DEVELOPVENT OF A NON-IMMUNOLOGICAL SYSTEN: FOF THE STUDY OF THE CELLULAREOCAIZATION OF BRCAI GENE PRODUCT IN IVANG CEMIS
A. THESIS SUENTMTED TO

THE DEPARHMENT OF MOLECULAR BIOLOGY AND GENETICS
AND THE INSTITUTE OF ENGINEERNNG AND SCIENCE
OF BlLKENT UNMVERSI"Y
IN PAFHIAL FULFILLMENT OF THE REOMHGEVENTS
FON HME DECREE OF MA.STER OF SCIENCE

WP
870
.634
1997

DEVELOPMENT OF A NON-IMMUNOLOGICAL SYSTEM FOR

 THE STUDY OF THE CELLULAR LOCALIZATION OF BRCAI GENE PRODUCT IN LIVING CELLSA THESIS SUBMITTED TO
THE DEPARTMENT OF MOLECULAR BIOLOGY AND GENETICS AND

THE INSTITUTE OF ENGINEERING AND SCIENCE OF BILKENT UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE

By
TOLGA ÇAĞATAY

August, 1997

B. 98981

To my parents Nesrin \& Erhan Çağatay and uncle Namık Türkmenoğlu

I certify that I have read this thesis and that in my opinion it is fully adequate, in scope and in quality, as a thesis for the degree of Master of Science.

I certify that I have read this thesis and that in my opinion it is fully adequate, in scope and in quality, as a thesis for the degree of Master of Science.

I certify that I have read this thesis and that in my opinion it is fully adequate, in scope and in quality, as a thesis for the degree of Master of Science.

Approved for the Institute of Engineering and Science

Prof. Dr. Mehmet Baray, Director of Institute of Engineering and Science

ABSTRACT
 DEVELOPMENT OF A NON-IMMUNOLOGICAL SYSTEM FOR
 THE STUDY OF THE CELLULAR LOCALIZATION OF BRCAI GENE

PRODUCT IN LIVING CELLS

TOLGA ÇAĞATAY
M. S. in Molecular Biology and Genetics
Supervisor: Assist. Prof. I̧̧ık G. Yuluğ
August 1997, 92 Pages

BRCA1, is a familial breast and ovarian cancer susceptibility gene that has been cloned and shown to be either lost or mutated in families with breast and ovarian cancer. BRCA1, has been postulated to encode a tumor suppressor, a protein that acts as a negative regulator of tumor growth. To explore the biological function of BRCAl, several studies have been performed for the identification of cellular localization of BRCA1 gene product. Results obtained from these immunofluorescent/ immunohistochemical studies generated two opposing views, cytoplasmic localization versus nuclear localization. Here, we describe a non-immunological system employing the Eukaryotic Green fluorescent Protein (EGFP) tag for the study of the cellular localization of BRCAl gene product in living cells.

Proteins carrying the green fluorescent protein (GFP) of Aequorea victoria provide a powerful system to analyze protein expression and targeting in living cells. Fusion proteins containing the GFP tag are therefore valuable tools to analyze nuclear trafficking in living cells. Here, we reporte the use of a mutant GFP, namely Eukaryotic Green Fluorescent Protein (EGFP), as a marker for the protein import into mammalian nuclei. We have analyzed the behavior of a protein domain of the BRCA1, that contains five putative nuclear localization signals (NLSs), in vivo using a chimera constructed from this polypeptide and the EGFP. This in vivo studies showed that EGFP was distributed uniformly throughout the cytoplasm and the nucleus. When EGFP was fused to NLSs containing domain of the BRCAl protein, fluorescent was predominantly detected in the nucleus, showing that these potential NLSs consensus sequences may destinate the full-lengh BRCA1 producy into the nucleus of mammalian cell. This study has also shown that EGFP can be used as a potential fluorescent tag for visualization of gene expression and cellular protein localization in living cells.

ÖZET

BRCA1 GEN ÜRÜNÜNÜN
 HÜCRE İÇINDEKİ LOKALİZASYONUNU İNCELENMEK İÇIN
 NON-IMMÜNOLOJiK BİR SİSTEMİN GELİŞTIRILMESİ

tolga çağatay
Yüksek Lisans Tezi, Moleküler Biyoloji ve Genetik Bölümü
Tez Yöneticisi: Yardımcı Doçent. Dr. Işık G. Yuluğ
Ağustos 1997, 92 sayfa

Ailesel meme ve ovaryum kanserinden sorumlu olan $B R C A 1$ geni klonlanmıs ve meme ile ovaryum kanseri olan ailelerde genin ya mutasyona uğradığı yada kaybolduğu gösterilmiştir. $B R C A 1$ geninin, tümör büyümesinde negatif düzenleyici olarak rol alan bir tümör baskılayıcı proteini kodladığı ileri sürülmüştür. BRCA1'ın biyolojik işlevinin incelenmesi için BRCA gen ürününün hücre içi yerinin belirlenmesini amaçlayan bazı çalışmalar yapılmıştır. Bu immünoflöresan/ immünohistokimyasal çalş̧malardan elde edilen sonuçlar gen ürününün sitoplasmada veya hücre çekirdeğinde olduğuna dair iki karşıt görüs ortaya çıkarmıştır. Bizde, canlı hücrede immünolojik olmayan bir sistemde çalı̧̧arak BRCA1 gen ürününün hücre içerisindeki yerini tanımlıyoruz.

Aequerea victoria' nın yeşil flöresan protein (GFP) taşıyan proteinler, protein sentezin ve hedeflenmesinin canlı hücre içinde analizi için güçlü bir sistem sağlarlar. Bu yüzden GFP içeren fuizyon proteinler canlı hücrede çekirdek trafiğini analiz etmede değerli bir araçtrrlar. Bu çalışmada ökaryotik yeşil flöresan protein (EGFP) olarak bilinen bir çeşit mutant GFP' nin, memeli hücre çekirdeğine taşınan bir proteininin işaretlenmesindeki kullanılımı rapor edilmiştir. BRCA1 proteinin beş adet çekirdek lokalizasyon sinyalini (NLSs) içeren parçasının EGFP ile birleştirilmesiyle yapılan kimerik proteinin canlı hücre içerisindeki davranışı incelenmiştir. Yapılan in vivo incelemenin sonucunda, EGFP'nin tek başına sentezlendiğinde sitoplazmaya ve çekirdeğe eşit bir şekilde dağıldığı gözlenmiştir. EGFP'nin BRCA1 proteinin NLSs içeren parçasıyla birleştirildiğinde flöresan sinyal dominant bir biçimde hücrenin çekirdeğinde tespit edilmesi ise bu NLSs sekanslarinin tam uzunliktaki BRCA1 proteinini hücre çekirdeğinde lokalize edebilecegini gösterilmiştir. Ayrıca bu çalışmada

ACKNOWLEDGMENT

It is my pleasure to express my deepest gratitude to my advisor Assist. Prof. Işık G. Yuluğ for her supervision to my graduate study. Without her excellent logic and knowledge none of this work could have been produced.

I wish to express my thanks to Prof. Mehmet Öztürk who made it possible to have an excellent working environment in Turkey and thanks to his help.

My thanks to Dr. Ergün Pınarbaşı and Dr. Aydın Yuluğ for their advice and discussions on my project. Many thanks to Assist. Prof. Marie D. Ricciardone, M. S. Hilal Özdağ and biologist Birsen Cevher for automated sequencing study of the Nls 4 construct.

I appreciate moral support by research assistants of Department of Molecular Biology and Genetics in Bilkent University, especially to Tuba, §afak , Hilal, Cemaliye, Reşat and biologist Lütfiye Mesci for their endurance toward any trouble that I caused in course of close interactions. Thanks to my laboratory partners Kezi, Berna and Emre for their reciprocal warm feelings.

Very special thanks to my university friends and friends from İstanbul who gave me further encouragement and moral during my thesis.

Finally, my ultimate thanks to my family for always giving their unconditioned interest and support.

TABLE OF CONTENTS

SIGNATURE PAGE ii
ABSTRACT iii
ÖZET iv
ACKNOWLEDGMENTS v
TABLE OF CONTENTS vi
LIST OF FIGURES x
LIST OF TABLES xii
ABBREVIATIONS xiii
CHAPTER 1. INTRODUCTION 1
1.1 Hereditary Breast and Ovarian Cancer and BRCA1 (Breast Cancer 1) 1
1.2 Linkage analysis and cloning of $B R C A I$ gene 1
1.3 Genotype-phenotype correlation and mutations in the BRCAI gene 2
1.4 Structural analysis of $B R C A I$ gene 3
1.5 Structural and functional analysis of the BRCA1 protein 6
1.6 Subcellular localization of $B R C A 1$ gene product 10
1.7 Practical approaches to the structural and functional analysis of a protein 12
1.8 AIM AND STRATEGY 14
CHAPTER 2. MATERIALS AND METHODS 16
2.1 MATERIALS 16
2.1.1 Reagents 16
2.1.2 Bacterial strains 16
2.1.3 Enzymes 17
2.1.4 Nucleic acids 17
2.1.5 Oligonucleotides 17
2.1.6 Electrophoresis and photography 18
2.1.7 Tissue culture reagents and cell lines 18
2.2 SOLUTION AND MEDIA 19
2.2.1 General solutions 19
2.2.2 Microbiological media and antibiotics 19
2.2.3 Tissue culture solutions 20
2.3 METHODS 21
2.3.1 General methods 21
2.3.1.1 Transformation of E.coli 21
2.3.1.2 Growth and storage of bacterial strains 22
2.3.1.3 Plasmid DNA preparation 22
2.3.1.4 Extraction and precipitation of DNA 23
2.3.1.5 Quantification and qualification of nucleic acids 24
2.3.1.6 Restriction enzyme digestion of DNA 25
2.3.1.7 Agarose gel electrophoresis 25
2.3.2 Computer analysis of DNA sequences 26
2.3.3 Construction of the pEGFP-N2-BRCAl ${ }_{(83-2436)}$ eukaryotic expression vector 27
2.3.3.1 Eukaryotic Green Fluorescent Protein-N-Terminal protein fusion vector, pEGFP-N2 27
2.3.3.2 pLXSN-BRCA1 vector 29
2.3.3.3 Contruction of vector encoding a 2316 bp fragment of BRCAl fused with the N-nerminal of the EGFP 30
2.3.3.4 Klenow treatment of Nl 31
2.3.4 Automated sequencing 32
2.3.5 Tissue culture techniques 32
2.3.5.1 Cell line 32
2.3.5.2 Growth conditions 34
2.3.5.3 Cryopreservation of cell line 34
2.3.5.4 Transfection of eukaryotic cells using electroporation 35
2.3.5.5 Fluorescent signal detection 36
CHAPTER 3. RESULTS 38
3.1. Computer analysis of the $B R C A I$ sequence 38
3.1.1 Computer analysis of the BRCA1 protein sequence 38
3.1.2 Computer analysis of the pLXSN-BRCA1 construct 39
3.2 Qualification of the pLXSN-BRCA1 and pEGFP-N2 40
3.3 Endonuclease digestion of the pLXSN-BRCA1 and pEGFP-N2 41
3.3.1 Eco47 III and Kpn I double digestion of pEGFP 41
3.3.2 Kpn I and Ehe I double digestion of pLXSN-BRCA1 42
3.4 Construction of the pEGFP-BRCA1 $1_{83-2436}$ eukaryotic expression vector 43
3.4.1 Ligation reaction 43
3.4.2 Selection of positive colonies after transformation 44
3.4.3 Klenow treatment of the Nls4 construct 46
3.4.4 Automated sequencing of KpnI junction of the $\mathrm{BRCAl}_{(83-2436)}$-EGFP fusion sequence 48
3.5 Expression Analysis of the pEGFP-N2 vector and the pEGFP-BRCA1 ${ }_{(83-2436)}$ Construct in Eukaryotic System 51
3.5.1 Transfection of MCF-7 by Electroporation 51
3.5.2 Expression analysis of the pEGFP-N2 vector in living cells 52
3.5.3 Monitoring the expression and the cellular localization of EGFP- $\mathrm{BRCAl}_{(83-2436)}$ fusion protein 54
3.5.4 Effect of EGFP and EGFP-BRCA1 ${ }_{(83-2436)}$ fusion protein overexpression in MCF-7 cell line 58
CHAPTER 5. DISCUSSION 60
REFERENCES 64
APPENDICES
Appendix 1 72
Appendix 2 76
Appendix 3 79
Appendix 4 92

LIST OF FIGURES

Figure. 1 The human BRCA1 cDNA as described by Miki et al (1994) 3
Figure 2. Restriction map and multiple cloning site of pEGFP-N2. 28
Figure 3 Not I / EcoR I double digest profile of pEGFP-N2 and mini-prep plasmid DNA of n1, n2, n3 colonies 40
Figure $4 \quad$ Sac I digestion profile of the original PLXSN-BRCA1 and mini-prep plasmid DNA of the IT3 colony on 0.8% agarose gel 41
Figure 5 Eco47 III and Ehe I double digestion profile of pEGFP-N2 vector on 0.8% agarose gel 42
Figure $6 \quad K p n$ I and Ehe I digestion profile of pLXSN-BRCA1 43
Figure 7 Ethidium bromide intensities of the $\mathrm{BRCAl}_{(83-2436)}$ fragment (insert) and the pEGFP-N2 (vector) dots under ultraviollet illuminator 44
Figure 8 EcoR I digestion profile of the positive colonies 45
Figure 9 Not I / EcoRI double digest profile of mini-prep plasmid DNA isolated from the NIs3, NL4 and the control ligation colony2 45
Figure 10 The recombinant pEGFP-N2 construct, Nls4 (7076 bp) 46
Figure 11 Schematic representation of the Klenow treatment and self ligation steps in the construction of pEGFP-BRCA1 (83-2436) 47
Figure $12 \quad K p n \mathrm{I}$ digestion profile the Klenow treated $\mathrm{Nls}^{\mathrm{Kpn-}}$ colonies on 8\% agarose gel 48
Figure 13 The sequencing result of Kpn I junction 49
Figure 14 Phase-contrast microscopy appearance of MCF-7 cells 51
Figure 15 Unfixed MCF-7 cells transfected with EGFP-N2 53
Figure 16 Unfixed MCF-7 cells transfected with EGFP-BRCA1 $1_{(83-2436)}$ 55
Figure 17 Fixed MCF-7 cells transfected with EGFP-BRCA1 ${ }_{(83-2436)}$ 56
Figure 18. Effect of EGFP and EGFP-BRCA1 ${ }_{(83-2436)}$ expression on the viability of MCF-7 cells 59

LIST OF TABLES

Table 1 Characteristics of MCF-7 cell line 33
Table 2 Results of the PSORT computer analysis for BRCA1 sequence 39
Table $3 \quad$ Percent survival of MCF-7 cells that over express EGFP 58
Table 4 Percent survival of MCF-7 cells that over express the EGFP-BRCAl ${ }_{(83-2436)}$ 58

	ABBREVIATIONS
ATP	adenine triphosphate
bp	base pair
cDNA	complementary DNA
cm	centimeter
dATP	adenosine deoxyribonucleoside triphosphate
dCTP	cytosine deoxyribonucleoside triphosphate
dGTP	guanosine deoxyribonucleoside triphosphate
DMEM	Dulbecco's Modified Eagle Medium
DMSO	dimethylsulphoxide
DNA	deoxyribonucleic acid
DNase	deoxyribonuclease
dNTP	deoxynucleotide triphosphate
dTTP	thymine deoxyribonucleoside triphosphate
EDTA	ethylenediaminetetra-acetic acid
EGFP	eukaryotic green fluorescent protein
FCS	foetal calf serum
FITC	fluorescein isothiocyanate
GFP	green fluorescent protein
xg	gravity
g	gram
h	hour
H33258	the fluorochrome dye H33258
kb	kilobase
kV	kilovolt
LB	Luria-Bertani medium
M	molar
ml	milliliter
min	minute
mRNA	messenger RNA
ms	millisecond
OD600	optical density at 600 nm
rpm	phosphate buffered saline
revolution per minute	
miii	

RNA	ribonucleic acid
RNase	ribonuclease
SDS	sodium dodecyl sulphate
sec	second
TAE	tris/acetic acid/EDTA buffer
Tris	2-amino-2-[hydroxymethyl]- 1,3 propandiol
U	unit
V	volt
v / v	volume for volume
w / v	weight for volume
w / w	weight for weight
$\mu \mathrm{F}$	microfaraday

CHAPTER 1. INTRODUCTION

1.1. Hereditary Breast and Ovarian Cancer and BRCA1 (Breast Cancer 1) Gene

Breast cancer is the most frequent malignancy in women. The total lifetime risk for developing a breast cancer in the general population is estimated to be 10% (Wooster et al., 1995). Breast cancer has been estimated to be one of the most common hereditary malignant diseases. Before the identification of BRCAl (BReast CAncer susceptibility gene 1), pedigrees have been used in breast cancer risk estimations. Familial cancer clinic studies have identified that a woman who has breast cancer case(s) in her first degree relatives (mother, father, aunts, uncles, etc.) has an elevated risk of disease and that the younger the age of diagnosis in her relatives, the higher the risk. The families showed the epidemiological characteristics of familial, versus sporadic breast cancer, younger age at diagnosis, frequent bilateral disease, and frequent occurrence of disease among men. Epidemiological studies have also shown that genetic, hormonal and environmental factors have a role in the etiology of breast cancer (Langston et al. , 1996).

1.2. Linkage analysis and cloning of the BRCA1 gene

Skolnick et al. (1990) identified a region on the long arm of chromosome 17 by linkage analysis; the17q21 region appeared to contain a gene for inherited
susceptibility to breast cancer in families with early-age onset of breast cancer (Hall et al.,1990). Subsequently, several gene-hunting studies were performed to find a candidate gene for familial breast cancer within this region. Finally in 1994, the $B R C A I$ gene that affects the tumorogenesis of breast and ovarian cancer or both, has been identified from a large, genetically defined 17 q 21 region by positional cloning (Miki et al. ,1994, Brown et al. , 1995, Harshman et al., 1995, Tonin et al. , 1995).

1.3. Genotype-phenotype correlation and mutations in the BRCA1 gene

Inherited mutations in the $B R C A 1$ gene in female carriers have been implicated in a predisposition to breast cancer with 87% lifetime risk, and families who have breast/ovarian cancer in their family history have a 44% risk of developing breast cancer. Furthermore female carriers have a 4-fold increased risk of colon cancer, while male carriers face a 3-fold increased risk of developing prostate cancer (Durocher et al. 1996, Futreal et al. 1994).

Cytogenic studies have shown that the most common genetic abnormality in breast cancer (as in most tumors) is loss of heterozygosity (LOH) besides gene amplifications. The frequency of loss of heterozygosity in the $B R C A 1$ region is between $40 \%-80 \%$ among sporadic breast cancer and varies between $30 \%-60 \%$ in sporadic ovarian cancer cases (Rowell et al. ,1994). More than 70 distinct germ-line mutations have already been identified through the screening of the $B R C A I$ gene (Friedman et al. ,1995, Berman et al ., 1996, Eisinger et al. ,1996, Inoue et al. ,1996, Hogervorst et al. ,1995 Struewing et al., 1995). Penetrance of $B R C A 1$ is incomplete
and depends on both age and gender so not all carriers of germ-line mutation will develop a breast cancer.

Alterations in the BRCAI gene can be listed as frame shift mutations, nonsense mutations and splice or regulatory region alterations. These mutations account for approximately 85% of the cumulative $B R C A 1$ mutations, while the remainder are due to missense mutations (Miki et al. ,1994). More than 75% of these mutations result in the truncation of the $B R C A 1$ protein.

1.4. Structural analysis of the BRCAI gene

Miki et al. (1994) elucidated the structure of the BRCAI gene. The BRCAI gene spreads over approximately 100 kb of the long arm of chromosome 17. The genomic structure of the BRCAI gene is composed of 24 exons, 22 of which encode a 7.8 kb mRNA (Figure 1).

Figure 1. The human BRCA1 cDNA as described by Miki et al (1994).

Alternative splicing has been observed both in normal and malignant mammary tissue and placenta, but the significance of this is not known (Xu et al. ,1995). The 7.8 kb mRNA is abundant in the mammary gland and placenta and also in the testis and thymus, but BRCAl expression is not restricted to these tissues; it is also expressed in lymphocytes and hepatocytes although at a very low level

The $B R C A 1$ gene encodes a 7.8 kb mRNA transcript and this transcript encodes a 1863-amino acids protein, so approximately 73.2% of the complete transcript is the coding sequence.

Lu et al. (1996) have reported four splice variants of the BRCAI in nonmalignant and tumor-derived breast cells by sequence analysis of reverse transcribed, PCR-amplified trancripts: the full-length $B R C A 1\left(B \dot{R C A} 1_{\mathrm{L}}, 7.8 \mathrm{~kb}\right)$, the internally deleted sequence leading to a protein lacking amino acids between 264 and 1366 of $B R C A I_{\mathrm{L}}\left(B R C A I_{\mathrm{S}}, 4.4 \mathrm{~kb}\right)$, and two very minor variants lacking exons 9 and 10 , referred to as $B R C A I_{\mathrm{L}}^{-9,10}$ and $B R C A 1_{\mathrm{S}}^{-9,10}$. All variants contain the $\mathrm{N}-$ terminal RING motif, the C-terminal acidic activation domain (Jensen et al., 1996) and BRCA1 C Terminus (BRCT) tandem repeats. Moreover, $\mathrm{BRCAl}_{\mathrm{S}}$ and $\mathrm{BRCAl}_{\mathrm{s}}{ }^{-}$ ${ }^{9,10}$ lack the putative nuclear localization signal (NLS) localized within the exon 11. In other words $\mathrm{BRCAl}_{\mathrm{S}}$ and $\mathrm{BRCA1}_{\mathrm{S}}{ }^{-9,10}$ variants have in-frame deletion of the 3309 nucleotide from exon 11 but retain 118 nucleotides from the 5^{\prime} end of exon 11 . These splice variants are found on polysomes and are predicted to encode $80-85 \mathrm{kDa}$ BRCA1-derived proteins beside the full-length BRCA1 gene product (Lu et al., 1996).

The $B R C A I$ gene appears to be conserved in mammals, however the presence of the BRCAI gene in the genome of other species is one of the open questions should be handled. The mouse Brcal gene, which maps on chromosome 11 and specifically on the 11D region, has 75% identity of coding sequence with human $B R C A 1$ sequence at the nucleotide level and 56% identity at the predicted amino acids sequence.

Multiple BRCAl proteins, approximately 245, 185-220, 160, , 100, 52, and 38 kD in size, have been identified in both human and mouse cell lines by immunohistochemical methods (Chen et al. ,1995, Rao et al. ,1996) and all these proteins are phosphoproteins. It is not known whether they are the isoform of BRCA1 protein or its related proteins. These conflicting results arise from the usage of different immunofluorescent and immunohistochemical methods. -

The wild-type $B R C A I$ allele is often lost in cancers that arise within breast cancer families, presumably leaving the cell without any functional $B R C A I$ protein. It has been shown that when chromosomal loss is defined in breast and ovarian tumors from patients who carry the $B R C A 1$ predisposition alleles, the wild-type copy of the gene is constantly lost while the mutant allele is kept (Munn et al. ,1996, Neuhausen et al. , 1994 and 1996). This is the familiar pattern expected from the loss of function of a tumor suppressor gene. Therefore, the gene product of $B R C A 1$ is thought to be a tumor suppressor gene. The tumor suppressor function of the BRCAI gene product has been demonstrated by inhibition of endogenous $B R C A 1$ expression with antisense

RNA in mouse fibroblast cells that resulted in neoplastic transformation (Rao et al. ,1996), and by expression of wild-type BRCA1 gene in breast cancer cell lines which resulted in growth retardation and tumor inhibition (Holt et al., 1996).

1.5. Structural and functional analysis of the BRCA1 protein

Conceptual translation of the BRCAI cDNA (Genbank accession no: HSU14689) reveals an open reading frame (ORF) beginning at nucleotide 119 and encoding a protein of 1863 amino acids (Appendix 1). According to analysis done with a computer based peptide analysis program(PSORT - protein analysis program, http://psort.nibb.ac.jp), the BRCA1 protein seems to have five nuclear targeting sequences at the positions of amino acids $502,503,504,603$ and 650 with $0.7000 / 1$ certainty and the protein has no obvious membrane spanning regions or N -terminal signal sequence. The $B R C A I$ protein is highly charged; 5% of the total protein sequence is composed of negatively charged amino acid residues, while approximately 11% is positively charged. The excess negative charge is particularly concentrated near the C-terminus (ExPASy-ProtParam : Protein primary structure analysis computer program, http://expasy.hcuge.ch/sprot/protparam.html.).

Studies on the physiological function of the BRCA1 protein and its role in breast and ovarian carcinogenesis have accelerated with the identification of the mouse homologue of breast cancer associated gene, Brcal. Specific and dynamic expression of $B R C A 1$ protein during differentiation and embryogenesis was studied on animal models and an absolute requirement for $B R C A 1$ protein has been
demonstrated. Differentiation and proliferation of mouse mammary epithelial cells is directly correlated with the level of BRCA1 expression(Lane et al.,1995) and it has been reported that inactivation of Brcal gene in the mouse embryo (mutant Brcal ${ }^{-/}$) resulted in either neural tube defects at E9.5 (Gowen et al., 1996) or the failure of differentiation and formation of the egg cylinder (Liu et al, 1996). Interestingly, the one woman homozygous for a germ-line $B R C A I$ mutation who was identify by Boyd lead to an expectation that a BRCAI^{-1-} or BrCal^{-1-} mutant would be viable (Boyd et al., 1995). A new biological function of the $B R C A 1$ protein as an inducer of apoptosis has been speculated in a recent report in which it was shown that lack/decreased level of functional $B R C A 1$ protein results in a decreased response to apoptotic stresses in mouse fibroblast cell lines and human breast cancer cell lines (Shao et al., 1996).

Despite the accumulated data, the function of $B R C A I$ in either normal development or tumorigenesis remains unknown. So far, several searches for functional domains in the $B R C A I$ sequence have come up with the discovery of four different conceptual consensus sequences. These functional motifs are an N -terminal RING-finger (C3HC4 type zing finger) or A-box domain, a C-terminal acidic blob domain (Miki et al., 1994, Futreal et al., 1994), a granin consensus at the central region of the protein (Jensen et al., 1996), and a globular domain within the Cterminal of the protein called BRCT that contains an analogous region of a human p53 binding proteinl (53BP1; Koonin et al., 1996).

Beyond the determination of these sequences by computer sequence homology and alignment programs, Jensen et al. (1996) have shown that the BRCA1 protein is secreted and present in breast milk, and that it shares many biochemical characteristics of the granin-1 family of proteins such as heat stability, acidity and vesicle localization (Jensen, et al, 1996).There are also reports that support the granin feature of the BRCA1 protein as a regulated secretory protein. These reports show that $B R C A 1$ is upregulated during pregnancy (Lane et al., 1995) and its expression is induced by estrogen (Gudas et al. ,1995). However, the recent article by Hakem et al. (1996) has suggested that $B R C A I$ protein may act as a transcriptional regulator. They have shown that homozygous $B R C A I$ mutant-mice embryos $\left(B R C A I^{-1}\right)$ die before 7.5 days of embryogenesis due to the reduced cell proliferation coupled with the decreased expression of cyclin E (one of the key components of the G1/S transition of cell cycle) and mdm-2 (a negative regulator of p53 activity), and they also noticed significantly increased expression of a cyclin-dependent kinase inhibitor, p21 (Hakem et al., 1996).

Another important evidence about the physiological function of BRCA1 protein has recently come from the study of Wu et al. (1996) They identified a novel protein that interacts with BRCA1 under both in vitro and in vivo conditions. Yeast and mammalian two hybrid system, and immunoprecipitation analysis have shown that this BRCA1-associated RING domain (BARD1) protein specifically forms a stable heterodimer complex through binding with the BRCA1 1-184 amino acid residues where the cystein-rich RING motif is found. Further molecular and biological analysis of BARD1 protein has shown that BARD1 is transcribed from chromosome 2 and
two major BRAD1 transcripts have been observed in several breast and ovarian cancer cell lines (e.g., ZR-75, T-47D, BT-483). BARD1 protein contains an N terminal RING motif, three tandem ankyrin repeats and a C-terminal sequence with significant homology to the BRCT domains of the C-terminus of BRCA1. More interestingly. it has also been shown that the C61G and C64G missense mutations of $B R C A 1$, which are directly related to breast cancer susceptibility, prevent the formation of the BRCA1/BARD1 complex (Wu et al., 1996).

The C-terminal region of BRCA1 has a highly conserved stretch in both mouse and human BRCAI sequences (Abel et al., 1995). Different germ-line mutations (Ala- $1708 \rightarrow$ Glu, Gln- 1765 C+, Met- $1775 \rightarrow$ Arg and Try- $1858 \rightarrow$ stop) have been reported in patients with breast or ovarian cancer (Futreal et al., 1994, Langston et al., 1996, Gayther et al., 1995 and Serova et al., 1996). Monteiro et al. have investigated whether the C-terminal region of BRCA1 is able to activate transcription by using both mammalian and yeast two- hybrid systems and they have reported that the C-terminal acidic region spreading the exons16-24 (aa 1560-1863) is able to activate transcription, and the region comprising exons 21-24 (aa 17601863) is the smallest region required for sufficient transactivation function of BRCA1 (Monteiro et al., 1996).

Studies for the identification of the biochemical and biological functions of BRCA1, which is a large gene with probably many functional domains, have found entirely different properties of the gene. Two recent striking data come from Scully et al. (1997). In their first study they reported that Brcal binds to human Rad51
(homologous of bacterial RecA), a protein that is involved in the integrity of the genome. The human Rad1 had an ability promote ATP-dependent homologous pairing and strand-transfer iv vitro, but precise function(s) of the mammalian Radl protein is not clear yet. BRCA1 immunostaining displayed distinct nuclear foci during the S phase of the cell cycle, like the human Rad51 protein. These two proteins were colocalized in vivo on the synaptonemal complexes (junction between meiotic chromosomes, necessary for homologous recombination) in meiotic cells, and were found on asynapsed (axial) elements of human synaptonemal complexes. A coimmunoprecipitation study revealed that BRCA1 residues 758-1064 are required for formation of Rad51-containing complexes in vitro (Scully et al., 1997).

The second study by Scully et al. (1997) proposed that the BRCA1 protein product is a transcriptional factor which processes RNA polymerase II holoenzyme (pol II)-bound protein, and it has also been shown that the C -terminal 11 amino acid residues of BRCA1 which have an identified role in trans-activation function (Monteiro et al., 1996 and Chapman et al., 1996) are important for holoenzyme binding,

1.6. Subcellular localization of the BRCA1 gene product

One of the hot topics in $B R C A I$ studies is the identification of the $B R C A I$ protein function. As cellular localization can provide clues about protein function, subcellular localization of the BRCA1 protein is studied intensively. Two conflicting points of view about BRCA1 subcellular localization have been generated by Chen et
al. (1996) and Jensen et al. (1996) so far. Results obtained by Chen et al. have indicated that while BRCA1 protein in normal cells is destined to the nucleus in breast and ovarian tumor cell lines the $B R C A 1$ protein is aberrantly localized to the cytoplasm (Chen et al., 1995, Chen et al., 1996). Subsequently, Scully et al. (1996) suggested that nuclear distribution of the BRCA1 is a general characteristic of the cell, regardless of whether it is normal or not (Scully et al., 1996). Their work seems to agree that BRCAl is a 220 kD protein localized in the nuclei of breast epithelial cells.

Jensen et al. (1996) have recently described results that contravenes substantially those of Chen et al. (1996) and Scully et al. (1996). They defined BRCA1 as a 190 kD granin-1 type protein which is localized to membrane vesicles regardless of the cell type (Jensen et al. , 1996).

More recently, in an attempt to characterize the subcellular localization of BRCAl in more detail, Wilson et al. (1997) have studied the subcellular localization of both full-length BRCA1 (5.7 kb) and an exogenous BRCA1 spliced variant, namely BRCA1- $\Delta 11 \mathrm{l}$ (previously described as $\mathrm{BRCA1}_{\mathbf{S}}$ by Lu et al., 1996). Their results have shown that full-length BRCA1 protein product was a nuclear protein, whereas BRCA1- $\Delta 11 \mathrm{lb}$ was localized to the cytoplasm. They also reported that unlike the fulllength protein, over expression of the protein encoded by splice variant did not appear to be toxic to the cell. Another interesting result of Wilson et al. is that the expression of BRCA1- $\Delta 11 \mathrm{~b}$ was reduced or completely absent in several breast and ovarian tumor cell lines (Wilson et al., 1997).

All these subcellular localization analyses were carried out by using commercially available variety of antibodies raised against the C-terminal, N-terminal and exon 11 of BRCAI proteins. Chen et al. (1996), Scully et al. (1996), Jensen et al. (1996) and Wilson et al. (1997) have used the same antibodies such as C-20, N25, D-20, I-20 but surprisingly their results were different. Since they employed either immunoflourescent or immunohistochemical methods in their analysis, the cross-reactivity capacity of the antibodies, the genotype and the phenotype of the host cell line, and features of the specimen fixation might have resulted in artifacts that give rise to a false-positive results. Likewise, C-20 antibody has the problem of crossreactivity since it recognizes both human epidermal growth factor receptor (EGFR) and HER2 as well as the BRCA1 protein (Wilson et al., 1996). Therefore the specificity problem of antibodies is the most important disadvantage of immunoscreening techniques in the clinical and molecular analysis* of the BRCA1 protein.

1.7. Practical approaches to the structural and functional analysis of a protein

Several methods are available to monitor gene activity and protein distribution within cells. These include the formation of fusion proteins with coding sequences for a reporter gene such as, firefly or bacterial luciferase, and β-galactosidase(Old et al, 1994 , Brown , 1993). Because such methods require exogenously added substrates or cofactors, they are of limited use with living tissue. Another application called the epitope tagging of protein is the combination of fusion protein and
immunofluoresence or immunohistochemical methods. Tagging of a known sequence of 8-12 amino acids, called an epitope, (for example; flag myc) in frame with the sequence of protein of interest overcomes the need for antibodies specific for each studied protein. Tagged wild-type or mutant form of the sequence of interest can be introduced into the cultured cell to allow identification of in vivo localization and functional analysis of a whole protein or specific domains (Pierre, 1996).

Nowadays the most commonly used technology is to tag the protein of interest with green fluorescent protein (GFP) which is the bioluminescent protein of jellyfish Aequorea victoria. GFP can either be used in immunofluorescence (or -histochemical methods) as an epitope or can be directly visualized with the fluorescence microscope (Peters et al, 1995, Amsterdam et al, 1995, Webb C. D. , 1995, Olson et al, 1995, Ogawa et al, 1995, Wang et al, 1994). Wild-type GFP is a protein of 238 amino acids having a chromophore structure that absorbs blue light (395-470 nm) and emits green light (509 nm). Chromophore formation is not species-specific and occurs either through the use of ubiquitous cellular components or by autocatalysis (Chalfie et al. ,1994). GFP has several ideal characteristics over the other tag proteins as it requires neither an additional gene from Aequorea victoria nor exogenous additional substrate and cofactor. GFP persists after formaldehyde treatment in specimen fixation required analysis, and the most important characteristic is that GFP combined with the protein of interest preserves both the fluorescence of GFP and all the targeting and function of the protein of interest (Chalfie et al, 1994, Cubitt et al, 1995 and Olson et al,

1.8 AIM AND STRATEGY

This project aims to establish a non immunological model system that permits kinetic studies of subcellular localization of BRCA1 protein in a living eukaryotic system. In order to set up such a system, we used a novel genetic reporter system that employs the green fluorescence protein under the fluorescence microscope. When expressed in prokaryotic or eukaryotic cells and illuminated by blue light, GFP yields a bright green fluorescence. Additionally, detection of GFP can be performed with living tissues instead of fixed sample. The use of GFP in these capacities provides a "fluorescent tag" on the protein, which allows for in vivo localization of protein.

In the course of this project 2316 bp coding sequence of the putative tumor suppressor $B R C A 1$ gene was cloned into pEGFP-N2, Eukaryotic Green Fluorescence Protein - N terminal fusion protein vector The $B R C A I$ fragment codes for amino acids of 1 to 772 of the full-length BRCA1 protein. This region harbors the 5 nuclear localization signal (NLSs) patterns localized in N-terminal region at position of amino acids $502,503,504,609$ and 650 , and the RING finger domain at position of amino acids between 25 to 64 . The chimera constructed from this peptide and EGFP was tranfected into MCF-7 breast cancer cells to observe where the 2316 bp fragment destinate the BRCAl protein. The strategy was as follows:

- the nucleotide and the conceptual amino acid sequence of BRCA1 was analyzed with computer programs to determine the protein localization sites on BRCA1
- the sequence that contains the NLSs $\left(\operatorname{BRCAl}_{(83-2436)}\right)$ was isolated from the fulllength BRCAl construct (pLXSN-BRCA1) by restriction endonuclease digestions;
- the isolated DNA fragment was cloned into pEGFP-N2 eukaryotic expression vector to create a fusion protein containing the fluorescent GFP at the C -terminus of the BRCA1 protein which was a valuable tool to analyze subcellular trafficking in living cells;
- pEGFP-N2 vector and the new construct, pEGFP-BRCA1 ${ }_{(83-2436)}$, were transfected into MCF-7 cell line by electroporation;
- subcellular localization of the $\mathrm{BRCAl}_{(83-2436)}$-GFP fusion protein was monitored with fluorescent microscopy.

CHAPTER 2. MATERIALS AND METHODS

2.1 MATERIALS

2.1.1 Reagents

All laboratory chemicals were analytical grade from Sigma Biosciences Chemical Company Ltd. (St. Louis, MO, U.S.A) with the following exceptions: Trisbase was from Stratagene (La Jolla, CA, U.S.A). Ethanol was from Delta Kim Sanayi ve Ticaret A.S (Turkey). Midi-prep kit and Qiaex kit (for recovery and extraction of DNA from agarose gel) were from Qiagen (Chatsworth, CA, U.S.A). Tryptone and yeast extract was obtained from Gibco, BRL Life Technology Inc. (Gaithersburgs, MD, U.S.A). Agar, ampicillin were from Sigma. Kanamycin was from AppligeneOncor (Illkirch, France).

2.1.2 Bacterial strain

The bacterial strain used in this work was:
E. coli, DH5 $:$ F-, (f80dÊ(lacZ)M15), recA1, endA1, gyrA96, thi1, hsdR17, (r-km-k), supE44,relAl, deoR, $\hat{\mathrm{E}}($ lacZYA-ar gF)U169

2.1.3 Enzymes

Restriction endonucleases, Klenow fragment of E. Coli DNA polymerase I and T4 DNA Ligase were purchased from MBI FERMENTAS Inc. (NY, U.S.A). The Kpn I endonuclease that was obtained from Stratagene GmbH (Heidelberg, Germany). DNase free RNase was from Promega (Madison, WI, U.S.A)

2.1.4 Nucleic acids

DNA molecular weight standard was supplied by Gibco BRL. Ultrapure deoxyribonucleotides were from Boehringer Mannheim GmbH (Mannheim, Germany). Eukaryotic cloning and expression vector pEGFP-N2 (C-terminal protein fusion vector) was purchased from CLONTECH Laboratories, Inc. (CA,U.S.A). Retroviral expression vector containing the $B R C A 1$ cDNA (nucleotides 85-5711), pLXSN-BRCAl was a gift from Dr. Tim Crook (Institute of Cancer Research Haddow Lab., Surrey, England).

2.1.5 Oligonucleotides

The sequencing-primer used for cycle sequencing reactions was synthesized in the Beckman Oligo 1000M DNA synthesizer (Beckman Instruments Inc. CA. U.S.A) at the Bilkent University, Faculty of Science, Department of Molecular Biology and Genetics, (Ankara, Turkey).

2.1.6 Electrophoresis and Photography

Electrophoresis grade agarose was supplied from Sigma Biosciences Chemical Company Ltd. (St. Louis, MO, U.S.A). Horizontal electrophoresis apparatuses were from Stratagene (Heidelberg, Germany) and E-C Apparatus Corporation (Florida, U.S.A). The power supply Power-PAC300 was from Bio Rad Laboratories (CA, U.S.A). Imagemaker used in agarose gel profile visualizing was from Herolab except for the video graphic printer/UP-890CE and UPP-110 paper which were obtained from Sony Corporation (Japan).

2.1.7 Tissue culture reagents and cell lines

Dulbecco's modified Eagle's medium (DMEM), fetal calf serum was obtained from Sigma Biosciences Chemical Company Ltd. (St. Louis, MO, U.S.A). Lglutamine, gentamycin, calcium and magnesium-free phosphate buffered saline (PBS) were obtained from Gibco BRL. Penicillin / Streptomycin mixture was from Biological Industries (Haemel, Israel). Tissue culture flasks, petri dishes, 15 ml polycarbonate centrifuge tubes with lids and cryotubes were purchased from Costar Corp. (Cambridge, England).

MCF-7 (ATTC no: HTB-22), human breast epithelial pleural effusion cell line was provided by Prof. Mehmet Öztürk.

2.2 SOLUTIONS AND MEDIA

2.2.1 General solutions

1X Tris-acetic acid-EDTA (TAE): 40 mM Tris-acetate, 1 mM EDTA
\(\left.\begin{array}{ll}Ethidium bromide: \& 10 \mathrm{mg} / \mathrm{ml} in water (stock solution),

30 \mathrm{ng} / \mathrm{ml} (working solution)\end{array}\right\}\)| 1x Gel loading buffer: |
| :--- |
| |

Solutions for plasmid DNA isolation :

Solution I

Solution II
Solution III
3 M Potassium acetate, pH 4.8

2.2.2 Microbiological media and antibiotics

Luria-Bertani medium (LB)	Per liter: 10 g bacto-tryptone, 5 g bacto-
	yeast extract, 10 g NaCl. For LB agar plates,
	add $15 \mathrm{~g} / \mathrm{L}$ bacto agar.
Glycerol stock solution	65% glycerol, $0.1 \mathrm{M} \mathrm{MgSO}_{4}, 0.025 \mathrm{M}$
	Tris.Cl, pH 8.0

Ampicillin	$100 \mathrm{mg} / \mathrm{ml}$ solution in double-distilled water,,
	sterilized by filtration and stored at $-20^{\circ} \mathrm{C}$
(stock solution).	
	$100 \mu \mathrm{~g} / \mathrm{ml}$ (working solution)
Kanamycin	$300 \mathrm{mg} / \mathrm{ml}$ solution in double-distilled water,
	sterilized by filtration and stored at $-20^{\circ} \mathrm{C}$
	(stock solution). $30 \mu \mathrm{~g} / \mathrm{ml}$ (working solution)

2.2.3 Tissue culture solutions:

H33258 fluorochromo dye

4\% paraformaldehyde
DMEM
$1 \mathrm{mg} / \mathrm{ml}$ solution in double-distilled water and stored at $-20^{\circ} \mathrm{C} .300 \mu \mathrm{~g} / \mathrm{ml}$ (working solution). $0.04 \mathrm{~g} / \mathrm{ml}$ solution in PBS. Stored at $4^{\circ} \mathrm{C}$ For 500 ml DMEM: 2 mM .Fetal calf serum, $100 \mathrm{U} / \mathrm{ml}$ Penicillin, $50 \mathrm{mg} / \mathrm{ml}$ Streptomycinand and 1 mML -Glutmanine.

Stored at $-4^{\circ} \mathrm{C}$.

2.3 METHODS

2.3.1 General methods

2.3.1.1 Transformation of E.coli

Transformation of plasmid DNA into E.coli was achieved by using calcium chloride method. The following procedure is based on Ausubel et al. (1991).

Preparation of competent cell

$500 \mu \mathrm{l}$ of $\mathrm{DH} 5 \alpha$ glycerol stock solution was inoculated into 5 ml of LB medium containing selective agent and cells were grown at $37^{\circ} \mathrm{C}$, shaking at 200 rpm to an optical density at $590 \mathrm{~nm}\left(\mathrm{OD}_{590}\right)$ of 0.4 (approximately for 3 h). 1.5 ml of growing cells were centrifuged at $13,000 \mathrm{rpm}$ for 1 min at $4^{\circ} \mathrm{C}$ and gently resuspended in 500μ ice-cold 50 mM CaCl . After preparation, competent cells were used within 24 h or stored at $-80^{\circ} \mathrm{C}$ for future use.

Transformation

Competent cells were suspended with $500 \mu \mathrm{l}$ ice-cold $50 \mathrm{mM} \mathrm{CaCl}_{2}$ and centrifuged at $13,000 \mathrm{rpm}$ for 1 min at $4^{\circ} \mathrm{C}$. The pellet was resuspended gently in 100 $\mu \mathrm{l}$ of ice-cold $50 \mathrm{mM} \mathrm{CaCl}_{2} .1 \mu \mathrm{l}$ plasmid ($\mathrm{lng} / \mu \mathrm{l}$) was mixed with the competent cells and incubated on ice for 30 min . The competent cells were heat shocked at $42^{\circ} \mathrm{C}$ for 90 seconds and the cells were then incubated on ice for 2 min .1 ml of LB medium was added onto competent cells and incubated at $37^{\circ} \mathrm{C}, 200 \mathrm{rpm}$ for 1 h to allow the expression of antibiotic resistance gene before plating. After the incubation, $200 \mu \mathrm{l}$ of transformation mixture was plated onto LB agar plates containing 100 $\mu \mathrm{g} / \mathrm{ml}$ ampicillin or $30 \mu \mathrm{~g} / \mathrm{ml}$ kanamycin to provide a selection for positive colonies
carrying the newly introduced antibiotic resistance gene via transformed plasmid and incubated at $37^{\circ} \mathrm{C}$ overnight for the selection of antibiotic resistant tranformants.

2.3.1.2 Growth and storage of bacterial strains

A single bacterial colony picked from either an agar plate or a loopfull of bacterial glycerol stock was inoculated into 5 ml LB broth in 15 ml screw capped tubes. The tubes were incubated at 200 rpm at $37^{\circ} \mathrm{C}$ overnight in a rotator-incubator.

Bacterial strains were stored at $-70^{\circ} \mathrm{C}$ in LB medium containing 50% bacterial glycerol stock solution for long term storage. Recombinant clones were stored under the same condition in media containing the appropriate antibiotic. Strains were maintained as isolated colonies on LB agar plates at $4^{\circ} \mathrm{C}$ for short term storage.

Bacterial strain used in this study is defined in section 2.1.2.

2.3.1.3 Plasmid DNA preparation

Small scale isolation of plasmid DNA (mini-prep)

This protocol is based on the alkaline lysis method of Birnboim and Doly
(1979).

The transformant bacteria strain containing the plasmid of interest was grown in 5 ml LB medium containing $100 \mu \mathrm{~g} / \mathrm{ml}$ ampicillin at $37^{\circ} \mathrm{C}$, while shaking at 200 rpm overnight. 1.5 ml culture was pelleted in 1.5 ml microfuge at $13,000 \mathrm{rpm}$ for 2 \min. After removal of supernatant, the cell were resuspended in $100 \mu \mathrm{l}$ ice-cold Solution I and stored at room temperature for 5 min . Freshly prepared $200 \mu \mathrm{l}$ of Solution II was added and mixed in by inverting the tube very gently and then placed on ice for 5 min . Bacterial chromosomal DNA and cell debris were precipitated by
the addition of $150 \mu \mathrm{l}$ of Solution III. The mixture was then stored on ice for 5 min and centrifuged for 5 min at $13,000 \mathrm{rpm}, 4^{\circ} \mathrm{C}$ to pellet the host DNA and proteins. Supernatant was transferred into a new eppendorf tube, mixed with 800μ ice-cold absolute ethanol and the mixture was incubated at $-20^{\circ} \mathrm{C}$ for an hour. The plasmid was recovered by centrifugation at $13,000 \mathrm{rpm}$ for 15 min at room temperature. The pellet was washed with $300 \mu \mathrm{l} 70 \%$ ethanol and centrifuged for 15 minutes at 13,000 rpm, at room temperature. Ethanol was aspirated and the pellet was dried under vacuum. The pellet was resuspended in $20-30 \mu$ sterile distilled $\mathrm{H}_{2} \mathrm{O}$ containing 10 $\mu \mathrm{g} / \mathrm{ml}$ RNase A and incubated at $37^{\circ} \mathrm{C}$ for an hour. The sample was stored at $4^{\circ} \mathrm{C}$ for short-term or at $-20^{\circ} \mathrm{C}$ for long-term. This procedure yields approximately $1-1.5 \mu \mathrm{~g}$ of DNA.

Purification of plasmid DNA using the Qiagen Kit

The Qiagen 100 kit was used for large scale isolation of pure plasmid DNA. The method is based on the "midi-prep" instructions supplied with the QIAGEN Plasmid Midi Kit (Cat. No. 12145) by Qiagen (Germany).

This procedure yields approximately $60-150 \mu \mathrm{~g}$ of plasmid DNA for 100 ml initial LB culture.

2.3.1.4 Extraction and precipitation of DNA

Extraction and precipitation of DNA from aqueous solution were achieved by using phenol extraction and ethanol precipitation methods.

Phenol extraction

The DNA solution was mixed with an equal volume of $25: 24: 1$ phenol/chloroform/isoamylalcohol and vortexed vigorously. The aqueous and organic phases were separated by centrifugation at $13,000 \mathrm{rpm}$ for 2 Min. The top (aqueous) phase was transferred to a new tube. In order to improve the recovery of DNA (especially in cases where DNA concentration is $<1 \mu \mathrm{~g}$), the organic phase was reextracted with 100μ l double-distilled $\mathrm{H}_{2} \mathrm{O}$ and the second extract was pooled with the first extract.

Ethanol precipitation

DNA solution or the aqueous phase collected from phenol extraction was mixed with $1 / 10$ volume of 3 M sodium acetate, pH 5.2 and mixed by vortexing briefly. After the addition of 2 volume of ice-cold absolute ethanol, the sample was left at $-20^{\circ} \mathrm{C}$ for an hour. The pellet was recovered by centrifugation at $13,000 \mathrm{rpm}$ for 20 min and washed by 1 ml of 70% ethanol. The pellet was air-dried and resuspended in 30-50 $\mu \mathrm{l}$ sterile distilled water.

2.3.1.5 Quantification and Qualification of Nucleic Acids

Concentrations and purity of the double stranded nucleic acids (plasmid DNAs, restriction endonuclease fragments and constructs) and oligonucleotides were determined by using the Beckman Instruments Du Series 600 Spectrophotometer software programs (ds DNA and Oligo DNA Short methods) on the Beckman Spectrophotometer Du 640 (Beckman Instruments Inc. CA. U.S.A).

When the new plasmid was available, 500 ng of the plasmid DNA was transformed into E.coli $\mathrm{DH} 5 \alpha$ strain to obtain permanent stock. First, transformants
were selected according to their characteristic antibiotic resistance (kanamycin resistance for pEGFP-N2 and ampicillin resistance for pLXSN -BRCA1). In order to confirm the presence of the transformed plasmid in the positive colonies, mini-prep plasmid DNA isolation was performed. After the digestion with proper restriction endonuclease(s), their restriction endonuclease maps were compared to known profile of the original plasmid stock.

2.3.1.6 Restriction enzyme digestion of DNA

Restriction enzyme digestions were routinely performed in 10-70 $\mu 1$ reaction volumes and typically 2-10 $\mu \mathrm{g}$ DNA were used. Reactions were carried out with the appropriate reaction buffer and conditions according to manufacturer's recommendations.

Digestion of DNA with two different restriction was performed in the same reaction buffer to provide the optimal condition for both restriction enzymes.

If no single reaction buffer could be found to satisfy the buffer requirements of both enzymes, the reactions were achieved sequentially. First, DNA was digested with one of the enzymes completely and then the digested DNA was recovered by ethanol precipitation (section 2.3.1.4) followed by digestion with the second enzyme.

2.3.1.7 Agarose gel electrophoresis of DNA

DNA fragments were fractionated by horizontal electrophoresis by using standard buffers and solutions. DNA fragments less than 1 kb were generally separated on 1.0% agarose gel, those greater than 1 kb (up to 11 kb) were separated on 0.8% agarose gels.

Agarose gels were completely dissolved in 1x TAE electrophoresis buffer to required percentage in microwave and ethidium bromide was added to final concentration of $30 \mu \mathrm{~g} / \mathrm{ml}$. The DNA samples were mixed with one volume loading buffer and loaded onto gels. The gel was run in 1x TAE at different voltage and time depending on the size of the fragments at room temperature.

Nucleic acids were visualized under ultraviolet light (long wave, 340 nm) and Standard DNA size marker, 1 kb DNA ladder, was used to estimate the fragment sizes. Fragment sizes of the 1 kb DNA ladder were as follows:
$12.2,11.2,10.2,9.2,8.1,7.1,6.1,5.1,4.1,3.1,2.0,1.6,1.0,0.5,0.4,0.3$ and 0.2 kb

Extraction of DNA fragments from agarose gel

DNA fragments were extracted from agarose gels by using the QIAEX II (150) gel extraction kit according to the manufacturer's instructions.

Gel purification with the QIAEX II kit yields 60-70 \% recovery of DNA fragments between 1.0 kb to 6.0 kb in $10-20 \mu \mathrm{l}$ volume.

2.3.2 Computer analysis of DNA sequences

Restriction endonuclease maps of the plasmid DNAs and the BRCAI cDNA were analyzed by using The WebCutter program (designed by Max Heiman, 1995, maxwell@minerva.cis.yale.edu) available for free and public use at http://www.medkem.gu.se/cutter and http://firstmarket.com/firstmarket/cutter.

Oligonucleotide for sequencing was designed by using the primer programs "Primer Designer- Version 2.0 (Scientific and educational software, 1990-91)" and
"Amplify for analyzing PCR experiment (Bill Engels, 1992, University of Wisconsin, Genetics, Madison,U.S.A,WREngels@mace.wisc.edu)".

The annealing temperature for a sequencing primer was calculated using the Tm determination program provided by The Alces WWW Server, Virtual Genome Center (VCG) at http://alces.med.umn.edu/rawtm.html (stew@lenti.med.umn.edu). Protein sorting signal analysis of the BRCAl protein was done by using the PSORT, Server for Analyzing and Predicting Protein Sorting Signals Coded in Amino Acid Sequence, version 6.3 (WWW) program (http://psort.nibb.ac.jp) Kenta Nakai, Osaka University (nakai@nibb.ac.jp).

2.3.3. Construction of the pEGFP-N2-BRCA1(83 - 2436) eukaryotic expression vector

2.3.3.1 Eukaryotic Green Fluorescence Protein-N-Terminal protein fusion vector, $\mathbf{p E G F P}$-N2

pEGFP-N2 (ClonTech) vector encodes a variant of the Aequorea victotia green fluorescent protein (GFP) that has been optimized for brighter fluorescence and high expression in mammalian cells. pEGFP-N2 allows genes cloned into the multiple cloning site (MCS) upstream of the EGFP coding sequences to be expressed as fusions to the N -terminus of EGFP. The unmodified vector will express EGFP in mammalian cells. The Genebank sequence of the pEGFP-N2 vector was given in Appendix 2.
pEGFP-N2 vector was used for cloning of the 2353 base pairs (bp) long fragment of the BRCAI gene. The vector DNA was double digested with the Eco47

III and Kpn I restriction enzymes. Map ad the multiple cloning site of the vector was given in figure 2.

Figure 2. Restriction map and multiple cloning site of pEGFP-N2. (Unique restriction sites are in color or bold.) The Not I site follows the EGFP stop codon. The Nhe I site cannot be used for fusions since it contains an in-frame stop codon. The $X b a$ I site $\left({ }^{*}\right)$ is methylated in the DNA provided by CLONTECH. If you wish to digest the vector with this enzyme, you will need to transform the vector into a dam^{-} host and make fresh DNA.

Double digestion of pEGFP-N2 vector was performed in two sequential reactions. The following reagents were added into an eppendorf tube in order for the first digestion reaction:

```
5.52\mul pEGFP-N2 (10 \mu\textrm{g})
    2\mul 10x Green Buffer (MBI)
    2 \mul 10 mg/ml BSA (0.1 \mu\textrm{g}/\mul}\mathrm{ final concentration)
    1 \mul Eco47 III (10U/\mul)
0.48 \mul of sterile distilled water
```

The reaction was incubated at $37^{\circ} \mathrm{C}$ for 4 h . The digestion mixture was run on a $0.8 \% \mathrm{gel}$ and the 6188 bp Eco47 III fragment was isolated from agarose gel and used for the second digestion reaction:
$20 \mu \mathrm{l} 4737 \mathrm{bp}$ linearized pEGFP-N2
$3 \mu \mathrm{l} 10 \mathrm{x}$ Optimal buffer \#1 (Stratagene)
$1 \mu \mathrm{Kpn}$ I (25 U)
$5 \mu \mathrm{l}$ sterile distilled water

The digestion mixture was run on a 0.8% gel and 4684 bp Kpn I fragment was isolated from agarose gel and recovered in $10 \mu \mathrm{l} \mathrm{dH}_{2} \mathrm{O}$ by using the QIAEX gel extraction kit.

2.3.3.2 $\mathbf{p L X S N}$-BRCA1 vector

The 2353 bp fragment of $B R C A 1$, namely $\operatorname{BRCAl}_{(83-2436)}$, that includes the 83-2436 nucleotides of BRCA1 and the ATG start codon at position 120 nucleotide was prepared by digesting the retroviral expression vector, pLXSN-BRCA1 (Holt et al., 1996) containing the full length of BRCA1 with Ehe I and Kpn I restriction endonucleases. The double digestion profile of the pLXSN-BRCA1 was visualized on 0.8% agarose and the 2389 bp fragment (BRCA183-2436) was purified from agarose gel by using the QIAEX gel extraction kit.

Double digestion of $\mathrm{pLXSN}-\mathrm{BRCAl}$ was performed in single reaction mixture within the common buffer Y (MBI). The following reagents were added into an eppendorf tube in order for Ehe I and $K p n I$ digestion reaction of pLXSN-BRCA1;
$5 \mu \mathrm{pLXSN}-\mathrm{BRCA1}(10 \mu \mathrm{~g})$
$2 \mu \mathrm{l} 10 \mathrm{x}$ Yellow Buffer (MBI)
$0.2 \mu \mathrm{l} 10 \mathrm{mg} / \mathrm{ml} \mathrm{BSA}$ ($0.1 \mathrm{mg} / \mathrm{ml}$ final concentration)
$2 \mu \mathrm{l}$ Ehe I (10 U)
$1 \mu \mathrm{Kpn}$ I (25 U)
9.5μ sterile distilled water
The mixture was incubated at $37^{\circ} \mathrm{C}$ for 4 h

The digested DNA was run on a 0.8% agarose gel and the 2389 bp pLXSN-
BRCA1 fragment (BRCA1 ${ }_{(83-2436)}$) was isolated from agarose gel and eluted in $10 \mu \mathrm{l}$ sterile distilled water.

2.3.3.3 Construction of vector encoding a 2316 bp fragment of BRCA1 fused with the \mathbf{N}-terminal of the EGFP

The molar ratio of $1: 3$ (vector:insert) was used to clone the 2389 bp
$\operatorname{BRCAl}_{(83-2436)}$ into $4684 \mathrm{bp} \mathrm{pEGFP}-\mathrm{N} 2$. The reaction conditions were as follows:
$2 \mu \mathrm{l}$ pEGFP-N2 4684 bp fragment
5μ BRCA1 2389 bp fragment
$1 \mu \mathrm{l} 10 \mathrm{x}$ Ligation buffer
$2 \mu \mathrm{I} 4$ DNA ligase (2 Weiss units $/ \mathrm{ml}$)

The digested vector itself was used as a control for the ligation reaction. The ligation reaction for the control was as follows:
$2 \mu \mathrm{l}$ pEGFP-N2 (vector, 270 ng)
5μ sterile distilled water
$1 \mu \mathrm{l} 10 \mathrm{x}$ Ligation buffer
$2 \mu \mathrm{~T} 4$ DNA ligase (2 Weiss units/ml)

Both reactions were incubated at room temperature for 4 h and transformed into E.coli $\mathrm{DH} 5 \alpha$ strain as described in the section 2.3.1.2. The recombinant colonies were picked and analyzed. Large scale plasmid DNA preparation was performed to of the positive recombinants (named Nls) as described in the section 2.3.1.3.

2.3.3.4 Klenow treatment of Nls

Isolated Nls DNAs were digested with Kpn I and ethanol precipitated. The precipitated DNA was treated with Klenow fragment to remove the 4 bases of 3'protruding ends which were created by Kpn I digestion. The following reagents were added in order:
$15.5 \mu \mathrm{Kpn}$ I digested Nls ($12 \mu \mathrm{~g}$)
$1 \mu \mathrm{l} 10 \mathrm{mM}$ dTTP
$1 \mu \mathrm{l} 10 \mathrm{mM} \mathrm{dATP}$
$1 \mu \mathrm{l} 10 \mathrm{mM} \mathrm{dCTP}$
$1 \mu \mathrm{l} 10 \mathrm{mM} \mathrm{dGTP}$
$2.3 \mu \mathrm{l} 10 \mathrm{x}$ Klenow incubation buffer
$0.5 \mu \mathrm{l}$ Klenow fragment ($10 \mathrm{U} / \mathrm{ml}$)
$0.7 \mu \mathrm{l}$ sterile distilled water
After 30 min of incubation at $37^{\circ} \mathrm{C}$, Klenow enzyme was heat inactivated at $75^{\circ} \mathrm{C}$ for 10 min . The DNA sample was run on 0.8% agarose gel and extracted from the gel by using the QIAEX gel extraction kit.

Klenow treated and purified DNA was self ligated to create the pEGFP-
BRCAl $_{(83-2436)}$ construct. The following reagents were added to the ligation reaction:
16μ Klenow treated NIs DNA
$2 \mu \mathrm{l} 10 \mathrm{x}$ Ligation buffer
$2 \mu \mathrm{I}$ T4 DNA ligase (2 Weiss units $/ \mathrm{ml}$)

Reaction was incubated at room temperature for 4 h and transformed into DH5 α as described in the section 2.3.1.2. The positive transformants that carry the pEGFP-BRCA1 ${ }_{(83-2436)}$ construct were subjected to large scale plasmid DNA isolation as described in the section 2.3.1.3.

2.3.4 Automated DNA sequencing

Sequencing of the 3^{\prime}-ligation junction of the pEGFP-BRCA1 ${ }_{(83-2436)}$ construct was performed at Bilkent University, Department of Molecular Biology and Genetics, (Ankara, Turkey).

Midi-prep DNA of pEGFP-BRCA1(83-2436) was linearized with Not I digestion and sequenced by using the ABI PRISM Dye Terminator Cycle Sequencing Ready Reaction kit (Perkin Elmer, U.S.A) on the ABI PRISM 377 Automated DNA Sequencer (Perkin Elmer, U.S.A). Following reverse sequencing primer was used: TC-102 (reverse): $5^{3}-\mathrm{TCG}$ ACC AGG ATG GGG CA-3'

2.3.5 Tissue culture techniques

2.3.5.1 Cell line

MCF-7 tissue was used as a model cell line in the eukaryotic expression studies. The characteristics of the MCF-7 was obtained from http://www.attc.org web site (Table 1).

Table 1: Characteristics of MCF-7 cell line

ATCC Number:	HTB-22
Name:	MCF7
Tissue:	Mammary gland; breast; adenocarcinoma; carcinoma; pleural effusion; cancer
Species:	Human; 69 year old; female; Caucasian
Receptors:	Estrogen
HeLaMarkers:	no
Oncogene:	wnt $7 \mathrm{~h}+$
Karyotype:	The stemline chromosome numbers ranged from hypertriploidy to hypotetraploidy, with the 2 S component occurring at 1%. There were 29 to 34 marker chromosomes per S metaphase, of which 24 to 28 markers occurred in at least 30% of cells, and generally one large submetacentric (M1) and 3 large subtelocentric (M2, M3, and M4) markers were recognizable in over 80% of metaphases. No DM were detected. Chromosome No. 20 was nullisomic and X was disomic
Morphology:	Epithelial
AntigenExp:	Blood Type O; Rh+
Products:	Insulin like growth factor binding proteins (IGFBP) BP-2; BP-4; BP-5
Growth:	Monolayer
References:	J. Natl. Cancer Inst. 51:1409-1416, 1973; Cancer Res. 43:28312835, 1983; Science 230:943-945, 1985; Cancer Res. 50:29973001, 1990; Cancer Res. 53:5193-5198, 1993; Int. J. Cancer 55:453-458, 1993
Medium:	Minimum essential medium Eagle with 2 mM L-glutamine and Earle's BSS adjusted to contain $1.5 \mathrm{~g} / \mathrm{L}$ sodium bicarbonate, 0.1 mM non-essential amino acids and 1.0 mM sodium pyruvate and supplemented with $0.01 \mathrm{mg} / \mathrm{ml}$ bovine insulin, 90%; fetal bovine serum, 10%.
FluidRenewal:	2 to 3 times weekly
SplitRatio:	A ratio of 1:3 to 1:6 is recommended
Comments:	The MCF7 line retains several characteristics of differentiated mammary epithelium including ability to process estradiol via cytoplasmic estrogen receptors and the capability of forming domes; the line may harbor B or C type virus genomes and should be handled as a potentially biohazards agent; contains the Tx-4 oncogene; growth of MCF7 cells is inhibited by tumor necrosis factor alpha (TNF alpha); secretion of IGFBP's can be modulated by treatment with anti-estrogens.

2.3.5.2 Growth conditions

Dulbecco's modified Eagle's medium (DMEM) supplemented with 10\% FCS, 1 mM glutamine and penicillin and streptomycin ($50 \mathrm{mg} / \mathrm{ml}$) was used to culture the MCF-7. The cells were incubated in at $37^{\circ} \mathrm{C}$ in an incubator with an atmosphere of $5 \% \mathrm{CO}_{2}$ in air.

The cells were passaged before reaching confluence. The growth medium was aspirated and the cells were washed once with calcium and magnesium-free PBS . Trypsin was added to the flask to remove the monolayer cells from the surface. The fresh medium was added and the suspension was pipetted gently to disperse the cells. The cells were transferred to either fresh petri dishes or fresh flasks using different dilutions (from 1:2 to 1:10) depending on requirements.

All media and solutions used for culture were kept at $4^{\circ} \mathrm{C}$ (except stock solutions) and warmed to $37^{\circ} \mathrm{C}$ before use.

2.3.5.3 Cryopreservation of cell lines

Exponentially growing cells were harvested by trypsinisation and neutralized with growth medium. The cells were counted and precipitated at 1500 rpm for 5 min . The pellet was suspended in a freezing solution containing 10% DMSO, 20% FCS and 70% DMEM at a concentration of 4×10^{6} cells $/ \mathrm{ml}$. 1 ml of this solution was
placed into 1 ml screw cap cryotubes. The tubes were left at $-70^{\circ} \mathrm{C}$ overnight. The next day, the tubes were transferred into the liquid nitrogen storage tank.

When frozen stocks were recovered from liquid nitrogen, the tubes were incubated at $37^{\circ} \mathrm{C}$ waterbath. When the solution was thawed, the cells were transferred into a 15 ml centrifuge tube and 10 ml fresh DMEM was added gradually. The sample was centrifuged at 1500 rpm for 5 min . The supernatant was aspirated and the precipitated cells were resuspended with 5 ml fresh DMEM and transferred into $25 \mathrm{~cm}^{2}$ flask.

2.3.5.4 Transfection of eukaryotic cells using electroporation

The MCF-7 cells were plated into a $75 \mathrm{~cm}^{2}$ flask the day before the electroporation to obtain $60-90 \%$ confluence on the day of transfection. $30 \mu \mathrm{~g}$ supercoiled the pEGFP-BRCA1 ${ }_{(83-2436)}$ construct and the pEGFP-N2 plasmid were ethanol precipitated and washed with 70% ethanol. The samples were dried in the sterile hood and dissolved in $20 \mu \mathrm{l}$ sterilized distilled water.

Sterilization of glass coverslips

In a tissue culture hood, coverslips were placed into 95% ethanol. The excess ethanol was removed from the coverslips and flamed to sterilized them. The coverslips were then placed into 12 multi-well tissue-culture dishes.

Electroporation

The MCF-7 cells were harvested by trypsinisation and washed twice with icecold 1X calcium-magni esium free PBS. Harvested cells were counted by using a haemocytometer and centrifuged at 1500 rpm for 5 min . The pellet was resuspended in 800 ml ice-cold 1X calcium-magnesium free PBS at a density of 4×10^{6} cells $/ \mathrm{ml} .30$ $\mu \mathrm{g}$ of the supercoiled $\mathrm{pEGFP}-\mathrm{BRCA1}_{(83-2436)}$ construct or pEGFP-N2 plasmid were added into the cell suspension and mixed well. The DNA-cell mixture was transferred to 0.4 cm electroporation cuvette and incubated on ice for 10 min . The samples were then transferred to the BioRad Gene Pulser (BioRad) and placed into the chamber. The cells were electroporated at $950 \mathrm{mF}, 0.22 \mathrm{kV} / \mathrm{cm}(\mathrm{t}=19-22 \mathrm{~ms})$. The cuvettes were then incubated on ice for 10 min and the cells were transferred into a tube containing complete DMEM at a density of 2×10^{5} cells $/ \mathrm{ml}$. 1×10^{5} cells were plated in 12 multi-well culture dishes containing coverslips and allowed to incubate at $37^{\circ} \mathrm{C}$.

2.3.5.5 Fluorescence signal detection

The coverslips were carefully removed from the culture dishes, placed onto slides and washed gently with 1 XPBS solution twice. The slides were immediately examined by fluorescent microscopy. The fluorescence signal was detected with FITC filter set (Filter I: 450-490 nm for GFP and Filter II: BP-365 nm for H33258 staining),(ZEISS). The FITC signal was visualized using a Zeiss MC80/Axioskop fluorescent microscope camera system.

Expression of green or blue fluorescence was examined 24 hours after the transfection within 12 h intervals.

Fixation of cells for staining

After 24 h incubation, culture medium was removed by aspiration and the coverslip was washed twice with PBS. The coverslips were placed onto the slides and 2 ml of freshly made 4% paraformaldehyde solution was directly applied. The coverslips were incubated at room temperature for 30 min at dark. The coverslips were then washed twice with 1 XPBS and $500 \mu \mathrm{l}$ of $1 / 100$ dilution of fluorochrome dye $\mathrm{H} 33258(1 \mathrm{mg} / \mathrm{ml})$ was applied. Samples were incubated at room temperature for 10 min at dark and then washed with 1XPBS twice. The excess PBS around the edges of the coverslip was removed with a clean tissue and then the samples were examined by fluorescent microscopy.

CHAPTER 3. RESULTS

3.1. Computer analysis of the $B R C A 1$ sequence

3.1.1 Computer analysis of the BRCA1 protein sequence

The human BRCA1 protein sequence (Genbank accession no: HSU 14680) was analyzed by using PSORT computer program to determine the possible protein localization sites within the protein sequences (Appendix 1).

The result of the PSORT analysis of BRCA1 protein is given in Table 2. The PSORT determines the candidate localization-sites for prediction as listed below:

Cytoplasm, mitochondria (outer membrane, intermembrane space, inner membrane and matrix space), microbody (peroxisome), nucleus, endoplasmic reticulum (lumen and membrane), Golgi body, lysosome, plasma membrane and outsite. At the end of the analysis the conclusive prediction, i.e. the top five probable localization sites with their certainty factors (ranging between 0.00 and 1.00) is given finally. The data obtained from the PSORT has shown that the most probable protein targeting sequences were nuclear localization sequences (NLSs). This NLSs were localized to amino acids residues between 502 to 650 . So we decided to clone a 2316 bp fragments of $B R C A 1 \mathrm{cDNA}$ into 5^{\prime} end of the EGFP sequence.

Table 2: The results of the PSORT computer analysis for BRCA1 sequence

Targeting Site	Consensus Sequence on BRCA1	Total Certainty
Nucleus	KRKR, amino acid position: 502	0.70
	RKRR, amino acid position: 503	
	KRRP, amino acid position: 504	
	NRLRRKS, amino acid position: 609^{*}	
	KKKK, amino acid position: 650	

${ }^{*}$ Consensus sequence already defined by Chen et al, 1995

3.1.2 Computer analysis of the pLXSN-BRCA1 construct

The restriction endonuclease map of the pLXSN-BRCAl construct was obtained by using the WebCutter computer program to find two single cutter endonucleases which create a fragment including the NLSs conserved sequences on the $B R C A I$ cDNA sequence and also allow to directional cloning of the fragment into the pEGFP-N2 eukaryotic expression vector.

According to the restriction map of the pLXSN-BRCAl construct (Appendix 3), double digestion with the Ehe I and $K p n$ I restriction endonucleases was used for digestion of both $\mathrm{pLXSN}-\mathrm{BRCA}$ construct to obtain the BRCAl $_{(83-2436)}$ fragment containing the five putative nuclear localization signals (NLS) sequences and a highly conserved N-terminal RING finger domain (C3HC4 zinc-finger domain) (Bienstock et al. (1996).

3.2 Qualification of the pLXSN-BRCA1 and pEGFP-N2

The undigested- pEGFP-N2 vector isolated from kanamycin resistant transformants was run on 0.8% agarose gel. After this primary selection, plasmid isolated from candidate colonies were double digested with Not I / EcoR I endonucleases for further characterization of plasmid and subjected to 0.8% agarose gel electrophoresis where Not I / EcoR I digested original pEGFP-N2 plasmid was used as control. The expected 3061 bp and 776 bp fragments were only detected in mini-prep plasmid DNA of the nl colony (Figure 3, lane 5). Not I / EcoR I double digestion profile is shown at Figure 3.

Figure 3. Not I / EcoRI double digest profile of pEGFP-N2 and mini-prep plasmid DNA of n1, n2, n3 colonies.
(1: 1 kb DNA ladder, 2: undigested pEGFP-N2, 3: Not I / EcoRI digested pEGFPN2, 4: undigested n1, 5: Not I / EcoRI digested n1, 6: undigested n2, 7: Not I /
EcoRI digested n2, 8: undigested n3, 9: Not I / EcoRI digested n3)
transformants and Sac I endonuclease was used to analyze the restriction endonuclease profile of candidate colony, IT3. Expected fragment sizes for Sac I digestion profile of the original pLXSN-BRCA1 plasmid were $5707 \mathrm{bp}, 3124 \mathrm{bp}$ and 2713 bp. Results are shown at Figure 4.

Figure 4. Sac I digestion profile of the original PLXSN-BRCA1 and mini-prep plasmid DNA of the IT3 colony on 0.8\% agarose gel.
(1: undigested original plasmid, 2: Sac I digested original plasmid, 3:undigested IT3 and 4: Sac I digested IT3)

3.3. Endonuclease digestion of the pLXSN-BRCA1 and pEGFP-N2

3.3.1 Eco47 111 and Kpn I double digestion of pEGFP-N2 vector

Two step double digestion was performed. The pEGFP-N2, was first digested with Eco47 III restriction endonuclese. The expected fragment size after Eco47 III
digestion was; 4737 bp (linearized vector). The 4737 bp fragment was isolated from gel in $20 \mu \mathrm{l}$ sterile distilled water.

The isolated 4737 bp fragment was used for the second, KpnI , digestion. Expected fragments were 4684 bp and 53 bp respectively. The 4684 bp fragment was isolated from the gel and resuspended in sterile distilled water with $135 \mathrm{ng} / \mu \mathrm{l}$ final concentration (Figure 5). However, the 53 bp fragment could not be observed on 0.8% agrose gel since the percentage and the run time of gel was not suitable to observe the bands smaller than 500 bp .

Figure 5. Eco47 III and Ehe I double digestion profile of pEGFP-N2 vector on 0.8% agarose gel.

3.3.2 Kpn I and Ehe I double digestion of pLXSN-BRCA1

Single reaction mixture was prepared for Kpn I and Ehe I digestion of the pLXSN-BRCA1. The common Yellow Buffer (MBI) was used. The expected fragment sizes after Kpn I and Ehe I digestion were; 3837, 3124, 2389, 1175. 985 and

34 bp (Figure 6). The 2389 bp fragment that contains the five NLSs were isolated from the gel in sterile distilled water witha final concentration of $68 \mathrm{ng} / \mu \mathrm{l}$.

Figure 6. Kpn I and Ehe I digestion profile of pLXSN-BRCA1.
Yellow arrow indicates the 2389 bp fragment from pLXSN-BRCAl digestion and cyan arrow shows the 4684 bp Eco47 III / Kpn I digested pEGFP-N2. (1: pLXSNBRCA1, 2: pEGFP-N2)

3.4 Construction of the pEGFP-BRCA1 ${ }_{(83-2436)}$ eukaryotic expression vector

3.4.1 Ligation reaction

The $\mathrm{BRCAl}_{(83-2436)}$ fragment was cloned into pEGFP-N2 vector as described in section 2.3.3.3 and "no insert" control ligation was performed to test the self ligation of cut vector. The vector:insert molar ratio was determined according to the data obtained from both the quantitative analysis of insert $\left(\right.$ BRCA1 $\left._{(83-2436)}\right)$ and
vector ($\mathrm{pEGFP}-\mathrm{N} 2$) as described in section 2.3.1.5 and ethidium bromide intensities dotted on agarose plate that was illuminated by ultraviolet light (Figure 7).

Figure 7. Ethidium bromide intensities of the BRCA $_{(83-243)}$ fragment (insert) and the pEGFPN2 (vector) dotts under ultraviolet illuminator.

3.4.2 Selection of positive colonies after transformation

After transformation of recombinant pEGFP-N2 into E.coli DH5 α strain, transformants were subjected to kanamycin selection overnight. The following day, 17 colonies from ligation plate and 20 colonies from "no insert" ligation control plate were obtained. DNAs were isolated from all colonies in the ligation plate and one colony from the control plate. All samples were digested with EcoR I restriction endonuclease (Figure 8). The mini-prep plasmid DNA of candidate NIs3, Nls4 and control ligation colony2 colonies were further characterized by EcoR I / Not I double digestion analysis. Result is shown at Figure 9. The NIs4 colony was selected for the following steps of the cloning study and glycerol stocks was prepared.

Figure 8. EcoR I digestion profile of the positive colonies (Lane number 4 to 20). I: 1 kb DNA ladder, 2 : undigested pEGFP-N2 vector, 3: EcoR I digested pEGFP-N2 Lane 4-20: EcoR I digested Nls DNA samples (samples 1 to 17) 21: EcoR I digested control ligation colony1, 22: EcoR I digested control ligation colony2.

Figure 9. Not I / EcoRI double digest profile of mini-prep plasmid DNA isolated from the NIs3, Nis4 and the control ligation colony2.
(I: undigested pEGFP-N2, 2: linearized pEGFP-N2 with Not I digest, 3: Not I / EcoRI digested Nls3, 4: Not I / EcoRI digested Nls4, 5: Not I / EcoRI digested control ligation colony2.)

3.4.3 Klenow treatment of the Nls 4 construct

The recombinant pEGFP-N2 construct containing the BRCAl $_{(83-2436)}$, named as Nls4, (Figure 10) was isolated from the Nls4 colonies by using QIAGEN Plasmid Midi kit.

Figure 10. The recombinant pEGFP-N2 construct, Nls4 (7076 bp). The Eco47 III / Kpn I digested BRCA1 ${ }_{(83-2436)}$ fragment was ligated into Ehe I / Kpn I digested pEGFP-N2 vector.

The Nls 4 construct was subjected to the Klenow treatment. After ligation of BRCAl $_{(83-2436)}$ fragment into pEGFP-N2 vector, the Kpn I junction between 3'terminus of $\mathrm{BRCAl}_{(83-2436)}$ and 5^{\prime} '- terminus of EGFP had a frame shift in the transcription of BRCAl $_{(83-2436)}$-EGFP fusion protein. Therefore, the Nls4 construct was digested with $K p n I$ and treated with Klenow enzyme to remove 4 bases from the 5'-protruding end of the BRCA1 coding sequence.

Following the Klenow treatment, the blunt ends of the Nls 4 construct was ligated and transformed into DH5 α competant cells. Schematic representation of the Klenow treatment and self-ligation steps of the construct is given at Figure 11.

The transformants were grown on kanamycin plate and four positive colonies were obtained ($\mathrm{Nls} 1^{\mathrm{Kpr}}, \mathrm{Nls} 2^{\mathrm{Kpr}-}, \mathrm{Nls} 3{ }^{\mathrm{Kpr}-}$ and $\mathrm{Nls} 4^{\mathrm{Kpr}-}$). Mini-prep DNAs were prepared and digested with Kpn I enzyme to check the presence or absence of Kpn I sites in the constructs. Two colonies (Nls $3^{\mathrm{Kpn-}}$ and $\mathrm{Nls} 4^{\mathrm{Kpn}-}$) can not be digested with $K p n$ I enzyme. The Kpn I site was successfully destroyed in these colonies. The Kpn I restriction enzyme analysis of these four clones are shown at Figure 12. The new construct obtained by removal of the $K p n$ I site from Nls construct was named as pEGFP-BRCA1 ${ }_{(83-2436)}$.

(The Kpn I junction of Nls4 Construct with out-frame nucleotide and amino acid sequences)

$$
\begin{aligned}
& \text { 5' ATT TCA TTG CGC GGG CCC GGG ATC CAC CGG CCG GTC GCC aCC ATG GTG } 3^{\prime} \\
& \text { 3' TAA agt ade gCG cCC gGG cCC tag gtg gCe gGC cag cog tge tac cac 5, }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (START) }
\end{aligned}
$$

(The Kpn I junction of pEGFP-BRCA1 ${ }_{(83-2439}$ construct with in-frame nucleotide and amino acid sequences)

Figure 11. Schematic representation of the Klenow treatment and self ligation steps in the construction of pEGFP-BRCA1 ${ }_{(83-2436)}$.
Blue letters indicate the sequence of the $\operatorname{BRCAl}_{(83-2436)}$ fragment and green letters represent the sequence of EGFP. Capital letters in black are used to show the amino acid encoded sequences and red ' M ' denotes the start codon of the EGFP.

Figure 12. KpnI digestion profile the Klenow treated $\mathrm{Nls}^{\mathrm{Kpr}}$ colonies on 8\% agarose gel.
(I: undigested Nls4 without Klenow treatment, 2: Kpn I digested Nls4 without Klenow treatment, 3: undigested Nls1 ${ }^{\mathrm{Kpn}-}$, 4: $K p n \mathrm{I}$ digested $\mathrm{Nls} 1^{\mathrm{Kpn}-}$, 5: undigested
 9: undigested $\mathrm{Nls} 4^{\mathrm{Kpn}-}$, 10: Kpn I digested $\mathrm{Nls} 4^{\mathrm{Kpn}-}$).

3.4.4 Automated sequencing of $K p n$ I junction of the BRCA $_{(83-2436)}$-EGFP

fusion sequence

The Nls $4^{\text {Kpn- }}$, pEGFP-BRCA1 $l_{(83-2436)}$ construct was partially sequenced with TC102 sequencing primer by using Perkin Elmer 377 Automated Sequencer. TC102 primers lies on the 3 '-upstream of the $K p n$ I junction, within the vector sequence. The pEGFP-BRCA1 ${ }_{(83-2436)}$ contruct DNA was prepared by Qiagen midi-prep kit. The DNA was linearized by Not I digestion and used for cycle sequencing reaction.

The partial sequence of the pEGFP-BRCA1 ${ }_{(83-2436)}$ construct was analyzed by Sequence Navigator computer program and shown that Klenow treatment had removed the Kpn I site successfully (Figure 13). The actual sequencing result is given in Appendix 4.

Figure 13. The sequencing result of $K p n I$ junction.
The given electropherogram shows the cyan highlighter box including the removed Kpn I junction at nucleotide 129. ($8 E T O L G A$: the reference sequence, 319•NLS4/TC 102: the sequence of the Nls $4{ }^{\mathrm{Kpn}-}$ plasmid DNA).

In summary, this cloning strategy which was confirmed by DNa sequencing resulted in the in-frame fusion of the carboxy terminus of 772 amino acid fragment of BRCA1 protein with at the carboxy terminus of EGFP. This vector, namely pEGFP-BRCA1 $1_{(83-2436)}$, contains a Kozak consensus translation initiation site and immediate early promoter of human cytomegalovirus (CMV) to increase the translation efficiency in eukaryotic cells.

3.5 Expression Analysis of the pEGFP-N2 vector and the pEGFP-

BRCA1 $_{\text {(83-2436) }}$ Construct in Eukaryotic System

The MCF-7 human breast adenocarcinoma cell line was used for all transfection experiments (Figure 14) . MCF-7 breast cancer cell line has very low expression of BRCAI mRNA and BRCA1 protein (Jensen at al, 1996).

Figure 14. Phase-contrast microscopy apperance of MCF-7 cells (200x magnification)

3.5.1 Transfection of MCF-7 by Electroporation

The pEGFP-BRCA1 ${ }_{(83-2436)}$ construct and pEGFP-N2 were transfected into MCF-7 by electroporation method (Section 2.3.5.4). The efficiency of the transfection was determinated by counting the cells that express EGFP which emits
green fluorescent signal versus the cells having non fluorescent signal under fluorescence microscope. The transformation efficiency for the pEGFP-N2 electroporation was 52.69% and for the pEGFP- 2 RCAl $_{(83-2436)}$ construct electroporation was 48.87%.

3.5.2. Expression analysis of the EGFP vector in living cells

The MCF-7 cells were transfected with pEGFP-N2 vector both to asses the transfection efficiency of the cells and to set up the maximal experimental conditions to observe the expression of EGFP.

The expression analysis of EGFP was observed 24 h after transfection under the fluorescence microscope with FITC filter set (Filter 1; 450-490 nm). It was shown that the EGFP protein spreads all over the cell (Figure 15). The EGFP protein was very stable and green fluorescence signal could be observed 10 days after the transfection.

Figure 15. Unfixed MCF-7 cells transfected with EGFP-N2 (600x magnification).
(a) Phase-contrast microscopy photograph of the unfixed EGFP-N2 transfected MCF-7. (b) Unfixed EGFP-N2 transfected MCF-7 cells were photographed under 450-490 excitation fitted fluorescence microscope.

(b)

3.5.3 Monitoring the expression and the cellular localization of EGFPBRCA1 $_{(83-2439)}$ fusion protein

Monitoring the cellular localization in living cell

The expression and localization analysis of the EGFP-BRCAl ${ }_{(83-2436)}$ fusion protein in living MCF-7 cells was accomplished with 450-490 excitation fitted fluorescence microscope. The strongest green fluorescent signal was observed within the nuclei of MCF-7 breast cancer cells transfected with EGFP-BRCA1 ${ }_{(83-2436)}$ construct. This high fluorescent activity suggested the nuclear localization of the EGFP-BRCA1 ${ }_{(83-2436)}$ fusion protein (Figure 16). The expression of the fusion protein started 48 h after the transfection.

Monitoring the cellular localization in fixed cel

The double-labeling experiment was performed with the EGFP and fluorochrome dye H 33258 to clarify the nuclear localization of the EGFP-BRCA1 ${ }_{(83}$. ${ }^{2436)}$ fusion protein. The fluorochrome dye H 33258 has a blue fluorescent emission at 365 nm and binds to DNA content of the dead cells. The DNA-binding fluorochrome dye H33258 was used to specify the nucleus of the fixed MCF-7 and examined by shifting the FITC fluorescence filter to the BP-365 filter (Filter 2). Results are shown at Figure 17.

Figure 16. Unfixed MCF-7 cells transfected EGFP-BRCA1 ${ }_{(83-2436)}$ (400x magnification).
(a) Phase-contrast microscopy photograph of the unfixed MCF-7 cells transfected with EGFP-BRCA1 ${ }_{(83-2436)}$. (b) Unfixed MCF-7 cells transfected with EGFP-
$\operatorname{BRCAl}_{(83-2436)}$. were photographed under 450-490 excitation fitted fluorescence microscope.

Figure 17. Fixed MCF-7 cells transfected EGFP-BRCA1 ${ }_{(83-2439)}$ (400x magnification). (a) Phase-contrast microscopy photograph of the fixed MCF-7 cells transfected with EGFP-$\mathrm{BRCAl}_{(83-2436)}$. (b) Apperance of the fixed MCF-7 cells transfected with EGFP-BRCA1 ${ }_{(83-}$ ${ }^{2436)}$ under both visible light and 450-490 excitation fitted fluorescence microscope (c) Fixed MCF-7 cells transfected with EGFP-BRCAl ${ }_{(83-2436)}$ were photographed under 450-490 excitation fitted fluorescence microscope. (d) Fixed MCF-7 cells transfected with EGFP-$\mathrm{BRCAl}_{(83-243)}$ were stained with H 33258 and photographed under fluorescence microscope

(b)

Figure 17 (cont'd). (c), (d) Fixed MCF-7 cells transfected EGFP-BRCA1 $\mathbf{1 8 3 - 2 4 3 6)}^{\text {(}}$

(d)

3.5.4 Effect of EGFP and EGFP-BRCA1 $1_{(83-2439)}$ fusion protein over expression in MCF-7 cell line

The EGFP and EGFP-BRCAl ${ }_{(83-2436)}$ expressing cells were monitored through 96 h within a 12 h intervals and observation was started at 24 h after transfection to determine the percentage of the cell survival. Cell counting was performed as mentioned in section 3.5.1. Over expression of the EGFP in MCF-7 has no significant toxic effect on cells and cell counting data were given in Table 3. However, a clear decrease in percent survival was observed in MCF-7 cells that over express the EGFP-BRCA1 ${ }_{(83-2436)}$ (Table 4). The total \% of the death within a 96 h period after transfection was 51.19\% (Figure 18).

Counting time after transfection	\% survival of green fluorescent positive cells over express the EGFP
24 h	52.69
36 h	50.61
48 h	51.23
60 h	50.78
72 h	49.89
84 h	49.81
96 h	49.67

Table 3. Percent (\%) survival of MCF-7 cells that over express EGFP. (Percent (\%) survival was calculated as the ratio of green fluorescent positive cells to total cells within a unit area).

Counting time after transfection	\% survival of green fluorescent positive cells over express the EGFP-BRCA1 (83-2430
24 h	48.97
36 h	40.87
48 h	38.15
60 h	31.72
72 h	30.25
84 h	25.47
96 h	25.08

Table 3. Percent (\%) survival of MCF-7 cells that over express the EGFP-BRCA1 ${ }_{(83}$ 2430). (Percent (\%) survival was calculated as the ratio of green fluorescent positive cells to total cells within a unit area).

Figure 18. Effect of EGFP and EGFP-BRCA1 $1_{(83-2436)}$ expression on viability of MCF-7 cells.

CHAPTER 4. DISCUSSION

The green fluorescent protein (GFP) of the jellyfish Aequeorea Victotia has attracted widespread interest since the discovery that its chromophore is generated by the autocatalytic post-translational cyclization. This permits fusion of the DNA sequence of GFP with that of any protein whose expression and transport can then be readily monitored by sensitive fluorescence methods without the need to add exogenous fluorescent dyes. GFP fusion can provide enhanced sensitivity and resolution in comparison to standard antibody staining techniques and the GFP tag eliminates the need for fixation, cell permeabilization, and antibody incubation steps normally required when using antibody tagged chemical fluorophores. In this study, Eukaryotic Green Fluorescent Protein (EGFP) was used instead of wild type GFP. EGFP encodes a protein which has a single, red-shifted excitation peak and fluoresces with about 35 times more intensity than wild type GFP. The coding sequence of the EGFP contains more than 190 silent base changes that correspond to human codonusage preferences for maximal translation efficiency in mammalian cells.

Results represented here demonstrate that the EGFP, encoded by the Eukaryotic Green Fluorescence Protein-N-Terminal protein fusion vector, is an effective reporter for studying the subcellular localization of any protein, especially for
the proteins which are newly characterized and have no highly specific antibodies. We have used this vector to analyze the effect of the five native and putative nuclear targeting sequences of $B R C A I$ gene product on the celluar localization BRCA1.

Our utilization of EGFP for understanding the importance of these five NLS in targeting of whole BRCA1 protein has supported the previously reported concept that the whole BRCA1 protein is a nuclear protein (Chen et al., 1995 and 1996, Scully et al., 1996, Wilson et al., 1997, Ruffner et al., 1997, Coene et al., 1997). The fusion protein, EGFP-BRCA1 ${ }_{(83-2436)}$, carrying the 2389 bp fragment of $B R C A I$ cDNA sequence, which contains the four SV40 like NLSs and one steroid hormone like NLS, mostly accumulated and was retained in the nucleus as evident by its colocalization with nuclear DNA that was stained with fluorochrome dye H 33258 . By contrast, EGFP lacking the $\operatorname{BRCAl}_{(83-2436)}$ fragment at its N -terminus was found both in the nucleus and the cytoplasm. This is to be expected, because the PSORT analysis of EGFP was shown that there is no defined or evident eukaryotic protein sorting sequences in the sequence of EGFP protein and there are also published data that confirm the uniform distribution of EGFP all over the eukaryotic cell (Ogawa et al.,1995, Olson et al., 1995, Levy et al., 1996, Zolotukhin et al., 1996).

The EGFP-BRCA1 ${ }_{(83-2436)}$ transfectants showed no major morphological alterations compared to the parental MCF-7 cells. Here, we also report that there was a notable decrease in the percent survival of the MCF-7 breast cancer cell line transfected with EGFP-BRCA1 ${ }_{(83-2436)}$. In order to investigate whether this toxic effect could be due to over expression of the exogenous EGFP, we analyzed the endotoxic effect of the mere EGFP expression in MCF-7 cells. The results showed that overexpression of the mere EGFP had no toxic effect in MCF-7 cells.

One explanation for these observations might be the instability of fusion protein coding plasmid, which leds to loss of of the chimera construct after several cell divisions. The half-life of the fusion protein might be another criteria that should be taken into account to explain the decrease in positive fluorescent signal. On the other hand, if we contemplate this decrease as a function of a toxic affect of the fusion protein, we can say that the 2316 bp coding sequence of the putative tumor suppressor $B R C A 1$, that contains the potential structural cystein rich RING finger domain, is likely either to cause a growth inhibition as stated by Holt et al. (1996) or to induce a apoptosis in MCF-7 cells (Shao et al., 1996). Nevertheless, even to reach a such conclusions additional studies are necessary to define the role of the potential functional domains of the $B R C A 1$ gene product.

Perspectives

The system described here could be used for efficient characterization and expression of genes in cells of mammalian origin. Visualizing intracellular protein localization as done with the EGFP-BRCA1 ${ }_{(83-2436)}$ should also allow experiments to be designed to address important biological questions. For example, an immediate application would be the study of subcellular localization and trafficking of the fulllength $B R C A 1$ gene product and its spliced variants.

In this study we demonstrate that the NLSs consensus sequences of the BRCA1 protein might target the EGFP-BRCA1 $1_{(83-2436)}$ fusion protein into the nucleus. We should also provide evidence supporting the expression of the EGFP-BRCA1 ${ }_{(83-}$ ${ }^{2436)}$ fusion protein by using either immunohistochemical or immunohistofluorescence technique, suggesting that the EGFP was successfully fused to the NLSs of the

BRCA1 protein and was targeted into the nucleus of the MCF-7 cells by using antibody against either N -terminal of the BRCA1 protein or EGFP.

Another exciting question would be opened up for new studies based on observations that was reported in the literature (Shao et al, 1996, Gowen et al, 1996) and in this study: one of the candidate functional domain, a cystein rich RING finger may induce cell death. Besides this suggestion, involvement of the BRCA1 protein in the cellular proliferation process has been recently reported (Hakem et al, 1996, Hakem et al, 1997 Scully et al, (b) 1997 and Scully et al, (c) 1997). Taking these new studies into consideration, physiological and biochemical function of BRCA1 protein and its spliced variants in cellular proliferation processes will be studied in different mammalian cell lines that have different genetic contents in terms of candidate proteins that are expected to correlate with the BRCA1 protein.

REFERENCES

Abel K J., Xu J., Yin G., Lyons R.H., Meisler M. H. and Weber B. L. (1995) Mouse BRCA1: localization, sequence analysis and identification of evolutionary conserved domains. Hum. Mol. Genet. 12:2265-2273

Amsterdam A., Lin S. and Hopkins N. (1995) The Aequorea victoria green fluorescent protein can be used as a reporter in live Zebrafish embryos. Dev. Biol. 171:123-129

Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. (1991) Current protocols in molecular biology, Vol. I Section :1.8.1-1.8.3

Berman D. B., Costala-Wagner J., Schultz D. C., Lynch H. T., 'Daly M. and Godwin Andrew K. (1996) Two distinct origins of a common BRCAI mutation in breast-ovarian cancer families: a genetic study of 15 185delAG-mutation kindreds. Am. J. Hum. Genet. 58:1166-1176

Bienstock R. J., Darden T., Wiseman R., Pedersen L. and Barrett J. C. (1996) Molecular Modeling of the amino-terminal zing ring domain of $B R C A 1$. Cancer Res. 56:2539-2545

Birnboim, H. C. and Doly, J. (1979) A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucl. Acids Res. 7: 1513-1523

Boyd M., Harris F., McFarlane R., Davidson H. R., Black D., M (1995) A human BRCAI gene knockout. Nature 375:541-542

Brown M. A, Jones K. A, Nicolai H., Bonjardim M., Black D., McFarlane R., De Jong P., Ouirk J., P, Lehrach H. and Solomon A. (1995) Physical mapping, cloning, and identification of genes within a $500-\mathrm{kb}$ region containing BRCAI. Proc. Natl.Acad. Sci. USA 92:4362-4366

Brown T. A. (1993) Gene Cloning. (Second edition). Chamber \& Hall Publication pp:225-245

Chalfie M., Tu Y., Euskirchen G., Ward W. W. and Prasher D. C. (1994) Green fluorescent protein as a marker for gene expression. Science 263:802-804

Chapman M. K. and Verma I., M. (1996) Transcriptional activation by BRCAI. Nature 382: 678-679.

Chen Y., Chen C.-F., Riley D. J, Allred D. C., Chen P.-.L., Hoff Daniel V., Osborne C. K. and Lee W.-H. (1995) Aberrant subcellular localization of BRCAI in breast cancer. Science 270:789-791

Chen Y., Chen P.-L., Riley D. J, Lee W.-H., Allerd D. C. and Osborne C. K. (1996) Response: Localization of $B R C A I$ in human breast and ovarian cancer cells. Science 272:125-126

Coene E., Oostveldt van P., Willems K., Emmelo van J. and Christian R. De P. (1997) BRCA1 is localized in cytoplasmic tube-like invaginations in the nucleus. Nature Genet. 16:122-124

Cubitt A. B., Heim R., Adams S. R., Boyd A. E., Gross L. A. and Tsien R. Y. (1995) Understanding, improving and using green fluorescent proteins. TIBS 20:448-455

Durocher F., Shattuck-Eidens D., McClure M. , Labrie F. , Skolnick M. H, Goldgar D. Eand Simard J. (1996) Comparison of BRCAI polymorphisms, rare sequence variants or /and missense mutations in unaffected and breast/ovarian cancer populations. Hum.Mol. Genet. 5:835-842

Eisinger F., Stoppa-Lyonnet D., Longy Michel, Kerangueven F., Noguchy T., Bailly C., Vincent-Salomon A., Jacquemier J., Binbaum D. and Sobol H. (1996) Germline mutation at BRCAI affected the histoprognostic grade in hereditary breast cancer. Cancer Res. 56:1-4

Friedman L. S., Szabo C. I., Ostermeyer E. A., Dowd P., Butler L., Park T., Lee M. K., Goode E. L., Rowell S. E. and King M.-C. (1995) Novel inherited mutations and variable Expression of $B R C A I$ alleles, including the mutation 185delAG in Ashkenazi Jewish families. Am. J. Hum. Genet. 57:1284-1297

Futreal P. A., Liu Q., Shattuck-Eidens D., Cochran C., Harshman K., Tavtigian S., Bennett L. M., Haugen-Strano A., Swensen J., Miki Y., Eddindton K., McClure M., Frye C., Weaver-Feldhaus J., Ding W., Gholami Z., Soderkvist P., Terry L., Jhanwar S., Berchuck A., Iglehart J. D., Marks J., Ballinger D. G., Barrett J. C., Skolnick M.H., Kamb A. and Wiseman R. (1994) BRCA1 mutations in primary breast and ovarian carcinomas. Science 266:120-122

Gayther S. A., Warren W., Mazoyer S., Russell P. A., Harrington P. A., Chiano M., Seal S., Hamoudi R., Van R. E., Dunning A. M., Love R., Evans G., Easton D., Clayton D., Stratton M. R. and Ponder B. A. J. (1995) Germline mutations of $B R C A 1$ gene in breast and ovarian cancer families provide evidence for a genotype-phenotype evidence. Nature Genet. 11:428-433

Gowen L. C., Johnsin A. M., Latour A. M., Sulik K. and Koller B. H. (1996) Brcal deficiency results in early embryonic lethality characterized by neuroepithelial abnormalities. Nature Genet. 12:191-194

Gudas J. M, Nyugen H., Li T. and Cowan K. H. (1995) Hormone-dependent regulation of BRCAI in human breast cancer cells. Cancer Res. 55:45614565

Hakem R., de la Pompa J. L., Sirard C., Mo R., Woo M., Hakem A., Wakeham ., Potter J., Reitmair A., Billia F., Firpo E., Hui C.C., Roberts J., Rossant J. and Mak T. W. (1996) The tumor suppressor gene $B R C A I$ is required for embryonic cellular proliferation in the mouse. Cell 85: 1009-1023

Hakem R, de la Pompa J. L., Andrew E., Potter J. and Mak T.W. (1997) Partial recue of $B R C A I^{s-6}$ early embryonic lethality by $p 53$ and $p 21$ null mutation. Nature Genet. 16: 298-302

Hall J. M, Lee M. K., Newman B., Morrow J. E., Anderson L. A., Huey B., King M.-C. (1990) Linkage of early-onset familial breast cancer to chromosome 17q21. Science 250:1684-1659

Hogervorst F. B. L., Cornelis R. S., Bout M., Va Vliet M., Oosterwijk J. C., Olmer R., Bakker B., Klijn J. G. M., Vasen H. F. A., Meijers-Heijboer H., Menko F. H., Cornelisse C. J., den Dunnen J. T., Devilee P. and van Ommen G.-J. B. (1995) Rapid detection of BRCAI mutations by the protein truncation test. Nature Genet. 10:208-212

Holt J. T., Thompson M. E., Szabo C., Robinson-Benion C., Arteaga C. L, King M.-C. and Jensen R. A. (1996) Growth retardation and tumor inhibition by BRCA1. Nature Genet. 12:298-302

Inoue R., Fukutomi T., Ushijima T., Matsumoto Y., Sugimura T.and Nagao M. (1996) Germline mutation of BRCA1 in Japanese breast cancer families. Cancer Res. 55:3521-3524

Jensen R. A., Thompson M. E., Jetton T. L., Szabo C.I., van der Meer R.,Helou B., Tronick S. R., Page D. L., King M.-C. and Holt J. T.(1996) BRCA1 is secreted and exhibits properties of a granin. Nature Genet. 12:303-308

Jensen R. A., Thompson M. E., Jetton T. L., van der M. R., Helou B.Arteaga C. L., Page D. L., Holt J. T., Tronick S. R., Gown A. M., Skelly M., Schieeltz D., Szabo C. I., King M.-C. (1996) Reply: ... and secreted tomour suppressors. Nature Genet. 13:269-270

Koonin V. E., Altschul S. F. and Brok P. (1996) ...Functional motifs. Nature Genet. 13:266-267

Lane T. F., Deng C., Elson A., Lyu M. S., Kozak C. A. and Leder P. (1995) Expression of $B R C A I$ is associated with terminal differentiation ectodermally and mesodermally derived tissues in mice. Genes \& Dev. 9:2712-2722

Langston A. A., Malone K. E., Thompson J., Daling J. R. and Ostrander E. A.(1996) BRCA1 mutation in population-based sample of young women with breast cancer. N. Eng. J. Med. 334:137-142

Levy J. P., Muldoon R. R., Zolotukhin S. and Harles J. L. Jr. (1996) Retroviral transfer and expression of a humanized, red-shift green fluoresent protein gene into human tumor cells. Nature Biotechnology 14: 610-614

Liu C.-Y., Flesken-Nikitin A., Li S., Zeng Y. and Lee W.-H. (1996) Inactivation of the mouse Brcal gene leads to failure in the morphogenesis of the egg cylinder in early postimplantation development. Genes \& Dev. 10:18351843

Lu M., Conzen S. D., Cole C. N. and Arrick B. A. Characterization of functional messenger RNA spliced variants of $B R C A 1$ expressed in nonmailgnant and tumor-derived breast cells (1996) Cancer Res. 56:4578-4581

Miki Y., Swensen J., Shattuck-Eidens D., Futreal P. A., Harshman K., Tavtigian S., Liu Q., Cochran C., Bennett L. M., Ding W., Bell R., Rosenthal J., Hussey C., Tran T., McClure M., Frye C.,Hattier T., Phelps R., Haugen- Strano A., Katcher H., Yakumo K., Gholami Z., Shaffer D., Stone S., Bayer S., Wray C., Bogden R., Dayananth P., Ward J., Tonin P., Narod S., Bristow P. K., Norris F.H., Helvering L., Morrison P., Rosteck Paul, L. M., Barrett J. C.,Lewis C., Nauhausen S., Cannon-Albright L., Goldgar D., Wiseman R., Kamb A. and Skolnick M. H. (1994) A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science 266:66-71

Monteiro N.A., August A. and Hanafusa H. (1996) Evidence for a transcriptional activation function of BRCA1 C-terminal region. Proc. Natl. Acad. Sci. USA 93:13595-13599

Munn K. E., Walker R. A., Menasce L. and Varley J. M. (1996) Allelic imbalance in the region of the $B R C A I$ gene in ductal carcinoma in situ of the breast cancer. British J. Cancer 73:636-639

Neuhausen S. L. and Marshall C. J. (1994) Loss of heterozygosity in familial tumors from three BRCA1-linked kindred. Cancer Res. 54:6069-6072

Neuhausen S. L., Mazoyer S., Friedman L., Stratton M., Ofitt K., CaligoA., Tomlinson G., Cannon-Albright L., Bishop T., Kelsell D.,Solomon E., Weber B., Couch F., Struewing J., Tonin P., Durocher F., Narod S., Skolnick M. H., Lenoir G., Serova O.,Ponder B., Stoppa-Lyonnet D., Easton D., King M.-C. and Goldgar D. E. (1996) Haplotype and phenotype analysis of six recurrent BRCA1 mutations in 61 families: results of an international study. Am. J. Hum. Genet. 58:271-280

Ogawa H., Inouye S., Tsuji F. I., Yasuda K. and Umesono K. (1995) Localization, trafficking, and temperature-dependence of the Aequorea green fluorescent protein in cultured vertebrate cells. Proc. Natl. Acad. Sci. USA 92:118991903

Olson K. R., McInstosh J. R. and Olmsted J. B. (1995) Analysis of MAP 3 function in living cells using green fluorescent protein (GFP) chimeras. J. Cell Biol. 130:639-650

Peters K. G., Rao P. S., Bell B. S. and Kindman L. A. (1995) Green fluorescent fusion proteins: Powerful tools for monitoring protein expression in live Zebrafish embryos. Dev. Biol. 171:252-257

Pierre P. (1996) Basic Methods in cell biological research. EMBO Practical Course pp:42-44

Rao V. N., Shao N., Ahmad M. and Shyman E., Reddy P. (1996) Antisense RNA to the putative tumor suppressor gene $B R C A I$ transforms mouse fibroblasts. Oncogene 12:523-528

Rowell S., Newman B., Boyd J. and King M-C. (1994) Inherited predisposition to breast and ovarian cancer. Am. J. Hum. Genet. 55:861-865

Ruffner H. and Verma I. M. (1997) BRCA1 is a cell cycle-regulated nuclear protein. Proc. Natl. Acad. Sci. USA 94:7138-7143

Serova O., Montagna M., Torchard D., Narod S. A., Tonin P., SyllaB., Lynch H. T., Feunteun J. and Lenoie G. M. (1996) A high incidence of $B R C A 1$ mutations in 20 breast-ovarian cancer families. Am. J. Hum. Genet. 58:42-51

Scully R., Ganesan S., Brown M., De Caprio J. A., Cannistra S. A.,Feunteun J., Schnitt S., Livingston D.M. (a) (1996) Location of BRCA1 in human breast and ovarian cancer cells. Science 272:123-124

Scully R., Chen J., Plug A., Xiao Y., Weaver D., Feunteun J., Ashley T. and Livingston D. M. (b) (1997) Association of BRCA1 with Rad51 in mitotic and meiotic cells. Cell 88: 265-275

Scully R., Anderson S. F., Chao D. M., Wei W., Ye L., Young R. A., Livingston D. M. and Parvin J. D. (c) (1997) BRCA1 is a component of the RNA polymearse II haloenzyme. Proc. Natl. Acad. Sci. USA 94:5605-5610

Shao N., Chai Y. L., Reddy P. and Rao V. N. (1996) Induction of apoptosis by the tumor suppressor protein BRCA1. Oncogene 13:1-7

Skolnick M. H., Cannon-Albright L. A., Goldgar D. E., Ward J. H., Marshall C.J., Schuman G. B., Hogle H., McWhorter W. P., Wright E., Tran T. D., Bishop D. T., Kushner J. P. and Eyre H. J. (1990) Inheritance of proliferative breast disease in breast cancer kindreds. Science 250:17151720

Struewing J. P., Brody L. C., Erdos M. R., Kase R. G., Giambarresi T. R., Smith S. A., Collins F. S. and Tucker M.A. (1995) Detection of eight BRCA1 mutations in 19 breast/ovarian cancer families, including one family with male breast cancer. Am. J. Hum. Genet. 57:1-7

Tonin P., Moslehi R., Green R., Rosen B., Cole D., Boyd N.,Cutler C., Margolese R., Carter R., McGillivray B., Ives E., LabrieF., Gilchrist D., Morgan K., Simard J. and Narod S. A .(1995) Linkage analysis of 26 Canadian breastovarian cancer families. Hum. Genet. 95:545-550

Wang S. and Hazeirigg T. (1994) Implications for $b c d$ mRNA localization from spatial distribution of exu protein in Drosophila oogenesis. Nature 369:400403

Webb C. D., Decatur A., Teleman A. and Losick R. (1995) Use of green fluorescent protein for visualization of cell-specific gene expression and subcellular protein localization during sporulation in Bacillus subtilis. J. Bacteriol. 177:5906-5911

Wilson C. N., Payton M. N., Pekar S. K., Zhang K., Pacifici R. E., Gudas J. L., Thukral S., Calzone F. J., Reese D. M., Slamon D. I. (1996) BRCAI protein products: antibody specificity. Nature Genet. 13:264-265

Wilson C.N., Payton M. N., Elliott G. S., Buaas F. W., Cajulis E. E., Grosshans D., Ramos L., Reese D. M., Slamon D. J. and Calzone F. J. (1997) Differential subcellular localization, expression and biological toxicity of BRCA1 and splice variant BRCA1- $\Delta 11 \mathrm{lb}$. Oncogene 14: 1-16

Wooster Richard and Stratton Michael R (1995) Breast cancer susceptibility: a complex disease unravels. TIG 11:3-5

Wu L. C., Wang Z. W., Tsan J, T., Spillman M. A., Phung A., Xu X. L., Yang M.-C. W., Hwang L.-X., Bowcock A. M. and Baer R. (1996) Identification of a RING protein that can interact in vivo with the BRCAI gene product. Nature Genet. 14:430-440

Xu C.-F., Brown M. A., Chambers J. A., Griffiths B., Nicolai H. and Solomon E. (1995) Distinct transcription start sites generate two forms of BRCAI mRNA. Hum. Mol. Genet. 4:2259-2264

Zolotukhin S., Potter M., Hauswirth W., Guy J. and Muzyczka N. (1996) A "Humanized" green fluorescent protein cDNA adapted for high-level expression in mammalian cell. J. Virology 70: 4646-4654

APPENDICES

APPENDIX 1.

Human BRCA1 cDNA and protein sequence, Genbank HSU14680

STEKKVDLNADPLCERKEWNKQKLPCSENPRDTEDVPWITLNSSIQKVNEWFSRSDEL LGSDDSHDGESESNAKVADVLDVLNEVDEYSGSSEKIDLLASDPHEALICKSERVHSK SVESNIEDKIFGKTYRKKASLPNLSHVTENLIIGAFVTEPQIIQERPLTNKLKRKRRP TSGLHPEDFIKKADLAVQKTPEMINQGTNQTEQNGQVMNITNSGHENKTKGDSIQNEK NPNPIESLEKESAFKTKAEPISSSISNMELELNIHNSKAPKKNRLRRKSSTRHIHALE LVVSRNLSPPNCTELQIDSCSSSEEIKKKKYNQMPVRHSRNLQLMEGKEPATGAKKSN KPNEQTSKRHDSDTFPELKLTNAPGSFTKCSNTSELKEFVNPSLPREEKEEKLETVKV SNNAEDPKDLMLSGERVLQTERSVESSSISLVPGTDYGTQESISLLEVSTLGKAKTEP NKCVSQCAAFENPKGLIHGCSKDNRNDTEGFKYPLGHEVNHSRETSIEMEESELDAQY LQNTFKVSKRQSFAPFSNPGNAEEECATFSAHSGSLKKQSPKVTFECEQKEENQGKNE SNIKPVQTVNITAGFPVVGQKDKPVDNAKCSIKGGSRFCLSSQFRGNETGLITPNKHG LLQNPYRIPPLFPIKSFVKTKCKKNLLEENFEEHSMSPEREMGNENIPSTVSTISRNN IRENVFKEASSSNINEVGSSTNEVGSSINEIGSSDENIQAELGRNRGPKLNAMLRLGV LQPEVYKQSLPGSNCKHPEIKKQEYEEVVQTVNTDFSPYLISDNLEQPMGSSHASQVC SETPDDLLDDGEIKEDTSFAENDIKESSAVFSKSVQKGELSRSPSPFTHTHLAQGYRR GAKKLESSEENLSSEDEELPCFQHLLFGKVNNIPSQSTRHSTVATECLSKNTEENLLS LKNSLNDCSNQVILAKASQEHHLSEETKCSASLFSSQCSELEDLTANTNTQDPFLIGS SKQMRHQSESQGVGLSDKELVSDDEERGTGLEENNQEEQSMDSNLGEAASGCESETSV SEDCSGLSSQSDILTTQQRDTMQHNLIKLQQEMAELEAVLEQHGSQPSNSYPSIISDS SALEDLRNPEQSTSEKAVLTSQKSSEYPISQNPEGLSADKFEVSADSSTSKNKEPGVE RSSPSKCPSLDDRWYMHSCSGSLQNRNYPSQEELIKVVDVEEQQLEESGPHDLTETSY LPRQDLEGTPYLESGISLFSDDPESDPSEDRAPESARVGNIPSSTSALKVPQLKVAES AQSPAAAHTTDTAGYNAMEESVSREKPELTASTERVNKRMSMVVSGLTPEEFMLVYKF ARKHHITLTNLITEETTHVVMKTDAEFVCERTLKYFLGIAGGKWVVSYFWVTQSIKER KMLNEHDFEVRGDVVNGRNHQGPKRARESQDRKIFRGLEICCYGPFTNMPTDQLEWMV QLCGASVVKELSSFTLGTGVHPIVVVQPDAWTEDNGFHAIGQMCEAPVVTREWVLDSV ALYQCQELDTYLIPQIPHSHY\"

exon	$200 . .253$ /gene=\"BRCA1\" /number=3
exon	254.331 /gene=\"BRCA1\" /number=5
exon	$332 . .420$ /gene=\"BRCA1\" /number=6
exon	421.560 /gene=\"BRCA1\" /number=7
exon	$561 . .665$ /gene=\"BRCA1\" /number=8
exo	$666 . .712$ /gene=\"BRCA1\" /number=9
ex	713.788 /gene=\"BRCAI\" /number=10
exon	$789 . .4215$ /gene=\"BRCA1\" /number=11
exo	4216.4302 /gene=\"BRCA1\" /number=12
exo	4303.4476 /gene=\"BRCA1\" /number=13
exo	4477..4603 /gene=\"BRCA1\" /number=14
exon	4604.4794 /gene=\"BRCAI \" /number=15
exon	4795.5105 /gene=\"BRCA1\" /number=16
exon	5106..5193/gene=\"BRCA1\" /number=17
exon	5194.5273 /gene=\"BRCAl\" /number=18
exon	5274.5310 /gene=\"BRCA1\" /number=19
exon	$5311 . .5396$ /gene=\"BRCA1\" /number=20
exon	5397. 5451 /gene=\"BRCA1\" /number=21
exon	5452..5526/gene=\"BRCAl\" /number=22
exon	5527.5586 /gene=\"BRCA1\" /number=23
exon	5587..5711/gene=\"BRCA1\" /number=24

BASE COUNT 1956 a 1099 c $1274 \mathrm{~g} \quad 1382 \mathrm{t}$

 ORIGIN1 agctcgetga gacttcctgg accccgcacc aggctgtggg gtttctcaga taactgggcc 61 cetgcgetca ggaggecttc accetctgct ctgggtaaag ttcattggaa cagaaagaaa 121 tggatttatc tgctcttcge gttgaagaag tacaaaatgt cattaatgct atgcagaaaa 181 tcttagagtg tcccatctgt ctggagttga tcaaggaacc tgtctccaca aagtgtgacc 241 acatatttg caaatttgc atgctgaaac ttctcaacca gaagaaaggg cettcacagt 301 gtcctttatg taagaatgat ataaccaaaa ggagcctaca agaaagtacg agatttagtc

361 aacttgttga agagctattg aaaatcattt gtgcttttca gcttgacaca ggtttggagt
421 atgcaaacag ctataatttt gcaaaaaagg aaaataactc tcctgaacat ctaaaagatg
481 aagittctat catccaaagt atgggctaca gaaaccgtgc caaaagactt ctacagagtg
541 aacccgaaaa tccttccttg caggaaacca gtctcagtgt ccaactctct aaccttggaa
601 ctgtgagaac tctgaggaca aagcagcgga tacaacctca aaagacgtct gtctacattg
661 aattgggatc tgattcttct gaagataccg ttaataaggc aacttattgc agtgtgggag
721 atcaagaatt gttacaaatc acccctcaag gaaccaggga tgaaatcagt ttggattctg
781 caaaaaagge tgcttgtgaa tttctgaga cggatgtaac aaatactgaa catcatcaac
841 ccagtaataa tgattgaac accactgaga agcgtgcagc tgagaggcat ccagaaaagt
901 atcagggtag ttctgtttca aacttgcatg tggagccatg tggcacaaat actcatgcca
961 gctcattaca gcatgagaac agcagtttat tactcactaa agacagaatg aatgtagaaa
1021 aggctgaatt ctgtaataaa agcaaacagc ctggcttagc aaggagccaa cataacagat
1081 gggctggaag taaggaaaca tgtaatgata ggcggactcc cagcacagaa aaaaaggtag
1141 atctgaatgc tgatcccctg tgtgagagaa aagaatggaa taagcagaaa ctgccatgct
1201 cagagaatce tagagatact gaagatgttc cttggataac actaaatagc agcattcaga
1261 aagttaatga gtggtttcc agaagtgatg aactgttagg ttctgatgac tcacatgatg
1321 gggagtctga atcaaatgcc aaagtagctg atgtattgga cgttctaaat gaggtagatg 1381 aatattctgg ttcttcagag aaaatagact tactggccag tgatcctcat gaggctttaa 1441 tatgtaaaag tgaaagagtt cactccaaat cagtagagag taatattgaa gacaaaatat 1501 ttgggaaaac ctatcggaag aaggcaagcc tccccaactt aagccatgta actgaaaatc 1561 taattatagg agcatttgtt actgagccac agataataca agagcgtccc ctcacaaata 1621 aattaaagcg taaaaggaga cctacatcag gecttcatcc tgaggattt atcaagaaag 1681 cagatttggc agttcaaaag actcctgaaa tgataaatca gggaactaac caaacggagc 1741 agaatggtca agtgatgaat attactaata gtggtcatga gaataaaaca aaaggtgatt 1801 ctattcagaa tgagaaaaat cctaacccaa tagaatcact cgaaaaagaa tctgcttca 1861 aaacgaaage tgaacctata agcagcagta taagcaatat ggaactcgaa ttaaatatcc 1921 acaattcaaa agcacctaaa aagaatagge tgaggaggaa gtcttctacc aggcatattc 1981 atgcgettga actagtagtc agtagaaatc taagcccacc taattgtact gaattgcaaa 2041 ttgatagttg ttctagcagt gaagagataa agaaaaaaaa gtacaaccaa atgccagtca 2101 ggcacagcag aaacctacaa ctcatggaag gtaaagaacc tgcaactgga gccaagaaga 2161 gtaacaagcc aaatgaacag acaagtaaaa gacatgacag cgatactttc ccagagetga 2221 agttaacaaa tgcacctggt tctttacta agtgttcaaa taccagtgaa cttaaagaat 2281 ttgtcaatcc tagccttcca agagaagaaa aagaagagaa actagaaaca gttaaagtgt 2341 ctaataatgc tgaagacccc aaagatctca tgttaagtgg agaaagggtt ttgcaaactg
2401 aaagatctgt agagagtagc agtattcat tggtacctgg tactgattat ggcactcagg
2461 aaagtatctc gttactggaa gttagcactc tagggaaggc aaaaacagaa ccaaataaat
2521 gtgtgagtca gtgtgcagca ttgaaaacc ccaagggact aattcatggt tgttccaaag
2581 ataatagaaa tgacacagaa ggctttaagt atccattggg acatgaagtt aaccacagtc
2641 gggaaacaag catagaaatg gaagaaagtg aacttgatge tcagtatttg cagaatacat 2701 tcaaggtttc aaagcgccag tcattgetc cgttttcaaa tccaggaaat gcagaagagg 2761 aatgtgcaac attctctgcc cactctgggt ccttaaagaa acaaagtcca aaagtcactt 2821 ttgaatgtga acaaaaggaa gaaaatcaag gaaagaatga gtctaatatc aagcctgtac 2881 agacagttaa tatcactgca ggctttcttg tggttggtca gaaagataag ccagttgata 2941 atgccaaatg tagtatcaaa ggaggctcta ggtttgtct atcatctcag ttcagaggca 3001 acgaaactgg actcattact ccaaataaac atggactttt acaaaaccca tatcgtatac 3061 caccacttt tcccatcaag tcattgtta aaactaaatg taagaaaaat ctgctagagg 3121 aaaactttga ggaacattca atgtcacctg aaagagaaat gggaaatgag aacattccaa 3181 gtacagtgag cacaattagc cgtaataaca ttagagaaaa tgttttaaa gaagccagct 3241 caagcaatat taatgaagta ggttccagta ctaatgaagt gggctccagt attaatgaaa 3301 taggttccag tgatgaaaac attcaagcag aactaggtag aaacagaggg ccaaaattga 3361 atgctatgct tagattaggg gtttgcaac ctgaggtcta taaacaaagt cttcctggaa 3421 gtaattgtaa gcatcctgaa ataaaaaage aagaatatga agaagtagtt cagactgtta 3481 atacagattt ctctccatat ctgatttcag ataacttaga acagcctatg ggaagtagtc 3541 atgcatctca ggttggtct gagacacctg atgacctgtt agatgatggt gaaataaagg 3601 aagatactag tttgctgaa aatgacatta aggaaagttc tgctgtttt agcaaaagcg 3661 tccagaaagg agagcttagc aggagtccta geccttcac ccatacacat ttggctcagg 3721 gttaccgaag aggggccaag aaattagagt cctcagaaga gaacttatct agtgaggatg 3781 aagagcttcc ctgcttccaa cacttgttat ttggtaaagt aaacaatata ccttctcagt

3841 ctactaggca tagcaccgtt gctaccgagt gtctgtctaa gaacacagag gagaatttat 3901 tatcattgaa gaatagctta aatgactgca gtaaccaggt aatattggca aaggcatctc 3961 aggaacatca ccttagtgag gaaacaaaat gttctgctag cttgtttct tcacagtgca 4021 gtgaattgga agacttgact gcaaatacaa acacccagga tccttcttg attggttctt 4081 ccaaacaaat gaggcatcag tctgaaagcc agggagttgg tctgagtgac aaggaattgg 4141 tttcagatga tgaagaaaga ggaacgggct tggaagaaaa taatcaagaa gagcaaagca 4201 tggattcaaa cttaggtgaa gcagcatctg ggtgtgagag tgaaacaagc gtctctgaag 4261 actgctcagg gctatcctct cagagtgaca tttaaccac tcagcagagg gataccatgc 4321 aacataacct gataaagctc cagcaggaaa tggetgaact agaagctgtg ttagaacagc 4381 atgggagcca gccttctaac agctaccett ccatcataag tgactcttct gccettgagg 4441 acctgcgaaa tccagaacaa agcacatcag aaaaagcagt attaacttca cagaaaagta 4501 gtgaataccc tataagccag aatccagaag gccttctgc tgacaagttt gaggtgtctg 4561 cagatagttc taccagtaaa aataaagaac caggagtgga aaggtcatcc ccttctaaat 4621 gcccatcatt agatgatagg tggtacatgc acagttgctc tgggagtctt cagaatagaa 4681 actacccatc tcaagaggag ctcattaagg ttgttgatgt ggaggagcaa cagctggaag 4741 agtctgggcc acacgatttg acggaaacat cttacttgcc aaggcaagat ctagagggaa 4801 ccccttacct ggaatctgga atcagcctct tctctgatga ccctgaatct gatccttctg 4861 aagacagagc cccagagtca getcgtgttg gcaacatacc atcttcaacc tctgcattga 4921 aagttcccca attgaaagtt gcagaatctg cccagagtcc agctgctgct catactactg 4981 atactgctgg gtataatgca atggaagaaa gtgtgagcag ggagaagcca gaattgacag 5041 cttcaacaga aagggtcaac aaaagaatgt ccatggtggt gtctggcctg accccagaag 5101 aatttatgct cgtgtacaag tttgccagaa aacaccacat cactttaact aatctaatta 5161 ctgaagagac tactcatgtt gttatgaaaa cagatgctga gttgtgtgt gaacggacac 5221 tgaaatattt tctaggaatt gcgggaggaa aatgggtagt tagctatttc tgggtgaccc 5281 agtctattaa agaaagaaaa atgctgaatg agcatgattt tgaagtcaga ggagatgtgg 5341 tcaatggaag aaaccaccaa ggtccaaage gagcaagaga atcccaggac agaaagatct 5401 tcagggggct agaaatctgt tgctatgggc ccttcaccaa catgcccaca gatcaactgg 5461 aatggatggt acagctgtgt ggtgettctg tggtgaagga gettcatca ttcaccettg 5521 gcacaggtgt ccacccaatt gtggttgtgc agccagatge ctggacagag gacaatgget 5581 tccatgcaat tgggcagatg tgtgaggcac ctgtggtgac ccgagagtgg gtgttggaca 5641 gtgtagcact ctaccagtgc caggagctgg acacctacct gataccccag atcccccaca 5701 gccactactg a

APPENDIX 2.

Cloning vector pEGFP-N2 with enhanced green fluorescent protein gene, complete sequence. Genebank U57608

LOCUS	CVU57608 4737 bp DNA circular SYN 14-SEP-1996
DEFINITION	Cloning vector pEGFP-N2 with enhanced green fluorescent protein gene, complete sequence.
ACCESSION	U57608
NID	g1543069
KEYWORDS	
SOURCE	Cloning vector $\mathrm{pEGFP}-\mathrm{N} 2$.
ORGANISM	Cloning vector pEGFP-N2 artificial sequence; cloning vectors.
REFERENCE	1 (bases 1 to 4737) AUTHORS Cormack,B.P., Valdivia,R. and Falkow,S. TITLE FACS-optimized mutants of the green fluorescent protein (GFP) JOURNAL Gene (1996) In press
REFERENCE	2 (bases 1 to 4737) AUTHORS Kitts,P.A. TITLE pEGFP-N2 complete sequence JOURNAL Unpublished
REFERENCE	3 (bases 1 to 4737) AUTHORS Kitts,P.A. TITLE Direct Submission JOURNAL Submitted (06-MAY-1996) P.A. Kitts, CLONTECH Laboratories, Inc., 1020 East Meadow Circle, Palo Alto, CA 94303-4230, USA
COMMENT	This vector can be obtained from CLONTECH Laboratories, Inc., 1020 East Meadow Circle, Palo Alto, CA 94303-4230, USA. To place an order call (415) 424-8222 or (800) 662-2566, extension 1. International customers, please contact your local distributor. For technical information, call (415) 424-8222 or (800) 6622566, extension 3. This sequence has been compiled from information in the sequence databases, published literature and other sources, together with partial sequences obtained by CLONTECH. If you suspect there is an error in this sequence, please contact CLONTECH's Technical Service Department at (415) 424-8222 or (800) 662-2566, extension 3 or E-mail TECH@CLONTECH.COM.FEATURES
FEATURES source CDS	Location/Qualifiers
	$1 . .4737$
	/organism="Cloning vector pEGFP-N2"
	683.1402
	/gene="egfp"
	/codon_start=1
	/product="Enhanced Green Fluorescent Protein"
	/db_xref="PID:gl373322"
	/transl_table $=11$
/translation="MVSKGEELFTGVVPILVELDGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKL	
PVPWPTLVTTLTYGVQCFSRYPDHMKQHDFFKSAMPEGYVQERTIFFKDDGNYKTRAEVKFE	
GDTLVNRIELKGIDFKEDGNILGHKLEYNYNSHNVYIMADKQKNGIKVNFKIRHNIEDGSVQL	
ADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDH MVLLEFVTAAGITLGMDELYK" gene $683 . .1402$	
/gene="egfp"	
CDS 2633.. 3427	
/codon_start=1	
/product="neomycin phosphotransferase"	
/db_xref="PID:g1373323"	
/transl_table $=11$	
/translation="MIEQDGLHAGSPAAWVERLFGYDWAQQTIGCSDAAVFRLSAQGRPVLFVKTDL	
SGALNELQDEAARLSWLATTGVPCAAVLDVVTEAGRDWLLLGEVPGQDLLSSHLAPAEKVSI	
MADAMRRLHTLDPATCPFDHQAKHRIERARTRMEAGLVDQDDLDEEHQGLAPAELFARLKA	

SMPDGEDLVVTHGDACLPNIMVENGRFSGFIDCGRLGVADRYQDIALATRDIAEELGGEWAD RFLVLYGIAAPDSQRIAFYRLLDEFF"

BASE COUNT $\quad 1140 \mathrm{a} \quad 1287 \mathrm{c} \quad 1248 \mathrm{~g} 1062 \mathrm{t}$
ORIGIN

1 tagttattaa tagtaatcaa ttacggggtc attagttcat agcccatata tggagttccg 61 cgttacataa cttacggtaa atggcccgcc tggctgaccg cccaacgacc cccgcccatt 121 gacgtcaata atgacgtatg ttcccatagt aacgecaata gggactttcc attgacgtca 181 atgggtggag tattacggt aaactgccca cttggcagta catcaagtgt atcatatgce 241 aagtacgecc cctattgacg tcaatgacgg taaatggccc gcctggcatt atgcceagta 301 catgacctta tgggactttc ctacttggea gtacatctac gtattagtca tcgetattac
361 catggtgatg cggtttggc agtacatcaa tgggcgtgga tagcggtttg actcacgggg 421 atttccaagt ctccacceca ttgacgtcaa tgggagtttg ttttggcacc aaaatcaacg 481 ggactttcca aaatgtcgta acaactccge cccattgacg caaatgggcg gtaggegtgt 541 acggtgggag gtctatataa gcagagctgg tttagtgaac cgtcagatcc gctagcgcta 601 ccggactcag atctcgagct caagcttcga attctgcagt cgacggtacc gcgggeccgg 661 gatccaccgg ccggtcgeca ccatggtgag caagggcgag gagctgttca ccggggtggt 721 gcccatcctg gtcgagctgg acggcgacgt aaacggccac aagttcagcg tgtccggcga 781 gggcgaggge gatgccacct acggcaagct gaccetgaag ttcatctgca ccaccggcaa 841 gctgccegtg ccctggccca ccctcgtgac caccetgacc tacggcgtge agtgcttcag 901 ccgetaccec gaccacatga agcagcacga ettcttcaag tccgccatge ccgaaggeta 961 cgtccaggag cgcaccatct tcttcaagga cgacggcaac tacaagacce gcgccgaggt 1021 gaagttcgag ggcgacaccc tggtgaaccg catcgagctg aagggcatcg acttcaagga 1081 ggacggcaac atcctggggc acaagetgga gtacaactac aacagccaca acgtctatat 1141 catggccgac aagcagaaga acggcatcaa ggtgaacttc aagatccgcc acaacatcga 1201 ggacggcagc gtgcagctcg ccgaccacta ccagcagaac acccccatcg gcgacggccc 1261 cgtgctgctg cccgacaacc actacctgag cacccagtcc gccetgagca aagaccccaa 1321 cgagaagcge gatcacatgg tcctgctgga gttcgtgacc gccgccggga tcactctcgg 1381 catggacgag ctgtacaagt aaagcggccg cgactctaga tcataatcag ccataccaca 1441 tttgtagagg tttacttge tttaaaaaac ctcccacacc tccccctgaa cctgaaacat 1501 aaaatgaatg caattgttgt tgttaacttg tttattgcag cttataatgg ttacaaataa 1561 agcaatagca tcacaaattt cacaaataaa gcatttttt cactgcattc tagttgtggt 1621 ttgtccaaac tcatcaatgt atcttaaggc gtaaattgta agcgttaata tttgttaaa 1681 attcgcgtta aattttgit aaatcagctc atttttaac caataggccg aaatcggcaa 1741 aatcccttat aaatcaaaag aatagaccga gatagggttg agtgttgttc cagttggaa 1801 caagagtcca ctattaaaga acgtggactc caacgtcaaa gggcgaaaaa ccgtctatca 1861 gggcgatgge ccactacgtg aaccatcacc ctaatcaagt ttttggggt cgaggtgccg 1921 taaagcacta aatcggaacc ctaaagggag cccccgattt agagcttgac ggggaaagcc 1981 ggcgaacgtg gcgagaaagg aagggaagaa agcgaaagga gcgggcgcta gggcgctggc 2041 aagtgtagcg gtcacgctgc gcgtaaccac cacacccgcc gcgcttaatg cgccgctaca 2101 gggcgcgtca ggtggcactt ttcggggaaa tgtgcgcgga acccctattt gtttatttt 2161 ctaaatacat tcaaatatgt atccgctcat gagacaataa ccctgataaa tgcttcaata 2221 atattgaaaa aggaagagtc ctgaggcgga aagaaccagc tgtggaatgt gtgtcagtta
2281 gggtgtggaa agtccccagg ctccccagca ggcagaagta tgcaaagcat gcatctcaat 2341 tagtcagcaa ccaggtgtgg aaagtcccca ggctccccag caggcagaag tatgcaaagc 2401 atgcatctca attagtcagc aaccatagtc ccgcccetaa ctecgcceat cccgccccta 2461 actccgecca gttccgecca ttctccgcce catggctgac taatttttt tatttatgca 2521 gaggccgagg ccgcctcggc ctctgagcta ttccagaagt agtgaggagg ctttttgga 2581 ggectagget tttgcaaaga tcgatcaaga gacaggatga ggatcgtttc gcatgattga 2641 acaagatgga ttgcacgcag gttctccggc cgcttgggtg gagaggctat tcggctatga 2701 ctgggcacaa cagacaatcg gctgctctga tgccgccgtg ttccggctgt cagcgcaggg 2761 gcgcccggtt cttttgtca agaccgacct gtccggtgcc ctgaatgaac tgcaagacga
2821 ggcagcgcgg ctatcgtggc tggccacgac gggcgttcct tgcgcagctg tgctcgacgt
2881 tgtcactgaa gcgggaaggg actggctgct attgggcgaa gtgccggggc aggatctcct 2941 gtcatctcac cttgctcctg ccgagaaagt atccatcatg getgatgcaa tgcggcggct
3001 gcatacgctt gatccggcta cctgcccatt cgaccaccaa gcgaaacatc gcatcgagcg
3061 agcacgtact cggatggaag ccggtcttgt cgatcaggat gatctggacg aagagcatca
3121 ggggctcgeg ccagccgaac tgttcgccag gctcaaggcg agcatgcccg acggcgagga

3181 tctcgtcgtg acccatggcg atgcctgctt gccgaatatc atggtggaaa atggccgctt 3241 ttctggattc atcgactgtg gccggctggg tgtggcggac cgctatcagg acatagcgtt 3301 ggctacccgt gatattgctg aagagcttgg cggcgaatgg gctgaccgct tcctcgtgct 3361 ttacggtatc gccgctcccg attcgcagcg catcgccttc tatcgccttc ttgacgagtt 3421 cttctgagcg ggactctggg gttcgaaatg accgaccaag cgacgcccaa cctgccatca 3481 cgagatttcg attccaccge cgcettctat gaaaggttgg gcttcggaat cgtttccgg 3541 gacgecggct ggatgatcct ccagcgeggg gatctcatgc tggagttctt cgcccaccet 3601 agggggaggc taactgaaac acggaaggag acaataccgg aaggaacccg cgctatgacg 3661 gcaataaaaa gacagaataa aacgcacggt gttgggtcgt ttgttcataa acgcggggtt 3721 cggtcccagg gctggcactc tgtcgatacc ccaccgagac cccattgggg ccaatacgcc 3781 cgcgtttctt cctttcccc accccacccc ccaagttcgg gtgaaggccc agggctcgca 3841 gccaacgtcg gggcggcagg ccctgccata gcctcaggtt actcatatat acttagatt 3901 gatttaaaac ttcatttta atttaaaagg atctaggtga agatccttt tgataatctc 3961 atgaccaaaa tccettaacg tgagtttcg ttccactgag cgtcagaccc cgtagaaaag 4021 atcaaaggat cttcttgaga tcctttttt ctgcgegtaa tctgctgctt gcaaacaaaa 4081 aaaccaccgc taccagcggt ggttgtttg ccggatcaag agctaccaac tcttttccg 4141 aaggtaactg gcttcagcag agcgcagata ccaaatactg tccttctagt gtagccgtag 4201 ttaggccacc acttcaagaa ctctgtagca ccgcctacat acctcgctct gctaatcctg 4261 ttaccagtgg ctgctgccag tggegataag tcgtgtctta ccgggttgga ctcaagacga 4321 tagttaccgg ataaggcgca gcggtcgggc tgaacggggg gttcgtgcac acagcccagc 4381 ttggagcgaa cgacctacac cgaactgaga tacctacagc gtgagctatg agaaagcgcc 4441 acgettcccg aagggagaaa ggcggacagg tatccggtaa gcggcagggt cggaacagga 4501 gagcgcacga gggagcttcc agggggaaac gcctggtatc tttatagtcc tgtcgggttt 4561 cgccacctct gacttgagcg tcgattttg tgatgctcgt caggggggcg gagcctatgg 4621 aaaaacgeca gcaacgeggc cttttacgg ttcctggcct ttgctggcc tttgctcac 4681 atgttcttc ctgcgttatc ccctgattct gtggataace gtattaccge catgcat

APPENDIX 3.

Restriction endonuclase map of the pLXSN-BRCA1 eukaryotic expression vector.

pLXSN-BRCA1 (11544 base pairs)

GAATTGCTAGCAATTGCTAGCAATTGCTAGCAATTCATACCAGATCACCGAAAACTGTCCTCCAAATGTG	Base pairs
CTTAACGATCGTTAACGATCGTTAACGATCGTTAAGTATGGTCTAGTGGCTTTTGACAGGAGGTTTACAC	1 to 70
TCCCCCTCACACTCCCAAATTCGCGGGCTTCTGCCTCTTAGACCACTCTACCCTATTCCCCACACTCACC	Base pairs
AGGGGGAGTGTGAGGGTTTAAGCGCCCGAAGACGGAGAATCTGGTGAGATGGGATAAGGGGTGTGAGTGG	71 to 140
GGAGCCAAAGCCGCGGCCCTTCCGTTTCTTTGCTTTTGAAAGACCCCACCCGTAGGTGGCAAGCTAGCTT	Base pairs
CCTCGGTTTCGGCGCCGGGAAGGCAAAGAAACGAAAACTTTCTGGGGTGGGCATCCACCGTTCGATCGAA	141 to 210
AAGTAACGCCACTTTGCAAGGCATGGAAAAATACATAACTGAGAATAGAAAAGTTCAGATCAAGGTCAGG	Base pairs
TTCATTGCGGTGAAACGTTCCGTACCTTTTTATGTATTGACTCTTATCTTTTCAAGTCTAGTTCCAGTCC	211 to 280
AACAAAGAAACAGCTGAATACCAAACAGGATATCTGTGGTAAGCGGTTCCTGCCCCGGCTCAGGGCCAAG	Base pairs
TTGTTTCTTTGTCGACTTATGGTTTGTCCTATAGACACCATTCGCCAAGGACGGGGCCGAGTCCCGGTTC	281 to 350
AACAGATGAGACAGCTGAGTGATGGGCCAAACAGGATATCTGTGGTAAGCAGTTCCTGCCCCGGCTCGGG	Base pairs
TTGTCTACTCTGTCGACTCACTACCCGGTTTGTCCTATAGACACCATTCGTCAAGGACGGGGCCGAGCCC	351 to 420
GCCAAGAACAGATGGTCCCCAGATGCGGTCCAGCCCTCAGCAGTTTCTAGTGAATCATCAGATGTTTCCA	Base pairs
CGGTTCTTGTCTACCAGGGGTCTACGCCAGGTCGGGAGTCGTCAAAGATCACTTAGTAGTCTACAAAGGT	421 to 490
GGGTGCCCCAAGGACCTGAAAATGACCCTGTACCTTATTTGAACTAACCAATCAGTTCGCTTCTCGCTTC	Base pairs
CCCACGGGGTTCCTGGACTTTTACTGGGACATGGAATAAACTTGATTGG1TAGTCAAGCGAAGAGCGAAG	491 to 560
TGTTCGCGCGCTTCCGCTCTCCGAGCTCAATAAAAGAGCCCACAACCCCTCACTCGGCGCGCCAGTCTTC	Base pairs
ACAAGCGCGCGAAGGCGAGAGGCTCGAGTTATTTTCTCGGGTGTTGGGGAGTGAGCCGCGCGGTCAGAAG	561 to 630
CGATAGACTGCGTCGCCCGGGTACCCGTATTCCCAATAAAGCCTCTTGCTGTTTGCATCCGAATCGTGGT	Base pairs
GCTATCTGACGCAGCGGGCCCATGGGCATAAGGGTTATTTCGGAGAACGACAAACGTAGGCTTAGCACCA	631 to 700
CTCGCTGTTCCTTGGGAGGGTCTCCTCTGAGTGATTGACTACCCACGACGGGGGTCTTTCATTTGGGGGC	Base pairs
GAGCGACAAGGAACCCTCCCAGAGGAGACTCACTAACTGATGGGTGCTGCCCCCAGAAAGTAAACCCCCG	701 to 770
TCGTCCGGGATTTGGAGACCCCTGCCCAGGGACCACCGACCCACCACCGGGAGGTAAGCTGGCCAGCAAC	Base pairs
AGCAGGCCCTAAACCTCTGGGGACGGGTCCCTGGTGGCTGGGTGGTGGCCCTCCATTCGACCGGTCGTTG	771 to 840
TTATCTGTGTCTGTCCGATTGTCTAGTGTCTATGTTTGATGTTATGCGCCTGCGTCTGTACTAGTTAGCT	Base pairs
AATAGACACAGACAGGCTAACAGATCACAGATACAAACTACAATACGCGGACGCAGACATGATCAATCGA	841 to 910
AACTAGCTCTGTATCTGGCGGACCCGTGGTGGAACTGACGAGTTCTGAACACCCGGCCGCAACCCTGGGA	Base pairs
TTGATCGAGACATAGACCGCCTGGGCACCACCTTGACTGCTCAAGACTTGTGGGCCGGCGTTGGGACCCT	911 to 980
GACGTCCCAGGGACTTTGGGGGCCGTTTTTGTGGCCCGACCTGAGGAAGGGAGTCGATGTGGAATCCGAC	Base pairs
CTGCAGGGTCCCTGAAACCCCCGGCAAAAACACCGGGCTGGACTCCTTCCCTCAGCTACACCTTAGGCTG	981 to 1050
CCCGTCAGGATATGTGGTTCTGGTAGGAGACGAGAACCTAAAACAGTTCCCGCCTCCGTCTGAATTTTTG	Base pairs
GGGCAGTCCTATACACCAAGACCATCCTCTGCTCTTGGATTTTGTCAAGGGCGGAGGCAGACTTAAAAAC	1051 to 1120
CTTTCGGTTTGGAACCGAAGCCGCGCGTCTTGTCTGCTGCAGCGCTGCAGCATCGTTCTGTGTTGTCTCT	Base pairs
GAAAGCCAAACCTTGGCTTCGGCGCGCAGAACAGACGACGTCGCGACGTCGTAGCAAGACACAACAGAGA	1121 to 1190

GTCTGACTGTGTTTCTGTATTTGTCTGAAAATTAGGGCCAGACTGTTACCACTCCCTTAAGTTTGACCTT	Base pairs
CAGACTGACACAAAGACATAAACAGACTTTTAATCCCGGTCTGACAATGGTGAGGGAATTCAAACTGGAA	1191 to 1260
AGGTCACTGGAAAGATGTCGAGCGGATCGCTCACAACCAGTCGGTAGATGTCAAGAAGAGACGTTGGGTT	Base pairs
TCCAGTGACCTTTCTACAGCTCGCCTAGCGAGTGTTGGTCAGCCATCTACAGTTCTTCTCTGCAACCCAA	1261 to 1330
ACCTTCTGCTCTGCAGAATGGCCAACCTTTAACGTCGGATGGCCGCGAGACGGCACCTTTAACCGAGACC	Base pairs
TGGAAGAUGAGACGTCTTACCGGTTGGAAATTGCAGCCTACCGGCGCTCTGCCGTGGAAATTGGCTCTGG	1331 to 1400
TCATCACCCAGGTTAAGATCAAGGTCTTTTCACCTGGCCCGCATGGACACCCAGACCAGGTCCCCTACAT	Base pairs
AGTAGTGGGTCCAATTCTAGTTCCAGAAAAGTGGACCGGGCGTACCTGTGGGTCTGGTCCAGGGGATGTA	1401 to 1470
CGTGACCTGGGAAGCCTTGGCTTTTGACCCCCCTCCCTGGGTCAAGCCCTTTGGTACACCCTAAGCCTCCG	Base pairs
GCACTGGACCCTTCGGAACCGAAAACTGGGGGGAGGGACCCAGTTCGGGAAACATGTGGGATTCGGAGGC	1471 to 1540
CCTCCTCTTCCTCCATCCGCCCCGTCTCTCCCCCTTGAACCTCCTCGTTCGACCCCGCCTCGATCCTCCC	Base pairs
GGAGGAGAAGGAGGTAGGCGGGGCAGAGAGGGGGAACTTGGAGGAGCAAGCTGGGGCGGAGCTAGGAGGG	1541 to 1610
TTTATCCAGCCCTCACTCCTTCTCTAGGCGCCGGAATTCGTTAAGTCGAGTCTAGAGGATCCCCCCTCTG	Base pairs
AAATAGGTCGGGAGTGAGGAAGAGATCCGCGGCCTTAAGCAATTCAGCTCAGATCTCCTAGGGGGGAGAC	1611 to 1680
CTCTGGGTAAAGTTCATTGGAACAGAAAGAAATGGATTTATCTGCTCTTCGCGTTGAAGAAGTACAAAAT	Base pairs
GAGACCCATTTCAAGTAACCTTGTCTTTCTTTACCTAAATAGACGAGAAGCGCAACTTCTTCATGTTTTA	1681 to 1750
GTCATTAATGCTATGCAGAAAATCTTAGAGTGTCCCATCTGTCTGGAGTTGATCAAGGAACCTGTCTCCA	Base pairs
CAGTAATTACGATACGTCTTTTAGAATCTCACAGGGTAGACAGACCTCAACTAGTTCCTTGGACAGAGGT	1751 to 1820
CAAAGTGTGACCACATATTTTGCAAATTTTGCATGCTGAAACTTCTCAACCAGAAGAAAGGGCCTTCACA	Base pairs
GTTTCACACTGGTGTATAAAACGTTTAAAACGTACGACTTTGAAGAGTTGGTCTTCTTTCCCGGAAGTGT	1821 to 1890
GTGTCCTTTATGTAAGAATGATATAACCAAAAGGAGCCTACAAGAAAGTACGAGATTTAGTCAACTTGTT	Base pairs
CACAGGAAATACATTCTTACTATATTGGTTTTCCTCGGATGTTCTTTCATGCTCTAAATCAGT゙TGAACAA	1891 to 1960
GAAGAGCTATTGAAAATCATTTGTGCTTTTCAGCTTGACACAGGTTTGGAGTATGCAAACAGCTATAATT	Base pairs
CTTCTCGATAACTTTTAGTAAACACGAAAAGTCGAACTGTGTCCAAACCTCATACGTTTGTCGATATTAA	1961 to 2030
TTGCAAAAAAGGAAAATAACTCTCCTGAACATCTAAAAGATGAAGTTTCTATCATCCAAAGTATGGGCTA	Base pairs
AACGTTTTTTCCTTTTATTGAGAGGACTTGTAGATTTTCTACTTCAAAGATAGTAGGTTTCATACCCGAT	2031 to 2100
CAGAAACCGTGCCAAAAGACTTCTACAGAGTGAACCCGAAAATCCTTCCTTGCAGGAAACCAGTCTCAGT	Base pairs
GTCTTTGGCACGGTTTTCTGAAGATGTCTCACTTGGGCTTTTAGGAAGGAACGTCCTTTGGTCAGAGTCA	2101 to 2170
GTCCAACTCTCTAACCTTGGAACTGTGAGAACTCTGAGGACAAAGCAGCGGATACAACCTCAAAAGACGT	Base pairs
CAGGTTGAGAGATTGGAACCTTGACACTCTTGAGACTCCTGTTTCGTCGCCTATGTTGGAGTTTTCTGCA	2171 to 2240
CTGTCTACATTGAATTGGGATCTGATTCTTCTGAAGATACCGTTAATAAGGCAACTTATTGCAGTGTGGG	Base pairs
GACAGATGTAACTTAACCCTAGACTAAGAAGACTTCTATGGCAATTATTCCGTTGAATAACGTCACACCC	2241 to 2310
AGATCAAGAATTGTTACAAATCACCCCTCAAGGAACCAGGGATGAAATCAGTTTGGATTCTGCAAAAAAG	Base pairs
TCTAGTTCTTAACAATGTTTAGTGGGGAGTTCCTTGGTCCCTACTTTAGTCAAACCTAAGACGTTTTTTC	2311 to 2380
GCTGCTTGTGAATTTTCTGAGACGGATGTAACAAATACTGAACATCATCAACCCAGTAATAATGATTTGA CGACGAACACTTAAAAGACTCTGCCTACATTGTTTATGACTTGTAGTAGTTGGGTCATTATTACTAAACT	Base pairs 2381 to 2450
ACACCACTGAGAAGCGTGCAGCTGAGAGGCATCCAGAAAAGTATCAGGGTAGTTCTGTTTCAAACTTGCA	Base pairs
TGTGGTGACTCTTCGCACGTCGACTCTCCGTAGGTCTTTTCATAGTCCCATCAAGACAAAGTTTGAACGT	2451 to 2520
TGTGGAGCCATGTGGCACAAATACTCATGCCAGCTCATTACAGCATGAGAACAGCAGTTTATTACTCACT	Base pairs
ACACCTCGGTACACCGTGTTTATGAGTACGGTCGAGTAATGTCGTACTCTTGTCGTCAAATAATGAGTGA	2521 to 2590

AAAGACAGAATGAATGTAGAAAAGGCTGAATTCTGTAATAAAAGCAAACAGCCTGGCTTAGCAAGGAGCC	Base pairs
TTTCTGTCTTACTTACATCTTTTCCGACTTAAGACATTATTTTCGTTTGTCGGACCGAATCGTTCCTCGG	2591 to 2660
AACATAACAGATGGGCTGGAAGTAAGGAAACATGTAATGATAGGCGGACTCCCAGCACAGAAAAAAAGGT	Base pairs
TTGTATTGTCTACCCGACCTTCATTCCTTTGTACATTACTATCCGCCTGAGGGTCGTGTCTTTTTTTCCA	2661 to 2730
AGATCTGAATGCTGATCCCCTGTGTGAGAGAAAAGAATGGAATAAGCAGAAACTGCCATGCTCAGAGAAT	Base pairs
TCTAGACTTACGACTAGGGGACACACTCTCTTTTCTTACCTTATTCGTCTTTGACGGTACGAGTCTCTTA	2731 to 2800
CCTAGAGATACTGAAGATGTTCCTTGGATAACACTAAATAGCAGCATTCAGAAAGTTAATGAGTGGTTTT	Base pairs
GGATCTCTATGACTTCTACAAGGAACCTATTGTGATTTATCGTCGTAAGTCTTTCAATTACTCACCAAAA	2801 to 2870
CCAGAAGTGATGAACTGTTAGGTTCTGATGACTCACATGATGGGGAGTCTGAATCAAATGCCAAAGTAGC	Base pairs
GGTCTTCACTACTTGACAATCCAAGACTACTGAGTGTACTACCCCTCAGACTTAGTTTACGGTTTCATCG	2871 to 2940
TGATGTATTGGACGTTCTAAATGAGGTAGATGAATATTCTGGTTCTTCAGAGAAAATAGACTTACTGGCC	Base pairs
ACTACATAACCTGCAAGATTTACTCCATCTACTTATAAGACCAAGAAGTCTCTTTTATCTGAATGACCGG	2941 to 3010
AGTGATCCTCATGAGGCTTTAATATGTAAAAGTGAAAGAGTTCACTCCAAATCAGTAGAGAGTAATATTG	Base pairs
TCACTAGGAGTACTCCGAAATTATACATTTTCACTTTCTCAAGTGAGGTTTAGTCATCTCTCATTATAAC	3011 to 3080
AAGACAAAATATTTGGGAAAACCTATCGGAAGAAGGCAAGCCTCCCCAACTTAAGCCATGTAACTGAAAA	Base pairs
TTCTGTTTTATAAACCCTTTTGGATAGCCTTCTTCCGTTCGGAGGGGTTGAATTCGGTACATTGACTTTT	3081 to 3150
TCTAATTATAGGAGCATTTGTTACTGAGCCACAGATAATACAAGAGCGTCCCCTCACAAATAAATTAAAG	Base pairs
AGATTAATATCCTCGTAAACAATGACTCGGTGTCTATTATGTTCTCGCAGGGGAGTGTTTATTTAATTTC	3151 to 3220
CGTAAAGGAGACCTACATCAGGCCTTCATCCTGAGGATTTTATCAAGAAAGCAGATTTGGCAGTTCAAA	Base pairs
GCATTTTCCTCTGGATGTAGTCCGGAAGTAGGACTCCTAAAATAGTTCTTTCGTCTAAACCGTCAAGTTT	3221 to 3290
AGACTCCTGAAATGATAAATCAGGGAACTAACCAAACGGAGCAGAATGGTCAAGTGATGAATATTACTAA	Base pairs
TCTGAGGACTTTACTATTTAGTCCCTTGATTGGTTTGCCTCGTCTTACCAGTTCACTACTTATAATGATT	3291 to 3360
TAGTGGTCATGAGAATAAAACAAAAGGTGATTCTATTCAGAATGAGAAAAATCCTAACCCAATAGAATCA	Base pairs
ATCACCAGTACTCTTATTTTGTTTTCCACTAAGATAAGTCTTACTCTTTTTAGGATTGGGTTATCTTAGT	3361 to 3430
CTCGAAAAAGAATCTGCTTTCAAAACGAAAGCTGAACCTATAAGCAGCAGTATAAGCAATATGGAACTCG	Base pairs
GAGCTTTTTCTTAGACGAAAGTTTTGCTTTCGACTTGGATATTCGTCGTCATATTCGTTATACCTTGAGC	3431 to 3500
AATTAAATATCCACAATTCAAAAGCACCTAAAAAGAATAGGCTGAGGAGGAAGTCTTCTACCAGGCATAT	Base pairs
TTAATTTATAGGTGTTAAGTTTTCGTGGATTTTTCTTATCCGACTCCTCCTTCAGAAGATGGTCCGTATA	3501 to 3570
TCATGCGCTTGAACTAGTAGTCAGTAGAAATCTAAGCCCACCTAATTGTACTGAATTGCAAATTGATAGT	Base pairs
AGTACGCGAACTTGATCATCAGTCATCTTTAGATTCGGGTGGATTAACATGACTTAACGTTTAACTATCA	3571 to 3640
TGTTCTAGCAGTGAAGAGATAAAGAAAAAAAAGTACAACCAAATGCCAGTCAGGCACAGCAGAAACCTAC	Base pairs
ACAAGATCGTCACTTCTCTATTTCTTTTTTTTCATGTTGGTTTACGGTCAGTCCGTGTCGTCTTTGGATG	3641 to 3710
AACTCATGGAAGGTAAAGAACCTGCAACTGGAGCCAAGAAGAGTAACAAGCCAAATGAACAGACAAGTAA	Base pairs
TTGAGTACCTTCCATTTCTTGGACGTTGACCTCGGTTCTTCTCATTGTTCGGTTTACTTGTCTGTTCATT	3711 to 3780
AAGACATGACAGCGATACTTTCCCAGAGCTGAAGTTAACAAATGCACCTGGTTCTTTTACTAAGTGTTCA	Base pairs
TTCTGTACTGTCGCTATGAAAGGGTCTCGACTTCAATTGTTTACGTGGACCAAGAAAATGATTCACAAGT	3781 to 3850
AATACCAGTGAACTTAAAGAATTTGTCAATCCTAGCCTTCCAAGAGAAGAAAAAGAAGAGAAACTAGAAA	Base pairs
TTATGGTCACTTGAATTTCTTAAACAGTTAGGATCGGAAGGTTCTCTTCTTTTTCTTCTCTTTGATCTTT	3851 to 3920
CAGTTAAAGTGTCTAATAATGCTGAAGACCCCAAAGATCTCATGTTAAGTGGAGAAAGGGTTTTGCAAAC	Base pairs
GTCAATTTCACAGATTATTACGACTTCTGGGGTTTCTAGAGTACAATTCACCTCTTTCCCAAAACGTTTG	3921 to 3990

TGAAAGATCTGTAGAGAGTAGCAGTATTTCATTGGTACCTGGTACTGATTATGGCACTCAGGAAAGTATC	Base pairs
AСTTTCTAGACATCTCTCATCGTCATAAAGTAACCATGGACCATGACTAATACCGTGAGTCCTTTCATAG	3991 to 4060
TCGTTACTGGAAGTTAGCACTCTAGGGAAGGCAAAAACAGAACCAAATAAATGTGTGAGTCAGTGTGCAG	Base pairs
AGCAATGACCTTCAATCGTGAGATCCCTTCCGTTTTTGTCTTGGTTTATTTACACACTCAGTCACACGTC	4061 to 4130
CATTTGAAAACCCCAAGGGACTAATTCATGGTTGTTCCAAAGATAATAGAAATGACACAGAAGGCTTTAA	Base pairs
GTAAACTTTTGGGGTTCCCTGATTAAGTACCAACAAGGTTTCTATTATCTTTACTGTGTCTTCCGAAATT	4131 to 4200
GTATCCATTGGGACATGAAGTTAACCACAGTCGGGAAACAAGCATAGAAATGGAAGAAAGTGAACTTGAT	Base pairs
CATAGGTAACCCTGTACTTCAATTGGTGTCAGCCCTTTGTTCGTATCTTTACCTTCTTTCACTTGAACTA	4201 to 4270
GCTCAGTATTTGCAGAATACATTCAAGGTTTCAAAGCGCCAGTCATTTGCTCCGTTTTCAAATCCAGGAA	Base pairs
CGAGTCATAAACGTCTTATGTAAGTTCCAAAGTTTCGCGGTCAGTAAACGAGGCAAAAGTTTAGGTCCTT	4271 to 4340
ATGCAGAAGAGGAATGTGCAACATTCTCTGCCCACTCTGGGTCCTTAAAGAAACAAAGTCCAAAAGTCAC	Base pairs
TACGTCTICTCCTTACACGTTGTAAGAGACGGGTGAGACCCAGGAATTTCTTTGTtTCAGGTTTTCAGTG	4341 to 4410
TTTTGAATGTGAACAAAAGGAAGAAAATCAAGGAAAGAATGAGTCTAATATCAAGCCTGTACAGACAGTT	Base pairs
ААААСТТАСАСТТGTTTTCCTTCTTTTAGTTCCTTTCTTACTCAGATTATAGTTCGGACATGTCTGTCAA	4411 to 4480
AATATCACTGCAGGCTTTCCTGTGGTTGGTCAGAAAGATAAGCCAGTTGATAATGCCAAATGTAGTATCA	Base pairs
ttatagteacgrcceanaggacaccanccagtcttrctattcgetcanctattacgetttacatcatagt	4481 to 4550
AAGGAGGCTCTAGGTTTTGTCTATCATCTCAGTTCAGAGGCAACGAAACTGGACTCATTACTCCAAATAA	Base pairs
tTCCTCCGAGATCCAAAACAGATAGTAGAGTCAAGTCTCCGTtGCTtTGACCTGAGTAATGAGGTTTATT	4551 to 4620
ACATGGACTTTTACAAAACCCATATCGTATACCACCACTTTTTCCCATCAAGTCATTTGTTAAAACTAAA	Base pairs
TGTACCTGAAARTGTTTTGGGTATAGCATATGGTGGTGAAAAAGGGTAGTTCAGTAAACAATTTTGATTT	4621 to 4690
TGTAAGAAAAATCTGCTAGAGGAAAACTTTGAGGAACATTCAATGTCACCTGAAAGAGAAATGGGAAATG	Base pairs
	4691 to 4760
AGAACATTCCAAGTACAGTGAGCACAATTAGCCGTAATAACATTAGAGAAAATGTTTTTAAAGAAGCCAG	Base pairs
TCTTGTAAGGTTCATGTCACTCGTGTTAATCGGCATTATTGTAATCTCTTTTACAAAAATTTCTTCGGTC	4761 to 4830
CTCAAGCAATATTAATGAAGTAGGTTCCAGTACTAATGAAGTGGGCTCCAGTATTAATGAAATAGGTTCC	Base pairs
GAGTTCGTTATAATTACTTCATCCAAGGTCATGATTACTTCACCCGAGGTCATAATTACTTTATCCAAGG	4831 to 4900
AGTGATGAAAACATTCAAGCAGAACTAGGTAGAAACAGAGGGCCAAAATTGAATGCTATGCTTAGATTAG	Base pairs
TCACTACTTTTGTAAGTTCGTCTTGATCCATCTTTGTCTCCCGGTtttaicttacgatacgantctantc	4901 to 4970
GGGTtTTGCAACCTGAGGTCTATAAACAAAGTCTTCCTGGAAGTAATTGTAAGCATCCTGAAATAAAAAA	Base pairs
CCCAAAACGTTGGACTCCAGATATTTGTTTCAGAAGGACCTTCATTAACATTCGTAGGACTTTATTTTTT	4971 to 5040
GCAAGAATATGAAGAAGTAGTTCAGACTGTTAATACAGATTTCTCTCCATATCTGATTTCAGATAACTTA	Base pairs
CGTTCTTATACTTCTTCATCAAGTCTGACAATTATGTCTAAAGAGAGGTATAGACTAAAGTCTATTGAAT	5041 to 5110
GAACAGCCTATGGGAAGTAGTCATGCATCTCAGGTTTGTTCTGAGACACCTGATGACCTGTTAGATGATG	Base pairs
СTTGTCGGATACCCTTCATCAGTACGTAGAGTCCAAACAAGACTCTGTGGACTACTGGACAATCTACTAC	5111 to 5180
GTGAAATAAAGGAAGATACTAGTTTTGCTGAAAATGACATTAAGGAAAGTTCTGCTGTTTTTAGCAAAAG	Base pairs
CACTtTATtTCCTTCTATGATCAAAACGACTTTTACTGTAATTCCTTTCAAGACGACAAAAATCGTTTTC	5181 to 5250
CGTCCAGAAAGGAGAGCTTAGCAGGAGTCCTAGCCCTTTCACCCATACACATTTGGCTCAGGGTTACCGA	Base pairs
GCAGGTCTTTCCTCTCGAATCGTCCTCAGGATCGGGAAAGTGGGTATGTGTAAACCGAGTCCCAATGGCT	5251 to 5320
AGAGGGGCCAAGAAATTAGAGTCCTCAGAAGAGAACTTATCTAGTGAGGATGAAGAGCTTCCCTGCTTCC	Base pairs
тСTCCCCGGTTCTTTAATCTCAGGAGTCTTCTCTTGAATAGATCACTCCTACTTCTCGAAGGGACGAAGG	5321 to 5390
AACACTTGTTATTTGGTAAAGTAAACAATATACCTTCTCAGTCTACTAGGCATAGCACCGTTGCTACCGA	Base pairs
TTGTGAACAATAAACCATTTCATTTGTTATATGGAAGAGTCAGATGATCCGTATCGTGGCAACGATGGCT	5391 to 5460

GTGTCTGTCTAAGAACACAGAGGAGAATTTATTATCATTGAAGAATAGCTTAAATGACTGCAGTAACCAG	Base pairs
CACAGACAGATTCTTGTGTCTCCTCTṪAATAATAGTAACTTCTTATCGAATt TACTGACGTCATTGGTC	5461 to 5530
GTAATATTGGCAAAGGCATCTCAGGAACATCACCTTAGTGAGGAAACAAAATGTTCTGCTAGCTTGTTTT	Base pairs
САTTATAACCGTTTCCGTAGAGTCCTTGTAGTGGAATCACTCCTTTGTTTTACAAGACGATCGAACAAAA	5531 to 5600
СTTCACAGTGCAGTGAATTGGAAGACTTGACTGCAAATACAAACACCCAGGATCCTTTCTTGATTGGTTC	Base pairs
GAAGTGTCACGTCACTTAACCTTCTGAF.CTGACGTTTATGTTTGTGGGTCCTAGGAAAGAACTAACCAAG	5601 to 5670
TTCCAAACAAATGAGGCATCAGTCTGAFAGCCAGGGAGTTGGTCTGAGTGACAAGGAATTGGTTTCAGAT	Base pairs
AAGGTTTGTTTACTCCGTAGTCAGACTtTCGGTCCCTCAACCAGACTCACTGTTCCTTAACCAAAGTCTA	5671 to 5740
GATGAAGAAAGAGGAACGGGCTTGGAAGAAAATAATCAAGAAGAGCAAAGCATGGATTCAAACTTAGGTG	Base pairs
СТАСТTСTTTCTCCTTGCCCGAACCTTCTTTTATTAGTTCTTCTCGTTTCGTACCTAAGTTTGAATCCAC	5741 to 5810
AAGCAGCATCTGGGTGTGAGAGTGAAACAAGCGTCTCTGAAGACTGCTCAGGGCTATCCTCTCAGAGTGA	Base pairs
TTCGTCGTAGACCCACACTCTCACTTTGTTCGCAGAGACTTCTGACGAGTCCCGATAGGAGAGTCTCACT	5811 to 5880
CATTTTAACCACTCAGCAGAGGGATACCATGCAACATAACCTGATAAAGCTCCAGCAGGAAATGGCTGAA	Base pairs
GTAAAATTGGTGAGTCGTCTCCCTATGGTACGTTGTATTGGACTATTTCGAGGTCGTCCTTTACCGACTT	5881 to 5950
CTAGAAGCTGTGTTAGAACAGCATGGGAGCCAGCCTTCTAACAGCTACCCTTCCATCATAAGTGACTCTT	Base pairs
GATCTTCGACACAATCTTGTCGTACCCTCGGTCGGAAGATTGTCGATGGGAAGGTAGTATTCACTGAGAA	5951 to 6020
CTGCCCTTGAGGACCTGCGAAATCCAGAACAAAGCACATCAGAAAPAGCAGTATTAACTTCACAGAAAAG	Base pairs
GACGGGAACTCCTGGACGCTTTAGGTCTTGTTTCGTGTAGTCTTTITCGTCATAATTGAAGTGTCTTTTC	6021 to 6090
	Base pairs
ATCACTTATGGGATATTCGGTCTTAGGICTTCCGGAAAGACGACTGTTCAAACTCCACAGACGTCTATCA	6091 to 6160
TCTACCAGTAAAAATAAAGAACCAGGA:TGGAAAGGTCATCCCCTICTAAATGCCCATCATTAGATGATA	Base pairs
AGATGGTCATTTTTATTTCTTGGTCCTCACCTTTCCAGTAGGGGAAGATTTACGGGTAGTAATCTACTAT	6161 to 6230
GGTGGTACATGCACAGTTGCTCTGGGAGTCTTCAGAATAGAAACTA.CCCATCTCAAGAGGAGCTCATTAA	Base pairs
CCACCATGTACGTGTCAACGAGACCCTCAGAAGTCTTATCTTTGATGGGTAGAGTTCTCCTCGAGTAATT	6231 to 6300
GGTPGTTGATGTGGAGGAGCAACAGCTEGAAGAGTCTGGGCCACACGATTTGACGGAAACATCTTACTTG	Base pairs
CCAACAACTACACCTCCTCGTTGTCGACCTTCTCAGACCCGGTGTGCTAAACTGCCTTTGTAGAATGAAC	6301 to 6370
CCAAGGCAAGATCTAGAGGGAACCCCTTACCTGGAATCTGGAATCAGCCTCTTCTCTGATGACCCTGAAT	Base pairs
GGTTCCGTTCTAGATCTCCCTTGGGGAATGGACCTTAGACCTTAGTCGGAGAAGAGACTACTGGGACTTA	6371 to 6440
CTGATCCTTCTGAAGACAGAGCCCCAGAGTCAGCTCGTGTTGGCAACATACCATCTTCAACCTCTGCATT	Base pairs
GACTAGGAAGACTTCTGTCTCGGGGTCTCAGTCGAGCACAACCGTTGTATGGTAGAAGTTGGAGACGTAA	6441 to 6510
GAAAGTTCCCCAATTGAAAGTTGCAGAATCTGCCCAGAGTCCAGCTGCTGCTCATACTACTGATACTGCT	Base pairs
СтtTCAAGGGGTTAACTTTCAACGTCTTAGACGGGTCTCAGGTCGACGACGAGTATGATGACTATGACGA	6511 to 6580
GGGTATAATGCAATGGAAGAAAGTGTGAGCAGGGAGAAGCCAGAATTGACAGCTTCAACAGAAAGGGTCA	Base pairs
CCCATATTACGTTACCTTCTTTCACACTCGTCCCTCTTCGGTCTTAACTGTCGAAGTTGTCTTTCCCAGT	6581 to 6650
ACAAAAGAATGTCCATGGTGGTGTCTGECCTGACCCCAGAAGAATTTATGCTCGTGTACAAGTTTGCCAG	Base pairs
TGTTTTCTTACAGGTACCACCACAGACCGGACTGGGGTCTTCTTAAATACGAGCACATGTTCAAACGGTC	6651 to 6720
AAAACACCACATCACTTTAACTAATCTAATTACTGAAGAGACTACTCATGTTGTTATGAAAACAGATGCT	Base pairs
TTTTGTGGTGTAGTGAAATTGATTAGATTAATGACTTCTCTGATGAGTACAACAATACTTTTGTCTACGA	6721 to 6790
GAGTTTGTGTGTGAACGGACACTGAAATATTTTCTAGGAATTGCGGGAGGAAAATGGGTAGTTAGCTATT	Base pairs
СTCAAACACACACTTGCCTGTGACTTTATAAAAGATCCTTAACGCCCTCCTTTTACCCATCAATCGATAA	6791 to 6860

TCTGGGTGACCCAGTCTATTAAAGAAAGAAAAATGCTGAATGAGCATGATTTTGAAGTCAGAGGAGATGT	Base pairs
AGACCCACTGGGTCAGATAATTTCTTTCTTTTTACGACTTACTCGTACTAAAACTTCAGTCTCCTCTACA	
GGTCAATGGAAGAAACCACCAAGGTCCAAAGCGAGCAAGAGAATCCCAGGACAGAAAGATCTTCAGGGGG	Base pairs
CCAGTTACCTTCTTTGGTGGTTCCAGGTTTCGCTCGTTCTCTTAGGGTCCTGTCTTTCTAGAAGTCCCCC	6931

GCGCGCATGCCCGACGGCGAGGATCTCGTCGTGACCCATGGCGATGCCTGCTTGCCGAATATCATGGTGG CGCGCGTACGGGCTGCCGCTCCTAGAGCAGCACTGGGTACCGCTACGGACGAACGGCTTATAGTACCACC

AAAATGGCCGCTTTTCTGGATTCATCGACTGTGGCCGGCTGGGTGTGGCGGACCGCTATCAGGACATAGC TTTTACCGGCGAAAAGACCTAAGTAGCTGACACCGGCCGACCCACACCGCCTGGCGATAGTCCTGTATCG

GTTGGCTACCCGTGATATTGCTGAAGAGCTTGGCGGCGAATGGGCTGACCGCTTCCTCGTGCTTTACGGT CAACCGATGGGCACTATAACGACTTCTCGAACCGCCGCTTACCCGACTGGCGAAGGAGCACGAAATGCCA

ATCGCCGCTCCCGATTCGCAGCGCATCGCCTTCTATCGCCTTCTTGACGAGTTCTTCTGAGCGGGACTCT tAGCGGCGAGGGCTAAGCGTCGCGTAGCGGAAGATAGCGGAAGAACTGCTCAAGAAGACTCGCCCTGAGA

GGGGTTCGATAAAATAAAAGATTTTATTTAGTCTCCAGAAAAAGGGGGGAATGAAAGACCCCACCTGTAG ССССАAGCTATTTTATTTTCTAAAATAAATCAGAGGTCTTTTTCCCCCCTTACTTTCTGGGGTGGACATC

GTITGGCAAGCTAGCTTAAGTAACGCCATTTTGCAAGGCATGGAAAAATACATAACTGAGAATAGAGAAG CAAACCGTTCGATCGAATTCATTGCGGTAAAACGTTCCGTACCTTTTTATGTATTGACTCTTATCTCTTC

TTCAGATCAAGGTCAGGAACAGATGGAACAGCTGAATATGGGCCAAACAGGATATCTGTGGTAAGCAGTT AAGTCTAGTTCCAGTCCTTGTCTACCTTGTCGACTTATACCCGGTTTGTCCTATAGACACCATTCGTCAA

CCTGCCCCGGCTCAGGGCCAAGAACAGATGGAACAGCTGAATATGGGCCAAACAGGATATCTGTGGTAAG GGACGGGGCCGAGTCCCGGTTCTTGTCTACCTTGTCGACTTATACCCGGTTTGTCCTATAGACACCATTC

CAGTTCCTGCCCCGGCTCAGGGCCAAGAACAGATGGTCCCCAGATGCGGTCCAGCCCTCAGCAGTTTCTA GTCAAGGACGGGGCCGAGTCCCGGTTCTTGTCTACCAGGGGTCTACGCCAGGTCGGGAGTCGTCAAAGAT

GAGAACCATCAGATGTTTCCAGGGTGCCCCAAGGACCTGAAATGACCCTGTGCCTTATTTGAACTAACCA CTCTTGGTAGTCTACAAAGGTCCCACGGGGTTCCTGGACTTTACTGGGACACGGAATAAACTTGATTGGT ATCAGTTCGCTTCTCGCTTCTGTTCGCGCGCTTCTGCTCCCCGAGCTCAATAAFI.GAGCCCACAACCCCT TAGTCAAGCGAAGAGCGAAGACAAGCGCGCGAAGACGAGGGGCTCGAGTTATTTTCTCGGGTGTTGGGGA *

CACTCGGGGCGCCAGTCCTCCGATTGACTGAGTCGCCCGGGTACCCGTGTATCCAATAAACCCTCTTGCA GTGAGCCCCGCGGTCAGGAGGCTAACTGACTCAGCGGGCCCATGGGCACATAGGTTATTTGGGAGAACGT GTTGCATCCGACTTGTGGTCTCGCTGTTCCTTGGGAGGGTCTCCTCTGAGTGATTGACTACCCGTCAGCG CAACGTAGGCTGAACACCAGAGCGACAAGGAACCCTCCCAGAGGAGACTCACTAACTGATGGGCAGTCGC GGGGTCTTTCATTTGGGGGCTCGTCCGGGATCGGGAGACCCCTGCCCAGGGACCACCGACCCACCACCGG CCCCAGAAAGTAAACCCCCGAGCAGGCCCTAGCCCTCTGGGGACGGGTCCCTGGTGGCTGGGTGGTGGCC

GAGGTAAGCTGGCTGCCTCGCGCGTTTCGGTGATGACGGTGAAAACCTCTGACACATGCAGCTCCCGGAG CTCCATTCGACCGACGGAGCGCGCAAAGCCACTACTGCCACTTTTGGAGACTGTGTACGTCGAGGGCCTC

ACGGTCACAGCTTGTCTGTAAGCGGATGCCGGGAGCAGACAAGCCCGTCAGGGCGCGTCAGCGGGTGTTG TGCCAGTGTCGAACAGACATTCGCCTACGGCCCTCGTCTGTTCGGGCAGTCCCGCGCAGTCGCCCACAAC

GCGGGTGTCGGGGCGCAGCCATGACCCAGTCACGTAGCGATAGCGGAGTGTATACTGGCTTAACTATGCG CGCCCACAGCCCCGCGTCGGTACTGGGTCAGTGCATCGCTATCGCCTCACATAT ЗACCGAATTGATACGC

GCATCAGAGCAGATTGTACTGAGAGTGCACCATATGCGGTGTGAAATACCGCACAGATGCGTAAGGAGAA CGTAGTCTCGTCTAACATGACTCTCACGTGGTATACGCCACACTTTATGGCGTGTCTACGCATTCCTCTT

AATACCGCATCAGGCGCTCTTCCGCTTCCTCGCTCACTGACTCGCTGCGCTCGGTCGTTCGGCTGCGGCG TTATGGCGTAGTCCGCGAGAAGGCGAAGGAGCGAGTGACTGAGCGACGCGAGCCAGCAAGCCGACGCCGC

AGCGGTATCAGCTCACTCAAAGGCGGTAATACGGTTATCCACAGAATCAGGGGATAACGCAGGAAAGAAC TCGCCATAGTCGAGTGAGTTTCCGCCATTATGCCAATAGGTGTCTTAGTCCCCTATTGCGTCCTTTCTTG

Ease pairs
8261 to 8330

```
Ease pairs
8331 to 8400
Ease pairs
8401 to 8470
Ease pairs
8471 to 8540
Base pairs
8541 to 8610
```

Base pairs
8611 to 8680
Ease pairs
8681 to 8750
Ease pairs
8751 to 8820
Base pairs
8821 to 8890
Base pairs
8891 to 8960
Ease pairs
8961 to 9030
Ease pairs
9031 to 9100
Ease pairs
9101 to 9170
Ease pairs
9171 to 9240
Base pairs
9241 to 9310
Ease pairs
9311 to 9380
Base pairs
9381 to 9450
Base pairs
9451 to 9520
Base pairs
9521 to 9590
Ease pairs
9591 to 9660

Base pairs 9661 to 9730

```
TCCGCCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGACTATA Base pairs
AGGCGGGGGGACTGCTCGTAGTGTTTTTAGCTGCGAGTTCAGTCTCCACCGCTTTGGGGCTGTCCTGATAT 9731 to 9800
\begin{tabular}{ll} 
AAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGCTTACCGGA & Base pairs \\
TTCTATGGTCCGCAAAGGGGGACCTTCGAGGGAGCACGCGAGAGGACAAGGCTGGGACGGCGAATGGCCT & 9801 to 9870
\end{tabular}
TACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTAGGTATCTCAGTT Base pairs
ATGGACAGGCGGAAAGAGGGAAGCCCTTCGCACCGCGAAAGA.GTATCGAGTGCGACATCCATAGAGTCAA 9871 to 9940
CGGTGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCGACCGCTGCGCCTT Base pairs
GCCACATCCAGCAAGCGAGGTTCGACCCGACACACGTGCTTGGGGGGCAAGTCGGGCTGGCGACGCGGAA 9941 to 10010
ATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACACGACTTATCGCCACTGGCAGCAGCCACTGGT Base pairs
TAGGCCATTGATAGCAGAACTCAGGTTGGGCCATTCTGTGCTGAATAGCGGTGACCGTCGTCGGTGACCA 10011 to 10080
AACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCT Base pairs
TTGTCCTAATCGTCTCGCTCCATACATCCGCCACGATGTCTCAAGAACTTCACCACCGGATTGATGCCGA 10081 to 10150
ACACTAGAAGGACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAGAGTTGGTAG Base pairs
TGTGATCTTCCTGTCATAAACCATAGACGCGAGACGACTTCGGTCAATGGAAGCCTTTTTCTCAACCATC 10151 to 10220
CTCTTGATCCGGCAAACAAACCACCGCTGGTAGCGGTGGTTTTTTTGTTTGCAAGCAGCAGATTACGCGC Base pairs
GAGAACTAGGCCGTTTGTTTGGTGGCGACCATCGCCACCAAAAAAACAAACGTTCGTCGTCTAATGCGCG 10221 to 10290
AGAAAAAAAGGATCTCAAGAAGATCCTTTGATCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACT Base pairs
TCTTTTTTTCCTAGAGTTCTTCTAGGAAACTAGAAAAGATGCCCCAGACTGCGAGTCACCTTGCTTTTGA 10291 to 10360
CACGTTAAGGGATTTTGGTCATGAGATTATCAAAAAGGATCTTCACCTAGATCCTTTTAAATTAAAAATG Base pairs
GTGCAATTCCCTAAAACCAGTACTCTAATAGTTTTTCCTAGF.AGTGGATCTAGGAAAATTTAATTTTTAC 10361 to 10430
AAGTTTTAAATCAATCTAAAGTATATATGAGTAAACTTGGTCTGACAGTTACCAATGCTTAATCAGTGAG Base pairs
TTCAAAATTTAGTTAGATTTCATATATACTCATTTGAACCAGACTGTCAATGGTTACGAATTAGTCACTC 10431 to 10500
GCACCTATCTCAGCGATCTGTCTATTTCGTTCATCCATAGTTGCCTGACTCCCCGTCGTGTAGATAACTA Base pairs
CGTGGATAGAGTCGCTAGACAGATAAAGCAAGTAGGTATCAA`GGACTGAGGGGCAGCACATCTATTGAT 10501 to 10570
CGATACGGGAGGGCTTACCATCTGGCCCCAGTGCTGCAATGATACCGCGAGACCCACGCTCACCGGCTCC Base pairs
GCTATGCCCTCCCGAATGGTAGACCGGGGTCACGACGTTACTATGGCGCTCTGGGTGCGAGTGGCCGAGG 10571 to 10640
AGATTTATCAGCAATAAACCAGCCAGCCGGAAGGGCCGAGCGCAGAAGTGGTCCTGCAACTTTATCCGCC Base pairs
TCTAAATAGTCGTTATTTGG'TCGGTCGGCCTTCCCGGCTCGCGTCTTCACCAGGACGTTGAAATAGGCGG 10641 to 10710
TCCATCCAGTCTATTAATTGTTGCCGGGAAGCTAGAGTAAGTAGTTCGCCAGTTAATAGTTTGCGCAACG Base pairs
AGGTAGGTCAGATAATTAACAACGGCCCTTCGATCTCATTCATCAAGCGGTCAATTATCAAACGCGTTGC 10711 to 10780
TTGTTGCCATTGCTGCAGGCATCGTGGTGTCACGCTCGTCGTTTGGTATGGCTTCATTCAGCTCCGGTTC Base pairs
AACAACGGTAACGACGTCCGTAGCACCACAGTGCGAGCAGCAAACCATACCGAAGTAAGTCGAGGCCAAG 10781 to 10850
CCAACGATCAAGGCGAGTTACATGATCCCCCATGTTGTGCAA^AAAGCGGTTAGCTCCTTCGGTCCTCCG Base pairs
GGTTGCTAGTTCCGCTCAATGTACTAGGGGGTACAACACGTTTTTTCGCCAATCGAGGAAGCCAGGAGGC 10851 to 10920
ATCGTTGTCAGAAGTAAGTTGGCCGCAGTGTTATCACTCATGGTTATGGCAGCACTGCATAATTCTCTTA Base pairs
TAGCAACAGTCTTCATTCAACCGGCGTCACAATAGTGAGTACCAATACCGTCGTGACGTATTAAGAGAAT 10921 to 10990
CTGTCATGCCATCCGTAAGATGCTTTTCTGTGACTGGTGAGTACTCAACCAAGTCATTCTGAGAATAGTG Base pairs
GACAGTACGGTAGGCATTCTACGAAAAGACACTGACCACTCATGAGTTGGTTCAGTAAGACTCTTATCAC 10991 to 11060
\begin{tabular}{|c|c|}
\hline AAAGTGCTCATCATTGGAAAACGTTCTTCGGGGCGAAAACTCTCAAGGATCTTACCGCTGTTGAGATCCA TTTCACGAGTAGTAACCTTTTGCAAGAAGCCCCGCTTTTGAGAGTTCCTAGAATGGCGACAACTCTAGGT & \[
\begin{aligned}
& \text { Base pairs } \\
& 11131 \text { to } 11200
\end{aligned}
\] \\
\hline GTTCGATGTAACCCACTCGTGCACCCAACTGATCTTCAGCATCTTTTACTTTCACCAGCGTTTCTGGGTG & Base pairs \\
\hline CAAGCTACATTGGGTGAGCACGTGGGTTGACTAGAAGTCGTAGAAAATGAAAGTGGTCGCAAAGACCCAC & 11201 to 11270 \\
\hline AGCAAAAACAGGAAGGCAAAATGCCGCAAAAAAGGGAATAAGGGCGACACGGAAATGTTGAATACTCATA & Base pairs \\
\hline TCGTTTTTGTCCTTCCGTTTTACGGCGTTTTTTCCCTTATTCCCGCTGTGCCTTTACAACTTATGAGTAT & 11271 to 11340 \\
\hline CTCTTCCTTTTTCAATATTATTGAAGCATTTATCAGGGTTATTGTCTCATGAGCGGATACATATTTGAAT & Base pairs \\
\hline GAGAAGGAAAAAGTTATAATAACTTCGTAAATAGTCCCAATAACAGAGTACTCGCCTATGTATAAACTTA & 11341 to 11410 \\
\hline GTATTTAGAAAAATAAACAAATAGGGGTTCCGCGCACATTTCCCCGAAAAGTGCCACCTGACGTCTAAGA & Base pairs \\
\hline CATAAATCTTTTTATTTGTTTATCCCCAAGGCGCGTGTAAAGGGGCTTTTCACGGTGGACTGCAGATTCT & 11411 to 11480 \\
\hline AACCATTATTATCATGACATTAACCTATAAAAATAGGCGTATCACGAGGCCCTTTCGTCTTCAA Base & pairs \\
\hline TTGGTAATAATAGTACTGTAATTGGATATTTTTATCCGCATAGTGCTCCGGGAAAGCAGAAGTT 11481 & to 11544 \\
\hline
\end{tabular}

The enzymes cutting at least 1 times, and at most 6 times are listed below:
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{Whay}} \\
\hline & & \\
\hline AatII & 985, 2240, 11474 & gacgt/c \\
\hline Accl 13I & 4861, 11032 & agt/act \\
\hline Accl6I & 7966, 10774 & tge/gca \\
\hline Acc65I & 650, 4024, 9070 & g/gtacc \\
\hline AccB7I & 2092, 7258 & ccannnn/ntgg \\
\hline AccBSI & 579, 1285, 8480, 8534, 9595, 11396 & gagcgg \\
\hline AccI 2244 & 4648, 5432, 9431 & \(\mathrm{g} /\) mkac \\
\hline AclNI & 900, 3583, 5198 & a/ctagt \\
\hline AfeI & 1163 & agc/gct \\
\hline Afll & 208, 1246, 3130, 8625 & c/ttaag \\
\hline AfliII & 2690, 9659 & a/crygt \\
\hline AhdI & 1260, 9115, 9161, 10552 & gacnnn/nngtc \\
\hline Alw44I & 9475, 9973, 11219 & g/tgcac \\
\hline Ama87I & 415, 646, 7212, 9000, 9033, 9066 & c/ycgrg \\
\hline AocI 1021 & 1258, 3252, 4983 & cc/tnagg \\
\hline Aor 51 HI & 1163 & agc/gct \\
\hline ApaI & 7023 & gggcc/c \\
\hline ApaLI & 9475, 9973, 11219 & g/tgcac \\
\hline AscI & 617 & \(\mathrm{gg} / \mathrm{cgcgcc}\) \\
\hline AseI & 1755, 4842, 4884, 10724 & at/taat \\
\hline AsnI & 1755, 4842, 4884, 10724 & at/taat \\
\hline Asp718I & 650, 4024, 9070 & yg/gtacc \\
\hline AspEI & 1260, 9115, 9161, 10552 & gatnnn/nngtc \\
\hline AvaI & 415, 646, 7212, 9000, 9033, 9066 & c/ycgrg \\
\hline AvilI & 7966, 10774 & tgc/gca \\
\hline AvrII & 7661 & c/ctagg \\
\hline BalI & 832, 1351, 3008, 7946 & tgg/cca \\
\hline BamHI & 1667, 5650, 7313, 7330 & g/gatce \\
\hline Bbel & 1641, 7867, 9042 & ggcge/c \\
\hline BbuI & 1855, 7409, 7481, 8269 & gcatg/c \\
\hline BcgI & 11079 & cgannnnnntgc \\
\hline BclI & 1800, 7705 & t/gatca \\
\hline BcoI & 415, 646, 7212, 9000, 9033, 9066 & c/ycgrg \\
\hline BfrI & 208, 1246, 3130, 8625 & c/ttaag \\
\hline BglI & 3691, 7614, 10672 & gccnnnn/nggc \\
\hline BgIII & 2731, 3955, 3995, 6379, 6987 & a/gatct \\
\hline BlnI & 7661 & c/ctagg \\
\hline BlpI & 2647, 5267 & gc/tnagc \\
\hline BpmI & 1798, 3743, 4881, 5935, 8578, 10642 & ctggag \\
\hline Bpul102I & 264, 5267 & \(\mathrm{gc} /\) tnagc \\
\hline BsaAI & 8168, 9413 & yac/gtr \\
\hline BsaBI & 7723 & gatnn/nnatc \\
\hline BsaMI & 2742, 2849, 4956 & gaatge \\
\hline BsaOI & 967, 7773, 9575, 9999, 10922, 11071 & cgry/cg \\
\hline BsaWI & 138, 7895, 9865, 10012, 10843 & w/ccggw \\
\hline Bsel 18I & 8183, 8364, 10632 & r/ccggy \\
\hline Bse21I & 1021, 1258, 3252, 4983 & cc/tnagg \\
\hline Bse8I & 7723 & gatnn/nnatc \\
\hline BsePI & 566, 617, 8261, 8986 & g/cgcgc \\
\hline BsgI & 2471, 4130, 5613, 7144 & gtgcag \\
\hline Bsh1285I & 967, 7773, 9575, 9999, 10922, 11071 & cgry/cg \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Enzyme & Positions of Recognition Sites & Recognition Sequence \\
\hline Bsh1365I & 7723 & gatnn/nnatc \\
\hline BsiEI & 967, 7773, 9575, 9999, 10922, 11071 & cgry/cg \\
\hline BsiI & 6479, 6706, 8461, 9837, 11221, 11528 & ctcgtg \\
\hline Bsml & 2742, 2849, 4956 & gaatgc \\
\hline BsoBl & 415, 646, 7212, 9000, 9033, 9066 & c/ycgrg \\
\hline Bspl20I & 7019 & \(\mathrm{g} / \mathrm{ggccc}\) \\
\hline Bsp1407I & 1522, 44686705 & t/gtaca \\
\hline Bspl720I & 2647, 5267 & gc/tnagc \\
\hline Bsp19I & 6663, 7568, 8296 & c/catgg \\
\hline BspCI & 10922 & cgat/cg \\
\hline BspHI & 3019, 3367, 10379, 11387, 11492 & t/catga \\
\hline BspLU11I & 2690, 9659 & a/catgt \\
\hline BspMI & 3735, 6038, 7693, 7765, 8128 & acctgc \\
\hline BspTI 208 & 1246, 3130, 8625 & c/ttaag \\
\hline BstBI & 579, 1285, 8480, 8534, 9595, 11396 & gagcgg \\
\hline BsrBRI & 7723 & gatnn/nnatc \\
\hline BsrDI & 6595, 8095, 10611, 10793 & gcaatg \\
\hline BsrFI & 8183, 8364, 10632 & r/ccggy \\
\hline BsiGI & 1522, 4468, 6705 & t/gtaca \\
\hline BssAI & 8183, 8364, 10632 & r/ccggy \\
\hline BssHII & 566, 617, 8261, 8986 & \(\mathrm{g} / \mathrm{cgcgc}\) \\
\hline BssSI & 6479, 6706, 8461, 9837, 11221, 11528 & ctcgtg \\
\hline Bstl1071 & 4649, 9432 & gta/tac \\
\hline Bst98I & 208, 1246, 3130, 8625 & c/ttaag \\
\hline BstD102I & 579, 1285, 8480, 8534, 9595, 11396 & gagcgg \\
\hline BstDSI & 151, 934, 6663, 7568, 8296 & c/crygg \\
\hline BstEII & 1327, 5312, 6865, 7207 & g/gtnacc \\
\hline BstI & 1667, 5650, 7313, 7330 & g/gatcc \\
\hline BstMCI 967 & 7773, 9575, 9999, 10922, 11071 & cgry/cg \\
\hline BstPI & 1327, 5312, 6865, 7207 & g/gtnacc \\
\hline BstXI & 1792, 5708, 7152, 7181 & ccannnnn/ntgg \\
\hline BstZI & 964, 7770 & c/ggccg \\
\hline Bsu36I & 1021, 1258, 3252, 4983 & cc/tnagg \\
\hline CelII & 2647, 5267 & gc/tnagc \\
\hline Cfri0I & 8183, 8364, 10632 & r/ccggy \\
\hline Cfr42I & 154 & ccge/gg \\
\hline Cfr9I & 646, 9066 & c/ccggg \\
\hline Cpol & 8380 & cg/gwceg \\
\hline Cspl & 8380 & cg/gwceg \\
\hline CvnI & 1021, 1258, 3252, 4983 & cc/tnagg \\
\hline DraI & 4819, 10418, 10437, 11129 & ttt/aaa \\
\hline DraliI & 1824 & cacnnn/gtg \\
\hline DrdI & 7891, 9354, 9767 & gacnnnn/nngtc \\
\hline DsaI & 151, 934, 6663, 7568, 8296 & c/crygg \\
\hline EagI & 964, 7770 & c/ggccg \\
\hline Eaml1051 & 1260, 9115, 9161, 10552 & gacnnn/nngtc \\
\hline Ecll36II & 585, 6292, 9005 & gag/ctc \\
\hline EclHKI & 12609115916110552 & gacnnn/nngtc \\
\hline EclXI & 964, 7770 & c/ggccg \\
\hline Ecol47I & 3243, 6123, 7660 & agg/cct \\
\hline Eco255I & 4861, 11032 & agt/act \\
\hline Eco32I & 311, 387, 8733, 8808 & gat/atc \\
\hline Eco47III & 1163 & agc/gct \\
\hline Eco52I & 964,7770 & c/ggccg \\
\hline Eco81I & 1021, 1258, 3252, 4983 & cc/tnagg \\
\hline Eco88I & 415, 646, 7212, 9000, 9033, 9066 & c/ycgrg \\
\hline Eco91I & 1327, 5312, 6865, 7207 & g/gtnacc \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Enzyme & Positions of Recognition Sites & Recognition Sequence \\
\hline EcolCRI & 585, 6292, 9005 & gag/ctc \\
\hline EcoNI & 1024, 1632, 3237, 5567 & cctnn/nnnagg \\
\hline EcoO65I & 1327, 5312, 6865, 7207 & g/gtnacc \\
\hline EcoRI & 1644, 2618 & g/aattc \\
\hline EcoRV & 311, 387, 8733, 8808 & gat/atc \\
\hline EcoT22I & 5137, 7411, 7483 & atgca/t \\
\hline EheI & 1639, 7865, 9040 & \(\mathrm{ggc} / \mathrm{gcc}\) \\
\hline Espl396I & 2092, 7258 & ccannnn/ntgg \\
\hline FauNDI & 9482 & ca/tatg \\
\hline Fbal & 1800, 7705 & t/gatca \\
\hline FspI & 7966, 10774 & tgc/gca \\
\hline GsuI & 1798, 3743, 4881, 5935, 8578, 10642 & ctggag \\
\hline HindII & 1952, 3816, 4222, 6649, 7307, 11093 & gty/rac \\
\hline HindIII & 7677 & a/agctt \\
\hline Hpal & 3816, 4222, 7307 & \(\mathrm{gt} / \mathrm{aac}\) \\
\hline KasI & 1637, 7863, 9038 & \(\mathrm{g} / \mathrm{gcgcc}\) \\
\hline KpnI & 654, 4028, 9074 & ggtac/c \\
\hline Ksp22I & 1800, 7705 & t/gatca \\
\hline KspI & 154 & ccgc/gg \\
\hline MamI & 7723 & gatnn/nnatc \\
\hline MfeI & 11, 21, 6521, 7128, 7179 & c/aattg \\
\hline MluNI & 832, 1351, 3008, 7946 & \(\operatorname{tgg} / \mathrm{cca}\) \\
\hline Mphl & 5137, 741,17483 & atgca/t \\
\hline MroNI & 8364 & g/ccggc \\
\hline MscI & 832, 1351, 3008, 7946 & tgg/cca \\
\hline MspCl & 208, 1246, 3130, 8625 & c/ttaag \\
\hline MunI & 11, 21, 6521, 7128, 7179 & c/aattg \\
\hline Mval269I & 2742, 2849, 4956 & gaatgc \\
\hline Nael & 8366 & gcc/ggc \\
\hline NarI & 1638, 7864, 9039 & \(\mathrm{gg} / \mathrm{cgcc}\) \\
\hline NcoI & 6663, 7568, 8296 & c/catgg \\
\hline NdeI & 9482 & ca/tatg \\
\hline NgoAIV & 8364 & \(\mathrm{g} / \mathrm{ccggc}\) \\
\hline NgoMI & 8364 & \(\mathrm{g} / \mathrm{ccggc}\) \\
\hline NheI & 6, 16, 26, 203, 5588, 8620 & g/ctagc \\
\hline NsiI & 5137, 7411, 7483 & atgca/t \\
\hline PaeI & 1855, 7409, 7481, 8269 & gcatg/c \\
\hline PflMI & 2092, 7258 & ccannnn/ntgg \\
\hline Plel9I & 10922 & \(\mathrm{cgat} / \mathrm{cg}\) \\
\hline Pme55I & 3243, 6123, 7660 & agg/cct \\
\hline Ppul0I & 5133, 7407, 7479 & a/tgcat \\
\hline PpuMI & 502, 1459, 4380, 6031, 8923 & \(\mathrm{rg} / \mathrm{gwccy}\) \\
\hline PshAI & 751, 2240 & gacnn/nngtc \\
\hline PshBI & 1755, 4842, 4884, 10724 & at/taat \\
\hline Pspl24BI & 587, 6294, 9007 & gagct/c \\
\hline Psp1406I & 10778, 11151 & aa/cgtt \\
\hline Psp5II & 502, 1459, 4380, 6031, 8923 & rg/gwccy \\
\hline PspAI & 646, 9066 & c/ccggg \\
\hline PspALI & 648, 9068 & ccc/ggg \\
\hline PspEI & 1327, 5312, 6865, 7207 & g/gtnacc \\
\hline PspOMI & 7019 & g/ggcce \\
\hline PstNHI & 6, 16, 26, 203, 5588, 8620 & g/ctagc \\
\hline PvuI & 10922 & cgat/cg \\
\hline RcaI & 3019, 3367, 10379, 11387, 11492 & t/catga \\
\hline RsrII & 8380 & cg/gwccg \\
\hline SacI & 587, 6294, 9007 & gagct/c \\
\hline SacII & 154 & ccge/gg \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Enzyme & Positions of Recognition Sites & Recognition Sequence \\
\hline ScaI & 4861, 11032 & agt/act \\
\hline SexAI & 1455, 3826, 4027, 5526, 7428 & a/ccwggt \\
\hline Sfil & 7614 & ggcennnn/nggce \\
\hline Sfr303I & 154 & ccgc/gg \\
\hline Smal & 648, 9068 & ccc/ggg \\
\hline Spel & 900, 3583, 5198 & a/ctagt \\
\hline SphI & 1855, 7409, 7481, 8269 & gcatg/c \\
\hline SseBI & 3243, 6123, 7660 & agg/cct \\
\hline SspBI & 1522, 4468, 6705 & t/gtaca \\
\hline SstI & 587, 6294, 9007 & gagct/c \\
\hline SstII & 154 & ccgc/gg \\
\hline StuI & 3243, 6123, 7660 & agg/cct \\
\hline Van91I & 2092, 7258 & ccannnn/ntgg \\
\hline Vha464I & 208, 1246, 3130, 8625 & c/ttaag \\
\hline VneI & 9475, 9973, 11219 & g/tgcac \\
\hline VspI & 1755, 4842, 4884, 10724 & at/taat \\
\hline XbaI & 1661, 6382, 7319, 8887 & t/ctaga \\
\hline XcmI & 7045 & ccannnnn/nnnntgg \\
\hline XmaI & 646, 9066 & c/ccggg \\
\hline XmaIII & 964, 7770 & c/ggccg \\
\hline Zsp2I & 51, 37, 7411, 7483 & atgca/t \\
\hline
\end{tabular}

\section*{APPENDIX 4.}

The partial sequence of the pEGFP-BRCA1 (83-2436) construct analyzed by Sequence Navigator computer program.
```

