
s > ^ w i £ i i v a A — L O i j i

?5iOGilAM TRANSFORMATION

Q i ?

76 63
' ' S ^ > 9

9

C. u /'%»V Vi:: ;rd.,̂ t> : V '

‘*'· A i rr' 1 i — ' ’ <

V- ai ·,
1

SCHEMA-BASED LOGIC
PROGRAM TRANSFORMATION

A THESIS

SUBMITTED TO THE DEPARTMENT OF COMPUTER

ENGINEERING AND INFORMATION SCIENCE

AND THE INSTITUTE OF ENGINEERING AND SCIENCE

OF BILKENT UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTER OF SCIENCE

HcxIi'M«.

bv

Halime Büyûkyıldız

August 1997

q f l

.£89
(S35-

b c :i 8

I certify that I have read this thesis and that in my opinion it is fully adequate,
in scope and in quality, as a thesis for the degree of Master of Science.

Ass't Prof. Pierre Flener (.Advisor)

I certify that I have read this thesis and that in my opinion it is fully adequate,
in scope and in quality, as a thesis for the degree of Master of Science.

iç e k | (^Ass't Prof. Nihan Kesim Ç

I certify that I have read this thesis and that in my opinion it is fully adequate,
in scope and in quality, as a thesis for the degree of Master of Science.

Approved for the Institute of Engineering and Science:

Prof. Mehmet Ba
Director of Institute of Engineering and Science

11

ABSTRACT

SCHEMA-BASED LOGIC PROGRAM TRANSFORMATION

Halime Buyukyildiz
M.S. in Computer Engineering and Information Science

Supervisor: Ass't Prof. Pierre Flener
August 1997

In traditional programming methodology, developing a correct and efficient
program is divided into two phases: in the first phase, called the synthesis
phase, a correct, but maybe inefficient program is constructed, and in the sec­
ond phase, called the transformation phase, the constructed program is trans­
formed into a more efficient equivalent program. If the synthesis phase is guided
by a schema that embodies the algorithm design knowledge abstracting the con­
struction of a particular family of programs, then the transformation phase can
also be done in a schema-guided fcishion using transformation schemas, which
encode the transformation techniques from input program schemas to output
program schemas by defining the conditions that have to be verified to have a
more efficient equivalent program.

Seven program schemas are proposed, which capture sub-families of divide-
and-conquer programs and the programs that are constructed using some gen­
eralization methods. The proposed transformation schemas either automate
transformation strategies, such as accumulator introduction and tupling gen­
eralization, which is a special case of structural generalization, or simulate
and extend a bcisic theorem in functional programming (the first duality law
of the fold operators) for logic programs. A prototype transformation system

is presented that can transform programs, using the proposed transformation
schemcis.

Keywords: logic programming, program development, program transforma­
tion, program schema, transformation schema, generalization, duality laws.

iii

ÖZET

TASLAĞA DAYALI MANTIK PROGRAMI DÖNÜŞTÜRME

Halime Büyûkyıldız
Bilgisayar ve Enformatik Mühendisliği. Yüksek Lisans

Tez Yöneticisi: YYd. Doç. Pierre Flener
.Ağustos 1997

Geleneksel programlama metodolojisinde, doğru ve etkili program geliştirme iki
aşamaya ayrılır: birinci aşamada, sentez aşaması denir, doğru, fakat yeterince
etkili olmayabilen bir program yapılır, ve ikinci aşamada, dönüştürme aşaması
denir, yapılan program daha etkili eşdeğer bir programa dönüştürülür. Eğer
sentez aşaması belirli bir program ailesinin yapımını özetleyebilen algoritma
plan bilgisini içeren program taslağı rehberliğindeyse, dönüştürme aşaması
da giren program taslağından çıkan program taslağına tanımlanmış dönüşüm
tekniklerini daha etkili eşdeğer bir program elde etmeyi sağlayacak gerekli
koşulları tanımlayarak kodlayan dönüşüm taslakları kullanarak yapılabilir.

Böl-ve-fethet ve genelleme metodlarını kullanarak sen tezlenebilecek pro­
gram ailelerini temsil eden yedi program taslağı sunuluyor. Sunulan dönüşüm
taslakları ya içine birikeç sokmak ve yapısal genellemenin özel bir hali olan
çoğullama genellemesi gibi dönüşüm tekniklerinin otomasyonunu sağlar, ya da
fonksiyonel programlamanın temel teoremlerinden birini (fold operatörlerinin
ilk ikilik kuralını) mantıksal programlamaya geliştirerek uygular. Sunulan
dönüşüm taslaklarını kullanarak program dönüştürebilen prototip bir sistem
geliştirilmiştir.

Anahtar Sözcükler: mantıksal programlama, program geliştirme, program
dönüştürme, program taslağı, dönüşüm taslağı, genelleme, ikilik kuralları.

ıv

ACKNOWLEDGMENTS

I would like to express my gratitude to Dr. Pierre Flener, due to his su­
pervision. suggestions, and understanding throughout the development of this
thesis.

1 would like to thank Fergus Henderson. Mark Stickel. and Dan Sahlin. for
their enourmous help in understanding and using Mercury, PTTP. and Mixtus.
I would also like to thank the participants of the LOPSTR'97 workshop (es­
pecially Yves Deville. Andreas Hamfelt, and Xorbert Fuchs) for their valuable
comments and suggestions.

I am also indebted to Ass’t Prof. Nihan Kesim Çiçekli and Ass't Prof. Ilyas
Çiçekli for showing keen interest to the subject matter and accepting to read
and review this thesis.

I would like to thank Gülşen Demiröz. Gökmen Gök, Bilge .Aydın. Bilge
Say, my drama class friends, my other friends all over the world, and my family
for their moral support and friendship.

I would also like to thank Bilkent University, which enabled this research
environment and supported the presentation of this work at LOPSTR’97.

Contents

1 Introduction

2 Basic Concepts

2.1 Terminology... 5

2.1.1 Programs and Specifications.. 5

2.1.2 Correctness and Equivalence C riteria 8

2.1.3 Transformation.. 15

2.1.4 Program Schemeis and Schema Patterns 20

2.1.5 Transformation Schem as.. 22

2.1.6 Problem Generalization .. 25

2.2 Related W o r k .. 29

2.2.1 Strategy-based Transformation Approaches 30

2.2.2 Schema-based Transformation Approaches 39

3 Divide-and-Conquer Logic Program Schemas 47

4 Problem Generalization Schemas 57

VI

4.1 Tupling Generalization... 5S

4.1.1 Tupling Generalization Schemas.. 5S

4.1.2 Comple.xity .\nalysis.. 6S

4.2 Descending Generalization... 72

4.2.1 Descending Generalization Schemas...................................... 73

4.2.2 Complexity .\nalysis.. SI

4.3 Simultaneous Tupling-and-Descending
Generalization... S4

4.3.1 Simultaneous Tupling-and-Descending
Generalization Schemas So

4.3.2 Complexity .\nalysis.. 98

5 Duality Transformation Schemas 104

5.1 Duality S ch em a s.. 106

5.2 Complexity A n a ly s is ..lOS

6 Evaluation of the Transformation Schemas 110

7 Prototype Transformation System 115

7.1 Representation Language... 117

7.1.1 Schema Pattern Language: S y n t a x ..117

7.1.2 Schema Pattern Language: Semantics.................................... 120

7.1.3 Representation of Programs and Transfprmation Schemas 123

7.2 Algorithm of the S ystem ..125

vii

7.3 Evaluation of the Svstem ..128

8 Conclusions 130

8.1 Contributions of This R esearch ... 131

8.2 Future W ork..132

A R EAD M E File of the Prototype Transformation System 141

B Sample Output of the Prototype System 143

vin

List of Figures

1.1 Program Development Methodology.. 1

2.1 An SLDNF-tree of F U {<— p(A^,a)} using I' 38

7.1 An Undirected Graph Representing the Database of the System 126

IX

List of Tables

6.1 Performance Tests R esu lts .. I l l

List of Symbols and Abbreviations

5. : Specification of the relation r

Ir : Input condition of the relation r

Or : Output condition of the relation r
: Program schema (or schema pattern)

c Steadfastness constraints of a program schema
t : Number of tails of the induction parameter

P ■ Position of the head in the composition of the result parameter
e : A special constant existing in program schema patterns

for initializing the composition
LR ; Left-to-Right Composition
RL : Right-to-Left Composition
A : Applicability conditions of a transformation schema

0 : Post-optimizability conditions of a transformation schema
DC : Divide-and-Conquer
TG : Tupling Generalization
DG : Descending Generalization
TDG : Simultaneous Tupling-and-Descending Generalization

XI

Chapter 1

Introduction

In traditional programming methodolog}', developing a correct and efficient
program is divided into two phases: in the first phase, called the synthesis
phase, a correct, but maybe inefficient program is constructed, and in the sec­
ond phaise, called the transformation phase, the constructed program is trans­
formed into a more efficient equivalent program. However, it is better to divide
logic program development into 5 steps like Deville did in [16], as in the figure
below:

Problem

Elaboration

Specification some informal language
t

Construction
t

Transformation(^Lx)gic Program Horn clause logic

Implementation

Transformation(^ Program Prolog, Mercury,...

Figure 1.1. Program Development Methodology

1

The first step in Deville's program development methodology is the elabo­
ration of a specification of the problem given, and this is the step that can't
be (semi-)automated. and the step where most of the mistakes in program de­
velopment occur. The second step is the construction of a logic program (logic
description in [16]) from the specification of the problem. There is a consider­
able amount of w’ork in literature that try to (semi-)automate this process, and
they have shown improvements in this subject (refer to [IS, 23. 22]). The third
step is to derive a program from the logic program. This step deals with the
computational and compiler-specific issues that make programming in a gi\en
language different from programming in logic. There are also some works in
literature that automate this step (e.g. the Mercury compiler or abstract in­
terpretation systems like Le Charlier's G.AI.A [35]). The two transformation
steps in program development have the objective of increasing the efficiency of
programs. Logic program transformation deals with logic, without any proce­
dural aspects, and therefore it will be easier to carry out while preserving the
correctness. However, transforming programs written in a logic programming
language deals with the operational semantics of that language, and must have
a suitable introduction of control. Deville proposed this methodology of pro­
gram development, since it systematizes the logic programming adage "think
logically first, then consider the procedural behaviour” .

In this thesis, I only deal with the declarative semantics of programs in
program transformation. The research results for the logic program transfor­
mation step of the above methodology are presented, where some well known
methods like generalization and the duality laws in functional programming
are used in a schema-guided wa}'.

CHAPTER 1. lyTRODVCTION 2

The objective of this research is to pre-compile the logic program transfor­
mation techniques that are proposed in the literature, after constructing most
general definitions of the notions in the schema-based logic program transfor­
mation. I first examine the work done in the logic program transformation
area so as to properly define the underlying theory of this research. The def­
initions être constructed by extending the proposed ideas and methods in the
schema-based logic program transformation literature. These definitions and
a summary of the related work in logic program transformation are presented

CHAPTER 1. INTRODUCTION

in Chapter 2. Generalization of the divide-and-conquer programs is worked
out in this research. So, the program schemas, which abstract sub-families of
divide-and-conquer programs are ne.xt proposed in Chapter 3.

I propose some generalization schemas that pre-compile the generalization
methods proposed by Deville [16], namely tupling and descending generaliza­
tion. in Chapter 4. One more category is added, namely simultaneous tupling-
and-descending generalization, which can be thought of as a combination of
the other two. The generalization schemas are more general than the gener­
alization schemas that are proposed by Flener and Deville [20]. in the sense
that they deal with the transformation of more generic program families, by
benefiting from the strength of the extended theory.

I propose some more transformation schemas in Chapter 5 that simulate and
extend a basic theorem in functional programming (the first duality law of the
fold operators) to logic programs. These schemas result from the ideas captured
during the pre-compilation of generalization techniques. The similarity of this
work with the work done in functional programming helps us to automate these
transformations easily.

.Although the transformation schemas proposed in this thesis only deal
with the declarative semantics of programs, they are also evaluated by making,
performance tests on the input and output programs of these transformation
schemas in a logic programming language setting. The performance tests of
the input and output programs of these transformation schemas for some se­
lected problems show that the post-optimizability conditions have a key role
in ensuring an efficiency gain. The results of these performance tests and a
detailed discussion are thereof given in Chapter 6.

Using the results of the theoretical part of this research and the evaluation
of the transformation schemcis, a prototype transformation system is developed,
which is the main practical objective of this research. This system is explained
in detail in Chapter 7. It is shown that our transformation schemas can really
be used in a real practical transformation setting.

CHAPTER 1. INTRODUCTION

There exist a lot of future work directions of this research, since the con­
structed theory is new and seems to be powerful enough to pre-compile some
more transformation techniques like loop merging. Some extensions in the the­
ory will also help to extend the prototype system so as to become a complete
transformation system that can be integrated into a schema-beised logic pro­
gram development environment. The contributions of this research and the
future work directions are summarized in Chapter 8.

Chapter 2

Basic Concepts

In this chapter, the most general definitions of the notions that are used
throughout this thesis are presented (Section 2.1), then the related work done
in logic program transformation is summarized (Section 2.2).

2.1 Terminology

I first define the notions; program and specification in Section 2.1.1. Next, the
correctness and equivalence criteria of programs are presented in Section 2.1.2.
The general definitions of the notions in program transformation are given in
Section 2.1.3. Program schemais and the related notions are defined in Sec­
tion 2.1.4. I present the definition of a transformation schema in Section 2.1.5.
Finally, problem generalization methods, which are used in this thesis, are
discussed in Section 2.1.6.

2.1.1 Programs and Specifications

Definition 1 An atom is a first-order formula of the form r(<i,. . . , / „) , where
r is a relation symbol of arity n, and h , . . . , i „ are terms constructed out of
variables, constants, and function symbols.

CHAPTER 2. BASIC COSCEPTS

Exam ple 1 p{[HL\TL].R,[HL\TS]) and g([], 0) are atoms.

Definition 2 A typed definite clause is a formula of the form:

V.Vi : A’x........r (A 'i.. . . . A J ^ 6 [A „ . . . , A'..]

where A’i ,A „ are the sorts (or: types) of A'l....... A'„, respectively, atom
r(A’i ___.A"̂ „) is called the head of the clause, and S[A’iA']̂ is called the
body oi the clause, which is a (possibly empty) conjunction of formulas, which
are either atoms or disjunctions.

Exam ple 2 The formula below is a typed definite clause:

V£ : list(int). V S : nit. sum{L, S) *— L = [HL\TL]. sum{TL.TS).
S is HL + TS

Definition 3 A typed definite logic procedure is a finite set of typed definite
clauses whose heads have the same relation svmbol with the same aritv.

Exam ple 3 Below is a typed definite logic procedure:

VL : list{int),VS : int. sum{L,S) <— L = [].5 = 0
VL : list{int),VS: int. sum{L, S) <— L = [HL\TL], sum{TL., TS).

S is HL + TS

Definition 4 A typed definite logic program is the union of a set of typed
definite procedures.

Exam ple 4 Below is a typed definite logic program:

VA : int.VB : int. int-eqq{A, B) <— A = B
V A :in t,V B :in t,V C :in t. add{A ,B .,C)^ A is B -{■ C

VL : list{int),VE : int. mem{L,E)*— L = [HL\TL]fintjeqq{H L. E)
VL : list {int),VE: int. mem{L,E)*— L = [HL\TL],mem{TL,E)

Throughout the thesis, the word program (respectively, procedure and
clause) is used to mean typed definite logic program (respectively, procedure
and clause), and I drop the quantifications wherever they are either irrelevant
or known in context.

Definition 5 A non-primitive relation that appears in the clause bodies of a
program, but does not appear in any heads of the clauses of that program is
called an undefined (or open) relation, otherwise it is called a defined relation.

Definition 6 .An open program is a program where some of the relations are
undefined. If all the relations in the program are defined, then the program is
called a closed program.

Exam ple 5 The program below is an open program:

sori(I ,5)'< — T = [] , 5 = []
sort{L,S) ^ L = [HL\TL].sort{TL.TS),insert(HL.TS.S)

since the relation insert/S is undefined in the program. If we construct a new
program by taking the set union of the program above and the program below:

insert{E, L. R) /. = [] , /? = [£ ']
insert{E ,L,R) ^ I = [HL\TL],HL > E ,R = [E\L]
insert{E, L ,R) ^ L = [HL\TL], HL < E,

insert{E ,T L ,T R).R = [HL\TR]

then the new program is a closed program, assuming = / 2, > / 2, and < /2 are
primitives.

Definition 7 A clause is said to be recursive iff its head relation also occurs
in an atom of its body. A program is said to be recursive iff one or more of its
clauses is recursive.

CHAPTER 2. BASIC CONCEPTS 7

Definition 8 [41] A program is tail recursive iff it has one and only one
recursive subgoal and its last clause has the form

r(t) ^ L,r{u)

where L is deterministic. When the last clause of a program has this form but
the program has more than one recursive subgoal, the procedure is said to be
semi-iail recursive.

Definition 9 A formal specification of a program for a relation r of arity 2 is
a first-order formula written in the format:

: A". V i·': J.(A") [r(A. V) a (A , Y)]

where -V and y are the sorts (or types) of X and V. respectively. Jr(A') de­
notes the input condition that must be fulfilled before the execution of the
program, and O r(X ,Y) denotes the output condition that will be fulfilled after
the execution.

Exam ple 6 Below is the formal specification of any program for the problem
of sorting an integer list:

VZ- : list{int). V5 : list{int). true =>■ [sort{L,S) ^

permuiation{L. S) A ordered{S)]

where L and S are integer-lists, the input condition of sort(L,S) is true,
and the output condition of sort{L, S) is the conjunction permuiation{L. S) A

ordered{S).

I give the definition of the formal specification of a relation r of arity 2
for pedagogical reasons, the definition can be generalized to relations of arity
n. Also, for some of the problems worked out in this thesis, sometimes I give
informal specifications, which are rewritings of the formal specifications in a
“natural” language.

CHAPTER 2. BASIC CONCEPTS 8

2.1.2 Correctness and Equivalence Criteria

In this section, I give correctness and equivalence criteria by using the notion of
framework [21]. Throughout the section, when I write “a relation r” , it means

“a relation r of arity 2". but these definitions can be generalized for relations
of arity n. In the definitions below. 1 do not consider niutuall}' recursive pro­
grams. However, these definitions can be reconstructed for mutually recursive
programs as well.

D efin ition 10 (Frameworks [21])
A framework ^ is & full first-order logical theory (with identity) with an in­
tended model. An open framework consists of:

a (many-sorted) signature of

- both defined and open sort names:

- function declarations, for declaring both defined and open constant
and function names;

- relation declarations, for declaring both defined and open relation
names;

* a set of first-order axioms each for the (declared) defined and open func­
tion and relation names, the former possibly containing induction schemeis:

* a set of theorems.

Thus, an open framework T is also denoted cis .^(11), where II are the open
names, or parameters, of T . The definition of a closed framework is the same
as the definition of an open framework, except that a closed framework has no
open names. Therefore, a closed framework is just an extreme case of an open
one, namely where II is empty.

The definitions of correctness of a logic program and equivalence of two
programs are given only for programs in closed frameworks.

CHAPTER 2. BASIC COSCEPTS 9

E xam ple 7 (C losed Frameworks) A typical closed framework is (first-order)
Peano arithmetic [21]: *

'T h e most external universzJ quantifiers will be omitted.

CHAPTER 2. BASIC CONCEPTS 10

Framework A 'A T :

SORTS:

FUNCTIONS:

AXIOMS:

Nat·,

0

+ ,*

^ Nat:
Nat —> Nat:
(Nat, Nat) —* Nat:

->0 = 5 (j) A s(a) = s(b) —* a = b:
X + 0 = x:
X + s(y) = s(x + y):
X *0 — 0:
X * s(y) = X + X * y:
H(0) A {Wi.H(i) H(s(i))) ^ 'ix.H(x).

This framework defines the abstract data type N"AT as follows: the sort Nat
of natural numbers is constructed freely from the constructors 0 (-cro) and 5
(successor): the freeness axiom for these constructors is the first axiom; the
functions + (sum) and * (product) on Nat are axiomatized by the next four
axioms (in a primitive recursive manner). Note in particular that the last
axiom in A ’A T can be used for reasoning about properties of + and * that
can’t be derived from the other axioms, e.g. associativity and commutativity.
This illustrates the fact that in a framework we may have more than just an
abstract data type definition.

Definition 11 (Correctness of a Closed Program)

Let P be a closed program for relation r in a closed framework T. We say that
P is (totally) correct wrt its specification Sr iff, for any ground term t oi X such
that Ir(t) holds, the following condition holds: P h r(t,u) iff P" f= Or(t,u), for
every ground term u of y .

If we replace ‘ iff’ by ‘ implies’ in the condition above, then P is said to be
partially correct wrt 5r, and if we replace 'iff’ by ‘ if’ , then P is said to be

complete wrt Sr-

This kind of correctness is not entirely satisfactory, for two reasons. First,
it defines the correctness of P in terms of the procedures for the relations

CHAPTER 2. BASIC CONCEPTS 11

in its clause bodies, rather than in terms of their specifications. Second. P
must be a closed program, even though it might be desirable to discuss the
correctness of P without having to fully implement it. So. the abstraction
achieved through the introduction (and specification) of the relations in its
clause bodies is wasted. This leads us to the notion of steadfastness (also
known as parametric correctness) [21] (also see [16]).

Definition 12 (Steadfastness of an Open Program)
In a closed framework .F, let:

• P be an open program for relation r

• 9i , . . . , 9m he all the undefined relation names appearing in P

• 5 i , . . . , be the specifications of 91, . . . , 9m·

We say that P is steadfast wrt its specification 5r in {5 i___, 5m } iff the (closed)
program P U Ps is correct wrt 5r, where P5 is any closed program such that

• Ps is correct wrt each specification S j {1 < j < m)

• Ps contains no occurrences of the relations defined in P.

Let’s illustrate with an example the retison why we can’t rephrase the last
sentence above as:

W’e say that P is steadfast wrt its specification 5r in { 5 i , . . . , 5m} iff.
for any closed programs P i , . .P m that are correct wrt 5 i , . . . , 5m,
respectively, and that contain the open programs for 91, . . . , 9m, we
have that the (closed) program P U Pj U . . . U Pm is correct wrt Sr-

Exam ple 8 I use propositional logic, since it helps to understand the example
easily. Let the open program P be:

r 4 -p ,9

CHAPTER 2. BASIC CONCEPTS 12

To show the steadfastness of P, suppose we choose the closed program Pp as

p i,s

where u is a primitive, and Pp is correct wrt Sp. Also suppose we choose the
closed program Pg as

where v is a primitive, and P, is correct wrt 5 ,. To say that P is steadfast wrt
Sr in {5p. 5 ,} , the (closed) program PU PpU Pg would have to be correct wrt
Sr- But note that the set union P U PpU Pg has two different programs for
proposition t, which makes the regular set union inapplicable in this context.

□

The steadfastness definition yields the following interesting property, which
is actually a high-level recursive algorithm to check the steadfastness of an open
program.

P roperty 1 In a closed framework P", let:

• P be an open program for relation r of the specification Sr

• p i , . . . ,pt be all the defined relation names appearing in P (including r
thus)

• qi,. . . he a\\ the undefined relation names appearing in P

• 5 i , . . . , 5m be the specifications of ___ q^.

For t > 2, the program P is steadfast wrt Sr in {5 i, . . . ,5 m } iff every P, (1 <
i < t) is steadfast wrt the specification of p, in the set of the specifications of all

CHAPTER 2. BASIC CONCEPTS 13

undefined relations in P,, where P, is a program for /),. such that P = U|=i ^i·
When / = 1. the definition of steadfastness is directly used, since the only
defined relation is the relation r. Thus, t = 1 is the stopping case of this
recursive algorithm.

Example 9 I use propositional logic, since it helps to understand the e.xample
easily. In a closed framework .P. let the open program P be:

p. w

p ^ q

To show the steadfastness of P, suppose we choose the closed program P$ as

q <- t

w

where t and v are primitives in P", and P$ is correct wrt 5«,· and 5,. By
Definition 12, P is steadf«ist wrt Sr in {5u,.5,} iiT the closed program P U P5
is correct wrt St in T. By Definition 11, P U P$ is correct wrt 5r in P" iff the
following condition holds:

{r <— p, IT, p <— 9, 9 <— t, u; i·} l· r iff p· 1= Or

By resolution:

{p i— q.q ^ t,w ^ v} l· p,w iff p" ^ Op /\ Ou,

The formula above can be written as:

({p <— ^.9 ♦ - t} h p iff p· [= Op) A ({u· *— i'} h w iff p· f= Ô v)

The second part of the conjunction is true, since P5 is correct wrt Sw and
t’ } is the program of w in P5.

By Definitions 11 and 12, the first part of the conjunction means that the

program Pp below
p i - q

CHAPTER 2. BASIC CONCEPTS 14

is steadfast wrt Sp in {5 ,} iff the closed program Pp U F, is correct wrt Sp.

q ^ t
where F, is

and it is correct wrt 5,.

If we use the property of steadfcistness, for t = 2. the program F is steadfast
wrt Sr in iff Pp is steadfcist wrt Sp in {-S’,} . After we prove the
steadfastness of Pp. t reduces to 1 and we directly use Definition 12 for proving
the steadfastness of Pr wrt 5r in {5p, 5u·} where P = PpU Pr. The algorithm
summarizes what we did bottom up in this example for proving steadfastness
of F wrt Sr in {5u.. ■?,}·

Thus, Property 1 proposes an efficient algorithm to prove the steadfastness

of an open program. □

For program equivalence, we do not require the two programs to have the
same models, because this would not make much sense in some program trans­
formation settings, where the transformed program features relations that were
not in the initially given program. That is why our program equivalence crite­
rion establishes equivalence wrt the specification of a common relation (usually
the root of their call-hierarchies).

Definition 13 (Equivalence of Two Open Programs)
In a closed framework F", let F and Q be two open programs for a relation r.
We say that F is equivalent to Q wrt the specification Sr iff the following two
conditions hold:

(а) P is steadfast wrt Sr in { 5 i , . . . , 5m}, where 5 i , 5m are the specifica­
tions of Pi__ _ Pm, which are all the undefined relation names appearing

in F

(б) Q is steadfast wrt Sr in { 5 (, .. · ,5 }}, where 5|,.. . . S[are the specifica­
tions of qi__ _ qt, which are all the undefined relation names appearing

in Q.

CHAPTER 2. BASIC CONCEPTS 15

Since the ‘is equivalent to" relation is symmetric, we also say that P and Q are
equivalent wrt Sr-

Sometimes, in program transformation settings, there exist some conditions
that have to be verified related to some parts of the initial and/or transformed
program in order to have a transformed program that is equivalent to the
initially given program wrt the specification of the top-level relation. Hence
the following definition.

Definition 14 (C onditional Equivalence o f Two Open Program s)
In a closed framework IF, let P and Q be two open programs for a relation r.
We say that P is equivalent to Q wrt the specification Sr under conditions C
iff P is equivalent to Q wrt 5r provided that C hold.

2.1.3 Transformation

In this section, I give the definitions of the following concepts: program trans­
formation, transformation techniques, transformation strategies, and transfor­
mation rules.

Definition 15 A program transformation is the replacement of a subset of the
clauses of a program with another clause set such that the resulting program is
equivalent to the initial program wrt the specification of the top-level relation.

Definition 16 A transformation rule is a rule that takes an input program
and produces another program, which is equivalent to the input program wrt
the specification of the top-level relation.

Example 10 An example transformation rule is replacing the clause of a pro­
gram that has the conjunction H — [],append{H,T, R) in its body, with a
clause that is the same as the previous one, except that it has the literal
R = T'm place of that conjunction. □

CHAPTER 2. BASIC CONCEPTS 16

A program transformation process starting from a given initial program Pq

can also be viewed as a sequence of programs Pq....... Fn« called transformation
sequence, such that program Pk+i. with 0 < k < n. is obtained from Ft by
the application of a transformation rule, which may depend on Po....,Pk·
However, the problem is that an efficiency improvement is not ensured by an
undisciplined application of transformation rules one after another. So a better
approach is using a transformation strategy.

D efin ition 17 .A transformation strategy is some form of a meta-rule that
takes an input program and produces another program, which is equivalent
to the first one wrt a given semantics, by applying a suitable sequence of
transformation rules.

E xam ple 11 The loop merging str&tegy transforms the ‘"naive'’ program

.. . , sum{L, 5), length{L, N)___

into the optimized program

p{L,R) *— .. . ,sumLength(L,S^ N),. . .

and generates a new program for sumLength from those for stirn and length.'

□

D efinition 18 A transformation technique improves program efficiency by us­
ing a combination of transformation strategies.

Efficiency improvement is the main objective of transformation techniques.

In the remaining part of this section, I present four basic transformation
rules, namely unfolding, folding, definition introduction, and goal replacement
for definite programs. The definitions below are similar to the definitions in
[41], but they are adapted to our terminology. The reader may refer to [41] for
more transformation rules, the variations of the transformation rules below for
different semantics, and their relevant properties.

CHAPTER 2. BASIC COSCEPTS 17

Definition 19 (Unfolding) Let Pk be the program {E____ Er. C. Er+i,
Es} where E, (1 < i < s) is a clause, and let C be the clause H *— F, Л .6 ',
where A is an atom and F and G are conjunctions of atoms. Suppose that:

(1) { E l , .. ·, D „}, with n > 0, is the subset of all clauses in a program Pj,
with 0 < j < k, such that A is unifiable with htad{D\)....... head{D„),
with most general unifiers 6>i,. . . , 6„, respectively, and

(2) Ci is the clause {H <— F. body{Di),G)0i, for ?’ = 1___,n.

If we unfold C wrt A using D____ E„ in Pj, we derive the clauses C\.......
and w'e get the new program Pk+i = {Ei ...,E r ,C i, — C„, Er+i... . . E^}. A
simpler terminology, like “to unfold C wrt A using Ej“ . can also be used.

Example 12 Let C = p(A') <— q{t{X)),$ {X) be a clause in Pk and let the
definition of q in Pj, with 0 < j < k, consist of the following clauses:

q{a) ^
q{t{b)) ^
q {t{a))^ r{a)

Then, by unfolding C wrt ^(¿(.Y)) using Pj, the following clauses are derived:

p {b)^ 3{b)
p(a) r(a),s(a)

Thus Pk+i is obtained by replacing the subset {C } in Pk by the set of derived
clauses above. □

Definition 20 (Folding) Let Pk be the program (E j , . . . , Er,Ci....... C„, Er+i.
. . . , E i } and let { E i , E „ } be a subset of clauses in a program Pj, w’ith
0 < j < k. Suppose that there e.xists an atom A such that, for / = 0 , . . . , n:

(1) head{Dj) is unifiable with .4 via a most general unifier

(2) Ci is the clause {H <— F. body{Dj). G)0i, where F and G are conjunctions
of atoms, and

CHAPTER 2. BASIC COSCEPTS 18

(3) for any clause D of Pj not in the subset {D i ,----Dn}, head(D) is not
unifiable with ,4.

If we fold using in Pj. we derive the clause H *-
F, A, G. call it C, and the neŵ program is Pk+i = {E i,.. ■ Er,C. Er+i, ...,E s}·

The folding rule is the inverse of the unfolding rule, in the sense that given a
transformation sequence Pq. . . . , Pjt, Pk+\i w'here Pk+\ has been obtained from
Pk by unfolding, there exists a transformation sequence Pq, -----Pk, Pk+i, Pk̂
where (the last occurrence of) Pk has been obtained from Pk+i by folding.

Exam ple 13 The clauses

C, : p (t (X)) ^ 9(X) , r (X)
C2 : p (u (X)) ^ 5(X) , r (X)

can be folded using

A : a (X , i (X)) ^ 9(A')
D2 : a (X ,u (A)) f - s (.Y)

thereby deriving

C : p { Y) ^ a { X , Y) , r (X)

Notice that by unfolding clause C using {Di.Dz}^ w-e get again {C i ,C2}. □

Definition 21 (D efinition Introduction) Let f); be the program {Ei, — E„},
a new program Pk+\ can be obtained by the set union of Pk and Pr where Pr
is a program for relation r such that r does not occur in Po,-----Pk·

Exam ple 14 Let Pk be the program:

p < - q
p *— fail

9 ^

By definition introduction. Pk+i will be the program:

CHAPTER 2. BASIC CONCEPTS 19

P

P

<7
n e w p

<1
fail

iff newp does not occur in Pq, -----P*. □

Definition 22 (Goal R eplacem ent) A replacement law is a pair S = T.
where 5 and T are conjunctions of atoms. Let {A^i,-----A'„} be the set con­
taining the variables both in S and in T (i.e., vars{T) D i!ars(5)), and let us
consider the following two clauses:

C s: p { X t ,X n)^ S
Ct : p (A , , A „) ^ r

where p is any new relation name. We say that S = T is valid wrt the program
Pk iff the program Pk U C$ is equivalent to the program Pk U Ct wrt the
specification of the top-level relation. Let

C : H ^ F ,S ,G

be a clause in Pk such that:

1. 5 = T is a valid replacement law wrt Pk, and

2. vars(H, F, G) H rars(5) = vars{H, F, G) fi var${T) = { A j , A’„ } .

By replacement of S in C using S = T we derive the clause

R : H ^ F T ,G

and we get Pk+i by replacing C by R in Pk-

Exam ple 15 (Goal Replacem ent [41]) Let Pk be the program below:

Cl : sublist(N, X, Y) «— length(X, N), append{V, A, W), append{W, Z, Y)
C2 ' append{L, R, Z) ^ L = [], Z = R
C3 : append{L,R,Z) L = [HL\TLlappend{TL, R,TZ), Z = [HL\TZ]

CHAPTER 2. BASIC COSCEPTS 20

The replacement law

append{\\ A', H"). apptnd(IT. Z, >') = appeud(.\\ L. .U). append{ K. M. Y)

(which expresses a weak form of associativity of append) is valid wrt Pk. Indeed,
if we consider the clauses;

Cs : p{X, V) *— append{ V, A'', IT), append{\\\ Z. i ')
Ct : p{X, Y) *— append{X, L. A/), append(A', M. T)

we have that PkUCs is equivalent to the program PkUCr wrt the specification
of the top-level relation. Thus by goal replacement of

append{V, X, VV'), append(\V, Z. Y)

in Cl, we derive the clause:

C[: sublist{N, X . T) length(X, N), append{X, L, A/), append{K, A/, Y)

□

In [9], I use the transformation rules unfolding and folding for proving the
equivalence of the input and output programs of the transformations explained
in the remaining chapters of this thesis. The definition introduction and goal
replacement rules are used to define the transformation strategies that were
proposed in the literature, as we will see in Section 2.2.1.

2.1.4 Program Schemas and Schema Patterns

I gave the definition of a program in Section 2.1.1. now I will give the definitions
of a program schema and a program schema pattern.

Definition 23 In a closed framework P", a program schema for a relation r is
a pair (T,C), where T is an open program for r, called the template, and C is
a set of specifications of the open relations of T in terms of each other and the
input/output conditions of the closed relations of T. The specifications in C,
called the steadfastness constraints, are such that, in T is steadfast wrt its

specification Sr in C.

CHAPTER 2. BASIC CONCEPTS 21

Exam ple 16 Let GT be the generate_and_test program schema for relation r
of arity 2. then GT contains the template program:

V.V : X.'iY : r(.V. Y) *— generator{X. >'), te*'ier(V')

Note that most programs can be classified as GT programs according to the
template above, if no semantic constraints on the open relations are given.
Informally, the semantics (i.e. meaning) of the template above is that, for a
given input X of type X. the relation generator generates a possible output
Y of type 3̂ until Y satisfies the condition specified by the relation tester. So
the steadfastness constraints of GT are:

T r { X) => [generator(X. Y) O g { X , V')]

0 ,(A ',r) => [tester{Y) ^ a (^ ,V ')]

where Ir{X) is the input condition of the relation r, and Or{X, K) (respectively,
y')) is the output condition of the relation r (respectively, generator).

□

Definition 24 In a closed framework .F, a program P for a relation r is an
instance of program schema 5 = (T, C) for a relation r if it heis the form TUE.
where E is a closed program defining all the open relations in T. such that E
is totally correct wrt each specification in C (i.e., such that P is totally correct
wrt its specification Sr) ·

Exam ple 17 For instance, the closed program

r(A’, V') generator{X,Y').tester{Y)
generatoi'{X,Y) *— perm{X,Y)

tester{Y) <— ordered(Y)

is an instance of the generate-and-test GT schema in the list framework, as­
suming that perm and ordered are primitives. Q

Sometimes, a series of schemcis are quite similar, in the sense that they
only differ in the number of arguments of some relations, or in the number of

CHAPTER 2. BASIC COSCEPTS 22

calls to some relations, etc. For instance, one may want to write a GT schema
for relations having n result arguments. For this purpose, rather than having
a proliferation of similar schemas. I introduce the notions of schema pattern
(compare with [10]) and particularization.

Definition 25 A schema pattern is a schema where term, conjunct, and dis­
junct ellipses are allowed in the template and in the steadfastness constraints.

I do not formally define the ellipsis notation here, assuming that their se­
mantics is quite straightforward. For instance, T.Vi....... TXt is a term ellipsis,
and A{=i r{TXi,TYi) is a conjunct ellipsis.

Exam ple 18 The following is the template of a GT schema pattern, called
GTP:

V.Y : A'.VVj,. . . , K ■ X- r(X , Y i,...,Y n) gentrator\{X, Vj), ie s ie r i(}j),

generato7'n{X. V'„). <esier„(V;)

□

Definition 26 A particularization of a schema pattern is a schema obtained by
eliminating the ellipses, i.e., by binding the (mathematical) variables denoting
their lower and upper bounds to natural numbers.

Exam ple 19 The schema GT is the particularization of GTP for n = 1 (as­
suming that indexes are dropped when ellipses reduce to singletons). q

2.1.5 Transformation Schemas

In Section 2.1.3, I gave the definitions of a program transformation and a
transformation technique. Now, it is time to give the definition of a transfor­

mation schema that is the counterpart of the transformation techniques in the
strategy-based approach.

CHAPTER 2. BASIC COSCEPTS 23

D efinition 27 A transformation schema encoding a transformation technique
is a 5-tuple (5 i , 52, A .O iziO ii), where Si and 2̂ are program schemas (or
schema patterns). .4 is a set of applicability conditions, which ensure the equiv­
alence of the templates of and $2 wrt the specification of the top-level
relation, and O12 (respectively, On) is a set of optiniizability conditions, which
ensure the optimizability of the output program schema (or schema pattern)
S2 (respectively, ^i).

The reader may find the example below too easy and providing not much ef­
ficiency gain as a transformation and little generic as a transformation schema,
but I give this example so that the reader will have an intuitive understanding
of the notion. Many realistic examples of transformation schemas will be found
in the remaining chapters.

E xam ple 20 Let TS he the example transformation schema that is a 5-tuple
(5 i . 52,.4 , 0 i2, 02i) i where Si has the template:

r(A',y·) ^ id{E).Z = [E lcom pi{Z ,X ,Y)

and the steadfeistness constraints of Si are the specifications of the relations r.
id. and compi. Then. S2 has the template:

r (X Y) ^ id{E). Z = [E],cowp2{X, Z,Y)

with a subset of the steadfastness constraints of 5i that are the specifications
of relations r. id. and comp2.

The set .4 of the applicability conditions o{ TS contains the formula:

On{Z,X,Y)^Oc2{X-Z.Y)

where O.-i and Oc2 are the output conditions of compi and comp2·

O12. which is the set of the optimizability conditions of 2̂ in TS. is the set
containing the formula:

2 = [£1 => |0„(2,.V,K) «■ }■ = |£|.V)1

CHAPTER 2. BASIC CONCEPTS 24

and O21. which is the set of the optimizability conditions of S\ in TS. is the
set containing the formula:

Z = [£| => |Ort(.V, Z, >·) « . 1' = 1£|,VJ1

assuming that the two schemais are defined in the list framework. □

Definition 28 \ transformation schema (5 i .52, zl,O12. 021) is correct iff the
templates of program schemas (or schema patterns) 5i and S2 are equivalent
wrt the specification of the top-level relation under the applicability conditions
.4.

In program transformation, for proving the correctness of a transformation
schema (5 i ,52, i4,012, 021), I have to prove the conditional equivalence of Ti
and T2, which are the templates of Si = (Ti.Ci) and S2 = (72, C2). I assume
that the template T, of the input program schema 5,- = (T,, C,) (where / = 1, 2)
is steadfcist wrt the specification of the top-level relation, say 5r. in C,, then
the correctness of the transformation schema is proven by establishing the
steadfastness of the template 7} of the output program schema (or schema
pattern) Sj = {Tj,Cj) (where j = 1,2 and j / /) w'rt Sr in Cj using the
applicability conditions A.

At the program-level, the transformation of a given closed program P for
a relation r into a new closed program Q for r then reduces to:

(1) selection of an applicable transformation schema (5 i ,52, A ,O 12. 021).
where 5i = (7 i,C i) and S2 = (72, 0) such that P is an instance of
Si (i.e., P = TiU E), or an instance of S2 (i.e.. P = T2 U E)\

(2) verification of the applicability of the transformation schema by verifi­
cation of whether E satisfies the conditions A. in the considered closed
framework i.e., whether E t-^ ,4;

(3) verification of the efficiency gain by the transformation schema by verifi­
cation of whether E satisfies the conditions On· or O21, in the considered
closed framework i.e., whether E \~jr O12, or E \~jr O2T,

CHAPTER 2. BASIC CONCEPTS •25

(4) computation oi Q as an instance of 52. or 5i. i.e.. Q = T2 U E, or Q =
TiUE:

(5) optimization of Q.

If schema-guided synthesis of P was performed (e.g.. if P is a-priori known to
be a particularization of 5i). then Q can be obtained automatically, namely Q
will be the corresponding particularization of S2·

2.1.6 Problem Generalization

Not only in mathematics, but also in many fields of computer science, such as
machine learning, theorem proving, and so on, generalization techniques are
used to ease the process of solving a problem. Here generalization is used to
transform a possibly inefficient program into a more efficient one. because the
generalization process may provoke a complexity reduction by loop merging
and because the output program may be (semi-)tail-recursive (which can be
further transformed into an iterative program by an optimizing interpreter).
The problem generalization techniques that are used in this thesis are explained
in detail in [16], and using these techniques for synthesizing and/or transform­
ing a program in a schema-guided fashion was first proposed in [16, 17]. and
then extended in [‘20].

Given a program, the generalization process works as follows: first the
specification of the initial program is generalized, then a recursive program for
the generalized specification is synthesized, and finally a non-recursive program
for the initial problem can be written, since the initial problem is a particular
case of the generalized one. The two generalization approaches used here are:

1. Structural generalization: The intended relation is generalized by gener­

alizing the structure (or: type) of a parameter. If a problem dealing with
a term is generalized to a problem dealing with a list of terms, then this
generalization is called tupling generalization.

2. Computational generalization: The intended relation is generalized so
as to express the general state of a computation in terms of what has

CHAPTER 2. BASIC COSCEPTS 26

been done and what remains to be done. Ascending and descending
generalizations are two particular cases of computational generalization,
where in ascending generalization, information about what has already
been done is also needed, but in descending generalization the information
about what remains to be done is enough.

Definition 29 If output program schema (or schema pattern) of the transfor­
mation schema is obtained by any method of generalization described above,
then the transformation schema is called a generalization schema.

In the remainder of this section. I illustrate the generalization process de­
scribed above on two examples: in the first one. I use tupling generalization,
and in the second one, I use descending generalization.

Exam ple 21 (Tupling G eneralization) Let sortf2 be our initial problem,
and its specification is:

sort{L,S) iff integer-list 5 is the sorted version of integer-list L in ciscending
order.

Let's assume that sortf2 program below is constructed cis the initial program,
which is not very efficient in time and space, although it is better than most
of the sorf/2 programs that can be constructed.

sorf([],[])

sort{[HL\TL],S) partition{TL, HL, TLl,TL2).
sort{TLl,TSl),sort{TL2,TS2)y

appeml{TSl,[HL\TS2],S)

with a correct program for partition!A., which has the specification below:

partition{L, H, T\,T2) iff integer-list Tl has all the elements of integer-list L
that are less than integer H, and integer-list T2 has all the remaining
elements of L that are greater or equal to H.

CHAPTER 2. BASIC CONCEPTS 27

and a correct program for append/3, having the specification:

append{Ll. L2, L'i) iff list £3 is the concatenation of the lists Ll and L2.

Using tupling generalization, by generalizing the parameter L in the specifi­
cation, the sort/2 problem can be generalized to the sort.tupling/2 problem,
which ha5 the specification below:

sortJupling{Ls, S) iff integer-list 5 is the concatenation of the sorted versions
of the integer-lists in list Ls.

The next step in the generalization process is to synthesize a program for
the generalized specification. Keeping the sort/2 program above in mind, the
program for sort.tupling/2 is:

sort.h/p/inp([], []) *—

sort.tupling{[[]\TLs], S) *— sort.tupling{TLs, S)
sort.tupling{[[HL\TL]\TLs]. [HL\TS]) partition{TL, H L,TLl,TL2).

TLl = I).
sort.tupling{[TL2\TLs], TS)

sort.tupling{[[HL]TL]]TLs], S) <— partition(TL, HL,TLl,TL2),
T L l^ U .
sort.tupling{[TLl, [HL]TL2]\T£s]. 5)

also with a correct program for partition/A.

Finally, the non-recursive program for the initial problem is:

sort{L,S) <— sort.tupling{[L],S)

The resulting tupling generalized program is much more efficient than the
initial program, both in time and space, since the call to append is eliminated,
and the generalized program can be made semi-tail recursive, when L is the

input parameter and 5 is the result parameter. □

Exam ple 22 (D escending G eneralization) Our initial problem is reverse/2,
which has the specification below:

CHAPTER 2. BASIC CONCEPTS ■28

revcrs((L, R) iff list R is the reverse of list L.

For the rever$e/2 problem, a “naive” program can be constructed as below:

reyerse([], []) ♦—
rev€rse{[HL\TL], R) *— rex'trst{TL,TR).

HR = [HL],app€nd(TR,HR. R)

with a correct program for append/3, which has the specification as the one
given in Example 21.

The “naive” reverse program given above is not adequate, in the sense
that it is not space efficient, since it generates too much intermediate data
structures, and it will be time inefficient, if we don’t have a linear-time program
for append. Using descending generalization principles, our initial specification
of reversel'2 can be generalized to the specification Sreverae.drsc· namely:

revtrsejde$c{L, R, A) iff list R is the concatenation of list A to the end of the
reverse of list L.

The reader, who may wonder how I achieve this generalization of the initial
specification, can refer to [16] for details. I will explain other methods for
descendingly generalizing a specification in Sections 2.2.2 and 4.2.1.

The next step in the generalization process is to develop a program for
jc? which can be.

ret’erse_desc([], /?, R) <—
reversejdesc{[HL\TL], R, A) *— rtverstjdesc{TL. R,[HL\A])

Finally, the non-recursive program for the initial problem reverse/'l is:

r€vcrse{L, R) <— rcverse.desc{L, R. [])

The resulting descendingly generalized program is much more efficient than
the initial program, both in time and space, since the call to append is elimi­
nated, and the generalized program can be made tail recursive, when L is the
input parameter and R is the result parameter. □

CHAPTER 2. BASIC CONCEPTS 29

2.2 Related Work

The program transformation approach to the development of programs was
first advocated by Burstall and Darlington [7] for functional programs that
were written as sets of recursive equations. Burstall and Darlington divided
the task of developing a correct and efficient program into two subtasks [7]:

1. develop an initial, maybe inefficient program whose correctness can be
easily verified,

2. transform that initial program into a more efficient program.

Their transformation approach is based on the “rules+strategies” approach
(i.e. they proposed transformation techniques that use a combination of some
basic transformation strategies bcised on the transformation rules unfolding
and folding). The extensive use of program transformation is strongly related
to the development of functional and logic languages, since some simple tools,
which will be explained in detail in Sections 2.2.1 and 2.2.2, can be easily used
for program manipulations in these languages.

In this section, I present a summary of what has already been done in the
logic program transformation area. I divided the transformation approaches
into strategy-based approaches and schema-based approaches. However, most
of the researchers in both fields work on program transformation in a given
procedural semantics, which is the one of Prolog in most of the cases. I will
later take a different approach, namely program transformation in declarative
semantics. In Section 2.2.1. I present the strategy-based approaches to logic
program transformation by using the categorization of Pettorossi and Proietti
[41]. So, for a more detailed survey of strategy-based approaches to logic
program transformation, the reader is invited to read [41], and similarly for
transformation approaches in functional programming [42]. In Section 2.2.2.
I present the schema-bcised logic program transformation techniques found in
the literature.

CHAPTER 2. BASIC COSCEPTS 30

2.2.1 Strategy-based Transformation Approaches

Before explaining the techniques that were proposed under the strategy-based
approaches, I will first give the definitions of an unfolding tree, which represents
the process of unfolding a given clause using a given program, and an unfolding
selection rule, which definitions are taken from [41]. Then, I will give the
definitions of some of the transformation strategies that were given in [41. 42].
since they were widely used in the techniques that I will explain.

D efin ition 30 (U nfold ing tree [41]) Let P be a program and let C be a
clause. An unfolding tree for PU {C } is a (finite or infinite) non-empty labeled
tree such that:

(i) the root is labeled by the clause C;

(ii) if M is a node labeled by a clause D, then:

either M has no sons.

or M hcis n(> 1) sons labeled by the clauses D\,...,Dn obtained by
unfolding D wrt an atom of its body using P.

or M has one son labeled by a clause obtained by goal replacement from
D.

D efinition 31 (U nfolding selection rule [41]) .An unfolding selection rule
is a function that, given an unfolding tree and one of its leaves, tells us whether
or not to unfold the clause in that leaf, and. in the affirmative case, tells us
the atom wrt which that clause should be unfolded.

D efin ition 32 (G eneralization Strategy [42]) Given a clause C of the form

H *— , Am̂ B\ — - Bn

we define a new predicate genp by a clause G of the form

genp{X\,. . . ,Xk) GenAi....... GenAr

CHAPTER 2. BASIC CONCEPTS 31

where (Gen.4i-----GenAmW = A i,. . . . Am- for a given substitution 0. and
{,Y i,___-Yfc} is a superset of the variables that are necessary to fold using a
clause whose body is GenAi___ ,GenAm- VVe then fold C using G and we get

H ^ g e n p iX г

VVe finally look for the recursive definition of the predicate genp. A suitable
form of the clause G introduced by the generalization strategy can often be
obtained by matching clause C against one of its descendants, say D. in the
unfolding tree, which is considered during program transformation. In partic­
ular, we will consider the case where:

1. £) is the clause K <— E\.. . . , Em- ___*^r and D has been obtained
from C by applying no transformation rules, e.xcept rearrangement of
goals and deletion of duplicate goals in a clause, which preserve the cor­
rectness in declarative semantics, to B___,5 „ ;

2. for I = 1 , . . . , m, the atom Ei has the same predicate as .4,:

3. for z = 1, . . . , m, the atom Ei is not an instance of .4,:

4. the goal G enA i. . . , Gen Am is the most specific generalization of .4i____ .4^
and E l,. . . , Em'-

5. is the minimum subset of vars{GenAi... ,GenAm) (where
vars(<) denotes the set of variables occurring in term t), which is neces­
sary to fold both C and D using a clause whose body is GenA\....... Gen Am-

The loop absorption strategy, which is formally introduced by Proietti and
Pettorossi [43], can be viewed as a particular case of the generalization strategy,
which can be applied if the conditions 1. 2. 4. and 5 hold in the definition of
the generalization strategy, and for i = 1 , . . . , m, £", is an instance of .4,.

The strategies above were also called auxiliary strategies [41]. since they
can be used by a more general strategy, called the predicate tupling strategy.

Definition 33 (P red ica te Tupling Strategy [42]) This strateg\·, also called
tupling, for short, consists of selecting some atoms, say A\, with n > I,

CHAPTER 2. BASIC CONCEPTS 32

occurring in the body of a clause C. VVe introduce a new predicate neirp
defined bv a clause T of the form:

neurp{Xi....,Xk) -4i,, .4n

where A’l ,V* are the linking variables in C (i.e., the variables occurring in
.4 i,....... 4„, and also in the head and in the remaining atoms in the body of C).
We then look for the recursive definition of the predicate newp by performing
some unfolding, and two more transformation rules (i.e, goal replacement and
clause deletions, which were defined in [41]) followed by some folding steps
using clause T. We finally fold the atoms .4 i,. . . , /4„ in the body of C using
clause T.

Now. I explain some of the work done in the program transformation field
using a strategy-bcised approach. The techniques can be categorized under the
following titles: compiling control, composing programs, changing data repre­
sentation, recursion removal, annotations and memoing, and partial evaluation.

COMPILING CONTROL

Programs that are written with the left-to-right computation rule of Prolog in
mind are often not very efficient, because of the amount of nondeterminism
during the execution of these programs in Prolog.

Compiling control was defined as a different approach to program transfor­
mation [41], in the sense that a given program is transformed into a program
that behaves under the naive evaluator (i.e. the execution mechanism) of Pro­
log as the given program would behave under an enhanced evaluator that uses
a better control strategy.

The filter promotion strategy was proposed with a similar idea in functional
programming by Bird [4], which is a general method to transform an input
program into a more efficient program by exploiting the recursive structure
in the dominant term of an algorithmic expression. In [41], Pettorossi and
Proietti categorized the transformation technique that was proposed by Seki
and Furukawa [49], as a technique similar to compiling control and the filter

CHAPTER 2. BASIC COSCEPTS 33

promotion strategy, for transforming generate-test programs into more efficient
programs. However, I will categorize their method under synthesis of programs.

In [41]. basic techniques of compiling control are characterized as follows:

Given a program Pi, a set Q of queries, and a computation rule
C. compiling control derives a new program P2 by first construct­
ing a suitable unfolding tree, say T, and then applying the loop
absorption strategy.

COMPOSING PR O G R A M S

Compositional programming is a popular style of programming, which con­
sists of decomposing a given goal in smaller and easier subgoals, then writing
programs to solve these subgoals, and finally composing these programs in
an appropriate way [41]. However, the disadvantage of this style is that the
composition of the programs that are written to solve the subgoals results
in inefficient programs, since this composition does not take into account the
interactions that may occur while evaluating these subgoals.

For functional and imperative programs, various transformation methods
have been proposed in the literature, which can be classified under this cat­
egory. e.g., finite differencing [40], deforestation [59], and super-compilation
[56, 51].

Loop merging, in Section 2.1.3, (also called loop fusion by Debray [14]) is
one of the transformation techniques that wais proposed for improving pro­
grams that were written in compositional style. This technique transforms the
program for a relation that is defined as the composition of two independent re­
cursive relations into a program where a new relation is introduced, which does
all the computations done by these two recursive relations. Unnecessary vari­
able elimination is another technique, proposed by Proietti and Pettorossi [44],
for deriving programs without unnecessary variables, and uses the predicate
tupling strategy. A variable A' of a clause C is unnecessary if at least one of
the following two conditions holds [44]:

CHAPTER 2. BASIC CONCEPTS 34

• A’ occurs more than once in the body of C (in this c<ise. A"” is a shared
variable);

• A’ does not occur in the head of C (in this case. A"̂ is an eiisteniial
variable).

The loop merging and the unnecessary variable elimination methods avoid
multiple traversals of data structures as well as the construction of intermediate
data structures.

CH ANGING DATA REPRESENTATION

Choosing the appropriate data representation is an important issue to develop
an efficient program, but this is not an easy process in most of the cases,
and, further, complex data representations complicate the correctness proofs
of programs. Program transformation was proposed as a solution to the prob­
lem above. In logic programming, transformation of programs that use lists
into equivalent programs that use difference-lists is the best-known example of
program transformation by changing data representation.

A difference-list, denoted by L\R. where L and R are lists, can be used
to represent a third list A'̂ , such that the concatenation of A and R is L. .A
single list can be represented by many difference-lists. The main advantage
of difference-lists is that the concatenation of two difference-lists can be per­
formed in constant time, unlike in the simple list representation, where the
concatenation of two lists takes linear time wrt the length of the first list.

Programs that use lists are often easier to write and understand than pro­
grams that use difference-lists. Let us illustrate this on an example for the
reverse relation.

Exam ple 23 The program for reverse that uses simple lists was given in
Example 22. The desired transformation can be achieved by applying the
definition introduction rule, and introducing a new relation reverse.d with the

following initial definition:

reversejd{X, L\R) reverse{X. >’). append{Y\ R, L)

CHAPTER 2. BASIC COSCEPTS 35

Performing some unfolding and goal replacement steps, a new program for
reverse ji can be obtained, and finally, the transformed program, which uses a
difference-list, can be written as:

reverse{L. R) <— reuerse_d(Z-,/Z\[])
rev€rsejd{[], L\L) <—

reverseJ{[HL\TLl L\R) ^ reverse J{TL, L\[HL\R])

□

In [31], Hansson and Tarnlund proposed a semi-automatic technique to
derive a program using difference-lists from a program that uses simple lists,
by introducing a function that maps a simple list to a difference-list. Their
data structure mapping takes away the append procedure, which is the con­
catenation relation defined for simple lists. In [62], Zhang and Grant proposed
an automatic transformation technique towards difference-list manipulation,
which applies under control the transformation rules folding and unfolding,
and some other transformation techniques. Their technique also made use of
semantic information on the relations that are used in the program, e.g.. as­
sociativity. In [39], Marriott and Sendergaard proposed an automatic three
staged transformation technique that transforms list-processing programs into
programs that use difference-lists by first doing data flow analysis of the input
Prolog program to determine whether the transformation is applicable to the
input program. In this first part of the method, data structure transformation
is performed by converting the append calls into v'ariations of append. Then,
the most efficient version of append in that case is chosen for the procedural
semantics preserving concatenation of difference-lists. Finally, the non-logical
calls added during the previous stages are removed.

The new relation, which has to be introduced in all the methods {reversejd
in our e.xample), can also be viewed as the invention of an accumulator vari­
able in the accumulation strategy, which was first introduced in [4] for trans­

forming functional programs. Simply put, the accumulation strategy achieves
the generalization of the initial problem by the inclusion of an extra param­
eter, which is called accumulator. Indeed, in Example 23, the new relation
reversejd(.X., L\R) can be written as reverse.acc{X, T, R), where R is the

CHAPTER 2. BASIC COSCEPTS 36

accumulator parameter. The reader may also notice that descending general­
ization also comes to the same conclusion with its different underlying idea.
Also note that the accumulator strategy· and descending generalization provide
more than a conversion to difference-list representation, since any difference
structure can be represented by these methods. I will further discuss this in
Sections 2.2.2 and 4.2.

RECURSION REMOVAL

Although recursion is the main control structure for declarative programs, the
extensive use of recursive relations may lead to programs that are inefficient in
time and space. In logic programming, recursion removal means transforming
a recursive program into a tail recursive program.

In [13], Debray proposed a transformation technique to transform an almost-
tail recursive program into a tail recursive one. He defined an almost-tail re­
cursive clause as a recursive clause where the atoms following the last recursive
call in the body involve only primitive computations. So, a program is said
to be almost-tail recursive iff all its recursive clauses are either tail recursive
or almost-tail recursive, and there has to be at least one almost-tail recursive
clause in that program. His technique introduces an auxiliary relation, like the
definition introduction in transformation towards difference-lists, in the first
stage. Then, the most efficient recursive program for the new relation is ob­
tained by using the unfolding/folding transformation rules. Finally, his method
converts the new program to a tail recursive version, if it was not already, by
using the syntactic structure of the recursive calls, and the semantic properties
of the primitive operations, which are called lastly in the recursive clauses, e.g..
associativity, commutativity, and so on.

ANNOTATIONS and MEMOING

In the literature, the transformation techniques that make use of the extra-
logical features of logic languages, like cuts, asserts, and so on, are also studied
widely. These techniques are called program annotations, which was first used
to define similar techniques in functional programming. Prolog program trans­

formation techniques that are based on the usage of the extra-logical predicates

CHAPTER 2. BASIC CONCEPTS 37

of Prolog, the computation, and the search rule of Prolog are explained in detail
by Deville [16].

A typical technique, which was given in [16, 41]. transforms a given Prolog
program into an efficient annotated program by adding the cut operator, which
is denoted by Let us illustrate this on an example.

Exam ple 24 Let the input Prolog program be as follows:

r(X)<- A. Cl

r(A ^)^ not{A),C2

where Ci and C2 are conjunctions of atoms, A is an atom, and not(A) denotes
the negation of the atom A. The program above can be transformed (if .4 has
no side-effects) into

r{X)
r{X)

A ,!, Cl
C2

The output program is more efficient than the initial program, since it behaves
like an if-then-else statement. q

Memoization is another technique that can be classified under program
annotations, where the results of the previous transformations are stored in a
table for further use.

PARTIAL EVALUATION

Partial evaluation [33] (also called partial deduction in the case of logic pro­
gramming) is a program transformation technique that takes as input a pro­
gram and a query, and produces an output program optimized for all instances
of that query. For a detailed explanation and further references, the reader can
refer to [41]. I will illustrate partial evaluation using the example which was

given in [41].

Exam ple 25 Let the program P be:

CHAPTER 2. BASIC CONCEPTS 38

P([].!■)

9(7’,} ·)
9 (r ,} ·)

9(7’. }·)
Y = b
PiT.Y)

and let the query Q be <— p(X,a). If we use the unfolding strategy i' [41],
which performs unfolding steps starting from the query <— p{X.a) until each
leaf of the SLDNF-tree is either a success or a failure or has predicate p, then,
finally, the SLDNF-tree in Figure 2.1 below will be obtained.

^ p(X, a)

□
(X/U)

a=b
failure (X/tHIT])

Figure 2.1. An SLDNF-tree of P U {<— p(A', a)} using U

After collecting the goals and and the substitutions corresponding to the leaves
of that tree, the output program of the partial evaluation of the program P
and the query is cts follows:

P([],a)
P([7^|7'],a) P(T,a)

The final program does not contain the clauses for q, since p does not depend
on q in the output program. □

There e.xist (semi-)automatic partial evaluators that use the idea of partial
evaluation to transform programs into more efficient programs for the case
where some information about the input parameters of the program is a-priori

CHAPTER 2. BASIC CONCEPTS 39

known, e.g.. Mixtus [48] (for a summary of Mixtus and its integration details
into another transformation system, refer to Chapter 7).

2.2.2 Schema-based Transformation Approaches

Logic program schemas have proven useful in various fields of logic program­
ming: teaching logic programming to novices [25], synthesizing logic pro­
grams [52, 17, 19, 22], and also transforming logic programs [20, 24. 57. 58. 27].
The basic ideas for using schema,s for synthesizing and transforming programs
were introduced first for functional programs, e.g., the transformation schemas
for improving recursive functions [32].

The strategy-based approaches to logic program transformation, which were
explained in Section 2.2.1, are actually sequences of transformation rules that
are not predefined. A strategy thus needs a global plan for the application of
transformation rules, since at each point a check must be made whether the
application of a possible transformation rule will result in the most efficient
program at the end. The schema-based approaches to program transforma­
tion, on the other hand, consist of a database of predefined transformations,
which are called transformation schemas. There exist different definitions for
the notion of transformation schema [57, 27]. However, our definition of a
transformation schema in Section 2.1.5 is the most general one, in the sense
that it is possible to represent all the transformation schemas in the literature
up to now by our definition.

Most of the transformation schemas that I am going to explain are repre­
sented cis higher-order logic programs. So, the selection of the applicable trans­
formation, which is the first step of the transformation at the program-level,
becomes the most time-consuming step, because of the higher-order matching
that has to be performed.

Since Gegg-Harrison did not give a unified definition for transformation
schemas in [27], and represented the transformation schemas either as a triple
(an input program, an output program, and the conditions, which have to
be satisfied for achieving that transformation), or as a quadruple (two input

CHAPTER 2. BASIC CONCEPTS 40

programs, one output program, and applicability conditions if they exist). I
will not repeat his definitions here. However, it is better to examine the def­
inition of the transformation schema that was first proposed by Fuchs and
Fromherz [24], and Wcis then extended by V'asconcelos and Fuchs [57. 58] by
also augmenting the program schema representation, since their representa­
tion is more formal and easy to examine, and also because Gegg-Harrison's
work can be represented using their transformation schema definition. Below
is their definition of transformation schemas (which they called schema-based
transformation) [57]:

A transformation schema J is a quadruple of the form

(< Gl, . . . , Gn Si, . . . , Sn H\, . . . , Hm >,< T\,. . . , T,n >)

where < G\,...,Gn > and < H\,. . . , Hm > are conjunctions of
subgoals, and < 5 i , . . . , 5 „ > and < Ty, — Tm > are input and
output program schemas respectively.

The applicability conditions of their transformation schemas are either implic­
itly checked, or attached to the program schema representations, since they did
not have a fifth component for them in their transformation schemas. If n = 1
and 77? = 1 in the definition above, which means that an individual procedure
is transformed into another one, this can be represented in our transformation
schema definition by taking the input program schema as {C i} U and the
output program schema as {C2] UTi, where Ci is the clause r(.\’i ___,A’;t) *—
G i(A 'i___ ,AT), and C2 is the clause r,(.Y i,. . . , ,V;) <— //i(A ''i.......... V/). where
r, is the new relation, which is introduced by the transformation, and k and
/ are respectively indexes indicating the number of arguments of the relations
r and r<. For the cases where t? > 1 and t?? > 1. since we allow nested pro­
grams (where the relations are defined cis an instance of a program schema in
the extension of these programs), the transformation schema above also can
be represented in our notation, where the input program has as the template
the single clause r(.Y i,. . . , A'jt) <- G 'i(A 'i,. . . , AT),. . . ,G„(.\T,-----AT) and the
extension { 5 ? , . . . , 5n}. and the output program hcis as the template the single

clause r<(.Yi, — Xi) <— H i{X i,... ,X i) , . . . , Hm{Xi, ■ ■ ■ ,Xi) and the exten­
sion {T i , . ..,Tm}· This will cause us to extend the definition of schema-based

CHAPTER 2. BASIC COSCEPTS 41

transformations to capture recursive schema-based transformations.

In [57], Vcisconcelos and Fuchs categorized the work done in the schema-
based logic program transformation field into three categories, depending on
the integration of the transformation steps in program construction [5Sj:

(1) efficiency issues are considered during the program construction using
the programming techniques that are standard logic programming con­
structs, and guarantee a good computational behavior of the constructed
programs. For instance, Prolog programming techniques are extensively
studied in the literature (e.g., [53]);

(2) efficiency issues are considered after ihe program is constructed, by trans­
forming the code of the program (i.e., the second transformation step in
Deville's logic program development methodology);

(3) efficiency issues are considered during the synthesis of a program when­
ever possible, such that a program is synthesized using a program tech­
nique, and the information, which is gained during the synthesis of the
logic program, will be used in transforming the logic program before trans­
lating it into a program, which is written in a given language. Actually,
this category was born as a result of Deville’s methodology in schema-
based logic program development (e.g., [19, 1, 20]).

I do not give examples of the work done under the first category, since these
techniques fully meld the transformation step in the construction of programs.
The transformation schemais that are proposed in this thesis fit into the third
category, since this work is actually an extension of the ideas proposed in [20,
1]. Most of the transformation schemas that will be explained in this section

are examples of the second category. So, if I do not indicate under which
category the work can be classified, then this means that the work is under
the second category. Otherwise, 1 will explicitly indicate to which category the
work belongs.

I will categorize schema-based approaches using the categorization made
in Section 2.2.1 for strategy-biised approaches. However, nearly all the papers

CHAPTER 2. BASIC CONCEPTS 42

in the schema-beised logic program transformation literature can be classified
under two categories out of the six categories in Section 2.2.1. namely recur­
sion removal and composing programs. There exist some exceptions, e.g.. the
transformation schemas proposed by Seki and Furukawa [49] for reducing the
amount of nondeterminism of generate-test programs, were classified under
the category compiling control in Section 2.2.1. .As I indicated before, I will
categorize their work as a method for synthesizing a program using program
schemas.

RECURSION REM OVAL

In [5], Brough and Hogger proposed two transformation schemas, where the
second one further improves the output program of the first one. if the applica­
bility conditions are satisfied. The first transformation schema transforms an
input program, which has to be a member of a subclass of recursive programs
for relations of arity 2, into an output program, which is also recursive and has
a time complexity similar to the input program, by checking the applicability
conditions, which are the associativity and the closeness property of the com­
putation relation, which is the last call in the body of the recursive clause of
the input program. For instance, the almost-tail recursive programs, defined
by Debray [1.3], are a subset of the input programs that can be transformed
by this transformation schema. The second transformation schema takes as an
input program the output program of the transformation schema mentioned
above, and transforms it into a tail recursive program if the applicability condi­
tions, namely the right-identity and functionality properties of the computation
relation, are satisfied by the input program.

In [6], the same authors proposed two more transformation schemas, where
the second one is a more generic version of the first one, in the sense that the in­
put program family that can be transformed by the first transformation schema
is a sub-family of the input program family that can be transformed by the
second transformation schema. These schemas were constructed by investigat­
ing the analogy between grammars and logic programs, where they assumed
the logic programs were fully declarative (i.e., their transformation schemas
can be classified under the third category according to Vasconcelos and Fuchs'

CHAPTER 2. BASIC CONCEPTS 43

categorization). The first transformation schema, namely forward-simulation
transformation, is the analogue of one of the important rules for grammars,
namely the Grtibach-Foster transformation, which takes <is an input a left-
recursixe grammar and produces as an output a right-recursive grammar. The
normalized template of the input logic program schema analogue of the left-
recursive grammar in the forward-simulation transformation can be represented
in our notation as:

r (X) ^ d{X)
r { X) ^ r(>"),c(.Y,}")

Then, the template of the output program schema analogue of the right-
recursive grammar is:

r [T) ^ d{X),s{X,T)
s(T.T) ^
s { Y . T) ^ c{Z,y) , s {X,T)

This transformation provides left-recursive elimination (i.e., provides tail re­
cursion by introducing an accumulator parameter). The second transformation
schema wcis constructed by also using the analogy above for a class of programs
that are larger than the input program family of the forward-simulation trans­
formation.

In [27], Gegg-Harrison proposed two transformation schemas for transform­
ing single recursive programs into tail recursive programs. The first transfor­
mation schema is the counterpart of the accumulation strategy in the strategy-
based approaches. The applicability condition of the transformation schema is
defined as the associativity of the computation relation in the input schema,
which computes the final version of the result parameter. The second transfor­
mation schema was proposed to transform a single recursive program, which
he called a. forward-processing program (i.e., a program that processes its input
list from the head and one of the outputs, which is a number, from its actual
value down to 0). into another .single recursive program, where the number
argument is processed from 0 up to its actual value.

CHAPTER 2. BASIC COSCEPTS 44

In [24], Fuchs and Fromherz proposed a transformation schema that simu­
lates the accumulation strategy for transforming recursive list-processing pro­
grams into tail recursive list-processing programs. In [58]. Vasconcelos and
Fuchs proposed an e.xtension of the transformation schema that was introduced
in [24]. The applicability conditions of the transformation schemas above con­
sist of the needed declarative properties of the relations, and also the properties
related to the operational semantics of Prolog.

In [20]. Flener and Deville proposed two transformation schemas that au­
tomate the tripling generalization and the descending generalization, which are
explained in Section 2.1.6. So, they called these transformation schemas gener­
alization schemas. The tupling generalization schema can transform an input
program, which is an instance of a program schema that abstracts a subclass
of recursive programs, into an output tail recursive program iff some of the
open relations of the input template satisfy some properties, which are the
applicability conditions, e.g., associativity of the relation that computes the

result parameter. The descending generalization schema transforms a single
recursiv'e program into a tail recursive program iff the applicability conditions
of the generalization schema are satisfied. They also indicated the analogy
between the descending generalization schema and the accumulation strategy-
in strategy-based approaches. So. these generalization schemas mechanize the
generalization of a restricted sub-family of recursive programs, where this gen­
eralization process was thought to be necessarily under human control before
Flener and Deville's work. The reason is mainly that the generalization pro­
cess introduces a new relation, which defines the generalized problem, and this
definition introduction step (i.e., the eureka discovery step) needs human in­
teraction. Flener and Deville showed that this step can be eliminated by using
the transformation schemas proposed for a restricted sub-family of programs.

Using the ideas in [20], Batu pre-compiled some more generalization tech­
niques for different families of programs. These generalization schemas can be
found in [1]. The generalization schemas that will be presented in this thesis are
actually extensions of Flener and Deville’s, and Batu’s generalization schemas
by extending the program schema and the transformation schema representa­
tions, and the eureka discovery step is fully eliminated by the generalization

CHAPTER 2. BASIC CONCEPTS 45

schemas that we have in this thesis.

Note that the transformation schemas that are counterparts of tlie ac­
cumulation strategy can also be classified as ‘changing data representation',
since these transformations represent the transformations towards difference-
structures implicitly. The descending generalization of the relation reverse,
which is given in Example 22, can be achieved by the transformation schemas
that simulate the accumulation strategy, since reverse is a list-processing sin­
gle recursive program with append as the composition relation, which satisfies
the applicability conditions of these transformation schemas.

COM POSING PROGRAMS

In [27], Gegg-Harrison proposed a set of transformation schemas that can trans­
form a program that is written in a compositional style into a more efficient
program by merging the logic programs written for the subgoals, which are
instances of the list-processing recursive program schemas, and they have com­
mon arguments.

In [58], Vasconcelos and Fuchs presented two transformation schemas in the
appendix that were also pre-compiled in their transformation system, where
the second one is more generic than the first one, and both are counterparts of
the loop merging in the strategy-based approaches. The first schema can merge
two programs manipulating the same single recursive data-structure, whereas
the second one can merge two data-structure manipulating programs, even if
these programs have different possibilities of recursions.

The loop merging example, namely Example 11, can be achieved by using
the transformation schemas in [58]. I w’ill not illustrate the schemas above by
an example, since their schema representations have to be explained in detail.

Later, in [47], Richardson and Fuchs proposed a methodology for develop­
ment of provably correct program transformation schemas, by abstracting the
program transformation operations to transformation operations on program
schemas. They have defined abstract unfold operation on program schemas to
mirror the concrete unfold operations on programs. They also indicate a way

CHAPTER 2. BASIC CONCEPTS 46

to define the fold operation on program schemas. Unfortunately, much has to
be done on this work to be useful, e.g., correctness proofs of these operations.

Chapter 3

Divide-and-Conquer Logic
Program Schemas

The divide-and-conquer methodology is one of the most effective program con­
struction methodologies, since it is applicable to a large variety of problems,
and the programs that are constructed by this methodology are easy to under­
stand. The divide-and-conquer methodology soWes a problem in three steps: [11]

i. divide a problem into sub-problems, unless it can be trivially solved;

ii. conquer the sub-problems by solving them recursively;

iii. combine the solutions to the sub-problems into a solution to the initial
problem.

If a (sub)problem can be solved trivially (without dividing any more and re­
cursion), it is called a minimal case, otherwise it is called a non-minimal case.

The program schema patterns given in this chapter abstract sub-families of
divide-and-conquer (DC) programs. They are restricted to binary predicates
with .Y as the induction parameter and Y as the result parameter, to reflect
the program schema patterns that can be represented by the prototype trans­
formation system explained in Chapter 7. Another restriction in the schema
patterns is that when A' is non-minimal. then A" is decomposed into one head

47

CHAPTER 3. DIVIDE-AND-COSQrER LOGIC PROGRAM SCHEMAS 48

HX and t tails T’.Yi,. . . , TXt. so that V is composed from one head HY (which
is the result of processing HX) and t tails T)\......TV, (which are the results
of recursively calling the predicate with TXi TXt. respectively) by p-fix
composition (i.e. Y is composed by putting HY between TYp-i and TYp).

These program schema patterns are called DCLR and DCRL (the reason
why I call them DCLR and DCRL will be explained after I give the schema
patterns). Template 1 (respectively, Template 2) is the template of the DCLR
schema pattern (respectively, the DCRL schema pattern).

Logic Program Template 1

r(.Y ,F) ^

minimal{X).

solve{X, Y)

r { X , Y) ^

nonMinimal{X).

decompose{X. HX. T X i , . . T.Xt),

r{TX ,,TY ,)....... r{TX„TY,).

Lq = e,

compose{Io, TY\, Li)------ compose{Ip-2, TYp-i, /p_i),

process{HX. HY). compost[Lp-\, HY, Ip).

compose{Ip, TYp, Ip+i),. . . , compose{It, TYt, 7<+i),

1" = li<+i

Logic Program Template 2

r (A ',r) e -

CHAPTER 3. DIVIDE-AND-CONQUER LOGIC PROGRAM SCHEMAS 49

rninimal(X).

solve(X, Y)

г(Л-.У')

notiMi nimal{X).

d(compo$e{X, HX, T X i , . . TXt).

r (TX^.TVil r (TX, ,TY) .

It+i — c.

compose{TYt. It+i.It), · ■ ■ ,compose{TYp, Ip+i, Ip).

process{HX. HY). compose{HY, Ip. Ip-i),

compose{TYp-i, Ip-i, Ip-2), · · ·, compose{TY\. Ii, / 0) ,

Y = /0

The steadfastness constraints of these schema patterns (i.e., the specifi­
cations of the open relations in these templates) are the same, since these
templates have the same open relations, and these constraints are shown in
[21]. For example, the specifications of solve and decompose are:

VA' : A'. VV : >\ J,(A) A Om{X) =» [solve{X, Y) ^ Or(X, V)

VA, T A i , . . . , Г А , : A . У Я А : ПЛ’. 0 „ m (A) =>

[decompose{X, HX, TX\, . . . , TXt) ^

(t
Dec{X, HX, TXx ,TXt)A Д ^r(TA.) A Д Г A, X A]

1=1 1=1

where I t is the input condition of the top level relation r. Or (respectively. От
and Опт) is the output condition of г (respectively, minimal and nonMinimal),
and -< is a well-founded order over the sort of the induction parameter Â .

CHAPTER 3. DIVIDE-AND-COSQVER LOGIC PROGRAM SCHEMAS •50

Now, I explain the underlying idea why we have two different schema pat­
terns for DC, and why we call them DCLR and DCRL. If we denote the
functional version of the compose predicate with -r. then the composition of V’
in template DCLR by kft-to-right {LR) composition ordering can be written
as

= ((((((e ® TY\) 0 . . .) e n ; _ i) 0 HY) 0 r> ;) 0 . . .) 0 n ; (3.1)

The composition of Y in DCRL by right-to-left (RL) composition ordering can
be written as

r = r r , 0 (. . . 0 (n ;_ x 0 (HY 0 (rVp 0 (. . . 0 (TY 0 e)))))) (.3.2)

Each example program in this chapter is an instance of a particularization
of the schema pattern that it belongs to, namely for i = 2 and p varying
between 1 and 3, for prefix, infix, and postfix composition, respectively.

Three problems (to give a better understanding of p-fix composition) are
given for traversing binary trees. In all the problems, the constant void is
used to represent the empty binary tree, and the compound term bt{L,E,R)
is used to represent a binary tree of root E, left subtree T, and right subtree
R. Because of properties of compose, we can construct two programs, which
are instances of the DC schema patterns above, for each problem. For these
problems, equations 3.1 and 3.2 can be further simplified resulting in an equal
composition of the result parameter as:

Y = r n © . . . 0 n ; _ i 0 HY 0 n ; 0 . . . 0

Exam ple 26 For the prefix traversal of a binary tree, we have the specification
below:

prefix./lat{B, F) iff list F is the prefix representation of binary tree B.

where prefix representation means the list representation of the prefix traversal
of the tree.

CHAPTER 3. DIVIDE-ASD-COSQUER LOGIC PROGRAM SCHEMAS 51

Program 1 below is a program for the prefix.flatf'l problem, and it is an
instance of the DCLR schema pattern.

prefix.flat{B, F) *—

В = void,

f = []

preftT.flat(B, f') *-

B = bt{.,

B = bt{L,E,R),

prefix.flat{L, FL),pre fix.flat{R . FR),

/o = [],

HF = [E],append{Io,HFJi),

append{Ii, FL, I2),append{l2, FR. / 3),

F = / 3

Logic Program 1

Since Program 1 is an instance of the DCLR schema pattern for t = 2 and
p = 1 (i.e. prefix composition), the calls

compose{Io. r V i, / 1),.. . ,compose(Ip-2> TYp-i, Ip-\)

in the non-minimal case reduce to the empty conjunction (i.e. true), during
particularization.

Program 2 below is another program for the prefix .flat/2 problem, and it
is an instance of the DCRL schema pattern.

CHAPTER 3. DIVIDE-AND-COSQVER LOGIC PROGRAM SCHEMAS 52

prefix .flat(B . F) <—

B = void,

F = []

prefix .fla i(B . F) «—

B = bt{.,...),

B = bt{L, E , R),

prefix.fla t{ L, FL),pre f i x .fla t{R, FR).

/3 = [],

append{FR . /3, /2), append{FL , /2, /1),

HF = [E].append(HF . h , /0),

F = /o

Logic Program 2

Similarly, for Program 2, which is an instance of the DCRL schema pattern,
the calls

co7upose{TYp-i^ Ip-i, /p -2) , ----- compose{TY\, 1 1 , Iq)

in the non-minimal case reduce to the empty conjunction (i.e. true), during
particularization.

Exam ple 27 For the infix traversal of a binary tree, we have the specification
below:

in fix .fla t{B , F) iff list F is the infix representation of binary tree B,

CHAPTER 3. DIVIDE-AND-CONQVER LOGIC PROGRAM SCHEMAS 53

where infix representation means the list representation of the infix traversal
of the tree.

Program 3 below is a program for the in f ix .f la t/'2 problem, and it is an
instance of the DCLR schema pattern.

infix. f lat[B,F) ^

B = void.

F = []

infix. f lat{B.F) *—

B = bt{ . . .),

B = bt{L.E,R),

infix.flat{L, FL), infix.flat{R, FR).

/ o = [] ,

append{Io. FL, /i).

HF = [E],append{h,HF.l2),

append{l2, FR, /3),

F = h

Logic Program 3

Program 4 below is another program for the infix.flat/2 problem, and it
is an instance of the DCRL schema pattern.

infix.flai{B, F)

CHAPTER 3. DIVIDE-ASD-CONQVER LOGIC PROGRAM SCHEMAS 54

B = void.

F = []

infix.flat{B. F) *—

B = bt{L.E,R),

infix.flat{L. FL). infix.flat{R. FR),

h = \l

append{FR, /3, /2),

HF = [E],append(HF. / 2, / 1),

append{FL. / 1, /0),

F = I o

Logic Program 4

Exam ple 28 For the postfix traversal of a binary tree, we have the specifica­
tion below:

postfix-flat{B ,F) ifflist F is the postfix representation of binary tree B,

where postfix representation means the list representation of the postfix traver­
sal of the tree.

Program 5 below is a program for the post fix .fla t ¡2 problem, and it is an
instance of the DCLR schema pattern.

postfix.flat{B, F)

CHAPTER 3. DIVIDE-ASD-COyQVER LOGIC PROGRAM SCHEMAS 55

B = void.

^ = (]

p o s t F)

B = bt{...,.).

B = bt{L.E.R),

post fix .flat{L . FL), post fix./lat(R. FR),

/o = [],

append{Io, FL, / 1), append{Iis FRy I-2),

HF = [E], appendihy HF, / 3),

F = h

Logic Program 5

Program 6 below is another program for the post f ix . flat / 2 problem, and
it is an instance of the DCRL schema pattern.

postf i x . f lat{B. F)

B = voidy

F = []

postfix.flat{By F)

B =bt{.y .y .) .

B = bt{LyEy R)y

postfix.flat{ L, FL)ypostfix.flat{Ry FR)y

CHAPTER 3. DIVIDE-AKD-CONQUER LOGIC PROGRAM SCHEMAS 56

/3 = (].

HF = [ElappendiHF.l3,l2)^

append{FR. / 2, Ii),append{FL, / 1. /0).

F = I o

Logic Program 6

By the same reasoning that we use in explaining the instances of programs
for prefix .fla tf ‘2.1 for post f i x . f l a t where t — 2 and p = 3 (i.e. postfix
composition), both the calls

compose{Ip, TYp. Ip+i).........compose{It, TYf, ^t+i)

in DCLR and the calls

compose{TY\. It+i, It)........ compo$e{TYp, /p+i, /p)

in DCRL reduce to the empty conjunctions (i.e. true), during particulariza­
tion.

Chapter 4

Problem Generalization
Schemas

In Section 2.1.6, I summarized the logic program generalization techniques
that were proposed by Deville in [16], and illustrated these techniques on two
example problems. He proposed these techniques for logic program develop­
ment. As I mentioned in Section 2.2.2. these techniques were further used
for computer-aided synthesis and transformation of logic programs [17. 20].
The main objective of this research is to extend the usage of these general­
ization techniques in schema-based logic program transformation, since in the
referenced papers above, the automation of these generalization methods was
proposed for restricted sub-families of DC programs.

In this chapter, I present the generalized generalization schemas that are
constructed by extending the ideais proposed in [20, 1]. The generalized tupling
generalization schemeis are given in Section 4.1 and the generalized descending
generalization schemas are given in Section 4.2, together with the complexity
analysis of these schemas. In Section 4.3, simultaneous-tupling-and-descending
generalization schemas are given with their complexity analysis. For the cor­
rectness proofs of these generalization schemas, the reader is invited to con­
sult [9].

0 «

CHAPTER 4. PROBLEM GENERALIZATIOS SCHEMAS 58

4.1 Tupling Generalization

The definition of tupling generalization (TG) was given in Section 2.1.6. and the
tupling generalization process was illustrated in E.xample 21 for the problem
of sorting integer lists. In Section 2.2.2. the automation process of tupling
generalization of a restricted sub-family of DC programs, which wtis proposed
by Flener and Deville [20], was summarized.

Thus, firstly in Section 4.1.1, I give two tupling generalization schemas.
The time and space complexity analysis of the programs of these generalization
schemas is discussed in Section 4.1.2.

4.1.1 Tupling Generalization Schemas

I do not separate the tupling generalized program schema pattern into two
schema patterns, as the TGLR schema pattern and the TGRL schema pattern,
like I did for the DC program schema patterns, since one of the objectives of
tupling generalization is to reduce the number of recursive calls of the intended
relation by generalizing the problem to a new single-recursive relation (i.e. the
composition of the result parameter reduces to head-tail composition), which
is achieved by generalizing the structure (or: type) of the induction parameter
of the input relation. So, it is not too much helpful and meaningful to give two
different tupling generalized program schema patterns, although it is possible.
Therefore, in this section, I give only two TG transformation schemas (one for
each DC program schema pattern), rather than four.

Take a relation r, which hcis the specification Sr as:

V.V : .T. V r : I,(.V) [r(.Y, Y) ^ Or{X. V')]

where X and y denote the types of .Y and V', 2r(-Y) denotes the input condition
that must be fulfilled before the execution of the procedure, and C9r(-Y, V)
denotes the output condition that will be fulfilled after the execution.

If a program is given for r as an instance of DCLR (or DCRL), then the
specification of the new tupling generalized problem of r, namely Sr.tupUng is:

CHAPTER 4. PROBLEM GESERALIZATIOS SCHEMAS 59

'iXs : listiX). V r : y . (V.V : ,V. X € -Y5 =» J ,(A ')) =>

[r.tupling(Xs, V') {Xs = [] A y = c)

V {Xs = [-Yi, A'2, . . . , An] A A Or{X,. Yi) A /1 = V'l
1=1

A A a (/ . - i . v ; . / .) A y = /„)]
1=2

where Oc is the output condition of compose and n > 1.

The tupling generalization schemas are:

TG\ : (DCLR^ TG, i4n. ^̂ <121) where
All : - compose is associative

- compose has e as the left and right identity element,
where e appears in DCLR and TG
- VA : A . Tt{X) a minimal{X) Or{X,e)
- VA : A . 2r(A) [->minimal{X) ^ nonMinimal{X)]

0(112 ■ partial evaluation of the conjunction
process{HX, HY). compose{HY\ TY, Y)
results in the introduction of a non-recursive relation

0(121 : partial evaluation of the conjunction
proc€ss{HX. HY). compose{Ip-i, HŶ Ip)
results in the introduction of a non-recursive relation

TG2 : (DCRL, TG, <4(2. 0 (212' 0 (22i) w’here
<4(2 : - compose is associative

- compose has e as the left and right identity element,
where e appears in DCRL and TG
- VA : A!. Tt{X) A minimal(X) =>· Or{X. e)
- VA : X. Jr(A’) [->mnH’ma/(A) nonMinimal{X)]

0(212 : partial evaluation of the conjunction

CHAPTER 4. PROBLEM GESERALIZATIOS SCHEMAS 60

process{HX. HY). compose{HY, T) V)
results in the introduction of a non-recursive relation

0,221 : partial evaluation of the conjunction
process(HX, HY). compo$e{HY. Ip. Ip-i)
results in the introduction of a non-recursive relation

where the template of the common schema pattern TG is Logic Program Tem­
plate 3 below:

Logic Program Template 3

r (-Y ,K) -

rJupling{Xs.Y) <—

a:» = 11,

Y = e

rJupling(Xs.Y) *—

Xs = [A 'lrXs],

minimal{X),

rJupling{TXs, TY),

so/i’e(A,//K),

compose{HY, TY, Y)

rJupling{Xs,Y) <—

As = [AITAs],

non M inimal{X).,

CHAPTER 4. PROBLEM GENERALIZATIOS SCHEMAS 61

decompose(X, HX. TX\....... TXt).

minimal(TXi),___minimal(TXt).

rJupling(TXs^ TV),

process{HX, HY),

compose{HY, TY, Y)

rJupling(Xs. Y)

Xs = [A 'lrXs],

nonMinimal{X),

decompose{X, HX, TX\,... , TXt),

minimal{T X\),___minimal[T Xp^\),

(n on M in im a l{T X p);n on M inimal{T Xt)),

r .tu p lin g {[T X p ,T X tlT X s], TY),

process{HX, HY),

compose{HY,TY, Y)

rJupling{Xs,Y) *—

Xs = [.Y|rA5],

nonMinimal{X),

decompose{X, HX, T X \ T X t) ,

(nonMinimal{TXi)·,. . . ; nonM ini mal{TXp-i)),

minimal[T Xp),-----minimal{TXt),

CHAPTER 4. PROBLEM GESERALIZATIOS SCHEMAS 62

minwîal{i\)....... p_i),

decompose(.\\ HX. L'l........C p_i, TA'p___ _ TXt),

r.tupling{[TXi........T A p.i, N\TXs], 1')

rJupling{Xs, Y) <—

-Ï5 = [X\TXs].

no7iMinimal{X).

decompose{X. HX. TX___ , TXt),

(nonMinimal{TX\)\. . . : nonMinimal(TXp-\)),

{nonMinimal[TXp)\. . . : nonMinimal(TXt)).

minimal{U\).. . . . minimal{Ut),

decompose{N. HX. U\,-----Ut),

r.tupling{[TXi,. . . . TXp.t.N. TXp.. . . . rXiir.Yi!], Y)

Note that, in the TG template, I have only used = / 2, which is a built-in
of all the logic program compilers, and all the open predicates of DCLR (or
DCRL). and no other new predicates. In other words, Lavoisier’s Principle
(“rien ne se crée, rien ne se perd") also applies to transformation schemas.

The applicability conditions of TG\ (respectively. TG2) ensure the equiva­
lence of the DCLR (respectively. DCRL) and TG programs for a given prob­
lem. The optimizability conditions ensure that the output program of these
generalization schemas is more efficient than the input program. The opti­
mizability conditions, together with some of the applicability conditions, check
whether the compose calls in the template TG can be eliminated. In the second
clause of rJupling. the conjunction so/re(X. HY). compose(HY. TY. V) can be
simplified to Y = A, if relation r maps the minimal form of A'’ into e, and e is

CHAPTER 4. PROBLEM GESERALIZATION SCHEMAS 63

also the right identity element of compose. This is already checked by the sec­
ond and third applicability conditions of TGi and TG2· In the third and fourth
clauses of rJupling, the conjunction process{HX. НУ),сотрозе{НУ\ТУ.У)
can be partially evaluated, resulting in the disappearance of that call to compose.
and thus in a merging of the compose loop into the г loop in the template
DCLR (or DCRL). The optimizability condition 0 mi2 (or Оци) checks
whether this compose call can be eliminated in the corresponding clauses.

In this section, I illustrate tripling generalization using the TG generaliza­
tion schemas on the prefix.flat and infix.flat problems.

Exam ple 29 The specification of the prefix.flat problem, and its DCLR
and DCRL programs are in Example 26 in Chapter 3. These DC programs
can be tupling generalized both resulting in Program 7 below, since the open
relations in the schema pattern DCLR (respectively, DCRL) satisfy the ap­
plicability conditions All (respectively, and the optimizability conditions
0(112 (respectively, Oijia) of TGi (respectively, TG2)· So, the prefix.flat
problem can be tupling generalized, resulting in the specification of a program
for tupling generalized problem of prefix.flat as:

prefix .fla t.t{B s,F) iff F is the concatenation of the prefix representations
of the elements in binary tree list Bs.

The word “concatenation" in the specification above reflects the composition
done by the compose operators in Sr.tupiing· Then. Program 7 below is the
tupling generalized program for prefix.flat as an instance of TG.

prefix.flat{B, F)

pre fix .fla t J{[B] ̂F)

prefix.flatJ{Bs. F)

Bs = [].

CHAPTER 4. PROBLEM GESERALIZATION SCHEMAS 64

F = []

prefix.flatJ{Bs, F) *—

Bs = [B\TBs],

B = void,

prefix.flatJ{TBs, TF),

^ ^ = 1).

append{HF, TF, F)

prefix./lotJt{Bs,F) *—

Bs = [B\TBs],

B = bt{., .),

B = ht{L,E, R),

L — void, R — void,

prefix.flatI{TBs, TF),

HF = [f;], append{HF. TF, F)

pre fix.flat.t{Bs, F) <—

Bs =

B = .),

B = bt{L,E, R),

{L = bt(.,.,.y,R = bt(...,.)),

prefix.flatJ{[L, R\T5^], TF),

CHAPTER 4. PROBLEM GESERALIZATION SCHEMAS 65

HF =[E],app€nd{HF,TF,F)

Logic Program 7

The reader may notice that in Program 7 we have only five clauses, al­
though we have seven clauses in the TG template. The fifth and sixth clauses
of prefix.flatJt reduce to false, during particularization, since the disjunction
{7̂ on\Iinimal{TXi);. . . : nonMinimal{TXp-i)) in the fifth and sixth clauses
of rjupling in TG becomes an empty disjunction (i.e. false), because of p = 1
in prefix.flat. □

Exam ple 30 The specification of the in fix .flat problem, and its DC LR and
DC RL programs are in Example 27 in Chapter 3. The in fix.flat problem can
also be tupling generalized using the TG transformation schemeis above result­
ing in Program 8 below, since the infix.flat and prefix.flat DC programs
have the same open relations, which satisfy the applicability and optimizabil-
ity conditions of the TG transformation schemas. So, the specification of the
tupling generalized problem of infix.flat is:

in fix.flatJ{Bs,F) iff F is the concatenation of the infix representations of
the elements in binary tree list B$.

Program 8 below is the tupling generalized program for infix.flat as an in­
stance of TG.

infix.flat{B, F)

in fix .fla t.t{[B lF)

infix.flat.t{Bs, F)

f = II

CHAPTER 4. PROBLEM GENERALIZATION SCHEMAS 66

Bs =

B = void,

in f ix.flat J{ TBs, TF).

/ / / · = ().

append ̂HF, TF, F)

in fix .fla tJ{Bs, F) <—

Bs = [5|rfis],

B = bt(.,

B = bt{L,E,R),

L = void, R = void,

infix.flatJ(TBs, T F).

HF = [E],apptnd(HF,TF,F)

in fix .fla tJ {B s.F) <—

Bs =

B = bt{ . , .).

B ^ b t{L ,E .R),

L — void.

R = bt{.,.,.),

infix.flatJ{[R\TBs], T F),

CHAPTER 4. PROBLEM GESERALIZATIOS SCHEMAS 67

HF = [£·]. app(ud{HF, TF. F)

infix.flatJ(Bs,F) <—

Bs = [B\TBs].

B = bt{ ^ .),

B = bt{L.E,R).

L = bt{____),

R = void.

Ul = void.

N ^btiUi.E.R),

infixJlatJ{[L.N\TBslF)

infix.flat.t(Bs,F) <—

Bs = [B\TBs].

B = bt{..

B = bt{L, E, R).

{L = bt{.. = .)),

Ul = void. Ur = void,

N = bt(UL-E,UR),

infix.flaU{[L. N, R\TBs], F)

Logic Program 8

□

CHAPTER 4. PROBLEM GESERALIZATION SCHEMAS 68

Although the tupling generalization schemas are constructed to tripling
generalize DC programs (i.e. to transform DC programs into TG programs),
these schemas can also be used in the reverse direction, such that they can
be used to transform TG programs into DC programs, if the optimizability
conditions for the corresponding DC program schema pattern are satisfied,
since the applicability conditions hold in both directions. These generalization
schemas can be used in the reverse direction, since it is sometimes possible that
we have a TG program, which is not efficient (e.g.. the compose call in the non-
mininial case of r.tupling cannot be eliminated), and we want to transform it
to a more efficient program, which will be a DCLR program (most probably),
since it is possible to eliminate the compose call in the non-minimal case in
DCLR, because of the verification of the optimizability conditions Otm of
TGi. Further discussion of this can be found in Section 4.1.2.

4.1.2 Complexity Analysis

In this section. I present the complexity analysis of the input and output pro­
grams of the tupling generalization schemas, and I will use this complexity
analysis to discuss the efficiency gain obtained by the tupling generalization
schemas.

I use the in fix .fla t problem, whose informal specification is given in Chap­
ter 3. If the prefix.flat and post fix .fla t DC programs are also tupling gen­
eralized and the complexity analysis is done for these problems, similar results
will be obtained. Therefore, I consider only the programs for infix.flat here.
Logic Program 9 below is the optimized version of Program 3. which is an
instance of the program schema pattern DCLR for the infix.flat problem.

in fix .fla t{B , F)

B = void. F = []

infix.flat{B , F)

CHAPTER 4. PROBLEM GENERALIZATION SCHEMAS 69

B = 6/(1, £ ',/?),

infix.flat[L, FL)s infix.flai{R, FR),

apptnd{FL. [£], I). append{l. FR. F)

Logic Program 9

Logic Program 10 below is the optimized version of Program 4, which is an
instance of the program schema])attern DC RL for the in fix.flat problem.

infix.flat{B ,F) *—

B = void, £ = []

infix.flat{B, F)

B = bt{L,E,R).

infix.flat{L, FL), infix.flai(R, FR),

I = [E\FR],append{FL, L F)

Logic Program 10

If n is the number of elements in tree B, then Programs 9 and 10 have O(n^)
time complexity in the worst case, because composition is done through append,
whose complexity is linear in the number of elements in its first parameter. If
we analyze the programs above in terms of space, and we assume h is the
height of B, then these programs build a stack of h pairs of recursive calls, and
create 2n intermediate data structures. However, since the conjunction HF =
[E],append{HF, FR, I) in Program 4 could be partially evaluated, resulting
in the equality / = [£|££], Program 10 has a better time complexity than
Program 9 by a constant factor, which is not negligible in most cases.

CHAPTER 4. PROBLEM GESERALIZATIOS SCHEMAS 70

Program 8 in Section 4.1.1, which is an instance of the schema pattern TG
for the infix.flat problem, can be optimized, resulting in Program 11 below:

in fix .flat{B , F)

infix.flatJ{[B], F)

in fix.flatJ{Bs, F)

= = 11
infix.flatJ(Bs, F)

Bs = [B\TBs],

B = void,

infix.flatJ{TBs, F)

infix.flatJL{Bs,F) *-

Bs = [B\TBs\,

B = bt{L, E, R),

L = void, R = void,

infix.flatJ{TBs, TF),

F = [E\TF]

in fix.flatJ{Bs, F) *—

Bs = [B|r5s],

B = bt{L,E,R),

L = void,

CHAPTER 4. PROBLEM GESERALIZATION SCHEMAS 71

iufix.flatJ([R\TBs].TFl

F = [E\TF]

infix.flatJ(Bs. F) <—

Bs =

B = bt(L.E. R).

L = bt{.. _).

R — void,

infix.flatJ{[L,bt{void, E. R)\TjB]̂, F)

infix.flatJ.{Bs, F) <—

Bs = [S ir ^ i] .

B = bt{L,E, R),

(I = 6 i (. . . , -) : /? = 6/(_,

in f ix.flat JL{[L, bt{void, E. void), R\TjBi], F)

Logic Program 11

In Program 11, the calls to append have disappeared: the append loops have
been merged into the infix.flat loop in the templates DCLR or DC RL, and
we have a linear time program. However, the space complexity of Program 11
is worse than for the DC programs for the infix.flat problem: this program
builds a stack of 0 (n) recursive calls, and it creates as many intermediate data
structures. Fortunately, this program can be made tail recursive in the mode

{in,out), as the l<ist five clauses are mutually exclusive.

Therefore, for input DC programs like the programs given for in f ix .flat.
which use append as the compose operator, the tupling generalization schemas
result in an efficient TG program, since the optimizability conditions of these
tupling generalization schemas are satisfied.

It is also possible that we have a program, which is an instance of the
schema pattern TG, where the optimizability conditions 0ni2 (or 0 m 2) «no
not satisfied, which means that the compose calls in some of the clauses of
r.tiipling can not be eliminated. So, this TG program can be worse than the
corresponding DCLR program. In these situations, the tupling generalization
schemas can be used in the reverse direction (i.e.. to transform TG programs
into DC programs), and we will have a more efficient DC program as the output
program of the transformation.

CHAPTER 4. PROBLEM GENERALIZATION SCHEMAS 72

4.2 Descending Generalization

I explained the idea of descending generalization in Section 2.1.6, and the
descending generalization process was illustrated in Example 22 for the list
reversing problem. In Section 2.2.2, I presented the automation process of
descending generalization of a restricted sub-family of DC programs, achieved
by Flener and Deville in [20].

Descending generalization can also be called the accumulation strategy (pre­
sented in Section 2.2.1 by giving example constructions of this strategy both
in functional programming and in logic programming), since an accumulator
parameter is introduced by descending generalization, and it is progressively
extended to the final result. Descending generalization can also be seen as
transformation towards difference-structure manipulation. In Section 2.1.6, the
pair of parameters R and .4 in Example 22 can also be thought as representing
the difference-list R\A, which it.self represents the difference between lists R
and A, where A is a suffix of R. But descending generalization yields some­
thing more general than transformation to difference-list manipulation, since
any form of difference-structures can be created by descending generalization.

CHAPTER 4. PROBLEM GENERALIZATION SCHEMAS 73

In Section 4.2.1. I give four descending generalization schemas, and ex­
plain how they ensure correct and efficient descending generalization in pro­
gram transformation. The time and space complexity analyses of the program
schenitis of these generalization schemas are discussed in Section 4.2.2.

4.2.1 Descending Generalization Schemas

Four descending generalization schemas (two for each DC program schema
pattern) are given. Since the conditions of each descending generalization
schema are different, the proces.s of choosing the appropriate generalization
schema for the input DC program is done only by checking the conditions, and
then the eureka [20] (i.e. the specification of the generalized problem) comes
for free.

The reason why we call the descendingly generalized (DG) program schema
patterns 'DGLR' and 'DGRL' is similar to the reason why we call the divide-
and-conquer program schema patterns DCLR and DCRL, respectively. In
descending generalization, the composition ordering for extending the accu­
mulator parameter in the template DGLR is from left-to-right (LR) and the
composition ordering for extending the accumulator parameter in the template
DGRL is from right-to-left (RL).

The first two descending generalization schemcis are:

DGi : { DCLR, DGLR, Adg\, Odgin, Odgui) where
Adgi : - compose is cissociative

- compose has e as the left identity element,
where e appears in DCLR and DGLR

Odgu2 · - compose has e as the right identity element,
where e appears in DCLR and DGLR
and Jr(A') A minimal(X) =>· C?r(,V, e)
- partial evaluation of the conjunction
process{HX, HY), compose{Ap-\, HY\ 4p)
results in the introduction of a non-recursive relation

Odgui ’· ■ partial evaluation of the conjunction

CHAPTER 4. PROBLEM GESERALIZATION SCHEMAS 74

process{HX. HY), compo$e{Ip-\. HY, Ip)
results in the introduction of a non-recursive relation

DG4 : (DCRL. DGLR, OdgAî ·, 0 dg-\2\) where
Adg4 : - compose is associative

- compose has c as the left and right identity element,
where e appears in DCRL and DGLR

Odg4\2 '■ - A minimal{X) => Or{X,e)
- partial evaluation of the conjunction
process{HX. HY), compose{Ap^i, HY, Ap)
results in the introduction of a non-recursive relation

Odg42i ■ - partial evaluation of the conjunction
process{HX, HY), compose{HY, Ip, Ip-i)
results in the introduction of a non-recursive relation

These schemas have the same formal specification (i.e. eureka) for the relation
r .descendingi:

\iX :X . 'iY ,A - .y . Ir(X)
[rJescending^iX, Y, A) o 35 : y . Or{X, S) A Oc{A, S, V)]

where Oc is the output condition of compose, and Or is the output condition
of r, the initial problem. Template 4 below is the template of the common
schema pattern DGLR of DG\ and DGi.

Logic Program Template 4

r{X, Y) ^

r.descendingi{X, V’ e)

r.descendingi{X,Y,A) *—

minimal(X),

solve{X, S), co7vpose{A, S, Y)

CHAPTER 4. PROBLEM GESERALIZATIOS SCHEMAS 75

r.descendingi{X, Y, .4)

nonMinimal{X).

decompose{X, HX, T X \, -----TXt),

compose{A,e^ Ao).

r.descendingi{TXi, .4i, 4o)....... r.descendingi{TXp-i, i4p_i, i4p_2).

proces${HX, HY). compose{Ap-1. HY, Ap),

r.descendingi{TXp, -4p+i, Ap)....... r.descendingi(TXt, i4i+i, i4(),

Y = At+i

Note that, in the DGLR template, I have only used all the open predicates
of DCLR (or DCRL), and no other new predicates (other than primitive
= 12).

For an input program, one of these generalization schem<is is applied, if both
the applicability and the optimizability conditions of the selected generalization
schema are satisfied. The applicability conditions of these two generalization
schemas differ, since the composition ordering is also changed from RL to LR
in DG4.

If the input program is a DCLR (respectively, DCRL) program for the
generalization schema DG\ (respectively. DG.i) and the applicability conditions
are satisfied, then the optimizability conditions Odg\\2 (respectively, 0 5̂412)
have to be satisfied to yield a more efficient output DGLR program.

In the minimal Ccise of r.desccnding\., the simplification of the conjunction
solve{X. S),compose{A, S.Y) can result in Y = .4, if relation r maps the
minimal form of X into e. and e is also the right identity element of compose.
This equality can be further compiled into the head of the minimal clause. The

first optimizability condition of DG\ (or DG^) is defined to check w'hether the
compose call in the minimal case of r.descending\ can be eliminated.

CHAPTER 4. PROBLEM GESERALIZATION SCHEMAS 76

In the non-minimal case of r.descendingi. the atom compos((A,e, .4o) can
be further simplified to the equality A = .4o. if compose has c eis the right iden­
tity element. The conjunction proce$${HX.HY),compose{Ap^\.H\\Ap) can
be partially evaluated, resulting in the disappearance of that call to compose,
and thus in a merging of the compose loop into the r loop in the template
DCLR (or DCRL). The second optimizability condition of DG\ (or DGa) is
defined to check whether the elimination of the compose call in the non-minimal
case of r.descendingi is possible.

I illustrate descending generalization on the in fix .fla t problem. The in­
formal specification of the infix.flat problem, and its DCLR and DCRL
programs are in Example 27 of Chapter 3.

Exam ple 31 The specification of a program for the LR descendingly gener­
alized problem of infix.flat is:

inf ix-flat.desci{B, F, A) iff list F is the concatenation of list 4̂ and the infix
representation of binary tree B.

Program 12 is the program for infix.flat as an instance of DGLR for < = 2
and p = 2.

infix.flat{B,F) <—

inf ix. flat.desci{B. F, [])

infix.flat.desci{B, F, .4)

B = void,

S = [].append{A,S, F)

inf ix.flat.desc\{B, F, A)

B = bt{.,.,.),

CHAPTER 4. PROBLEM GESERALIZATION SCHEMAS 11

B = bi{L.E. /?),

append{A,[]. .4o).

infii.flatjdcsc\{L. .4i. .4o),

HF — [E].append(Ai, HF, A2).

infix.flat^desci(R. ¿43, .42),

F = A 3

Logic Program 12

Since the applicability conditions of DG\ (respectively, DG^) are satisfied for
the input DCLR (respectively, DCRL) in fix.flat program, the descendingly
generalized infix.flat program can be Program 12. However, for this prob­
lem, descending generalization of the infix.flat programs with the above DG
transformation schemas cannot be done, since the optimizability conditions of
DGi (respectively, DG4) are not satisfied by the open relations of infix.flat.
In the non-minimal ceise of infix.flat.desci, partial evaluation of the con­
junction HF = [E].,app€nd{Ai, HF, A2) does not result in the introduction
of a non-recursive relation, because of properties of append (actually, due to
the inductive definition of lists). Moreover, append is called each time with
the accumulator parameter, which increases in length, as the input induction
parameter, which shows that this program is not a good choice as an out­
put descendingly generalized program for this problem. So, the optimizability
conditions are really needed. q

The other two descending generalization schemas are:

DG2 : (DCLR, DGRL, Ajg2, Odg2\2' Odg22\) where
Adg2 ■ - compose is associative

- compose has e гıs the left and right identity element,
where e appears in DCLR and DGRL

CHAPTER 4. PROBLEM GESERALIZATION SCHEMAS 78

Ojg2i2 ■ ■ ^r(-V) A minimal{X) =» C?p(A'. e)
- partial evaluation of the conjunction
process{HX, HY). compose{HY, Ap,
results in the introduction of a non-recursive relation

Odg22i ■ - partial evaluation of the conjunction
proce$${HX, HY),compose(Ip-i, HY. Ip)
results in the introduction of a non-recursive relation

DG3 : { DCRL, DGRL, Adgz. Odg3\2 ̂Odgsu) where
Adg3 '■ - compose is associative

- compose has e as the right identity element,
where e appears in DCRL and DGRL

Odg3u ' - compose has e «is the left identity element,
where e appears in DCLR and DGRL
and Xt{X) a minimal{X) Or{X,c)
- partial evaluation of the conjunction
process{HX, HY), compose(HY, Ap, Ap-i)
results in the introduction of a non-recursive relation

Odg32\ ' - partial evaluation of the conjunction
process{HX, HY), compose{HY, Ip, Ip-i)
results in the introduction of a non-recursive relation

These schemas have the same formal specification (i.e. eureka) for the relation
r.descendingi'·

'iX : X.'iY,A.y. Ir[X)^

[r.descending2[X, Y, A) ^ 35 : 3̂ . a (A, 5) A Oc{S, A, V)]

where Oc is the output condition of compose, and Or is the output condition
of r, the initial problem. Template 5 below is the template of the common
schema pattern DGRL of DG2 and DG3.

Logic Program Template 5

r(.Y ,y') ^

CHAPTER 4. PROBLEM GESERALIZATIOS SCHEMAS 79

r.de$ce7tding2{X. V, e)

j'.de$cending2{X, V. A) *—

tninimal{X).

solve{X, 5), compose{S, -4, Y)

r.descendingziXs V. 4̂)

nonMinimal(X),

decompose{X\ HX, TX\, . . . , TXt),

compose{e, /4, i4t+i),

rjdescending2{TXu At, , r.descending2(TXp, Ap, Ap^\),

process{HX. HY), compose{HY, Ap, Ap_i),

r.descending2{TXp-i, Ap-2·, -4p-i),. . . , r.desctnding2{TX\, Aq, Ai),

Y = Ao

Again, in the DGRL template, I have only used all the open predicates
of DCLR (or DCRL), and no other new predicates (other than the primitive

= / 2).

If the input program is a DCLR (respectively, DCRL) program for the
generalization schema DG2 (respectively, DGz) and the applicability conditions
are satisfied, then the optimizability conditions Odg2i2 (respectively, Odgzn)
have to be satisfied to yield a more efficient output DGRL program.

In the minimal case of r.descending2, the simplification of the conjunction
solve{X, S),compose{S., A,Y) can result in K = A, if relation r maps the
minimal form of X into e, and e is also the left identity element of compose.
This equality can be further compiled into the head of the minimal clause. The
first optimizability condition of DG2 (or DG3) is defined to check whether the

CHAPTER 4. PROBLEM GESERALIZATIOS SCHEMAS 80

compose call in the minimal case of r.descending2 can be eliminated.

In the non-minimal case of r.descending2, the atom compose(Ao,e.)') can
be further simplified to the equality Y = Aq, if compose has e as the left identity
element. The conjunction process{HX, HY),compose{HY, Ap, Ap-i) can be
partially evaluated, resulting in the disappearance of that call to co77ipose. and
thus in a merging of the compose loop into the r loop in the template DCLR
(or DCRL). The second optimizability condition of DG2 (or DG3) is defined
to check whether the elimination of the compose call in the non-minimal case
of r jde$cending2 is possible.

Exam ple 32 The specification of a program for the RL descendingly gener­
alized problem of in fix.flat is:

in fix-flatjde$C2{B, F.A) iff list F is the concatenation of the infix represen­
tation of binary tree B and list .4.

Program 13 is the program for infix.flat as an instance of DGRL for t = 2

and p = 2 .

infix.flat{B, F) <—

in f ix.flat.deSC2{B. F, [])

in fix.flat.de$C2{ 5 , F, .4)

B = void.

= [],append{S,A,F)

infix.flat.desc2(B, F, .4)

B = bt{.,

B ^ b t{L ,E , R),

CHAPTER 4. PROBLEM GESERALIZATION SCHEMAS 81

append{e. .4. A3),

infix.flatjde$ci{R, .43),

HF = [E].append{HF,A2.A,).

in fii.flatjdesc2{L, /lo> -4i),

F = ,4o

Logic Program 13

Since both the applicability conditions and the optimizability conditions of
DGi (respectively, DG3) are satisfied for the input DCLR (respectively, DCRL)
in fix.flat program, both descending generalizations of the in f ix.flat pro­
grams result in Program 13. The partial evaluation of the conjunction HF =
[£’]. append{H F. A ,̂ Ai) in the non-minimal case of inf ix.flat.desc2 results in
a call to = /2, as Ai = [£|.42]. □

Although the descending generalization schemas are constructed to de-
scendingly generalize DC programs (i.e. to transform DC programs into DG
programs), these schemas can also be used in the reverse direction, such that
they can be used to transform DG programs into DC programs, if the opti­
mizability conditions for the corresponding DC program schema pattern are
satisfied, since the applicability conditions hold in both directions. If we have
Program 12 for the infix.flat problem, and we want to transform it into a
more efficient program, then the DC programs can be the best candidates if
we have the descending generalization schemas above. This last sentence will
be better understood in Section 4.2.2.

4.2.2 Complexity Analysis

In this section, I present the complexity analysis of the input and output pro­
grams of the descending generalization schemas, and I will use this complexity

CHAPTER 4. PROBLEM GENERALIZATIOS SCHEMAS 82

analysis to discuss the efficiency gain obtained by the descending generalization
schemas.

For the comple.xity analysis of the programs of the descending general­
ization schemcis, I again use the in fix .fla t problem, which was also used in
Section 4.1.2 for the discussion of the tupling generalization schemais. I use
Programs 9 and 10 in Section 4.1.2, which are the optimized versions of the
infix.flat DCLR and DCRL programs.

As I discussed in Section 4.1.2. these programs have 0{n^) time complexity-
in the worst case, if n is the number of elements in tree B. We analyzed these
programs in terms of space in Section 4.1.2 where it was shown that their space
complexities are also not very good. However, the RL version is better than
the LR version, since the append call in the non-minimal case of the RL version
can be eliminated.

Program 12 in Section 4.2.1 can be optimized, resulting in Program 14
below.

infix.flat{B, F)

infix.flat.desci(B. jF, [])

infix.flat.desci(B, F, A)

B = void, F = A

infix.flat.desc\[B, F, .4)

B = bt(L,E. R),

infix.flat.desci{L. .4]. .4),

append{Ai, [£“], A 2),

infix.flat.desci{R, F, A)̂

CHAPTER 4. PROBLEM GESERALIZATiON SCHEMAS 83

Logic Program 14

As I discussed in Example 31. in Program 14 the calls to append cannot be fully
eliminated. Moreover, if we compare the time used by the append calls in Pro­
gram 9 (or 10) and Program 14, the time used by the call append(Ai, [E"]. .42)
in Program 14 is higher than the time used by the append call in Program 9
(or 10) by a (nonnegligible) constant factor. This time increase is caused by the
increase in the length of the accumulator list, which is the induction parameter
of append. So, Program 14 is less efficient than Program 9 (or 10). although
its time complexity is also 0 {n)̂ in the worst case.

Program 13 in Section 4.2.1 can be optimized, resulting in Program 15
below.

in F) *—

infix.flat.desc2{B, E. [])

infix.flatjdesc2{B, F, A)

B = void, F = A

infix.flatjdesc2{B, E, A)

E = 6<(I, E, E),

infix.flat.desc2{R, NeicA, .4),

infix.flat.desc2{L., E, [E|A’eu)A])

Logic Program 15

In Program 15, the calls to append have disappeared, and we have a linear time
program. The space complexity of Program 15 is also better than the space
complexities of Programs 9 and 10. Since an accumulator parameter is used,
this program creates only h intermediate data structures, although it builds a

CHAPTER 4. PROBLEM GENERALIZATIOS SCHEMAS 84

stack of h pairs of recursive calls. However, the program for infix.flat.desc2

can be made semi-tail recursive in the mode (in.out.in).

Therefore, for the input DC programs like the programs given for infix.flat.
which use append as the compose operator, the descending generalization
schemas DG2 and DG3 result in more efficient programs than the descend­
ing generalization schemas DG\ and DG^. If the compose operator of the
input DC program that is an instance of the DCLR template (or DCRL)
satisfies the optimizability conditions of DG\ (or DG4), then obviously the
descending generalization schema DGi (or DG4) will result in more efficient
programs than the descending generalization schema DG2 (or DGf).

If the descending generalization schemas are used in the reverse direction
(i.e., to transform DG programs into DC programs), then for instance Pro­
grams 9 and 10 are more efficient in time and space than Program 14. So, it is
still possible to gain efficiency by using the descending generalization schemas
in the reverse direction. However, the DG\ generalization schema (respectively,
the DG2 generalization schema), for an input program that is an instance of
the DGLR schema pattern (respectively. DGRL schema pattern), can be bet­
ter than the DG4 generalization schema (respectively, the DG3 generalization
schema), for an input program that is an instance of the DGLR schema pat­
tern (respectively, DGRL schema pattern), or vice versa, depending on the
optimizability conditions of the descending generalization schemas for the in­
put programs that are instances of the DGLR schema pattern (respectively,
DGRL schema pattern).

4.3 Simultaneous Tupling-and-Descending
Generalization

While working on constructing possible generalized generalization schemas for
different input program schemas, we also tried to apply descending general­
ization to a tupling generalized problem, and vice versa. The generalization
schemas that we explain in this section are the results of this work. We call

CHAPTER 4. PROBLEM GESERALIZATION SCHEMAS 85

them simultaneous tupling-and-descending generalization schemas, although
the reader may notice by looking at the specification of the generalized problem
that the process may also be thought of as applying descending generalization
to a tupling generalized problem.

.As I did while explaining the tupling and descending generalization schemas,
I will first give the simultaneous tupling-and-descending generalization schemas
in Section 4.3.1. Then. I will discuss the efficiency gain that can be obtained
with these generalization schemas by using the time and space complexity
analysis of the programs of these generalization schemas in Section 4.3.2.

4.3.1 Simultaneous Tupling-and-Descending
Generalization Schemas

Like I did in Section 4.2.1 for descending generalization, four simultaneous
tupling-and-descending generalization schemas will be given; two for each DC
program schema pattern. The first tw'o simultaneous tupling-and-descending
generalization schemais are:

TDG\ : (DCLR. TDGLR, Otdii'ii Ctji2i) where
Atdi : - compose is associative

- compose has e as the left and right identity element,
where c appears in DCLR and TDGLR
- V.Y : X. Ir{X) A mmima/(X) =» a (-Y ,e)
- V A ': X. Tt{X) [-'minimal{X) o nonMinimal{X)\

Otdu2 '· partial evaluation of the conjunction
process{HX^ HY), compose{A, HY, .Veu^/l)
results in the introduction of a non-recursive relation

Otdui ' partial evaluation of the conjunction
process{HX, HY), compose(Ip-\, HY. Ip)
results in the introduction of a non-recursive relation

TDGi : (DCRL, TDGLR, Atdii Otd4\2i Ctd42i) where
Atd4 · - compose is associative

CHAPTER 4. PROBLEM GESERALIZATION SCHEMAS 86

- compose has e as the left and right identity element,
where c appears in DCRL and TDGLR
- V.Y : X. Ir {X) A minimal{X) O r(X .()
- V A ': X. Ir {X) => [->mintma/(A') nonMinimal[X)]

OtdAn ' partial evaluation of the conjunction
process(HX, HY), compose{A, HY. .Veir.4)
results in the introduction of a non-recursive relation

OtdA2\ '■ partial evaluation of the conjunction
process{HX, HY), compost{HY, Ip. /p_ i)
results in the introduction of a non-recursive relation

They have the same formal specification, namely Sr_td,· for the generalized
problem:

V.Ys : list(X).WY, A : >\ (VX : X. X € As => Jr(A)) =>

[r.t<ii(As, Y, A) (A s = [] A y = A)

V(As = [Ai. A j , . . . , A,] A A OriXi. V·;) A /, = r, A

9

t= 2

A /,) A Oc{A, Iq, Iq+\) AY — /,+i)]
where Oc is the output condition of compose, and Or is the output condition
of r, and 9 > 1. Template 6 below is the template of the common schema
pattern TDGLR of TDG\ and TDG4.

Logic P rogram Tem plate 6

r (A , y) ^

rJ d ,([A],y ,e)

rJdi(Xs, Y, A) *—

A'. = 11,

Y = A

CHAPTER 4. PROBLEM GENERALIZATION SCHEMAS 87

rJ cit(X s,}:A) ^

X s = [XITXsj,

mintmal(X).

soh €(X ,H y),

compose(A. HY, XewA).

r.tdx{TXs, Y. New A)

r.tdi(Xs,Y ,A) ^

Xs = [.Y|rA'5],

nonMinimal{X),

decompose{X, HX, TXx, . . . , TXt),

minimal{TXi), · · ·, miniTnal{TXt),

process{HX. HY), compo$e{A, HY, NewA)^

rJdi{TXs. Y, New A)

rJ d i{X s,Y A) ^

Xs = [.Yir.Ys],

nonMinimal{X),

decompose{X, HX, T X , , TXt),

minimal{TXi), · · · > rninimal(TXp-i),

{nonMinimal{TXp) ; . . . ; no72Minimal{TXt)),

process(HX. HY), compose{A, HY, NewA),

CHAPTER 4. PROBLEM GENERALIZATION SCHEMAS 88

rJdtilTXp....... TXtlTXsl y\ XeirA)

rJdi(Xs, V', A)

,V i = (A 'lr.Vsl,

nonMinimal[X),

deconipose{X, HX, TX\....... TXt),

{nonMinimal{TXi) ‘, . . . ; nonMinimal(TXp-\)),

minimal[TXp)y. . . , minimal{TXt),

minimal{Ui),... ,minimal{Up-i),

dtcompose{N, HX, Ui,...·, Up-\,TXp, . . . , TXt),

rJdiilTX , , . . . , TXp_г. N\TXs], Y\ A)

rJdi(Xs,Y,A)

Xs = [XirXi] ,

nonMinimal(X),

dtcompost{X, HX, TX i , . . . , TXt).

{non\finimal{TXi)]. . . ; nonMinimal{TXp-\)),

{nonMinimal{TXp)·,. . . ; nonMinimal{TXt)).

minimal{U\) , . . . , minimal{Ut)·,

decompose{N, HX, i / j , . . . ,

r.tdi{[TXi, . . . , TXp.i, N, TXp, . . . , r.Y,|rX5], V', ,4)

CHAPTER 4. PROBLEM GENERAIIZATIOS SCHEMAS 89

Like I did in the tupling and descending generalized program schemas, in the
TDGLR template, I have only used all the open predicates of DCLR (or
DCRL), and no other new predicates (other than primitive = /2).

The applicability conditions of TDG\ (respectively. TDG^) ensure the
equivalence of the DCLR (respectively. DCRL) and TDGLR programs for a
given problem. The optimizability conditions ensure that the output TDGLR
program of these generalization schemas are more efficient than the input DC
programs. Like the optimizability conditions of the tupling and descending
generalization schemas, the optimizability conditions, together with some of
the applicability conditions, check whether the compose calls in the template
TDGLR can be eliminated.

In this section, the example programs are given for the in fix .fla t problem.

Exam ple 33 The specification of the left-to-right (LR) simultaneous tupling-
and-descendingly generalized problem of in fix .fla t is:

infix.flatJdi{Bs,F^A) ifflist F is the concatenation of list A and the infix
representations of the elements in binary tree list Bs.

Program 16 below is the program for in fix.flat eis an instance of TDGLR.

infix.flat{B. F)

infix.flatJdi{[B].F,[])

in fix.flat.tdi{Bs, F, .4)

F = A

in f ix.flat.tdi{Bs, F. .4)

Bs = [B\TBs],

CHAPTER 4. PROBLEM GESERALIZATION SCHEMAS 90

B = void.

HF = \],

append(A. HF, .Vi4).

in fix .flat J.d\{T Bs, F. A\4)

infix.flat.td\{B$, F. A) <—

Bs = [B\TBs\,

B = 6i(_, .),

B = bt{L,E,R),

L = void. R = void.

H F = [£’], append{A. HF, NA),

in fix.flat.td\{T Bs, F, NA)

infix.flatJ,d\{Bs,F,A) *—

Bs = [BYFBs],

B = 6<(_,

B = bt{L,E,R).

L = void,

R = bt{.,.,.),

HF = [E],append{A. HF, N A),

infix.flat.tdi{[R\TBs], F, N A)

infix.flat.td\{Bs,FsA) <—

CHAPTER 4. PROBLEM GESERALIZATIOS SCHEMAS 91

Bs = [B\TBsl

B = bt{___),

B = bi{L.E, /?).

L = bt{...,.),

R = void,

U = void,

N = bt{U.E,R),

infi,T.flatJdi{[L, F, .4)

in fix .flatJd i{Bs,F ,A) <—

Bs = [B\rBs],

5 = 6<(.

B = bt{L,E,R),

L = bt{.,.,.),

U\ = void,U2 = void,

N = bt(UuE.U2),

infix.flat.td\{[L, N, R\Tfis], F. .4)

Logic Program 16

Since the applicability conditions of TDGi (respectively. TDG4) are satis­
fied for the input DCLR (respectively, DCRL) in fix .fla t program, the si­
multaneous tupling-and-descendingly generalized in fix .fla t program can be

CHAPTER 4. PROBLEM GENERA LIZATIOS SCHEMAS 92

Program 16. For the in fix.flat problem, the generalization schemas TDG\
(or TDG4) cannot be applied, because the optimizability condition Otd\u (or
OtdAu) is not satisfied by append, the compose relation of in fix .fla t. Q

The other two simultaneous tupling-and-descending generalization schemas
are:

TDG2 · (DCLR, TDGRL. Atd2 Gtd2i2t Gtd22i) w’here
Atd2 ■ - compose is cissociative

- compose has e as the left and right identity element,
where e appears in DCLR and TDGRL
- WX : X. Tt{X) a minimal{X) => Or{X,e)
- \fX : X. Jr{X) => [-’mini’ma/(A') nonMinimal{X)]

Otd2\2 '■ partial evaluation of the conjunction
process{HX., H Y), compose{HY, A, New A)
results in the introduction of a non-recursive relation

Otd22\ '· partial evaluation of the conjunction
process{HX, HY)^ compose{Ip-i, HY, Ip)
results in the introduction of a non-recursive relation

TDG:'3 { DCRL, TDGRL, Atds Otd3\2i Otd32\) where
Atd3· - compose is «issociative

- compose has e as the left and right identity element,
where e appears in DCRL and TDGRL
- V.Y : A*. J ,(A ') A minimaliX) ^ Or{X, e)
- V.Y : A’ . J,(.Y) [-m m im a/(A ') nonMinimal{X)]

Otd3\2 : partial evaluation of the conjunction
process{HX, HY), compose{HY, A, New A)
results in the introduction of a non-recursive relation

<̂ <¿321 : partial evaluation of the conjunction
proce$s{HX, HY), compo$e{HY, Ip, Ip-i)
results in the introduction of a non-recursive relation

The specification of the generalized problem, namely Sr.td2 *̂ ·

VAs : list{X).W , A : y . (VA : X. X € As Ir{X)) =>

CHAPTER 4. PROBLEM GENERALIZATION SCHEMAS 93

[rJd2(Xs. Y. /1) ^ (A'5 = [) A V = A)

\/{Xs = [,Vi,-Yj....... A',] A f\ O r{x,. y;) A / , = y, A

A v;, li) A O c (/„ -4, /,+ i) A y = /,+i)]
1=2

where Oc is the output condition of compose, and Or is the output condition
of r. and q > 1. Template 7 below is the template of the common schema

pattern TDGRL of DG2 and DG3.

Logic P rogram Tem plate 7

r (X , y) ^ -

r J d 2 ([A] ,y »

rJd2{Xs,Y,A) <-

X s = 0,

y = A

rJd2{Xs, y, >1) ^

X s = [X irX s],

minimal{X).

rJd2{TXs, New A. /1),

solve(X ,H Y),

compose{HY. N ewA, Y)

rJdziXs.Y, A) *—

X s = [X\TXsl

nonMinimal{X),

CHAPTER 4. PROBLEM GENERALIZATION SCHEMAS 94

decompose{X, HX. TX\ TXt),

minimal{TXi),___minimal(TXt),

rJd2{TXs, XewA. .4),

process{HX. HY). compose{HY. XewA, }’)

rJd^iXs, V' .4)

Xs = [A 'lr.Yi],

nonMinimal{X),

decompose{X, HX, TX \, . . . , TXt),

minimal{TXi),___minimal{T Xp-i),

{nonMinimal{TXp);... \nonMinimal[TXt)),

r . t d 2 { [T X p , TAM rA i], New A, A),

process{HX, HY). compo$e{HY, New A, Y)

rJd2{Xs,Y,A) ^

X s = (.Yir.Vi),

nonMinimal{X),

decompose{X, HX, T X i , . . T X t) ,

{n o n M in im a l{T X \n o n \ i in im a l(T X p - i)) ,

minimal{TXp),.... minimal{TXt),

minimal{Ui)____ minirnal{Up-i),

decompo$e{N, HX, Up-\, T Xp, . . . , T Xt),

CHAPTER 4. PROBLEM GENERALIZATION SCHEMAS 95

rjd^iiTXi, . . . , TXp.i. .vir.Y^], y; a)

rJd^iXs, V, A) <-

Xs = [XirJYi],

nonMinimal{X),

decomposeiX, HX, TXy, . . . , TXt),

{nonMinimal{TX\)\. . . ; nonMinimal{TXp-i)),

{nonMinimal{TXp)] . . . ; nonMinimal{TXt)),

minimal{Ui)^. . . , Tninimal(Ut),

decompose{N, HX, Ui , . . Ut),

r.td2{ [T X u T X p . u N, TXp, . . . , TXtlTXs], Y, A)

Again, in the TDGRL template, I have only used all the open predicates of
DCLR (or DCRL), and no other new predicates (other than primitive = /2).

The reader is invited to analyze the applicability conditions and the optimiz-
ability conditions of TDG2 and TDGz·, like I did for the previous generalization
schemas.

E xam ple 34 The specification of the right-to-left (RL) simultaneous tupling-
and-descendingly generalized problem of m fix .fla t is:

in f i x . flat Jd2{Bs, F, A) iff list F is the concatenation of the infix representa­
tions of the elements in binary tree list Bs and list A.

Program 17 below is the program for in fix.flat as an instance of TDGRL.

infix.flat{B , F)

CHAPTER 4. PROBLEM GENERALIZATION SCHEMAS 96

infix.flatJd2{[B], / ’.[])

infix.flatJd2{B$,F,A)

F = A

infix.flatJd2(B$,F,A) <—

Bs = [B\TBsl

B = void,

infix.flatJtd2{T Bs, N A, .4),

append{HF, N A, F)

infix.flatJd2 {Bs, F, A) *—

Bs = [B\TBs\,

B = bt{.,.,.),

B = bt{L, E, R),

L = void, R = void,

in f ix-flat Jtd2{TBs, N A, A),

HF = [£], append{H F, N A, F)

infix.flatJd2{Bs,F,A) <—

Bs = [B\TBs],

B = bt{.,.,.),

CHAPTER 4. PROBLEM GESERALIZATION SCHEMAS 97

B = bt(L.E, R),

L = void.

R = bt{......),

infix.flatJd2{[R\Tfio'], .V.4, 4̂),

H F = [E].app€nd{HF, NA. F)

infix.flatJd2{Bs.F,A) *—

Bs = [51755],

B = 6<(_, -),

B = bt{L, E, 5),

L = bt{., -),

R = void,

U — void,

N = bt(U, E, R),

infix./latJ.d2{[L, A’|755], F, i4)

infix.flat.td2{Bs,F,A) ·<—

Bs = [B\TBs],

B = bt{-----),

B = bt{L,E, R),

L = bt{ . , . , .),

R = bt{.,.,.),

CHAPTER 4. PROBLEM GESERALIZATION SCHEMAS 98

L'l = void, L '2 — void,

/V = bt{U, E, R),

infix.flatJdzilL, IV, R\TBs], F, .4)

Logic P rogram 17

Since both the applicability conditions and the optimizability conditions of
TDG2 (respectively, TDG3) are satisfied for the input DCLR (respectively,
DCRL) infix.flat program, both simultaneous tupling-and-descending gen­
eralizations of the in fix .flat programs result in Program 17 above. Q

These simultaneous tupling-and-descending generalization schemas can also
be used in the reverse direction (i.e., to transform TDG programs into DC
programs); the reason for using these schemas in the reverse direction will
become clear in Section 4.3.2, where the optimized versions of Programs 16
and 17, and the complexity analyses of these in fix .flat programs, are given
as well.

4.3 .2 Complexity Analysis

For the complexity analysis of the programs of the simultaneous tupling-and-
descending generalization schemas, I again use the in fix.flat problem, which
was also used in Sections 4.1.2 and 4.2.2 for the discussions of the tupling and
descending generalization schemas. I use Programs 9 and 10 in Section 4.1.2,
which are the optimized versions of the in fix .fla t DCLR and DCRL pro­
grams.

I will again summarize the time and space complexities of these DC pro­
grams. They have 0{n^) time complexity in the worst case, and build a stack
of h pairs of recursive calls, and create 2n intermediate data structures, if n is
the number of elements in tree B and h is the height of B.

CHAPTER 4. PROBLEM GENER.\LIZATION SCHEMAS 99

Program 15 in Section 4.3.1 can be optimized, resulting in Program 18
below.

in fix.flat{B , F) <—

infix.flatJdi{[B], F, [])

infix.flatJdi(Bs^F,A) <—

Bs = [] , F = A

infix.flatJdi{Bs, F, i4) *—

Bs = [B\TBsl

B = t’Oid,

infix.flatJ.di {TBs, F, i4)

infix.flatJd\{Bs,F,A) <—

Bs = [B\TBs],

B = bt{L, E, R),

L = void, R = void,

append{A, [£̂], NA),

in fix.flat Jd\ {TBs, F, NA)

infii.flatJd\{Bs, F, A) *-

Bs = \B\TBs\,

B = bt{L,E, R),

L = void.

CHAPTER 4. PROBLEM GENERALIZATION SCHEMAS 100

append{A, [f]. A'-4),

infix.flatJdi{[R\TBs], F, A’.4)

mfix.flatJ.d\{Bs, F, .4) <—

Bs = [B\TBs],

B = bt{L,E, R),

L = bt(., _),

R — void,

inf ix.flat Jdi{[L, bt{void, E. R)\T5]̂, F, A)

•4
inf ix-flat Jdi{Bs, F, A) *—

Bs = [B\TBs],

B = bt{L, E, R),

L = bt{.,.,.),

R = bt{.,.,.),

in fix.flat Jdi{[L, bt{void, E. void), R\T Fi], F, A)

Logic Program 18

Unfortunately, in Program 18, the calls to append cannot be fully eliminated,
because of properties of append. The time used by the append calls in r.td\ is
more than the time used by the append calls in the in fix .fla t DC programs,
because the accumulator parameter, which is extended by the partial result, is
input 3iS the induction parameter to each append call.

Program 16 in Section 4.3.1 can be optimized, resulting in Program 19

CHAPTER 4. PROBLEM GESERALIZATIOS SCHEMAS 101

below.

in fix .flat{B , F) <—

infix.flatJ.d,2{[B], F, [])

in fix.flatJd2{Bs, F, .4) <—

Bs = [] . F = /1

in fix.flatJd 2{B s,F .A) <—

Bs = [B\TBs],

B = void,

in fix.flatJd2{TBs,F, A)

in fix .fla tJd 2{Bs, F, A) ♦—

Bs = [B\TBs],

B = bt{L, E, R),

L = void, R = void,

in fix .fla t Jd2{TBs, TF, A).

F = [E\TF]

in f ix.flat Jd2{Bs, F, A) ♦—

Bs = \B\TBs],

B = bt{L, E, R),

L = void.

CHAPTER 4. PROBLEM GENERALIZATION SCHEMAS 102

infix.flatJd2([R\TBs], TF, A),

F = [E\TF\

infix.flatJ,d2{Bs. F, .4) <—

Bs =

B = bt{L,E, ft),

L = bt{.,.,.),

R = void,

in f ix.flat Jd2{[L, bt{void, E, R)\T 5s], F, .4)

infix.flatJd2{Bs, F, A) *—

Bs = [5 | r 5 s],

B = bt{L,E,R),

L = bt{.,.,.),

R = bt{.,.,.),

infix.flatJd2{[L, bt{void, E, void), R\T5 s], F, A)

Logic Program 19

In Program 19, the calls to append have disappeared, and we have a linear
time program. Although the space complexity of Program 19 is worse than
for the DC programs for the infix.flat problem, this program can be made
tail recursive in the mode [in,out, in), as the last five clauses are mutually
exclusive.

Therefore, for the input DC programs like the programs given for in fix .fla t.

CHAPTER 4. PROBLEM GENERALIZATION SCHEMAS 103

which use append as the compose operator, the generalization schemas TDG2
and TDG3 result in more efficient programs than the generalization schemas
TDGi and TDG\. If the compose operator of the input DC program that is an
instance of the DCLR template (or DCRL) satisfies the optimizability condi­
tions of TDGi (or TDGa), then obviously the generalization schema TDG\ (or
TDG4) will result in more efficient programs than the generalization schema
TDG2 (or TDG3).

If the TDG generalization schemas are used in the reverse direction (i.e.,
to transform TDG programs into DC programs), then for instance Programs 9
and 10 are more efficient in time and space than Program IS. So, it is still
possible to gain efficiency by using the TDG generalization schemas in the
reverse direction. However, the TDG\ generalization schema (respectively, the
TDG2 generalization schema) for an input program that is an instance of the
TDGLR schema pattern (respectively, TDGRL schema pattern) can be better
than the TDG4 generalization schema (respectiv-ely, the TDG3 generalization
schema) for an input program that is an instance of the TDGLR schema
pattern (respectively, TDGRL schema pattern), or vice versa, depending on
the post-transformation conditions of these generalization schemas for the in­
put programs that are instances of the TDGLR schema pattern (respectively,
TDGRL schema pattern).

Chapter 5

Duality Transformation
Schemas

In Chapter 3, while discussing the composition ordering in DC program schemas,
the reader who is familiar with functional programming will notice the simi­
larities between composition ordering and the fold operators in functional pro­
gramming. A detailed explanation of the fold operators and their laws can be
found in [3]. Now, I will only give the definitions of the fold operators, and
their first law. The definition of foldr is as follows:

foldr f a [xi,X2,· · · , ! «] = f x i i f •T2(- - - (/ Xn a)· ··))

An equivalent formulation, possibly easier to read, is:

foldr (©) a [xj,X2,--- ,^n] = xi 0 (x 2 0 (- - . (x n © «) · · ·))

where ©, like / , is just a variable that can be bound to a function of two
arguments.

The foldl operator can be defined as:

foldl f a [xi, X2, . . . , x„] = / (. . . (/ (/ a Xi)x2) . · .)Jn · · ·))

An equivalent formulation, possibly e£isier to read, is:

foldl (©) a [xi,X2, . . . , x „] = (. . . ((a © xi) 0 X2) · ··) ®

104

CHAPTER 5. DUALITY TRANSFORSiATlON SCHEMAS 105

Thus, equation 3.1 in Chapter 3 that illustrates the composition of in
the DCLR template can be rewritten using foldl:

fold! (©) e [T\\........HY. r i p TY,]

In a similar way, the foldr operator can be used to rewrite equation 3.2 that
illustrates the composition of i" in the DCRL template as follows:

foldr (0) e [TYx........r i p . i , //}· . r ip TYt]

The first three laws of the fold operators are called duality theorems. The
first duality theorem states that:

foldr (0) a xs = foldl {~) a xs

if 0 is cissociative and has (left and right) identity element a, and xs is a finite
list.

Since append., which is compose in our flat examples, is associative and has
[] as the identity element, Programs 1 and 2 (respectively, Programs 3 and 4,
and Programs 5 and 6) are equivalent (resulting in the same Y, which is also
stated in the first duality theorem) for prefix.flat (respectively, in fix.flat,
and post fix-flat). This shows that the problem families that the two program
schemcis abstract have an intersection family (resulting in equivalent programs
for the problem), if compose satisfies the constraints of the first duality theo­
rem.

So a transformation technique can be constructed that takes Program 1 (3,
or 5, respectively) as an input, and produces Program 2 (4, or 6, respectively)
as an output program, and vice versa.

Since I already have the input and output program schema patterns, and
the applicability conditions (i.e., the constraints of the first duality theorem)
of a possible transformation schema, I will give transformation schemas, rather
than constructing a transformation technique.

The transformation schemas given in Section 5.1 are thus called duality
schemas. The time and space complexity analysis of the input and output

CHAPTER 5. DUALITY TRASSFORMATION SCHEMAS 106

programs of these duality schemas are given in Section 5.2. The correctness
proofs of these duality schemas are in [9].

5.1 Duality Schemas

Using the previous discussion, the first duality schema Djc below is given for
transforming DC programs.

Djc ■ { DCLR^ DCRL. Addc·, Oddciz·: Oddc2\) where
Addc · · compose is associative

- compose has e as the left and right identity element,
where e appears in DCLR and DCRL

Oddcu '■ - partial evaluation of the conjunction
process{HX, HV) , compose{HY. Ip, /p_i)
results in the introduction of a non-recursive relation

Oddc2i · - partial evaluation of the conjunction
process{HX, HY), compose{Ip^i, HY, Ip)
results in the introduction of a non-recursive relation

where the program schema patterns DCLR and DCRL are the DC schema
patterns given in Chapter 3, and Addc comes from the constraints of the first
duality theorem. The optimizability conditions check whether the compose
operator can be eliminated in the output program.

Taking Program 1 (3, or 5, respectively) in Chapter 3 as an input, and
producing Program 2 (4, or 6, respectively) as an output program can be
achieved by the duality schema Ddĉ but not the inverse transformation, since
the optimizability condition Oddc2i is not satisfied by append, which is the
compose relation of the in fix.flat problem.

Similarly, it is possible to give duality schemas for the DG and TDG pro­
gram schemas. The duality schema for DG programs, namely Ddg, is:

Ddg : (DGLR, DGRL, Addg, Oddg\2> Oddg2\) where

CHAPTER 5. DUALITY TRASSFORMATION SCHEMAS 107

Ajdg : - compose is associative
- compose has e as the left and right identity element,
where e appears in DGLR and DGRL

OddgU- - VA’ : X. 2t{X) a minimal{X) => Or(A, e)

- partial evaluation of the conjunction
process{HX, HY) , compose{HY Ap, -4p_i)
results in the introduction of a non-recursive relation

Oddgn- - '^X · X- 2r{X) A minimal{X) =>■ (9r(A^e)
- partial evaluation of the conjunction
pi'ocess{HX, HY), compose{Ap-\, HY, Ap)
results in the introduction of a non-recursive relation

where the templates of the schema patterns DGLR and DGRL are Logic
Program Templates 4 and 5 in Section 4.2.1.

Taking Program 12 in Section 4.2.1 cis an input, and producing Program 13
as an output program can be achieved by the duality schema Ddg·, but not the
inverse transformation, because of properties of append.

The duality schema for TDG programs, namely Dtdgi is:

Dtdg : { TDGLR, TDGRL, Adtdg·, Odtdgu, Odtdg2\) where
Adtdg : (1) compose is associative

(2) compose has e as the left and right identity element,
where e appears in TDGLR and TDGRL

Odtdgu'· - VX : X. Tr{X) A minimal{X) ^ Or{X,e)
- partial evaluation of the conjunction
process{HX, HY) , compose{HY, New A, F)
results in the introduction of a non-recursive relation

Odtdg2i· - v x : X . Ir (X) A minimal{X) => Or{X,t)
- partial evaluation of the conjunction
process{HX,HY),compose{A, HY, NewA)
results in the introduction of a non-recursive relation

where the templates of the schema patterns TDGLR and TDGRL are Logic
Program Templates 6 and 7 in Section 4.3.1.

C // .1 PTER 5. o r A LITY TRA SSFORMATIOS SCHEMAS 108

Taking Program 16 in Section 4.3.1 as an input, and producing Program 17
as an output program can be achieved by the duality schema D^g, but not the
inverse transformation, because of properties of append.

5.2 Complexity Analysis

Since the complexity analysis of DC. DG, and TDG programs for the infi.r.flat
problem have already been given in Sections 4.1.2, 4.2.2. and 4.3.2, in this sec­
tion I use these results to discuss the efficiency gain obtained by the duality
schemas in Section 5.1.

.Although Programs 9 and 10, which are the optimized versions of the
DCLR and DCRL infix.flat programs, namely Programs 3 and 4, have time
complexity O(n^), Program 10 has a better time complexity than Program 9 by
a constant factor, which is not negligible. If we have Program 3 and we want to
transform it into a more efficient program, then Ddc will be applied resulting
in Program 4, which can be optimized into Program 10, because the appli­
cability and optimizability conditions of Ddc are satisfied. Since Program 10
is more efficient than Programs 3 and 9, this shows that we can obtain effi­
ciency gain by the Ddc schema. If we want to transform Program 4 into a more
efficient program and Ddc is selected, then Ddc will not be applied, because
the optimizability conditions of Ddc are not satisfied by the open relations of
in fix.flat. So, we do not have Programs 3 or 9 cis an output program of this
duality schema, which shows that the duality schema Ddc does not result in a
program that has worse time complexity than the input program.

Similarly, for the DG and TDG infix.flat programs, the RL versions have
better time complexity than the LR versions. Because of the optimizability
conditions in the Ddg and Dtdg schemas, the RL versions will always be output
by these schemais.

Of course, it is possible to have an LR version of DC, DG, or TDG program
that is more efficient than its RL version for some problems. In these cases,
the duality schemas will output the LR program, if the input program is RL,

CHAPTER 5. DUALITY TRASSFORMATION SCHEMAS 109

and tliey will not output the RL program if the input program is LR. So
they always output the corresponding efficient version, which is ensured by the
optimizability conditions.

Chapter 6

Evaluation of the
Transformation Schemas

In this chapter, I evaluate the transformation schemas using performance tests
done on the manually optimized input and output programs of each trans­
formation schema. However, the reader may find this evaluation of little
value, since the transformation schemas in this thesis are only dealing with
the declarative features of the programs. So, I must say that this evaluation
is made because I think that these performance tests will help us to see what
our theoretical results will be when tested practically, although in an environ­
ment with procedural side-effects. The programs are executed and tested using
Mercury 0.6 (for an overview of the Mercury logic programming language, re­
fer to [50], and every detail about Mercury can be found in its home-page
‘ http://munkora.cs.mu.oz.au/mercury/’) on a SPARCstation 4. Since the pro­
grams are really short, the procedures were called 500 or 1000 times to achieve
meaningful timing results. In Table 6.1, the results of the performance tests
for seven selected problems are shown, where each column heading represents
the schema pattern to which the program written for the problem of that row
belongs. The timing results are normalized wrt the DCLR column.

The reason why I chose the problems above is that all the seven pro­
grams that are instances of the seven program schema patterns can be writ­
ten for these problems, because of the properties of the compose, minimal,

110

http://munkora.cs.mu.oz.au/mercury/%e2%80%99

CU.\rrt:R 6. EVALUAnOS OF THE TRASSFORMATIOS SCHEMAS 111

problems DCLR DCRL TG DGLR DGRL TDGLR TDGRL
prefix.flat 1.00 0.92 0.23 11.ss 0.15 12.38 0.15
in fix .fla t 1.00 0.49 0.02 7.78 0.05 7.-59 0.15

post fix .fla t 1.00 0.69 0.14 5.48 0.09 5.55 0.09
reverse 1.00 1.00 0.04 1.01 0.01 1.02 0.04

quicksort 1.00 0.S5 0.72 6.02 0.56 6.42 1.01
sumlist 1.00 1.00 S.33 0.01 0.33 4.00 8.67
length 1.00 1.00 16.33 0.67 1.00 9.00 14.00

Table 6.1. Performance Tests Results

non.MinimaL and solve relations of their DC programs. The specification,
and the DC and TG (respectively. DG) programs for quicksort (respectively,
for reverse) were given in E.xample 21 (respectively, in E.xample 22) in Sec­
tion 2.1.6. The specification of a program for relation sumlist is:

sicmlist{L,S) iff integer 5 is the sum of the elements in the integer-list L.

The specification of a program for relation length is:

length{L, N) iff integer N is the number of elements in the list L.

Let us first compare the DCLR and DCRL schema patterns. For reverse,
sumlist, and length, the DCLR and DCRL programs are the same, since
they are single-recursive, and their compose relations are either associative like
append in reverse, or even commutative like -I- in sumlist and length. For the
binary tree flat problems and for quicksort, the DCRL programs are much
better than the DCLR programs, because of the relations like append (which
is the compose relation in all these examples), whose properties are the main
reason for properly achieving the optimizations of the DCRL programs of the
problems above.

Hence, if the input programs for the binary tree flat problems, and for the
quicksort problem to the duality schema, are instances of the DCLR schema
pattern, then duality transformations will be performed resulting in the DCRL
programs for these relations, since both the applicability and the optimizability
conditions are satisfied by these programs. So, the duality transformation of

CHAPTER 6. EVALUATION OF THE TRANSFORMATION SCHEMAS 112

the DCLR programs for the relations, having the undefined relations in their
open programs like the ones of the problems above, results in DCRL programs
that are more efficient than the input DC LR programs. If the DCRL pro­
grams for the above relations are input to the duality schema, then the duality
transformation will not be performed, since the optimizability conditions are
not satisfied by append, which is the compose relation of the DC RL programs.
Of course, there may e.xist some other relations where the duality transfor­
mation of their DCRL programs into the DC LR programs will provide an
efficiency gain. Unfortunately, I did not find a meaningful well-known example
of this category.

The next step in evaluating the transformation schemas is to compare the
generalized programs of these example relations. If we look at Table 6.1, the
most obvious observation is that the DGRL programs for all these example
relations are very efficient programs. However, tupling generalization seems
to be the second best eis a generalization choice, and it even must be the first
choice in problems like in fix.flat, where the composition place of the head in
the result parameter is the middle, and the minimal and nonMinimal checks
can be performed in minimum time. Although a similar situation occurs for
the quicksort problem, the TG program of quicksort is not as efficient as the
DGRL program. This is mainly because of partition, which is the decompose
relation of quicksort, being a costly operation, although we eliminate most
of the partition calls by putting extra minimadity checks in the TG template.
Since append, which is the compose relation in all the problems except sumlist
and length, cannot be eliminated in the resulting DGLR and TDGLR pro­
grams, the DGLR and TDGLR programs for these relations have the w’orst
timing results. The reason for their bad performances is that the percentages of
the total running times of the DGLR and TDGLR programs used by append
are much higher than the percentages of the total running times of the DCLR
and DCRL programs used by append for these relations. The reason for the
increase in the percentages is that the length of the accumulator, which is the
input parameter to append in the DGLR and TDGLR programs, is bigger
than the length of the input parameter of append in the DCLR and DCRL
programs, since the partial result has to be repeatedly input to the compose
relation in descending generalization.

CHAPTER 6. EVALUATIOS OF THE TRASSFORMATIOS SCHEMAS 113

The generalization of the input DC programs must be performed if all the
applicability conditions are satisfied by the input DC programs (for the prob­
lems above, the applicability conditions of each generalization schema given in
this thesis are satisfied by the input DC programs). The generalization must
also check the optimizability conditions, and then must choose the general­
ization schema where both the applicability conditions and the optimizability
conditions are satisfied. A generalization must be performed if it really results
in a program that is much more efficient than the input program. So, the de­
scending generalization of the input DCLR program for in fix .fla t resulting
in the DGLR program must not be done, even if the applicability conditions
are satisfied, since the performance of the DGLR program for in fix .fla t is
much worse than the input DCLR program. This is the main reason for the
existence of the optimizability conditions in the schem£is. If we try to descend-
ingly generalize the input DCLR program (respectively, the DCRL program)
for any of the flat, reverse, or quicksort problems, then the DG2 (respec­
tively, DG3) schema will be chosen, since the optimizability conditions of DG2

(respectively, DG3) are satisfied. Also, if we try to do a simultaneous tupling-
and-descending generalization of the input DCLR program (respectively, the
DCRL program) for any of the flat, reverse, or quicksort problems, then the
TDG2 (respectively, TDG3) schema will be chosen, since the optimizability
conditions of TDG2 (respectively, TDG3) are satisfied by the input programs.
The optimizability conditions of DG\ or DGa (respectively, TDG\ or TDG4)
are not satisfied by the problems above. So, these schemas are out of the ques­
tion during generalization of the DC programs of the problems above, which
is what the user will want in a transformation system that is not doing a
transformation that does not provide efficiency gain.

For the relations sumlist and length, the results are completely different
in the sense that the TG programs are much worse than the DC programs.
The recison for this bad performance seems to be the overhead calls added by
doing the generalization of the input parameter, which is already a list, into
a list of lists. The other reasons for this efficiency loss may be the properties
of - f , and the implementation of -f- in .Mercury. Actually, this much of an
efficiency loss is not expected, this is the main reason which makes us to think
that the implementation of the built-in predicates in Mercury may cause these

CHAPTER 6. EVALUATIOS OF THE TRANSFORMATIOS SCHEMAS 114

results. Of course, the other reason is the performance results of the DG
(respectively. STDG) programs, where the DGLR programs (respectively, the
TDGLR programs) are found to be more efficient than the DGRL programs
(respectively, the TDGRL programs) for sumlist and length. The only reason
that I can come up with is the implementation of + in Mercury. Since + is
commutative, different implementations can be done in different languages.

In some of the cases, using generalization schemas to transform the input
programs that are already generalized programs of the relations to DC pro­
grams will produce an efficiency gain. For example, if the DGLR program for
any of the flat problems is the input program to descending generalization
(namely, DG\ or DG4), then the generalization will be performed resulting
in the DCLR (or, DCRL) program, which is more efficient than the input
DGLR program. Similarly, an efficiency gain will be obtained if the programs
of the TDGLR schema pattern are input to the generalization process, since
the optimizability conditions of the generalization schemas in the reverse di­
rections are satisfied. However, if the input program for any of the above
relations to generalization is a DGRL or TDGRL program, then the general­
ization schemiis are still applied in the reverse direction, which means that the
reverse engineering will result in a program that is less efficient than the input
program. This makes us think of some other ways of defining the optimiza6i7i<y
conditions, namely optimization conditions, such that the transformation will
always either result in a better program than the input program. However,
more performance analyses and complexity analyses are needed to make such
a decision.

Therefore, a transformation system that will be developed with a database
of the transformation schemas explained in this thesis has to verify the op­
timizability conditions, since these conditions ensure efficiency gain by these
transformations.

Chapter 7

Prototype Transformation
System

TRANSYS is a prototypical implementation of the schema-bcised program
transformation approach explained in this thesis. TRANSYS is an automatic
(i.e. without any user interaction) program transformation system that is de­
veloped to be integrated in a schema-baised program development environment.
Therefore, the input closed program to the transformation is assumed to be
developed by a synthesizer (e.g. a proper extension of DIALOGS [61]) using
the database of program schema patterns available in the system, as other­
wise the transformation system cannot transform the input program. So the
program schema pattern, of which the input closed program is an instance, is
a-priori known. Thus, given an input program that is an instance of a program
schema pattern in the database, the system will output all the programs that
are instances of the program schema patterns in the database, and that are
more efficient than the input program. The representation of program schema
patterns and transformation schemas makes the system more data-oriented,
which means that the actual algorithm of the system has a minimum amount
of sub-procedures to define the representation of the schemas and schema pat­
terns. The transformation schemas, and the program schema patterns, which
are the input (or output) program schema patterns of these transformation
schemas given in this thesis, are all available in the database of the system.

115

CHAPTER 7. PROTOTYPE TRASSFORMATIOS SYSTEM 116

TRANSVS has been developed in SICStus Prolog 3, patch #5. Since TRAN-
S\ S is a prototype system, for some parts of the system, instead of implement­
ing them, I integrated other systems:

• For verifying the applicability conditions and some of the optimizability
conditions, PTTP is integrated into the system. The Prolog Technology
Theorem Prover (PTTP) was developed by M.E. Stickel in the .Artifi­
cial Intelligence Center of SRI International in California (for a detailed
e.xplanation of PTTP. the reader can refer to (54. 55]). PTTP is an im­
plementation of the model elimination theorem proving procedure that
extends Prolog to the full first-order predicate calculus. TR.ANSYS uses
the version of PTTP that is written in Prolog and compiles clauses into
Prolog.

• For verifying the other optimizability conditions, and applying the op­
timizations to the output programs of the transformation schemas, I
integrated Mixtus 0.3.6. Mixtus w<is developed by D. Sahlin in SICS
(Swedish Institute of Computer Science) in Kista (for a detailed expla­
nation of Mixtus, the reader can refer to [48]). Mixtus is an automatic
partial evaluator for full Prolog. Given a Prolog program and a query,
it will produce a new program specialized for all instances of that query.
The partial evaluator is guairanteed to terminate for all input programs
and queries.

I explain how the programs, the program schema patterns, and the transforma­
tion schemiis are defined in the system in Section 7.1. In Section 7.2, I explain
the high-level algorithm of the system, and how the above systems PTTP and
Mixtus are integrated into TRANSYS. I discuss the features of TRANSYS us­
ing a sample run of the system, and I evaluate TRANSYS as a transformation
system in Section 7.3.

CHAPTER T. PROTOTYPE TRANSFORMATIOS SYSTEM 117

7.1 Representation Language

In this section, I will explain how the programs, program schema patterns, and
transformation schenicis are represented in the system. The program schema
pattern representation is more complicated than the transformation schema
and the program representations, since first-order logic is not enough to rep­
resent and manipulate the program schema patterns fully. In Section 7.1.1, I
will give the syntax of the schema pattern language for the program schema
pattern representation, and I will explain the semantics of the schema pattern
language in Section 7.1.2. However, the schema pattern language used in this
system cannot be used to represent every program schema pattern because of
implementation restrictions, which will· be explained in Section 7.1.2. For a
more detailed representation of a program schema pattern, though in second-
order logic, the reader can refer to [2]. In Section 7.1.3, the representations of
the programs and transformation schemas are given.

7.1.1 Schema Pattern Language: Syntax

Currently, in the database of the system, the existing program schema patterns
are the DC schema patterns, the TG, DG, and TDG schema patterns, and
the RS reuse schema pattern ̂which is the base schema pattern with the stead­
fastness constraint true, which means that every program can be an instance
of this schema pattern. So, a program that is an instance of the reuse schema
pattern has itself as its extension.

A program schema pattern is represented as a relation lps{NS, L,Temp, PL).
where

• NS is the name of the program schema pattern;

• 1 is the list of the actual name of the top-level relation R and the actual
names of the undefined relations in the NS schema pattern, which will
be substituted in Temp during particularization;

• Temp is the template of the NS schema pattern, which is a list of template

CHAPTER 7. PROTOTYPE TRANSFORMATIOS SYSTEM 118

clauses (defined below);

• PL is the list of parameters; in the reuse schema pattern, PL is equal
to the singleton list [;V], but in the DC schema patterns and generalized
program schema patterns, PL consists of:

- E, a. specific constant existing in every schema pattern for initiating
the composition;

- N. the number of arguments of the top level relation R (currently,
in the database, it is hard-wired to 2);

- H, the number of heads of the induction parameter when decom­
posed;

- T, the number of tails of the induction parameter when decomposed;

- Ps, the list of numbers denoting the composition places of heads
{headi,headu), when composing the result parameter (since N
is 2, there is 1 result parameter).

The syntax of template clauses can be given using the BN F grammar:

Clause ::= i f {Head, Body)
Head ::= Atom
Body ::= true\SeqAtom$\and{SeqAtoms, Body)

SeqAtoms ::= Atom\Conjunction\Disjunction
Atom ::= Pred.name{Args)
Args Arg\Arg,Args
Arg ::= Term\Variahle\IndexedA^ariable\Vectorjof-Variables

where Term is a term and Variable is a variable, and

• an Indexed.Variable is represented by a term of the form V where V
is a variable (called the root), and / is the index, which can be either an
integer, or a variable, or an expression of the forms (J -f- X) or (J — .V),
where X is an integer and J is a variable;

• a Vector.of.Variables is represented by a term of the form vec{V, LB, U B),
where K is a variable (called the rootoi the Vector.of .Variables), LB

CHAPTER 7. PROTOTYPE TRASSFORMATION SYSTEM 119

is the lower bound, and L' B is the upper bound, where a bound is either
an integer or a variable;

• a Conjunction is represented by a term of the form cortjatouici{Aiom, LB,
UB), where Atom is as defined above, and LB and UB are the lower and
upper bounds of the index J, which is in Atom,

• a Disjunction is represented by a term of the form disjatoms{ Atom, LB,
VB), where Atom is as defined above, and LB and I'B are the lower
and upper bounds of the built-in index, represented by a special variable
J in Atom.

Example 35 The program schema pattern DCRL for a relation R of arity 2
with the first parameter being the induction parameter, which is decomposed
into 1 head and N tails, and the head composition place in the result parameter
being P, can be represented as:

lps{dcrl, [R, M, S, NM, DEC, PROC, COMP], Tmp, [E. 2 . 1, T, [P]])

iff

T m p = [if{R {X ,Y), and{M {X),S{X,Y))),
if{R {X , V'), and{NM{X), and{DEC{X, HX, vec{TX,

and{conjatoms{R{TX^J,TY^J), 1, T),
and{I#Tl = E,
and{conjatoms{COMP{TYj^J, I# {J + 1), d#J), P, T),
and{PROC{HX, HY),and{COMP{HY, I#P, /# P 1),
and{conjatoms{C0 M P {T Y jjj, IjjJ, / # (J — 1)), 1, PI),
r = /#o)))))))))|

where PI = P — 1 and Tl = T + 1 . □

A full implementation of the program schema patterns in the system will be
given in the next section where the semantics of the schema patterns is ex­
plained by defining the operations on them. The program schema patterns are
stored in a file called dbase.pl.

CliAPTER 7. PROTOTYPE TRASSFORMATION SYSTEM 120

7.1.2 Schema Pattern Language: Semantics

In this section, I explain how a template of a program schema pattern is ma­
nipulated to obtain a template (actually an open program) without ellipses.

Definition 34 (Index R eplacem ent) Let be an IndexedX'ariable.
The replacement of an index I by an integer k applied to X # J . which is
denoted as IRepj^aXH^J■, gives either a new variable X.a that will refer to
the IndtxedX'ariable X # J throughout the template, where it is used, or
remains X^^J if / ^ J.

Definition 35 (Vector_of_ Variables Expansion) Let vec{V, LB,U B)he a
Vector .of-Variables. The expansion of vec{V, LB,UB) is done if LB and UB
are both substituted by integers. The expansion of cec{X, LB.,UB) is defined
as follows:

• Xa^LB if LB = UB,

• X # {L B + 1) , . . . , X M lB if LB < UB,

• the empty sequence if LB > UB.

So, in vec{X, LB,UB), the root X ranges between the lower and upper bound.

After expansion, a Vector.of.Variables having its lower bound greater than
its upper bound will fully disappear from the arguments of a relation.

The replacement of an index I by the integer a applied to a Term T makes
no change in Term T. Then, the replacement of an index I by the integer
a applied to a relation R of the form P(7’# l , . . . , T # n) , which is denoted as
ARepi^aRy gives P{IRep!-aTH^\,... ,IRepi^aT#n).

Definition 36 (C onjunction Expansion) Lei conjatoms{A, LB, UB) he &
conjunction. Conjunction expansion is done after LB and UB are both substi­
tuted by integers, and all arguments of A different from the Indexed.variables

CHAPTER 7. PROTOTYPE TRASSFORMATION SYSTEM 121

with index J, which is the special variable for representing the index of the
conjunction, are gone through index replacement. The expansion of the con­
junction conjatoins{A, LB,UB) is defined as follows:

• true if LB > UBs

• ARepj^iB^ i{ LB = UB.

 ̂ and{ARepj^LBA, and{ARepj^^[_B+i)A.......
and{ARepJ^^ı■в-ı)A, ARepj^i B A). . .))

D efin ition 37 (D isjunction Expansion) Let disjatoms{A, LB^UB) be a
disjunction. Disjunction expansion is done after LB and UB are both substi­
tuted by integers, and all arguments of A different from the Indexed.variables
with index J, which is the special variable for representing the index of the
disjunction, are gone through index replacement. The expansion of the dis­
junction disjatoms{A, LB,UB) is defined as follows:

• false if LB > UB,

• ARepj^i,BA if LB = UB,

 ̂ or{ARepj^LB^·, or{ARepj^(iB+i)A,. . . ,
or{ARepj^(UB-i)A·, ARepj^uBA) . . .))

R estrictions: The Vector.of .Variables in my system is restricted to a vector
of variables having a variable in the root, which means double indexing is not
allowed. The Conjunction and Disjunction representation is also restricted
to built-in index J, which also means that double indexing of variables is not
allowed. Another restriction is that the undefined relation names are taken as
input, so no construction of undefined indexed relations is allowed. Thus, the
program schema patterns that can be represented in the prototype system are
limited.

D efin ition 38 (Particularization o f a Tem plate) The particularization of
Template of the program schema pattern

lps{NS, [R, M, 5, NM, DEC, PROC, COMP], Template, [E, N, H, T, Fsj)

CHAPTER 7. PROTOTYPE TRANSFORMATIOS SYSTEM 122

results ia an open program for relation R, by doing the following sequence of
operations:

1. Pararneter/Term Bindings: The parameters (i.e. e///pses of the template:
iW H, T. Ps) are bound to their actual integer values. .Also, at this stage,
the variable/term bindings are achieved for the variables

E, A'5, /?. A/, 5, NM, DEC. PROC. COMP

with their actual values.

2. Variable/Relation Bindings: The predicate variables in the template are
bound to the actual names of the open relations. This will be better
understood in the example below.

3. Template Manipulation: The template of the program schema pattern is
converted to an open program. Index replacement, Vector.of_Variables
expansion, and conjunction and disjunction expansion are the subpro­
cesses of this final process.

The programs of the template manipulation process are in a file called
dedoti fy.pl.

E xam ple 36 The representation of the DCRL program schema pattern for
a relation R of arity 2 with the first parameter being the induction parame­
ter, which is decomposed into 1 head and N tails, and the head composition
place in the result parameter being P in the system is given in Example 35 in
Section 7.1.1.

The particularization of Template by the goal

lps{DCRL, [r, m, 5, nm, dec.,proc, comp], Template, [[], 2,1,2,

will result in the open program below:

Template = [if{r {X ,Y), and{m (X),s{X,Y))),
if{r{X , Y), and{nm{X),and{dec{X, HX,TX\,TX2),

CHAPTER 7. PROTOTYPE TRANSFORMATIOS SYSTEM 123

and{and{r{TXuTy\l r{T \ 2, TVi)),
and{l3 = [].

and{co7yip{TV2,13J2),
and{proc{HX, HV),
and{comp{HY, / 2, / 1),
and{comp{TYi, A, /0),

>■ = /0)))))))))]

Therefore, the actual open program is obtained by conversion from the tem­
plate. Q

7.1.3 Representation of Programs and Transformation
Schemas

A program for relation R is represented «is a term lp{NS, L, Ext, PL), where

• The represented program is an instance of the schema pattern NS;

• L is the list of the name of R and the actual names of the undefined
relations in NS;

• Ext (stands for extension) is the list of programs for the undefined rela­
tions in NS;

• PL is the list of parameters, which consists, for DC, of:

- E, a, specific constant existing in every schema pattern for initiating
the composition;

- N, the number of arguments of R (currently in the database, it is
hard-wired to 2);

- H, the number of heads of the induction parameter of R when de­
composed;

- T, the number of tails of the induction parameter of R when de­
composed;

CHAPTER 7. PROTOTYPE TRANSFORMATiON SYSTEM 124

— Ps, the list of numbers denoting the composition places of the heads
{headi,..., heacln). when composing the result parameter of R (since
A’ is 2. there is 1 result parameter);

- Sorts, the list of constants (e.g. list or btree) indicating the types
of the parameters of R.

Since Ext is a list of programs, where each one is also represented as above,
the system has the mechanism to deal with nested programs.

Example 37 Program 4 in Chapter 3 can be represented by the term

lp{dcrl\in fix .fla t. f.min. f^olve, f.nonmin, f .decomp, f.proc.
f .compose]. Ext. [[], 2,1,2, [2], [¿tree,/¿si]])

where Ext is the list containing the programs for the undefined relations

f.m in. f ̂ olve. f jnonmin. f .decomp, f.proc. f .compose

also represented using the program representation above. □

A transformation schema is represented by an atom

ts{NTS. NSi. A52, / , E. L. ACs. PCs)

where

• .\'TS is the name of the transformation schema;

• \Si and NSi are the names of the program schema patterns that satisfy
the applicability conditions of the transformation schema;

• / is either 1, indicating that the input program to the transformation is
an instance of program schema pattern NSi. or 2, indicating that the
input program to the transformation is an instance of program schema
pattern NSi',

• E \s a. specific constant existing in every schema pattern for initiating the
composition;

CHAPTER 7. PROTOTYPE TRANSFORMATIOS SYSTEM 125

• L \s the list of the actual name of the top-level relation R and the actual
names of the undefined relations in the A'5i and .V5’2 schema patterns;

• /4Cs is the list of the applicability conditions of the transformation
schema, e.g. the first applicability condition of DGi in Section 4.2.1 (i.e.
compose is associative) is represented as a tuple {a, COM P), where con­
stant a indicates associativity, and COMP is a variable referring to the
actual name of the compose relation;

• PCs is the list of the optimizability conditions of the transformation
schema, e.g. in DG\, if the input program is an instance of the DCLR
schema pattern, the first part of the first optimizability condition of
DG\ (i.e. compose has the left identity element e) is represented as
{l,ri,C O M P, E), where 1 indicates that the input program is an in­
stance of the DCLR schema pattern, ri is a constant indicating left
identity. COM P i s a variable referring to the actual name of the compose
relation, and P is a variable indicating the special composition constant
e in the templates.

Exam ple 38 The generalization schema DG\ in Section 4.2.1 is represented
as a fact;

gs{dgl,dclr, dglr, / , E, [P, M, 5, NM, DEC, PROC, COMP],
[{a,COMP),iH,COMP,E)],
[(1, ri, COMP, E), (I, min, M, R, E),{l,pe, PROC, COM P),
{2 ,pe,PROC,COMP)\) f -

□

The transformation schemas are stored as facts in a file called dbase.pl.

7.2 Algorithm of the System

The program schema patterns given in Chapters 3 and 4 and the transformation
schemeis given in Chapters 4 and 5 are all represented in the system as explained

с и л PTER 7. PROTOT\ PE TR A NSFORMA T[ON SYSTEM 126

in Section 7.1. These program schema patterns and transformation schemas in
tlie database of the system can be represented using the graph in Figure 7.1
below.

Figure 7.1. An Undirected Graph Representing the Database of the System

Each node in the graph represents a program schema pattern in the database,
and each edge represents a transformation schema. Since the transformation
schemas are applicable in both directions, the graph is undirected.

Given an input program Pi, the prototype system traverses the graph on the
edges where both the applicability and optimizability conditions are satisfied,
so as to output all the programs that are ensured to be more efficient than Pi
by the optimizability conditions of the applicable transformation schemas.

When a program P2 is output, which is an instance of the output program
schema of one of the transformation schemas where both the applicability and
optimizability conditions are satisfied, then the program P2 is further input to
Mixtus, the partial evaluator that is used in the system and explained in the
introductory section of Chapter 7, for optimization. Then Mixtus outputs the

CHAPTER 7. PROTOTYPE TRANSFORMATIOS SYSTEM 127

an optimized program P3 to the user of the system. Therefore, at one instance,
the system, also with Mixtus, outputs two programs where the second one is
the optimized version of the first one. Then, the output program /2 is input
to the system again to obtain other (possibly more efficient) programs, which
will be the output programs of the transformation schemas that are applicable
to T*2· So, what the system does for an input program can be seen as edge
traversing of the graph in Figure 7.1 from a given start node.

The transform!^ relation, whose program is given with the simple Prolog
code below, is called by the top-level graph traversing relation in the system
to find a transformation schema that is applicable and ensuring an efficiency
gain:

transform{LP-IN, LPjOUT,LS) : —
L P J N = lp{NSJN, L, Ext, [E, .V. H, T, Ps, Sorts]),
ts{NST, I, N SJN , NS.OUT, E, L. ACs, PCs),
memberCheck{LS, NS.OUT),
satisfied{ACs, Sorts, Ext),
verified{PCs, L, Sorts, Ext, I),
LP.OUT = lp{NS.OUT, L, Ext, [E, N, H, T, Ps, 5or<s]).

where LP.IN is the input program, LP.OUT is the program, which is an in­
stance of the output program schema NS.OUT of the transformation schema
NST, and LS is the list of the names of the program schema patterns that
are not processed by the transform relation yet. NST is selected by the
call ts{NST, I, NSJN, NS.OUT, E ,L ,A C s,P C s) and it is checked by the
mtmberCheck relation whether it vfas already found to be applicable resulting
in a more efficient output program for the input program. If the output pro­
gram schema of the transformation schema has not been processed before, then
the applicability conditions are checked by the satisfied relation. Finally, the
optimizability conditions of NST are checked by the verified relation. The
satisfied relation calls PTTP, a theorem prover, to prove the applicability
conditions. The verified relation also calls PTTP to prove some of the op­
timizability conditions, e.g., proving E being the left identity of the compose
relation, and it calls Mixtus to check the optimizability conditions when the

CHAPTER 7. PROTOTYPE TRANSFORMATIOS SYSTEM 128

partial evaluation results are needed. Of course, the intermediate operations,
which are needed to prepare the inputs for PTTP and Mi.xtus, and to operate
on the outputs of these subsystems, are also taken care of by the low-level
relations of the prototype system. For e.xample, I hardwire the PTTP proof to
search to depth 100 at most, since this number is less than 10 in all the tests
and PTTP’s default maximum is 1000000, which requires a lot of time if the
theorem is not provable.

7.3 Evaluation of the System

.As I explained in the previous sections, I used a theorem prover. PTTP, and
a partial evaluator. Mixtus, to check the applicability and optimizability con­
ditions, and to do the optimizations. Since these subsystems are too generic
(i.e., they are not written to do only the operations in the system), they require
nearly 90 percent of the time used by the system. For example, I hardwired
PTTP proofs to search to depth 100 at most, so it will search up to the 100th
level if the theorem is not provable, which can really take a lot of time. How­
ever, a more application-specific subsystem would require less time, but this
would also lower the generality and extendibility of the prototype system. So,
the time complexity of the system is mainly dominated by the time used in
the verification of the applicability and optimizability conditions. Since the
output program of each applicable transformation schema is again input to
the system, if it is not already processed by the system, in the worst cгıse the
time used by the system can be given as n * m * T, where n is the number
of program schema patterns processed, which is currently bounded by 7, and
m is the number of the selected transformation schemas, which is currently
bounded by 13, and T is the time required for checking the applicability and
optimizability conditions.

The time complexity of the system can be improved by extending the system
such that, for each input program, a dynamic list of the results of the condition
checks is maintained during the execution, and before calling PTTP or Mixtus
for checking a condition, the condition check will be looked up from that list.
This will really improve the time complexity of the system by a constant factor.

CHAPTER 7. PROTOTYPE TKANSFORMATIOS SYSTEM 129

which is not negligible, since currently, in the database of the system, the
conditions of one of the transformation schemas are equal to. or a superset of,
or a subset of the conditions of another transformation schema.

The sample run output of the system where the input program is Pro­
gram 12, which is the DGLR in fii.fla t program, is given in .Appendix B.
.Actually, when Program 12 is input to the system, first the Ddg transforma­
tion schema is selected. Since the applicability and optimizability conditions
of Ddg are satisfied, the system stores the DGRL program to be output after
all the applicable transformation schemas (i.e.. direct edges from DGLR in the
graph in Figure 7.1) are checked. Next, DG\ is selected. Since the optimiz­
ability conditions are not satisfied. DCLR will not be output. Finally, for the
input DGLR program, DG ̂ will be selected. DCRL will be stored as one of
the output programs, since both the applicability and optimizability conditions
of DGi are satisfied. Then, the system outputs DGRL. the optimized version
of DGRL, DCRL, and the optimized DCRL programs, in this order. The
DGRL program will be input to the system for finding the possible equivalent
and optimizable output programs. All the direct edges are checked. Although
some transformation schemas are applicable, no programs w’ill be output, since
they have already been output for the input DGLR program. Finally, the
DCRL program is input to the system. The transformation schemas TG ̂ and
TDG3 are applied resulting in the TG and TDGRL programs, since the appli­
cability and the optimizability of these transformation schemas are satisfied.
Therefore, the system outputs TG, the optimized version of TG, TDGRL, and
the optimized TDGRL programs, in this order. The TG and TDGLR pro­
grams are further input to the system and some transformation schemcis are
checked to be applied, but no programs are left that are ensured to be more
efficient than the input program, and the ones that are ensured to be more
efficient have already been output. So, the system stops.

Chapter 8

Conclusions

I have shown that logic program transformation can be fully automated by
using the generalization schemas and duality schemas given in this thesis. The
applicability conditions of these transformation schemas ensure the equivalence
of the input and output program schemas, but they do not guarantee to have
a more efficient output program. The integration of optimizability conditions
into the transformation schemas provides the verification of the optimizability
of the output program of an applicable transformation schema.

In this research, I have also validated the transformation schemas by using
equivalence verification. The correctness proofs of the proposed transformation

schemas are in [9].

A prototype transformation system was developed with a database of the
program schema patterns and the transformation schemas given in this thesis.
I have defined a language for representing the programs, program schema pat­
terns, and transformation schemas. For checking the applicability and some of
the optimizability conditions, the theorem prover PTTP was integrated into
the system. For verifying the optimizability conditions where the check for
partial evaluation is done, and for optimization of the output programs of the
transformation schemas, the partial evaluator Mixtus was integrated into the

system.

130

CHAPTER S. COSCLUSIONS i ;n

8.1 Contributions of This Research

The generalization schemas that are presented in this thesis are actually ex­
tensions of Flener and Deville’s generalization schemas [20] by extending the
program schema and the transformation schema representations, and the eu­
reka discovery step is fully eliminated by the generalization schemas that we
have in this thesis. Therefore, we achieve generalization of programs beyond
one tail and prefix composition of the result parameter.

The program schemas, which are proposed in this thesis, are represented in
first-order, whereas they were represented in second-order in [20]. The trans­
formation schema representation is also extended from 3-tuples to 5-tuples by
integrating the optimizability conditions.

New generalization schemas, namely simultaneous tupling-and-descending
generalization schemcis, are pre-compiled in this research. Validation of the
proposed transformation schemas by equivalence verification [9] is another con­
tribution of this research. The proposed prototype transformation system is
also an important contribution of this research, which shows that the proposed
transformation schemas can be used in a practical system.

We can also compare the results of this research w'ith Fuchs et al’s re­
sults [24, 57, .58, 47]. We assume that the schema of the input program is
known, which is achieved by matching in their work. Our cissumption is rea­
sonable, since our system is developed to be integrated into a schema-baised
logic program development environment.

We have a different representation for the transformation schemas, which is
better than their representation in some respects. For instance, in our work, the
transformation schema selection is based on the applicability and optimizability
conditions, whereas this process is based on matching and precedence in their
work, which means they do not use all the semantic knowledge about the
program.

We now focus on transforming entire programs, but not yet on transforming
conjunctions inside programs. They could transform also conjunctions inside

niAPTER S. COMIA 'SIOSS 132

programs. This is one of the important future work directions that I also
discuss in the ne.xt section.

8.2 Future Work

.Although the integration of optimizability conditions into the transformation
schemas provides the verification of the optimizability of the output program
of an applicable transformation schema, these conditions do not always ensure
improved performance (or comple.xity) of the output program wrt the input
program. Therefore, the optimization conditions have to be identified to ensure
the efficiency gain by an applicable transformation schema, as I discussed in
Chapter 6.

I have only dealt with the declarative semantics of the typed definite pro­
grams in closed frameworks for program transformation. Future work can be
to e.xtend the program schema patterns for typed normal programs in open
frameworks. This may also require extensions in the transformation schemas.

Other future work can be to validate the transformation schemas by using
automated complexity analyzers like Le Charlier’s GAIA [35], or Debray and
Lin’s CASLOG [15]. With these analyzers, the transformation schemas can
also be better validated in terms of performance.

There exist also some extensions that have to be done on the system to
make it work better. As I mentioned in Section 7.1, the representation language
must be extended to provide flexibility for representing more generic program
schema patterns, e.g., eliminating the special treatment of e, which is actually
a second-order variable existing in the current database of the program schema
patterns and transformation schema representations, and also representing the
indexed relations, like Bauvir’s second-order representation language [2]. Also
if we think in terms of performance, the performance of the system can be
improved by maintaining a dynamic list that keeps track of the results of the
applicability and optimizability condition checks.

Of course, consideration of other program schemas, and searching for other

CHAPTER 8. CONCLUSIONS 133

pre-compilable transformation tecliniques are the extensions that can be done
on this researcli. Pre-compilation of the loop merging strategy seems to be
the most important one, since the transformation schemas given in this the­
sis focus on transforming entire programs, whereas transforming conjunctions
inside a program may result in better optimizations of the programs. The
loop merging strategy can be pre-compiled by extending the definition of the
transformation schemas into recursively defined transformation schemas. Since
nested programs were already processed by the prototype system, the trans­
formation schemas can be extended to transform conjunctions inside programs
with little work on theorv of the transformation schemas.

Therefore, this research is an important step on the way to a complete
transformation system that can be integrated in a logic program development
environment.

Bibliography

[1] T. Batu. Schema-Guided Transformatiotii! of Logic Algorithms. Senior
Project Report, Bilkent University, Department of Computer Science,
1996.

[2] C. Bauvir. An Architecture and an Abstract Data Type for an Inductive
Schema-Guided Logic Program Synthesizer. M.Sc. Thesis, University of
Namur, Institut d ’informatique, 1996.

[3] R.S. Bird and P. Wadler. Introduction to Functional Programming. Pren­
tice Hall, 1988.

[4] R.S. Bird. The promotion and accumulation strategies in transformational
programming. ACM TOPLAŞ 6(4):487-504, 1984.

[5] D.R. Brough and C.J. Hogger. Compiling associativity into logic programs.
Journal of Logic Programming 4:34:5-'359, 1987.

[6] D.R. Brough and C.J. Hogger. Grammar-related transformations of logic
programs. New Generation Compuim^ 9:115-134, 1991.

[7] R.M. Burstall and J. Darlington. A transformation system for developing
recursive programs. Journal of the ACM 24(1):44-67, 1977.

[8] H. Büyûkyıldız and P. Flener. Generalized logic program transformation
schemas. In: N.E. Fuchs (ed), Proc. of LOPSTR’97, LNCS. Springer-
Verlag, forthcoming.

[9] H. Büyükyildiz and P. Flener. Correctness Proofs of Transformation
Schemas. Technical Report BU-CEIS-9713. Bilkent University, Depart­
ment of Computer Science, 1997.

134

BIBLIOGRAPHY 135

[10] E. Chasseur and Y. Deville. Logic program schemas, semi-unification and
constraints. In: N.E. Fuchs (ed), Proc. of LOPSTR'97 {this volume).

[11] T.H. Cormen, C.E. Leiserson, and R.R. Rivest. Introduction to Algo­
rithms. The MIT Press, 1990.

[12] A. Cortesi, B. Le Charlier, and S. Rossi. Specification-based automatic ver­
ification of Prolog programs. In: J. Gallagher (ed). Proc. of LOPSTR'96,
pp. 38-57. LNCS 1207. Springer-Verlag. 1997.

[13] S.K. Debray. Optimizing almost-tail-recursive Prolog programs. In: Proc.
of IFIP’85, pp. 204-219. LNCS 201. Springer-Verlag, 1985.

[14] S.K. Debray. Unfold/fold transformations and loop optimization of logic
programs. In: Proc. of SIGPLAN'88, Conference on Programming Lan­
guage Design and Implementation. SIGPLAN Notices 23(7):297-307,
1988.

[15] S.K. Debray and N.W. Lin. Cost analysis of logic programs. ACM
TOPLAŞ 15(5):826-875, 1993.

[16] Y. Deville. Logic Programming: Systematic Program Development. Addi­
son Wesley, 1990.

[17] Y. Deville and J. Burnay. Generalization and program schemata: A step
towards computer-aided construction of logic programs. In: E.L. Lusk and
R.A. Overbeek (eds), Proc. of NACLP'89., pp. 409-425. The MIT Press,
1989.

[18] Y. Deville and K.-K. Lau. Logic program synthesis: A survey. Journal
of Logic Programming, Special Issue on 10 Years of Logic Programming
19-20:321-350, 1994.

[19] P. Flener. Logic Program Schemata: Synthesis and Analysis. Technical Re­
port BU-CEIS-9502. Bilkent University, Department of Computer Science,

1995.

[20] P. Flener and Y. Deville. Logic program transformation through general­
ization schemata. Extended abstract in: M. Proietti (ed), Proc. of LOP-
STR’95, pp. 171-173. LNCS 1048. Springer-Verlag, 1996. Full version in:

niBLIOGRAPHY 136

M. Proietti (ed), Pre-proc. of LOPSTR'9 5 .

[21] P. Flener, K.-K. Lau, and M. Oniaglii. On correct program schemas. In:
N. E. Fuchs (ed), Proc. of LOPSTR’97, LNCS. Springer-Verlag, forthcom­
ing.

[22] P. Flener, K.-K. Lau, and M. Ornaghi. Correct-schema-guided synthesis
of steadfast programs. In: M. Lowry and Y. Ledru (eds), Proc. of ASE'9 7 .
IEEE Computer Society Press, forthcoming.

[23] P. Flener and S. Yılmaz. Inductive Synthesis of Recursive Logic Programs:
Achievements and Prospects. Submitted to Journal of Logic Programming.

[24] N.E. Fuchs and M.P.J. Fromherz. Schema-based transformation of logic
programs. In: T. Clement and K.-K. Lau (eds), Proc. of L0PSTR’9 f pp.
111-125. Springer-Verlag, 1992.

[25] T.S. Gegg-Harrison. Basic Prolog Schemata. Technical Report CS-1989-
20, Duke University, Department of Computer Science, 1989.

[26] T.S. Gegg-Harrison. Representing logic program schemata in AProlog. In:
L. Sterling (ed), Proc. of ICLP’95., pp. 467-481. The MIT Press, 1995.

[27] T.S. Gegg-Harrison. Extensible logic program schemata. In: J. Gallagher
(ed), Proc. of LOPSTR’96, pp. 256-274. LNCS 1207. Springer-Verlag,
1997.

[28] A. Hamfelt and J. Fischer Nilsson. Towards a Logic Programming Method­
ology based on Higher-Order Predicates. Submitted to New Generation
Computing.

[29] A. Hamfelt and J. Fischer Nilsson. Declarative logic programming with
primitive recursion relations on lists. In: L. Sterling (ed), Proc of JIC-
SLP’96. The MIT Press.

[30] J. Hannan and D. Miller. Uses of higher-order unification for implementing
program transformers. In: R.A. Kowalski and K.A. Bowen (eds), Proc. of
ICLP’88, pp. 942-959. The MIT Press, 1993.

BlliLIOGRAPHY 137

[31] Â. Hansson and S.-Â. Tarnlund. Program transformation by a function
that maps simple lists onto d-lists. In: Proc. of Logic Programming Work­
shop, pp. 225-229, 1980.

[32] G. Huet and B. Lang. Proving and applying program transformations
expressed with second-order patterns. Acta Informática 11:31-55, 1978.

[33] H.J. Komorowski. Partial evaluation as a means for inferencing data struc­
tures in an applicative language: A theory and implementation in the case
of Prolog. In: Proc. of the Ninth ACM Symposium on Principles of Pro­
gramming Languages, pp. 255-267. 1982.

[34] K.-K. Lau, M. Ornaghi, and S.-.\. Tarnlund. Steadfast Logic Programs.
Submitted to Journal of Logic Programming.

[35] B. Le Charlier, S. Rossi, and A. Cortesi. Specification-based automatic ver­
ification of Prolog programs. In: J. Gallagher (ed), Proc. of LOPSTR'96.
LNCS 1207. Springer-Verlag, 1997.

[36] J.M. Lever. Program equivalence, program development and integrity
checking. In: T. Clement and K.-K. Lau (eds), Proc. of LOPSTR’91,
pp. 1-12. Springer-Verlag, 1992.

[37] M.J. Maher. Equivalences of logic programs. In: J. Minker (ed). Founda­
tions of Deductive Databases, pp. 627-658. Morgan Kaufmann, 1988.

[38] E. Marakakis and J.P. Gallagher. Schema-based top-down design of logic
programs using abstract data types. In: L. Fribourg and F. Turini (eds),
Proc. of LOPSTR’94, pp. 138-153. LNCS 883, 1994.

[39] K. Marriott and H. Spndergaard. Difference-list transformation for Prolog.
New Generation Computing 11:125-157, 1993.

[40] R. Paige and S. Koenig. Finite differencing of computable expressions.
ACM TOPLAŞ 4{3):m -454, 1982.

[41] A. Pettorossi and M. Proietti. Transformation of logic programs: Foun­
dations and techniques. Journal of Logic Programming 19(20):261-320,
1994.

BIBLIOGRAPHY 138

[42] A. Pettorossi and M. Proietti. Rules and strategies for transforming func­
tional and logic programs. ACM Computing Surveys 2S{2):'360-‘il4, 1996.

[43] M. Proietti and A. Pettorossi. Synthesis of eureka precidates for developing
logic programs. In: N. Jones (ed). Proc. of ESOP'90, pp. 306-325. LNCS
432. Springer-Verlag, 1990.

[44] M. Proietti and A. Pettorossi. Unfolding-definition-folding, in this order,
for avoiding unnecessary variables in logic programs. In: J. Maluszyn-
ski and M. Wirsing (eds), Proc. of PLILP'91, pp. 347-35S. LNCS 528.
Springer-V'^erlag, 1991.

[45] M. Proietti and A. Pettorossi. The loop absorption and the generalization
strategies for the development of logic programs and partial deduction.
Journal of Logic Programming 16:123-161, 1993.

[46] M. Proietti and A. Pettorossi. Completeness of some transformation
strategies for avoiding unnecessary logical variables. In: P. van Hentren-
ryck (ed), Proc. of ICLP'94·, pp. 714-729. The MIT Press, 1994.

[47] J. Richardson and N.E. Fuchs. Development of correct transformation
schemata for Prolog programs. In; N.E. Fuchs (ed), Proc. of LOPSTR’97,
LNCS. Springer-Verlag, forthcoming.

[48] D. Sahlin. An Automatic Partial Evaluator of Full Prolog. Ph.D. Thesis,
Swedish Institute of Computer Science, 1991.

[49] H. Seki and K. Furukawa. Notes on transformation techniques for generate
and test logic programs. In; Proc. of ISLP'87, pp. 215-223, 1987.

[50] Z. Somogyi, F’ . Flenderson, and T. Conway. Mercury: An efficient purely
declarative logic programming language. In: Proc. of the Australian Com­
puter Science Conference, pp. 499-512, 1995.

[51] M.H. S0rensen and R. Glück. An algorithm of generalization in positive
supercompilation. In: J. Lloyd (ed), Proc. of iSLP’95, pp. 465-479. The
MIT Press, 1995.

BIBLIOGRAPHY 139

[52] L.S. Sterling and M. Kirschenbaum. .Applying techniques to skeletons.
In: J.-M. Jacquet (ed). Constructing Logic Programs, pp. 127-140. John
Wiley. 1993.

[53] L.S. Sterling and E.Y. Shapiro. The Art of Prolog, Advanced Programming
Techniques. Second edition, The MIT Press, 1994.

[54] M.E. Stickel. .4 Prolog Technology Theorem Procer: A New Exposition
and Implementation in Prolog. Technical Note 464. SRI International, Ar­
tificial Intelligence Center, 1989. (a longer version of the reference below
that includes annotated code)

[55] M.E. Stickel. A Prolog technology theorem prover: A new exposition
and implementation in Prolog. Theoretical Computer Science 104:109-128,
1992.

[56] V.F. Turchin. The concept of a supercompiler. ACM TOPLAŞ 8(3):292-
325, 1986.

[57] W.W. Vasconcelos and N.E. Fuchs. Opportunistic Logic Program Analy­
sis and Optimisation: Enhanced Schema-Based Transformations for Logic
Programs and their Usage in an Opportunistic Framework for Program
Analysis and Optimisation. Technical Report 95-24. Universität Zürich,
Institut fur Informatik, 1995.

[58] W.W. Vasconcelos and N.E. Fuchs. An opportunistic approach for logic
program analysis and optimisation using enhanced schema-based transfor­
mations. In: M. Proietti (ed), Proc. of LOPSTR'95, pp. 174-188. LNCS
1048. Springer-Verlag, 1996.

[59] P. Wadler. Deforestration: Transforming programs to eliminate trees. The­
oretical Computer Science 73:231-248, 1990.

[60] M. Waldau. Formal validation of transformation schemata. In: T. Clement
and K.-K. Lau (eds), Proc. of LOPSTR'91, pp. 97-110. Springer-Verlag,
1992.

[61] S. Yılmaz. Inductive Synthesis of Recursive Logic Programs. M.Sc. Thesis,
Bilkent University, Department.of Computer Science, 1997.

BIBLIOGRAPHY 140

[62] J. Zliang and PP.W. Grant. .An automatic difference-list transformation
algorithm for Prolog. In: Proc. of ECAI'SS. pp. 320-325, 1988.

READM E File of the Prototype
Transformation System

The files of the prototype transformation system TRANSYS:

transys.pl : top-level relations
dbase.pl : database of the program schema patterns and transformation

schemas
dedotify.pl : manipulate the templates of

the program schema patterns during particularization
prover.pl ■. prove the applicability and post-optimizability conditions
mverify.pl : check the post-optimizability conditions

of the transformation schemas
hprint.pl : print the output programs of the system

on the current output stream
utilities.pl : low-level relations called by the other programs
pttp.pl : PTTP
pttpq.pl : PTTP Prolog code for inference counting and timing;
mixtus : the executable file of the partial evaluator Mixtus

For properly running TRANSYS, first write mixtus in the command line,
which calls first the available Sicstus Prolog interpreter, then load transys.pl.

141

A . README FILE OF THE PROTOTYPE TRANSFORMATION SYSTEM 142

Then you can call the top-level relation transys/]. with the input program.
The calls of sample e.xample runs are in a file called run.exs.pl.

B

Sample Output of the
Prototype System

Below are some parts of the output for transforming the DGLR in fix-flat
program:

I ?- transysdpCdglr, [i.flat,minimal »solve »nonminiroal »decompose»process»
compose]»
[lp(rs»[if(minimal(X)»X=void)]> ,
lp(rs » [if (solve(X »Y) »Y=D)])»
lp(rs »[if(nonminimal(X)» X=bt(_»_»_))])»
lp(rs»[if(decompose(X»E»Tl»T2)»X=bt(Tl»E»T2))])»
lp(rs »[if(process(E»HF), HF*[E])])»
lp(rs»[if(compose(P»Q»R),and(P=[]»Q=R))»if(compose(P»Q»R)»and(P = [HP|TP]»
and(compose(TP»Q»TR)» R = [HP|TR])))])]»[[]»2»1,2»[2]»[btree»list]])).

PTTP_IS_CHECKIIG.THE_APPLICABILITY_COIDITIOIS.OF.dsdg

Associativity

Left_Identity

Right.Identity

PTTP.AHD_HIXTUS_CHECKIIG_THE.OPTIMIZABILITY.COIDITIOIS_OF.dsdg

Minimality

{consulting for mixtus: /c8grad/haliae/cs599/thesis/GElSYS/goal}
p(A» B, C)

pKA» B. C).

143

¡3. SAMPLE OUTPUT OF THE PROTOTYPE SYSTEM 144

·/. pKA,B.C) :-p(A.B.C)
pKA, B, [AIB]).

PTTP_IS_CHECKIIG.THE_APPLICABILITY.COIDITIOIS_OF_dgl

Associativity

Left_Identity

PTTP_AHD_MIXTUS.CHECKIIG.THE_OPTIMIZABILITY_COIDITIOIS_OF_dgl

{consulting for mixtus: /csgrad/halime/cs599/thesis/GEISYS/goal>
p(A, B, C)

pKA, B, C).

·/. pl(A,B,C) :-p(A,B,C)
pKA, B, C)

composel(B» A, C).

·/, composel (A >B,C) .-compose (A, [B] ,C)
composelCn» A, [A]),
composel([AIB]» C, D)

composel(B, C> E),
D=[A|E].

PTTP_IS_CHECKIIG.THE_APPLICABILITY_C0IDITI0IS_0F_dg4

Associativity

Left.Identity

Right.Identity

PTTP_AID_HIXTUS.CHECKIIG_THE.0PTIHIZABILITY_C0IDITI0IS.0F.dg4

{consulting for mixtus: /csgrad/halime/cs599/thesis/GEISYS/goal}
p(A, B, C)

pKA, B, C).

7, pl(A,B,C):-p(A,B,C)
pKA, B, [AIB]).

OUTPUT_OF.THE_TRAISFORHATIOI.AS.AI.IISTAICE_OF dgrl

i_flat(A,B):-i.flat.d2(A.B ,[]).

i_flat.d2(A ,B,C) ¡-minimal (A) , solve (A, D), compose (D,C,B) .

i.flat.d2(A,B,C) :-nonminimal(A) ,decompose(A»E,F,G> ,compose(D »C»H) ,
i.flat.d2(G, I ,H),process(E,J) ,compos«(J,I ,K),

B. SAMPLE OUTPUT OF THE PROTOTYPE SYSTEM 145

i_flat.d2(F,L,K),B=L.

minimal(H);-H=void.

solve(H,I):-■=[].

nonminimaKN):-H=bt(0,P,Q).

decompose(M,R,S,T) :-M=bt(S ,R,T) .

process(R,U):-U=[R] .

compose(V,W,X):-V=[],W=X.

compose(V ,W,X):-V=[Y|Z],compose(Z,W,AA),X=[Y|AA].

OPTIMIZED_dgrl_PROGRAH
*̂ ****̂ *̂*************̂ ******̂ *̂ ********̂ *̂̂
{consulting for mixtus; /csgrad/halime/cs599/thesis/GEIiSYS/prog}
i_flat(A, B)

i_flatl(A, B).

·/. i_flatl(A,B):-i_flat(A,B)
i_flatl(A, B)

i_flat_d21(A, B).

y, i.flat_d21(A,B) :-i_flat_d2(A,B,[])
i_flat_d21(void, []).
i_flat_d21(bt(A,B,C), D)

i_flat_d21(C, K),
i.flat_d22(A, D, B, E) .

7. i_f lat.d22(A ,B,C,D) : -i.f lat.d2(A ,B. [C| D])
i_flat_d22(void, [A|B], A, B).
i_flat.d22(bt(A,B,C), D, E, F)

i.flat_d21(C, E, F, G),
i_flat_d22(A, D. B, G).

y, i.flat_d21(A.B.C,D):-i_flat.d2(A,D.[B|C])
i_flat_d21(void, A, B, [A|B]).
i.flat.d21(bt(A,B,C), D, E, F)

i.flat_d21(C, D. E, G).
i.flat.d21(A, B. G. H),
F=H.

OUTPUT.OF.THE.TRAISFORHATIOI.AS.AI.IISTAICE.OF dcrl

i_flat(A,B) :-nininal(A) ,solve(A,B) .

i.flat(A,B) :-nonniinimal(A) ,decoMpo8e(A,C,D,E) ,i.flat(D»F) ,i.flat(E,G) ,

B. SAMPLE OUTPUT OF THE PROTOTYPE SYSTEM 146

H=[] ,compose(G,H, I) ,process(C, J) ,compose(J, I ,K),
compose(F,K,L),B=L.

minimal(M):-H=void.

solve(H,I);-I=[].

nonminimal(H):-M=bt(0,P,Q).

decompose(N»R»S,T):-M=bt(S,R,T).

process(R,U):-U=[R].

compose(V,W,X):-V=[],W=X.

compose(V,W,X) :-V=[Y|Z] .compose(Z,W,AA) ,X=[Y|AA] .

OPTIMIZED_dcrl_PROGRAH

{consulting for mixtus: /csgrad/halime/cs599/thesis/GEISYS/prog}
i_flat(A, B)

i_flatl(A, B).

7. i_flatl(A,B) :-i_flat(A.B)
i.flatl(void, []).
i_flatl(bt(A.B,C), D)

i.flatKA, E),
i_flatl(C, F).
compose!(F, G) ,
compose2(E, B» G, D) .

7 compose!(A,B):~compose(A»[3 »B)
compose!(□ , []).
compose!([AIB], C)

compose!(B, D) ,
C=[A|D].

7, composez (A,B,C, D) :-compose (A, [BIC] ,D)
composeZCD» A» B, [A|B]).
composez([AIB], C, D, [A|E]>

composeZCB, C, D» E).

PTTP_IS.CHECKIIG_THE.APPLICABILITY.COIDITIOIS.OF.dgZ

Associativity

Left.Identity

Right.Identity

PTTP.AID.HIXTUS.CHECKIIG.THE.OPTIHIZABILITY.COIDITIOIS.OF.dgZ

B. SAMPLE OUTPUT OF THE PROTOTYPE SYSTEM 147

{consulting for mixtus: /csgrad/haliin«/csS99/thesis/GEISYS/goal}
p(A, B, C)

pKA, B, C).

% pl(A,B,C):-p(A,B,C)
pKA, B, C)

composeKB, A, C) .

X composel (A ,B ,C): -compose(A, [B] ,C)
compose 1 ([] , A, [A]),
composel([AIB], C, D)

composel(B» C, E),
D=[A|E].

PTTP_IS_CHECKIIG_THE.APPLICABILITY_C0IDITI0IS_0F_tg2

Associativity

Left_Identity

Right_Identity

Exclusive.OR

Minimality

PTTP_AID_HIXTUS.CHECKIIG.THE.0PTIMIZABILITY_C0HDITI0IS.0F_tg2

{consulting for mixtus: /csgrad/halime/cs599/thesis/GEISYS/goal}
p(A, B, C)

pKA, B, C).

X pl(A,B,C):-p(A,B,C)
pKA, B, [AlB]).

PTTP.IS.CHECKIIG.THE.APPLICABILITY.C0IDITI0IS_0F.tdg3

Associativity

Left.Identity

Right.Identity

Exclusive.OR

Minimality

PTTP_AID.MIXTUS_CHECKIIG.THE.0PTIMIZABILITT.C0IDITI0IS_0F.tdg3

{consulting for mixtus: /csgrad/halime/cs599/thesis/GEISYS/goal>
p(A, B. C) :-

pKA, B, C).

D. SAMPLE OUTPUT OF THE PROTOTYPE SYSTEM 148

·/. pl(A,B,C) :-p(A,B,C)
pKA, B, [AlB]).

PTTP_IS_CHECKIIG.THE_APPLICABILITY_C0§DITI0IS_0F_tdg4

Associativity

Left.Identity

Right.Identity

Exclusive_OR

Minimality

PTTP_AIID.MIXTUS.CHECKIIG_THE_0PTIMIZABILITY.C0§DITI0IS.0F_tdg4

{consulting for mixtus; /csgrad/halime/cs599/thesis/GEiSYS/goal>
p(A, B, C)

pKA, B, C).

*/. pl(A,B,C) :-p(A,B,C)
pKA, B, C)

composel(B, A, C).

*/, composel (A »B,C> :-compose (A, [B] ,C)
composel(n, A, [A]),
composel([AIB], C, D)

composel(B, C, E) »
D=[A|E].

PTTP_IS.CHECKIIG.THE.APPLICABILITY_COIDITIOIS«OF.dsdc

Associativity

Left_Identity

Right.Identity

PTTP.AID_HIXTUS.CHECKIIG.THE_OPTIHIZABILITY_COIDITIOIS_OF.dsdc

Minimality

{consulting for mixtus: /csgrad/halime/cs599/thesis/GEISYS/goal}
p(A, B, C)

pKA, B, C).

7. pl(A.B.C):-p(A,B,C)
pKA, B. C)

conposel(B, A, C).

7. composel (A ,B,C) . -compose(A, [B] ,C)

B. SAMPLE OUTPUT OF THE PROTOTYPE SYSTEM 149

composel([], A, [A]),
composel([AIB], C, D)

composel(B, C, E),
D=[A|E].

OUTPUT_OF_THE_TRAMSFORHATIOI_AS_AI.IirSTAICE_OF tg
************************^*****^*****:̂ *****t*****4i*****

i_flat(A,B):-i_flat_t([A] ,B).

i.flat_t(C,B):-C=[],B=[] .

i_flat_t (C,B) :-C=[A|D] .minimaKA) ,i_flat_t(D,E) ,solve(A,F) ,compose(F,E,B).

i_flat_t (C,B) :-C=[A|D] ,nonminijnal(A), decompose (A ,G I) ,«inimal(H) ,minimal(I),
i_f lat_t(D,E),process(G,F),compose(F,E,B).

i_flat_t(C,B) :-C=[A|D] ,nonminimal(A) »decompose(A,G , J,K) ,minimal(J),
nonminimal(K) ,i.flat_t([KlD] ,E) »process(G ,F) ,compose(F,E,B).

i_flat_t(C,B) :-C=[A|D] ,nonmininal(A) »decomposeCA,G»L,H) »nonminimal(L)»
minimal(N) »minimal(I) »decomposeCO »G »l»N> ,i_flat_t([L,0|D] ,B).

i_flat_t (C,B) :-C=[A|D] »nonminimal(A) ,decompose(A»G »P,Q> »nonminimal(P),
nonminimal(Q) »minimal(R) »minimal(S) »decompose(0»G ,R,S)»
i_flat.t([P,0,Q|D]»B).

minimal(T):-T=void.

solve(T,U):-U=[].

nonminimal(T);-T=bt(V,W,X).

decompose(T,Y,Z,AA):-T=bt(Z,Y,AA).

process(Y »AB):-AB=[Y].

compose (AC» AD» AE) :-AO[] »AD=AE.

compose(AC»AD»AE) :-AC=[AF|AG] »compose(AG »AD»AH) »AE=[AF|AH] .

^̂ ^̂ ^̂ *̂*m*0̂ *****************̂ *************
OPTIMIZED.tg.PROGRAH
*̂ **

i.flat(A» B)
i_flatl(A» B).

X i.flatl(A.B):-i_flat(A,B)
i_flatl(A» B)

*i.flat.t.l>(A» B).

n. SAMPLE OUTPUT OF THE PROTOTYPE SYSTEM 150

·/. >i.flat.t. 1 ■ (A.B) :-i.flat.t ([A] ,B)
’ i.f lat.t. 1 ’ (void, []).
’ i.flat.t.1 ’ (bt (void ,A ,void), [A]).
’i.flat.t.1’(bt(void,A,bt(B,C,D)), E)

’i.flat.t.l>(bt(B.C.D), F),
E=[A|F] .

’i.flat.t.l>(bt(bt(A,B,C),D,void), E)
’i.flat.t.bt2’(A, B. C, D, [], E).

’i.flat.t.l>(bt(bt(A,B,C),D,bt(E,F,C)), H)
’i.flat.t.bt2’(A, B, C, D, E, F, C, [], H).

7. ’i.flat.t .bt 2’(A,B,C,D,[] ,E):-i.flat.t([bt(A,B,C),bt (void, D. void)] ,E)
’i.flat.t.bt2’(void, A, void, B, C, [A,BID])

i.flat.t2(C, D).
’i.flat.t.bt2’(void. A, bt(B,C,D), E, F, G)

’i.flat.t.bt2’(B, C, D, E, F, H),
G=[A|H].

’i.flat.t.bt2’(bt(A,B,C), D, void, E, F, G)
’i.flat.t.bt2’(A, B, C, D, [bt(void,E,void)|F] , G).

’i.flat.t.bt2’(bt(A,B,C), D, bt(E,F,G), H, I, J)
’i.flat.t.bt2’(A, B, C, D, [bt(E,F,G),bt(void,H,void) 11] , J).

7. i.flat.t2(A,B);-i.flat.t(A,B)
i.flat.t2([] , []).
i.flat.t2([void|A], B)

i.flat.t2(A, B).
i.flat.t2([bt(void,A,void)IB], [A|C])

i.flat.t2(B, C).
i.flat.t2([bt(void,A,bt(B,C,D))|E] , F)

i.flat.t2([bt(B,C,D)lE], G),
F=[A|G].

i.flat.t2([bt(bt(A,B,C),D,void)|E], F)
i.flat.t2([bt(A,B,C),bt(void,D,void)IE], F).

i.flat.t2([bt(bt(A,B,C),D,bt(E,F,G))|H], I)
i.flat.t2([bt(A,B,C),bt(void,D,void),bt(E,F,G)|H], I).

7. ’ i.f lat.t. bt2 ’ (A,B,C,D,E,F,G, □,H):-i.flat.t ([bt (A,B,C),bt (void,D, void) ,
7.bt(E,F,G)],H)
’i.flat.t.bt2’(void. A, void, B, C, D, E, F, [A,B|G])

’i.flat.t.bt3’(C, D, E, F, G).
’i.flat.t.bt2’(void. A, bt(B,C,D), E, F, G, H, I, J)

’i.flat.t.bt2’(B, C, D, E, F, G, H, I, K),
J=[A|K].

’i.flat.t.bt2’(bt(A,B,C), D, void, E, F, G, H, I, J)
’i.flat.t.bt2’(A, B, C, D, void, E, void, [bt(F,G,H)11], J).

’i.flat.t.bt2’(bt(A,B,C), D, bt(E,F,G), H, I, J, K, L, H)
’i.flat.t.bt2’(A, B, C, D, E, F, G, [bt(void,H,void),bt(I,J,I) |L] , H) .

7. ’ i.flat.t.bt3 ’ (A ,B,C,D,E) : -i.flat.t ([bt(A ,B ,C) ID] ,E)
’i.flat.t.bt3’(void, A, void, B, [A|C]) :-

i.flat.t2(B, C).
’i.flat.t.bt3’(void. A, bt(B,C,D), E, [A|F]) :-

’I.flat.t.bt3’(B, C, D, E. F).

B. SAMPLE OUTPUT OF THE PROTOTYPE SYSTEM 151

.bt3»(bt(A,B,C), D, void, E, F)
.bt3*(A, B. C, Cbt(void,D,void)IE] , F).

’i_flat_t.bt3’(bt(A,B,C), D, bt(E,F,G), H, I)
»i_flat_t.bt3»(A, B, C, [bt(void,D,void),bt(E,F,G)|H], I).

*t**̂ *
OUTPUT.OF.THE_TRAISFORMATIOI.AS.AI.IISTAICE_OF tdgrl
*ltt*********************^*****************^**********^*

i_flat(A,B):-i_flat.td2([A],B, []).

i_flat.td2(C,B,D):-C=[],B=D.

i_flat_td2(C,B,D) :-C=[A|E] ,minimal(A) ,i_flat_td2(E,F,D) ,solve(A,G),
compose(G,F,B).

i_flat_td2(C,B,D) :-C=[A|E] »nonminimal(A),decompose(A,H,I ,J) »minimal(I) ,
minimal(J),i_flat_td2(E,F,D),process(H,G),compose(G ,F,B).

i_flat_td2(C,B,D) :-C=[A|E] »nonminimal(A) ,decompose(A,H,K,L) ,minimal(K),
nonminimal(L),i_flat_td2([L|E],F,D),

process(H,G)»compose(G,F,B).

i_flat_td2(C,B,D) :-C=[A|E] ,nonminimal(A) ,decompose(A,H,H,1) »nonminimal(N) ,
minimal(l),minimal(0),decompose(P,H,0,1),

i_flat_td2([M,P|E],B,D).

i_flat_td2(C,B,D) :-C=[A|E] »nonminiroaKA) ,decompose(A,H,Q,R) »nonminimal(Q),
nonminimal(R) ,minimal(S) »minimal(T) »decompose(P»H »S »T> »

i.flat.td2([Q»P»R|E]»B).

minimal(U):-U=void.

solve(U»V):-V=[].

nonminimal(U):-U=bt(W»X,Y).

decompose(U»Z»AA»AB) :-U=bt(AA,Z,AB) .

process(Z»AC):-AC=CZ].

compose (AD »AE»AF) :-AD=[] »AE=AF.

compose(AD»AE»AF) :-AD=[AG|AH] »compose(AH»AE»AD ,AF=[AG|AI] .

OPTIHIZED.tdgrl.PROGRAH

{consulting for mixtus: /csgrad/halime/cs599/thesis/GEISYS/prog}

i . f l a t (A , B)
i . f la t K A » B).

I i . f l a t l (A ,B) : - i . f l a t (A ,B)

B. SAMPLE OUTPUT OF THE PROTOTYPE SYSTEM 152

i.flatKA, B)
»i_flat.td2.1»(A, B).

·/. ’i_flat_td2.1>(A.B):-i.flat_td2([A] ,B.D)
’i_flat_td2.1 *(void, []) .
* i_flat_td2.1 *(bt(void,A,void), [A]).
’i_flat_td2.1»(bt(void,A,bt(B,C,D)), E)

»i.flat.td2.1»(bt(B,C,D), F),
E=[A|F].

»i_flat_td2.1>(bt(bt(A,B,C),D.void), E)
>i_flat_td2.bt2»(A, B, C, D, [], E).

’i_flat.td2.1>(bt(bt(A,B,C),D,bt(E,F,G)), H)
i_flat_td2([bt(A,B,C),bt(void,D,void),bt(E,F,G)], H).

·/. »i.flat_td2.bt2>(A,B,C,D,[] ,E) :-i_flat_td2([bt(A,B,C) ,bt(void,D,void)] ,E,[])
’i_flat_td2 .bt2 ’(void. A, void, B, C, D)

i_flat_td21(C, E),
D=[A,B|E].

’i.flat.td2.bt2»(void. A, bt(B,C,D), E, F, G)
>i_flat.td2.bt2»(B, C, D, E, F, H),
G=[A|H].

>i_flat_td2.bt2’(bt(A,B,C), D, void, E, F, G)
»i.flat.td2.bt2»(A, B, C, D, [bt(void,E,void)IF], G).

>i_flat_td2.bt2»(bt(A,B,C), D, bt(E,F,G), H, I, J)
i_flat_td2([bt(A,B,C),bt(void,D,void),bt(E,F,G),bt(void,H,void)|I], J).

·/, i_flat_td21(A,B) :-i.flat_td2(A,B, [])
i_flat_td21(□ , []).
i_flat_td21([void|A], B)

i_flat.td21(A, C),
B=C.

i_flat_td21([bt(void,A,void)|B], C)
i.flat.td21(B, D),
C=[A|D].

i_flat.td21([bt(void,A,bt(B,C,D))|E], F)
i.flat_td21([bt(B,C,D)|E], G),
F=[A|G].

i_flat_td21([bt(bt(A,B.C),D,void)|E], F)
i.flat.td21([bt(A,B,C),bt(void,D,void)|E], F).

i_flat.td21([bt(bt(A,B,C),D,bt(E,F,G))|H], I)
i_flat.td2(Cbt(A,B,C),bt(void,D,void),bt(E,F,G)|H], I).

PTTP.IS.CHECKIIG.THE_APPLICABILITY.COIDITIOIS_OF.tgl

Associativity

Left.Identity

Right.Identity

Exclusive.OR

B. SAMPLE OUTPUT OF THE PROTOTYPE SYSTEM 153

Ninimality

PTTP_AID_HIXTUS.CHECKIIG_THE_OPTIHIZABILITY_COIDITIOIS_OF_tgl

{consulting for mixtus: /csgrad/halime/cs599/thesis/GEISYS/goal>
p(A, B, C)

pKA. B, C).

7. pKA.B.C) :-p(A,B,C)
pKA, B. C)

composel(B> A, C).

7, composel(A,B,C) :-compose(A, [B] ,C)
composel(□, A, [A]),
composel([AIB], C, D)

composel(B» C, E),
D=[A|E].

PTTP_IS_CHECKIIG_THE.APPLICABILITY.COIDITIOIS.OF_dstdg

Associativity

Left.Identity

Right.Identity

PTTP_AID_MIXTUS_CHECKIIG_THE.OPTIMIZABILITY.COIDITIOIS_OF.dstdg

Minimality

{consulting for mixtus: /csgrad/halime/cs599/thesis/GEISYS/goal}
p(A, B, C)

pKA, B. C).

7. pl(A,B,C) :-p(A,B,C)
pKA, B. C)

composel(B, A, C).

7. composel (A,B,C) :-compose(A, [B] ,C)
composelCD, A, [A]),
composel([A IB] , C, D)

composel(B, 0» E),
D=[A|E].

PTTP_IS.CHECKIIG_THE_APPLICABILITY.C0IDITI0IS.0F.tdg2

Associativity

Left.Identity

Right.Identity

Exclusive.O R

U. SAMPLE OUrPET OF THE PROTOTYPE SYSTEM 154

Minimality

PTTP.AID_MIXTUS_CHECKIIG_THE_0PTIHIZABILITY_C0HDm0HS_0F_tdg2

{consulting for mixtus: /csgrad/halime/cs599/thesis/GEISYS/goal>
p(A, B, C)

pKA, B, C).

·/, pl(A,B,C) :-p(A,B,C)
pKA, B, C)

composel(B, A, C).

y, composel(A,B,C) ¡-compose(A, [B] ,C)
composeKC], A, [A]),
composel([A IB]» C, D)

composel(B, C, E),
D=[A|E].

