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ABSTRACT

GENERATING SH ORT-TERM  OBSERVATION SCHEDULES 
FO R SPACE MISSION PROJECTS

Kemal Kılıç
M.S. in Industrial Engineering 

Supervisor: Asst. Prof. Selim Aktürk 
August, 1997

Space mission scheduling (SMS) has been an important research area for 
several years. The basic features of the space mission projects are the high in­
vestment and operational costs, and limited resource availability. Therefore, it 
is very important to justify the high investment on the space mission projects 
by generating good schedules. In this thesis, we have proposed several new 
solution algorithms for generating short term observation schedules of space 
mission projects and test their efficiencies on a good representative of SMS 
problem; Hubble Space Telescope (HST) scheduling problem. HST is an ex­
ceptional space observatory at low earth orbit among the others that are used 
for space exposures. The main features of generating short-term observations 
of HST are state dependent set up times, user specified due dates, priorities and 
the visibility windows assigned to the candidate observations. The objective 
of HST scheduling is to maximize the scientific return.

We have proposed four new algorithms. The first one is a new dispatch 
rule that considers the basic features of the problem domain while scheduling 
the observations. The second one is a filtered beam search algorithm. We have 
introduced a new concept of childwidth, which is a parameter that restricts 
the number of beams that generates from the same parent. The third one 
is a Greedy Randomized Adaptive Search Procedure (GRASP) that needs to 
be tailored to be applicable to the problem domain. Finally, we proposed a 
simulated annealing algorithm with a new introduced concept of mutation. We
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have tested the relative performances of the proposed algorithms, as well as the 
nearest neighbor algorithm, both in objective function value and computational 
time aspects by utilizing a 2̂  full-factorial experimental design.

Key words: Space mission scheduling, Hubble Space Telescope, local search 
algorithms.



ÖZET

U Z A Y  PROJELERİNİN KISA D Ö N EM Lİ G Ö ZLEM
ÇİZELGELEM ESİ

Kemal Kılıç
Endüstri Mühendisliği Bölümü Yüksek Lisans 

Tez Yöneticisi: Yrd. Doç. Selim Aktürk 
Ağustos, 1997

Son bir kaç yıldır, uzay projeleri çizelgelemesi (UPÇ) önemli bir araştırma 
konusu olmuştur. Uzay projelerinin en temel özellikleri yüksek yatırım ve 
işletim maliyetleri ile kısıtlı sayıda kaynak bulunmasıdır. Uzay projelerinin 
yüksek maliyetinin çok iyi çizelgeleme yapılarak karşılanabilmesi bu yüzden çok 
önemlidir. Bu tezde uzay projelerinin kısa dönemli gözlem çizelgelemesini sağlamaya 
yönelik yeni methodlar öneriyor ve bu methodlarm verimliliklerini, tipik bir 
UPÇ problemi olan Hubbie Uzay Teleskopu (HUT) çizelgelemesi probleminde test 
ediyoruz. HUT dünya yörüngesindeki yeri itibarı ile, gözlem için kullanılan diğer 
gözlemevlerinin arasında önemli bir konuma sahiptir. HUT’un kısa dönemli gözlem 
çizelgelemesi probleminin en temel özellikleri teleskopun hazırlama zamanının 
duruma bağlı olması, görünebilirlik aralıkları ve gözlemlerin değişik ağırlıkları ile 
termin zamanlarının bulunmasıdır. HUT çizelgelemesinin amacı bilimsel kazancın 
arttırılmasını sağlamaktır. Bu amaçla dört yeni method önerdik. Bunlardan ilki, 
yeni tanımlanan ve gözlem çizelgelemesi yaparken problemin temel özelliklerini 
dikkate alan, bir öncelik sıralama kuralıdır. İkincisi ise, süzülmüş ışın taraması 
yöntemini temel alan bir algoritmadır. Süzülmüş ışın taraması yöntemini “çocuk 
sayısı” adını verdiğimiz ve aynı anadan çıkan ışınların sayısını kısıtlamayı sağlatan 
bir parametre ile geliştirdik. Üçüncü önerdiğimiz method ise problem ortamına
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yönelik geliştirilmiş bir GRASP uygulamasıdır. En son önerdiğimiz method ise, 
mutasyon ile geliştirilmiş bir yumuşatma benzetim methodudur. Önerilen dört 
algoritmanın ve de en yakın komşuyu seçmeye dönük olarak geliştirilmiş olan 
en yakın komşu algoritmasının, göreceli performanslarını hem bilimsel kazanım 
açısından hem de çözüm süresi açısından 2̂  tüm-etkenli deneysel tasarımı ile test 
ettik.

Anahtar sözcükler: Uzay projeleri çizelgelemesi, Hubbie Uzay Teleskopu, yerel 
tarama algoritmaları.
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Chapter 1

INTRODUCTION

Space mission scheduling (SMS) has been an important research area for several 
years. SMS hcis a wide area of applications such as scheduling space observato­
ries, coordinating the activities aboard the space station, space shuttle ground 
processing systems, generating detailed commands for planetary probes and 
scheduling satellite activities. There are several major sources of complexities 
in SMS problems. One of them comes from the fact of limited and inflexible re­
sources that are available in the problem domain, and the safety requirements 
of these resources. Limited electric power and thermal balance requirements 
that constraint the parallel usage of the instruments on board, the transmis­
sion data bands width, the limited capacity of the data storage instruments 
can be stated as some of the constraints that should be taken into considera­
tion on most of the Space mission scheduling problems. One major outcome of 
such constraints is the lack of relying on specific representational assumptions 
as it is done in most of the manufacturing scheduling problems. For example 
it is not enough to allocate time to the main activities, researchers in SMS 
must consider enough detail to ensure safe and feasible execution of the each 
component of the problem domain.

Another important characteristic and source of complexity in SMS problems 
is the extremely high number of requests that comes from the astronomers from 
all over the world. This is mainly because, space mission projects are very
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CHAPTER 1. INTRODUCTION

expensive to build and operate. Many of the scientific research that require 
the conditions that are unique in the space such as weightlessness and extreme 
vacuum should be scheduled in limited number of resources. This is why SMS 
problem is highly over-subscribed and why it is very important to use these 
scarce sources efficiently.

One of the good representative of the SMS problem is generation of short­
term observation schedules for Hubble Space Telescope of NASA. Hubble Space 
Telescope (HST) is an exceptional observatory among the others that are used 
for space exposures. This exceptional place of HST comes from its location 
at low earth orbit which enables it to overcome many limiting conditions that 
are available in the earth surface and atmosphere and provides unsurpassed 
combinations of sensitivity, wavelength coverage and angular resolution. The 
six viewing instruments on HST allows space exposures and analysis of the 
celestial objects 7 or 10 times further than the ones that can be done with 
other observatories on earth surface.

With these features and opportunities the scientific community obviously 
eager to take the advantageous of such an unique observatory. So the request 
for observations from HST far exceeds the capability of the telescope. The 
expensive investment of $ 1.5 billion must be justified by high scientific outcome 
so that the scheduling of the candidate observations should be done efficiently.

A request for an observation is mainly an exposure of a particular celestial 
object with a particular configuration of a particular viewing instrument. In 
order to start an exposure, several constraints must be satisfied. Firstly, the 
specified instrument and the configuration must be active on HST. To activate 
the specified instrument some time is needed which depends on the previous 
instrument used for the previous exposure. Furthermore, the telescope must be 
pointing to the specified celestial object. This process is called as the slewing 
process. The needed time for slewing the telescope depends on the previous 
position of the telescope. Finally the specified celestial object must be visible. 
Since HST is at low earth orbit the celestial objects are occulted periodically by 
earth. So to start an exposure of an celestial object is only possible if it is in its
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visibility window. Space Telescope Science Institute assigns different priorities 
to the observation requests with respect to their relative importances. So the 
aim of generating short term schedules of HST is to maximize the scientific 
return by satisfying the constraints of the problem domain.

In this thesis we have proposed several new solution procedures for genera­
tion of short term schedules of SM problems and test their efficiency by applying 
them to a typical SM problem; HST scheduling problem. We also compared the 
performances of the proposed algorithms with the nearest neighbor heuristic. 
The well-known nearest neighbor heuristic selects the first available observa­
tion, schedules it as early as possible and repeats the same procedure in the 
following steps. The proposed algorithms consist of a new dispatch heuris­
tic, a filtered beam search algorithm, a Greedy Randomized Adaptive Search 
Procedure (GRASP) and a simulated annealing algorithm. The new dispatch 
heuristic considers the priorities, needed setup times, processing times and the 
remaining times that are available to schedule a particular observation. A new 
concept, namely the “child width” , is introduced to the classical filtered beam 
search algorithm- By the help of the child width we restricted the number of 
beams that are generated from a particular parent. We tested the effect of the* 
filterwidth, beam width as well as the newly introduced concept child width 
on a set of randomly generated problems. The third algorithm proposed is 
GRASP. This algorithm consists of two phases. The first phase is construct­
ing an initial greedy randomized solution and the second phase is the local 
optimization search. The effect of the local optimization search phase and dif­
ferent parameter settings of GRASP are tested on a set of randomly generated 
problems. Finally, a simulated annealing algorithm is proposed. The classical 
simulated annealing algorithm is modified with a mutation concept and the 
effect of this modification is tested at different mutation ratios on a set of ran­
domly generated problems. For the local search algorithms, we have selected 
the filtered beam search and GRASP algorithms, since they are recently de­
veloped algorithms and do not have many applications in the literature. On 
the other hand, simulated annealing is selected as a representative of the well- 
known local search techniques and has a wide area of applications that are
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available in the literature.

The remainder of the thesis can be outlined as follows. In chapter 2, we will 
give a review of the literature on SMS, HST scheduling, and related topics such 
as single machine scheduling, vehicle routing planning and different local search 
algorithms. In chapter 3, we will define the problem, state the assumptions 
and propose a mathematical formulation of the problem. In chapter 4, we will 
present our proposed algorithms. In chapter 5, we will give the computational 
results of the experimental design, present a comparison of the algorithms and 
discuss the effects of the different parameter settings of each algorithm. Finally, 
in chapter 6 we will provide some concluding remarks and the future research
issues.



Chapter 2

LITERATURE R EVIEW

In this chapter after reviewing of the space mission problems, the basic compo­
nents and structure of HST domain will be presented. A detailed review of two 
main research directions to the solution of HST scheduling problem namely, 
SPIKE and HSTS, will be done. A review on single machine scheduling prob­
lem and vehicle routing problem, which are closely related to the problem will 
be presented. And finally a brief discussion on some heuristic search methods 
that are used in the proposed algorithms will be provided.

2.1 SPACE MISSION SCHEDULING

We have described the main characteristics of the Space mission scheduling 
(SMS) problems in chapter 1. Now we present a review on the applications 
that are found in the literature. Mainly there are two different approaches 
existing in the literature. First one makes a “single/parallel machine schedul­
ing” approximation of the problem and uses the traditional operations research 
tools in the solution methodology; whereas the second approach considers the 
overall domain and formulates the problem as a constraint satisfaction prob­
lem (CSP). In this approach due to the complex nature of the problem domain 
software architectures which use constrained directed scheduling techniques are
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constructed.

Fisher and Jaikumar [14] provide an algorithm for another example of SMS, 
namely the scheduling of the NASA space shuttle program. It requires a selec­
tion of mission launch times that minimize the number of late missions, where 
each mission has an earliest start time and a latest start time. A one machine 
approximation is provided for the problem. The proposed algorithm is inspired 
by Moore’s [43] algorithm for minimizing the number of tardy jobs on a single 
machine.

Hall and Magazine [19] model the problem as a single machine schedul­
ing and use traditional OR methodology. The problem is simplified and one 
resource is considered (time; whereas it is also claimed that other resources 
such as data band width and electric power can be easily incorporated). In 
the model each activity has a weight and a single time window (a specific time 
interval that the execution of the activity is allowed). The objective is maxi­
mizing the total value of the projects. Eight heuristics and two upper bounding 
procedures are described. Finally a dynamic programming algorithm that in­
corporates the heuristics and the bounding procedures is proposed.

However the above approximations assume single time windows associated 
with the activities which is not a general feature of SMS problem domains, 
hence it is not realistic for many cases. Mainly time windows are related to the 
occultation of the targets with the other astronomical bodies such as earth, 
sun, etc. In many space mission problem domain (such as low orbit earth 
satellites and HST) there are multiple time windows that are associated to 
each target periodically. Even though the planning horizon consists of multiple 
time windows, one can claim that each period can be considered one at a time, 
however this would lead to solutions that are far away from the optimum. A 

second misleading point that is not considered in the above formulations is 

the sequence and state-dependent setup times required for the execution of 
each activity. More detailed discussion on the reasons of the sequence and 
state-dependent setup times will be done in the next section.

Gabrel [16] presents a parallel machine scheduling approximation of the



low-orbit Earth satellites scheduling that will be discussed in more detail in 
the single machine section of this chapter.

As mentioned earlier, another approach to the SMS was building soft­
ware architectures mainly depending on constraint-directed search schedul­
ing methodology. One such tool is the Ground Processing Scheduling System 
(GPSS), a scheduler tool proposed by Deale et al. [7] that uses GERRY [64] 
scheduling engine developed at NASA. GPSS is designed for the space shuttle 
ground processing scheduling system. After the shuttle returns to Earth and 
until the time it leaves the launching pad, there are many activities related 
to the maintenance, modifications, testing and repair that should be sched­
uled very efficiently. One of the main sources that increases the complexity of 
the problem is the amount of work that are not predetermined which requires 
an interactive scheduling. Also Aarup et al. [1] propose a knowledge-based 
planning system for spacecraft AIV which is a system developed for European 
Space Agency.

Some other tools that use a similar perspective are also developed for a 
typical SMS problem, namely the HST scheduling problem. These proposed 
approaches will be discussed in detail in the following sections. But before 
going on to this discussion let us first describe the HST domain components.

CHAPTER 2. LITERATURE REVIEW 7

2.2 HST DOMAIN COMPONENTS

Hubble Space Telescope is an approximately $ 1.5 billion project that is carried 
out by NASA and placed at its orbit on April 1990. The overall management 
of the telescope is done by Space Telescope Science Institution (STScI) and it 
has an expected lifetime of 15 years. In the beginning, a manufacturing flaw 
in the primary mirror of the HST happened to cause some problems in the 
project. However this did not affect to obtain valuable scientific results from 
the exposures that are done by the observatory. In late 1993 space shuttle 
was sent to the observatory and the main camera was replaced with a second
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generation instrument and the mirrors figure was compensated which in turn 
increased the optical qualities of the HST.

The main components of the HST domain can be stated as follows; There 
are six viewing instruments on board: two cameras, two spectrographs, a pho­
tometer and a fine guidance sensors. There are some possible different con­
figurations of each of these viewing instruments. The primary mirror of 2.4 
m diameters gathers the light from the celestial objects called targets and 
focuses the light to the viewing instruments. The scientific data gathered from 
the targets are either communicated directly to earth or stored to three on­
board tape recorders. Transmission of the data to earth is done through one 
of the two satellites of Tracking and Data Relay Satellite System (TDRSS). 
There are two links between the HST and earth with different communication 
rates, 4 kilobits per second (kps) and 1 megabits per second (mps). However, 
since HST is in low earth orbit of 590 km with an orbital period of 95 minutes, 
most of the targets as well as the TDRSS satellites are periodically occulted 
by earth, and it is not possible to use these links all the time. Another reason 
for this is that HST shares the TDRSS system with many spacecrafts. HST 
cannot use 4 kps link approximately 10% of the time when it cannot communi­
cate with either of the two satellites and can use the 1 mps link on the average 
20 minutes per orbit.

Since the targets are occulted periodically by earth, exposures on targets 
are possible only at some portion of each orbit. This time intervals at which 
the exposures are possible are called the visibility windows. Occupation 
by earth is not the only factor that affects the starting and ending times of 
the visibility windows; South Atlantic Anomaly (SAA), the occupation of the 
targets by the moon and the sun are some of the other main factors.

Proposals for the candidate observation is mainly a request of an exposure 
of a particular celestial object with a particular configuration of a particular 

viewing instrument. So it is not sufficient to start an execution of a candidate 
observation, even if it is in its visible time window. Obviously to start an 
execution of an exposure, HST must be pointed at the target, and the requested
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configuration of the instrument should be set as well as the target should be 
in its visible time window.

If the telescope is not pointed to the target then some amount of time 
is needed for the pointing process. This pointing process is called as slewing 
process and the needed time is called as slewing duration. Slewing duration 
depends on both the average slewing rate and the angular difference between 
the requested observation target and the current target that HST is pointing 
at. In fact there are some other factors that affect the slewing duration in the 
complex domain of HST, such as pointing restriction relative to sun.

Similarly, some amount of time is needed in order to set the requested 
configuration of the selected instrument if it is not the one that is currently 
set. This process is called as reconfiguration process, and the needed time 
as reconfiguration duration. The reconfiguration process of the instruments 
are one of the sources that increases the complexity because of the complex 
power up/ power down sequences needed in order to satisfy the limited electric 
power and thermal constraints of HST.

For generating short-term schedules for HST, researchers must consider the 
user-imposed constraints as well as the concepts of visibility windows, slewing 
and reconfiguration process, and limited electric power constraints. There are 
many sources of scheduling flexibility for an astronomer when preparing a pro­
posal for request of HST observations. Proposals from the astronomers may 
be observation programs that include several observations. The astronomer 
may request specific precedence, ordering, minimum and maximum time sep­
arations, repetitions and interruptibility for their observation programs. It is 
also possible for an astronomer to specify some conditions on exposures and 
these conditional exposures are contingent and are not scheduled until the as­
tronomer decides whether it should be scheduled or not. It is quite possible 

that a need for an exposure can emerge as a consequence of some other results 

obtained from different observations.

Astronomers prepare their proposals in two phases. In the first phase they
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just describe the scientific intent and required resources, and submit these pro­
posals to STScI. These proposals are reviewed at STScI on an annual basis and 
the decision of programs for the coming year is done by an allocation commit­
tee. The number of approved programs are expected to exceed the capacity of 

the observatory in order to ensure the high utilization of the telescope. The 
astronomers must prepare a detailed proposal for the second phase if their pro­
grams are approved by STScI. In the second phase they give detailed informa­
tion about the needed instrument parameters, astronomical objects, individual 
exposures and the other user-imposed constraints if any. They can submit their 
proposal through Remote Proposal Submission System (RPSS) electronically 
in an ASCII file. RPSS can also determine some of the errors that can be done 
while preparing a proposal. A detailed information about the preparation of 
the proposals can be found at [59]. These proposals are the main inputs for 
the planning and scheduling process of HST.

STScI also assigns priorities to the approved observation programs consid­
ering their scientific value and operational efficiency as follows:

i ) “high-priority” observations that take nearly 20% of the estimated avail­
able time

ii ) “medium-priority” observations that take nearly 70% of the estimated 
available time

iii) “supplemental-pool” observations that takes nearly 30-50% of the esti­
mated available time

A Fortran-based software. Science Operations Ground System (SOGS) is 
developed by TRW in order to support the astronomers when planning and 
scheduling HST. Science Planning and Scheduling System (SPSS) is the major 
tool of SOGS, which is designed to produce executable and detailed schedules 
from the approved viewing proposals. However some important shortcomings 

of SOGS emerged and it is understood that it was not working as desired. Main 

problems of the SOGS were, its inflexible nature which cannot accommodate 
some constraints due to the characterization of the problem, incompleteness
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due to not considering many physical constraints and leading to extra manual 
work, incorrect programming methodology used when developing the software 
and computational infeasibility that emerges from the non-hierarchical nature 
of the solution approach. A detailed discussion on shortcomings of SOGS can 
be found in Waldrop [62]. This important shortcomings of SOGS lead STScI 
to find out new solutions to the planning and scheduling problem of HST. One 
of the major outcome of this new research was SPIKE.

2.3 SPIKE

SPIKE is developed by Johnston and Adorf [25] in order to overcome the 
shortcomings of SOGS and augmented to the system. Mainly, the contribution 
of SPIKE was partitioning the problem into two parts; long-term schedule 
and short-term schedule. SPIKE is currently used as a long-term scheduling 
tool that partitions the approved observations into weekly or smaller buckets 
which in turn becomes the input to, SPSS, for generating a detailed short­
term schedule. This is quite logical because of two reasons. First of all, the 
magnitude of the problem makes it impossible to generate detailed schedules 
in feasible computation time. Secondly, orbital constraints loose certainty on 
longer horizons.

The underlying philosophy of SPIKE is constrained-directed search paradigm. 
This paradigm is an incremental problem solving methodology based on re­
peated global analysis of the characteristics of constraints implied by the cur­
rent solution as a means for structuring and exploring the underlying search 
space. Briefly it can be stated as identifying the relation on the set of all 
variables that satisfies all of the constraints.

SPIKE views the scheduling as a constraint satisfaction problem that max­
imizes the total number and importance of the constraints that are satisfied. 
SPIKE divides the constraints into two sets; one of them is the hard constraints 
that are required to be satisfied in order to obtain executable schedules and the
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other set is soft constraints which are not required to be satisfied but should be 
considered because they represent a preference for the related activities. Dif­
ferent weights are assigned to the constraints. Obviously, hard constraints have 
higher weights than the soft ones. Since SPIKE currently handles the long­
term scheduling of HST, temporal constraints associated with the activities 
have higher weights than the resource utilization constraints.

SPIKE takes the detailed proposals of the astronomers and creates suitabil­
ity function for the activities from the constraints. The suitability function is 
a function of time and represents the desirability of an activity to start at the 
specified time. Then SPIKE generates a schedule by taking these suitability 
functions into consideration.

Initially the schedule search was done by a neural network developed by 
Johnston and Adorf [25], namely the Guarded Discrete Stochastic (GDS) net­
work. However, Minton and Philips [41] and Minton et al. [40] showed that a 
Min-conflict algorithm distilled from GDS, is at least as effective as GDS and 
moreover very easy to implement and at least an order of magnitude faster 
than the GDS network. So the GDS is replaced with the multi-start stochas­
tic repair routine which is an heuristic repair-based search method. This new 
routine consists of trial assignment, repair and deconflict steps.

In trial assignment step an initial solution is generated which should not 
have to be consistent, that is to say it is allowed to have some constraint vi­
olations. This initial solution will be the input to the repair step and it is 
known that good initial solutions give better results at the repair step both in 
computational aspect and objective aspect. Over thousands of combinations 
of heuristics SPIKE team identified several good heuristics. One of the most 
successful of these heuristics is as follows: Select the most-constraint activity 
to assign first. The number of Min-confiict times is used as the measure for 
degree of constraints. Then the activities are assigned to the times with mini­
mum conflict, with ties broken by maximum preference derived from suitability 
functions or by the earliest time [26].

Then a repair heuristic is applied to this initial solution. There are several
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alternatives in selection of the heuristics. One of the best is Min-conflict heuris­
tic that is mentioned previously. This heuristic selects an activity in conflict 
with another one, and assigns it to the place which minimizes the number of 
conflicts. As an improvement to this algorithm such as in the selection of the 
activity a Max-conflict activity selection can be used. Repair search continues 
until a predefined effort has been extended or no conflicts is left.

Finally SPIKE uses a deconflict routine that selects the activities based 
on lower priority, higher number of constraint conflicts and lower preference 
time assignments values, and removes them from the schedule. It also tries to 
schedule unscheduled observations if there are gaps in the schedule that are 
suitable for them.

Since the heuristics used in SPIKE are stochastic and it is possible to use 
different heuristics in both trial assignment and repair step, better results can 
be obtained by generating as many schedules as time permits.

The small observation buckets constructed by SPIKE can be easily handled 
by SPSS. This hierarchical approach to the problem of using SPIKE as long­
term scheduling tool and SPSS as the short-term scheduling tool overcomes 
the computational infeasibility of SOGS. After SPSS completes the generation 
of short-term detailed schedule, SPIKE analyzes and determines the factors 
that can affect the future schedule. The observations that are not scheduled 
by SPSS, become the candidate observations for rescheduling in SPIKE.

Although SPIKE is developed for HST scheduling problem, many different 
applications of SPIKE to other problems are available. Some of these problems 
are astronomical scheduling problems, such as ASTRO-D mission scheduling 
[22] and XTE [44]. There are further discussions available in Johnston and 
Miller [26] of some other applications to astronomical scheduling problems of 
SPIKE. For the mentioned two applications, SPIKE is both used as the long­
term and short-term scheduling tool. But several adaptations are needed in 
order to implement it to the short-term scheduling problem. These were task 
preemption, new classes of short-term scheduling constraints such as modelling 
target occultation, maneuver and setup times between the targets (note that
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since SPIKE was designed to be a long-term scheduler user-imposed constraints 
were the main constraints that were considered rather than the physical con­
straints) and a post-processor that examines short-term schedule for utilizing 
any remaining gaps [26].

There are even some different problem domains that SPIKE is applied. 
Johnston and Minton [27] apply the multi-start stochastic repair routine, which 
is the heart of SPIKE, to n-queen problems and job-shop scheduling prob­
lems, and obtain remarkably good results after comparing it to some other 
approaches found in the literature.

However SPIKE is currently the long-term scheduling tool of HST and to 
adapt it to short-term scheduling of HST is a complex task and beyond the 
topic of this thesis. Whereas we will provide some information about the short­
term scheduling methodology of the SPSS later.

2.4 HSTS

Second major search direction in HST planning and scheduling is Heuristics 
Scheduling Testbed System (HSTS) [45]. HSTS is a software architecture that 
integrates planning and scheduling. It was partly supported by NASA and 
developed mainly at the Carnegie Mellon University in order to generate more 
effective solutions to HST scheduling problem. The software architecture pro­
vides a domain description language (DDL) for modelling the static and dy­
namic structure of the system and a temporal data base (TDB) for representing 
possible behaviors of the system. It also provides an opportunistic, constraint- 
directed methodology.

In a previous research by Ow and Smith [50], it was shown that this ap­
proach is more powerful than the classical approach in large-scale manufac­
turing scheduling problem. The main motivation behind the development of 
HSTS was adopting and implementing the concept of opportunistic, constraint 

directed scheduling and test its performance in a highly complex domain such
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as HST scheduling. Thus in the very beginning HSTS denoted the opening 
form of Hubble Space Telescope Scheduling [46]. But several years after the 
birth, the project team renamed it and chose the current one as its name. This 
change was not only in the name but also they improved the software and used 
it at some other problem domains such as job-shop scheduling and transporta­
tion planning [45]. More detailed information about the software architecture 
of HSTS is available at [45], [46], and [47]. Even though the adaptations and 
the architecture of HSTS is beyond our topic, the methodology that is pro­
vided for generating executable short-term schedules for HST is obviously very 
important and should be discussed in detail.

Similar to SPIKE approach, HSTS also decomposes the problem into long­
term and short-term scheduling problems and focuses to the short-term schedul­
ing. However there is a difference between the approach of SPIKE and HSTS 
to the long-term scheduling. HSTS look to the aggregate level as if it is a level 
that the observation programs are assigned to the smaller buckets considering 
capacity requirements. That is to say, there is no need, in fact no possibil­
ity, to ensure satisfaction of the feasibility constraints while at aggregate level. 
In fact it is even desired to have certain amount of oversubscription in order 
to guarantee high utilization. But obviously short-term schedule must satisfy 
such constraints in order to have executable schedules.

HSTS proposes to handle the problem of generating short-term schedule in 
different levels of abstractions. This is a quite logical approach for the domains 
that are complex and highly interactive such as HST scheduling. Furthermore 
the magnitude of the overall problem suggests to construct the detailed and ex­
ecutable schedules after some commitments are done. By this way the problem 
can be analyzed at an aggregate level that allows to focus to more important 
aspects that are mainly effective in overall objective, whereas the detailed lev­
els can be used to refine the intermediate solutions in order to satisfy all of the 
constraints.

In this regard HSTS uses two different level of abstractions, namely abstract 
level and detailed level. Abstract level is responsible for the generation of initial
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observation sequences by taking into account the telescope availability, overall 
telescope reconfiguration and target visibility windows, whereas the detailed 
level is responsible for determining the executable and detailed schedules of 
HST as discussed in Muscettola [45].

There is a strong communication between these two levels. Observations 
that are sequenced in the abstract level are communicated to detailed level. 
The abstract level implicitly accounts the overall telescope reconfiguration, 
slewing and warm-up and shut downs, as temporal delays rather than explicitly 
model them as it is in the detailed levels. Since the observation programs are 
sequenced with respect to the abstract estimates of reconfiguration times, it is 
quite possible some modifications would be required for that sequence. So the 
detailed level communicates back to the abstract level a more precise account 
of the reconfiguration delays.

Even though the detailed level generates the schedules that are executable 
for the HST, abstract level is the main stage that guides the detailed schedules. 
So it is important to have a good sequencing methodology at the abstract level.

Smith and Pathak [57] proposes three strategies for the abstract level of 
HSTS, and to the best of our knowledge these strategies are the current ones 
in the core of HSTS. The first strategy tries to maximize the utilization of 
the HST. The observation that can first start after the last observation of the 
partial schedule is assigned as the next job to be selected. This procedure 
continues in this manner until there is no time left or no job left to be selected. 
This is a dispatch-based methodology namely the Nearest Neighbor (N N ) that 

is a simple heuristic used to solve the Travelling Salesperson Problem (TSP) 
type problems. Also a modified version of NN with Look-Ahead (N N L A ) is 
provided. NNLA works as NN while tries to minimize the rejections (Note 
that an observation is rejected if there is no time available for the execution 
of the observation in the partial schedule) of the observations by a look-ahead 
mechanism. But even with this look-ahead mechanism it is impossible to gen­
erate good solutions in the interacting nature of the constraint, and thus very 

myopic.
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Second strategy focuses on the maximizing the number of scheduled obser­
vation programs and thus minimization of the rejection of the observations. It 
tries to add the job with the fewest allowable start time, where this process 
is named as the Most-constrained First (M C F ). It is also a notable aspect of 
MCF, that the next assigned observation should not be added just after the 
last job of the partial schedule. A shortcoming of this algorithm emerges from 
the fact of the myopic nature of assigning the next most constrained in the 
cycles that have nearly the same allowable start times.

Moreover a third strategy is suggested which in fact is a multi-perspective 
scheduling methodology that tries to balance the both of the objectives of 
maximizing the utilization of HST and maximizing the number of scheduled 
observation programs. M C F /N N  strategy achieves this by opportunistically 
selecting one of the first two strategies at each step. Analysis on the results 
provides important insight about the relative strength of alternative strategies. 
These insights give the chance of opportunistically selecting the appropriate 
strategy at each step by analyzing the current state of the partial solution. 
So there is no a priori strategy that the scheduler must obey. That is to say 
in this strategy if the difference of the maximum allowable start time and 
the minimum allowable start time (that are determined just by calculating 
the allowable start times for each unscheduled job) decreases below a certain 
threshold value than the scheduling continues with NN strategy and otherwise 
uses MCF.

These three heuristics are tested by Smith and Pathak [57] with an experi­
mental design that only considers two different instruments. In their research, 
N N  strategy is determined as the one that provides the highest utilization 
where as M C F  provides the minimum rejection, so they sum up with the 
third one and suggest M C F /N N  as the initial building blocks for the solution 
to the problem. However as it was mentioned earlier these methodologies are 
very simple and myopic. Infact, Smith and Pathak [57] also accepted that these 
are not sophisticated strategies and developing better methodologies are men­
tioned as future research directions. Also it is important that these strategies 

do not consider the different priorities of the observation programs, which is
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also stated in [57] as a future research direction. And this thesis demonstrates 
more powerful heuristics where the priorities are also considered.

2.5 VEHICLE ROUTING PLANNING

A typical vehicle routing planning (VRP) problem is finding the minimum 
costing routes for a fleet of vehicles that serves to a set of customers with fixed 
demand. Desrochers et al. [8] provide a comprehensive classification scheme for 
vehicle routing planning and scheduling problems. Laporte [36] represents an 
overview of the main exact and approximate algorithms to VRP. In the vehicle 
routing scheduling and planning with time windows (VRSPTW) problem there 
is an additional time constraint associated with each customer. That is to say 
each customer has a time window which starts with an allowable earliest start 
time and ends with an allowable latest start time. There are basically two types 
of time windows in VRSPTW. The first one is the “hard” time windows which 
specifies the time interval that is required to serve to the customer. However, 
in the second case time windows are “soft” , so with a penalty cost it is allowed 
to violate the time window constraint.

VRSPTW emerged from the fact of time-constrained activities that should 
be considered while routing and scheduling. Some important application areas 
of this problem are the routing and scheduling of bank deliveries, meal delivery 
services, dial-a-ride services, and school bus routing and scheduling.

Solomon [58] presents four heuristics for the solution of the problem. First 
one is a saving heuristic which begins with n distinct routes in which each 
customer is served by a dedicated vehicle and tries to merge the routes that will 
bring profit to the objective function. Second one is a sequential tour-building 
heuristic that starts every route by finding the closest unrouted customers and 
continues in this manner. This is the famous nearest neighbor procedure. Third 
one is an insertion heuristic that initializes a route (with respect to several 
greedy heuristics such as earliest deadline or the farthest), for each unrouted
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customer computes the best feasible insertion place which looks for the one 
that minimizes the extra distance and the extra time required to visit the 
customer. And finally a sweep heuristic which repeatedly applies to phases. In 
phase one by the sweeping algorithm the customers are clustered and assigned 
to a vehicle. In the second phase a single-vehicle schedule is created for the 
customers that are assigned. Then this process is repeated with the unassigned 
customers remained from phase one and the customers that are assigned but 
could not be scheduled in phase two due to the time window constraints, until 
all customers have been scheduled.

Potvin and Rousseau [53] represent an algorithm that makes use of the 
generic insertion heuristic of Solomon but introduces another customer selec­
tion cost as well as a parallel route building philosophy. In this philosophy a 
set of routes are initialized at once and the remaining customers are inserted 
to any one of the routes. Kolen et al. [31] represent a B&B method for the 
same problem.

Atkinson [3] describes a general greedy heuristic which includes a look ahead 
capacity for large-scale vehicle scheduling problem with time windows. The 
problem is scheduling of vehicles to deliver school meals to dining centers from 
kitchens. In the formulation each dining center is supplied by a particular 
kitchen whereas several dining centers can share a particular kitchen. There is 
an earliest pick up time associated with the kitchens and a latest delivery time 
associated with the dining centers. Maximum time allowed that a food can be 
kept in the vehicle is another constraint that is considered in the formulation.

Balakrishnan [4] proposes three heuristics for the VRP problem with soft 
time windows. In the formulation the penalty cost of violating the time win­
dows is a linear function of the amount of the time window violation. The 
heuristics proposed are basically nearest neighbor, savings and space-time 
heuristic. Jones [28] proposes a mean distance heuristic to VRSPTW prob­
lem under uncertain demand. A typical case of this problem is scheduling 
service engineers within time windows where schedules are prepared interac­
tively. Gendreau et al. [17] proposes an integer programming formulation and
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a specialized enumerative algorithm that tries to minimize the number of cus­
tomers visited after their deadlines. However the lack of the allowable start 
time differs the problem from the concept of time windows. This problem is 
denoted as the travelling salesman problem with deadline.

Desrosiers et al. [9] provide an extensive overview on time constrained 
routing and scheduling. Some problems such as TSPTW, constrained shortest 
path problem, VRPTW , pick up and delivery problems with time windows are 
formulated and some solution procedures based on Dantzig-Wolfe decomposi- 
tion/column generation, Lagrangian relaxation and dynamic programming are 
proposed.

Vehicle routing scheduling and planning with time windows (VRSPTW) 
problems share many common features with the SMS problems. For one vehicle 
and multiple time windows associated with the customers the problem turns 
out to be a good approximation of the HST domain. One vehicle represents 
the HST, each customer of the vehicle can be viewed as an observation target 
and multiple time windows associated with the customer can be viewed as 
the visibility windows of the celestial targets. Furthermore, the time required 
between two customers is both sequence and state-dependent. However as 
discussed above the VRSPTW literature considers the single time windows 
and mostly tries to find the minimum costing route as the objective, where 
as the objective of an HST approximation should be cared for minimizing 
the number of unvisited customers within a time horizon. Furthermore the 
customers considered in the literature usually have equal priorities.

2.6 SINGLE MACHINE SCHEDULING

The objective of HST scheduling is stated as to maximize the scientific return. 
Scientific return both depends on the number of the observation programs that 
are scheduled and the priorities that are associated with the corresponding 
observation programs. So this objective can be stated as minimizing weighted
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number of tardy jobs in terms of single machine scheduling. It is possible 
to visualize HST scheduling problem as single machine scheduling in order to 
minimize the weighted number of tardy jobs with sequence and state-dependent 
setup times. Here state-dependent term is related to visibility windows of the 
targets. It is state-dependent since even the needed time to start a particular 
observation after another particular observation is not constant since it depends 
to the ending time of the previous observation and the visibility window of 
the next observation. Where as sequence-dependent setup cost between two 
particular activities is constant.

Time windows concept mostly refers to due windows of the jobs in single 
machine scheduling literature. In fact due windows implicitly can be viewed as 
single time windows (visibility windows in HST). Anger et al. [2] formally in­
troduce the term due window and provide a polynomial time algorithm for the 
minimization of the number of jobs completed outside their time window [33]. 
Lann and Mosheiov [35] study due-windows with the objective of minimizing 
the (weighted) number of early and tardy jobs. Some other researchs on single 
machine scheduling with due windows such as Kramer and Lee [33] and, Li­
man and Ramaswamy [38] focus to the earliness and tardiness penalties which 
become to be an important research area with the evolution of Just-In-Time 
(JIT) philosophy in manufacturing.

Moore [43] presents a polynomial time algorithm that solves the single ma­
chine sequencing problem of minimizing the number of the tardy jobs. However 
minimizing the weighted number of tardy jobs is NP-hard. Lawler and Moore 
[37] present a pseudopolynomial dynamic programing algorithm to minimiza­
tion of weighted number of tardy jobs as well as maximization of weighted 
earliness, minimization of tardiness with respect to common relative and ab­
solute deadlines, and minimization of weighted tardiness with common due 
date. Potts and Wassenhove [52] propose a branch-and-bound algorithm that 
reduces the size of the search tree with dominance reductions and reductions 
with respect to the lower bounds obtained from knapsack formulation of the 
problem. Villarreal and Bulfin [61] also provide a branch-and-bound algorithm 
for the weighted number of tardy jobs problems. Kise et al. [30] describe a
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solvable case of single machine scheduling with ready and due dates where 
the objective is minimizing the number of tardy jobs. They also propose a 
polynomial time for the case where rj <  rj di < dj.

Until now none of the above papers deal with the sequence dependent set-up 
time constraints. Hochbaum and Landy [20] show that the decision problem of 
weighted number of tardy jobs with batch setup is NP-complete and propose 
a pseudopolynomial algorithm. At their formulation the completion time of a 
job is same with the completion time of the corresponding batch. Monma [42] 
also considers the batch setup and provides a dynamic programming algorithm 
which is exponential in the number of batches. Nowicki and Zdrzalka [48] 
represent a tabu-search approach for general cost functions for single machine 
scheduling with minor and major setup times and give results of computational 
experiments for maximum weighted tardiness and total weighted tardiness. Feo 
et al. [13] apply Greedy Randomized Adaptive Search Procedure (GRASP) 
methodology to single machine scheduling with sequence dependent setup costs 
and linear delay penalties.

Obviously, single machine can only correspond to single time window at 
space mission scheduling. However it is possible to visualize multiple orbits 
(which in turn causes multiple time windows) as parallel machine at scheduling 
literature. In a planning horizon T, the low orbit Earth satellites (or HST) 
make k revolutions (orbit) around the Earth. If we refer to k revolution as k 
identical parallel machine then the problem with time windows will be a slightly 
more realistic representation of SMS. A very important shortcoming point of 
this approach to the SMS problems emerges from the fact that scheduling 
orbit by orbit would lead to very myopic solutions since it will not consider 
the overall performance of the planning horizon which typically consist of tens 
of orbits. Gibrel [16] discusses the problem of jobs within time windows on 
identical parallel machines and proposes an algorithm for the decision problem. 
In the formulation each job can be processed only on a subset of machines. 
Also a discussion of this formulation in a low-orbit satellite scheduling concept 
is provided. However in the formulation neither the slewing time nor the 
reconfiguration time is considered. Furthermore, there is no priority differences
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of the targets and only the decision problem is discussed.

2.7 HEURISTIC SEARCH METHODS

Most of the real-life scheduling problems, as well as the SMS problem, cannot 
be solved with exact algorithms in a reasonable computational time because 
of their complex nature. So heuristics are developed in order to find not nec­
essarily the optimal but a good solution to such problems. Several features 
that demonstrate the effectiveness of these search heuristics are their ability to 
adapt to a particular realization, avoid entrapment at local optima and exploit 
the basic structure of the problem. Some of the most promising search meth­
ods such as GRASP, filtered beam search and simulated annealing will be used 
in our proposed algorithms. We will now present a brief discussion on these 
concepts.

2.7.1 GRASP

Greedy Randomized Adaptive Search Procedure (GRASP) is an iterative pro­
cess that provides a solution to the problem at the end of each iteration and 
the final solution is the best one that is obtained during the search. A typical 
GRASP consists of mainly two phases. The first phase is the construction 
phase. In this phase GRASP builds a feasible solution by selecting and adding 
one element from the alternatives to the list at a time. At each stage of the 
construction phase all the elements in the candidate list is ordered with respect 
to a greedy function. Then a restricted candidate list (R C L) is constructed, 
where the best elements are selected while constructing the RCL. Then ran­
domly any of the element is selected from of the RCL as the next alternative 
while constructing the solution. It is also adaptive because after adding the 
lastly selected alternative to the partial solution list, the state of the partial 
solution list is also updated in order to reflect the consequences of the currently 
added alternative. As we update the state of the partial solution, obviously.
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the greedy function values of the elements will change in the proceeding stages 
of the construction phase.

The second phase is the local optimization phase, in which GRASP explores 
the neighborhoods of the solution obtained from construction phase and tries 
to move to a better neighbor. If such a neighbor is determined then GRASP 
replaces the current one in hand with the neighbor and repeats the same pro­
cedure with the new solution. This procedure goes until no such neighbor is 
found.

The main motivation behind this two-stage structure is as follows. Even 
though the construction phase quickly generates a good solution it is not guar­
anteed to be a local optimum. It is quite possible to improve a solution by 
applying a different iterative improvement method that seeks the local optima 
[13]. Also it is known that the selection of a good initial solution leads the local 
optimization methods to better results. Especially the speed of such local op­
timization techniques significantly increases by starting with a good solution. 
Since the initial solution of the second phase is the one obtained from the first 
phase, second phase works very effectively. Randomized approach of GRASP 
gives the chance to the user to spend some time for improving the solution as 
the time permits.

There are basically two different parameters that should be selected. We 
must decide the number of the best candidates that enters to the RCL at each 
stage of the construction phase. One way is just selecting a constant number 
that specifies the number of the elements of RCL. Feo et al. [12] suggest a 
decision parameter (a) and determine the ratio of each candidate elements 
greedy function value over the best greedy function value of that current state 
and selects the candidates that has higher ratio than a . Another parameter to 
be decided is stopping criterion. There are various possible ways of terminating 
the search. One and the most common way is just fixing a constant number of 
iterations and then terminate.

It is also possible to modify the first phase of GRASP, by not selecting the 
element to be added to the solution from the RCL randomly. The selection
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of the next job can be done by assigning different probabilities with respect 
to their greedy function values and we can consider these probabilities while 
constructing the initial solution.

A typical GRASP procedure is as follows

1. Define the Initial State

2. While not (stopping criteria met) do the following

2.1 P rocedure Construct the greedy randomized solution

2.1.1 Set the Partial Solution {PS) =  { }

2.1.2 While not (greedy solution constructed) do the following

2.1.2.1 Construct RCL

2.1.2.2 Select randomly an element from RCL (s)

2.1.2.3 Add this element to partial solution (set P S = P S  U {s })

2.1.2.4 Adapt Greedy function

2.1.3 Set greedy solution {GS) =  P S

2.2 P rocedure Local Optimization Search

2.2.1 While not {GS locally optimum) do the following

2.2.1.1 Find a better solution GS* from neighbors {GS* G N{GS))

2.2.1.2 let new GS =  GS*

2.3 Set the current solution to GS {CS =  GS)

2.4 If the current solution is better than the best solution {BS) found 
until now than update the best solution {BS = CS)

3. End. (The output is the best solution {BS))
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There are various applications of GRASP available in the literature. For 
example Feo et al. [13] apply the GRASP methodology to single machine 
scheduling with sequence dependent set up costs and linear delay penalties. 
Laguna and Gonzalez-Velarde [34] use a hybrid heuristic that combines some 
features of tabu search with GRASP and uses it as a search heuristic for just-in- 
time scheduling in parallel machines. Ghosh [18] develops a GRASP heuristic 
for maximum diversity problem. Feo and Resende [12] represent a detailed 
discussion on the GRASP methodology and numerically show how it works 
for two graph theory problem, set covering and maximum independent set 
problems. They also represent a very good review of the GRASP applications 
at the areas such as production planning and scheduling, graph theory and 
location problems, and propose a way of augmenting the mutation concept to
GRASP.

2.7.2 BEAM SEARCH

Beam Search is a heuristic search method developed to search the decision trees 
of the optimization problems in a fast way. Mainly it resembles the famous 
branch and bound (B&B) algorithm. However it differs from it by pruning 
the nodes that do not seem to be the most promising ones, which can be 
done only after a guarantee of non optimality in B&B algorithm. The most 
promising b nodes, where b is the beamwidth, is determined with respect to 
a heuristic evaluation function. Tree moves downward only from these most 
promising b nodes while pruning the other nodes. The heuristic evaluation 
function that is used when determining the most promising nodes, can either 
be a one-step priority evaluation function or a total cost evaluation function. 
One-step priority evaluation function has a local view that only considers the 
profit that would be obtained only after the next decision to be made and 
assigns this profit as the value of the associated node. Whereas total cost 

evaluation function has a global view by projecting the current partial solution 
to a complete solution and by considering the overall profit at the end that 
would be obtained and assigns this profit as the value of the associated node.



CHAPTER 2. LITERATURE REVIEW 27

Obviously local view of the evaluation functions is very fast, however global 
view will probably lead to better decisions. In order to select the most promis­
ing b nodes it may not be feasible to use total cost evaluation function for large 
scale problems. In order to overcome this fact a filtering mechanism is gener­
ated. In this mechanism /  nodes, where f is the filterwidth, are filtered based 
on a local evaluation function and the rest are pruned. Then these /  nodes 
are evaluated with respect to the global evaluation function and b of them are 
selected in order to move down on the tree. This approach is known as filtered 
beam search as discussed in Ow and Morton [51].

In filtered beam search there are two decision parameters. These are the 
beamwidth (6) and filterwidth ( / ) .  There is a close relation between the mag­
nitude of this two parameters and the computation time of the algorithm. If a 
high beamwidth and filterwidth are selected than the computational time will 
be high. This is because of extra calculations needed to search over b nodes 
and /  computations of global evaluation function is needed for each b. How­
ever, if small values for these parameters are chosen then the trade-off will be 
less diversity in the search space, and thus entrapment in a local optima. So 
it is important to select good parameters for the routine which in fact closely 
dependent to the nature of the problem.

Beam search was firstly developed in 1976 and mostly used in artificial intel­
ligence domain. Lowerre [39] firstly used beam search on a speech recognition 
called HARPY. Fox [15] used beam search in ISIS which was the first constraint 
based scheduling system. He used an incremental beamsearch through a space 
of partial schedules and reschedules by restarting the beam search. Fargher and 
Smith [11] use beam search for planning in a flexible semiconductor manufac­
turing environment. Later Ow and Smith [51] present a thorough analysis of a 
filtered beam search methodology in single machine early/tardy and weighted 
tardiness problem of flow shops. Recently, Sabuncuoglu and Karabük [56] pro­
pose a filtered beam search algorithm for scheduling in FMS and conclude their 
superiority to other dispatch-based algorithms. Finally Sabuncuoglu and Bayiz 
[55] represent an application of beam search on job shop scheduling problems.



CHAPTER 2. LITERATURE REVIEW 28

2.7.3 SIMULATED ANNEALING

Simulated Annealing (SA) is a well known widely used iterative improvement 
technique for optimization problems, initially developed by Kirkpatric et al. 
[29]. It has a close relation with the physical process of annealing, in which 
physical substance (such as metal) is melted, i.e. raised to higher energy levels, 
and gradually cooled until it becomes solid. The aim of this process is to 
obtain the minimal energy state of the substance at the end. It is natural for 
the substance, to pass from higher states to lower states. Moreover with a 
probability that depends on the current temperature it is also possible to pass 
to the higher levels from the lower energy levels. This probability is determined

—A E , . _ . . __
with the following expression: p = e where A E  is the difference between 
the energy levels, k is the Boltzmann constant and T  is temperature.

Analogically SA works as follows. It takes an initial solution, searches the 
neighbors of this solution, and moves to the neighbor if it has better objective 
value. It is also allowed to move to the neighbors with worse objective values 
with a probability of p usually set to e r , where AEij is the loss in the 
objective function at a transition from a configuration i to its neighbor j  and 
T is a control parameter corresponds to temperature, and both AEij and T  
are positive numbers. The probability of accepting a transition is called as the 
acceptance function. This procedure continues until no improvement can be 
done on the objective.

The main difference between SA and the down-hill search (or descent algo­
rithms) is the fact that SA allows occasional uphill moves. In this procedure, 
the probability of making uphill moves is initially higher. This is provided by 
selecting a high value of initial T (To). This is just to avoid from premature 
entrapment of local optima. As the iterations proceed, by a mechanism T is 

lowered until it approaches to zero. This reduction of T is known as cooling 
and the final state as frozen level. Vidal [60] classifies two different strategies 
for the cooling mechanism of T. First one is homogeneous where T is decreased 
after a number of transitions (T), and the other is inhomogeneous where T is 

decreased after each transition.
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Johnson et al. [23] classified the choices which should be made by the user 
of SA as problem specific and generic. It is stated that initial solution ( /q), 
neighborhood generation and evaluation of AEij are problem specific, whereas 
initial temperature (lo ), number of iterations (jbfc), temperature function (Tfc; 
the function that determines the temperature at the iteration. Usually 
Tk =  OiTk-i is used in literature) and stopping criteria are generic.

It is possible to add transition selection structure to generic choices. That 
is to say when do we decide to move. Diekmann et al. [10] represent four 
different move mechanism. First win; chooses the first accepted configuration 
for an update, Best win; chooses the configuration with the best objective 
function, Boltzmann; weights the configurations according to the boltzmann 
distribution, and Random; chooses a random configuration out of the set of 
accepted configurations.

It is also possible to generate different transition selections. For example 
Ishibuchi et al. [21] propose an algorithm of selecting randomly N neighbors 
and moving to the best of this N configurations. By this way they save from 
the computational time of generating all possible neighbor configurations and 
try to avoid from a poor solution that a first-win strategy may lead.

A typical Simulated Annealing algorithm is as follows ( In the light of 
above discussion following algorithm is an homogeneous algorithm that uses a 
first-win strategy ) ;

1. Construct an Initial Solution ( /q)

2. Choose an Initial Temperature (To) where To > 0

3. Set A: =  1 and Tk — To

4. Set Current Solution (CSk) =  lo

5. While not frozen do

5.1 Repeat the following loop L times
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5.1.1. Generate a random neighbor of CSk , namely CS^

5.1.2. Evaluate / \E  = /AEcSk ~

5.1.3. If A E  < 0 then set CSk = CS^ (downhill movement)

- A E
5.1.4. If A E  > 0 then set CSk = C Sl with a probability of e (uphill 

movement)

5.2 Set k = k A 1

5.3 Set Tk =  CiTk=i

6. End.

The efficiency of the SA depends on several factors. One of the most cru­
cial is the way of how the neighbors are generated. Most of the research define 
a neighborhood generation structure and choose the next potential solution 
at random from the set of the neighbors of the current solution, However, 
Connolly [6] presents that a sequential construction of neighborhood search is 
more effective than the random search method. Moreover an intelligent neigh­
borhood generation mechanism can be used to overcome the most important 
shortcomings of SA, namely the huge computational time. For example Ze- 
gordi et al. [63] propose such an algorithm for flow-shop scheduling problem. 
It is proposed to generate a list of promising neighbors that is called Moving 
Desirability of Jobs Index and generate the next neighbor according to that 
index rather than random or sequential. By this way it is possible to construct 
smaller neighborhood space from the most promising ones. It is also suggested 
by Zegordi et al. [63] to use a tabu list in order to avoid from infinite loops.

Another important factor is the quality of initial solution. Johnson et al. 
[23] experimentally show that starting with a good solution increases the power 

of SA.

A third factor is the tuning of the parameters of SA. For example, it is 
very important to select good initial temperature and a cooling scheme. If the
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temperature is too high than very bad uphill moves would be accepted, while if 
it is too low than the move will quickly be entrapped in a local optimum and the 
rest of the search will be only useless trials to escape from the local optimum. 
Connolly [6] proposes an annealing scheme that tries to maximize the portion of 
the search near an optimum temperature where he suggests a way of estimating 
the initial and final temperature. There are various cooling scheme available 
in the literature. Johnson et al. [23] suggest to use the standard geometric 
cooling method since there seems to be no reason to replace it with the other 
methods such as logarithmic cooling, linear cooling, etc.

There are hundreds of papers available in the literature on both theoretical 
aspects and applications of SA. The applications range from pollution control 
to travelling salesman problem, from layout problem in flexible manufacturing 
systems (FMS) to DNA mapping and many more. For example Kouvelis and 
Chiang [32] propose SA to layout problem in FMS, Osman and Potts [49] 
propose SA for permutation flow-shop scheduling. Collins et al. [5] represent a 
good survey paper that lists the applications in the literature. Finally Johnson 
et al. [23], [24] represent a good review of SA and test its performance in graph 
partitioning [23] and graph coloring problem [24].

2.8 SUMMARY

Until now we have described the nature of the problem briefly and discussed the 
proposed approaches to the SMS problems as well as the other related topics 
such as single/parallel machine scheduling and vehicle routing problems. As 
previously mentioned, the algorithms that are proposed to SMS problems are 
either far from reflecting the important features of the problem such as multiple 
time windows and state dependent set up times or very myopic dispatch rules 
such as NN and MCF. It is clear that there is a need of further research 

that takes the complex nature of the problem into consideration and at least 
explicitly explore the interactions between the candidate observations. In this 

research we will propose tailored heuristic search procedures and test their
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efficiency with an experimental design. We will also compare these procedures 
with the one of the dispatch based heuristics suggested by Smith and Pathak 
[57], namely with the NN. In the following chapter we will provide detailed 
information about the problem. Next we will define our proposed algorithms 
and the modifications that are done on the general algorithms in order to 
handle the specific problem of SMS.



Chapter 3

PROBLEM STATEMENT

In this chapter we will first present the objective of the problem. Next we will 
define the constraints of the problem domain. We will state the assumptions 
that are made through out this thesis and finally we will present the notation 
that we have used along with the mathematical formulation of the problem.

3.1 OBJECTIVE

The aim of this thesis is to propose new solution procedures that generate good 
and executable short-term schedules to the Space Mission Scheduling (SMS) 
problems and to test their efficiencies under different experimental conditions. 
Due to high complexity and interacting nature of the state dependent con­
straints of the problem environment, even to generate executable schedules 
is a hard task. However it is not sufficient to provide feasible schedules. In 
order to justify the great investment and high operation costs the scheduling 
algorithm must perform well.

In the literature mainly two different performance measures are proposed as 
the objective of the SMS problems. First one is related to resource utilization 

and tries to maximize the observation time. Since the resource investment

33
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is very high (mostly billions of dollars), the idle time and the set up time of 
the resource must be as few as possible. Second objective that is proposed 
is maximizing the scientific return of the mission which tries to maximize the 
scheduled programs as much as possible by taking into account the assigned 
priorities to the programs. Since SMS problems are mostly over-subscribed it 
is important to schedule as many programs as possible.

In HST scheduling problem STScI assigns different priorities (high, medium 
and supplemental) to the programs proposed by the astronomers. Even though 
utilization of HST is very important, this objective disregards the priorities 
associated with the observations. On the other hand, maximizing the scientific 
return considers the priorities. So it is more realistic to select it, rather than 
the former one. Maximizing the number of the scheduled observation is same 
as minimizing the number of unscheduled observations. So the latter objective 
turns out to be, the famous “minimizing the number of weighted tardy jobs” 
in scheduling terminology.

So the objective of this research is generating a schedule that minimizes the 
number of unscheduled observations in a given scheduling horizon by taking 
into account the priorities associated with the observations and satisfies all of 
the constraints.

3.2 CONSTRAINTS AND PREFERENCES

Both “hard constraints” that are required to be satisfied in order to obtain 
executable schedules and “soft constraints” which are not required to be strictly 
satisfied but preferred to be considered, are available in the problem domain of 
HST scheduling problem. From now on we will refer to the hard constrains with 
the term constraints and the soft constraints will be referred as preferences. 
There are mainly two type of constraints. The first type of the constraints 
emerge from the physics of observations of HST and the second type consists 
of the user imposed constraints that are specified by the astronomers when



CHAPTER 3. PROBLEM STATEMENT 35

Instrument

W F/PC

FOC

FOS

HSP

HSP

FGS

Configuration
WF
WF
PC
PC
/48
/96
/288
BL
RD

PHOT
PMT

PRISM
POL

Mode
N

UV
N

UV

Percent

35%

25%

1 0 %

1 0 %

15%

5%

Table 3.1: The viewing instruments of HST and their possible configurations

they send their proposals for observations.

There are six different viewing instruments on HST. These are namely 
Wide-Field/Planetary Camera (W F/PC), Faint Object Camera (FOC), Faint 
Object Spectrograph (FOS), High Resolution Spectrograph (HRS) and High 
Speed Photometer (HSP). The Fine Guidance System (FGS) of the telescope 
is also used for astronomic observations. Each instrument can be used with 
several different configurations. The instruments and their possible configu­
rations are presented in table 3.1. For example W F/PC can be used in four 
different modes of WFN, WFUV, PCN and PCUV. The percentages given 
in table 3.1 present the possible percentages of the observations that use the 

specific instrument.

An exposure request from HST is mainly the collection of data from a ce­
lestial object by using a viewing instrument with a particular configuration. 

Since there is limited power on board, the instruments are not allowed to be 
operational simultaneously. Some time is needed in order to reconfigure the 
instrument that is needed for the next observation. This reconfiguration
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can be changes of instruments which we will refer as the major reconfiguration 
or can be mode changes of the instruments which will be referred as the mi­
nor reconfiguration. Since these changes are depending to the previous state 
of the instrument, execution of complex power up/power down sequences are 
required. Also reconfiguration must be synchronized appropriately among dif­
ferent instruments. Furthermore some stabilization time delay may be needed 
in order to achieve thermal stability. So the time needed for reconfiguration is 
the total amount of time needed for configuration time and the stabilization 
time delay. However this total time can only be specified at very detailed levels. 
For abstract level scheduling the worst case time estimates are used [57].

In order to start an execution HST must be pointing at the target. However, 
since HST is placed at low orbit of the earth, the targets are not visible for all 
of the time. Periodically they are occulted by the earth surface. Furthermore 
there are other constraints that limit the time available for the execution of 
an observation at a target. For example some instruments cannot be operated 
when HST is passing over the South Atlantic Ocean due to the radiation belt of 
the earth (South Atlantic Anomality). It is not generally permitted to observe 
targets that are close than 35° to sun. Exception may be made for observing 
inner planets with the sun blocked by the earth. Also it is not permitted 
to observe targets within 15° to moon. Some observations must be executed 
when HST is in earth shadow in order to minimize the stray light. These above 
factors limit the size of the visibility windows of the targets. We present an 
example of visibility windows in figure 3.2.

Even the next target is in its visibility window, HST must be pointing at 
the target. This can be achieved by slewing the telescope from its previous 
direction to its new direction. The slewing duration mainly depends to the 
slewing angle between the previous direction and the next direction, and to 

the angular speed of slewing.

Astronomers locate the stars by a system similar to the equatorial system 
used by navigators. Both the celestial and terrestrial coordinate systems are 
based upon the earth’s rotation, and therefore upon the position of its South
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NCP

Figure 3.1: The equatorial system of celestial coordinates

and North poles and the position of the its equator. The celestial equator is 
the intersection of a plane through the Earth’s center, whose axis is the axis 
of rotation of the Earth, with the celestial sphere. To fix a particular place 
on the celestial equator one of the equinoxes, the points of intersection of the 
celestial equator with the ecliptic is chosen. The vernal equinox (First Point 
of Aries) is the one that is used and denoted with the symbol T  in figure 3.1. 

Two angular distances namely the declination (DEC) and right eiscension 
(RA) is used in order to specify the position of the celestial object on the 
coordinate system. The DEC of the point P (see figure 3.1) is the angular 
distance measured positive (negative) toward the North (South) Celestial Pole 

from the celestial equator along the great circle passing through the point P 

and the North Celestial Pole (NCP). The declination of the point P in the 
figure 3.1 is the angular distance between P and Q {PQ). The RA of the point 
P is the angular distance measured toward the east, from the vernal equinox.
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along the celestial equator to the intersection of the great circle passing through 
the point P and the NCP with the celestial equator. The RA of the point P 
in figure 3.1 is the angular distance between T and Q {TQ).

In order to calculate the slewing time between two celestial objects the well 
known cosine formula is used. Suppose that HST was previously picturing 
point P (from -/) and next will take the pictures of the point Z (target-i) in 
the figure 3.1. Then the slewing time of the telescope is calculated as follows.

D ECf : Declination of the ‘from’ celestial object in radians;

DECt : Declination of the ‘target’ celestial object in radians;

R A f : Right ascension of the ‘from’ celestial object in radians;

RAt : Right ascension of the ‘target’ celestial object in radians;

rel — RA  =  \RAf — RAt\

6 =  1 -  \DEC,\

if signum D ECf =  signum DECt then c =  | — \DECt\

else c =  I  -f- \DECt\

Slewtime from · / '  to V  = ^here the

angular slewing velocity =  0.0017453294

The visibility windows of two celestial targets of A and B are presented 
in figure 3.2 as an example. Periodically each target has an interval that 
it is visible and consecutively an interval that it is not visible. As we can 
see from figure 3.2, the exposure of the celestial target B can only start if 
it is in its visiblity window, if the required instrument is active and if the 
telescope is repointed. We will refer to time that is spent after maximum of 

the reconfiguration and slewing time until the next scheduled observation is 

visible again as the idle time.
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Visibility __________
window o f  [v is ib l e  
target A

Visibility 
window o f  
target B

NOT VISIBLE VISIBLE NOT VISIBLE VISIBLE

VISIBLE NOT VISIBLE VISIBLE NOT VISIBLE

WFN 

Target A

Reconfigure(WFN-HSP)

Slew(A,B)

HSP

Target B

Idle time 
< -----------=>

Figure 3.2: Visibility windows

Furthermore data communication and data storage are other constraints 
that should be considered. However it is not possible to determine the schedule 
of any of the TDRSS satellites that manages the communication of data to 
earth. So this constraints can only be satisfied by real-time scheduling.

As stated above there are some constraints that are specified by the pro­
posers. Each proposal may be an observation program that is consist of several 
different observations. A proposer may specify precedence, maximum or mini­
mum time separation, a specific due date for any of the observations, the du­
ration of the exposures, interruptibility, conditional exposures and contingent 
exposures as constraints for the programs.

Several preferences are also available in the problem domain, although it 
is not strictly required to satisfy these preferences completely. For example, it 
is preferable to schedule the observations when the signal-to-noise ratio is at 

the desired level. Also it is preferable to avoid from bright light which would 
possibly damage the instruments or impact science data quality.

Finally, the scheduler must consider the priorities that are assigned by 
STScI institute to the observations as it was discussed in detail in chapter 2.
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3.3 ASSUMPTIONS

Various assumptions are made throughout this thesis. These assumptions do 
not damage the characteristics of the problem, however simplify the problem 
domain and ease the handling and understanding the nature of it.

• The reconfiguration time is implicitly accounted as temporal time de­
lay rather than explicitly modelled it as complex power-up/power-down 
sequences.

• We modelled the reconfiguration time required to start an observation as 
the maximum of the power-up/power-down sequence durations.

• Only one instrument is operational at any time because of the limited 
power on board.

• Even though the limitations of pointing at sun complexes the estima­
tion of slewing durations, we assumed that slewing time is a function of 
angular difference between the preceding two exposures and the angular 
velocity of the telescope.

• Reconfiguration of the instruments can be managed simultaneously with 
the slewing of the telescope. So the maximum time of both is used as the 
overall set-up of HST.

• All the mentioned factors that limit the size of visibility windows, such 
as SAA, limitations of pointing to sun and moon, etc., will be implicitly 
handled at once in a single visibility window for each target that specifies 
the available time for an exposure of that particular target at each orbit.

All these stated assumptions reflect the characteristics of the real HST 

scheduling problem. These assumptions are very similar with the ones that are 

available in the literature such as Smith and Pathak [57].
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Until now we have stated the objective and the constraints of the problem 
domain. Also the assumptions that are used throughout the thesis are pre­
sented. Now we will present the mathematical formulation of the problem and 
the notation that will be used in the thesis.

3.4 MATHEMATICAL FORMULATION

A mathematical formulation of the problem can be given as follows : 

Minimize 

s.t.

Sjk > ^jv^jv Vi, k ,  V (1)

S jk +  P j < ^jv H” -/̂ (l Vi, k ,  V (2)
V

^ 2V 1
= 1 Vi (3)

Sik — { S j { k - i )  +  P j ) > S C j i y i , j , k (4)

Sik — { S j { k - i ) +  P j ) > S L j i \ / i J , k (5)

S jk +  P j  — D j < M x j W j , k (6)

S jk > R j ' i h k (7)

Sjk < M y j k \ / j .k (8)
N

Y , V j k
<»■— 1

= r 1 \fk (9)
J — *

N

Y , y j k = 1 Vi (10)
k=l

Xj z = 0,1 Vi (11)

Vjk = 0,1 y j , k (12)

Zjy = 0,1 Vi,u (13)

where

j  = 1,.., N, k = 1,.., N  and v =  1,.., V
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Decision variables are:

Sjk = Starting time of an observation request j  at sequence k 

1, if an observation request j  is rejected
Xj =

Vjk =

Zjy  —

0, otherwise

1, if an observation request j  is scheduled at sequence k
0, otherwise

1, if an observation request j  is scheduled during the time window v 
0, otherwise

Parameters :

N  = Total number of observations 

Wj =Relative priority of an observation request j  

Pj =Requested viewing time of an observation j  

T  =The length of the planning horizon

byj =Beginning time of a visibility window v for an observation j

tyj =Ending time of a visibility window v for an observation j

TWyj = Visibility window interval v for an observation j

SCji =Instrument reconfiguration time from observation request j  to ob­
servation request i

SLji =slewing time from observation request j  to observation request i

Dj =Specific deadline for an observation request j  (i.e. Dj <  T)

Rj =User specified earliest start of an exposure for an observation request 

j  (i.e. 0 < Rj < T)
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M  =Very large positive number

In this formulation, objective function corresponds to maximizing the sci­
entific return, or minimizing the number of rejected observation requests. Con­
straint sets (1), (2), and (3) ensure that the observation requests can only be 
started and completed when they are visible. Constraint sets (4) and (5) cal­
culate the time required to go from one observation request to another which 
is the maximum of the instrument reconfiguration time and the slewing time. 
Constraint set (6) finds the number of rejected observation requests. If there is 
any user specified timing requirements for an earliest start time of an exposure, 
constraint (7) guarantees that an observation request cannot start before its 
requested time. Constraint sets (8), (9), and (10) ensure that two observation 
requests are not scheduled to use the HST at the same time, and no observation 
requests can be scheduled during either slewing or instrument reconfiguration 
time. Constraint sets (11), (12) and (13) give the integrality requirements for 
some of the decision variables.



Chapter 4

ALGORITHM S

In this chapter we will present the algorithms that we have proposed for gen­
erating short term observation schedules of SM projects as well as the nearest 
neighbor (NN) algorithm that we have used while testing the efficiencies of the 
proposed algorithms. In section 4.1, we will present the notation that is used 

throughout this chapter. In section 4.2, we will present the steps of the near­
est neighbor algorithm. Next, in section 4.3, the new dispatch heuristic that 
we have proposed is presented. The beam search and the simulated annealing 
algorithms are given in sections 4.4 and 4.5, respectively. In section 4.6, we 
will present the Greedy Randomized Adaptive Search Procedure (GRASP). 
Finally, a brief summary of this chapter is given in section 4.7.

4.1 NOTATION

In this section we will present the common notation that is used in the following 
algorithms. The additional notation that is specific for a particular algorithm 

will be given just before that algorithm. •

• Notation :

44



CHAPTER 4. ALGORITHMS 45

W  = Set of all the observations

St = Set of observations that are scheduled until the iteration t

Ut =  Set of observations that are not scheduled until the iteration t

It =  last scheduled observation at iteration t

ctif =  Completion time of the last scheduled observation I at iteration t

stjt =  End of setup time of observation j  if scheduled at iteration t

FASTjt =  First available start time of observation j  at iteration t

slackjt =  The remaining time available to schedule observation j  after it­
eration t

— : Average of the set up timess —

E JV
i^ i l l  f  — N Average of the processing times

c =  constant 

ki =  c/(2*

¿2 =  constant

The remaining time available to schedule observation j  after iteration t, slackjt 
can be calculated as follows. There are four possible cases;

a. 3v* € V  such that stjt G TWv*j and 3v € V  such that Dj € TW^ij then

slackjt — i^v*j ^vj) T {Oj ^v'j)

b. 3v* € V  such that stjt € TWv*j and Dj ^ TWyj Vu € in this case u'is 
the maximum v that e^ij < Dj then

/
slackji — )
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c. stjt ^ TWyj Vu G V in this case u*is the minimum v that b ĵ > stjt and 
G V  such that Dj G TW^'j then

slcickjt = byj') -f- (̂ Dj ^v'j^

d. stjt ^ TWyj Vu G F in this case v* is the minimum v that byj > stjt and 
Dj ^ TWyj Vu G in this case û is the maximum v that e^'j < Dj

sldckjt —  y (€"]ij byĵ

4.2 NEAREST NEIGHBOR ALGORITHM

The nearest neighbor (NN) algorithm is proposed by Smith and Pathak [57] 
for scheduling the over-subscribed systems such as SMS problems. In their 
research they test the efficiency of the algorithm at HST domain which reflects 
all the characteristics of SMS problems. NN algorithm is a well-known, simple, 
dispatch based algorithm widely used at Travelling Salesperson Problems. The 
basic procedure of the algorithm is selecting the first available candidate for 
the next step. The motivation behind this approach is mostly, obtaining high 
resource utilization.

The basic outline of the NN algorithm can be given as follows:

• Algorithm

1. Get the initial data, TWyj, Soj, SCij, SLij^ Pj, Dj

2. Problem initialization : t = \, St = [},U t = W ,lt = ^, cti  ̂ = 0

3. Calculate stjt =  n i a x { 5 ' C ' i t j , W  € Ut

4. For any observation j  G Ut calculate FASTjt, there are two possible 

cases,

a. 3u* G V  such that stjt G TWy*j in this case FASTjt =  stjt
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or

b. stjt ^ TWyj Vu € F  in this case u*is the minimum v that byj > stjt 
and FASTjt = by*j

5. Select the observation j* that has the earliest FASTjt and schedule it 
as early as possible.

6. It = j*, ctif = FASTj*t +  Pj· and t = t + I

7. Delete observation j* from the set of unscheduled observations and add 
it to the scheduled set of observations, i.e. Ut = Ut-i — j* and St = St-i + j*

8. Goto step 3 until the cti  ̂ > T

Note that in step 4, either the end of setup time of the observation j  is 
in the visibility window of observation j  as stated in (a), or not as in (b). In 
the first case first available start time of observation j  is just the ending time 
of the needed setup, however in the second case to start the observation j  we 
must wait until it is visible again.

NN algorithm has an advantage of being simple. The simplicity of the 
algorithm also affects its computational complexity which is O(n^). Even in a 
complex domain like SMS, it works quite fast. However it is far from handling 
all of the aspects of the problem. For example this algorithm neither considers 
the weight nor the due date information of the observations. Its myopic nature 
might prohibit it from good and near optimal solution. The decision is done 
only with the data available in the current step and the overall interactions of 
the observations are not considered.

4.3 NEW DISPATCH HEURISTIC

The motivation behind the new dispatch heuristic is taken from the Apparent 

Tardiness Cost (АТС) rule proposed by Morton and Rachamadugu [54] for
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the single machine weighted tardiness problem. Even though it needs more 
calculations then NN and tries to overcome the myopic nature of the dispatch 
based heuristics with a lookahead feature, it is still simple, myopic, and dis­
patch based heuristic. The first algorithm we have proposed is an АТС based 
heuristic with several modifications that are done in order to be applicable to 
the SMS problem environment. The basic procedure of the proposed algorithm 
is assigning АТС values to the remaining unscheduled observations at each it­
eration. Next we schedule the observation with the highest АТС value. The 
next observation scheduled is deleted from the set of unscheduled observations 
and added to the scheduled observations. In the next iteration the АТС values 
of the remaining unscheduled jobs are updated and again the observation with 
the highest АТС value is selected to be the one that is scheduled. This process 
goes until the end of the time horizon.

• Additional Notation :

ctjt =  Completion time of observation j  if scheduled at iteration t

ATCjt =  АТС value of observation j  at iteration t

• Algorithm

1. Get the initial data, TW^j, Sqj, SCij, SLij, Pj, Dj

2. Problem initialization : t = l,S t = { } ,  Ut = W, It = 0, ci/, =  0

3. Calculate stjt =  max{SCifj,SLi^j} H- cti ,̂ Vjf € Ut

4. For any observation j  € Ut calculate FASTjt, there are two possible 

cases,

a. € V such that stjt € TWv*j in this case FASTjt =  stjt

or
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b. stjt Ф TWy*j Vu G V in this case u*is the minimum v that byj > stjt 
and F ASTjt =  by*j

5. Calculate slackjt as it is described in section 4.1, Vj’ G Ut

6. Find the ATCjt ,Vj G Ut

ATCi, =  ^  « exp(d£d^£z2kl) .  e x p ( = ^ )

7. Select the observation j* that has the highest ATCjt

8. For the observation j* calculate ctj*t =  FASTj*t +  Pj·

9. If ctj*t D theix schedule it as early as possible and goto step 10 

else Ut = Ut — j* and goto step 6.

10. It = j*, cti  ̂ = ctj*t and t = t + 1

11. Add observation j* to the scheduled set of observations S  =  St-i + j*,
Ut = Ut-i-r

12. Goto step 3 until the ctif > T

Note that the proposed rule is a composite dispatching rule that combines 
the weighted shortest processing time (WSPT) rule, nearest neighbor rule and 
min-slack rule. It works as the WSPT rule when the observations are away 
from their due dates and state dependent set up times between the candidate 
observations are not too diverse. However, because of the exponential term as 
the t gets closer to the due dates of the observations the third term becomes 
more important and higher АТС values are assigned to the observations with 
the closer due dates. Same thing is also true for the middle term. If the 
difference between the set up times is large then this term becomes more urgent 

and higher АТС values are assigned to the observations that can be scheduled 
earlier because of their low set up time. Finally the constants c and ¿2 are 
determined by pilot runs. It is found that promising values of these parameters 
are c =  0.03 and =  0.0002. These two parameters are used during the
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experimental design, that will be discussed in the next chapter.

4.4 BEAM SEARCH

The second algorithm that is proposed as a solution approach is based on a 
filtered-beam search. In this methodology the decision tree is searched such as 
B&B however it is also possible to prune the nodes that are not seemed to be 
promising. As previously mentioned, a generic filtered beam search has two 
decision parameters: beamwidth (6) and filterwidth ( / ) .

Each one of b beams is a temporary partial schedule. At each step of 
the algorithm, for each b beams, /  promising unscheduled observations are 
determined with respect to a local evaluation function. Then global evalua­
tion function scores are obtained for 5 * /  partial schedules that are obtained 
by temporary addition of these /  promising unscheduled observations to the 
corresponding b partial schedules. Best b of the b * f  partial schedules are se­
lected with respect to the global evaluation function scores. And continue this 
procedure until no more observations can be scheduled to any of the partial 
schedules.

In this thesis we add another feature to the classical filtered beam search 
and test its effects to the solution. This modification to the search algorithm 
is called as the “childwidth” . We call the initial observation scheduled at each 
beam as parent, and childwidth (c) determines the maximum number of the 
children allowed for each parent. The motivation behind this modification is 
to prohibit the premature entrapment of local optima that is quite possible 
after several iterations. In order to provide diverse search of the decision tree 
we limit the number of beams that originate from the same parent. And this 

limitation is obtained by setting a parameter c.

Before continuing with the additional notation and the algorithm, we will 
state the local and global evaluation functions that are used in our beam search 
algorithm.
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local evaluation function: Since at each iteration we will calculate the 
local evaluation function scores of the all unscheduled jobs for each beam b 
this function should be quite fast and present good results. We directly use 
the ATCj values that we have proposed in the previous section which is shown 
to work fast and give better results than NN.

global evaluation function: The global evaluation function is the total 
weight obtained by exploding b * f  temporary partial schedules until the end 
of the time horizon. This explosion of 6 * /  partial schedule is obtained by 
scheduling each b * f  partial schedule with respect to a dispatch rule until the 
end of the time horizon to find an upper bound value о the scientific return. We 
used a dispatch rule that is very similar to the ATCj values that are proposed 
while exploding each 6 * /  partial schedules. The dispatch rule that is used as 
follows.

АТС] =  ^  * exp( ASTjt—cti )̂ \ 
ki ’

• Additional Notation:

Sb =  Set of scheduled observations of partial schedule of beam b

Ub = Set of unscheduled observations of partial schedule of beam b

CNSb = Set of observations that cannot be scheduled at partial schedule 
of beam b because of due date restrictions

lb = Last observation scheduled at partial schedule of beam b

cti  ̂ = Completion time of the last observation that is scheduled at partial 

schedule of beam b

=  Completion time of observation j  if scheduled after the observation 

lb of the partial schedule of beam b

stji^ =  End of setup time of observation j  if scheduled after observation 4 

of the partial schedule of beam b
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slackjb =  Remaining time that is available to schedule observation j  at 
partial schedule of beam b

ATCjb =  Local evaluation score of observation j  for the partial schedule of 
beam b

ATCjb =  Exploding function score of observation j  for the partial schedule 
of beam b

GESjb =Global evaluation function score of the augmented partial sched­
ule obtained by adding observation j  to the end of the partial schedule b

FASTjb =  First available start time of observation j  at partial schedule of 
beam b

i = Counter

• Algorithm:

1. Get the initial state TWyj, Soj, SLii, SCa, Pi, Di

2. Set the beamwidth (6) , filterwidth ( / ) ,  and childwidth (c)

3. Initialize for each b

CNSb = {} , Ub = w , Sb = {} , h = 0 , cti  ̂ — 0 , doncb — False , done 
= False

4. While not done do

4.1. For each 6 repeat the following

4.1.1. P roced u re  Filter_with_one_step

4.1.1.1. Calculate stĵ ^̂  =  max , SLji^] -|- ctî ^

4.1.1.2. For any observation j  € Ub calculate F A STjb ; there are two 

possible cases
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a) 3 u* G V such that stjî  ̂ G TWy*j in this case FASTjb =  stjî  

or

b. stji^ ^ TWy*j Vu G V in this case u*is the minimum v that 
byj > stji^ and FASTjb = by*j

4.1.1.3. Calculate slackjb Vj G Ub

4.1.1.4. Find the ATCjb y j  G Ub

ATC]b

ATC\b =  ^ ) * e x p ( ^ )

4.1.1.5. i := 1

4.1.1.6. While i < f  do

4.1.1.6.1. Select the observation j* G Ub that has the highest

4.1.1.6.2. For the observation j* calculate ctj*ib =  FASTjb +  Pj·

4.1.1.6.3. If ctj*i  ̂ < Dj* then goto 4.1.1.6.4

else Ub = Ub — j* and CNSb = CNSb +  j* and goto
4.1.1.6

4.1.1.6.4. i = 1 Ub =  Ub — j* , Filtersetb = Filtersetb + j*

4.2. For each b repeat the following

4.2.1. Procedure Evaluate_the^lobal_evaluation_scores

4.2.1.1. For each j* G Filtersetb repeat the following

4.2.1.1.1. Augment j* to partial schedule of beam b

4.2.1.1.2. Schedule the remaining unscheduled observations to the 
Augmented partial schedule with respect to ATCjb
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4.2.1.1.3. Calculate the total weight of the schedule obtained by 
explosion and set GESj*b to this total weight

4.3. Select the best b of b * f  partial schedules with respect to the global 
evaluation scores [GESjh) by considering the limitation of c for the beams that 
are originating from the same parent

4.4. For each b repeat the following

If |VF| =  |5'6| +  +  jC'TVS'il then donet = True else doncb = False

4.5. done =  Ob doneb

In the Procedure Filter_with_one_step we evaluate the local evaluation func­
tion scores of the unscheduled observations for each b partial schedules. We 
select the best /  of them in order to explode and calculate the global evaluation 
function scores.

After the /  promising candidates for each of the b partial schedules are 
determined, b* f  augmented partial schedules are exploded and we select the 
best b with respect to the global evaluation function scores. As mentioned 
the global evaluation scores are the total weight of the observations that are 
scheduled before their due dates for each exploded partial schedules. The 
dispatch rule mentioned before is used while exploding the augmented partial 
schedules. Then the best b of the augmented partial schedules are selected. 
Note that while selecting the best partial schedules the number of childs that 
belongs to a specific parent is limited with the parameter c (childwidth).

4.5 SIMULATED ANNEALING

Our third proposed algorithm is an application of Simulated Annealing (SA) 

algorithm to the SMS problem.The basic structure of the algorithm is same 

as the generic SA given in Chapter 2. In this algorithm we start with an 
initial solution and try to search the decision tree by a neighborhood search
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mechanism. We pass to the generated neighbor if the total score of it is greater 
than the total score of the current schedule on hand. But as a characteristic 
feature of the SA it is also possible to move to a neighbor that has less total 
score with the probability of e~^. This probability is known as the probability 
of acceptance where A  is the difference between the total score of the current 
schedule and the total score of the candidate neighbor. Total score of a schedule 
is simply the total weight of the observations that are scheduled before their 
due dates in a given schedule.

For the generation of the initial solution, we used the new dispatch heuristic 
we have proposed in section 4.3. Now we will present the neighbor generation 
procedure that we have proposed.

4.5.1 NEIGHBOR GENERATION MECHANISM

In HST there are six different viewing instruments and each instrument has 
several operating modes. These instruments and the operating modes of the in­
struments are presented in table 3.1. We have previously mentioned that there 
are major reconfigurations between the instruments and minor reconfigurations 
are needed between the modes of each instrument. Our neighbor generation 
mechanism takes this fact into consideration. Each instrument mode can be 
viewed as a “family” . So totally we have 15 different observation families. We 
define the family setup matrix that presents the set up times needed between 
the observations those belong to different families.

We generate the neighbors of the current solution simply by exchanging 
groups of jobs. The consecutive jobs that belong to same families constitute 
the job groups in the current solution on hand. First of all with a heuristic 
we calculate the Exchange Desirability Values between each group of jobs and 
then we generate the neighbors with respect to the most promising Exchange 
Desirability Values. This process is presented on a 5 observations and 2 families 

example.
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Observation Number
1

Needed Instrument
W F/U V
W F/U V
W F/N
W F/N

W F/U V

Family Index

B
B

Table 4.1: Instrument data of the observations of the example

FAMILY SETUP A B
0 300 400
A - 600
B 600 -

Table 4.2: Family setup values of the example

The viewing instruments that are needed for each observation are as the 
ones that are presented in table 4.1. The family setups are presented in table
4.2. ’0’ corresponds to the initial state of the telescope. The values below the 
families show the needed setup time to be scheduled just after the previous 
state. Suppose that the current schedule on hand is 5-1-3-2-4. This schedule 
has the following family structure : A (2) - B (l) - A (l) - B (l). The numbers in 
paranthesis represent the number of consecutive jobs that belong to the given 
family. ‘5’ and ‘ 1’ are from family A whereas 3 is from family B so we represent 
this structure as A(2) - B (l), and so on.

There are =  6 different ways of possible group exchange for the given 
example. All the possible exchanges, the outcomes of the exchanges and the 
Exchange Desirability Values are presented in table 4.3. Note that the ex­

changed groups at each exchange number are represented in bold letters.

Bxc. # Exchange New Ffimily Structure New Schedule Structure Des. Value
1 B ( l ) -A (2 ) -A ( l ) -B ( l ) B (l )-A (3 ) -B ( l ) (3 )-(5 -l-2 )-(4 ) 500
2 A ( l ) -B ( l ) -A (2 ) -B ( l ) A ( l ) -B ( l) -A (2 )-B ( l) (2 )-(3 )-(5 -l)-(4 ) 0
3 B ( l ) -B ( l ) -A ( l ) -A (2 ) B (2 )-A (3 ) (3 -4 )-(2 -5 -l) 1100
4 A (2 ) -A ( l ) -B ( l ) -B ( l ) A (3 )-B (2 ) (5 -l-2 )-(3 -4 ) 1200
5 A (2 ) -B ( l ) -A ( l ) -B ( l ) A (2 ) -B ( l ) -A ( l ) -B ( l ) (5 -l)-(4 )-(2 )-(3 ) 0
6 A (2 ) -B ( l ) -B ( l ) -A ( l ) A (2 )-B (l)-A (2 ) (5 -l)-(3 -4 )-(2 ) 600

Table 4.3: Possible exchanges and the outcomes in the example
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In table 4.3, New Family Structure represents the new structure that is 
obtained after the exchange.For example for the exchange number 1, we inter­
changed the groups of observations A(2) and B (l) in the current schedule. The 
new schedule now has 3 consecutive jobs that belong to family A (5-1-2) which 
is represented as A(3). Note that New Schedule Structure just represents the 
structure of the new schedule. The order of the observations in the paranthesis 
does not necessarily reflect the exact order. The exact order within the groups 
are determined by rescheduling each group. For example, for exchange num­
ber 1 in the new schedule observation 3 will precede observations 5, 1 and 2, 
however the second observation is not necessarily observation 5. It is quite pos­
sible to schedule observation 1 or 2 before 5 because of the visibility windows 
and slewing time needed. So rescheduling of group 5-1-2- is required. This 
rescheduling is done by using the new dispatch heuristic mentioned in section
4.3.

However it is computationally ineffective to reschedule all the possible ex­
changes. In order to have more efficient algorithm we just reschedule the most 
promising exchanges. The promising exchanges are determined by the heuris­
tic desirability values given in the table. These exchange desirability values 
indicate the net gain from the family setups that will be obtained by the cor­
responding exchange. These gains are calculated as follows.

For exchange number 4, we exchange B (l) and A (l). The saved family 
setups are 5^5 (600) -|- 5'ba (600) -f S'>ib(600) =  1800. Extra family setups are 
*5'>ia(0) -f 5'a b (600) -f S b b ( 0 )  = 600. Net gain from the exchange is 1200. Note 
that the numbers in the paranthesis are the family setup times which are given 
in table 4.2.

We only generate the neighbors that have the highest exchange desirabil­
ity values. The number of recheduling is determined by the parameter desir­

able-exchanges Jist.width (delw). We use the first win strategy while passing 
to the next neighbor. The main motivation behind this neighborhood gener­
ating mechanism is to augment the groups of jobs that belong to same family 
and save from major reconfiguration times. By this way we try to overcome
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obtained after the exchange.For example for the exchange number 1, we inter­
changed the groups of observations A(2) and B (l) in the current schedule. The 
new schedule now has 3 consecutive jobs that belong to family A (5-1-2) which 
is represented as A(3). Note that New Schedule Structure just represents the 
structure of the new schedule. The order of the observations in the paranthesis 
does not necessarily reflect the exact order. The exact order within the groups 
are determined by rescheduling each group. For example, for exchange num­
ber 1 in the new schedule observation 3 will precede observations 5, 1 and 2, 
however the second observation is not necessarily observation 5. It is quite pos­
sible to schedule observation 1 or 2 before 5 because of the visibility windows 
and slewing time needed. So rescheduling of group 5-1-2- is required. This 
rescheduling is done by using the new dispatch heuristic mentioned in section
4.3.

However it is computationally ineffective to reschedule all the possible ex­
changes. In order to have more efficient algorithm we just reschedule the most 
promising exchanges. The promising exchanges are determined by the heuris­
tic desirability values given in the table. These exchange desirability values 
indicate the net gain from the family setups that will be obtained by the cor­
responding exchange. These gains are calculated as follows.

For exchange number 4, we exchange B (l) and A (l). The saved family 
setups are 5'yiB(600) -1- S'ba(600) -|- 5a s (600) =  1800. Extra family setups are 
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that the numbers in the paranthesis are the family setup times which are given 
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ity values. The number of recheduling is determined by the parameter desir­

able-exchanges Jist.width (delw). We use the first win strategy while passing 
to the next neighbor. The main motivation behind this neighborhood gener­
ating mechanism is to augment the groups of jobs that belong to same family 
and save from major reconflguration times. By this way we try to overcome
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the myopic nature of the dispatch heuristic that we have used while creating 
initial solution.

We also modified the neighborhood selection mechanism described above 
with a mutation mechanism. With a probability called as mutation probability 
we mutate the current solution obtained after exchange. Mutation is done on a 
basis of selecting an observation in the current schedule, deleting and adding it 
to the end of the schedule. We considered two criteria while selecting the obser­
vation to be deleted. First one is selecting the observations that are scheduled 
before the time horizon but after their own due dates. We will refer to this 
as type I mutation. The second one is selecting the job that consumes highest 
amount of time. Remember that between each observation there are needed 
times that comes from the fact of reconfiguration times, slewing times and 
visibility windows availability. We will call this needed time as the idle time 
of the telescope. Each observation has a backward idle time that is the time 
needed to execute the current observation after the previous observation and 
forward idle time, that is the time needed to execute the next observation after 
the current observation. The total idle time of the observation calculated by 
adding the backward and forward idle times corresponding to the observation. 
After we determine the total idle times we create the deletion-observation Jist 
(DOL). In this list we add the observations that need type I mutation and the 
observations with the highest total idle times. The number of the observa­
tions in DOL is determined by the parameter deletion_observation_list_width 
(DOLW). After the creation of the list we delete and add each observation in 
the list to the end of the schedule one by one. We reschedule the obtained 
sequence and calculate the total weight of observations that are scheduled be­
fore their due dates. And with the probability acceptance function we either 
generate the next neighbor or select the next mutation candidate. We again 
use the first wins strategy while mutating the current schedule.

The aim of mutation is both obtaining diversity of search in the decision 
tree and check if it is more profitable to schedule the jobs just after the finishing 
of the time horizon by deleting one job from the current schedule on hand.
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• Additional Notation:

a = Temperature decreasing rate 

To =  Initial temperature

T( =  Temperature at iteration i, i.e. Tt — a * T<_i 

del =  List of most promising exchange pairs 

delw =  Width of the most promising exchanges list 

DOL = List of most promising observations to mutate 

DOLW  = Width of DOL

mp =  Probability of mutating the current solution

ISo = Initial schedule

B S  =  Best schedule found

CSt = Current schedule at iteration t

FSab =  Required major reconfiguration time between an observation be­
longing to family a with another observation belonging to family b

F S  =  Matrix of family setups

frozen = Boolean variable. If it is false then repeat the search, else end

scorec = The total weight of the observations that are scheduled before 

their due dates in a given schedule c

C N  = Candidate neighbor obtained from exchange

A E  — Difference between the score of current solution and the candidate 
neighbor
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t = iteration number of annealing procedure 

k = iteration number of mutating procedure

• Algorithm:

1. Get the initial state, TW^j, Sqj, SLij, SCij, Pj, Dj

2. Set the initial temperature (Tq), alpha (a), desirable_exchangeJist_width 
(delw), deletion-observationJist-width {DOLW), mutation probability (mp)

3. Create the initial schedule {ISo) by scheduling all the observations with 
the new dispatch heuristic mentioned at section 4.3

4. Set t = I, frozen = fa lse  and current schedule CSt = I  So

5. Calculate the score of CSt [Scorecst)

6. Set B S  =  CSt and Scoress =  Scorecst

7. Tt = To

8. Establish F S  matrix

9. While not (frozen) do

9.1. Establish desirable-exchangeJist (DEL) with respect to heuristic 
desirability values

9.2. Select one pair randomly from DEL  and exchange

9.3. Set the candidate neighbor (CN) to the sequence obtained after 
exchange

9.4. Reschedule C N

9.5. Calculate the score of the C N  (Scorecn)

9.6. Evaluate AEl =  Scorecst ~ ScorecN
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9.7. If A E  < 0 then set CSt =  CN  and Scorecst — ScorecN

9.8. Else if A E  > 0 then set CSk =  CN  and Scorecsu =  ScorecN with
- A E

probability e .I f  not accepted goto 9.2

9.9. If Scorecst > Scoress then B S  = CSt and Scoress = Scorecst

9.10. With probability mp mutate CSt

9.11. If no mutation goto step 9.13

9.12. Procedure Mutate

9.13. Set t = t + 1 and Ti : Tt~i * a

9.14. If Tt < critical temperature then frozen  :=  true

With the mutation probability at step 9.12 we mutate the current solution 
on hand. The mutation procedure is as follows:

Procedure Mutate:

1. Set A; :=  0

2. While k < DOLW  do

2.1. Establish deletion-observationJist (DOL)

2.2. Select one observation from the list (DOL) randomly

2.3. Delete the selected observation from the current schedule and add 
it to the end

2.3

2.4. Set the candidate neighbor {CN) to the new sequence obtained after

2.5. Reschedule C N

2.6. Calculate the score of C N  (ScorecN)
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2.7. Evaluate A E  = Scarcest ~  S cotccn

2.8. If A E  < 0 then set CSt =  C N  , Scarcest =  ScarceN and k =  
DOLW

2.9. Else if A E  > 0 then set CSt — C N  , Scarcest =  Scareen and
- A E

k =  DOLW  with probability of e . If not accepted then k := k + 1

3. If Scarcest > Scarcss then BS  =  CSt and Scarcss =  Scarcest

4.6 GRASP

Finally as the fourth algorithm we have proposed Greedy Randomized Adop­
tive Search Procedure (GRASP) for generating short term schedules of SM 
projects. As mentioned in chapter 2, GRASP consists of two phases. The first 
phase is the construction phase and the second phase is the iterative improve­
ment.

In the construction phase GRASP builds a feasible schedule iteratively with 
respect to a greedy function. The main difference here is at each step we do not 
select the observation that has the highest greedy function score but construct 
a Restricted Candidate List (RCL) and select one observation from this list 
randomly. RCL  =  {j : aj >  a }  where otj is the ratio of the greedy function 
score of observation j  to the highest greedy function score obtained at that 

step and a  is the ratio parameter that is predefined. Since we select the next 
observation randomly from RCL at each step and construct a feasible schedule 
every time we construct a schedule, we construct a different schedule than the 
previous ones.

Second phase is the iterative improvement procedure that tries to locally 

optimize the schedule obtained from the construction phase. In this phase we 
propose an algorithm that is similar to the neighborhood generation algorithm 
of SA presented in the previous section. However for GRASP second phase we 
do not use mutation and only pass to the neighbor if it gives a better solution
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than the current schedule. Remember that it was also possible to move to a 
neighbor that gives worse solution.

We modify the generic GRASP by not applying the second phase each 
time we construct a schedule at the first phase. We just allow to apply the 
second phase if the constructed schedule is a promising schedule. In order to 
decide if the constructed schedule is a promising one or not we define “allow­
able-percentage” and check if the ratio of the total objective function value of 
the current solution to the total objective function value of the best schedule 
found up to then is greater than this percentage. If it is greater than this 
percentage, then we apply the second phase. However, if it does not satisfy 
this condition we turn back to the first phase and construct a new schedule. 
Suppose that the allowable-percentage is 95% and the best solution on hand 
has total weight of the observations that are scheduled before their due dates 
100. Then if the newly constructed schedule has total objective function value 
greater than 95 we apply the second phase. If it has a smaller objective func­
tion value then we do not apply the second phase and return to phase one in 
order to construct a new schedule. The main motivation of this limitation is 
searching more nodes of the decision tree rather than spending much time to 
improve a schedule that is not strongly promising.

• Additional Notation

k =  Iteration number

T = Maximum number of iterations

a = The rate used when constructing restricted candidate list {RCL)

Scor6c =  Total weight of observations that are scheduled before their due 
dates in a given schedule c

BSk = Best schedule obtained until iteration k

CSk = Current solution at iteration k



CHAPTER 4. ALGORITHMS 64

Allowable-percentage — The parameter that determines the promising 
schedules constructed at phase 1 in order to apply phase 2

M aximumjnumber-of -exchange =  maximum number of exchanges that 
will be done at phase 2

t = Iteration number that is used in phase 1

ATCht =  Highest greedy function score at iteration t

RCLt = Restricted candidate list at iteration t

jht =  Observation j  that has the highest greedy function score at iteration

ctjt = Completion time of observation j  if scheduled at iteration t 

m — Iteration number that is used in phase 2

DEL  =  List of most promising exchange pairs established with respect to 
the heuristic exchange-desirability values

delw =  Width of DEL

C N  = Candidate neighbor obtained from exchange 

• A lgorithm

1. Get the initial data TWyj, Soj, SLij, SCij, Pj, Dj

2. Set the maximum number of iterations (T), a, M axim um  Jiumber-of -exchanges^ 
Allowable-percentage and delw

3. k = l

4. ScoreBSk =  0

5. While k < T  do
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5.1. Procedure Construct_the_greedy_randomized_schedule

5.1.1. Get the initial data, TWyj, So,, S„, Pj, Dj

5.1.2. Problem initialization : ¿"i =  { } ,  t/j =  VP, /< =  0, cti  ̂ =  0, i =  1

5.1.3. Calculate stjt = ma,x{SCi^j,SLi^j} +  cti ,̂ y j  G Ut

5.1.4. For any observation j  G Ut calculate FASTjt, there are two 
possible cases.

a. 3u* G V  such that stjt G TWy*j in this case FASTjt =  stjt

or

b. stjt ^ TWy*j Vu G P  in this case u*is the minimum v that 
hyj > stjt and FASTjt =  hy»j

5.1.5. Find the ATCjt ,Vj G Ut 

ATCjt =  ^

5.1.6. Select the observation jht that has the highest ATCjt

5.1.7. ATCht =  ATCj,,t

5.1.8. Set RCLt = {j : > a}

5.1.9. Select j* randomly from RCLt

5.1.10. For the observation j* calculate =  F ASTj*t+Pj·. Schedule 
it as early as possible

5.1.11. It = j* and cti  ̂ =  ctj*t

5.1.12. i =  i +  l

5.1.13. Add observation j* to the scheduled set of observations St =  

St-i +  j \  Ut ^  Ut -  j*
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5.1.14. Goto step 5.1.3 until t > N

5.2. Set CSk to the constructed schedule

5.3. Calculate ScorecSk

5.4. If ScorecSk >  ScortBSk then set BSk — CSk and ScoresSk =

ScorecSk

5.5. If ScorecSk <  Allowable^tercentage * ScoresSk then go to 5.7

5.6. P roced u re  Local_optimization_phase

5.6.1. Set iteration number m =  1

5.6.2. While m < M aximumjnumberjof -exchange do

5.6.2.1. Establish desirable_exchangeJist {DEL) with respect to 
heuristic desirability values as mentioned in the previous section

5.6.2.2. Select one pair randomly from DEL  and exchange

5.6.2.3. Set the candidate neighbor {CN)  to the sequence obtained 
after exchange

5.6.2.4. Reschedule C N

5.6.2.5. Calculate the score of C N  (ScorecN)

ScorecN
5.6.2.6. If ScorecN > ScorecSk then set CSk =  C N  and Scorecsk =

5.6.2.7. m =  m +  1

5.6.3. If ScorecSk > Scoressk then set BSk =  CSk and ScoresSk =

Scoreosk

5.7. k = k -\-l
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6. End.

4.7 SUMMARY

Until now we have presented the steps of the proposed algorithms. In the next 
chapter we will perform an experimental design in order to test the efficien­
cies of the proposed algorithms under different experimental conditions. We 
will also try to determine the effects of the specific parameters of the algo­
rithms on the objective function score and the corresponding computational 
time requirements.



Chapter 5

COM PUTATIONAL RESULTS

The algorithms presented in Chapter 4 were coded in Pascal language and 
compiled with Sun Pascal Compiler on a Sparc Station 10 under SunOS 5.4. 
In this chapter we perform an experimental design and compare the efhciency 
of the proposed algorithms along with the NN algorithm on two basis. The 
first one is the objective function values and the second one is the CPU times 
of the algorithms. The objective function value of each algorithm is equal to 
the ratio of the total weight of the observations that are not managed to be 
scheduled before their due dates to the total weight of the observations.

5.1 EXPERIMENTAL CONDITIONS

There are five experimental factors that can affect the efficiencies of the pro­
posed algorithms. These factors are listed in table 5.1. Since there are five 
factors that can affect the efficiencies of the algorithms, our experimental de­
sign is 2® full-factorial experimental design corresponding to 32 combinations. 

The number of replications for each combination is taken as 10, giving 320 

different experiments.

The number of observations most likely would affect the computation times.

6 8
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Factors Definitions Low (0) High (1)
Number of Observations 76 115

B Oversubscription Rate 20% 40%
C Reconfiguration Times High Low
D Due Date Percentages
E Weight Assignments 1-2-3 1-5-9

Table 5.1: Experimental Factors

Oversubscription rate is one of the factors that determines the planning horizon 
and most likely would affect the objective function values of the algorithms and 
the computational times. Reconfiguration time is another factor that would 
affect the objective function values of the algorithms. Reconfiguration time 
also determines the planning horizon so most likely will also affect the compu­
tational times. Due to the technological facts HST needs high reconfiguration 
times. However one of the aim of this research is proposing eflScient algorithms 
for updated space mission projects which do not need very high reconfiguration 
times between the instruments. For high reconfiguration times case, major re­
configuration times are selected randomly from the interval U N ~[5000,12000] 
seconds and minor reconfiguration times are selected randomly from the inter­
val UN~[1500,4000] seconds, where UN stands for the uniform distribution. 
On the other hand, for the low reconfiguration times case, major reconfigu­
ration times are selected randomly from the interval UN~[1600,4000] seconds 
and the minor reconfiguration times are selected randomly from the interval 
UN~[800,2000] seconds. Due date percentages determine the user specific due 
dates that are before the prespecified time horizon. For due date percentages 
0 there is no observation that have user imposed due date whereas for 5, 5% of 
the observations that are selected randomly have due dates that are selected 
randomly from the interval UN~[0.25 * time horizon, time horizon] seconds. 
As mentioned in Chapter 2, the observations have weights that are determined 

at STScI. However the observations are divided into “high” , “medium” or “sup­
plemental” groups. There are various ways of assigning values to each priority 
groups. We set them in two different ways. First one is 1-2-3 and the second 
alternative is 1-5-9 where the first values in both sequence are assigned to the
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“supplemental observations” , the second values to “medium priority observa­
tions” and the third values to the “high priority observations” . The weights 
are assigned randomly to the observations with the probabilities of 0.2, 0.6, 
0.2 for high priority, medium priority, and supplemental observations, respec­
tively. Time horizon is a function of number of jobs, oversubscription rate and 
reconfiguration times. We determined the time horizons for each experiment 
by scheduling the observations with respect to NN algorithm and we divide 
the obtained value to 1.2 for 20% oversubscription rate and divide it to 1.4 for 
40% oversubscription rate.

Other variables were treated as fixed parameters and generated as follows:

• The visibility windows, right ascension and declination data of 76 obser­
vations are real data and obtained from Prof. Stephen Smith, Carnegie- 
Mellon University. Extra 39 observation data in order to obtain 115 ob­
servations are generated from the real 76 observation data by replicating 
39 of them.

• The slewing times needed between each pair of the observations are cal­
culated by the procedure defined at chapter 3.

• The processing times are generated randomly by selecting from the in­
terval UN~[100,600] seconds.

• Required instrument configurations are assigned to the jobs randomly by 
considering the percentages given in table 3.1.

5.2 PARAMETERS OF THE ALGORITHMS

As it was presented in chapter 4 most of the proposed algorithms have several 
parameters. Some of the parameters are set to specific values. However we 
specify several different values for some of the parameters and determined 
the effect of them to the performance of the corresponding algorithm. These 
parameters are as follows:
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• For the NN algorithm we do not have any parameters to be specified.

• For the new dispatch heuristic (NDH) we set c =  0.03 and k2 = 0.0002. 
The values of these parameters are determined after numerous pilot runs. 
We tested one thousand numbers between 0.001 and 1 for c. After the 
determination of best c, we tested 10000 numbers between the values of 
0.00001 and 0.1 for ¿2.

• For the Beam Search algorithm we set 2 different values for each of the 
parameters; beamwidth, (6), filterwidth, ( / ) ,  and childwidth, (c). So to­
tally we have tested 2̂  =  8 different Beam Search algorithms. These 
algorithms are specified in table 5.2.

• For the GRASP algorithm we tested the effect of a (the rate that is 
considered while creating the RCL) and T  (the number of total itera­
tions). We set two different values to each of these parameters. Fur­
thermore, we also tested the effect of second phase, i.e. local opti­
mization. In the first four of the algorithms we did not use the second 
phase where as for the next four of the algorithms we allowed the second 
phase with the allowable-percentage of 97%. The parameter of maxi- 
mum_number_of_exchanged that is used in the second phase is set to 7. 
And the desirable_exchangeJist_width is set to 6. The parameters of the 
GRASP and the corresponding algorithms are presented in table 5.3

• For the simulated annealing algorithms we tried to examine the affect 
of the mutationjrate. Four different mutation rates are determined and 
tested. After pilot runs it is determined that a = 0.998 and initial tem­
perature, To =  5, give good results and reasonable computational times. 
In the pilot runs we tested the a  values between 0.99 and 0.999. And we 
tested three different initial temperature values namely 3, 5, and 8. Other 
parameters are set to constants such as desirable_exchangesJist_width =  
10, and deletion_observationJist_width=3. The parameters of the SA 
and the corresponding algorithms are presented in table 5.4.
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Algo Beam w idth filterw idth C hildw idth
B1 4 8 3
B2 4 8 4
B3 4 10 3
B4 4 10 4
B5 6 8 3
B6 6 8 6
B7 6 10 3
B8 6 10 6

Table 5.2: Parameter settings of different Beam Search algorithms

Algo Al._per. a T
G1 No 0.2 250
G2 No 0.2 500
G3 No 0.6 250
G4 No 0.6 500
G5 97% 0.2 250
G6 97% 0.2 500
G7 97% 0.6 250
G8 97% 0.6 500

Table 5.3: Parameter settings of different GRASP algorithms

Algo m utation rate
Sno no
S20 20
S50 50

SlOO 100

Table 5.4: Parameter settings of different SA algorithms
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5.3 COMPUTATIONAL RESULTS

In this section we will discuss the computational results obtained from 320 
randomly generated experiments. The results are presented in the appendices 
in detail. In appendix A we have presented the percentages of unscheduled 
weights of each algorithm for each experimental setting. The values in tables 
A .l, A .2, A.3 and A.4 are the averages of 10 replications that correspond to 
each one of the 32 experimental setting.

Note that there are 5 different experimental factors as mentioned in section
5.1. Each experimental factor is set to high and low values. So there are 160 
experiments out of 320 experiments that correspond to high state of each par­
ticular experimental factor whereas the remaining 160 experiments correspond 
to the low state of that particular experimental factor. The averages of the 
percentages of unscheduled weights of 160 experiments that correspond to each 
state of the each experimental factor are also presented in appendix A ( see 
tables A.5, A .6, A .7 and A.8).

The percentages of unscheduled weights for each experimental run is calcu­
lated as follows;

Percentage of unscheduled weights =

where T W  corresponds to the total weight of the observations in the ex­
perimental run and OFV  is the objective function value of the corresponding 
algorithm.

In appendix B, we present the computational times of the algorithms. Note 
that the times are given in milliseconds. The construction of appendix B is 
same as appendix A. In tables B .l, B.2, B.3 and B.4 we present the compu­

tational times of the algorithms for each one of the 32 different experimental 
combinations. The values presented in these tables are the averages of the 10 
replications. In tables B.5, B.6, B.7 and B.8 we present the averages of com­
putational times of 160 experiments that correspond to each state of the each 

experimental factor.



CHAPTER 5. COMPUTATIONAL RESULTS 74

Table 5.5 represents the minimum, average and maximum values of the 
unscheduled weight percentages and the computational times of 22 different 
algorithms, namely NN, New dispatch heuristic, 8 beam search algorithms, 
8 GRASP, and 4 simulated annealing algorithms. The minimum (Min) and 
maximum (Max) values correspond to one of the 32 experimental combination 
that has the minimum and maximum values respectively. These values are 
the averages of 10 replications that correspond to the particular experimental 
combination. The average (Ave.) values in table 5.5, correspond to the average 
values of the 320 different experiments. Our discussion on the results will 
mainly depend on table 5.5.

We also presented the statistical analysis results of the objective function 
values and computational time data obtained from the experimental design. 
The tables of these analyses are presented in appendix C. Note that the ob­
jective function values of each experiment are represented as the total weight 
of the observations that are scheduled before their due dates. From the statis­
tical analysis of the objective function data we find out that there is 99.9% of 
correlation between the beam search algorithms, 99.5% of correlation between 
the GRASP algorithms and 99% correlation between the simulated annealing 
algorithms. The correlation tables among the beam search algorithms, among 
the GRASP algorithms and among the simulated annealing algorithms are 
presented in tables C .l, C.2, and C.3, respectively. Therefore, for the further 
analysis of ANOVA results we have used one representative from each type of 
algorithm. The significance levels (p) and F values for the experimental factors 
are presented in tables C.4 to C.8 for each algorithm.

The ANOVA analysis of the experimental factors showed that all of the 
experimental factors except the fourth one, which is the case of assigning due 
dates to the observations or not, were significant for the objective function 

values with the significance p < 0.000. Only exception is that the third factor, 

which is the reconfiguration time, is significant for the objective function values 
of the simulated annealing algorithms with the significance p < 0.017. ANOVA 
analysis of the computational times showed that the first three factors that de­
termine the planning horizon affect the computational times of the algorithms
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with the significance of p < 0.000. Also as an interesting result we find out that 
the weight assignment of the observations affects the computational time of the 
simulated annealing algorithm with p < 0.000 and the computational times of 
the beam search and GRASP algorithms with the significance of p < 0.001. 
Now let us briefly explain the reason behind this observation.

Note that the weight assignment of 1-5-9 leads to more diverse total weight 
of the observations than the weight assignment of 1-2-3. The difference between 
the weights of two schedules is greater in the first case. Remember that in simu­
lated annealing algorithms we were accepting to pass to the next neighbor with 
the probability of e~^. For the first assignment case of 1-5-9, the schedules that 
have lower objective function values will have bigger A  values which will lead 
to lower probability of assignment. So the annealing procedure will require a 
higher computational time. For the beam search algorithm, we will explain the 
reason with an example. For example, we are nearly at the end of the time 
horizon and we have five candidate observations. Suppose that four of them 
are supplemental but require lower reconfiguration times and the fifth one is a 
high priority observation and requires high reconfiguration time. Suppose that 

the remaining time only allows to schedule the first four successively or only 
the fifth one. For the weight assignment of 1-2-3 the global evaluation function 
score of scheduling first four will add 4 to the weight of the partial schedule 
where as scheduling the fifth one will only add 3. So with respect to the global 
evaluation function score beam search algorithm will prefer to schedule the first 
four and the total number of additional iterations will be four. However for 
the weight assignment of 1-5-9, scheduling the fifth one will increase the total 
weight of the partial schedule by 9, where as scheduling the first four will still 
increase it by 4. So for the latter weight assignment case, beam search algo­
rithm will choose to schedule only the fifth one, and the algorithm ends since 
the time horizon do not allow to schedule any more observations. So differ­
ent weight assignment procedures may lead to different schedules, which lead 
to different number of iterations, hence require different computational times. 
We can make a similar observation for the GRASP algorithms since different 

weight assignment procedures will lead to different schedules which will lead
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unsch. wt. per. Comp. time (milise)
Algo Min Ave. Max Min Ave. Max
NN 0.122 0.245 0.312 8 16 25

NDH 0.105 0.232 0.296 30 51 76
B1 0.050 0.174 0.244 8065 19919 33125
B2 0.056 0.177 0.250 8098 19889 32911
B3 0.050 0.174 0.242 10050 24624 41351
B4 0.051 0.177 0.245 10063 24610 41418
B5 0.053 0.174 0.244 12366 29978 49339
B6 0.052 0.177 0.250 11921 29806 50009
B7 0.050 0.173 0.243 14771 36789 61353
B8 0.057 0.177 0.244 14850 36941 62111
G1 0.129 0.225 0.280 5423 8827 12250
G2 0.123 0.219 0.276 10751 17623 24501
G3 0.074 0.185 0.240 5406 8821 12271
G4 0.073 0.180 0.239 10693 17716 24770
G5 0.121 0.214 0.279 6712 12575 20323
G6 0.111 0.208 0.271 12366 22465 34960
G7 0.072 0.183 0.238 9271 19070 30237
G8 0.071 0.178 0.237 16305 32637 49891
Sno 0.103 0.208 0.262 28690 100376 285239
S20 0.092 0.197 0.252 67303 165110 326189
S50 0.088 0.195 0.254 74116 206346 390555
SlOO 0.089 0.194 0.252 118283 333074 699810

Table 5.5: Unscheduled percentages and the computational times

to different computational times. The ANOVA results of five algorithms are 
available in tables C.4, C.5, C.6, C.7, and C.8 that correspond to NN, NDH, 
beam search, GRASP and simulated annealing algorithms, respectively.

Finally in appendix C, paired sampled t-test results that are done between 
the algorithms to identify the significance level of the differences between the 
algorithms, and within the algorithms to identify the significance levels of dif­
ferent parameter settings are presented.

From these experiments we concluded the following results.
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5.3.1 NEAREST NEIGHBOR

• NN algorithm has the worst unscheduled weight percentage value on the 
average of 320 experiments (see table 5.5). On the average the unsched­
uled weight percentage is 0.245. Where as it has the best computational 
time which is 16 milliseconds on the average of the 320 experiments as 
expected. It has the minimum value of unscheduled weight percentage 
0.122 at the experimental combination of O-O-l-O-O (see table A .l). Note 
that 0.122 is the average of 10 replications that correspond to the men­
tioned experimental combination. This experimental combination corre­
sponds to 76 observations, low oversubscription rate, low reconfiguration 
time case, no due dates for the observations and for the weight assign­
ment of 1-2-3 ( see table 5.1). It has the maximum value of 0.312 at the 
experimental combination of O-l-O-l-l. This experimental combination 
corresponds to 76 observations, high oversubscription rate, high reconfig­
uration time case, the case where there exists due dates for some of the 
observations and for the weight assignment for the observations of 1-5-9 
(see table 5.1).

• We refer to the states of each experimental factor that the algorithms 
give higher values of the percentage of unscheduled weights on the av­
erage of the corresponding 160 experiments as the hard instances. The 
hard instances for NN algorithms are as follows; 115 observations, high 
oversubscription rate, high reconfiguration times case, the case where 
some of the observations have due dates and for the weight assignment 
for the observations of 1-2-3 (see table A.5). These hard instances are 
also same for the remaining 21 algorithms ( see table A.5, A .6, A .7 and 
A.8). In fact it is quite meaningful to have these conditions as the hard 
instances. For high reconfiguration times case, since the required setup 
times between the observations are high, less number of observation can 
be scheduled. It is again true for the high oversubscription rate case since 
the time horizon is tighter. For the case where some of the observations 
have due dates, some observations cannot be scheduled before their due 

dates which also result with less number of scheduled observations. To
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have 115 jobs as the hard instances shows us the myopic nature of the 
algorithms. Finally since all the algorithms, except NN, consider the 
weights that are assigned to the observations while scheduling, it is also 
expected that these algorithms will perform better for the case of weight 
assignment of 1-5-9.

• As mentioned NN algorithm gives smaller unscheduled weight percent­
ages on the average of 160 experiments that correspond to the weight 
assignment of 1-5-9 than the unscheduled weight percentages on the av­
erage of remaining 160 experiments that correspond to the weight as­
signment of 1-2-3. In fact this was not an expected result. Since NN 
does not consider the weights that are assigned to the observations it 
was expected that it would perform better for the instances where the 
relative weight differences are smaller, namely for the weight assignment 
of 1-2-3. However, NN algorithm performs nominally better for the case 
of weight assignment of 1-5-9. When we compare it with the other pro­
posed algorithms, which all consider the individual observation weights 
while scheduling, we conclude that it performs relatively better at the 
case of weight assignment of 1-2-3. For example, for the NN algorithm 
the average of the unscheduled weight percentages of the 160 experiments 
that correspond to weight assignment of 1-2-3 is 0.246 and the average 
of the unscheduled weight percentages of the remaining 160 experiments 
that correspond to weight assignment of 1-5-9 is 0.245. For the B7 al­
gorithm, which gives the smallest unscheduled weight percentage value 
on the average of the overall 320 experiments ( see table 5.5), the aver­
age of the unscheduled weight percentages of the 160 experiments that 
correspond to weight assignment of 1-2-3 is 0.181 and the average of the 
unscheduled weight percentages of the remaining 160 experiments that 
correspond to weight assignment of 1-5-9 is 0.170. When we compare NN 

algorithm with B7 algorithm, we can see that B7 algorithm improves NN 
algorithm by 7.5% (0.245-0.170) for the case of weight assignment of 1- 
5-9 and by 6.5% (0.246-0.181) for the case of weight assignment of 1-2-3. 
So we can conclude that B7 algorithm improves NN algorithm more for 
the case of weight assignment of 1-5-9, which means that NN relatively
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performs better at the case of weight assignment of 1-2-3. Note that this 
oservation is not only true for the B7 algorithm, but also true for the 
remaining 20 algorithms (see tables A.5, A .6, A .7 and A.8).

As mentioned earlier NN algorithm has the smallest computational time 
on the average of the 320 experiments.

5.3.2 NEW DISPATCH HEURISTIC

• New dispatch heuristic (NDH) gives better objective function value than 
the NN algorithm on the average. The average of the unscheduled weight 
percentages of the 320 experiments is 0.232 for the new dispatch heuristic 
(see table 5.5). It improves the average of the percentage of unscheduled 
weights of the observations of the NN algorithm by 1.3% (0.245-0.232). 
We also performed a paired t-test and the corresponding t value to the 
pair NN-NDH is -5.88 and with the significance level (p)< 0.000 (see 
table C.9). However due to the more complex calculations its computa­
tional time is slightly greater than the NN algorithm. Note that on the 
average of 320 experiments, the computational time of the NN algorithm 
is 16 milliseconds whereas the computational times of the new dispatch 
heuristic is 51 milliseconds (see table 5.5). The corresponding t value of 
the computation time comparison for the pair NN-NDH is -37.73 with 
the significance p < 0.000 (see table C.9).

• The new dispatch heuristic has the minimum value of unscheduled weight 
percentage of 0.105 (see table A .l) at the same experimental combina­
tion with the NN algorithm, namely 0-0-1-0-0. It has the maximum 
value of unscheduled weight percentage at experimental combination of 
O-l-O-O-O, which is 0.296 (see table A .l). This experimental combination 

corresponds to 76 observations, high oversubscription rate, high reconfig­
uration time case, no due dates for the observations and for the weight 
assignment to the observations of 1-2-3 (see table 5.1).
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• Note that since new dispatch heuristic gives better percentage of unsched­
uled weights than NN on the average of 320 experiments, we will use this 
dispatch rule rather than the NN algorithm in the remaining proposed 
algorithms to generate an initial schedule.

5.3.3 BEAM SEARCH ALGORITHM

• The averages of the percentages of unscheduled weights of the 320 ex­
periments show that beam search algorithms perform better than the 
other competing algorithms (see table 5.5). Furthermore, B7 algorithm 
is the best among the other beam search algorithms with respect to the 
above criterion. Remember that B7 algorithm has the parameters of b=6, 
f=10 and c=3. The overall average of the percentages of the unscheduled 
weights for B7 algorithm is 0.173 (see table 5.5). So it improves the NN 
algorithm by 7.2% (0.245-0.173) on the overall average. The correspond­
ing t value to the pair B7-NN is 23.31 with the significance p < 0.000 
(see table C.9). The highest improvement on objective function value of 
the NN algorithm done by B7 algorithm is at the experimental combi­
nation of l - l - l - l - l  (see table A .l and A.2). In this experimental com­
bination, NN algorithm gives unscheduled weight percentage of 0.288, 
whereas B7 algorithm gives 0.196. Note that the stated unscheduled 
weight percentages are the averages of the 10 replications that corre­
spond to the mentioned experimental combination. So the improvement 
is 9.2% (0.288-0196). This experimental condition corresponds to the 115 
observations, high oversubscription rate, low reconfiguration times case, 
the case where some of the observations has due dates and the weight 
assignment to the observations is 1-5-9. This is quite meaningful since 
beam search algorithms, so the B7 algorithm, considers the weights and 

the due dates that are assigned to the observations while scheduling. Fur­

thermore, B7 algorithm reduces the myopic nature of the heuristics with 
the help of the global evaluation function mechanism and can improve the 
objective function value of NN algorithm more for the cases of low setup 
configuration times, higher number of jobs and higher oversubscription.
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• To restrict the number of beams that originates from the same parent, 
we used a childwidth parameter, which improves the overall average of 
the percentage of unscheduled weights of the beam search algorithms. 
Note that B l, B3, B5 and B7 are the beam search algorithms that have 
a smaller childwidth parameters, where as B2, B4, B6 and B8 are the 
beam search algorithms that have the same beamwidth and filterwidth 
parameters with the preceding algorithms with higher childwidth param­
eters. From table 5.5, we conclude that childwidth parameter improves 
the average of the percentage of the unscheduled weights by 0.33%. The 
corresponding t values to the pairs B1-B2, B3-B4, B5-B6, and B7-B8 are 
6.17, 5.95, 5.89, and 6.69, respectively, with the significance of p <  0.000. 
(see table C.IO). The computational times do not differ too much (see 
table 5.5 and table C.9). From the paired samples t-test results, we find 
that the difference between the computational times for the pairs B1-B2 
and B3-B4 are not significant. For B1-B2 the corresponding t value is 
2.14 with the significance of p < 0.034 and for B3-B4 the corresponding 
t value is 0.88 with the significance of p < 0.380 (see table C.IO). For 
the pairs B5-B6 and B7-B8 the differences are significant with the signifi­
cance p <  0.000. The corresponding t values are 6.91 and —6.38, respec­
tively. Note that restriction with childwidth parameter leads to different 
schedules which lead to different number of iterations. So the childwidth 
parameter either increases or decreases the computational time.

• As mentioned above, the best algorithm with respect to the overall av­

erage of the unscheduled weight percentages is B7 with the parameters 
of b=6 and f=10. These two values are the highest values that are used 
while testing the beam search algorithms. However we cannot conclude 
that higher beamwidth and filterwidth values always lead to better ob­
jective function values. For example, for the experimental combination 
of O-l-O-O-l, B l algorithm with the parameters b=4, f=6 and c=3, has 
an average of the percentages of unscheduled weights of the 10 replica­

tions, 0.232. Whereas the corresponding value for B7 is 0.235 which is 

worse than B l. This is quite natural and known as the fact of “myopic 
nature of the global evaluation function value” . But on the average high
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beamwidth and high filterwidth parameters have more chance to give 
better objective function values. From the paired samples t-test we find 
out that the differences of the objective function values among the beam 
search algorithms with different beamwidth and filterwidth are not sig­
nificant (please refer to table C.IO for the corresponding t values and 

p)·

• From the above discussion we can conclude that beam search algorithms 
improve the objective function value of the NN algorithm significantly 
but the trade off is the high computational time. For example the com­
putational time of B7 is 36789 milliseconds on the average of the 320 
experiments, however NN algorithm has computational time of only 16 
milliseconds on the average of the 320 experiments (see table 5.5). The 
corresponding t value = 32.47 with the significance p < 0.000. An im­
portant factor that affects the computational time of the beam search 
algorithm is the beamwidth and the filterwidth. As the beamwidth or 
the filterwidth increases the computational time of the beam search algo­
rithm increases (see table 5.5). This is mainly because, as beamwidth and 
filterwidth increases then the nuber of nodes that can be searched also 
increases, which lead to higher computational times. These increases are 
also statistically significant for all cases with the significance of p <  0.000 
(for the corresponding t values refer to table C.IO).

5.3.4 GRASP

• GRASP algorithms also improve the NN algorithm on the overall aver­
age of the unscheduled weight percentages (see table 5.5). However these 
average values are not as good as the beam search algorithms (see table

5.5). The best GRASP algorithm with respect to the objective function 

value is G8. The average of the unscheduled weight percentages of the 
320 experiments for G8 is 0.178 and it is worse than the B7 algorithm. 
The corresponding t value to the pair G8-B7 is -4.29 with the significance 
of p <  0.000 (see table C.9). However out of 32 different experimental
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combinations at 16 experimental combinations, G8 gives better objective 
function values than B7. These 16 experimental combinations all have 
high reconfiguration time state ( see tables A.2 and A.3). Table 5.6 shows 
the unscheduled weight percentages and the computational times of the 
algorithms for the high reconfiguration time and low reconfiguration time 
cases. The unscheduled weight percentages are the average of 160 exper­
iments that correspond to each state. For the high reconfiguration time 
case, we find that G8 has the best average of the unscheduled weight per­
centages of the corresponding 160 experiments, which is 0.191 (see table
5.6). At this case it improves B7 algorithm by 0.5%. The corresponding 
t value to the pair G8-B7 is 5.92 with the significance p < 0.000 (see 
table C.13). This is mainly due to the local optimization phase of the 
GRASP algorithm which depends on the “family scheduling concept” . 
Note that family scheduling concept becomes more important when the 
setup times between the families increase.

• We see that as we increase the iteration numbers we obtain better ob­
jective function values (see table 5.5). Note that G l, G3, G5 and G7 are 
the GRASP algorithms with the iteration number of 250 where as G2, 
G4, G6 and G8 are the GRASP algorithms with the iteration number 
of 500. The improvements of the objective function values of the pairs 
G1-G2, G3-G4, G5-G6, and G7-G8 are significant with p < 0.000 and 
the corresponding t values are -5.82, -7.69, -5.23, and -7.28 respectively. 
However in this case we loose from the computational time (see table 
5.5). The differences between the computational times are significant 
with significance of p < 0.000. The corresponding t values are -45.43, 
-44.10, -35.76, and -27.10, respectively (see table C .ll)

# Also a. =  0.6 leads to better objective function scores than a =  0.2 (see 
table 5.5). This is mainly because a = 0.2 leads to more looser schedules 

and more diverse search on the decision tree. Even it is possible to search 

more nodes with a  =  0.2, since the search on the decision tree is done 
by entering to the less promising nodes, it needs more time to finish the 
search. However the search is limited with the iteration number. So with
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a = 0.6, even the search on the decision tree is more narrow, since it 
always searches the most promising nodes it can still give good results 
if the iteration number is small. However if the iteration number was 
not limited and if it was possible to search for an infinitely many time, 
the GRASP algorithm with a = 0.2 would probably lead to a better 
solution. This fact can be viewed at table 5.5. Note that G l, G2, G4, 
and G5 algorithms correspond to o; =  0.2 whereas G3, G4, G7, and G8 
algorithms correspond to o;=0.6. The t values of the pairs G1-G3, G2- 
G4, G5-G7, and G6-G8 are -26.08, -25.99, -22.0, and -22.00, respectively 
with the significance of p < 0.000 (see table C .ll).

• We can also see that the second phase improves the overall result of 
the GRASP (see table 5.5). Note that G l, G2, G3 and G4 are the 
GRASP algorithms that do not have phase two whereas for the remaining 
GRASP algorithms phase two is allowed. The t values for the objective 
function value of the pairs G1-G5, G2-G6, G3-G7, and G4-G8 are -14.43, 
-14.07, -7.14 and -7.46, respectively with the significance of p <  0.000 
(see table C .ll) . However again the trade off is the computational time 
requirements (see table 5.5). The t values for the computational times 
of the pairs G1-G5, G2-G6, G3-G7, and G4-G8 are -21.83, -24.20, -27.16 
and -27.26, respectively with the significance of p <  0.000 (see table 
C .ll).

• On the average of 320 experiments, G8 has a computational time of 
49891 milliseconds, whereas B7 requires 61353 milliseconds (see table 
5.5). The main factors that affect the computational time of the GRASP 
are the iteration number and the allowance of the second phase. Also 
from table 5.5 we can conclude that, if the second phase is allowed then 
higher a leads to a higher computational time (see table 5.5). This is 
mainly because it is more likely to apply the second phase if a is higher 
since the initial solution will likely to be more promising. Note that the 

corresponding pairs are G5-G7 and G6-G8 with the t values of -19.48 
and -21.06, respectively, and the significance are p <  0.000. For the cases 
without phase two, the corresponding pairs are G1-G3 and G2-G4. The
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difference between the computational times of G1-G3 is not significant 
with p < 0.122. However the difference between the computational times 
of G2-G4 is significant with p < 0.000 and corresponding t value is -9.81. 
So the affect of a to the computational time is not always significant for 
the cases where the phase two is not allowed. Note that different a levels 
lead to different schedules which may increase or decrease the number of 
iterations, so the computational time. However for the case where the 
phase two is allowed the major effort is spend in the phase two, so the 
level of a  becomes more significant on the required computational times.

5.3.5 SIMULATED ANNEALING

• Simulated annealing algorithms do not perform as good as the beam 
search algorithms for the overall experiments. SlOO has the best overall 
average of unscheduled weight percentages among the other simulated 
annealing algorithms. The corresponding value of SlOO is 0.194 (see 
table 5.5). On the average, it still improves NN algorithms objective 
value by 5.1% (0.245-0.194). The corresponding t value of the pair SIOO- 
NN is 20.25 with p < 0.000. The highest improvement on the objective 
function value of NN algorithm achieved by SlOO is at the experimental 
combination of O-O-O-O-l (see tables A .l and A.3). At this experimental 
combination the unscheduled weight percentages of the algorithms on 
the average of 10 corresponding replications are 0.144 for SlOO and 0.230 
for NN (see tables A .l and A.3). So the improvement is 8.6% (0.230- 
0.144). This experimental combination corresponds to 76 observations, 
low oversubscription rate, high reconfiguration time case, no due dates 
for the observations and for the weight assignment to the observations of 
1-5-9 (see table 5.1).

• Again simulated annealing algorithms perform relatively better for the 
high reconfiguration cases than the low reconfiguration cases (see ta­
ble 5.6). The average of unscheduled weight percentages of 160 exper­

iments that correspond to high reconfiguration case is 0.203 (see table
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5.6). Whereas the beam search algorithm that performs best for same 
case is the B7 algorithm with the corresponding value of 0.202. The dif­
ference between these two values is only 0.1% and not significant with 
significance of p < 0.358 (see table C.13). When we compare the 16 
different experimental combinations where there is high reconfiguration 
time case we see that at 7 experimental combination SI00 performs better 
then B7 and perform same at 1 combination with respect to the objective 
function value. The reason behind this is same with the reason described 
in section 5.3. That is to say, the neighbor generation mechanism used 
at simulated annealing also depends on the concept of family scheduling.

• Note that the mutation concept improves the efficiency of the algorithms. 
Sno which has no mutation has the overall average weight of unsched­
uled percentages of 0.208 (see table 5.5). This objective function value 
increases as the mutation percentage increases. It reaches to the best 
value when mutation percentage is 100 (SlOO) with the corresponding 
value of 0.194. So the mutation percentage of 100 improves the no mu­
tation case by 1.4% (0.208-0.194) on the overall average, since SA can 
search more nodes of the decision tree by the help of the mutation. The 
corresponding t value of the pair Sno-SlOO is -11.98 with p < 0.000. 
However the trade off is again the required computational times. The 
corresponding t value of the pair Sno-SlOO is -16.74 with p < 0.000.

• When we compare the computational times of simulated annealing al­
gorithms with the other algorithms we can see that simulated annealing 
algorithms have computational times that are significantly higher than 
the other algorithms (see table C.9). The simulated annealing algorithm 
that has the smallest computational time on the overall average is Sno 
with the computational time of 100376 milliseconds, whereas SlOO has 
the highest computational time on the average of 320 experiments which 
is 333074 milliseconds (see table 5.5).
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high setup low setup
Algo wt per. comp. t. wt. per. comp, t
NN 0.266 16 0.224 16

NDH 0.254 51 0.212 52
B1 0.202 19521 0.145 20316
B2 0.204 19529 0.149 20249
B3 0.204 24144 0.144 25104
B4 0.206 24170 0.148 25050
B5 0.202 29411 0.145 30545
B6 0.205 29266 0.149 30346
B7 0.202 36083 0.144 37495
B8 0.205 36255 0.148 37628
G1 0.229 8821 0.221 8832
G2 0.224 17620 0.215 17624
G3 0.199 8831 0.171 8810
G4 0.194 17704 0.167 17704
G5 0.217 11583 0.211 13566
G6 0.212 21250 0.205 23679
G7 0.196 17015 0.169 21123
G8 0.191 30387 0.165 34886
Sno 0.220 87222 0.196 113030
S20 0.204 137242 0.189 192979
S50 0.203 175019 0.187 237674

SlOO 0.203 281535 0.186 384613

Table 5.6: Average unscheduled weight percentages and computational times 
of the algorithms for high and low reconfiguration time cases
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5.4 SUMMARY

From the above discussion, we can conclude that in general beam search algo­
rithms give the best objective function values on the overall average. The main 
reason of this fact is the guided search methodology that is used in beam 
search algorithms. By the help of the local and global evaluation functions, the 
search on the decision tree is guided so that lower level searches focus in areas 
most likely contain good solutions. However there is a danger of local entrap­
ment at this methodology. For the high reconfiguration times case beam search 
algorithms cannot break the local entrapment. On the other hand, GRASP 
algorithms can break the local entrapment by the help of the random  search 
methodology. Hence, for the high reconfiguration times case GRASP algo­
rithms give better objective function value than the beam search algorithms 
on the average of corresponding 160 experiments. Now we will present the 
time versus scientific return graphs of these algorithms. The scientific return 
corresponds to average of scheduled weight percentages.

scientific return =  1- average of unscheduled weight percentages

Note that in figure 5.1, the scientific return is presented as the average of 
scheduled weight percentages of 320 experiments. In figure 5.2, the scientific 
return is presented as the average of scheduled weight percentages of 160 exper­
iments that correspond to high reconfiguration time case. Finally, in figure 5.3, 
the scientific return is presented as the average of scheduled weight percentages 
of 160 experiments that correspond to low reconfiguration time case. The com­
putational times are presented in milliseconds and time axis is in logarithmic 
scale.

The lines in the figures correspond to the pareto curves. Note that, only for 
the algorithms on the pareto curves, there is no other algorithm which performs 
better both in objective function value and computational time aspects.

To sum up, we can divide the algorithms into two groups. The first group 
consists of the algorithms that require low computational times although they
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Figure 5.1: Time versus the scientific return for each algorithm

do not give good objective function value, and the second group consists of the 
algorithms that give better objective function value but require higher com­
putational times. From the figures we can conclude that the simple dispatch 
heuristics NN and NDH belong to the first group whereas the local search 
heuristics such as beam search, GRASP and simulated annealing algorithms, 
belong to the second group. So if the time is limited for scheduling it is more 
preferrable to use NDH since it gives better objective function values than the 
NN algorithm and requires a very small computational time with respect to 
the local search algorithms. However, if the time permits we can use the B7 
algorithm which gives the highest objective function value for the overall exper­

iments, although it is more preferable to use the G8 algorithm if the problem 

domain has a high reconfiguration time between the equipments.
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Figure 5.2: Time versus the scientific return for the high reconfiguration times 
case

Figure 5.3: Time versus the scientific return for the low reconfiguration times 
case



Chapter 6

CONCLUSION

In this chapter we will provide a brief summary of the contributions done 
in this thesis and address of some of the future research directions. In this 
thesis we have studied space mission scheduling problem and concentrated 
mainly on the short term scheduling of Hubble Space Telescope (HST). We 
proposed new solution methodologies to generate good short term schedules 
of the candidate observations. The solution procedures that are proposed are 
a new dispatch heuristic, a beam search algorithm, a GRASP algorithm and 
a simulated annealing algorithm. In the next section, we will make a short 
summary of the contributions we have made to the solution of this problem.

6.1 CONTRIBUTIONS

First of all, we have proposed a new dispatch based heuristic which provides 
better objective function value than the nearest neighbor heuristic that is pro­
posed by Smith and Pathak [57]. Secondly, we applied more sophisticated local 
search algorithms that can identify the complex interactions between the can­
didate observations better than the simple dispatch based heuristics. By this 

way we have improved the objective function values significantly.

91
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We have considered some important features of the problem domain that 
are not considered by the algorithms that are available in the literature. These 
features are the priorities that are assigned to the candidate observations by 
Space Telescope Science Institute and the user specified due dates. Both of 
these constraints are important and realistic constraints that should be con­
sidered while generating short term schedule of HST.

We have presented the steps of each proposed algorithm and test the perfor­
mance of the proposed algorithms on 320 randomly generated problems. In the 
proposed experimental design we have tested the influence of five experimen­
tal factors that can possibly affect the performance of the algorithms. These 
experimental factors are the number of observations, over subscription rate, 
reconfiguration times between the observations, due dates of the observations 
and weight assignment procedures to the observations. We designed a 2® full 
factorial design with 32 different experimental condition with 10 replications 
generated for each combination.

From the experimental design we have concluded that the beam search al­
gorithm, with the parameter settings of b=6, f=10 and c=3, gives the best 
objective function score on the average of 320 experiments. Beam search algo­
rithm with the specified parameters improves the nearest neighbor algorithm 
7.2% on the average. We have also concluded that the GRASP algorithm, 
with the parameter setting of o: =  0.6, number of iterations=500 and with 
phase two, provides the best objective function value on the average of 160 
experiments that correspond to high reconfiguration time case.

We have also provide some modifications to the generic algorithms. For 
example we have introduced a new concept of childwidth that restricts the 
number of beams that generates from a particular beam. From the experi­
mental design we have concluded that this restriction improves the objective 
function values of the beam search algorithms 0.33% on the average of 320 
experiments.

Another fact that we have introduced is the mutation concept that we have 
proposed for the simulated annealing algorithm. By the help of the mutation
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concept simulated annealing algorithm can search more nodes of the decision 
tree. We have concluded that the simulated annealing algorithm with the 
mutation percentage of 100 improved the simulated annealing algorithm with 
no mutation 1.3% on the average of 320 experiments.

As a result of this thesis we have found that more sophisticated algorithms 
can improve the objective function values for the space mission scheduling 
problems such as HST scheduling problem. However one important thing to 
consider is the higher computational times of the sophisticated algorithms. So 
some clever modifications must be done that will reduce the search on the 
nodes of the decision tree. We have provided this at the GRASP algorithm by 
not allowing the phase 2 to the less promising schedules generated at phase 1 
and restricted the number of iterations of the local search algorithms. For the 
simulated annealing algorithms we have provided the same fact by creating the 
desirable exchange list which consist of most promising exchanges in order to 
generate the next neighbor.

6.2 FUTURE RESEARCH DIRECTIONS

At the end there are several future research directions emanating from this 
research study as such:

• Some other sophisticated algorithms such as tabu search and genetic 
algorithms can be applied to the problem, and the performance of these 
algorithms can be analyzed.

• In this research we relaxed the complex power up/down sequences needed 
to reconfigure the instruments of HST and used the maximum time re­

quired to reconfigure the instruments. More sophisticated computerized 
algorithms can be generated that consider the fact of power up/down 
sequences while scheduling the candidate observations.
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• The proposed new dispatch rule is used as the local evaluation function 
for the beam search algorithms, and it is also used to generate initial 
schedules for the GRASP and simulated annealing algorithms. Some 
other dispatch rules can be used at these algorithms and the performance 
of these new dispatch rules can be analyzed. Moreover the affect of 
different dispatch rules to the performance of these algorithms can be 
analyzed.

• Finally the new concepts that we have introduced to the generic algo­
rithms of beam search, GRASP and simulated annealing, can be imple­
mented to other research areas and the performance of these concepts 
can be analyzed.
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Experiment NN NDH
0 0 0 0  0 0,227664 0,213766
0 0 0 0  1 0,230074 0,217588
0 0 0 1 0 0,236267 0,207809
0 0 0 1 1 0,239107 0,205632
0 0 1 0  0 0,121774 0,105228
0 0 1 0  1 0,12221 0,106801
0 0 1 1 0 0,131039 0,119126
0 0 1 1 1 0,131509 0,110255
0 1 0 0 0 0,297816 0,296492
0 10 0 1 0,301275 0,287991
0 1 0  1 0 0,307743 0,293183
0 1 0  1 1 0,312434 0,291977
0 1 1 0  0 0,264064 0,258769
0 1 1 0  1 0,263815 0,25983
0 1 1 1 0 0,272005 0,258769
0 1 1 1 1 0,271785 0,244687
1 0 0 0 0 0,238012 0,224499
1 0 0 0 1 0,234195 0,23402
1 0  0 1 0 0,248038 0,238448
1 0  0 1 1 0,243975 0,239434
1 0  1 0  0 0,213601 0,206626
1 0  1 0  1 0,210793 0,204331
1 0  1 1 0 0,224063 0,223191
1 0  1 1 1 0,221795 0,202934
1 1 0 0 0 0,283784 0,275501
1 10 0 1 0,278205 0,27052
1 1 0  1 0 0,29381 0,281604
1 1 0  1 1 0,287985 0,28554
1 1 1 0  0 0,279425 0,272014
1 1 1 0  1 0,274886 0,259343
1 1 1 1 0 0,29163 0,288143
1 1 1 1 1 0,288159 0,267552
Average 0,245092 0,232863

Table A.l: Unscheduled weight percentages of NN and АТС
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Experiment B1 B2 B3 B4 B5 B6 B7 B8
0 0 0 0 0 0,157512 0,160821 0,160159 0,162144 0,158835 0,160821 0,15685 0,160159
0 0 0 0 1 0,146121 0,149575 0,14745 0,152763 0,14745 0,151966 0,14745 0,153826
0 0 0 1 0 0,155526 0,159497 0,160159 0,160821 0,15685 0,159497 0,158835 0,160821
0 0 0 1 1 0,150106 0,151435 0,14745 0,1517 0,151435 0,151435 0,146387 0,150638
0 0 1 0  0 0,067505 0,068829 0,063534 0,06949 0,067505 0,068829 0,06552 0,068829
0 0 1 0  1 0,049681 0,055792 0,05101 0,05526 0,053932 0,052604 0,051807 0,057386
0 0 1 1 0 0,070152 0,06949 0,070152 0,072799 0,06949 0,070814 0,06949 0,072138
0 0 1 1 1 0,055792 0,053932 0,050478 0,051275 0,053666 0,054463 0,049681 0,053135
0 1 0  0 0 0,238253 0,242886 0,2409 0,242886 0,238253 0,242886 0,238253 0,240238
0 10 0 1 0,231934 0,231934 0,242561 0,241764 0,229012 0,2322 0,235919 0,234591
0 1 0  1 0 0,244209 0,250165 0,242224 0,245533 0,244209 0,250165 0,243547 0,244209
0 1 0  1 1 0,230074 0,231934 0,231403 0,235654 0,230074 0,231934 0,22848 0,230606
0 1 1 0  0 0,188617 0,18994 0,186631 0,198544 0,188617 0,191926 0,188617 0,19722
0 1 1 0  1 0,158608 0,164453 0,159139 0,162859 0,158342 0,159671 0,157545 0,160733
0 1 1 1 0 0,195897 0,197882 0,192588 0,196559 0,195897 0,197882 0,190602 0,194573
0 1 1 1 1 0,166047 0,170032 0,161796 0,166844 0,165515 0,172157 0,160733 0,169766
1 0 0 0 0 0,18483 0,190497 0,191369 0,195728 0,18483 0,193548 0,191369 0,197472
1 0 0 0 1 0,183549 0,185819 0,183723 0,191233 0,183549 0,185819 0,183723 0,191233
1 0  0 1 0 0,192241 0,193984 0,192241 0,191805 0,192677 0,195292 0,191369 0,193984
1 0  0 1 1 0,187216 0,189836 0,186518 0,189661 0,187216 0,189836 0,186518 0,189661
1 0  1 0  0 0,146033 0,1517 0,146905 0,147777 0,146905 0,152136 0,146469 0,149956
1 0  1 0  1 0,130283 0,132728 0,133601 0,136221 0,130632 0,132553 0,130981 0,131156
1 0  1 1 0 0,144725 0,14952 0,147341 0,152572 0,147341 0,152136 0,147341 0,154752
1 0  1 1 1 0,12941 0,131156 0,123123 0,124869 0,130283 0,130458 0,124345 0,126965
1 1 0  0 0 0,239756 0,241064 0,236269 0,236704 0,23932 0,241064 0,236704 0,238448
1 10 0 1 0,222669 0,223891 0,22424 0,222669 0,222669 0,223891 0,221795 0,224066
1 1 0  1 0 0,242807 0,243243 0,241064 0,2415 0,242371 0,242371 0,242371 0,242807
1 1 0  1 1 0,228432 0,230527 0,230353 0,230178 0,228432 0,230527 0,227908 0,231575
1 1 1 0  0 0,214473 0,216652 0,214908 0,216652 0,214037 0,21578 0,213601 0,215344
1 1 1 0  1 0,19263 0,205903 0,191233 0,201711 0,196822 0,207649 0,195424 0,206427
1 1 1 1 0 0,21578 0,21796 0,220139 0,224935 0,217088 0,21796 0,218396 0,219268
1 1 1 1 1 0,194377 0,202235 0,190534 0,19979 0,1949 0,202934 0,195599 0,203283
Average 0,173601 0,176729 0,173787 0,177216 0,174005 0,176975 0,173238 0,17704

Table A.2: Unscheduled Weight Percentages of Beam Search
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Experiment G1 G2 G3 G4 G5 G6 G7 G8
0 0 0 0 0 0,19325 0,180013 0,150232 0,143614 0,165453 0,173395 0,148908 0,140966
0 0 0 0 1 0,176939 0,171095 0,138948 0,138151 0,164187 0,15356 0,133369 0,137354
0 0 0 1 0 0,190602 0,19325 0,154864 0,146923 0,175381 0,178028 0,154864 0,143614
0 0 0 1 1 0,183316 0,178533 0,148247 0,142136 0,16153 0,166578 0,142136 0,13762
0 0 1 0  0 0,155526 0,140966 0,092654 0,088021 0,140966 0,134348 0,090668 0,08405
0 0 1 0  1 0,131775 0,123007 0,073858 0,073061 0,121413 0,111849 0,071998 0,070935
0 0 1 1 0 0,158173 0,154864 0,097287 0,094639 0,141628 0,129054 0,091992 0,090007
0 0 1 1 1 0,128852 0,131509 0,083422 0,073061 0,121148 0,113974 0,080499 0,072795
0 1 0  0 0 0,27002 0,252813 0,23362 0,227664 0,260093 0,236929 0,232296 0,223031
0 10 0 1 0,243092 0,24017 0,225027 0,217588 0,238045 0,236982 0,222901 0,216525
0 1 0  1 0 0,266711 0,264064 0,238253 0,230973 0,256784 0,25546 0,236929 0,229649
0 1 0  1 1 0,257173 0,25186 0,231668 0,225824 0,244952 0,240967 0,227152 0,223698
0 1 1 0  0 0,266049 0,264725 0,213104 0,209133 0,256122 0,249504 0,210457 0,208471
0 1 1 0  1 0,248406 0,237779 0,190755 0,18305 0,231668 0,225558 0,189426 0,182253
0 1 1 1 0 0,276638 0,265387 0,219722 0,209795 0,269358 0,257445 0,21906 0,209795
0 1 1 1 1 0,260361 0,246281 0,195005 0,194474 0,24017 0,236185 0,193677 0,192614
1 0 0 0 0 0,217524 0,202703 0,186138 0,178727 0,208806 0,197036 0,185266 0,178727
1 0 0 0 1 0,200314 0,198917 0,175864 0,174991 0,191408 0,188439 0,171498 0,173943
1 0  0 1 0 0,227114 0,21796 0,192241 0,187446 0,214037 0,202267 0,189625 0,183522
1 0 0 1 1 0,210094 0,206078 0,18774 0,177436 0,202235 0,196123 0,184946 0,17569
1 0  1 0  0 0,218396 0,211421 0,172188 0,166521 0,210985 0,197908 0,171316 0,166085
1 0  1 0  1 0,199267 0,193154 0,154384 0,148446 0,189312 0,183723 0,15124 0,148271
1 0  1 1 0 0,226242 0,218832 0,175676 0,176983 0,214908 0,21796 0,17524 0,17524
1 0  1 1 1 0,203458 0,202061 0,154558 0,150541 0,196472 0,195599 0,154034 0,150367
1 1 0  0 0 0,258936 0,257629 0,228858 0,225806 0,251526 0,249782 0,226678 0,224499
1 10 0 1 0,24869 0,237513 0,226336 0,218652 0,23891 0,227384 0,225114 0,216556
1 1 0  1 0 0,265911 0,261116 0,240192 0,237576 0,258936 0,248038 0,237576 0,234525
1 1 0  1 1 0,253929 0,256374 0,231051 0,228082 0,2438 0,245721 0,226685 0,226336
1 1 1 0  0 0,275501 0,265039 0,235833 0,22973 0,265039 0,259372 0,234961 0,22973
1 1 1 0  1 0,256898 0,254104 0,216731 0,212714 0,252008 0,240482 0,216032 0,211317
1 1 1 1 0 0,279861 0,275937 0,239756 0,23932 0,278553 0,271142 0,238012 0,236704
1 1 1 1 1 0,254453 0,257073 0,220573 0,218128 0,248865 0,252532 0,220224 0,21708
Average 0,225109 0,219132 0,185149 0,180288 0,214209 0,208541 0,182962 0,178499

Table A.3: Unscheduled Weight Percentages of GRASP
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Experiment Sno S20 S50 SlOO
0 0 0 0  0 0,180013 0,151555 0,152879 0,154203
0 0 0 0 1 0,160999 0,141339 0,141073 0,14373
0 0 0 1 0 0,18266 0,158835 0,15685 0,152879
0 0 0 1 1 0,172157 0,144527 0,150106 0,146387
0 0 1 0  0 0,116479 0,103905 0,101257 0,099934
0 0 1 0  1 0,103613 0,091658 0,087673 0,089532
0 0 1 1 0 0,126406 0,107214 0,107214 0,101919
0 0 1 1 1 0,113974 0,103613 0,0983 0,095377
0 1 0  0 0 0,250165 0,231635 0,236267 0,236267
0 10 0 1 0,240967 0,23034 0,224495 0,223964
0 1 0  1 0 0,256784 0,239576 0,238253 0,238915
0 1 0  1 1 0,240436 0,234591 0,227152 0,229809
0 1 1 0  0 0,244209 0,231635 0,228326 0,236267
0 1 1 0  1 0,217322 0,213603 0,213603 0,214134
0 1 1 1 0 0,250827 0,238915 0,236267 0,235606
0 1 1 1 1 0,23034 0,22423 0,218385 0,217322
1 0 0 0 0 0,207062 0,195292 0,191805 0,19442
1 0 0 0 1 0,205903 0,183374 0,180929 0,182501
1 0  0 1 0 0,212293 0,198344 0,203575 0,202703
1 0  0 1 1 0,206776 0,200664 0,189487 0,195948
1 0  1 0  0 0,183522 0,177855 0,180035 0,180035
1 0  1 0  1 0,178309 0,175864 0,172721 0,169752
1 0  1 1 0 0,192241 0,189625 0,189625 0,188753
1 0  1 1 1 0,18285 0,180929 0,177436 0,173245
1 1 0  0 0 0,258065 0,246731 0,245859 0,2415
1 10 0 1 0,240133 0,232448 0,230527 0,224939
1 1 0  1 0 0,26286 0,247167 0,248474 0,248038
1 1 0  1 1 0,247992 0,235417 0,236989 0,233846
1 1 1 0  0 0,248474 0,242807 0,244115 0,244987
1 1 1 0  1 0,238212 0,238037 0,23891 0,236815
1 1 1 1 0 0,257193 0,251962 0,253705 0,251962
1 1 1 1 1 0,248865 0,244848 0,241705 0,240657
Average 0,208066 0,196517 0,195125 0,194573

Table A.4: Unscheduled Weight Percentages of SA
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NN NDH
weight= 1-2-3 weight= 1-2-3
0,245670914 0,235198111

weight=1-5-9 weight=1-5-9
0,244512714 0,23052721

duedateper=0 duedateper=0
0,240099522 0,23083256

duedateper=5 duedateper=5
0,250084106 0,23489276
highsetup highsetup

0,266274019 0,254000358
lowsetup lowsetup

0,22390961 0,211724962
not osc. not osc.

0,204632314 0,191230588
OSC OSC

0,285551314 0,274494733
noofjobs=76 noofjobs=76
0,233161397 0,217369032

noofjobs=115 noofjobs=115
0,257022231 0,248356289

Table A.5: Unscheduled Weight Percentages of NN and АТС at different ex­
perimental conditions
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B1 B2 B3 B4 B5 B6 B7 B8
w t= l-2 -3 w t= l-2 -3 w t= l-2 -3 w t= l-2 -3 w t= l-2 -3 w t= l-2 -3 w t= l-2 -3 w t= l-2 -3
0,18114 0,18400 0,18166 0,18477 0,18151 0,18456 0,18120 0,18438

w t= l-5 -9 w t= l-5 -9 w t= l-5 -9 w t= l-5 -9 w t= l-5 -9 w t= l-5 -9 w t= l-5 -9 w t= l-5 -9
0,16605 0,16944 0,16591 0,16965 0,16649 0,16938 0,16526 0,16969

ddper=0 ddper=0 ddper=0 ddper=0 ddper=0 ddper=0 ddper=0 ddper=0
0,17202 0,17578 0,17335 0,17715 0,17254 0,17583 0,17262 0,17669

ddper=6 ddper=5 ddper=5 ddper=5 ddper=5 ddper=5 ddper=5 ddper=5
0,17517 0,17767 0,17422 0,17728 0,17546 0,17811 0,17385 0,17738

highsetup highsetup highsetup highsetup highsetup highsetup highsetup highsetup
0,20220 0,20481 0,20363 0,20579 0,20232 0,20520 0,20234 0,20527

lowsetup lowsetup lowsetup lowsetup lowsetup lowsetup lowsetup lowsetup
0,14500 0,14863 0,14394 0,14863 0,14568 0,14874 0,14413 0,14880
not osc. not osc. not osc. not osc. not osc. not osc. not osc. not osc.
0,13441 0,13716 0,13470 0,13788 0,13516 0,13763 0,13425 0,13825

osc osc osc osc osc osc osc osc
0,21278 0,21629 0,21287 0,21654 0,21284 0,21631 0,21221 0,21582

#  job = 7 6 #  job = 7 6 #  job = 7 6 #  job = 7 6 #  job = 7 6 #  job = 7 6 #  job = 7 6 #  job = 76
0,15662 0,15928 0,15672 0,16043 0,15681 0,15932 0,15560 0,15930

#  job = 11 5 #  job= 115 #  job= 115 #  job= 115 #  job=115 #  job= 115 #  job= 115 #  job=115
0,19057 0,19416 0,19084 0,19400 0,19119 0,19462 0,19086 0,19477

Table A.6: Unscheduled Weight Percentages of Beam Search at different ex­
perimental conditions
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G1 G2 G3 G4 G5 G6 G7 G8
w t= l-2 -3 w t= l-2 -3 w t= l-2 -3 w t= l-2 -3 w t= l-2 -3 w t= l-2 -3 w t= l-2 -3 w t= l-2 -3
0,23415 0,22666 0,19191 0,18705 0,22303 0,21610 0,19024 0,18491

w t= l-5 -9 w t= l-5 -9 w t= l-5 -9 w t= l-5 -9 w t= l-5 -9 w t= l-5 -9 w t= l-5 -9 w t= l-5 -9
0,21606 0,21159 0,17838 0,17352 0,20538 0,20097 0,17568 0,17208

ddper=0 ddper=0 ddper=0 ddper=0 ddper=0 ddper=0 ddper=0 ddper=0
0,22253 0,21444 0,18215 0,17724 0,21162 0,20414 0,18013 0,17579

ddper=5 ddper=5 ddper=5 ddper=5 ddper=5 ddper=5 ddper=5 ddper=5
0,22768 0,22382 0,18814 0,18333 0,21679 0,21294 0,18579 0,18120

highsetup highsetup highsetup highsetup highsetup highsetup highsetup highsetup
0,22897 0,22313 0,19932 0,19384 0,21725 0,21229 0,19662 0,19164

lowsetup lowsetup lowsetup lowsetup lowsetup lowsetup lowsetup lowsetup
0,22124 0,21513 0,17096 0,16672 0,21116 0,20478 0,16930 0,16535
not osc. not osc. not osc. not osc. not osc. not osc. not osc. not osc.
0,18880 0,18277 0,14614 0,14129 0,17624 0,17124 0,14360 0,13932

osc osc osc osc osc osc osc osc
0,26141 0,25549 0,22415 0,21928 0,25217 0,24584 0,22232 0,21767

#  job = 7 6 #  job = 7 6 #  job = 7 6 #  job = 7 6 :jjt job = 7 6 #  job = 7 6 #  jo b = 7 6 #  job = 76
0,21293 0,20601 0,16791 0,16238 0,19930 0,19373 0,16539 0,16021

#  job= 115 #  job = 11 5 #  job= 115 #  job=115 #  job= 115 #  job= 115 #  job= 115 #  job=115
0,23728 0,23224 0,20238 0,19819 0,22911 0,22334 0,20052 0,19678

Table A.7: Unscheduled Weight Percentages of GRASP at different experimen­
tal conditions
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SAno SA20 SA50 SAIOO
w eight=l-2-3 w eight=l-2-3 w eight=l-2-3 w eight=l-2-3

0,21432834 0,20081571 0,20090661 0,200524186
w eight=1-5-9 w eight=l-5-9 w eight=l-5-9 w eight=1-5-9

0,20180301 0,19221765 0,18934316 0,188622297
duedateper=0 duedateper=0 duedateper=0 duedateper=0

0,20459049 0,19300488 0,19190464 0,1920612
duedateper=5 duedateper=5 duedateper=5 duedateper=5

0,21154086 0,20002848 0,19834513 0,197085283
highsetup highsetup highsetup highsetup

0,22032901 0,20448968 0,20342001 0,203127963
lowsetup lowsetup lowsetup lowsetup

0,19580235 0,18854368 0,18682976 0,18601852
not osc. not osc. not osc. not osc.

0,17032872 0,15653708 0,15506024 0,154457385
osc osc osc osc

0,24580264 0,23649628 0,23518952 0,234689098
noofjobs=76 noofjobs=76 noofjobs=76 noofjobs=76
0,19295959 0,17794809 0,17613121 0,176015279

noofjobs=115 noofjobs=115 noofjobs=115 noofjobs=115
0,22317177 0,21508527 0,21411855 0,213131204

Table A.8: Unscheduled Weight Percentages of SA at different experimental 
conditions
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APPENDIX в. COMPUTATIONAL TIMES 1 1 2

Experiment NN NDH
0 0 0 0 0 8,2 31,8
0 0 0 0 1 10 31,5
0 0 0 1 0 9,9 31,4
0 0 0 1 1 9,9 31,4
00 100 11,8 36,4
0 0 10 1 10 36,5
0 0 110 11,6 33,1
0 0 1 1 1 10 38,5
0 10 0 0 10 29,6
0 10 0 1 10 28,4
0 10 10 8,4 33,5
0 10 11 8,4 31,8
0 110  0 6,6 30,1
0 110  1 11,6 29,8
0 1 1 1 0 10 31,7
0 1 1 1 1 10 30,3
1 0 0 0 0 23,4 73,2
1 0 0 0 1 23,4 71,7
10 0 10 21,7 76,4
10 0 11 21,6 69,9
10 10 0 21,7 75,3
10 10 1 23,4 73,5
10 110 21,7 75,1
10 1 1 1 25,1 68,2
110  0 0 21,7 66,7
1 10 0 1 23,2 66,7
110  10 21,8 65,2
110  11 18,3 70,1
1 1 1 0  0 21,8 68,4
1 1 1 0  1 21,7 66,7
1 1 1 1 0 21,7 69,9
1 1 1 1 1 20 71,8
Average 15,89375 51,39375

Table B .l: Computational Times of NN and АТС
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Experiment B1 B2 B3 B4 B5 B6 B7 B8
0 0 0 0 0 9556,6 9606,8 11786,7 11804,9 14591,6 14111,7 17391,8 17549,8
0 0 0 0 1 9471,6 9491,9 11714,8 11661,6 14481,9 14001,5 17191,7 17240
0 0 0 1 0 9506,5 9516,6 11753,4 11733,5 14559,9 14036,5 17328,4 17385,2
0 0 0 1 1 9403,1 9408,4 11723,4 11663,3 14380,1 13871,7 17206,8 17263,6
0 0 1 0  0 10596,7 10635,3 13223,4 13166,5 16216,8 15660 19398,3 19456,7
0 0 1 0  1 10441,8 10395 12956,7 12918,2 15923,4 15448,4 19028,4 19179,9
0 0 1 1 0 10519,8 10579,7 13039,8 13046,9 16116,6 15573,3 19200 19313,3
0 0 1 1 1 10350,1 10351,7 12856,6 12866,7 15770,1 15216,6 18868,3 19003,5
0 1 0  0 0 8325,1 8338,3 10378,3 10336,5 12711,5 12293,4 15199,7 15351,7
0 10 0 1 8131,7 8185,2 10093,4 10016,8 12490,1 12055,3 14771,6 14850
0 1 0  1 0 8201,6 8208,5 10276,5 10201,6 12538,4 12091,6 15024,9 15143
0 1 0  1 1 8065,3 8098,5 10050,1 10063,5 12366,8 11921,7 14797 14880,1
0 1 1 0  0 8801,8 8786,6 10998,2 10869,9 13436,5 12996,8 16076,8 16183,3
0 1 1 0  1 8500,3 8496,4 10599,8 10536,6 13035,2 12680,2 15526,7 15738,4
0 1 1 1 0 8698,3 8726,6 10851,8 10849,9 13243,1 12855 15918,3 16038,4
0 1 1 1 1 8434,8 8456,5 10473,3 10468,5 12953,4 12478,2 15354,9 15510
1 0 0 0 0 31755 31590,1 39051,7 39096,7 47549,9 47600 58673,3 58629,9
1 0 0 0 1 31304,9 31173,4 38808,3 38713,4 47005,1 47043,4 58201,7 58238,1
1 0  0 1 0 31306,8 31335,1 38650,2 38871,7 46980,1 47023,3 58096,8 58363,3
1 0  0 1 1 31059,9 31035,1 38458,5 38521,9 46430 46745 57681,9 58041,7
1 0  1 0  0 33448,4 33240 41351,8 41418,4 50070 50009,9 62120,2 62111,6
1 0  1 0  1 32526,7 32430 39980 39893,3 48649,9 48729,9 60340,1 60401,8
1 0  1 1 0 33125,1 32911,7 40951,6 40874,8 49339,9 49405 61353,3 61393,2
1 0  1 1 1 32396,6 32276,6 40023,2 40093,3 48443,3 48668,3 59940,2 60250,3
1 1 0  0 0 29390 29390 36486,6 36561,7 44133,3 44275,1 54796,8 54936,7
1 10 0 1 29248,3 29354,9 35989,9 36046,7 43923,4 44071,7 54053,2 54516,8
1 1 0  1 0 28851,5 28926,6 35791,8 35956,6 43303,3 43800,2 53698,5 54055
1 1 0  1 1 28768,5 28819,9 35298,4 35473,4 43141,7 43326,7 53218,3 53640,1
1 1 1 0  0 30001,8 29898,4 36963,4 36976,6 44909,9 45068,4 55601,8 55836,7
1 1 1 0  1 28963,2 28576,6 35751,7 35463,5 43288,4 43303,3 53723,3 53578,4
1 1 1 1 0 29561,9 29660 36471,7 36395 44271,7 44494,8 54750,1 54968,3
1 1 1 1 1 28698,3 28564,9 35175,2 34968,3 43065,1 42958,2 52720,1 53086,7
Average 19919,13 19889,54 24624,38 24610,32 29978,76 29806,72 36789,16 36941,73

Table B.2: Computational Times of Beam Search
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Experiment G1 G2 G3 G4 G5 G6 G7 G8
0 0 0 0 0 5429,9 10785,1 5423,3 10716,9 7054,9 13006,7 11573,5 19958,2
0 0 0 0 1 5431,4 10773,2 5419,9 10723,3 7131,8 12606,5 12750 21715,2
0 0 0 1 0 5423,2 10771,7 5433,3 10753,5 7103,5 12366,9 11176,6 18266,8
0 0 0 1 1 5429,9 10766,8 5429,7 10731,5 7383,2 12973,3 9271,8 18168,4
0 0 1 0  0 5446,8 10776,7 5411,7 10708,3 7359,5 13916,8 14693,3 20850
0 0 1 0  1 5428,5 10793,3 5411,6 10715 7434 13450,1 13386,6 23880
0 0 1 1 0 5444,8 10793,4 5428,5 10708,4 7121,5 13628,4 13094,9 21273,5
0 0 1 1 1 5453,4 10781,6 5420 10693,6 7865,2 13851,8 14980,1 23566,4
0 1 0  0 0 5458,5 10791,6 5445 10733,1 7725 13205,1 10756,7 17876,6
0 10 0 1 5440 10755,1 5420 10704,9 7616,6 13451,5 9538,4 17796,8
0 1 0  1 0 5434,8 10768,2 5439,9 10731,5 7276,5 12955,1 10749,9 16305,1
0 1 0  1 1 5431,7 10796,4 5423,1 10701,4 6772,1 12826,6 9323,3 17181,6
0 1 1 0  0 5433,3 10760 5408,6 10718,4 6712 13903,5 11000 19201,6
0 1 1 0  1 5443,5 10751,4 5406,3 10711,6 7801,5 13470,1 13616,7 23530,1
0 1 1 1 0 5428,4 10776,7 5438,2 10714,9 6747,1 14106,7 13406,7 17523,5
0 1 1 1 1 5449,9 10784,9 5414,8 10701,6 8148,2 14585,1 11709,9 21181,8
1 0 0 0 0 12193,3 24445,1 12242,1 24653,6 16276,7 28325 25060 40640
1 0 0 0 1 12195,1 24473 12264,9 24673,4 15500,1 28340 24240,2 43498,4
1 0  0 1 0 12225 24468,1 12270,2 24770 15395,2 28370 22800,2 39248,3
1 0  0 1 1 12205,1 24469,9 12261,7 24729,9 16276,8 29636,7 22293,5 42221,8
1 0  1 0  0 12224,7 24468,2 12223,3 24636,7 19303,3 33011,6 28430,1 48136,7
1 0  1 0  1 12224,8 24478,5 12230,2 24659,9 19873,5 34515 33946,9 52058,3
1 0  1 1 0 12233,3 24446,8 12239,9 24691,6 20166,6 33471,4 25298,3 50386,8
1 0  1 1 1 12208,5 24500 12256,5 24708,4 19021,6 34960,1 29763,3 49531,5
1 1 0  0 0 12201,7 24461,7 12271,8 24751,6 16050 30601,7 24291,7 41555,1
1 10 0 1 12198,3 24475,1 12161,7 24755,1 16224,7 29628,4 25396,8 43128,3
1 1 0  1 0 12211,8 24463,2 12210,1 24760,1 15608,3 29586,6 23138,3 45693,2
1 1 0  1 1 12234,8 24468,4 12179,9 24755 15935,1 32126,8 19883,5 42946,7
1 1 1 0  0 12249,8 24501,7 12145,1 24713,4 19735,1 33079,8 30236,6 49891,7
1 1 1 0  1 12203,3 24461,7 12166,4 24738,5 20591,5 31673,2 30135,2 49054,9
1 1 1 1 0 12223,4 24424,9 12241,5 24740 18865 33053,3 28063,6 44583,3
1 1 1 1 1 12216,6 24490,1 12123,3 24718,2 20323,4 34194,9 26216,6 43528,3
Average 8826,797 17622,58 8820,703 17716,35 12574,98 22464,96 19069,48 32636,84

Table B.3: Computational Times of GRASP
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Experiment Sno S20 S50 SlOO
0 0 0 0 0 33198,3 79645,1 76334,9 107501,8
0 0 0 0 1 35496,8 90438,4 81281,6 133303,5
0 0 0 1 0 28690,3 67303,3 92893,5 116431,7
0 0 0 1 1 32839,9 95151,7 88748,3 130135
0 0 1 0  0 30331,7 96553,2 81675 123571,7
0 0 1 0  1 91866,5 121535,1 150911,5 180909,7
0 0 1 1 0 40506,8 87088,4 74116,7 118283,4
0 0 1 1 1 101379,9 105986,5 111731,5 178529,9
0 1 0  0 0 36016,7 88453,4 111353,1 126253,5
0 10 0 1 90463,3 112231,6 97521,7 169053
0 1 0  1 0 36163,3 99823,7 94018,4 143700,1
0 1 0  1 1 38945 108784,8 137501,6 160731,7
0 1 1 0  0 50215 113218,1 113149,9 134961,6
0 1 1 0  1 46016,6 157148,5 228045 217626,5
0 1 1 1 0 36718,7 116011,6 136421,8 177340
0 1 1 1 1 62031,6 184248,3 183383,4 251198,5
1 0 0 0 0 129050,1 131115,2 226593,3 318398,2
1 0 0 0 1 124680 153365,2 277088,1 455298,3
1 0  0 1 0 131060,1 119035,1 233838,3 307615,1
1 0  0 1 1 98641,8 181603,6 268238,4 426900,2
1 0  1 0 0 117503,2 216156,7 291361,7 480359,9
1 0  1 0  1 245216,6 218456,8 328178,3 608301,6
1 0  1 1 0 131046,9 288034,9 300755,1 451008,4
1 0  1 1 1 140306,7 228681,7 335398,6 615146,7
1 1 0 0 0 94528,6 276976,6 241513,5 444719,9
1 10 0 1 131103,1 186976,7 316781,7 473681,6
1 1 0  1 0 140511,6 200671,7 221783,4 436888,3
1 1 0  1 1 222173,3 204304,9 234818,5 553954,9
1 1 1 0  0 99036,6 249343,4 348063,3 565931,9
1 1 1 0  1 141768,3 326189,8 352099,9 699810,1
1 1 1 1 0 189305,2 284356,7 390555,1 595446,7
1 1 1 1 1 285239,9 294658,3 376943,2 755383,4
Average 100376,64 165110,91 206346,82 333074,28

Table B.4: Computational Times of SA



APPENDIX В. COMPUTATIONAL TIMES 116

NN NDH
weight=1-2-3 weight=1-2-3

15,75 51,7375
weight=1-5-9 weight=1-5-9

16,0375 51,05
duedateper=0 duedateper=0

16,15625 51,01875
duedateper=5 duedateper=5

15,63125 51,76875
highsetup highsetup
15,61875 50,58125
lowsetup lowsetup
16,16875 52,20625
not osc. not osc.
16,4625 53,36875

OSC OSC

15,325 49,41875
noofjobs=76 noofjobs=76

9,775 32,2375
noofjobs=115 noofjobs=115

22,0125 70,55

Table B.5: Computational Times of NN and АТС at different experimental
conditions
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B1 B2 B3 B4 B5 B6 B7 B8
w t= l-2 -3 w t= l-2 -3 w t= l-2 -3 w t= l-2 -3 w t= l-2 -3 w t= l-2 -3 w t= l-2 -3 w t= l-2 -3

20102 20084 24876 24885 30248 30080 37164 37294
w t= l-5 -9 w t= l-5 -9 w t= l-5 -9 w t= l-5 -9 w t= l-5 -9 w t= l-5 -9 w t= l-5 -9 w eight=l-5-9

19735 19694 24372 24335 29709 29532 36414 36588
ddper=0 ddper=0 ddper=0 ddper=0 ddper=0 ddper=0 ddper=0 ddper=0

20028 19974 24758 24717 30151 29959 37005 37112
ddper=5 ddper=5 ddper=5 ddper=5 ddper=5 ddper=5 ddper=5 ddper=5

19809 19804 24490 24503 29806 29654 36572 36770
highsetup highsetup highsetup highsetup highsetup highsetup highsetup highsetup

19521 19529 24144 24170 29411 29266 36083 36255
lowsetup lowsetup lowsetup lowsetup lowsetup lowsetup lowsetup lowsetup

20316 20249 25104 25050 30545 30346 37495 37628
not osc. not osc. not osc. not osc. not osc. not osc. not osc. not osc.

21048 20998 26020 26021 31656 31446 38876 38988
osc osc osc osc osc osc osc osc

18790 18780 23228 23199 28300 28166 34702 34894
#  job = 7 6 # job = 7 6 #  job = 7 6 #  job = 7 6 #  job = 7 6 #  job = 7 6 #  job = 7 6 #  job = 7 6

9187 9205 11423 11387 14050 13580 16767 16880
#  job= 115 #  job= 115 #  job= 115 #  job= 115 #  job=115 #  job= 115 #  job= 115 #  jo b = U 5

30650 30573 37825 37832 45906 46032 56810 57003

Table B.6: 
conditions

Computational Times of Beam Search at different experimental
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G1 G2 G3 G4 G5 G6 G7 G8
w t= l-2 -3 w t= l-2 -3 w t= l-2 -3 w t= l-2 -3 w t= l-2 -3 w t= l-2 -3 w t= l-2 -3 w t= l-2 -3

8828 17618 8829 17718 12406 22286 18985 31961
w t= l-5 -9 w t= l-5 -9 w t= l-5 -9 w t= l-5 -9 w t= l-5 -9 w t= l-5 -9 w t= l-5 -9 w t= l-5 -9

8824 17626 8811 17713 12743 22643 19153 33311
ddper=0 ddper=0 ddper=0 ddper=0 ddper=0 ddper=0 ddper=0 ddper=0

8825 17621 8815 17707 12649 22261 19940 33298
ddper=5 ddper=5 ddper=5 ddper=5 ddper=5 ddper=5 ddper=5 ddper=5

8828 17623 8825 17725 12500 22668 18198 31975
highsetup highsetup highsetup highsetup highsetup highsetup highsetup highsetup

8821 17620 8831 17727 11583 21250 17015 30387
lowsetup lowsetup lowsetup lowsetup lowsetup lowsetup lowsetup lowsetup

8832 17624 8810 17704 13566 23679 21123 34886
not osc. not osc. not osc. not osc. not osc. not osc. not osc. not osc.

8824 17624 8835 17704 12516 22276 19547 33337
osc osc osc osc osc osc osc osc

8828 17620 8805 17728 12633 22653 18591 31936
#  job = 7 6 #  job = 7 6 #  job = 7 6 #  job = 7 6 #  job = 7 6 #  job = 7 6 #  job = 7 6 #  job = 7 6

5438 10776 5423 10716 7328 13394 11939 19892
# job= 115 #  job= 115 #  job= 115 #  job=115 #  jo b = n S #  job= 115 #  job= 115 #  job=115

12215 24468 12218 24715 17821 31535 26199 45381

Table B.7: Computational Times of GRASP at different experimental condi­
tions
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SAno SA20 SA50 SAIOO
w eight=l-2-3 w eight=l-2-3 w eight=1-2-3 w eight=l-2-3

82742,6938 157111,694 189651,688 290525,763
w eight=1-5-9 w eight=l-5-9 w eight=1-5-9 w eight=l-5-9

118010,581 173110,119 223041,956 375622,788
duedateper=0 duedateper=0 duedateper=0 duedateper=0

93530,7125 163612,738 207622,031 327480,175
duedateper=5 duedateper=5 duedateper=5 duedateper=5

107222,563 166609,075 205071,613 338668,375
highsetup highsetup highsetup highsetup

87722,6375 137242,563 175019,269 281535,425
lowsetup lowsetup lowsetup lowsetup

113030,638 192979,25 237674,375 384613,125
not osc. not osc. not osc. not osc.

94488,475 142509,431 188696,55 296980,944
osc osc osc osc

106264,8 187712,381 223997,094 369167,606
noofjobs=76 noofjobs=76 noofjobs=76 noofjobs=76

49430,025 107726,356 116192,994 154345,725
noofjobs=115 noofjobs=115 noofjobs=115 noofjobs=115

151323,25 222495,456 296500,65 511802,825

Table B.8: Computational Times of SA at different experimental conditions
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Statistical Analysis

B1 B2 B3 B4 B5 B6 B7 B8
B2 .9997 1
B3 .9996 .9994 1
B4 .9994 .9994 .9997 1
B5 .9998 .9996 .9996 .9994 1
B6 .9995 .9997 .9994 .9995 .9996 1
B7 .9995 .9993 .9999 .9998 .9995 .9994 1
B8 .9994 .9994 .9997 .9999 .9994 .9996 .9997 1

Table C.l: Correlation table of the beam search algorithms

1 2 0
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G1 G2 G3 G4 G5 G6 G7 G8
G2 .9992 1
G3 .9984 .9986 1
G4 .9985 .9987 .9996 1
G5 .9995 .9990 .9984 .9985 1
G6 .9996 .9995 .9985 .9986 .9990 1
G7 .9985 .9987 .9999 .9997 .9986 .9987 1
G8 .9986 .9988 .9997 .9999 .9986 .9987 .9997 1

Table C.2: Correlation table of the GRASP algorithms

Sno S20 S50 SlOO
S20 .9995 1
S50 .9996 .9996 1

SlOO .9989 .9990 .9989 1

Table C.3: Correlation table of the simulated annealing algorithms

Objec. Value Comp. Time
Factors F P F P

FI 1992.300 .000 173.762 .000
F2 135.705 .000 1.501 .221
F3 31.503 .000 .351 .554
F4 2.493 .115 .320 .572
F5 9917.099 .000 .096 .757

F1-F2 1.941 .165 .132 .716
F1-F3 10.641 .001 .104 .747
F1-F4 .200 .655 .320 .572
F1-F5 383.069 .000 .022 .882
F2-F3 9.643 .002 .142 .706
F2-F4 .003 .954 .262 .609
F2-F5 24.284 .000 .022 .882
F3-F4 .003 .954 .589 .443
F3-F5 5.858 .016 .123 .727
F4-F5 .485 .487

J
.610 .435

Table C.4: F Values and Significance Levels (p) for ANOVA results of NN
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Objec. Value Comp. Time
Factors F P F P

FI 1636.856 .000 2452.338 .000
F2 115.051 .000 26.067 .000
F3 30.525 .000 4.412 .000
F4 .311 .578 .940 .332
F5 8628.476 .000 .790 .375

F1-F2 3.411 .066 1.003 .317
F1-F3 5.112 .025 .418 .519
F1-F4 .833 .362 .067 .796
F1-F5 310.668 .000 .971 .325
F2-F3 6.708 .010 1.036 .310
F2-F4 .029 .865 3.697 .056
F2-F5 18.436 .000 .940 .333
F3-F4 .006 .941 .439 .508
F3-F5 8.992 .003 .017 .897
F4-F5 .015 .903 .038 .846

Table C.5: F Values and Significance Levels (p) for ANOVA results of NDH

Objec. Value Comp. Time
Factors F P F P

FI 2153.243 .000 36563.976 .000
F2 121.777 .000 380.739 .000
F3 69.772 .000 42.807 .000
F4 .001 .970 2.649 .105
F5 11826.231 .000 11.322 .001

F1-F2 .549 .460 35.895 .000
F1-F3 1.162 .282 0.018 .895
F1-F4 .002 .966 1.049 .307
F1-F5 406.554 .000 2.969 .086
F2-F3 6.434 .012 19.518 .000
F2-F4 .112 .738 .312 .577
F2-F5 20.908 .000 .402 .527
F3-F4 .003 .957 .013 .909
F3-F5 18.033 .000 2.993 .085
F4-F5 .018 .893 .157 .692

Table C.6: F Values and Significance Levels (p) for ANOVA results of B8
algorithm
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Objec. Value Comp. Time
Factors F P F P

FI 2316.025 .000 1630676.8 .000
F2 135.003 .000 30.621 .000
F3 19.331 .000 15.089 .000
F4 .902 .343 3.475 .063
F5 12619.757 .000 11.011 .001

F1-F2 1.056 .305 35.452 .000
F1-F3 2.284 .132 2.770 .097
F1-F4 .009 .924 .002 .967
F1-F5 439.662 .000 1.866 .173
F2-F3 3.429 .065 .971 .325
F2-F4 .010 .919 .618 .433
F2-F5 24.289 .000 14.744 .000
F3-F4 .089 .765 3.545 .061
F3-F5 7.162 .008 .621 .431
F4-F5 .180 .672 1.455 .229

Table C.7: F Values and Significance Levels (p) for ANOVA results of G3 
algorithm

Objec. Value Comp. Time
Factors F P F P

FI 2305.786 .000 459.830 .000
F2 144.112 .000 18.753 .000
F3 5.759 .017 38.237 .000
F4 .891 .346 .450 .503
F5 12756.531 .000 26.060 .000

F1-F2 2.049 .153 4.577 .033
F1-F3 2.318 .129 15.754 .000
F1-F4 .268 .605 .002 .962
F1-F5 438.978 .000 5.311 .022
F2-F3 6.827 .009 .231 .631
F2-F4 .007 .932 .318 .252
F2-F5 23.920 .000 .034 .854
F3-F4 .062 .0803 .096 .757
F3-F5 1.229 .269 1.806 .180
F4-F5 .243 .622 .111 .739

Table C.8: F Values and Significance Levels (p) for ANOVA results of SlOO
algorithm
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Objec. Value Comp. Time
Pairs t value P t value P

NN-NDH -5.88 .000 -37.73 .000
NN-B7 -23.31 .000 -32.47 .000
NN-G8 -23.87 .000 -38.86 .000

NN-SlOO -20.25 .000 -24.30 .000
NDH-B7 -21.51 .000 -32.46 .000
NDH-G8 -20.99 .000 -38.85 .000

NDH-SlOO -16.05 .000 -24.30 .000
B7-G8 4.29 .000 7.00 .000

B7-S100 12.06 .000 -22.90 .000
G8-S100 14.40 .000 -22.78 .000

Table C.9: Pairwise comparison of the proposed algorithms

Objec. Value Comp. Time
Pairs t value P t value P

B1-B2 6.17 .000 2.14 .034
B3-B4 5.95 .000 .88 .380
B5-B6 5.89 .000 6.91 .000
B7-B8 6.69 .000 -6.38 .000
B1-B5 1.22 .223 -34.19 .000
B2-B6 .62 .537 -31.62 .000
B3-B7 -.105 .295 -31.52 .000
B4-B8 .21 .835 -31.87 .000
B1-B3 .02 .988 -33.38 .000
B2-B4 .26 .795 -32.41 .000
B5-B7 -1.29 .199 -29.26 .000
B6-B8 .26 .811 -32.64 .000

Table C.IO: Pairwise comparison of the beam search algorithms
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Objec. Value Comp. Time
Pairs t value P t value P

G1-G5 -14.43 .000 -21.83 .000
G2-G6 -14.07 .000 -24.20 .000
G3-G7 -7.14 .000 -27.16 .000
G4-G8 -7.46 .000 -27.26 .000
G1-G2 -5.82 .000 -45.43 .000
G3-G4 -7.69 .000 -44.10 .000
G5-G6 -5.23 .000 -35.76 .000
G7-G8 -7.28 .000 -27.0 .000
G1-G3 -26.08 .000 1.55 .122
G2-G4 -25.99 .000 -9.81 .000
G5-G7 -22.00 .000 -19.48 .000
G6-G8 -22.00 .000 -21.06 .000

Table C .ll; Pairwise comparison of the GRASP algorithms

Objec. Value Comp. Time
Pairs t value P t value P

Sno-S20 -10.49 .000 -6.53 .000
Sno-S50 -11.65 .000 -10.47 .000

Sno-SlOO -11.98 .000 -16.74 .000
S20-S50 -3.25 .001 -5.99 .000
S20-S100 -3.92 .000 -14.79 .000
S50-S100 -1.17 .243 -13.23 .000

Table C.12: Pairwise comparison of the simulated annealing algorithms

Objec. Value Comp. Time
Pairs t value P t value P

NN-NDH -4.56 .000 -26.81 .000
NN-B7 -16.13 .000 -22.61 .000
NN-G8 -18.32 .000 -27.67 .000

NN-SlOO -17.23 .000 -18.97 .000
NDH-B7 -14.03 .000 -22.60 .000
NDH-G8 -15.76 .000 -27.66 .000

NDH-SlOO -14.52 .000 -18.96 .000
B7-G8 -5.92 .000 6.94 .000

B7-S100 .92 .358 -17.93 .000
G8-S100 7.30 .000 -17.76 .000

Table C.13: Pairwise comparison of the proposed algorithms for the high re­
configuration times case
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