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Alper Selçuk
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September, 1997

One of the biggest problems in computer graphics is displaying huge geo­
metric models in interactive frame-rates. Such models exceed limits of best 
graphics workstations. A lot of work has been done for achieving the required 
frame-rates in architecture, simulation, computer-aided design and entertain­
ment applications. In this thesis, a survey of methods that enable walkthrough 
of huge geometric models is done and a system for walkthrough is developed. 
The system uses hierarchical triangulated geometric models as input. In pre­
processing phase, multiresolution models of objects in the scene are created 
using polygonal simplification techniques. During walkthrough, fast frustum 
culling based on bounding boxes is performed which eliminates branches of hi­
erarchy that are not visible to camera efficiently. Appropriate level of detail of 
objects are selected and displayed depending on the distance of the objects to 
the camera. For far nodes of hierarchy, geometric data in lower levels is ignored 
and textured bounding box is displayed. The system achieves interactive frame 
rates for moderate level models, however it is far from being interactive with 
huge models.

Key toords: level-of-detail, visibility culling, geometric simplification, real­

time rendering.
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ÖZET

KARMAŞIK GEOMETRİK ORTAMLARDA GERÇEK ZAMANDA
GEZİNTİ

Alper Selçuk
Bilgisayar ve Enformatik Mühendisliği, Yüksek Lisans 

Tez ^ öneticisi: Prof. Dr. Bülent Ozgüç 
Eylül, 1997

Bilgisayar Grafiği alanındaki en büyük problemlerden birisi dev boyuttaki 
karmaşık geometrik modelleri etkileşimli ve hızlı olarak göstermektir. Bu boyut­
taki modeller en iyi grafik iş istas3’onlarmın bile kapasitesini aşmaktadır. Mi­
marlık, simulasyon. bilgisayar destekli tasarım ve eğlence alanlarındaki uygula­
malarda, gereken etkileşimi sağlayabilmek için pek çok çalışma yapılmıştır. Bu 
tezde, dev geometrik modellerde gerçek zamanlı gezintiyi sağlayan yöntemler 
incelenmiş ve bu amaca hizmet eden bir sistem geliştirilmiştir. Sistem üçgenler­
den oluşan, hiyerarşik geometrik modeller üzerinde çalışmaktadır. Önce or­
tamdaki nesnelerin basitleştirilmiş halleri, çokgen sadeleştirme teknikleri kul­
lanılarak oluşturulmakta: gezinti sırasında, görüş alanı dışında kalan nesneler, 
kapsama kutulan kullanılarak hızlı bir biçimde a3nklanmaktadır. .Nesnelerin 
orjinal 3̂ a da basitleştirilmiş halleri, nesnenin категаз'а olan uzaklığına göre 
gösterilmektedir. Çok uzaktaki nesneler için sadece doku kaplanmış kapsama 
kutusu gösterilmektedir. Sistem orta karmaşıklıktaki modeller için gereken et­
kileşimli hızları sağlamakla birlikte, dev boyuttaki modeller için yavaş kalmak­
tadır.

Anahtar kdim tkr. basamaklı gösterim, görünürlük testi, geometrik ba­
sitleştirme, gerçek zamanlı görüntüleme.
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Chapter 1

Introduction

In recent years, the use of computers in design has become extremely impor­
tant. .4s the price of computers and peripherals decrease, more and more 
companies have started to buy powerful workstations for their design process. 
This trend led many software companies to develop serious and complicated 
programs for computer-aided design. There are now many CAD programs for 
mechanical and architectural design. These programs are so good and reli­
able that Boeing has developed its new aircraft 777 entirely on computer using 
CATI.4 CAD software. All 3 million parts of the aircraft were modeled using
C.4TIA. The entire model requires 20 GB of storage and consists of 500 million 
polygons [1].

Although CAD software helps engineers a lot in designing and x'iewing indi­
vidual components, in order to verify the correctness of design, engineers need 
to view combined shots of their design. Only combined shots are also some­
times not enough, walkthrough of the entire model is required. Considering 
the size of the model of Boeing 777, only one single camera, shot can require 
days of time to render even if state-of-the-art computers are used.

Architects today also use computers to design and view buildings. The size 
of such architectural models can also be huge. Customers may want to view 
the building on computer. Just showing rendered pictures or a film prepared 
moving a virtual camera inside the building model on a predetermined path



sometimes may not satisfy customer. Customer may want to walk inside the 
model interactively. This case is different from the Boeing e.xample. .Accu­
racy and correctness are the most vital properties for Boeing. Howe\er. for 
the architectural case, the image quality of the walkthrough is the most im­
portant property. By image quality, the quality of the texture, positioning of 
light sources and the rendering quality is meant. Real-time restrictions can be 
slightly loosened for the sake of quality. Considering the size of the architec­
tural model, the textures used for walls, floor and furniture and the number of 
light sources in a building, the power of today’s computers are again exceeded.

Flight simulators are used for the training of pilots and astronauts. Flight 
simulators must show the pilot exactly what would be seen from the cockpit 
of the airplane. Terrain, sky, sea and many more things should be rendered at 
the speed of an airplane. The most important property is the realism of the 
frames generated by the rendering engine. By realism, quality of the frames 
and simulation of the speed of the airplane is meant. Considering the size and 
complexity of the training area modeled for use with the flight simulator and 
the real-time requirements, performance of most powerful computers is brought 
to a crawl.
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The problem for all the systems explained above is how to display· more 
polygons than the computer can render in one second. For explaining the 
problem further, suppose we have a polygon database of more than one million 
polygons and for the application displaying ten frames per second is enough. 
In that case our computer system must be able to display ten million polygons 
for just one second. Current high-end computer graphics systems can render 
approximately one million polygons per second. To make t hings worse, for a 
realistic looking sequence thirty frames per second is required, which makes for 
our example polygon database thirty million polygons per second. For virtual 
reality(VR) applications two displays exist and that means sixty frames per 
seconds, in other words sixty million polygons per second. In the extreme, a 
VR display of the entire Boeing 777 would require a display rate of over 30 

billion polygons per second.

It is trivial that current computer graphics systems cannot meet required 
graphics throughput for the above examples. The situation will probably not



CHAPTER 1. INTRODUCTION

change in the future because as the graphics systems evolve and get more 
powerful, the size of models grow larger and larger. In 1986, 8000 polygons 
required 3-5 seconds to be rendered on the Vector-General 3300 [2]. Since 1986 
computers have evolved and grown into polygon monsters, however models ha\’e 
grown into polygon mountains.

In this thesis, a survey of methods that enable walkthrough of comple.x en­
vironments is done and a system for walkthrough is developed. The .system 
uses hierarchical geometric models as input. In preprocessing phase, mullires- 
olution models of object in the scene are created using polygonal simplification 
techniques. During walkthrough, fast visibility and frustum culling based on 
bounding bo.xes is performed which eliminates objects that are not visible to 
the camera. Appropriate level of detail of objects are selected and displayed 
depending on the distance of the object to the camera. The system achieves 
acceptable frame rates for moderate-weight models.

In chapter 2 capabilities of human visual system is explained. Chapter 3 
explains the architecture of today’s most powerful and popular graphics en­
gines. The survey of walkthrough methods is given in chapter 4. Details of the 
walkthrough system developed in this work is explained in chapter 5. Last two 
chapters 6 and 7 gives results and conclusions.



Chapter 2

H um an V isual System

For decreasing the load of graphics systems in complex tasks, we must con­
sider the capabilities of human visual systems. Without anj  ̂ knowledge about 
this, graphics output requirements will certainly exceed the limits of current 
computer graphics systems. We should always keep in mind that humans will 
view generated images, not machines. Therefore for simulating reality in a 
virtual environment, satisfying only the human visual system is enough. This 
can reduce the workload of computer graphics systems considerably and enable 
real-time walkthrough of one-million-polygon models.

Different applications require different kinds of realism, however they can 
all be categorized into two classes [3].

(?) Perceptual Realism
An image is perceptually realistic, if the image is the same as its virtual form. 
That means a viewer synthesizes a mental image to that similar synthesized b\· 
the virtual camera. For example, if the scene is dark to the camera, the gen­
erated image should also look dark. The degree of perceptual realism depends 
on the kind of rendering technique used for generating the image. Perceptual 
realism is especially important for architectural and art applications.

(ii) Visceral Realism
.An image is viscerally realistic if the viewer believes that everything in the



image is real. The most important way of increasing visceral realism is com­
plexity. Every detail of the model must be considered and made carefully. For 
entertainment applications and flight simulators visceral realism is vital.

■Although human visual system is complex, it is not perfect. V\'c must con­
sider the thresholds of human visual system in order to achieve both kinds of 
realism with low cost. Below is an explanation of perceptual limits of human 
visual system.
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2.1 V isual A cuity

Visual acuity is commonly measured in terms of the angle subtended at the 
eye. For reasonably bright objects on axis in normal lighting, the limit is 1 
minute of an arc [4].

Visual acuit}· weakens rapidh' as the object moves outside the central 2 
degree region, and at 10 degree of off-axis eccentricity [5]. This should be 
taken into account when deciding on the resolution of the system. For example, 
displays that generate a high resolution constant pixel density are wasting a 
lot of pixels wherever the user is not looking.

2.2 Field o f View

Field of view is the area that human eye can see. .According to [8]. each eye 
has approximately a 150 degrees horizontal and 130 degrees vertical field of 
view. The horizontal field of view covers 60 degrees towards the nose and 90 
degrees to the side. A'ertical boundaries are 50 degrees up and 80 degrees down. 
Without this knowledge, redundant parts of the models will also be rendered 
which will cost a lot in terms of time. Furthermore, generated frames will not 
be realistic because of the wider angle. Parts of the model that lie outside the 
field of view should not be processed by the graphics system.



2.3 Latency

Latency is the time measured from the setting of an input parameter until 
the corresponding output is observed. There are many factors that affect la­
tency: input devices, software architecture, rendering time, display scan out 
time. Different portions of a sj'stem may have different latencies and different 
paths through the system archit(;cture may introduce different latencies. For 
the rendering portion of a graphics system, the latency is the time difference 
between a value change, such as the camera, position, and the display of the 
last pixel of the corresponding frame by the dis])la.y device.

Different applications have different latency requirements. For example re­
ports from flight training indicate that the quality of the perceived-reality de­
grades as the total latency exceeds 100ms [9]. According to other reports [7], 
tolerable latency range from 40-80ms for driving simulators to 100-150ms for 
low-maneuverability flight simulation. Excessive latency may cause the trainee 
to make mistakes.
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2.4 High Frame R ate

Frame rate is the measure of the frequency of changing the frames on the 
screen. Low frame rates make motion choppy. Especially for head-mounted 
displays where rapid motion is possible, low frame rates can make \ irtual reality 
applications useless. The motion of moving objects will not be seen continuous, 
instead snap shots from the motion will be displayed. User will have the feeling 
of a jumping object rather than a moving object.

Another problem is the relation between the refresh rate of the display device 
and the frame rate being used by the system. If the frame rate is smaller than 
the refresh rate, a user tracking a moving object will observe multiple copies of 
the object as seen in Figure 2.1. The number of the copies is equal to refresh 
rate divided by frame rate [5]. To reduce this effect, frame rate should be 
selected equal to the refresh rate of the display device.
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Motion Motion

Refresh Rate = Update Rate Refresh Rate = 3 * Update Rate 

Figure 2.1: Repeating Objects

2.5 Constant Frame R ate

Most applications require a constant frame rate. Changing frame rates will 
affect the user and lead to misunderstandings. Frame rate variations also cause 
temporal inaccuracies because the change in frame rate affects the latency. An 
unexpected increase in latency will cause a frame that is planned to be displayed 
to be skipped or to be displayed later. This will cause inconsistent motion. In 
many cases, when a graphics overload occurs, it is better to force a degradation 
in frame rate so that the change in latency does not occur.

Constant frame rate is vital for immersive and real-time applications. How­
ever its priority decreases for design and model applications.

2.6 Temporal R esolution

The peak sensitivity to temporally modulated illumination happens around 
lOHz to 2.5Hz. The frequency increases as the luminance increases. The fre­
quency at which modulation is no longer noticed is called critical flicker jiision 
frequency. It varies between 15Hz to 50Hz [6]. For large bright displays SoHz 
or more may be required [7].
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Federal Aviation Administration has specified the standards for flight sim­
ulators. These standards give mtitrics for minimum requirements for the con­
cepts explained above. For example, the latency re<iuirement for commercial 
flight simulators is specified as 100-150ms [10].



Chapter 3

Structure o f Graphics P ipelines

There are many computer companies developing and manufacturing high per­
formance graphics workstations with different graphics systems. A taxonomy of 
graphics systems is given in [4]. In this chapter, the pipelined parallel graphics 
architectures will be explained. Leading companies such as Silicon Graphics 
implements this architecture for its latest products. Workstations with this 
architecture can achie\ e real-time texture-mapped anti-aliased polygon perfor­
mance.

The principal form of the pipeline has three stages. It can be seen in Fig­
ure 3.1.

The first stage of the pipeline is the CPU. The CPU is not included in the 
graphics system, it only runs the application and supplies graphics system with 
input. The input is in the form of data and commands. The responsibility 
of CPU is to keep the graphics system always full. A program with high 
CPU overhead or poorly optimized graphics command loops can introduce a 
bottleneck at the first stage of the pipeline. Architectures allowing multiple

Figure 3.1: Principal Graphics Pipeline
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CPU’s can reduce the possibility of a bottleneck at the first stage significantly. 
If there is more CPU power than needed, this can be used to reduce the work 
for later stages of the system. For example, more advanced and complex culling 
techniques can be used to reduce the number of polygons that are to be sent 
to the later stages.

Polygon processing is the second stage of the pipeline. Per-pol\gon opera­
tions such as coordinate transformations, lighting, depth-cueing and clipping 
are done in this stage. These operations were performed by the C'PU in the 
earlier graphics systems. The latest systems ha\’e specially designed geometry 
engines to perform calculations. Commands and polygons are sent to geome­
try engines by the CPU. The performance of this stage increases considerably 
when dealing with long meshes of triangles or packed vertex arrays and few 
mode changes. Therefore, the commands should be organized to minimize 
state changes and to batch draw similar objects.

Last stage of the pipeline is the pixel processing. Per-pixel operations such 
as writing colors into the frame buffer, z-buffering, alpha blending and texturing 
are done at this stage. The performance of this stage is affected by the number 
of memory accesses required and hence on the number of pixels and type of 
pixels. Compared to the old systems that performed these operations using 
software, new systems have increased the performance of this stage significantly 
by implementing all the operations using hardware such as depth buffers and 
texture memories.

The architecture of the graphics systems is important because software 
should be optimized according to the properties of the architecture and the 
application. Maximizing frame rate and image quality can become a problem 
of making the best use of the available stages in the pipeline and avoiding 
bottlenecks.

For explaining how the pipeline works further, a single triangle will be traced 
from the beginning of the pipeline to the screen. For the exam])le. Silicon 
Graphics’ Reality Engine’ is chosen [11] among different graphics engines be­
cause of its popularity. The inti'rnal structure of Reality Engine is given in

’Reality Engine is a registered trad<iniark of Silicon Graphics
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System Bus

Command Processor

Geometry Engines

Triangle Bus

Fragment Generators

Image Engines

Figure 3.2: Reality Engine Pipeline

figure 3.2.

Reality Engine is a graphics system with pipelined parallel architecture. It 
implements all the stages explained above except the CPU. As stated in the 
previous paragraphs CPU is not a part of the graphics system. To reduce the 
possibility of a CPU bottlneck, high performance architectures such as Reality 

Engine are fed with more than one CPU.

The per polygon processing st age of the pipeline is implemented by Com­
mand Processor and Geometry Engines. .All the data and commands describing 
triangles such as position, color, normal and texture are put to the input FIFO 
by the CPU. The Command Processor gets input from FIFO, interprets it and



CHAPTER 3. STRUCTURE OF GRAPHICS PIPELINES 12

sends it to one of the Geometry Engines. Geometry Engine transforms the 
coordinates and normals to eye coordinates, performs lighting calculations and 
clipping and transforms to window coordinates. Using the texturing and alpha 
information the window coordinate color is computed.

The second stage consists of Fragment Generators and Image Engines. 
There are at least five Frame Generators each of which is responsible for ras­
terizing I /.5 of the pixels in the frame buffer. The triangle projected in the 
previous stage is broadcast on the Triangle Bus to the Fragment Generators. 
The pixels of the triangle are assigned to the Fragment Generators so that 
maximum parallelism is achieved. The pixels of even a very small triangle 
are rasterized by each of the Fragment Generators. Each Fragment Generator 
computes the intersection of the set of pixels that are fully or partially covered 
by the triangle and the set of pixels in the framebuffer that it is responsible 
for. Color, depth and texture values are changed according to the value in the 
framebuffer and triangle. The resulting fragments consisting of a pixel coor­
dinate, a color and a depth value are then distributed to the Image Engines. 
Each Image Engine is assigned a fixed subset of the framebuffer and each Frag­
ment Generator's responsibility area is shared among Image Engines. When a 
fragment is received by an Image Engine, its depth and color value are mixed 
with the value stored in the framebuffer.

The rendering is finished as soon as the last primitive of the initial triangle 
is written to the framebuffer by Image Engines.

For applications requiring high graphics performance, knowledge about the 
graphics system is as important as the power of the workstations and as the 
efficiency of the algorithms used. Even the most powerful system can become 
a turtle with inefficient programming. The stages of the graphics pipeline and 
their relations should be considered when sending polygons to pipeline poly gons 

to the screen.



Chapter 4

M ethods for Real-Tim e 
Walkt hr ough

In this chapter, methods that enable real-time walkthrough of complex models 
will be explained. These methods vary from very simple ideas to very complex 
algorithms. They can be used together to get combined advantage of each 
other.

For explaining the benefits of the methods, a simple rendering cost compu­
tation is used. This computation is far from being accurate. It only gives a 
conceptual view of the optimization. The computation is based on the num­
ber of triangles T in the scene and on the graphics architecture of the system. 
Each stage of rendering is assigned a cost. Table 4.1 gi\'es the factors of the 
computation.

The computation of the rendering cost depends on the implementation of

Symbol Explanation
F{T) Cost of loading triangles to memory
X[T) Cost of transforming and lighting vertices
C{T) Cost of clipping triangles
R[T) Cost of rasterizing

Table 4.1: Rendering Cost

13
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the graphics pipeline.

For purely software rendering architectures, total cost is simply the sum of 
all factors: F{T) + X{T)  + C{T) + R(T).

For a graphics pipeline explained in chapter .3, the total cost reduces to: 
max(F{T) ,kX{T)  + kC{T)JiR{T)).  Since the system has a pipelined archi­
tecture, the total cost equals to the slow'est stage of the pipeline, k and h are 
improvement factors because of the hardware implementation of the stages.

Further in the thesis, the rendering cost computation formula will be used 
to explain the benefits of the acceleration techniques.

4.1 Reducing Geom etric Com plexity

The main idea of Geometric Complexity Reduction is to get a realistic image 
without modeling and rendering all the scene. In terms of rendering cost, the 
aim is to reduce number of triangles T, thus obtain an overall improvement.

4.1.1 Texture M apping

In the early days of computer graphics, generated images were so smooth that 
they looked very unrealistic. There were no bumps, scratches or textures on 
them. For adding realism all the surface details had to be modeled se]:>arately 
which increased complexity.

The introduction of texture mapping [13] soh'ed the problem of complexity. 
The basic idea is to map a multidimensional image to a multidimensional space 
for increasing realism. In [14] texture mapping is defined as mapping of a 
function onto a surface in 3D. I'he domain of the function can be one. two 
or three-dimensional and it can be represented by either an array or by a 
mathematical function. For example a ID texture can simulate rock-strata, 2D 
texture can represent waves or surface bumps and a 3D texture can represent 
clouds, wood or marbles. survey of texture mapping techniques can be found
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Figure 4.1: Earth-Texture Mapped Sphere

in [14].

The contribution of texture mapping to real-time walkthrough is the increase 
of realism w'ithout additional polygonal complexity. A simple sphere can be 
shown as earth using an earth texture as shown in Figure 4.1.

Current graphics workstations implement texture mapping on hardware. 
They have texture memories to store texture and do mapping as a part of their 
graphics pipeline. For example, using OpenGL and Reality Engine no CPU 
computations are required for texture mapping. Texture mapping commands 
of OpenGL are processed by Command Processor of Reality engine, the texture 
is loaded into texture memory and finally Fragment Generators compute tex­
ture coordinates automatically and final image is generated accordingly. One of 
performance metrics of graphics workstations is the number of textured poly­
gons rendered per second. This also shows the close connection of hardware 
and texture mapping.
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4.2 Polygonal Simplification

Polygonal Simplification is transforming a three-dimensional polygonal model 
into a simpler version containing less polygons. The transformation tries not 
to change the original shape and appearance of the model. It makes use of 
the limitations of the human visual system. Simplifications are usually not 
perceived by viewers.

Since these methods reduce the number of polygons in the model, rendering 
load of the system will be reduced considerably. The storage recjuired for 
storing the model will also be reduced, which simplifies the management of 
the data from disk to memory. Furthermore, transmission of simplified large 
models over networks will be faster than original models. If the simplification 
is good enough, then each stage of the graphics pipeline will have a workload 
that can be handled in real-time.

In terms of rendering cost formula, the number of triangles T will be reduced, 
and the overall cost will decrease.

Polygonal Simplification algorithms are categorized into two groups [-10]. 
Algorithms that preserve the tojjology of the original model and algorithms 
that does not preserve the topology of the original model. Before e.xplaining 
some of the popular polygonal simplification algorithms, basic methods will be 
explained.

4.2.1 Basic M ethods

There are three basic methods for polygonal simplification.

Adaptive Subdivision

An adaptive subdivision algorithm starts with a simple base model and recur­
sively subdivides it. Each step adds more detail to the area of subdi\’ision and 
the basic model approximates the original model. Once the difference between
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original and simple model gets smaller than the user-specified error range, the 
algorithm stops.

These kinds of algorithms have difficulties with selecting the starting simple 
model. The boundaries of the simple model should resemble the original poly­
gon. At  each step of the algorithm a subdivision must be performed. Finding 
the subdivision to get the best approximation is also another problem. At the 
end of each step, the difference between the original and simple model are cal­
culated. The calculation may be very complex and time-consuming depending 
on the complexity of the original model.

The solutions of the problems stated above var}' according to the complex­
ity and characteristics of the original model and to the requirements of the 
application.

Geometry Removal

.A geometry remo\ al algorithm starts with the original model and removes faces 
or vertices from the original model to get a simplified version. The removal 
process continues until a user-specified error range is reached.

Sampling

This method varies from the other two methods in that it tries to generate a 
model from scratch. It does not use the vertices of the original model. First a 
sampling algorithm samples the geometry of the original model by eit her taking 
a number of random points from its surface or by overlaying the model with a 
three-dimensional grid and sampling each box of the grid. The algorithm then 
tries to create a simple model that fits to the sampled data. The precision 
of the sampling method determines the success of the simplification. With 
an inaccurate sampling algorithm the final model will not match the original 

model.
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4.2.2 Topology Preserving A lgorithm s

Topology Preserving algorithms do not change the local or global topology of 
the original models. For example, if there is a hole in the original model, the 
position and shape of the hole is preserved. This restriction sometimes limits 
the amount of simplification.

Below are topology preserving algorithms that can be used at the prepro­
cessing phase of real-time walkthrough applications explained.

Geometric Optimization

The Geometric Optimization algorithm proposed by Charles Hansen [18] is 
a geometry removal algorithm which can be applied to any geometric model. 
The basic idea is to combine coplanar polygons and to obtain an optimized 
geometry.

The method first tries to create sets of coplanar polygons. It groups neigh­
boring polygons together with roughly the same normal. Each group has a 
representative normal that can be calculated by averaging all of the normals of 
the polygons in the group. At each iteration of the algorithm, each polygon's 
normal is compared to the normal of the neighboring set of polygons. If the 
normals are close, then the polygon is added to the group. At the end of this 
process, the groups of polygons are nearly coplanar sets.

Next, the algorithm tries to find the boundaries of sets. For doing this, a 
segment list for each set is created by adding all the edges of the polygons 
in the set. Duplicate segments are removed from the list by sorting segments 
according to the endpoints. For each set, a boundary polygon is formed b}· 
linking segments that share end points. ,4t the end. boundar}' polygons are 
triangulated.

The algorithm can be applied to any three dimensional model. The success 
of the algorithm depends on the curvature of the model. Models with high 
cui'vature will have a few coplanar sets and the simplification ratio will be low.
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User can specify a threshold value for coplanar groups. The threshold affects 
the amount of simplification. Different threshold values can be used to generate 
multiresolution models.

A Data Reduction Scheme for Triangulated Surfaces

The Data Reduction algorithm proposed by Bernd Hamann [19] is a geometry 
removal algorithm which can be applied to any triangulated geometric model. 
The basic idea is the same as Hansen’s method, simplifying regions of low 
curvature.

First, a weight for each triangle in the model is calculated. The weight 
is the average of the local curvature with neighboring triangles. To calculate 
the local curvature the interior angles with adjacent faces are used. At each 
iteration of the algorithm the lightest triangle is found and replaced with a 
single point. The coordinates of the point is determined according to the 
neighboring triangles. All the neighbors are then removed and the hole is filled 
by combining the vertices at the boundaries of the hole with the point, .^t the 
end of the iteration, weights of the newly formed triangles are calculated.

User can specify the number of vertices to be removed from the original 
model. Therefore, this algorithm can be used to create multiple levels of detail.

Re-tiling Polygonal Surfaces

The algorithm proposed by Greg Turk [20] is different from the algorithms 
explained so far. because it combines sampling and geometry removal.

The algorithm randomly distributes user-specified number of vertices over 
the surface of the model. For obtaining a better distribution of vertices, repul­
sion forces between vertices are used. If two vertices are close to each other, 
they repel each other and moved over the surface of the model. Thus, the 
positions of the randomly distributed vertices are refined.

The next step is constructing a new model from the distributed vertices.
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This is accomplished by triangulating polygons of the original model with the 
randomly distributed vertices that lie inside the polygon. The resulting model 
contains both the original and additional vertices and is very complex. For 
simplifying the model, the algorithm removes original vertices one by one ac­
cording to some constraints conserning the preservation of topology. .At the 
end a simplified version of the original model is obtained.

The algorithms explained so far work well on low-curvature models. How­
ever, this algorithm can also simplify high-curvature models. High-curvature 
areas can be defined as low-repulsion areas. This will cause more vertices to 
be moved to high-curvature areas.

User can specify the number of vertices that are randomly distributed. 
Therefore, this algorithm can be used to create levels of detail for any object 
consisting of polygons.

Superfaces: Polygonal Mesh Simplification with Bounded Error

The algorithm proposed by Kalvin and Russel [24] is an adaptive subdix’ision 
algorithm.

The algorithm consists of three main steps. The first phase is superface 
creation phase. .A face is selected as the initial superface and adjacent vertices 
are added to the superface. There are some topology, aspect ratio and error 
bound requirements for the addition of faces to the superface. When the su­
perface can no longer grow, a new superface is selected and the same operation 
continues until all polygons are added to superfaces.

The second phase is the border straightening phase. In this phase the jagged 
faces of the superfaces are straightaned by omiting some vertices from the 

borders.

The algorithm finally triangulates superfaces. The vertices of the final model 
are a subset of the original model.

There are also other topology preserving methods which can be found in [21]. [22]
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and [23].

4.2.3 Topology Sim plifying A lgorithm s

Topology Simplifying algorithms do not. guarantee the preservation of local or 
global topology of a model. For e.xample. holes in a model can disappear at the 
end of simplification. Because of fewer constraints to satisf}·, these algorithms 
have better simplification rates than the topology preserving algorithms. For 
example, the model of a slice of cheese cannot be simplified by topology pre­
serving algorithms because the holes in the cheese must be preserved.

Topology simplifying algorithms are usually used in applications with real- 
time constraints. In such application model degradation is acceptable if the 
model cannot be rendered within a given time.

Multi-resolution 3D Approximations for Rendering Complex Scenes

This simplification algorithm created b\· Rossignac and Borrel [2-5] works on 
any input model. It is a sampling algorithm.

The algorithm works in four main steps; Grading. Clustering. .Synthesis 
and Elimination. The initial step grades each vertex in the original model. It 
assigns each vertex a weight based upon two percept uall\· important factors. 
It considers vertices important that have a high probabilit}· of being on the sil­
houette of an object from an arbitrary viewing angle. The algorithm calculates 
this factor using the inverse of the maximum angle between any pair of edges 
adjacent to the vertex. Thus, a vertex at the end of a spike has a high silhou­
ette weighting. The algorithm considers vertices important that bound large 
faces of the original model. It calculates this factor using the maximum length 
of all edges adjacent to the vertex. This method calculates a final weighting 
for each vertex using a linear combination of these two factors.

The algorithm triangulates each face of the original model and then performs 
clustering that breaks up the bounding box of the model into uniform subboxes
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Figure 4.2: Level of Detail

(three-dimensional grid). The algorithm adds each vertex to the vertex list of 
the subbox that contains the vertex. This method greatly simplifies the model 
if the subboxes are large and minimally simplifies if the subboxes are small.

Synthesis collapses all the vertices contained in a subbox to the most impor­
tant vertex in the subbox which is the vertex with highest weight. This step 
generates some triangles that degenerate to points or edges.

Elimination removes these degeneracies from the model using a simple test 
of the vertices of each of the triangles.

4.3 Geom etric Level of Detail

One of the most efficient and important techniques for managing complex 
scenes is geometric level of detail (LOD). The main idea of all the LOD tech­
niques is representing objects that do not contribute much to the scene with 
less primitives.

For example, an object with many polygons that is far away from the viewer 
requires roughly same amount of time as an object with the same number of 
polygons that is nearer. The far object will cover a smaller portion of the scene 
than the near object. The rendering time of objects depends on two factors. 
The first is the transformation and clipping calculations and t he second one is 
the scan conversion. The first factor depends on the number of primitives and 
the second factor depends on the area that the object covers in the scene. For
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the objects in the example, first and second factors require the same amount 
of time. The problem is should we spend the same amount of time for the two 
objects.

For reducing t he rendering time of the nearer object, the first factor should 
be considered, that is the number of primitives constituting the object should 
be reduced. In other words, T  of the total rendering cost formula should 
be reduced. What is needed are methods for simplifying an object that has 
been modeled with accessive detail so that arbitrary views can be rendered 
quickly, ideally with a cost proportional to the number of pixels that the object 
covers. These methods are called multiresolution models. An example of a 
multiresolution model’ is shown in Figure 4.2. The simplest model consist of 
102 polygons whereas the most complex model has 977 polygons.

Creation of multiresolution models is quite difficult. Each object in the 
scene must be modelled with different geometric representations and surface 
properties. The}' should be organized in the database so that accessing different 
representations of the object is simple and not time-consuming.

There are also algorithms that generate multiresolution models automati­
cally. Such algorithms take the detailed model as input and generate simple 
representations. The algorithms explained in section 4.2 can be used for this 
purpose. Especially algorithms that let the user specify the simplification ratio 
can simply be used for generating multiresolution models.

One important requirement for multiresolution models is the preserxation 
of appearance of objects. There are measures for determining the success of 
the simplifying algorithm [17]. Measures for raster image output of the objects 
is more important than measures for the topology or geometry. Therefore, an 
image based error metric is needed. The error metric should measure the differ­
ence between an image rendered using the full}' detailed model and an image 
rendered using the multiresolution model. It should take into account that 
simple representations are used only when the object is far from the view]>oint.

Once the multiresolution model of the scene is prepared, the problem reduces

'From VieuPoint Dalalab.·  ̂ SummcT '96 Catalog



CHAPTER 4. METHODS FOR REAL-TIME WALKTHROUGH •24

to managing levels of detail of objects. The management algorithm should 
consider the time restrictions and image quality restrictions. If (he rendering 
time is exceeded, low-resolution models for far objects should be used.

An adaptive display algorithm that can manage LOD according to (piality 
and time constraints is proposed by Funkhouser and Sequin [26]. In addition to 
LOD, the algorithm also manages the complexity of the rendering algorithm. 
The aim is to find the combination of levels of detail and rendering algorithms 
for all potentially visible objects that produces the best image possible within 
the target frame rate.

They defined an object tuple, (0 ,L ,R) ,  to be an instance of object O. ren­
dered at level of detail T, with rendering algorithm R. Two heuristics are 
required for object tuples: Cost{0,L,R)  and Benefit{0, L, R). The Cost 
heuristic estimates the time required to render an object tuple, and the Benefit  
heuristic estimates the contribution to model perception of a rendered object 
tuple. S  is defined as the set of objects rendered for each frame. The statement 
of the aim using the above given notation is stated as follows:

Maximize:

Benefit{0, L, R)

Subject to:

^ 5  Coiti O, Z ./?) < Tar get Frame Rate

In other words, ‘’do as well as possible in a given amount of time.” The 
details of the heuristics and optimizations are given in [26].

Other techniques concentrate on the organization of the model. A hierar­
chical data structure for storing LOD is proposed in [27] and [28] as seen in 
Figure 4.3. The intermediate nodes of the tree (black nodes) store simplified 
data of its children. Leaf nodes (white nodes) on the other hand store original 
data. In [27], the representation of a scene is selected according to the distance 
of the scene to the viewpoint and (he area that the scene covers on the screen.
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root

Figure 4.3: Hierarchical Organization of a Scene

If the scene is far awaj· from the viewpoint, the root of the hierarchical orga­
nization is rendered. As the scene gets closer, more detailed representations 
are selected. Figure 4.3 shows two possible representations of a scene. In [28]. 
different search strategies such as depth-first search and best-first search are 
proposed for selecting the representation.

Algorithms explained so far use geometric simplifications of the original 
model. Replacing the original model with a texture or a colored cube is an­
other method. In such methods geometric simplification cost is eliminated. 
Furthermore, the representations are much more simple to render than the 
representations generated b}' geometric simplification algorithms.

In [29], a method which replaces cells of the scene obtained by spatial sub­
division by colored cubes is propo.sed. The algorithm in the preprocessing step 
partitions the scene using octree subdivision. Each cell of octree is assigned a 
colored cube. Colors of faces of the cube are computed so that it represents 
general appearance of the geometry contained in the cell as viewed using or­
thogonal projection perpendicular to the face. During rendering, geometry in 
near cells are rendered. For far cells that cover a small number of pixels on the 
screen, the corresponding colored cube is rendered. This interesting method 
causes some visual artifacts such as discontinuities in solid surfaces. Despite 
the artifacts, the method accelerates rendering considerably.

Another interesting algorithm [30] makes use of frame-to-frame coherence 
by caching images of objects rendered in one frame for possible reuse. The 
algorithm first creates a Binary Space Partitioning-tree (BSP-tree) and par­
titions the environment. The nodes of the BSP contain geometric primitives
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and can also contain cached images.

At each frame the BSP is traversed twice. In the first traversal, nodes 
that are outside the view frustum are culled and image caches are updated if 
necessary. For each leaf node, the algorithm decides for the current view]:>oint, 
whether it is more cost-effective to draw the geometry or to compute and cache 
an image. The decision is based on the amortized cost-per-frame compulation 
given in [.30]. For interior nodes, the process is the same, e.xcept that instead of 
considering the cost of drawing the geometry, the cost of drawing the children 
is considered. After the first traversal of the BSP, BSP is traversed back-to- 
front again and the scene is rendered by displaying either the geometries or 
cached images.

Although replacing a cluster of objects with a texture or cube increases 
performance, angular changes in view position causes the image quality to 
decrease considerablv.

4.4 O ptim izing Run-Tim e R endering

4.4.1 V isib ility  and Occlusion Culling

Users in walkthrough applications usually are in the middle of a huge database. 
They can only see a \ ery small portion of the database. Therefore, sending all 
the objects in the database to the graphics pipeline would be wasteful.

One trivial optimization to reduce the number of objects to be rendered is 
culling of the objects to the viewing frustum. This can easily be done on the 
host CPU and reduce the work of graphics pipeline in great amounts. Clark [32] 
used an object hierarchy to rapidly cull surfaces that lie outside the \ iewing 
frustum.

The method explained in [34] takes care of many aspects of visibility compu­
tation and accelerates rendering considerably compared to classical z-buffering.
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It processes the scene in terms of object-space coherence, image-space coher­
ence and temporal coherence. An object space octree is used to exploit object- 
space visibility. Traditional z-buffering is augmented to a Z-pyramid to find 
image-space coherence. To exploit temporal coherence, the geometry that was 
visible in the previous frame is used by storing a list of previously visible octree 
nodes.

More advanced optimizations have also been proposed in [31] and [33]. They 
take into account large occluders in the database. For example, a user facing 
the wall of a house will see only the wall of the house but nothing else. In 
such cases, only the wall of the house should be rendered. Simple algorithms 
explained in the previous paragraphs would send the wall and the objects that 
are behind the wall but inside the viewing frustum also to the graphics pipeline. 
Graphics pipeline will then rasterize all polygons and find out that only the 
wall is visible.

Occlusion culling techniques ai'e especially important for architectural mod­
els. Architectural models generally consists of cells (rooms) and portals (win­
dows. doors, etc.). User in a cell can see only the objects in the cell and objects 
that are visible through the portals. Methods using this idea can reduce the 
number of polygons to be rendered to the 1/20 of the original model [33].

Unlike architectural models, terrain models for flight simulators do not con­
tain trivial large occluders. For example, a forest is an occluder in the scene, 
however it does not block a large portion of the model. Therefore it is not 
as simple and efficient as in architectural models to use the idea of occlusion 
culling in terrain models.

Different visibility and occlusion culling algorithms can be used together to 
eliminate more objects. For example, for a room with no portals, first all the 
objects outside the room can be eliminated and after that visibility culling can 
be performed to find out which object to render.

One important concept to consider in visibility determination is the pro­
cessing power requirements of the culling algorithm. The algorithm should not 
create a bottleneck in the pipeline. Ironically, the better the algorithm culls
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the less time for culling, since the frame rate increcises because of the small 
number of polygons. For example, if an algorithm eliminates nearly all objects 
in the scene, then the rendering will take a very short time, and the culling al­
gorithm will have much less time for preparing the polygons of the next frame. 
Therefore, culling algorithms should be customizable according to the CPU 
and graphics subsystem power.

4.4.2 Level o f D etail Switching

Switching between different representations of objects causes visual defects 
such as popping. Therefore transitions between different representations of 
objects should be optimized. There are a number of wa}̂ s to reduce the popping 
effect.

The first method is called fading. Instead of simply switching the models, 
for a period of time both models are drawn blended together. This reduces the 
popping, however increases the workload of the graphics system.

The second method is morphing. One of the objects is morphed to the other 
object continuously until they are the same. This method has the best \ isual 
effect compared to other techniques, however it is difficult to morph between 

arbitrary models.

For time-critical applications the popping effect in simple switching can be 
ignored, because the other two methods require expensive graphics operations.

4.4.3 M ode Sorting

For most graphics workstations changing the mode is very expensi\'e. By mode, 
the texture and material properties is meant. Therefore, grouping polygons to 
reduce the number of mode changes is a simple and efficient optimization. 
It can increase performance incredibly for scenes with many small pieces of 

textures.
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4.5 Optimizing Graphics Databases

4.5.1 Triangle M eshes

Applications for creating geometric models usually are designed to give the 
designer the easiest way for modeling an object. A designer can use NURBS 
(Non-Uniform Rational B-Spline curve) [43, 44], surface patches and any ar­
bitrary polygons. On the other hand, graphics engines are usually designed 
and optimized for rendering triangles. Therefore, triangulating the model as a 
preprocessing step reduces the rendering time of the scene.

Considering the architecture of reality engine, a significant performance in­
crease can be obtained by generating strips of triangles which allow sharing of 
vertices of adjacent triangles. A strip of triangles with shared \ertices require 
much less rendering time than the same number of separately processed and 
rendered triangles.

Other more advanced graphics systems such as Infinite Reality of .SGI has 
ready-to-render array’s. These arrays are filled with vertex normals and \ertex 
data. Vertices in the arrays are accessed using ultra-fast DMA and per vertex 
transfer overhead is thus reduced.

For triangulated polyhedral objects, the number of vertices is much less 
than three times the number of triangles in the scene, because of the sliared 
vertices in the scene. This can b(‘ seen in Figure 4.4.

For the example, processing ('ach vertex independently will unnecessarily 
increase X(T)  and F(T).  There are only six vertices in the scene, however
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independent processing will process twelve vertices instead of six.

To reduce the redundancy, graphics engines and associated Application Pro­
grammer's Interfaces (API) support triangle meshes. Each vertex is irsed in 
conjunction with two of the recently processed vertices to define the next tri­
angle. This approach doubles the performance.

Algorithms minimizing vertex duplication can be found in [15], [16] and [-11].

4.5.2 Smart Caching

For reducing the F(T)  component of rendering cost, data can be arranged in 
contiguous memor\· locations. Also secondary processors for pre-fetching data 
can be used to reduce delays caused by page-faults. This method becomes 
especially important when the size of the model exceeds the size of available 
memory.

A unified memory architecture where all the data is stored, can decrease 
F{T). All the engines in the system should have direct access to the uni­
fied memory. Unlike typical graphics workstations, where data is transferred 
between RAM and VRAM, all the data should be stored in unified memory. 
Therefore, the use of unified memory can decrease F{T)  to only disk-memory 
transfer time. Efficient paging can reduce F{T)  even to zero.

4.6 Handling Very Large Databases

Another problem with complex models is that the model can be too large to fit 
into the memory. This problem has two dimensions. The first one is that the 
size of the model exceeds the RAM of the system and the second one is that 
the size of texture does not fit into the texture memor\· of the s\'stern. Both 
problems must be handled separately.
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4.6.1 Paging G eom etry from Disk

When paging geometry data from disk to the application memory, full I/O 
bandwidth of the system should be used. This requires structuring the data so 
that it can be read in large blocks; preferably being transferred using Direct 
Memory Access (DMA) into the application's address space.

Paging operation should not affect the frame rate of the system. Therefore, 
it can be performed synchronous!}' between frames. However the amount of 
data, being transferred between frames can be too small to utilize full I/O 
bandwidth. To avoid this problem in multi-threaded systems. a.s}'nchronous 
loading can be performed by creating a thread for load operation. F'or pipelined 
systems such as Reality Engine, paging operations do not affect frame rate if 
paging operations are pipelined with the graphics operations.

In order to avoid arriving at a point in the scene and not ha\ ing the correct 
data to render, the application must predict and adjust timing of loading of 
data. In very large scenes with long visibilities, it is also important to have the 
data structured so that low-resolution level-of-detail models and textures can 
be loaded in without having to read all the resolutions of the model or texture.

4.6.2 Paging T exture from M emory

For achieving fast texture mapping, graphics subsystems have tlieir own tex­
tures memories that are used for caching textures. Texture memories are much 
more expensive than the conventional R.AM and maximum a\ailable texture 
memory size is much less than R.AM. Therefore, management of texture mem­

ory is very critical.

Unlike paging data from disk, paging texture cannot be done asynchronously 
with rendering because on most graphics architectures texture loading shaie 
the same data paths as normal rendering. A fraction of the I'endering time 

must be reserved for texture loading.

Memory management, issues such as fragmentation of the ahead}' limited
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memory should also be considered. The simplest solution to this problem is to 
load textures with the same size.

The unified memory architecture explained in 4.5.2 solves the problems of 
texture paging by combining all types of memories in system.



C hapter 5

The W alkthrough System

In this chapter, the walkthrough system developed in this thesis work is ex­
plained. The system in the preprocessing phase builds a hierarchy of the scene 
and generates simplified versions of the objects in the scene. The simplification 
algorithm is based on removing nearly coplanar triangles from the objects. A 
number of simplified versions can be produced by the simplification algorithm 
each with different levels of detail. In the walkthrough phase a virtual camera 
is moved inside the model. As the camera moves inside the model, the appro­
priate version of the objects is selected and displayed. The block diagram of 
the system is given in figure 5.1.

Graphics
Svsiem

Figure 5.1: Block Diagram of the Walkthrougli System
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Figure 0.2: Hierarchical Model of a Cube

5.1 Input M odel

A complex geometric model of a scene is required by the system. A scene can 
be modelled in several ways. For example, a simple 3D cube in a scene can 
be modelled by using its edges which make twelve line segments, by using its 
faces which make six squares or by using triangles which make twelve triangles.
As the object gets more complex such as a sphere, the number of possible 
representations increases.

For the system, the triangle representation is selected for models. That 
means all the objects in the scene must consist of triangles. This selection 
makes the system more appropriate for most of the graphics systems. As 
explained in section 3, graphics pipelines are optimized for triangulated pol}'- 
gons. In addition, triangle strips can be sent faster than arbitrary pol}'gons to 
graphics hardware.

Complex geometric models are prepared by using advanced computer-aided 
design (C.AD) and computer-aided modeling (CAM) software. Advanced C.^D/CAM 
software gives the users many opportunities for modeling. The users can use 
curves, surfaces, NURBS, fractals and many other modeling techniques for cre­
ating their models. However, such models should be triangulated for optimizing 
the performance and the simplification of the system. Most of the CAD/CAM 
software can convert the models to triangles. Therefore, triangulating arbi­
trary geometric models is not implemented in this thesis. The system assumes 
triangulated geometric models as input.

The geometric model should have a hierarchical structure. Objects should 
consist of other objects and only the simplest objects should have geometric 
data. By simplest object, the objects in the lowest level of the hierarchy is
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(x3, y3, z3)

(x l ,y K zI)
(xn I, yn 1, zn 1) 
(u l ,v l )

(x2, y2, z2) 
(xn2, yn2, zn2) 
(u2, v2)

Figure 5.3: Data Required for a Triangle

meant. Hierarchical structure is very suitable for simplification and manage­
ment purposes. Sample hierarchy of a simple cube is given in Figure 5.2. Faces 
of the cube contain geometric data. On the other hand, higher levels only 
contain pointers to lower levels.

For simplifying and drawing a triangle, the system requires 3D coordinates, 
normal vectors and 2D texture coordinates of the vertices as seen in Fdgure 5.3. 
Input model should contain all the data for each vertex in the scene. The or­
dering of the vertices of the triangles must be counterclockwise and the texture 
coordinates must be between 0.0 and 1.0.

Object Separated Triangle Format (OSTF) [42] is selected for importing 
models from CAD/C.AM software. OSTF’ meets all the requirements explained 
above. It stores objects in hierarchical order. The hierarchy is based on object s. 
,-\t lowest level of OSTF hierarchy lies triangles. Each triangle has its vertex, 
normal and texture data. The details of OSTF is given in Appendix A.

5.2 The Preprocessing Phase

In the preprocessing phase, scene data is read from the OSTF file and an object 
hierarchy is built in memory. Then, simplified versions are built and stored in 
separate files for later use. Each phase of the preprocessing is explained below.
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Figure 5.4: Hierarchical Model of a Column
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Figure 5.5; Hierarchy List of the Column

5.2.1 B uilding the Hierarchy

The first step of preprocessing is building the hierarchy of the geometric model 
in memory. The hierarch}· is in the form of a list. Each element of the list is a 
root of a tree representing an object.

Each object in the scene is represented by a tree in the hierarchy. The 
person building the model by using the CAD/C.AM software should decide 
how to partition the scene into objects and how to model each object. Each 
different decision ends with a different hierarchy. Figure 5.4 shows a column 
and its possible hierarchical representation. The system creates a tree for each 
object and inserts the root of the tree to the list representing the entire scene.

The object tree has two types of nodes. Intermediate nodes contain bound­
ing box data and pointers to lower levels. These nodes do not contain any 
geometric data related to the objects. On the other hand, leaf nodes contain 
a list of triangles making up the object. Both types of nodes contain texture 
data. The texture of leaf nodes is taken from the OSTF file. For intermediate 
nodes, texture data is obtained by mixing textures of its child nodes. Initially, 
the triangle lists of leaf nodes are all empty. That means geometric data of 
triangles are not read from the file. Only a file offset for each node is stored 
for fast access to geometric data.

In hierarchy building phase, the OSTF files is read, the hierarchy list and the 
object trees are created. For finding the bounding bo.xes of leaf nodes, triangle 
data is also read, however it is not stored. Instead it is used for computations 

and is discarded.

The hierarchy list of the column shown in Figure 5.4 is shown in Figure 5.5. 
Black nodes represent intermediate nodes and white nodes represent leaf nodes. 
Note that the deptli of the hierarchy tree can increase depending on the com­

plexity of model.
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After the hierarchy list is built in memory, it is traversed for setting texture 
and bounding box data of child nodes. Bounding box of an intermediate node 
is the smallest box that contains all the bounding boxes of its child nodes. 
Texture data of an intermediate node is found by mixing textures of children. 
Figure .5.6 shows an example of texture mixing for an object tree with 5 nodes.

5.2.2 Sim plification

The second and last phase of prej^rocessing is sijnplification of geometric data. 
In section 4.2, several polygonal simplification techniques are explained. .Among 
those techniques, Geometric Optimization [18] explained in sub.section 4.2.2 is 
selected. The technique is simple to implement and is very effective on planar 
triangulated surfaces. In addition, the amount of simplification can be adjusted 
by giving threshold values enabling the generation of multiple levels of detail 
for a single object.

Figure 5.7 gives the steps of simplification process. Details of each step is 
given below.

Reading Geometric Data

For each element of the hierarchy list, the tree represented by the element 
is traversed until leaf nodes. For each leaf node, geometric data of triangles 
constituting the node are read from the OSTF file. File offset \'alues which are 
stored in leaf nodes in hierarchy building phase are used for accessing the file. 
This process can require an enormous amount of memory depending on the 
size of the scene. For reducing the memor}· needs, the simplification process 
handles leaf nodes one by one, which means only triangles of a single node are 
read and processed at a time from the file.
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Figure 5.6: Finding Textures of an Intermediate Node



CHAPTER 0. THE WALKTHROUGH SYSTEM -10

For each object tree in the hierarchy list 
For each leaf node of object tree 

Read geometric data of triangles 
Find normals of triangles 
Find coplanar groups of triangles 
For each coplanar group 

Find bounding polygons 
For each bounding polygon 

Omit plainar edges 
Reduce vertex data to 2D 
Triangulate
Save triangles to object file 

Figure 5.7: Geometric Optimization Algorithm 

Finding Triangle Normals

Each triangle of a leaf node has its vertex coordinate and vertex normal data 
ready in memory. Using this data, the normal vector of each triangle is calcu­
lated as explained in [4, -35. 36].

Finding Coplanar Groups

This operation is applied to each leaf node separately. Triangles of the node 
are grouped according to their normal vectors. Threshold value tT for grouping 
determines which triangles to put to the same group. A small cl will cause 
lots of groups with few triangles and a large el will cause \'ice \ersa.

Figure 5.8 shows a triangulated surface. The s\stem given two different 
thresholds creates two different coplanar groups as shown in Figure 5.9. Trian­
gles which are in the same group are colored similarly. Note that the threshold 

for the upper scene is smaller compared to the threshold for the lower scene.
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Figure 5.8: Original Surface

Finding Boundary Polygons

For each coplanar group created in the previous step, a boundary polygon is 
found by omitting shared edges between triangles. Shared edges are determined 
by using an edge list.

It should be considered that more than one boundary polygon for a coplanar 
group can be found. This means there can be groups of triangles which have 
the same normal vector but are not neighbors. An example of this situation 
can be seen in Figure 5.9. Plane A and Plane D are in the same coplanar 
group, however they are not neighbors. For solving such situations, additional 
data and algorithms are used.

The edge list consists of nodes with midpoint data, group number and tri­
angle list. The midpoint data is used for storing the midpoint of the edge and 
group number is used for creating multiple boundary polygons and determin­
ing sub-groups. Triangle list stores pointers to the triangles sharing the edge. 
Each triangle also has fields for storing pointers to the edge list elements for
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Figure 5.9: Possible Groups of the Original Surface
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Figure 5.10: Ignored Neighboring Triangles

its edges.

Each vertex of triangles in the coplanar group is added to the edge list. 
The edge list is sorted by midpoints of the edges. For the insert operation a 
binary search is performed. At the end of the search, an appropriate place for 
the new edge is found. If an edge with the same midpoint is already in the 
list, the edge in the list is marked for deletion and the new edge is discarded. 
There is no need for checking the end points of edges, only midpoint checking 
is enough. Consider two edges with same midpoints and different endpoints 
as shown in Figure 5.10. Such triangulation can cause degradation in image 
quality and is avoided by CAD/CAM systems. Therefore, existence of such 
triangles is ignored. In both deletion and insertion cases, the triangle is added 
to the list of the edge list element and edge list element is added to the list of 
triangle for later use.

Figure 5.11 shows the edge list of a simple polygon. The polygon consists of 
two coplanar groups, therefore two edge lists and their corresponding triangle 
lists are created. Tri3 and Tn3 together make a planar group. They have a 
shared edge E. The node representing edge E  is colored, because it is marked 

for deletion.

.After all vertices are inserted to the edge list, a recursive algorithm is ex­
ecuted for finding the sub-groups of the coplanar group. The main idea is 
assigning sub-group numbers to edges that are on the same bounding polygon. 
The algorithm starts by giving sub-group number zero to the head of the edge 

list. .All the triangles that are in the list of the edge are then processed. For 
each triangle, the edges of the triangle are assigned sub-group number zero. 
This process continues until all the triangles that are in the list ol the lieacl edge 
are processed. .At the end of first recursion, all edges that belong to the first
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Figure 5.11: Edge List for a Simple Polygon
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sub-group are assigned the sub-group number zero. The algorithm continues 
until all the elements of the edge list are assigned sub-group numbers.

For the example in Figure 5.11, node C is assigned sub-group number zero. 
The method then processes edges of Tri3 and gives zero to edges F  and E. 
Since the edge F  only belongs to Tri3  ̂ it is finished. On the other hand, edge 
E  is shared by Tri2. Therefore, the edges of Tri2 are also assigned zero as 
sub-group number. .At the end. all edges are assigned sub-group number zero.

Once all the edges are assigned sub-group numbers, edges which are marked 
for deletion are removed from the list, leaving only the boundary edges in the 
list. They should be organized to form polygons. A coplanar group can con­
tain more than one bounding polygon as explained before. Boundary polygon 
building algorithm tries to find edges that are in the same sub-group by using 
the group numbers and that share vertices. After all such vertices are found 
and grouped, boundary polygons for the coplanar group is formed. .Applying 
the method to the edge list in Figure 5.11 will create the polygons A, B, C and 
C. f ,  G. D.

The next step is omitting planar edges from the bounding polygon. This 
met hod causes a great number of vertices to be removed from the bounding 
polygon. The threshold e‘2 is also specified for vertex comparison. .A large e2 
will cause very simple, but inaccurate bounding polygons.

Boundary polygons with removed planar edges of the surfaces in Figure 5.9 
is shown in Figure 5.12.

The outputs of this phase are stored in the coplanar list of objects. Each 
element of the coplanar list contains an array of \ ertices of its bounding poly­
gons.

Reduce Boundary PoK'gon to 2D

Boundary polygons created in tlu* previous phase are triangulated for optimiz­
ing graphics performance of the system. Depending on the value ol t hreshold 
el for creating coplanar groups, vertices of bounding polygon may not be on
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Figure 5.12; Boundary Polygons of Coplanar Groups
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the same plane. Therefore, vertices of the bounding polygon are reduced to 
2D coordinates. This guarantees that the vertices are on the same plane and 
simplifies triangulation.

For 3D-2D conversion of vertices, a coordinate system whose z-axis is per­
pendicular to the plane bounded by the boundary polygon is formed. This is 
done by selecting three arbitrary vertices from the bounding polygon and find­
ing normal of the plane represented by the three vertices. The normal becomes 
the z-axis. The vector between the two \'ertices becomes the x-axis. The cross 
product of both axes gives the y-axis. After the coordinate system is formed: 
for each vertex, projection to the x and y axes are found. At the end of this 
process, each vertex on the boundary polygon has a 2D coordinate. Notice 
that for very large el values, the space bounded by the boundary polygon can 
become a volume rather than a ])lane. In such cases the 2D coordinates gen­
erated in this phase will be useless. Therefore, large el values are not used in 
coplanar grouping phase.

Triangulating the 2D Boundary Polygon

The 2D polygon formed in the previous phase may not be convex. Triangu­
lation algorithms for non-convex polygons such as [39] are complex and have 
restrictions. Remember that triangulation in the system is a part of the simpli­
fication phase and triangles created in this phase will be displayed only when 
the object is far from the camera. Therefore a fast and simple triangulation 
algorithm which can cause visual artifacts is implemented. The algorithm first 
creates the convex hull of bounding polygon and after that triangulates convex 
polygon.

First the convex hull containing the polygon is found. Graham Scan algo­
rithm is used for that purpose. The algorithm starts by selecting the \’ertex 
with the smallest y coordinate. After that, for each vertex of the bounding 
pol}^gon the angle with respect to the selected vertex is computed. V'ertices 
are sorted using quick-sort by angles. Using the sorted list and an additional 
stack structure a counterclockwise traversal is searched. The pseudo-code ol 
the algorithm is given in Figure 5.13. Figure 5.14 shows a sample execution of
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GrahajnScanC P, N )
Find the point with lowest Y and exchange with p[l] 
Sort vertices by angle with respect to p[l] 
push( p[l] ) 
push( p[2] ) 
for I = 1 to N

while ccw( top\_next, top, p[I] ) = CW 
pop

push( p[l] )

Figure 5.13; Graham Scan Algorithm

Figure 5.14: Sample Graham Scan Execution

the algorithm.

.At the end of Graham Scan algorithm [45] a 2D convex counterclockwise 
poly gon is obtained. The convex polygon is easily triangulated. The first ver­
tex of the convex polygon is selected as base. Using the base, other vertices arc 
grouped to form triangles. Figuie 5.15 gives the pseudo-code of the triangu­
lation algorithm. Triangles generated by the algorithm are in form of triangle 
fans, as seen at the right of Figuie 5.16.

The triangulation changes original polygon by omiting vertices that cause 
concavities. This results in different views of original and triangulated polygons 
as seen in Figure 5.16. However, changes are usually not noticed by the user 
because simple versions are onlj' displayed when the object is far from the
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Triangulate( P, T )
Select P[l] as base )■
Select P[2] as active}
for I = 3 to vertexCountOf(P)}

Form triangle, (base, active, P[I])} 
aSelect P[I] as active}

Figure 5.15: Triangulation .Algorithm

Figure 5.16: Difference Between Original and Triangulated Polygon

camera.

5.3 The W alkthrough Phase

In the walkthrough phase, a virtual camera is moved inside the geometric model 
interactively. The user can contiol the direction and position of the camera. 
As the camera moves, a fast frustum culling is performed to discard that are 
out of viewing frustum. .Appropriate level of detail of objects is selected and 
displayed according to the distance of the object to the viewpoint. Each part 
of the walkthrough is explained below.

5.3.1 Cam era M odel

The virtual camera consists of three elements: direction vector, current posi­
tion and angle of field of view. .All elements of the camera can be changed 
interactively by the user. Figure 5.17 shows the camera model.

The direction vector is always parallel to x-z plane. That means the move­
ment of the camera is perpendicular to y-axis. .As the camera is turned by llie
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user, the direction vector changes depending on the direction of rotation. The 
system takes advantage of OpenGL projection calculations and matrix stack 
for changing the direction vector. The details of projection calculations are 
given in Appendix B.

The current position changes as the user moves the camera back and forth. 
The amount of change depends on the value of the direction vector. For ex­
ample. if the direction vector is perpendicular to x-y plane, then only the z 
component of the current position changes. Current position is also used for 
frustum culling calculations.

The angle of field of view determines how objects are projected. It also 
affects frustum culling calculations. The value of the angle is selected as 15 
degrees, however it can be changed interactively by the user. A new projection 
matrix is used to re-render the scene as the angle of field of view clianges.

5.3.2 Frustum  Culling

A viewing frustum is formed using the angle of field of view, current position 
and direction vector. Objects in the scene are culled against the frustum. Hier­
archical structure which is built in preprocessing phase is used for calculations.
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The system first creates four j)lanes each of which are sides of the frustum 
pyramid as shown in Figure 5.17. .After each camera movement, planes of 
viewing frustum are recalculated. Frustum culling calculations are performed 
first on each element of the hierarchy list, that is root of each object tree. .As 
e.xplained in 5.2.1, each element of hierarchy list has a bounding bo.x. If all 
the vertices of a bounding box are outside the frustum planes, then the object 
represented by the element and its child nodes are ignored. Even if a single 
vertex is inside the frustum, the algorithm continues with lower level nodes of 
the object tree. The algorithm ignores each node that is out of the frustum 
and does not process its child nodes.

The explicit frustum culling used in the system introduces overhead when 
a large amount of objects are in the frustum. However, for cases when explicit 
frustum culling prunes object trees, its overhead is compensated.

5.3.3 M anaging Level o f D etail

The system in this phase selects appropriate level of detail of objects in the 
scene. Only objects that are in the viewing frustum are included in calculations.

.As explained in Section 5.2.1. hierarchy list consists of roots of object trees. 
The intermediate nodes of object tree contain bounding box and texture data. 
Leaf nodes in addition to the bounding box and texture data contain geometric 
data.

During walktlirough. each object tree in viewing frustum is traversed. For 
each node, bounding box data and current camera position is used for calcula­
tions. The distance between the camera position and the center of each plane 
of the bounding box are calculated. The minimum of these six distance values 
gives an estimate of distance of the node to the viewpoint. If the distance is 
less than a user-defined threshold, child nodes of the node are processed. For 
nodes that are far away from the camera, only bounding box of the node is 
rendered using texture of the node. Children of the node are skipped. This 
method reduces rendering operation for far objects only to a textured rectan­
gular prism rendering no matter what the geometric complexity of the object
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For each element of hierarcy list 
If node in viewing frustum 

Find estimate of distance 
If distance greater than threshold 

Render textured bounding box 
Else

If leaf node
Select appropriate level of detail 
If representation not in cache 

Load representation to cache 
Render representation 

If intermediate node 
Process children

Figure 5.18: Level of Detail Management

IS .

Distance calculation for near objects proceeds to the leaf nodes of the object 
tree. For leaf nodes, more than one threshold value is defined. Threshold 
values el, e2 and distance of the leaf node to the camera determine which 
representation of the object to render. Possible representations of the leaf 
nodes depend on the the simplification phase of the system. In addition to the 
representations created in simplification phase, textured bounding box of leaf 
node is also an option for rendering.

Switching between different representations of an object introduces two 
problems to the s}'stem. The first one is the visual defects such as popping and 
the second one is the loading time of different representations. The solution of 
popping is blending different representations. It can be implemented by fading 
in the new representation, while fading out the old representation. For fading, 
alpha-blending is required, which is an expensive operation. Therefore, pop­
ping problem is not handled by the system. Thus, in exchange of performance 
increase, image quality is degraded.

For solving the disk-loading problem, memory caches are used by the system.
'I here are two caches for each leaf node of an object. If the node is out of tlie 
viewing frustum, both caches are empty. For nodes that are in the viewing
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frustum, caches contain two different representations of the node. The caching 
especially helps reducing delay of continuous switching. Consider a leaf node 
that is d units away from the camera with threshold value d + c. Without 
caching, for each back and front movement of the camera, loading of geometric 
data is required. However with caching both representations will be in memory 
and this will increase performance.

The pseudo-code of level of detail management is given in Figure 5.18.



C hapter 6

R esu lts

In this chapter, results obtained from the system will be given. The results 
of polygonal simplification, level of detail management and walkthrough are 
given in separate sections.

6.1 G eom etric Simplification

The amount of simplification dej)ends on two thresholds as explained in sec­
tion 0.2.2. The first threshold el affects the number of polygons in coplanar 
groups. The second threshold e‘2 is used for removing planar edges from bound­
ary poh gons. Examples of simplification are examined both in terms of cl and 
c2.

The polygonal simplification algorithm gives the best visual and numerical 
results for planar surfaces. Figure 6.1 shows an extreme example. The square 
in 6.1(a) consists of 2048 triangles. Since there is only one coplanar group and 
all vertices except the four corners are planar edges, for any \alue of d  and 
c2, there will be only two triangles at the end of simplification as shown in 
Figure 6.1 (b).

Figure 6.2 shows the effect of c2. The polygon is planar, therefore d  will not 
have any effect in simplification ]>rocess. The original polygon has 10 vertices

54
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(a) (b)

Figure 6.1: Polygonal Simplification of a Square

Figure (2 V ertex C ount Triangle Count
6.2(b) 0.0 10 8
6.2(c) 0.5 6 4
6.2(d) 1.0 3 1

Table 6.1: Polygonal Simplification of a Polygon
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(c) (d)

Figure 6.2: Polygonal Simplification of a Polygon
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(d) (e)

Figure 6.3: Polygonal Simplification of a Surface

and 8 triangles. Table 6.1 gives result of simplification with different e2. As it 
can be seen from Table 6.1, the increase of e2 results in better simplification, 
however accessive values degrades the quality of result by merging edges that 
are not planar.

In Figure 6.3, the effects of both el and e2 can be seen. Table 6.2 gives 
the numerical results of simplification with different e’s. The original surface 
shown in Figure 6.3(a) consists of 32 triangles.

Figure el e2 G roup Count Triangle Count
6.3(b) 0.1 0.0 3 17
6.3(c) 0.1 0.3 3 8
6.3(d) 0.7 0.0 1 4
6.3(c) 0.7 0.3 1 2

Table 6.2; Polygonal Simplification of a Surface
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(a) (b) (c)

Figure 6.4: Polygonal Simplification of a Sphere

Figure el e2 Triangle Count
6-4 (b; 0.2 0.0 232
6.4(c) 0.2 0.3 189

Table 6.3: Polygonal Simplification of a Sphere

Polygonal simplification algorithm does not give good visual results on 
curved surfaces such as a sphere. The positioning of the faces that make a 
sphere are not appropriate for the algorithm, because of the large difference 
between normals of neighboring faces. Giving large el values for coplanar 
grouping solves the problem, however the quality of resulting models reduces. 
Figure 6.4 shows simplification of a sphere. The original sphere 6.4(a) has 416 
triangles. Table 6.3 gives the numerical results of simplification.

For showing the effect of simplification on a real object, the column in 
Figure 6.5(a) with 3136 triangles is selected. Figure 6.5 shows the visual and 
Table 6.4 gives numerical results of the simplification.

Figure el e2 Triangle Count
6.5(b) 0.1 0.0 1242
6.5(c) 0.1 0.3 415

Table 6.4: Polygonal Simplification of a C’olumn
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(c)

Figure 6.5: Polygonal Simplification of a Column
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Camera: ( 8.0. 3 0. 24.3 )

Figure 6.6: Level of Detail Management-Original Scene

O bject C enterX C enterY CenterZ
Spherel -10.0 -1 .0 0.0
Sphere2 4.0 -1 .0 4.0
Spheres 0.0 0.0 0.0
Node28 -3.0 -0.50 2.0

Table 6.5: Centers of Objects in Scene

6.2 Level of D etail M anagem ent

The parameters which affect the management of level of detail are the hi­
erarchy of objects in the scene and distance values for changing level of detail. 
To explain the effect of both factors, the scene in Figure 6.6 is selected. The 
spheres in the scene are identical except their textures and consist of 960 tri­
angles. Sphereand sphereS and sphere 1 are grouped together to form node‘28.

The Figures 6.7, 6.8, 6.9, 6.10, 6.11. 6.12 and 6.13 show level of detail man­
agement for different camera positions. The first change in level of detail occurs 
when the distance of object center to camera is larger than 40.0. If the dis­
tance of objects is larger than 80 bounding box representation of the object
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Camera: ( 12.0. .3.0. 35.6 )

Simplified to 626 pcf> pons

Di«; 42.1

Disc: 37.74

Disl: 32.9

Figure 6.7: Level of Detail Management-1

is displayed. If an intermediate node’s distance to camera is larger than 160, 
instead of child nodes, mi.xed-te.xtured bounding box of the intermediate node 
is shown. The only intermediate node in example is node28. The camera po­
sition and distances of objects are shown on the figures. Figure 6.6 has 960.t:3 
triangles whereas Figure 6.12 has only a bounding box.

6.3 The W alkthrough System

The system has three differences from a straightforward walkthrough applica­
tion. By straightforward application, a system which directly draws all the 
polygons in the scene using OpenGL is meant. The walkthrough results of the 
system will be examined in these three aspects.

The first difference is explicit frustum culling. Although OpenGL makes 
automatic frustum culling, for faster elimination of vertices that are not visi­
ble. a frustum control based on bounding boxes is performed. The frustum is 
recalculated for each camera movement and each vertex of the bounding boxes
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Camera: ( 13.1,3.0,38.5)

Dist; 45.0

Simplified to 626 polygons 
Dist: 40.7

Dist; 35.8

Figure 6.8: Level of Detail Management-2

Camera: (15 .1 ,3 .0 ,44 .1  )

Dist: 50.9
Dist: 46.72

Simplified to 626 polygons 
Dist; 41.8

Figure 6.9: Level of Detail Management-3
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Figure 6.10: Level of Detail Managernent-4

Camera: ( :7.4, .1.0. 78.0)

Dim: 86.6

Bounding Box 
Dist; 82.7

Disl; 77.7

Figure 6.11: Level of Detail Manageinent-5



CHAPTERS. RESULTS 64

Figure 6.12: Level of Detail Management-6

Figure 6.13: Level of Detail Management-7



CHAPTERS. RESULTS 65

of the nodes in the hierarchy are controlled for each new frame. It is an expen­
sive operation, because for each vertex 3D dot-product is required. Therefore, 
if at the end of the operation a great number of objects cannot be eliminated, 
the performance drops below the performance of automatic OpenGL frustum 
checking.

The second difference is distance calculations for level of detail selection. For 
finding an estimate of distance between visible objects and camera, minimum 
distance between camera and bounding box of the object is calculated. Dis­
tance calculations are also expensive operations. If at the end of the distance 
calculations detailed versions of objects are rendered, the overall performance 
drops down under normal walkthrough applications.

The third and most important difference is loading different representations 
of objects from disk. If the system reads data from disk during walkthrough, 
the performance will drop down considerably. The double-memory-cache re­
duces the number of disk accesses for two-level-of-detail scenes. However if the 
number of representations for objects is more than two, for each representation 
change, a new model should be loaded. The number of memory caches can be 
increased, which will lead to memory shortage problems.

Considering the above concepts, a scene with over 250000 polygons is pre­
pared. The building block of the scene is the Parthenon shown in Figure 6.14. 
All the parthenons are similar to each other. The top-view of the test scene is 
displayed in Figure 6.15. The white lines show the test path in the scene. All 
objects in the scene have two representations.

The Figures 6.16, 6.17. 6.18 and 6.19 show shots from the walkthrough of 
a complex scene. The scene consists of parthenons. Note that the positions of 
parthenons are different from Figure 6.15.

For showing the improvements over a simple walkthrough application. Ta­
ble 6.6 is prepared. The system is executed in wire-frame mode on a Silicon 
Graphics Onyx with four 200MHz R4400 CPU. Reality Engine, 5T2MB RAM 
and 64MB texture memory. The simple walkthrough system required between 
1.48 and 1.53 seconds per frame depending on the position of camera. Table 6.6
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Figure 6.14: The Parthenon
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Figure 6.15: The Test Scene
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Figure 6.16: The Walkthrough-1
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Figure 6.17; The VValkthroiigh-2
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Figure 6.18: The Walkthrough-3
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Figure 6.19; The Walkthrough-!
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Frustum (s) Distance (s) Reading (s) Display (s)
0.00 0.00 0.00 0.00
0.02 0.03 0.00 0.00
0.02 0.06 0.70 0.05
0.08 0.10 1.82 0.34
0.06 0.08 1.77 0.55
0.06 0.08 0.00 0.45
0.02 0.05 0.00 0.48

Table 6.6: Polygonal Simplification of a Surface

gives the execution times of each step in the system for different camera posi­
tions on the path.

The first two rows shows the required times when the camera is far from the 
scene. Only the higher level nodes of object trees in hierarchy list are tested. 
Since they are all far away from camera their bounding boxes are displa3'ed. 
Therefore all values are near zero. As the camera gets closer, lower level nodes 
are also tested and for some objects simpler representations are loaded from 
disk to cache (row 3). Rows 4 and 5 show the worst cases of the sj stem. Too 
many disk accesses are required for these shots. After most of the caches are 
filled, the execution times remain constant as can be observed from last two 
rows.

The results of the table show that the display times are improved at worst 
more than three times compared to the simple system. Depending on the 
distance of camera, much better results can be obtained. The disad\antage of 
the system is disk-access times. When many object's caches need to be loaded, 
the system’s performance gets worser than the simple application. One possible 
solution to that is to load all rei)resentation to caches if there is no memor\· 

shortage.
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Conclusions and Future 
Research Areas

In this chapter, a summary of this work and directions for future work will be 
given.

7.1 Conclusions

In tliis work, a survey of methods that enable handling of huge geometric 
models in interactive frame-rates is prepared. A s\stem for walkthrougli in 
complex models is developed using the ideas of the methods.

The need for interactive frame-rates in simulation. CAD/CAM, architecture 
and entertainment applications led many researchers to this area. The models 
for such applications exceed the limits of current graphics workstations.

Researchers make use of limitations of human visual system for reducing the 
number of primitives and the hardware properties of state-of-the-art graphics 
systems for optimizing the performance.

Methods for walkthrough range from simple ideas to very complex algo­
rithms. Reducing the number of polygons to render without affecting the

iz
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image quality is the main idea of these methods. For reducing the number of 
primitives either geometric simplification algorithms or visibility and occlusion 
culling algorithms are used. Such algorithms reduce the number of polygons 
per frame to manageable numbers.

The system developed in this work takes as input triangulated hierarchical 
models in OSTF' format. The object hierarchy is built first in memory. After 
that simplified versions of objects in the scene are created and saved for later 
u,se.

The simplification algorithm is based on removing nearly coplanar triangles 
from the model. Triangles with nearly same normals are grouped together. 
For each group a boundary polygon is found. Planar edges are remo\ed from 
boundary poh’gon. The remaining vertices of the boundar}’ polygon are trian­
gulated.

The simplification ratio depends on two thresholds, el for determining which 
triangles to put to same group and e2 for removing edges from boundary poly­
gon. By changing the values of el and e2, different representations with differ­
ent simplification ratios can be obtained.

The simplification algorithm is very successful on objects with planar sur­
faces. It reduces the number of triangles considerabh· without affecting the 
image quality.

For walkthrough, a virtual camera and a viewing frustum is defined. The 
user moves the camera inside the model as if he walks in the model. .\s 
the camera moves, the nodes in the hierarchy are tra\’ersed. Nodes that are 
out of viewing frustum are discarded. Viewing frustum calculations are based 
on bounding bo.xes. For near objects detailed representations are displayed, 
whereas for far objects simplified versions are shown.

To reduce the model-loading o\erhead, double-memory cache for storing 
recenth’ used representations of an object are used.
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7.2 Future Research Areas

Since the topic of the thesis is a very popular research area, there are a lot of 
future directions to improve the performance of the system, both in terms of 
simplification and frame-rate.

The system has a modular structure. Each module has a certain interface 
w'ith other modules. Using the advantage of this, any geometric simplification 
algorithm can replace the current simplification algorithm.

The intermediate nodes in the object hierarchy are represented by textured 
cubes. The textures of the cubes are obtained by mixing the textures of lower 
level nodes. Intermediate nodes can be represented b}· more accurate repre­
sentations.

The system currently performs only visibility culling. For ai'chitectural mod­
els, occlusion culling algorithms are very important for reducing the number 
of vertices. An occlusion culling method can be adopted to the system.

For reducing the number of mode changes when rendering the model, prim­
itives with the same textures can first be grouped together. .After that with 
minimal number of mode changes, primitives can be displayed.

Current double-memory cache system solves the problem of model loading 
for two-level of details. The caching system can be optimized for more levels 
of detail by increasing the number of caches.
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Input M odel

The models used in the system are prepared using Alias/Wavefront PowerAni- 
mator which is an advanced mod(dling software developed by Silicon Graphics. 
The program is capable of expoi'ting models in se\eral file formats. Among 
those file formats OSTF (Object Separated Triangle Format) is selected. OSTF 
is very suitable for the system and is easy to handle.

In OSTF files, geometric data is stored hierarchically. For each object in the 
model, there is a .section in the file. Each section contains data of the triangles 
of the objects or data of the child objects of the object. The data stored for 
each object is given in figure A.l.

If the count field of an object is equal to zero, that means the object contains 
other objects. The definitions of sub-objects are given inside the container 
object. This structure is very suitable for the system because of the hierarchy. 
Container objects refer to intermediate nodes and sub-objects refer to the leaf 

nodes of the object tree in the system.

Per vertex data (normal, coordinate, texture and color) in O.STP̂  also ex­
actly match to the data required per vertex by the system. For displaying a 
vertex, sending the \ertex data without an\· comersion to OpenGL is enough.

75
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START.TAG Marks start of an object.
name Name of the object.
count Number of triangles.
texturename Name of the texture file.
nx ny nz Normal of vertexl.
fx fy fz Coordinates of vertexl.
cr eg cb Color of vertexl.
U V Texture coordinates of vertexl.
nx ny nz Normal of vertex2.
fx fy fz Coordinates of vertex2.
cr eg cb Color of vertex2.
U V Texture coordinates of vertex2.
nx ny nz Normal of vertex3.
fx fy fz Coordinates of vertex3.
cr eg cb Color of vertex3.
U V Texture coordinates of vertex3.
etc...

END.TAG Marks t he end of the object.

Figure A.l: Representation of an Object in OSTF.

Figure A.2: The Cube
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The representation of the cube in figure A.2 is given as an example in 
figure A.3. Each face of the cube is given as a sub-object and each face consists 
of two triangles.
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START-TAG
Cube
0
START.TAG 

face# 1 
2
line.tex
( data of 2 triangles ) 

E.ND.TAG 
START-TAG 

fa.ce#2 
2
line.tex
( data of 2 triangles ) 

END-TAG 
START-TAG 

face#3 
2
line.tex
( data of 2 triangles ) 

END-TAG 
START-TAG 

face #4 
2
linetex
( data of 2 triangles ) 

END-TAG 
START-TAG 

face#-5 
2
line.tex
( data of 2 triangles ) 

END-TAG 
START.TAG 

face #6 
2
line.tex
( data of 2 triangles ) 

END.TAG 
END.TAG

F'igure -A.S: Representation of the C'nbc'



A ppendix B

OpenGL

In the earlier days of computer graphics, each person implemented his own 
graphics library for rendering a model. Even the simplest transformation cal­
culations were coded for every new project. As the concepts of computer 
graphics get more mature, people started to write graphics libraries for their 
own usage. Throughout time those libraries get complex and portable. .At 
the end of this trend companies like Microsoft and Silicon Graphics started 
research on standardizing graphics libraries. OpenGL is developed by SGI and 
DirectSD is developed by Microsoft.

In this thesis. OpenGL is selected for implementation. OpenGL is a software 
interface to graphics hardware. The interface consists of about 120 distinct 
commands, which are used for specifying objects and operations needed to 
produce interactive three-dimensional applications [37]. The two reasons for 
selecting OpenGL for implementation are; its wider usage and its portability. 
An OpenGL code can be compiled on graphics hardwares for which an OpenGL 
library exists. Such platforms include Sun and SGI workstations and PCs.

Since OpenGL is a well known library, only the properties that are used for 

optimizing the system will be explained. More detailed explanations can be 

found in [37] and [3S].
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objeci 
coordinates

ModelView Projection

Î

Perspective Viewport
Matrix 1

1
Matrix Division Transformation

t
eye
coordinates

clip
ccwrdi nates

normalized
device
coordinates

Figure B.l: Stages of Vertex Transformation in OpenCL

B .l Transformation Calculations

window
coordinates

X

y

OpenGL uses two matrices for transformation calculations: modelview matrix 
and projection matrix.

Modelview matrix is used to set the position and orientation of the scene. 
Projection matrix is u.sed to set the type of projection and to create a viewing 
frustum for automatic culling. Perspective and ortographic projections are 
supported by OpenGL. After two matrices are set, each vertex is processed as 
shown in figure B.l.

Both matrices can be changed any time. For example, for rotating the 
objects in the scene, multiplying the modeh iew matrix with the rotation matrix 
is enough.

OpenGL stores matrices in the form of two stacks. One stack is for projec­
tion matrix and the other is for modelview matrix. For each operation a target 
stack must be specified.

For this work, perspective projection is selected because it generates realistic 
looking images. Projection matrix of OpenGL is used to set the parameters 
of perspective projection. The angle of field of view is the only parameter 
for perspective projection. Also back and front planes of \-iewing frustum 

are combined with projection matrix to enable automatic frustum culling of 

OpenGL.

Modelview matri.x is, used for camera movement. .As a result of each move­
ment, a rotation and translation matrix is formed and multiplied with the 
modelview matrix to form a new modelview matrix.
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V1 v4 v5 vO v2 v4

vO v2 v3 vO

G L.T R IA N G LE S  GL_TRIAN GLE_STRIP GL_TRIAN GLE_FAN

Figure B.2: Triangle Commands in OpenGL

Once both matrices are set for a camera, movement, each vertex in the scene 
is sent to the process shown in figure B.i. As the result, new shot for the new 
camera position and angle of field of view is obtained on the screen.

B.2 Triangle Fans and Triangle Strips

OpenGL has commands for drawing geometric primitives such as lines, poly­
gons, triangles and quads. Triangle-drawing commands are used in the imple­
mentation to optimize the rendering time.

OpenGL has three types of triangle commands. The first one is used for 
rendering separate triangles as seen at the left of figure B.2. For each triangle, 
all the three vertices are processed by the graphics engine. Therefore, the first 
command is the slowest among other triangle commands.

The second triangle command is optimized for drawing triangle strips as 
shown at the middle of figure B.2. It processes vertices in the following or­
der: (rO, cl, i.'2), (c2,cl, c3) and (c2. c3, c4). Since there are shared vertices 
between triangles, the number of processed vertices reduces.

The last triangle command is optimized for drawing triangle fans as shown at 
the right of figure B.2. It processes vertices in the following order: (cO, cl, c2). 
(r:0, c2. c3) and (r>0, i’3, c4). The command takes the advantage of shared ver­
tices. therefore it reduces number of processed vertices.

In the system, triangulated simplified versions of objects consists of triangles 
fans as explained in 5.2.2. Triangle-drawing command for triangle fans is used
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for the implementation. .Although the use of the command increa.ses the per­
formance of the system, it degrades the image quality for textured and lighted 
scenes. This is because shared vertices have different texture coordinates and 
normal vectors. Each vertex should be processed separately for textured and 
lighted scenes.
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