of two 
arguments.

The foldl operator can be defined as:

foldl f  a [xi, X2, . . . ,  x„] =  / ( . . .  ( / ( /  a Xi)x2) . · .)Jn · · ·))

An equivalent formulation, possibly e£isier to read, is:

foldl (© ) a [xi,X2, . . . , x „ ]  =  ( . . . ((a © xi) 0 X2) · ··) ®

104



CHAPTER 5. DUALITY TRANSFORSiATlON SCHEMAS 105

Thus, equation 3.1 in Chapter 3 that illustrates the composition of in 
the DCLR template can be rewritten using foldl:

fold! (©) e [T\\........HY. r i p ..................... TY,]

In a similar way, the foldr operator can be used to rewrite equation 3.2 that 
illustrates the composition of i" in the DCRL template as follows:

foldr (0 )  e [TYx........r i p . i ,  //}· . r ip ........ TYt]

The first three laws of the fold operators are called duality theorems. The 
first duality theorem states that:

foldr (0 )  a xs = foldl {~ ) a xs

if 0  is cissociative and has (left and right) identity element a, and xs is a finite 
list.

Since append., which is compose in our flat examples, is associative and has 
[] as the identity element, Programs 1 and 2 (respectively, Programs 3 and 4, 
and Programs 5 and 6) are equivalent (resulting in the same Y, which is also 
stated in the first duality theorem) for prefix.flat (respectively, in fix.flat, 
and post fix-flat). This shows that the problem families that the two program 
schemcis abstract have an intersection family (resulting in equivalent programs 
for the problem), if compose satisfies the constraints of the first duality theo­
rem.

So a transformation technique can be constructed that takes Program 1 (3, 
or 5, respectively) as an input, and produces Program 2 (4, or 6, respectively) 
as an output program, and vice versa.

Since I already have the input and output program schema patterns, and 
the applicability conditions (i.e., the constraints of the first duality theorem) 
of a possible transformation schema, I will give transformation schemas, rather 
than constructing a transformation technique.

The transformation schemas given in Section 5.1 are thus called duality 
schemas. The time and space complexity analysis of the input and output
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programs of these duality schemas are given in Section 5.2. The correctness 
proofs of these duality schemas are in [9].

5.1 Duality Schemas

Using the previous discussion, the first duality schema Djc below is given for 
transforming DC programs.

Djc ■ { DCLR^ DCRL. Addc·, Oddciz·: Oddc2\) where 
Addc · · compose is associative

- compose has e as the left and right identity element, 
where e appears in DCLR  and DCRL 

Oddcu '■ - partial evaluation of the conjunction
process{HX, HV) ,  compose{HY. Ip, /p_i) 
results in the introduction of a non-recursive relation 

Oddc2i · - partial evaluation of the conjunction
process{HX, HY), compose{Ip^i, HY, Ip)
results in the introduction of a non-recursive relation

where the program schema patterns DCLR  and DCRL are the DC schema 
patterns given in Chapter 3, and Addc comes from the constraints of the first 
duality theorem. The optimizability conditions check whether the compose 
operator can be eliminated in the output program.

Taking Program 1 (3, or 5, respectively) in Chapter 3 as an input, and 
producing Program 2 (4, or 6, respectively) as an output program can be 
achieved by the duality schema Ddĉ  but not the inverse transformation, since 
the optimizability condition Oddc2i is not satisfied by append, which is the 
compose relation of the in fix.flat problem.

Similarly, it is possible to give duality schemas for the DG and TDG pro­
gram schemas. The duality schema for DG programs, namely Ddg, is:

Ddg : ( DGLR, DGRL, Addg, Oddg\2> Oddg2\) where
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Ajdg : - compose is associative
- compose has e as the left and right identity element, 
where e appears in DGLR and DGRL

OddgU- - VA’ : X. 2t{X) a  minimal{X) => Or(A, e)

- partial evaluation of the conjunction 
process{HX, HY) ,  compose{HY Ap, -4p_i)
results in the introduction of a non-recursive relation 

Oddgn- - '^X · X- 2r{X)  A minimal{X) =>■ (9r(A^e)
- partial evaluation of the conjunction 
pi'ocess{HX, HY),  compose{Ap-\, HY, Ap)
results in the introduction of a non-recursive relation

where the templates of the schema patterns DGLR and DGRL are Logic 
Program Templates 4 and 5 in Section 4.2.1.

Taking Program 12 in Section 4.2.1 cis an input, and producing Program 13 
as an output program can be achieved by the duality schema Ddg·, but not the 
inverse transformation, because of properties of append.

The duality schema for TDG programs, namely Dtdgi is:

Dtdg : { TDGLR, TDGRL, Adtdg·, Odtdgu, Odtdg2\) where 
Adtdg : (1) compose is associative

(2) compose has e as the left and right identity element, 
where e appears in TDGLR  and TDGRL 

Odtdgu'· - VX : X. Tr{X) A minimal{X) ^  Or{X,e)
- partial evaluation of the conjunction 
process{HX, HY) ,  compose{HY, New A, F) 
results in the introduction of a non-recursive relation

Odtdg2i· - v x  : X . Ir (X ) A minimal{X) => Or{X,t)
- partial evaluation of the conjunction 
process{HX,HY),compose{A, HY, NewA) 
results in the introduction of a non-recursive relation

where the templates of the schema patterns TDGLR and TDGRL are Logic 
Program Templates 6 and 7 in Section 4.3.1.
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Taking Program 16 in Section 4.3.1 as an input, and producing Program 17 
as an output program can be achieved by the duality schema D^g, but not the 
inverse transformation, because of properties of append.

5.2 Complexity Analysis

Since the complexity analysis of DC. DG, and TDG programs for the infi.r.flat 
problem have already been given in Sections 4.1.2, 4.2.2. and 4.3.2, in this sec­
tion I use these results to discuss the efficiency gain obtained by the duality 
schemas in Section 5.1.

.Although Programs 9 and 10, which are the optimized versions of the 
DCLR  and DCRL infix.flat programs, namely Programs 3 and 4, have time 
complexity O(n^), Program 10 has a better time complexity than Program 9 by 
a constant factor, which is not negligible. If we have Program 3 and we want to 
transform it into a more efficient program, then Ddc will be applied resulting 
in Program 4, which can be optimized into Program 10, because the appli­
cability and optimizability conditions of Ddc are satisfied. Since Program 10 
is more efficient than Programs 3 and 9, this shows that we can obtain effi­
ciency gain by the Ddc schema. If we want to transform Program 4 into a more 
efficient program and Ddc is selected, then Ddc will not be applied, because 
the optimizability conditions of Ddc are not satisfied by the open relations of 
in fix.flat. So, we do not have Programs 3 or 9 cis an output program of this 
duality schema, which shows that the duality schema Ddc does not result in a 
program that has worse time complexity than the input program.

Similarly, for the DG and TDG infix.flat programs, the RL versions have 
better time complexity than the LR versions. Because of the optimizability 
conditions in the Ddg and Dtdg schemas, the RL versions will always be output 
by these schemais.

Of course, it is possible to have an LR version of DC, DG, or TDG program 
that is more efficient than its RL version for some problems. In these cases, 
the duality schemas will output the LR program, if the input program is RL,
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and tliey will not output the RL program if the input program is LR. So 
they always output the corresponding efficient version, which is ensured by the 
optimizability conditions.



Chapter 6

Evaluation of the 
Transformation Schemas

In this chapter, I evaluate the transformation schemas using performance tests 
done on the manually optimized input and output programs of each trans­
formation schema. However, the reader may find this evaluation of little 
value, since the transformation schemas in this thesis are only dealing with 
the declarative features of the programs. So, I must say that this evaluation 
is made because I think that these performance tests will help us to see what 
our theoretical results will be when tested practically, although in an environ­
ment with procedural side-effects. The programs are executed and tested using 
Mercury 0.6 (for an overview of the Mercury logic programming language, re­
fer to [50], and every detail about Mercury can be found in its home-page 
‘ http://munkora.cs.mu.oz.au/mercury/’ ) on a SPARCstation 4. Since the pro­
grams are really short, the procedures were called 500 or 1000 times to achieve 
meaningful timing results. In Table 6.1, the results of the performance tests 
for seven selected problems are shown, where each column heading represents 
the schema pattern to which the program written for the problem of that row 
belongs. The timing results are normalized wrt the DCLR column.

The reason why I chose the problems above is that all the seven pro­
grams that are instances of the seven program schema patterns can be writ­
ten for these problems, because of the properties of the compose, minimal,
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problems DCLR DCRL TG DGLR DGRL TDGLR TDGRL
prefix.flat 1.00 0.92 0.23 11.ss 0.15 12.38 0.15
in fix .fla t 1.00 0.49 0.02 7.78 0.05 7.-59 0.15

post fix .fla t 1.00 0.69 0.14 5.48 0.09 5.55 0.09
reverse 1.00 1.00 0.04 1.01 0.01 1.02 0.04

quicksort 1.00 0.S5 0.72 6.02 0.56 6.42 1.01
sumlist 1.00 1.00 S.33 0.01 0.33 4.00 8.67
length 1.00 1.00 16.33 0.67 1.00 9.00 14.00

Table 6.1. Performance Tests Results

non.MinimaL and solve relations of their DC programs. The specification, 
and the DC and TG (respectively. DG ) programs for quicksort (respectively, 
for reverse) were given in E.xample 21 (respectively, in E.xample 22) in Sec­
tion 2.1.6. The specification of a program for relation sumlist is:

sicmlist{L,S) iff integer 5  is the sum of the elements in the integer-list L.

The specification of a program for relation length is:

length{L, N) iff integer N  is the number of elements in the list L.

Let us first compare the DCLR  and DCRL schema patterns. For reverse, 
sumlist, and length, the DCLR  and DCRL programs are the same, since 
they are single-recursive, and their compose relations are either associative like 
append in reverse, or even commutative like -I- in sumlist and length. For the 
binary tree flat problems and for quicksort, the DCRL programs are much 
better than the DCLR programs, because of the relations like append (which 
is the compose relation in all these examples), whose properties are the main 
reason for properly achieving the optimizations of the DCRL programs of the 
problems above.

Hence, if the input programs for the binary tree flat problems, and for the 
quicksort problem to the duality schema, are instances of the DCLR schema 
pattern, then duality transformations will be performed resulting in the DCRL 
programs for these relations, since both the applicability and the optimizability 
conditions are satisfied by these programs. So, the duality transformation of
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the DCLR programs for the relations, having the undefined relations in their 
open programs like the ones of the problems above, results in DCRL programs 
that are more efficient than the input DC LR programs. If the DCRL pro­
grams for the above relations are input to the duality schema, then the duality 
transformation will not be performed, since the optimizability conditions are 
not satisfied by append, which is the compose relation of the DC RL programs. 
Of course, there may e.xist some other relations where the duality transfor­
mation of their DCRL programs into the DC LR programs will provide an 
efficiency gain. Unfortunately, I did not find a meaningful well-known example 
of this category.

The next step in evaluating the transformation schemas is to compare the 
generalized programs of these example relations. If we look at Table 6.1, the 
most obvious observation is that the DGRL programs for all these example 
relations are very efficient programs. However, tupling generalization seems 
to be the second best eis a generalization choice, and it even must be the first 
choice in problems like in fix.flat, where the composition place of the head in 
the result parameter is the middle, and the minimal and nonMinimal checks 
can be performed in minimum time. Although a similar situation occurs for 
the quicksort problem, the TG program of quicksort is not as efficient as the 
DGRL program. This is mainly because of partition, which is the decompose 
relation of quicksort, being a costly operation, although we eliminate most 
of the partition calls by putting extra minimadity checks in the TG template. 
Since append, which is the compose relation in all the problems except sumlist 
and length, cannot be eliminated in the resulting DGLR and TDGLR pro­
grams, the DGLR and TDGLR programs for these relations have the w’orst 
timing results. The reason for their bad performances is that the percentages of 
the total running times of the DGLR and TDGLR programs used by append 
are much higher than the percentages of the total running times of the DCLR 
and DCRL programs used by append for these relations. The reason for the 
increase in the percentages is that the length of the accumulator, which is the 
input parameter to append in the DGLR and TDGLR programs, is bigger 
than the length of the input parameter of append in the DCLR and DCRL 
programs, since the partial result has to be repeatedly input to the compose 
relation in descending generalization.
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The generalization of the input DC programs must be performed if all the 
applicability conditions are satisfied by the input DC programs (for the prob­
lems above, the applicability conditions of each generalization schema given in 
this thesis are satisfied by the input DC programs). The generalization must 
also check the optimizability conditions, and then must choose the general­
ization schema where both the applicability conditions and the optimizability 
conditions are satisfied. A generalization must be performed if it really results 
in a program that is much more efficient than the input program. So, the de­
scending generalization of the input DCLR program for in fix .fla t  resulting 
in the DGLR program must not be done, even if the applicability conditions 
are satisfied, since the performance of the DGLR program for in fix .fla t  is 
much worse than the input DCLR program. This is the main reason for the 
existence of the optimizability conditions in the schem£is. If we try to descend- 
ingly generalize the input DCLR program (respectively, the DCRL program) 
for any of the flat, reverse, or quicksort problems, then the DG2 (respec­
tively, DG3 ) schema will be chosen, since the optimizability conditions of DG2 

(respectively, DG3 ) are satisfied. Also, if we try to do a simultaneous tupling- 
and-descending generalization of the input DCLR program (respectively, the 
DCRL program) for any of the flat, reverse, or quicksort problems, then the 
TDG2 (respectively, TDG3 ) schema will be chosen, since the optimizability 
conditions of TDG2 (respectively, TDG3) are satisfied by the input programs. 
The optimizability conditions of DG\ or DGa (respectively, TDG\ or TDG4) 
are not satisfied by the problems above. So, these schemas are out of the ques­
tion during generalization of the DC programs of the problems above, which 
is what the user will want in a transformation system that is not doing a 
transformation that does not provide efficiency gain.

For the relations sumlist and length, the results are completely different 
in the sense that the TG programs are much worse than the DC programs. 
The recison for this bad performance seems to be the overhead calls added by 
doing the generalization of the input parameter, which is already a list, into 
a list of lists. The other reasons for this efficiency loss may be the properties 
of - f , and the implementation of -f- in .Mercury. Actually, this much of an 
efficiency loss is not expected, this is the main reason which makes us to think 
that the implementation of the built-in predicates in Mercury may cause these
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results. Of course, the other reason is the performance results of the DG 
(respectively. STDG) programs, where the DGLR programs (respectively, the 
TDGLR programs) are found to be more efficient than the DGRL programs 
(respectively, the TDGRL programs) for sumlist and length. The only reason 
that I can come up with is the implementation of + in Mercury. Since + is 
commutative, different implementations can be done in different languages.

In some of the cases, using generalization schemas to transform the input 
programs that are already generalized programs of the relations to DC pro­
grams will produce an efficiency gain. For example, if the DGLR  program for 
any of the flat problems is the input program to descending generalization 
(namely, DG\ or DG4), then the generalization will be performed resulting 
in the DCLR  (or, DCRL) program, which is more efficient than the input 
DGLR  program. Similarly, an efficiency gain will be obtained if the programs 
of the TDGLR  schema pattern are input to the generalization process, since 
the optimizability conditions of the generalization schemas in the reverse di­
rections are satisfied. However, if the input program for any of the above 
relations to generalization is a DGRL or TDGRL program, then the general­
ization schemiis are still applied in the reverse direction, which means that the 
reverse engineering will result in a program that is less efficient than the input 
program. This makes us think of some other ways of defining the optimiza6i7i<y 
conditions, namely optimization conditions, such that the transformation will 
always either result in a better program than the input program. However, 
more performance analyses and complexity analyses are needed to make such 
a decision.

Therefore, a transformation system that will be developed with a database 
of the transformation schemas explained in this thesis has to verify the op­
timizability conditions, since these conditions ensure efficiency gain by these 
transformations.



Chapter 7

Prototype Transformation 
System

TRANSYS is a prototypical implementation of the schema-bcised program 
transformation approach explained in this thesis. TRANSYS is an automatic 
(i.e. without any user interaction) program transformation system that is de­
veloped to be integrated in a schema-baised program development environment. 
Therefore, the input closed program to the transformation is assumed to be 
developed by a synthesizer (e.g. a proper extension of DIALOGS [61]) using 
the database of program schema patterns available in the system, as other­
wise the transformation system cannot transform the input program. So the 
program schema pattern, of which the input closed program is an instance, is 
a-priori known. Thus, given an input program that is an instance of a program 
schema pattern in the database, the system will output all the programs that 
are instances of the program schema patterns in the database, and that are 
more efficient than the input program. The representation of program schema 
patterns and transformation schemas makes the system more data-oriented, 
which means that the actual algorithm of the system has a minimum amount 
of sub-procedures to define the representation of the schemas and schema pat­
terns. The transformation schemas, and the program schema patterns, which 
are the input (or output) program schema patterns of these transformation 
schemas given in this thesis, are all available in the database of the system.
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TRANSVS has been developed in SICStus Prolog 3, patch #5. Since TRAN- 
S\ S is a prototype system, for some parts of the system, instead of implement­
ing them, I integrated other systems:

• For verifying the applicability conditions and some of the optimizability 
conditions, PTTP is integrated into the system. The Prolog Technology 
Theorem Prover (PTTP) was developed by M.E. Stickel in the .Artifi­
cial Intelligence Center of SRI International in California (for a detailed 
e.xplanation of PTTP. the reader can refer to (54. 55]). PTTP is an im­
plementation of the model elimination theorem proving procedure that 
extends Prolog to the full first-order predicate calculus. TR.ANSYS uses 
the version of PTTP that is written in Prolog and compiles clauses into 
Prolog.

• For verifying the other optimizability conditions, and applying the op­
timizations to the output programs of the transformation schemas, I 
integrated Mixtus 0.3.6. Mixtus w<is developed by D. Sahlin in SICS 
(Swedish Institute of Computer Science) in Kista (for a detailed expla­
nation of Mixtus, the reader can refer to [48]). Mixtus is an automatic 
partial evaluator for full Prolog. Given a Prolog program and a query, 
it will produce a new program specialized for all instances of that query. 
The partial evaluator is guairanteed to terminate for all input programs 
and queries.

I explain how the programs, the program schema patterns, and the transforma­
tion schemiis are defined in the system in Section 7.1. In Section 7.2, I explain 
the high-level algorithm of the system, and how the above systems PTTP and 
Mixtus are integrated into TRANSYS. I discuss the features of TRANSYS us­
ing a sample run of the system, and I evaluate TRANSYS as a transformation 
system in Section 7.3.
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7.1 Representation Language

In this section, I will explain how the programs, program schema patterns, and 
transformation schenicis are represented in the system. The program schema 
pattern representation is more complicated than the transformation schema 
and the program representations, since first-order logic is not enough to rep­
resent and manipulate the program schema patterns fully. In Section 7.1.1, I 
will give the syntax of the schema pattern language for the program schema 
pattern representation, and I will explain the semantics of the schema pattern 
language in Section 7.1.2. However, the schema pattern language used in this 
system cannot be used to represent every program schema pattern because of 
implementation restrictions, which will· be explained in Section 7.1.2. For a 
more detailed representation of a program schema pattern, though in second- 
order logic, the reader can refer to [2]. In Section 7.1.3, the representations of 
the programs and transformation schemas are given.

7.1.1 Schema Pattern Language: Syntax

Currently, in the database of the system, the existing program schema patterns 
are the DC schema patterns, the TG, DG, and TDG schema patterns, and 
the RS reuse schema pattern  ̂which is the base schema pattern with the stead­
fastness constraint true, which means that every program can be an instance 
of this schema pattern. So, a program that is an instance of the reuse schema 
pattern has itself as its extension.

A program schema pattern is represented as a relation lps{NS, L,Temp, PL). 
where

• NS is the name of the program schema pattern;

• 1 is the list of the actual name of the top-level relation R and the actual 
names of the undefined relations in the NS schema pattern, which will 
be substituted in Temp during particularization;

• Temp is the template of the NS schema pattern, which is a list of template
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clauses (defined below);

• PL is the list of parameters; in the reuse schema pattern, PL is equal 
to the singleton list [;V], but in the DC schema patterns and generalized 
program schema patterns, PL consists of:

-  E, a. specific constant existing in every schema pattern for initiating 
the composition;

-  N. the number of arguments of the top level relation R (currently, 
in the database, it is hard-wired to 2);

-  H, the number of heads of the induction parameter when decom­
posed;

-  T, the number of tails of the induction parameter when decomposed;

-  Ps, the list of numbers denoting the composition places of heads 
{headi, ....headu), when composing the result parameter (since N 
is 2, there is 1 result parameter).

The syntax of template clauses can be given using the BN F  grammar:

Clause ::= i f  {Head, Body)
Head ::= Atom
Body ::= true\SeqAtom$\and{SeqAtoms, Body)

SeqAtoms ::= Atom\Conjunction\Disjunction 
Atom ::= Pred.name{Args)
Args Arg\Arg,Args
Arg ::= Term\Variahle\IndexedA^ariable\Vectorjof-Variables 

where Term is a term and Variable is a variable, and

• an Indexed.Variable is represented by a term of the form V where V 
is a variable (called the root), and /  is the index, which can be either an 
integer, or a variable, or an expression of the forms (J -f- X )  or (J  — .V), 
where X  is an integer and J is a variable;

• a Vector.of.Variables is represented by a term of the form vec{V, LB, U B), 
where K is a variable (called the rootoi the Vector.of .Variables), LB
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is the lower bound, and L' B is the upper bound, where a bound is either 
an integer or a variable;

• a Conjunction is represented by a term of the form cortjatouici{Aiom, LB, 
UB), where Atom is as defined above, and LB and UB are the lower and 
upper bounds of the index J, which is in Atom,

• a Disjunction is represented by a term of the form disjatoms{ Atom, LB, 
VB), where Atom is as defined above, and LB and I'B  are the lower 
and upper bounds of the built-in index, represented by a special variable 
J in Atom.

Example 35 The program schema pattern DCRL for a relation R of arity 2 
with the first parameter being the induction parameter, which is decomposed 
into 1 head and N tails, and the head composition place in the result parameter 
being P, can be represented as:

lps{dcrl, [R, M, S, NM, DEC, PROC, COMP], Tmp, [E. 2 . 1, T, [P]])

iff

T m p = [ if{R {X ,Y ), and{M {X),S{X,Y))),
if{R {X , V'), and{NM{X), and{DEC{X, HX, vec{TX, 

and{conjatoms{R{TX^J,TY^J), 1, T), 
and{I#Tl = E,
and{conjatoms{COMP{TYj^J, I# {J  +  1), d#J), P, T), 
and{PROC{HX, HY),and{COMP{HY, I#P, /# P 1 ), 
and{conjatoms{C0 M P {T Y jjj, IjjJ, / # ( J — 1)), 1, PI),
r  = /#o)))))))))|

where PI = P — 1 and Tl = T + 1 . □

A full implementation of the program schema patterns in the system will be 
given in the next section where the semantics of the schema patterns is ex­
plained by defining the operations on them. The program schema patterns are 
stored in a file called dbase.pl.
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7.1.2 Schema Pattern Language: Semantics

In this section, I explain how a template of a program schema pattern is ma­
nipulated to obtain a template (actually an open program) without ellipses.

Definition 34 (Index R eplacem ent) Let be an IndexedX'ariable.
The replacement of an index I by an integer k applied to X # J . which is 
denoted as IRepj^aXH^J■, gives either a new variable X.a  that will refer to 
the IndtxedX'ariable X # J  throughout the template, where it is used, or 
remains X^^J if /  ^  J.

Definition 35 (Vector_of_ Variables Expansion) Let vec{V, LB,U B )he a 
Vector .of-Variables. The expansion of vec{V, LB,UB) is done if LB and UB 
are both substituted by integers. The expansion of cec{X, LB.,UB) is defined 
as follows:

• Xa^LB if LB =  UB,

• X # {L B  +  1 ) , . . . ,  X M lB  if LB < UB,

• the empty sequence if LB > UB.

So, in vec{X, LB,UB), the root X  ranges between the lower and upper bound.

After expansion, a Vector.of.Variables having its lower bound greater than 
its upper bound will fully disappear from the arguments of a relation.

The replacement of an index I by the integer a applied to a Term T makes 
no change in Term T. Then, the replacement of an index I by the integer 
a applied to a relation R of the form P(7’# l , . . . , T # n ) ,  which is denoted as 
ARepi^aRy gives P{IRep!-aTH^\,... ,IRepi^aT#n).

Definition 36 (C onjunction  Expansion) Lei conjatoms{A, LB, UB) he & 
conjunction. Conjunction expansion is done after LB and UB are both substi­
tuted by integers, and all arguments of A different from the Indexed.variables
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with index J, which is the special variable for representing the index of the 
conjunction, are gone through index replacement. The expansion of the con­
junction conjatoins{A, LB,UB) is defined as follows:

• true if LB > UBs

• ARepj^iB^ i{ LB = UB.

 ̂ and{ARepj^LBA, and{ARepj^^[_B+i)A.......
and{ARepJ^^ı■в-ı)A, ARepj^i B A ). . . ) )

D efin ition  37 (D isjunction  Expansion) Let disjatoms{A, LB^UB) be a 
disjunction. Disjunction expansion is done after LB and UB are both substi­
tuted by integers, and all arguments of A different from the Indexed.variables 
with index J, which is the special variable for representing the index of the 
disjunction, are gone through index replacement. The expansion of the dis­
junction disjatoms{A, LB,UB) is defined as follows:

• false  if LB > UB,

• ARepj^i,BA if LB =  UB,

 ̂ or{ARepj^LB^·, or{ARepj^(iB+i)A,. . . ,
or{ARepj^(UB-i)A·, ARepj^uBA) . . . ) )

R estrictions: The Vector.of .Variables in my system is restricted to a vector 
of variables having a variable in the root, which means double indexing is not 
allowed. The Conjunction and Disjunction representation is also restricted 
to built-in index J, which also means that double indexing of variables is not 
allowed. Another restriction is that the undefined relation names are taken as 
input, so no construction of undefined indexed relations is allowed. Thus, the 
program schema patterns that can be represented in the prototype system are 
limited.

D efin ition  38 (Particularization o f  a Tem plate) The particularization of 
Template of the program schema pattern

lps{NS, [R, M, 5, NM, DEC, PROC, COMP], Template, [E, N, H, T, Fsj)
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results ia an open program for relation R, by doing the following sequence of 
operations:

1. Pararneter/Term Bindings: The parameters (i.e. e///pses of the template: 
iW H, T. Ps) are bound to their actual integer values. .Also, at this stage, 
the variable/term bindings are achieved for the variables

E, A'5, /?. A/, 5, NM, DEC. PROC. COMP  

with their actual values.

2. Variable/Relation Bindings: The predicate variables in the template are 
bound to the actual names of the open relations. This will be better 
understood in the example below.

3. Template Manipulation: The template of the program schema pattern is 
converted to an open program. Index replacement, Vector.of_Variables 
expansion, and conjunction and disjunction expansion are the subpro­
cesses of this final process.

The programs of the template manipulation process are in a file called 
dedoti fy.pl.

E xam ple 36 The representation of the DCRL program schema pattern for 
a relation R of arity 2 with the first parameter being the induction parame­
ter, which is decomposed into 1 head and N tails, and the head composition 
place in the result parameter being P in the system is given in Example 35 in 
Section 7.1.1.

The particularization of Template by the goal

lps{DCRL, [r, m, 5, nm, dec.,proc, comp], Template, [[], 2,1,2, 

will result in the open program below:

Template =  [if{r {X ,Y ), and{m (X),s{X,Y))),
if{r{X , Y), and{nm{X),and{dec{X, HX,TX\,TX2),
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and{and{r{TXuTy\l r{T \ 2, TVi)), 
and{l3 = []. 

and{co7yip{TV2,13J2), 
and{proc{HX, HV), 
and{comp{HY, / 2, / 1), 
and{comp{TYi, A, /0),

>■  =  /0)))))))))]

Therefore, the actual open program is obtained by conversion from the tem­
plate. Q

7.1.3 Representation of Programs and Transformation 
Schemas

A program for relation R is represented «is a term lp{NS, L, Ext, PL), where

• The represented program is an instance of the schema pattern NS;

• L is the list of the name of R and the actual names of the undefined 
relations in NS;

• Ext (stands for extension) is the list of programs for the undefined rela­
tions in NS;

• PL is the list of parameters, which consists, for DC, of:

-  E, a, specific constant existing in every schema pattern for initiating 
the composition;

-  N, the number of arguments of R (currently in the database, it is 
hard-wired to 2);

-  H, the number of heads of the induction parameter of R when de­
composed;

-  T, the number of tails of the induction parameter of R when de­
composed;
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— Ps, the list of numbers denoting the composition places of the heads 
{headi,..., heacln). when composing the result parameter of R (since 
A’ is 2. there is 1 result parameter);

-  Sorts, the list of constants (e.g. list or btree) indicating the types 
of the parameters of R.

Since Ext is a list of programs, where each one is also represented as above, 
the system has the mechanism to deal with nested programs.

Example 37 Program 4 in Chapter 3 can be represented by the term

lp{dcrl\in fix .fla t. f.min. f^olve, f.nonmin, f  .decomp, f.proc. 
f  .compose]. Ext. [[], 2,1,2, [2], [¿tree,/¿si]])

where Ext is the list containing the programs for the undefined relations 

f.m in. f  ̂ olve. f  jnonmin. f  .decomp, f.proc. f  .compose 

also represented using the program representation above. □

A transformation schema is represented by an atom

ts{NTS. NSi. A52, / ,  E. L. ACs. PCs)

where

• .\'TS is the name of the transformation schema;

• \Si and NSi are the names of the program schema patterns that satisfy 
the applicability conditions of the transformation schema;

• /  is either 1, indicating that the input program to the transformation is 
an instance of program schema pattern NSi. or 2, indicating that the 
input program to the transformation is an instance of program schema 
pattern NSi',

• E \s a. specific constant existing in every schema pattern for initiating the 
composition;
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• L \s the list of the actual name of the top-level relation R and the actual 
names of the undefined relations in the A'5i and .V5’2 schema patterns;

• /4Cs is the list of the applicability conditions of the transformation 
schema, e.g. the first applicability condition of DGi in Section 4.2.1 (i.e. 
compose is associative) is represented as a tuple {a, COM P), where con­
stant a indicates associativity, and COMP  is a variable referring to the 
actual name of the compose relation;

• PCs is the list of the optimizability conditions of the transformation 
schema, e.g. in DG\, if the input program is an instance of the DCLR 
schema pattern, the first part of the first optimizability condition of 
DG\ (i.e. compose has the left identity element e) is represented as 
{l,ri,C O M P, E), where 1 indicates that the input program is an in­
stance of the DCLR schema pattern, ri is a constant indicating left 
identity. COM  P i s a  variable referring to the actual name of the compose 
relation, and P  is a variable indicating the special composition constant 
e in the templates.

Exam ple 38 The generalization schema DG\ in Section 4.2.1 is represented 
as a fact;

gs{dgl,dclr, dglr, / ,  E, [P, M, 5, NM, DEC, PROC, COMP], 
[{a,COMP),iH,COMP,E)],
[(1, ri, COMP, E), (I, min, M, R, E ),{l,pe, PROC, COM P), 
{2 ,pe,PROC,COMP)\) f -

□

The transformation schemas are stored as facts in a file called dbase.pl.

7.2 Algorithm of the System

The program schema patterns given in Chapters 3 and 4 and the transformation 
schemeis given in Chapters 4 and 5 are all represented in the system as explained
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in Section 7.1. These program schema patterns and transformation schemas in 
tlie database of the system can be represented using the graph in Figure 7.1 
below.

Figure 7.1. An Undirected Graph Representing the Database of the System

Each node in the graph represents a program schema pattern in the database, 
and each edge represents a transformation schema. Since the transformation 
schemas are applicable in both directions, the graph is undirected.

Given an input program Pi, the prototype system traverses the graph on the 
edges where both the applicability and optimizability conditions are satisfied, 
so as to output all the programs that are ensured to be more efficient than Pi 
by the optimizability conditions of the applicable transformation schemas.

When a program P2 is output, which is an instance of the output program 
schema of one of the transformation schemas where both the applicability and 
optimizability conditions are satisfied, then the program P2 is further input to 
Mixtus, the partial evaluator that is used in the system and explained in the 
introductory section of Chapter 7, for optimization. Then Mixtus outputs the
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an optimized program P3 to the user of the system. Therefore, at one instance, 
the system, also with Mixtus, outputs two programs where the second one is 
the optimized version of the first one. Then, the output program /2 is input 
to the system again to obtain other (possibly more efficient) programs, which 
will be the output programs of the transformation schemas that are applicable 
to T*2· So, what the system does for an input program can be seen as edge 
traversing of the graph in Figure 7.1 from a given start node.

The transform!^ relation, whose program is given with the simple Prolog 
code below, is called by the top-level graph traversing relation in the system 
to find a transformation schema that is applicable and ensuring an efficiency 
gain:

transform{LP-IN, LPjOUT,LS) : —
L P J N  = lp{NSJN, L, Ext, [E, .V. H, T, Ps, Sorts]), 
ts{NST, I, N SJN , NS.OUT, E, L. ACs, PCs), 
memberCheck{LS, NS.OUT), 
satisfied{ACs, Sorts, Ext), 
verified{PCs, L, Sorts, Ext, I),
LP.OUT =  lp{NS.OUT, L, Ext, [E, N, H, T, Ps, 5or<s]).

where LP.IN  is the input program, LP.OUT is the program, which is an in­
stance of the output program schema NS.OUT of the transformation schema 
NST, and LS is the list of the names of the program schema patterns that 
are not processed by the transform  relation yet. NST is selected by the 
call ts{NST, I, NSJN, NS.OUT, E ,L ,A C s,P C s) and it is checked by the 
mtmberCheck relation whether it vfas already found to be applicable resulting 
in a more efficient output program for the input program. If the output pro­
gram schema of the transformation schema has not been processed before, then 
the applicability conditions are checked by the satisfied relation. Finally, the 
optimizability conditions of NST are checked by the verified  relation. The 
satisfied  relation calls PTTP, a theorem prover, to prove the applicability 
conditions. The verified  relation also calls PTTP to prove some of the op­
timizability conditions, e.g., proving E being the left identity of the compose 
relation, and it calls Mixtus to check the optimizability conditions when the
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partial evaluation results are needed. Of course, the intermediate operations, 
which are needed to prepare the inputs for PTTP and Mi.xtus, and to operate 
on the outputs of these subsystems, are also taken care of by the low-level 
relations of the prototype system. For e.xample, I hardwire the PTTP proof to 
search to depth 100 at most, since this number is less than 10 in all the tests 
and PTTP’s default maximum is 1000000, which requires a lot of time if the 
theorem is not provable.

7.3 Evaluation of the System

.As I explained in the previous sections, I used a theorem prover. PTTP, and 
a partial evaluator. Mixtus, to check the applicability and optimizability con­
ditions, and to do the optimizations. Since these subsystems are too generic 
(i.e., they are not written to do only the operations in the system), they require 
nearly 90 percent of the time used by the system. For example, I hardwired 
PTTP proofs to search to depth 100 at most, so it will search up to the 100th 
level if the theorem is not provable, which can really take a lot of time. How­
ever, a more application-specific subsystem would require less time, but this 
would also lower the generality and extendibility of the prototype system. So, 
the time complexity of the system is mainly dominated by the time used in 
the verification of the applicability and optimizability conditions. Since the 
output program of each applicable transformation schema is again input to 
the system, if it is not already processed by the system, in the worst cгıse the 
time used by the system can be given as n * m * T, where n is the number 
of program schema patterns processed, which is currently bounded by 7, and 
m is the number of the selected transformation schemas, which is currently 
bounded by 13, and T is the time required for checking the applicability and 
optimizability conditions.

The time complexity of the system can be improved by extending the system 
such that, for each input program, a dynamic list of the results of the condition 
checks is maintained during the execution, and before calling PTTP or Mixtus 
for checking a condition, the condition check will be looked up from that list. 
This will really improve the time complexity of the system by a constant factor.
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which is not negligible, since currently, in the database of the system, the 
conditions of one of the transformation schemas are equal to. or a superset of, 
or a subset of the conditions of another transformation schema.

The sample run output of the system where the input program is Pro­
gram 12, which is the DGLR in fii.fla t  program, is given in .Appendix B. 
.Actually, when Program 12 is input to the system, first the Ddg transforma­
tion schema is selected. Since the applicability and optimizability conditions 
of Ddg are satisfied, the system stores the DGRL program to be output after 
all the applicable transformation schemas (i.e.. direct edges from DGLR in the 
graph in Figure 7.1) are checked. Next, DG\ is selected. Since the optimiz­
ability conditions are not satisfied. DCLR  will not be output. Finally, for the 
input DGLR program, DG  ̂ will be selected. DCRL will be stored as one of 
the output programs, since both the applicability and optimizability conditions 
of DGi are satisfied. Then, the system outputs DGRL. the optimized version 
of DGRL, DCRL, and the optimized DCRL programs, in this order. The 
DGRL program will be input to the system for finding the possible equivalent 
and optimizable output programs. All the direct edges are checked. Although 
some transformation schemas are applicable, no programs w’ill be output, since 
they have already been output for the input DGLR program. Finally, the 
DCRL program is input to the system. The transformation schemas TG  ̂ and 
TDG3 are applied resulting in the TG and TDGRL programs, since the appli­
cability and the optimizability of these transformation schemas are satisfied. 
Therefore, the system outputs TG, the optimized version of TG, TDGRL, and 
the optimized TDGRL programs, in this order. The TG and TDGLR pro­
grams are further input to the system and some transformation schemcis are 
checked to be applied, but no programs are left that are ensured to be more 
efficient than the input program, and the ones that are ensured to be more 
efficient have already been output. So, the system stops.



Chapter 8

Conclusions

I have shown that logic program transformation can be fully automated by 
using the generalization schemas and duality schemas given in this thesis. The 
applicability conditions of these transformation schemas ensure the equivalence 
of the input and output program schemas, but they do not guarantee to have 
a more efficient output program. The integration of optimizability conditions 
into the transformation schemas provides the verification of the optimizability 
of the output program of an applicable transformation schema.

In this research, I have also validated the transformation schemas by using 
equivalence verification. The correctness proofs of the proposed transformation 

schemas are in [9].

A prototype transformation system was developed with a database of the 
program schema patterns and the transformation schemas given in this thesis.
I have defined a language for representing the programs, program schema pat­
terns, and transformation schemas. For checking the applicability and some of 
the optimizability conditions, the theorem prover PTTP was integrated into 
the system. For verifying the optimizability conditions where the check for 
partial evaluation is done, and for optimization of the output programs of the 
transformation schemas, the partial evaluator Mixtus was integrated into the 

system.
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8.1 Contributions of This Research

The generalization schemas that are presented in this thesis are actually ex­
tensions of Flener and Deville’s generalization schemas [20] by extending the 
program schema and the transformation schema representations, and the eu­
reka discovery step is fully eliminated by the generalization schemas that we 
have in this thesis. Therefore, we achieve generalization of programs beyond 
one tail and prefix composition of the result parameter.

The program schemas, which are proposed in this thesis, are represented in 
first-order, whereas they were represented in second-order in [20]. The trans­
formation schema representation is also extended from 3-tuples to 5-tuples by 
integrating the optimizability conditions.

New generalization schemas, namely simultaneous tupling-and-descending 
generalization schemcis, are pre-compiled in this research. Validation of the 
proposed transformation schemas by equivalence verification [9] is another con­
tribution of this research. The proposed prototype transformation system is 
also an important contribution of this research, which shows that the proposed 
transformation schemas can be used in a practical system.

We can also compare the results of this research w'ith Fuchs et al’s re­
sults [24, 57, .58, 47]. We assume that the schema of the input program is 
known, which is achieved by matching in their work. Our cissumption is rea­
sonable, since our system is developed to be integrated into a schema-baised 
logic program development environment.

We have a different representation for the transformation schemas, which is 
better than their representation in some respects. For instance, in our work, the 
transformation schema selection is based on the applicability and optimizability 
conditions, whereas this process is based on matching and precedence in their 
work, which means they do not use all the semantic knowledge about the 
program.

We now focus on transforming entire programs, but not yet on transforming 
conjunctions inside programs. They could transform also conjunctions inside
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programs. This is one of the important future work directions that I also 
discuss in the ne.xt section.

8.2 Future Work

.Although the integration of optimizability conditions into the transformation 
schemas provides the verification of the optimizability of the output program 
of an applicable transformation schema, these conditions do not always ensure 
improved performance (or comple.xity) of the output program wrt the input 
program. Therefore, the optimization conditions have to be identified to ensure 
the efficiency gain by an applicable transformation schema, as I discussed in 
Chapter 6.

I have only dealt with the declarative semantics of the typed definite pro­
grams in closed frameworks for program transformation. Future work can be 
to e.xtend the program schema patterns for typed normal programs in open 
frameworks. This may also require extensions in the transformation schemas.

Other future work can be to validate the transformation schemas by using 
automated complexity analyzers like Le Charlier’s GAIA [35], or Debray and 
Lin’s CASLOG [15]. With these analyzers, the transformation schemas can 
also be better validated in terms of performance.

There exist also some extensions that have to be done on the system to 
make it work better. As I mentioned in Section 7.1, the representation language 
must be extended to provide flexibility for representing more generic program 
schema patterns, e.g., eliminating the special treatment of e, which is actually 
a second-order variable existing in the current database of the program schema 
patterns and transformation schema representations, and also representing the 
indexed relations, like Bauvir’s second-order representation language [2]. Also 
if we think in terms of performance, the performance of the system can be 
improved by maintaining a dynamic list that keeps track of the results of the 
applicability and optimizability condition checks.

Of course, consideration of other program schemas, and searching for other
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pre-compilable transformation tecliniques are the extensions that can be done 
on this researcli. Pre-compilation of the loop merging strategy seems to be 
the most important one, since the transformation schemas given in this the­
sis focus on transforming entire programs, whereas transforming conjunctions 
inside a program may result in better optimizations of the programs. The 
loop merging strategy can be pre-compiled by extending the definition of the 
transformation schemas into recursively defined transformation schemas. Since 
nested programs were already processed by the prototype system, the trans­
formation schemas can be extended to transform conjunctions inside programs 
with little work on theorv of the transformation schemas.

Therefore, this research is an important step on the way to a complete 
transformation system that can be integrated in a logic program development 
environment.
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READM E File of the Prototype 
Transformation System

The files of the prototype transformation system TRANSYS: 

transys.pl : top-level relations
dbase.pl : database of the program schema patterns and transformation

schemas
dedotify.pl : manipulate the templates of

the program schema patterns during particularization 
prover.pl ■. prove the applicability and post-optimizability conditions
mverify.pl : check the post-optimizability conditions

of the transformation schemas 
hprint.pl : print the output programs of the system

on the current output stream
utilities.pl : low-level relations called by the other programs 
pttp.pl : PTTP
pttpq.pl : PTTP Prolog code for inference counting and timing;
mixtus : the executable file of the partial evaluator Mixtus

For properly running TRANSYS, first write mixtus in the command line, 
which calls first the available Sicstus Prolog interpreter, then load transys.pl.
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Then you can call the top-level relation transys/]. with the input program. 
The calls of sample e.xample runs are in a file called run.exs.pl.



B

Sample Output of the 
Prototype System

Below are some parts of the output for transforming the DGLR in fix-flat 
program:

I ?- transysdpCdglr, [i.flat,minimal »solve »nonminiroal »decompose»process» 
compose]»
[lp(rs»[if(minimal(X)»X=void)]> ,
lp(rs » [if (solve(X »Y) »Y=D )])»
lp(rs »[if(nonminimal(X)» X=bt(_»_»_))])»
lp(rs»[if(decompose(X»E»Tl»T2)»X=bt(Tl»E»T2))])»
lp(rs »[if(process(E»HF), HF*[E])])»
lp(rs»[if(compose(P»Q»R),and(P=[]»Q=R))»if(compose(P»Q»R)»and(P = [HP|TP]» 
and(compose(TP»Q»TR)» R = [HP|TR])))])]»[[]»2»1,2»[2]»[btree»list]])).

PTTP_IS_CHECKIIG.THE_APPLICABILITY_COIDITIOIS.OF.dsdg

Associativity

Left_Identity

Right.Identity

PTTP.AHD_HIXTUS_CHECKIIG_THE.OPTIMIZABILITY.COIDITIOIS_OF.dsdg

Minimality

{consulting for mixtus: /c8grad/haliae/cs599/thesis/GElSYS/goal} 
p(A» B, C)

pKA» B. C).
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·/. pKA,B.C) :-p(A.B.C) 
pKA, B, [AIB]).

PTTP_IS_CHECKIIG.THE_APPLICABILITY.COIDITIOIS_OF_dgl

Associativity

Left_Identity

PTTP_AHD_MIXTUS.CHECKIIG.THE_OPTIMIZABILITY_COIDITIOIS_OF_dgl

{consulting for mixtus: /csgrad/halime/cs599/thesis/GEISYS/goal> 
p(A, B, C)

pKA, B, C).

·/. pl(A,B,C) :-p(A,B,C) 
pKA, B, C)

composel(B» A, C).

·/, composel (A >B,C) .-compose (A, [B] ,C) 
composelCn» A, [A]), 
composel([AIB]» C, D)

composel(B, C> E),
D=[A|E].

PTTP_IS_CHECKIIG.THE_APPLICABILITY_C0IDITI0IS_0F_dg4

Associativity

Left.Identity

Right.Identity

PTTP_AID_HIXTUS.CHECKIIG_THE.0PTIHIZABILITY_C0IDITI0IS.0F.dg4

{consulting for mixtus: /csgrad/halime/cs599/thesis/GEISYS/goal} 
p(A, B, C)

pKA, B, C).

7, pl(A,B,C):-p(A,B,C) 
pKA, B, [AIB]).

OUTPUT_OF.THE_TRAISFORHATIOI.AS.AI.IISTAICE_OF dgrl 

i_flat(A,B):-i.flat.d2(A.B ,[]).

i_flat.d2(A ,B,C) ¡-minimal (A) , solve (A, D), compose (D,C,B) .

i.flat.d2(A,B,C) :-nonminimal(A) ,decompose(A»E,F,G> ,compose(D »C»H) , 
i.flat.d2(G, I ,H),process(E,J) ,compos«(J,I ,K),
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i_flat.d2(F,L,K),B=L. 

minimal(H);-H=void. 

solve(H,I):-■=[]. 

nonminimaKN):-H=bt(0,P,Q). 

decompose(M,R,S,T) :-M=bt(S ,R,T) . 

process(R,U):-U=[R] . 

compose(V,W,X):-V=[],W=X.

compose(V ,W,X):-V=[Y|Z],compose(Z,W,AA),X=[Y|AA].

OPTIMIZED_dgrl_PROGRAH
*̂ ****̂ *̂*************̂ ******̂ *̂ ********̂ *̂̂
{consulting for mixtus; /csgrad/halime/cs599/thesis/GEIiSYS/prog} 
i_flat(A, B)

i_flatl(A, B).

·/. i_flatl(A,B):-i_flat(A,B) 
i_flatl(A, B)

i_flat_d21(A, B).

y, i.flat_d21(A,B) :-i_flat_d2(A,B,[]) 
i_flat_d21(void, []). 
i_flat_d21(bt(A,B,C), D) 

i_flat_d21(C, K), 
i.flat_d22(A, D, B, E) .

7. i_f lat.d22(A ,B,C,D) : -i.f lat.d2(A ,B. [C| D] ) 
i_flat_d22(void, [A|B], A, B). 
i_flat.d22(bt(A,B,C), D, E, F) 

i.flat_d21(C, E, F, G), 
i_flat_d22(A, D. B, G).

y, i.flat_d21(A.B.C,D):-i_flat.d2(A,D.[B|C]) 
i_flat_d21(void, A, B, [A|B]). 
i.flat.d21(bt(A,B,C), D, E, F) 

i.flat_d21(C, D. E, G). 
i.flat.d21(A, B. G. H),
F=H.

OUTPUT.OF.THE.TRAISFORHATIOI.AS.AI.IISTAICE.OF dcrl

i_flat(A,B) :-nininal(A) ,solve(A,B) .

i.flat(A,B) :-nonniinimal(A) ,decoMpo8e(A,C,D,E) ,i.flat(D»F) ,i.flat(E,G) ,
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H=[] ,compose(G,H, I) ,process(C, J) ,compose(J, I ,K), 
compose(F,K,L),B=L.

minimal(M):-H=void.

solve(H,I);-I=[].

nonminimal(H):-M=bt(0,P,Q).

decompose(N»R»S,T):-M=bt(S,R,T).

process(R,U):-U=[R].

compose(V,W,X):-V=[],W=X.

compose(V,W,X) :-V=[Y|Z] .compose(Z,W,AA) ,X=[Y|AA] . 

OPTIMIZED_dcrl_PROGRAH

{consulting for mixtus: /csgrad/halime/cs599/thesis/GEISYS/prog} 
i_flat(A, B)

i_flatl(A, B).

7. i_flatl(A,B) :-i_flat(A.B) 
i.flatl(void, []). 
i_flatl(bt(A.B,C), D) 

i.flatKA, E), 
i_flatl(C, F). 
compose!(F, G) , 
compose2(E, B» G, D) .

7 compose!(A,B):~compose(A»[3 »B) 
compose!( □  , []). 
compose!([AIB], C)

compose!(B, D) ,
C=[A|D].

7, composez (A,B,C, D) :-compose (A, [BIC] ,D) 
composeZCD» A» B, [A|B]). 
composez([AIB], C, D, [A|E]> 

composeZCB, C, D» E).

PTTP_IS.CHECKIIG_THE.APPLICABILITY.COIDITIOIS.OF.dgZ

Associativity

Left.Identity

Right.Identity

PTTP.AID.HIXTUS.CHECKIIG.THE.OPTIHIZABILITY.COIDITIOIS.OF.dgZ
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{consulting for mixtus: /csgrad/haliin«/csS99/thesis/GEISYS/goal} 
p(A, B, C)

pKA, B, C).

% pl(A,B,C):-p(A,B,C) 
pKA, B, C)

composeKB, A, C) .

X composel (A ,B ,C): -compose(A, [B] ,C) 
compose 1 ([] , A, [A]), 
composel([AIB], C, D)

composel(B» C, E),
D=[A|E].

PTTP_IS_CHECKIIG_THE.APPLICABILITY_C0IDITI0IS_0F_tg2

Associativity

Left_Identity

Right_Identity

Exclusive.OR

Minimality

PTTP_AID_HIXTUS.CHECKIIG.THE.0PTIMIZABILITY_C0HDITI0IS.0F_tg2

{consulting for mixtus: /csgrad/halime/cs599/thesis/GEISYS/goal} 
p(A, B, C)

pKA, B, C).

X pl(A,B,C):-p(A,B,C) 
pKA, B, [AlB]).

PTTP.IS.CHECKIIG.THE.APPLICABILITY.C0IDITI0IS_0F.tdg3

Associativity

Left.Identity

Right.Identity

Exclusive.OR

Minimality

PTTP_AID.MIXTUS_CHECKIIG.THE.0PTIMIZABILITT.C0IDITI0IS_0F.tdg3

{consulting for mixtus: /csgrad/halime/cs599/thesis/GEISYS/goal> 
p(A, B. C) :-

pKA, B, C).
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·/. pl(A,B,C) :-p(A,B,C) 
pKA, B, [AlB]).

PTTP_IS_CHECKIIG.THE_APPLICABILITY_C0§DITI0IS_0F_tdg4

Associativity

Left.Identity

Right.Identity

Exclusive_OR

Minimality

PTTP_AIID.MIXTUS.CHECKIIG_THE_0PTIMIZABILITY.C0§DITI0IS.0F_tdg4

{consulting for mixtus; /csgrad/halime/cs599/thesis/GEiSYS/goal> 
p(A, B, C)

pKA, B, C).

*/. pl(A,B,C) :-p(A,B,C) 
pKA, B, C)

composel(B, A, C).

*/, composel (A »B,C> :-compose (A, [B] ,C) 
composel(n, A, [A]), 
composel([AIB], C, D)

composel(B, C, E) »
D=[A|E].

PTTP_IS.CHECKIIG.THE.APPLICABILITY_COIDITIOIS«OF.dsdc

Associativity

Left_Identity

Right.Identity

PTTP.AID_HIXTUS.CHECKIIG.THE_OPTIHIZABILITY_COIDITIOIS_OF.dsdc

Minimality

{consulting for mixtus: /csgrad/halime/cs599/thesis/GEISYS/goal} 
p(A, B, C)

pKA, B, C).

7. pl(A.B.C):-p(A,B,C) 
pKA, B. C)

conposel(B, A, C).

7. composel (A ,B,C) . -compose(A, [B] ,C)
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composel([], A, [A]), 
composel([AIB], C, D)

composel(B, C, E),
D=[A|E].

OUTPUT_OF_THE_TRAMSFORHATIOI_AS_AI.IirSTAICE_OF tg
************************^*****^*****:̂ *****t*****4i*****

i_flat(A,B):-i_flat_t([A] ,B). 

i.flat_t(C,B):-C=[],B=[] .

i_flat_t (C,B) :-C=[A|D] .minimaKA) ,i_flat_t(D,E) ,solve(A,F) ,compose(F,E,B).

i_flat_t (C,B) :-C=[A|D] ,nonminijnal(A), decompose (A ,G I) ,«inimal(H) ,minimal(I), 
i_f lat_t(D,E),process(G,F),compose(F,E,B).

i_flat_t(C,B) :-C=[A|D] ,nonminimal(A) »decompose(A,G , J,K) ,minimal(J),
nonminimal(K) ,i.flat_t([KlD] ,E) »process(G ,F) ,compose(F,E,B).

i_flat_t(C,B) :-C=[A|D] ,nonmininal(A) »decomposeCA,G»L,H) »nonminimal(L)»
minimal(N) »minimal(I) »decomposeCO »G »l»N> ,i_flat_t([L,0|D] ,B).

i_flat_t (C,B) :-C=[A|D] »nonminimal(A) ,decompose(A»G »P,Q> »nonminimal(P), 
nonminimal(Q) »minimal(R) »minimal(S) »decompose(0»G ,R,S)» 
i_flat.t([P,0,Q|D]»B).

minimal(T):-T=void.

solve(T,U):-U=[].

nonminimal(T);-T=bt(V,W,X).

decompose(T,Y,Z,AA):-T=bt(Z,Y,AA).

process(Y »AB):-AB=[Y].

compose (AC» AD» AE) :-AO[] »AD=AE.

compose(AC»AD»AE) :-AC=[AF|AG] »compose(AG »AD»AH) »AE=[AF|AH] .

^̂ ^̂ ^̂ *̂*m*0̂ *****************̂ *************
OPTIMIZED.tg.PROGRAH
*̂ ******************************************

i.flat(A» B)
i_flatl(A» B).

X i.flatl(A.B):-i_flat(A,B) 
i_flatl(A» B)

*i.flat.t.l>(A» B).



n. SAMPLE OUTPUT OF THE PROTOTYPE SYSTEM 150

·/. >i.flat.t. 1 ■ (A.B) :-i.flat.t ([A] ,B)
’ i.f lat.t. 1 ’ (void, []).
’ i.flat.t.1 ’ (bt (void ,A ,void), [A]).
’i.flat.t.1’(bt(void,A,bt(B,C,D)), E)

’i.flat.t.l>(bt(B.C.D), F),
E=[A|F] .

’i.flat.t.l>(bt(bt(A,B,C),D,void), E)
’i.flat.t.bt2’(A, B. C, D, [], E). 

’i.flat.t.l>(bt(bt(A,B,C),D,bt(E,F,C)), H)
’i.flat.t.bt2’(A, B, C, D, E, F, C, [], H).

7. ’i.flat.t .bt 2’(A,B,C,D,[] ,E):-i.flat.t([bt(A,B,C),bt (void, D. void)] ,E)
’i.flat.t.bt2’(void, A, void, B, C, [A,BID]) 

i.flat.t2(C, D).
’i.flat.t.bt2’(void. A, bt(B,C,D), E, F, G)

’i.flat.t.bt2’(B, C, D, E, F, H),
G=[A|H].

’i.flat.t.bt2’(bt(A,B,C), D, void, E, F, G)
’i.flat.t.bt2’(A, B, C, D, [bt(void,E,void)|F] , G).

’i.flat.t.bt2’(bt(A,B,C), D, bt(E,F,G), H, I, J)
’i.flat.t.bt2’(A, B, C, D, [bt(E,F,G),bt(void,H,void) 11] , J).

7. i.flat.t2(A,B);-i.flat.t(A,B) 
i.flat.t2([] , []). 
i.flat.t2([void|A], B) 

i.flat.t2(A, B).
i.flat.t2([bt(void,A,void)IB], [A|C]) 

i.flat.t2(B, C).
i.flat.t2([bt(void,A,bt(B,C,D))|E] , F) 

i.flat.t2([bt(B,C,D)lE], G),
F=[A|G].

i.flat.t2([bt(bt(A,B,C),D,void)|E], F)
i.flat.t2([bt(A,B,C),bt(void,D,void)IE], F). 

i.flat.t2([bt(bt(A,B,C),D,bt(E,F,G))|H], I)
i.flat.t2([bt(A,B,C),bt(void,D,void),bt(E,F,G)|H], I).

7. ’ i.f lat.t. bt2 ’ (A,B,C,D,E,F,G, □,H):-i.flat.t ([bt (A,B,C),bt (void,D, void) , 
7.bt(E,F,G)],H)
’i.flat.t.bt2’(void. A, void, B, C, D, E, F, [A,B|G])

’i.flat.t.bt3’(C, D, E, F, G).
’i.flat.t.bt2’(void. A, bt(B,C,D), E, F, G, H, I, J)

’i.flat.t.bt2’(B, C, D, E, F, G, H, I, K),
J=[A|K].

’i.flat.t.bt2’(bt(A,B,C), D, void, E, F, G, H, I, J)
’i.flat.t.bt2’(A, B, C, D, void, E, void, [bt(F,G,H)11], J).

’i.flat.t.bt2’(bt(A,B,C), D, bt(E,F,G), H, I, J, K, L, H)
’i.flat.t.bt2’(A, B, C, D, E, F, G, [bt(void,H,void),bt(I,J,I) |L] , H) .

7. ’ i.flat.t.bt3 ’ (A ,B,C,D,E) : -i.flat.t ([bt(A ,B ,C) ID] ,E) 
’i.flat.t.bt3’(void, A, void, B, [A|C]) :- 

i.flat.t2(B, C).
’i.flat.t.bt3’(void. A, bt(B,C,D), E, [A|F]) :- 

’I.flat.t.bt3’(B, C, D, E. F).
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.bt3»(bt(A,B,C), D, void, E, F)
.bt3*(A, B. C, Cbt(void,D,void)IE] , F). 

’i_flat_t.bt3’(bt(A,B,C), D, bt(E,F,G), H, I)
»i_flat_t.bt3»(A, B, C, [bt(void,D,void),bt(E,F,G)|H], I).

*t**************************************************̂ *
OUTPUT.OF.THE_TRAISFORMATIOI.AS.AI.IISTAICE_OF tdgrl
*ltt*********************^*****************^**********^*

i_flat(A,B):-i_flat.td2([A],B, [] ). 

i_flat.td2(C,B,D):-C=[],B=D.

i_flat_td2(C,B,D) :-C=[A|E] ,minimal(A) ,i_flat_td2(E,F,D) ,solve(A,G), 
compose(G,F,B).

i_flat_td2(C,B,D) :-C=[A|E] »nonminimal(A),decompose(A,H,I ,J) »minimal(I) , 
minimal(J),i_flat_td2(E,F,D),process(H,G),compose(G ,F,B).

i_flat_td2(C,B,D) :-C=[A|E] »nonminimal(A) ,decompose(A,H,K,L) ,minimal(K), 
nonminimal(L),i_flat_td2([L|E],F,D), 

process(H,G)»compose(G,F,B).

i_flat_td2(C,B,D) :-C=[A|E] ,nonminimal(A) ,decompose(A,H,H,1) »nonminimal(N) , 
minimal(l),minimal(0),decompose(P,H,0,1), 

i_flat_td2([M,P|E],B,D).

i_flat_td2(C,B,D) :-C=[A|E] »nonminiroaKA) ,decompose(A,H,Q,R) »nonminimal(Q), 
nonminimal(R) ,minimal(S) »minimal(T) »decompose(P»H »S »T> » 

i.flat.td2([Q»P»R|E]»B).

minimal(U):-U=void.

solve(U»V):-V=[].

nonminimal(U):-U=bt(W»X,Y).

decompose(U»Z»AA»AB) :-U=bt(AA,Z,AB) .

process(Z»AC):-AC=CZ].

compose (AD »AE»AF) :-AD=[] »AE=AF.

compose(AD»AE»AF) :-AD=[AG|AH] »compose(AH»AE»AD ,AF=[AG|AI] .

OPTIHIZED.tdgrl.PROGRAH

{consulting for mixtus: /csgrad/halime/cs599/thesis/GEISYS/prog} 

i . f l a t ( A ,  B)
i . f la t K A »  B).

I  i . f l a t l ( A ,B ) : - i . f l a t ( A ,B )



B. SAMPLE OUTPUT OF THE PROTOTYPE SYSTEM 152

i.flatKA, B)
»i_flat.td2.1»(A, B).

·/. ’i_flat_td2.1>(A.B):-i.flat_td2([A] ,B.D)
’i_flat_td2.1 *(void, [] ) .
* i_flat_td2.1 *(bt(void,A,void), [A] ).
’i_flat_td2.1»(bt(void,A,bt(B,C,D)), E)

»i.flat.td2.1»(bt(B,C,D), F),
E=[A|F].

»i_flat_td2.1>(bt(bt(A,B,C),D.void), E)
>i_flat_td2.bt2»(A, B, C, D, [], E). 

’i_flat.td2.1>(bt(bt(A,B,C),D,bt(E,F,G)), H)
i_flat_td2([bt(A,B,C),bt(void,D,void),bt(E,F,G)], H).

·/. »i.flat_td2.bt2>(A,B,C,D,[] ,E) :-i_flat_td2([bt(A,B,C) ,bt(void,D,void)] ,E,[]) 
’i_flat_td2 .bt2 ’(void. A, void, B, C, D) 

i_flat_td21(C, E),
D=[A,B|E].

’i.flat.td2.bt2»(void. A, bt(B,C,D), E, F, G)
>i_flat.td2.bt2»(B, C, D, E, F, H),
G=[A|H].

>i_flat_td2.bt2’(bt(A,B,C), D, void, E, F, G)
»i.flat.td2.bt2»(A, B, C, D, [bt(void,E,void)IF], G). 

>i_flat_td2.bt2»(bt(A,B,C), D, bt(E,F,G), H, I, J)
i_flat_td2([bt(A,B,C),bt(void,D,void),bt(E,F,G),bt(void,H,void)|I], J).

·/, i_flat_td21(A,B) :-i.flat_td2(A,B, [] ) 
i_flat_td21( □  , []). 
i_flat_td21([void|A], B)

i_flat.td21(A, C),
B=C.

i_flat_td21([bt(void,A,void)|B], C) 
i.flat.td21(B, D),
C=[A|D].

i_flat.td21([bt(void,A,bt(B,C,D))|E], F) 
i.flat_td21([bt(B,C,D)|E], G),
F=[A|G].

i_flat_td21([bt(bt(A,B.C),D,void)|E], F)
i.flat.td21([bt(A,B,C),bt(void,D,void)|E], F). 

i_flat.td21([bt(bt(A,B,C),D,bt(E,F,G))|H], I)
i_flat.td2(Cbt(A,B,C),bt(void,D,void),bt(E,F,G)|H], I).

PTTP.IS.CHECKIIG.THE_APPLICABILITY.COIDITIOIS_OF.tgl

Associativity

Left.Identity

Right.Identity

Exclusive.OR
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Ninimality

PTTP_AID_HIXTUS.CHECKIIG_THE_OPTIHIZABILITY_COIDITIOIS_OF_tgl

{consulting for mixtus: /csgrad/halime/cs599/thesis/GEISYS/goal> 
p(A, B, C)

pKA. B, C).

7. pKA.B.C) :-p(A,B,C) 
pKA, B. C)

composel(B> A, C).

7, composel(A,B,C) :-compose(A, [B] ,C) 
composel(□, A, [A]), 
composel([AIB], C, D)

composel(B» C, E),
D=[A|E].

PTTP_IS_CHECKIIG_THE.APPLICABILITY.COIDITIOIS.OF_dstdg

Associativity

Left.Identity

Right.Identity

PTTP_AID_MIXTUS_CHECKIIG_THE.OPTIMIZABILITY.COIDITIOIS_OF.dstdg

Minimality

{consulting for mixtus: /csgrad/halime/cs599/thesis/GEISYS/goal} 
p(A, B, C)

pKA, B. C).

7. pl(A,B,C) :-p(A,B,C) 
pKA, B. C)

composel(B, A, C).

7. composel (A,B,C) :-compose(A, [B] ,C) 
composelCD, A, [A]), 
composel( [A IB] , C, D)

composel(B, 0» E),
D=[A|E].

PTTP_IS.CHECKIIG_THE_APPLICABILITY.C0IDITI0IS.0F.tdg2

Associativity

Left.Identity

Right.Identity

Exclusive.O R
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Minimality

PTTP.AID_MIXTUS_CHECKIIG_THE_0PTIHIZABILITY_C0HDm0HS_0F_tdg2

{consulting for mixtus: /csgrad/halime/cs599/thesis/GEISYS/goal> 
p(A, B, C)

pKA, B, C).

·/, pl(A,B,C) :-p(A,B,C) 
pKA, B, C)

composel(B, A, C).

y, composel(A,B,C) ¡-compose(A, [B] ,C) 
composeKC], A, [A]), 
composel([A IB]» C, D)

composel(B, C, E),
D=[A|E].


