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ABSTRACT

REGRESSOR BASED ADAPTIVE INFINITE IMPULSE 
RESPONSE FILTERING

Emrali AGAR
M.S. in Electrical arid Electronics Engineering 

Supervisor: Assist. Prof. Dr. Orlian Arikan 
July 1997

Superior performance of fast recursive least squares (RLS) algorithms over the descent 
type least mean square (LMS) algorithms in the adaptation of FIR systems lias not been 
realized in the ¿idaptatioii of IIR systems. This is because of having noisy observations 
of the original system output resulting in signiiicantly biased estimates of the system 
parameters. Here, we propose an adaptive IIR system structure consisting of two |)arts: a 
two-channel FIR adaptive filter whose parameters are updated by a. RLS type algorithm, 
and an adaptive regressor which provides more reliable estimates to the original system 
output based on previous values of the adaptive system output and noisy observation of 
the original system output. Two diflerent regressors are investigated and robust ways of 
adaptation of the regressor parameters are proposed. The performance of the proposed 
algorithms are compared with successful LMS type algoritlims and it is found that in 
addition to the expected convergence speed up, the proposed algorithms provide better 
estimates to the system parameters at low SNR value. Also, the extended Kalman filtering 
approach is tailored to our application. Comparison of the proposed algorithms with the 
extended Kalman filter approach revealed that the proposed approaches provide itiijiroved 
estimates in systems with abrupt parameter changes.

Keywords: Adaptive IIR Filtering, ARX, RLS, Kalman Filtering
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ÖZET

DOĞRULTUCU TABANLI UYARLAMALI SONSUZ İTMELİ
SÜZGEÇLEME

Emrah ACAR
Elektrik ve Elektronik Mühendisliği Bölümü Yüksek Lisans 

Tez Yöneticisi: Y. Doç. Dr. Orlicin Arıkan 
Temmuz 1997

Sonlu itmeli (FIR) süzgeçlerdeki hızlı ÖEK (RLS) algoritmaia.rmın EOK (LMS) al­
goritmalarına göre olan üstün performansları, sonsuz itmeli (IIR) süzgeçlerin uyarla­
masında henüz yer almamıştır. Bunun nedeni uyarlamah süzgeçteki pürüzlü referans 
dolayısıyla sistem parametrelerinin yanlı olarak kestirilebilmesidir. Bu çalışmada, iki 
kısımdan oluşan bir uyarlamalı sonsuz itmeli süzgeçleme yapısı önerilmiştir: İlk kısım, 
dönüşüm temelli çok kanallı en küçük kare köşegen yapısındaki (JR-MESL aigoritmasıyla 
uyarlanan iki kanallı sonlu itmeli süzgeç; ikinci kısım ise uyarlayan sistem sonuçları ve 
orjinal süzgecin pürüzlü referansları ışığında, gözlenemeyen gerçek referansın kestiriminde 
bulunan bir doğrultucudan oluşmuştur, iki farklı tip doğrult ucu incelenmiş ve doğrult ucu 
parametrelerinin dayanıklı belirlenme yollan önerilmiştir. Önerilen algoritmaların, bilinen 
metodlarla karşılaştırılması yapılmış ve yakınsama hızındaki artışın yanısıra düşük sinyal 
gürültü durumunda daha doğru kestirimler elde edilmiştir. Ayrıca genişletilmiş Kalman 
süzgeçleme yöntemi probleme uyarlanmıştır. Önerilen doğrult ucu temelli algoritmalarla, 
genelleştirilmiş Kalman süzgeçlemenin karşılaştırılmasında, ani değişim göstei'en sistem­
lerin tanımlanmasında önerilen algoritmaların daha yüksek başarımı olduğu gözlenmiştir.

Anahtar Kelimeler: Uyarlamalı süzgeçleme. Kalman süzgeçleme, ÖEK (RLS) algoritması
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Chapter 1

Introduction

Adaptive filters have found widespread use in nicuiy different signal processing ap­
plications where there is no reliable prior information on the system parameters or 
the parameters vary in time. Mainly because of its simplicity in implementations, a 
Finite Impulse Response (FIR) system structure is usually preferred for the adap­
tive fdter. However, the choice of FIR structures severely limits the performance of 
the adaptive filters when the required adaptation necessitates the use of fitters with 
poles as well as zeros. However, even in these cases, the natural choice of using an 
adciptive filter with Infinite Impulse Response (HR) structure has not Ibund much 
room in applications. The major reason behind this fact is the lack of HR adapta­
tion algorithms which robustly converge to the desired system parameters in a short 
time. The trade-off between the convergence and bias of the estimated system 
parameters has been the subject matter of many investigations on HR adaptcition 
approciches [1- 6].

There cire two main approaches to adaptive HR filtering, based on two different 
definitions of the error sequence which is iteratively tried to be minimized by the 
cixlaptation algorithm. In the output error formulation, the error seipience is defined 
as the difference between the desired and the output sequences of an HR filter 
whose parameters are adjusted iteratively by the adaptation algorithm. Altliough, 
the output error formulation is a very natural extension of the FIR adaptation 
concept, unlike the FIR Ccise, the weighted least sqiuu’es cost function is no more 
quadratic with respect to the adaptive HR system parameters. This limits us to use

1



Chapter 1. Introduction

slowly converging gradient descent adaptation techniques wliicli is not acceptable 
especially for systems whose parameter changes faster than the convergence of the 
adciptive system. Furthermore, the cost surface may have complicated local minima 
structure making it very difficult for the gradient descent algoi'ithms to converge to 
the globally optimal HR system parameters. Also, stability monitoring becomes a 
critical issue in the output error adaptation. Mcuiy of the difficulties of the output 
error formulation do not exists in the equation error formulation where tlie error 
sequence is defined as the difference between the desired secpience and tlui output of a 
two-channel FIR filter whose inputs are the avaihible input sequence and one-sample 
delayed desired output secpience. Since the corresponding weighted least squares 
cost function is quadratic with respect to the two-channel FIR filter parameters, 
fast recursive least scpiares adaptation algorithms can be used to obtain the globally 
optimal system parameters. However, even in the sufficient order modeling, when 
there is an additive measurement noise in the desired sequence, the obtained results 
are biased estimates of the unknown system parameters.

In order to capture the beneficial features of the equation error Idinnidation and 
reduce the bias in the converged parameters, various bias remedy approaches have 
been pi'oposed [2-4 ,6- 8]. In some of these apiaroaches the error sequence is defined 
as a convex combination of the equation and output error se(|uerices [.'5]. Then, 
the lecist squares cost function is tried to be minimized by using a gradient descent 
algorithm based on the instantaneous gradient estimate. It has been shown that witli 
a judicious choice of the convex combination parameter, significantly more accurate 
parameter estimation can be achieved [2,3]. However, because of the use of an 
update strcitegy based on instantcuieous gradient estimate, the speed of convergence 
of these algorithms is slow.

In this thesis, we propose cin adaptive HR system structure consisting of two 
parts: a two-channel FIR adaptive filter cind an adaptive regressor wliich provides 
more relicible estimates to the original system output. As shown in Fig. 2.1, the 
two-channel FIR adaptive filter has as its inputs the input of the original system, 
x(n), and the delayed output of the regressor, iü(n), which is an estimate to the 
original system output, io{n). This way, the parameters of the adaptive filter can 
be updated efficiently by using a multi-channel recursive least squares algorithm 
such as QR-MLSL [9,10]. We consider two different adaptive regressors to provide 
relicible estimates to the original system output causcilly based on adaptive system 
output, yin), and noisy observations, d{n). The first type of regressor provides an



Chapter 1. Introduction

estimate to w(n) as a convex combination of the y(n) and d(n), where the convex 
combination parameter 7„ is adapted bcised on the convergence of the iterations. In 
the cidaptation of 7„, the regressor performs 0 (N )  multiplications where N is the 
order of the adaptive system. In the second type of regressor, a simplified Kalman 
filter is used to provide the estimate, w(n), to w{n), where the required state space 
model of the system is obtained from the adiipted system. The required number of 
multiplications of the Kalman regrssor is 0(N'^). In chapter 3, we investigate both 
regressors and provide robust ways of adapting their parameters. Also in the same 
chapter, the steps of the adaptcition algorithms for both regressors are tabulated.

In chapter 4, the well known extended Kalman filter algoritlim is tailored to 
our cipplication [11-13]. It is shown that since the resultcuit algorithm requires 
no-matrix inversions, system parameters can be estimated by computing O(N^) 
multiplications. Also, a robust way of updating the required covariance nuitrices is 
provided.

In chapter 5, we provide extensive comparison results between the approaches 
investigated in this work and earlier proposed approaches to HR adaptation [2,3, 
12,13]. In chapter 6, we provide the conclusions of our work and address potentiell 
areas for future work.



Chapter 2

HR System Model and Proposed 

Adaptive HR Filter Structure

2.1 HR System Model

As shown in Fig. 2.1, in ci typical adaptive filtering application, input, ;r(?7.), cUicl 
noisy output, d(n), of an unknown system are a.vaila.bie for processing by an adap­
tive system to provide estimates, y(n), to the output of tlic uuknown system as time 
progresses. If the ultimate purpose is to keep tra.ck of the variation iu the uidaiowii 
system parameters, the required processing is called as adaptive syst(;m identifi- 
ca,tion. However, there cire many other important airplication areas of adaptive 
filtering such cis adaptive prediction, noise cancelling, echo cancelling and cliannel 
equalization, where the primary purpose is not the estimation of the unknowu sys­
tem parameters [5,14,15]. The approaches we will investigate in this thesis are 
generally iipplicable in all these cipplication areas.

In our investigation the unknown system or plant has an HR model whose; out|)ut 
can be compactly expressed as a function of its previous vahuis and its input as:

N M

-  Yj ajw{n -  j )  + Y  k'x{n -  i) =  0_‘ ( 2 .
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Figure 2.1: Common structure of IIR—j  and IIR-Kalman adaptive systems.

where 0 is the vector of direct form system parcimeters:

-tT
0 = «1 UN bo h 0M'M (2 .2 )

and (f>{n) is formed by the previous values of the output and the |;)resent and past 
vcdues of the input:

-\T
^(n) = w{n — 1) · · ·

w(n)"^ x ( n y

w{n — N) x(n) x(n — I) 
tT

x(n -  M)

(2.3)

In the above relation, the system is assumed to be time-invariant. Time varying 
systems can be modeled with 6, which has time-Vcirying entries. Our a.im is to develop 
adaptation algorithms tlmt can be utilized for both time invariant and time-varying 
systems. However, the variation of the system parameters should be either a. slow 
function of time, or else, cibrupt changes in the system parameters should occur 
infrequently in time.

2.2 A  Regressor Based HR Adaptive Filter Structure

In FIR adaptive filtering, the model is a tapped-delay-line and only the in|)ut samples 
determine the output of the plant and the model. No Feedl)ack loop exists inside the
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system and stability in BIBO sense is always assured. In adaptive HR filtering, due 
to the feedback existing in the system, we are faced with the problem of deciding on 
the feedback signal used in the adaptive system when we Imve noisy observations of 
the actual system output. Hence, as shown explicitly in Fig. 2.1, we need a regressor 
that causally performs the required estimation of the feedback signal based on the 
noisy output d{n) and the output of the adaptive filter y{n), which is obtained as:

y(n) =  0̂  {n)^{n) (2.4)

where l(n ), the vector of estimated system parcurieters, can be written as:

0{n) =
tT

âi(n) ··· âN{n) bo{n) bi(n) 
iT

a(n)^ b(n)^

bmin)

(2.5)

and ^(n) is the vector of the regressor output, w{rt)  ̂ and the system input, ;r(n):

¿(?r) =
iT

w(n -  1) io{n — N) x[n) x{n — 1)
iT

x{n -  M )

w(?r)^ x(n)-' (2 .6)

The performance of the adaptive filter heavily depends on how well tlie regressor 
provides estimates to the actual system output to{n). The two well known formula.- 
tions of adaptive HR filtering, namely the output error (OE) and the equation error 
(EE) formulations, correspond to two different types of regressors.

In the OE formulation, the vector ¿^ (n ) is described cis

¿ o ( « )  = y{n -  1) · · · ?/(n -  N)  ;c(??,) x{n -  1) ,'i;(?7, — M)

y { n f  x(n)'^
iT

(2.7)

which corresponds to a regressor whose output is the output of the adaptive filter. 
In the EE formulation the signal vector, ¿^(?i) is given as:

=
-\T

d { n -  l) ■■■ d{n -  N) x(n) x(n -  1)
iT

d(?7)^ x(n)^

x(n -  M)

( 2 .8 )
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which corresponds to a regressor whose output is the noisy observation of the system 
output, d{n) =  w(n) +  u(?r).

Since the least squares cost function of EE formulation is (piadratic in terms 
of the parameter vector 0, fast converging recursive least s(|ua,r(;s t(H-.liniqu(is can 
be used in the adaptation. However, because of the additive measuixmient noise, 
v(n), the converged parameter values are bicised (estimates of the actual system 
para.meters [7,16-18]. In the OE formulation, the least s(|uares cost function is not a 
quadratic function of the parameters. Hence, we are bound to use; LAdS type gradient 
descent techniques in the adaptation. When these LMS type adaptation algorithms 
converge to the global minima of the cost function, the obtained parameters are 
unbiased estimates of the cost function. Unfortunately, not only LMS type gradient 
adaptation methods converges slowly, but also, tliey may converge' to a local minima 
of the cost surfcice. Various algorithms have been proposed to combine the beneficial 
features of the OE and EE formalism in one algorithm [1 -4,G,7,19]. Notably, the bias 
remedy least mean square equation error (BRLE) [2] and the composite regressor 
algorithms (CRA.) [3] are proposed to obtain low biased parametcM· estimates by 
using gi’cidient descent type adaptation [11,16-18]. However, sincxe the corresponding 
cost functions o: these algorithms are not designed to b(; qua.dratic with respect to 
the parameters, recursive least squares techniques cannot Ix'. utilized to ol)tain fast 
converging estimates to the parameters.

In the first part of our work, we also try to coml)ine the desiix'd features of 
both OE and EE formalism in one formulation wlicire tlie cost function is kept as 
a quadratic function of the parameters. As suggested in Eig. 2.1, this is acliieved 
by choosing the adaptive filter as a two-channel EIR filter with inputs x{n) and 
iu(n — 1). Then, the corresponding weighted least squares cost function becornc.s:

A:=l
(2.9)

which is a qiuidratic function of 0, becciuse ^(n) is a. fixed sequence of vectors det<n·- 
mined by the past parameter estimates &(n — — 2), · · · ,^ (0). Ih'iice, efficient
multi-channel FIR recursive leevst sejuares techni((ues can l)e used to obtain param­
eter estimates ai time n, ¿(n ), as the minirnizer of

In the following chapter, two different types of regn^ssors will be investigated 
in detail and corresponding recursive leivst squares adaptation algorithms wdll be 
presented.



Chapter 3

Proposed Regressors

The performance of the regressor based HR adciptation structure largely depends 
on how well the actual system output is estimated by the regressor in Fig. 2.1. In 
this chapter, we investigate in detail two types of regressors.

3.1 H R —7  Algorithm

In the first class, the regressor output is estimated as a couv('.\ combination of the 
noisy observations, d{n) and the adciptive filter output, y{n) as

u;(?r) =  jnd(n) +  (1 -  'jn)y{n)^i , 0 <  7„ <  1 (3.1)

where 'yj\s the regression coefficient. In the following, the HR adaptation algoritlnn 
which uses this type of regressor is referred to as HR—7 .

The proper choice of 7,1 should be based on a measure of the reliability of tlie 
estinicited system parameters. A significant deviation of y{n) from d{n) is a.n indi­
cation that the system i^arameters are not reliably estimated, and heiuxi, 7,,, sliould 
be chosen close to 1, so that equation error type a.dapta.tion should tahe place. On 
the contrary, if y(n) closely follows d{n), then to reflect our level of confidence to 
the estimated system parameters, 7„ should be chosen close to 0, so that output 
error type adaptation should be performed. We propose to liase the measuix' of

8



Chapter 3. Proposed Regressors

reliability of the estimated system parameters to the statistical significcuice of the 
observed deviation between ij(n) and d(n) sequences. For this purpose, one way 
of choosing 7„ is based on weighted estimate of the expected energy of the error 
sequence e(n) =  d(n) — y{n):

L{n) = EILo -  i f (3.2)A* ’

where is an exponential forgetting factor that can im|:)rove the performance of the 
estimator. In this approach, the regressor pcirameter 7,,, is aii increasing function 
ol L(n), because large values of L{n) is an indication of deviation from the true 
system parcuneters. In our investigation, we observed that the critical properties of 
the functional foi'm between L(n) and 7„ are the boundary values ly and /2 such 
that 7„ =  0 if L{n) < ly and 7„ =  1 if L{n) >  /2. In between these two boundaries, 
various forms of increasing functions can be used. In order to determine which 
values for ly and /2 should be used, we investigated the expected value of the L[n) 
for the cases of 7« =  0 and 7„ =  1, which correspond to output and equation error 
adaptation cases respectively. Assuming that 7„ =  0 and the estimated parcurieters 
have converged to the actual ones, the observed error sequence, e(n) will be equal 
to v(?i), the additive Gaussian observation noise. Hence, the ('xpected value of Lin) 
will be (Ty, the variance of v{n). Therefore, ly is chosen as a'l· Likewise, when 7„ =  1 
and convergence of weights are established, expected value of L{n) is equal to the 
variance of e(n) sequence for the equation error formulation. Since equation error 
e¿г(?г) is related to the output error eo{n) as [2]:

CEin) - eo{n) -  a '  (n )e o (? 7 .) . (3.3)

when '^(77) is white noise, the variance of eE{n) can be written as:

var (eEin)) == al j

at the time of convergence to true pcirameters. Hence, we propose to use:

k =  , k  =  Ualil  +  J ] d · )  (3.5)

where [ / >  1 is introduced so thcit 7„ should not be kept fixed at I near tlui conver­
gence point of the equation error adaptation.
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For computational efficiency, the actual form of functionaJ relation between L{n) 
and 7„ is chosen as follows:

7n

0 Lin) < /,

ÍI <  t ( " )  < 4 ^  

1 -  (1 -  4 ^  <  Un) < k

(L(n)-h)v
 ̂ fh-h

(3.6)

1 L(n) > k

where k and p are two parameters providing some control of the actual shape of 
the curve in between two boundaries l¡ and /2. Fortunately, we oirserved that the 
Irehavior of the algorithm is not so sensitive to these slia|)e |:)ara.meters. I'or each 
iteration, this regression algorithm requires (N +  11) multiplications which is OiN).

Some examples of the above functional relation (3.6) Ccui be seen in Fig. 3.1 Ibr 
Vcirious shape parameters.

3.2 IIR-Kalman Algorithm

In the second class, we consider a Kalman regressor structure based on the [bllowing 
state space model of the origincil system [11-13,15]:

w(n +  1) =  ^w(?r) +  Bx(n)  V (3.7)

din) -  Cwin +  1) +  vin) (3.8)

wtiere C = 1 0 and the state transition matrices are:

I A  =

-ÜI —«2 · · · —aN

1 0 0 

0 1 0

0 1 0

B =

bo by

0 0

bM

0

0 0 0 0

(3.9)

Since the actual parcirneters are unknown, we cannot use tlie state s|)a,ce model 
directly in the estimation of luin). However, if we form A  and B matrices !)y using
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( a ) no

( c ) (̂0
Figure 3.1: Some example functional relation between L{n) and 7„; (a) l[ =  0.1, /2 
0 .8 ,/c =  0.5,p =  2, (b) h =  0 .1 ,/2 =  0.8, K =  0.5,p =  1, (c) h =  0 .2 ,/2 =  0.7, k 
0.7.5, p =  2, (c/j /1 =  0.2,/2 =  0 .7 ,/V =  0.25, p =  2
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the estimated parameters at time n, we get the following state space model:

w (?2 +  1) =  A(n)w(n) +  B{n):x.(n) +  u(n) (3.10)

d{n) =  Cw(i7, +  1) +  u(?i) (3.11)

where u(n) is introduced as an additional noise term to the system clynamics to 
account for the approximations in A  and B by A{n)  and B{n), which are equal to:

A{n)  =

—di{n) —({2(77)

1 0

0 1

0 1

—а^{п)

0

0

0

, B{n) =

boin) 61(77.)

0 0

Ьм(п)

0

(3.12)
Since the approximation in ^ ( 77) and B{n) only limited to the first row, the addi­
tional process noise u(7r) can be written as:

и(?г) =
tT

иin) 0 0 (3.13)

In order to apply Kalman estimator on the approxirna.te model given by Eqns. (3.10) 
¿uid (3.11), we need the covariance matrices TZu{n) and 'Rv(n) of 77(77,) a.nd 77(77.) 
respectively. In addition, we need an initial estirniite to the state vector w (0) 7uid 
the variance of the initial system error 7^„,(0). The covariance matrix ‘R-uin) is 
determined by the variance ol u(n) lor which a robust way of fipproximation is 
presented in the Appendix A. The steps of the corresponding Kalman estimator are 
given in Table 3.1, where Ain) ,Bin) ,win)  are defined in Eqns. (3.12), (2.6) and the 
notcvtion of is used to denote the first dicigonal entry of the matrix T . Note 
that the output of the regressor гЬ{п) is the first entry in the estinmted state vector 
W/c(77 +  1) and also the a-priori state estimate w/c(77. -Ь 1|77.) is obtained efficiently 
by using the output of the adaptive filter and the previous states of the Kcilman 
filter. The actual forms of the matrices in the above algorithm C7ui l)e exploited for 
more efficient computation of the regressor output 7(7(77). For each iteration, tlic 
Kalman regressor requires (ZN'  ̂ +  2N) multiplications, hence it is O(N^). 'The HR 
adaptation algorithm which uses this type of regressor is referred to as HR -Kalman.

The required two-channel FIR adaptation can be efficiently performed by using 
QR-MLSL algorithm which is a rotation-based multi-channel least squares lattice
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w /i(n  +  l|7г)

V(n +  l|n)

0(n)

V{n  +  l|i2 +  1)

WA'(n +  1) 

w(n)

y{n) lUK-in -  1) WK(n -  +  1)

A{n)V{n\n)A(ny  +  TZuin)
V{n  +  l|?i)

P (n  +  l|?i)(i,i) +  0-2 .

iT

1
1 0 0

1 - G i n ) 1 0 ··· 0 ]V (n  + l\n)

WA-(?г +  1|??,) +  Q(n) ( d̂{n) -  WA'(n +  · bO(i,i))
Wa-(?2 +

Table 3.1: Equations of IIR-Kalman State Estimator

algorithm with many desired features [9]. The steps of this algorithm are given in 
doable 3.2. For each update, this algorithm requires 0(4:N) multiplications. The 
required direct form parameters for the Kalman regressor can be easily computed 
by using standard mapi^ing rules between lattice and direct form parameters [9]. 
The structure of multi-channel lattice FIR, filter and the mapping rule is explained 
in the Appendix 13.
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Initializations:

Rf,(0) =  R%(0) = ri‘p(0) = r^(0) = 02X, r ,(o )  = 0,2 X  I

Time recursive equations: For =  1 ,2 ,. . .
i T

fo(n) = bo(n) = x(?z) = Xl{n) X2{n) ¿o(n) =  y(n) 7o(0 =  I

Order recursive equations: For p =  1 ,2 , . . .

Q p(«)

Qi(n)

Rf,(·«.) ri',(77.)\/AR^p(?7 -  1) ^/XT^pin -  1)

fJ-iW
\ /A R ^ (? 7 -1 )  ^/XT^p(rı-l) \ /A r« ,,(?7 -1)

bj_i(n -l) i p - iH  ep_i('n-l)
Rbp(,7) r^(77.) r p ( n )

-  00'̂ '

7p(?7 -  1) =  % -l (n  -  1) cos Ol^in) cos 

PcU’cuneter Identification:

Kfp(?7) =  R fp(77)-'ri;(?7)

Kbp(i7) =  R ^ (?7)-lr% (77)

K%{n) =  R \ (?7)-lr% (77)

Used Transformations:

fp(n) = fp(n)/7,(n -  1) bp(n) = bjn)/%{n) i^(n) = c„{n)l%,{n))

>W >U  are the angles of Givens rotcition corresponding to Qp(n)·

The last diagonal element of Qp(?7)is the products of cosines.

Table 3.2: QR-MLSL Algorithm and Parameter Identihcation in the Two-Channel 
Lattice Form



Chapter 4

System Identification by 

Extended Kalman Algorithm

We propose the regressor based RLS algorithms for their potential of providing 
more reliable feedback signal w{n) in the presence of output noise. In the IIR - 
Kalman algorithm, a boot-strap method is used for an alterimting estimation of 
the system output and its parameters. The Kalman regressor |)rovides estimates to 
the noise free output, and then an RLS type adaptation procedure first updates the 
adaptive system parameters and then compute the output of tlie adaptive system, 
y{n). As discussed in [11-13], these two stages of the adapta.tion can be combined 
into one in an augmented stcite space description of the system. This approa.ch has 
been proposed for combined state estimation and tracking of slowly varying system 
parameters once a close initial estimate to the system parameters is available [12,13]. 
In this chapter, we provide the augmented state space description corresponding to 
HR cidaptive filtering and then derive the corresponding extended Kalman algorithm 
for the estimation of the cuigrnented state. Also, we use a robust method, wliicli is 
presented in the Appendix A, for the choice of the required cova.riance matrices.

15
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The augmented state space description which will be exploited lor joint estima­
tion of the system output and its parcimeters is given as;

w(?r +  1)

6{n + 1)
.Â(?г)w(?г) +  B(n)x{n)

0 ( n )

+
u(?7,)

S(?7,)

(4.1)

with the corresponding observation model of:

d{n) =
r  1 w ( n  - b  1 )

c o ' · ^
L  J Qin + 1 )  .

+ v{n). (4.2)

Here, u(?7) is the noise sequence vector on the output estimates, which we call cis 
process noise as in IIR-Kalman framework, cind s(n), which is assumed to be un- 
correlcited with u(?7), is the noise vector on the pcirameter updates. Since ^(?i)w(?r) 
involves multiplication of augmented state variables, extended Kalman filter cilgo- 
rithrn should be used in recursive estimation of the augmented state variables.

For the following general state sjDace model, the extended Kalman filter has been 
proposed for efficient estimation of the state

Zn+l =  Ĵ n(Zn) + (4.3) 

r„ =  XniZn) +  (4.4)

where iFn and cire vector-valued functions and Tin is «i· matrix-valued function 
with continuous first-order partial derivcitives. In the case of zero mean uncorrelated 
Gaussian noise sequences, and rj , with

=  QkHk -  /) , = SkSik -  /) ,
1%

z ^ } = 0  VA:,/ (4.5)

the steps of the extended Kalman filter algorithm are given in Table 4.1, as it was 
derived in [12].

This general form of the extended Kcilman filter can be specialized to our appli­
cation by using the following substitutions:

Zn = [ w(?z)̂  0{n)^ , r„, =  din]

T/'
^n(Zn) =  ^^(?7)w(?r) -)-H(?7)x(?7)y (n) > Tin{Zn) — l  (4-6)

Xn{zn) =  Cw{n) , f  = U(?7)̂  S(ny
T

, ■// =  n(77,).
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The steps of the corresponding algorithm, that will be referred to a,s EKF, is given in 
Table 4.2. As seen from this table, the initial estimates of the states, the covariance 
matrices of the initial state estimate, the system and observation noises are required. 
A robust way of approximating the covciriance matrix 7Zu{n) is presented in the 
previous chapter and the Appendix A. Since the matrices have special structures, 
we can simplify the required comi^utatioiicd complexity of the EKF. For instance, 
both u(?r) and the observation matrix Ims only one non-zero entry, simplifying the 
vector-matrix operations. Hence, no matrix inversion is required in our application.

For each update, the EKF algorithm requires (12N'  ̂ +  3/V/  ̂ +  12 NM +  17N +  
9M  +  4) multii:)lications which is an order more than that of IIR—7 and iiround 9 
times more than that of IIR-Kalman algorithms.

Initialization: Vop 

'Pn,n-V

Zn|n—1

Qn

=  E { zqzI ]  , Zo =  /'.'{zo}

dĴ n-i
<9z„_i

dTn-i
dzn-i

+  T in - 1 { i n -  l ) Q n - l  T-Cn-1 ( z „ _  1) 

•Fn.—l(Zn—1)
dXn

(Zn-l)

=  'P n ,n -1

 ̂T

di. '(Z)i|n—1)

\ d X n , .  J T

T’n.ji-l (z„|„,-l)
dzn

+  Sn

-1

'Pn,n —
dXn
dzn (Zn|n—1) V;n,n—\.

— Zfi|,i,_i T Qn ^n{Zn\n—l)'j

Table 4.1: Equations of General Extended Kalman Algorithm

In the following chapter, we provide extensive comparison results between the 
presented algorithms and LMS type regression algorithms: CRA and BRLF.
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Initialization:
w(0)

¿ ( 0 )

w (n +  l|n)

¿(n +  1|?2)

£’{w(0))

¿ (0)

^(72)w(n)

0{n)

, no|o) = TZ-w (0) 0

0 -RojO)

+
B(n)x{n)

0

V{ny- l\n) =  J{n)V{n\'n)J{nY -\-
Ru{r>) 0 

0 Ro{ri)

J (n )  =
A{n)

0 0

0 f-M+N+l

Q { n )  --

V{n4-l\n + l) =  [1 — Q{n)

V{n  +  l|?i)
(P (?2+  + (t2) .

1 0 0

1 0 ) n n  +  l|r0

w{n  +  1) w (n +  l|?i)

£(n +  1) ^[n +  l|?i)
+  Q{n) [din] -  w (n  +  l|?i.)(u))

Talkie 4.2: Equations of Extended Kidman Algorithm Applied in apiave UR Eli-



Chapter 5

Simulation Experiments

In order to compare the regressor based feist RLS algorithms proposed in chapter 3 
and the EKF algorithm discussed in chapter 4 with the earlier proposed gradient 
descent IIR adaptation algorithms BRLE [2] and CRA [3], their performances over 
synthetically generated examples are given in this chapter.

The steps of BRLE and CRA algorithms are given in Table 5.1 and Table 5.2.

eo(n)

eE{n) 
ai{n + 1) 
bj(n +  1) 

Remedy Parameter:

d(n) -
di{n) +  ixtE{n) [d{n -  i) -  TCo{n -  ·/)] i =  1, 2, 

bi(n +  1) +  i.ieEin)x(n -  j )  j  =  0, 1, · · ·, M

0 < T < 1

determined by r =  rnin(A: .J , I)eo(n)

, N

Table 5.1: Equations of Bias-Remedy Least Mean Square Equation Error Algorithm 
(BRLE)

For the required multi-channel RLS adaptation of the system parfimeters in the 
regressor based algorithms, rotation-based multi -channel least squares lattice algo­
rithm (QR-M LSL) given in Table 3.2, is used [9]. By using simple transformation

19
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w(?2)

kn)

e(n)

kn  + 1)

Composition Parameter;

7d(??,) +  (1 -  7 )y (« )
l'7'

w(n)^ x(?7,)’̂ ’

d(n) — ^ (n)^(ri)

y;4(77,)e(??.)= 0(n) + T .1 +  {n)^(n)

0 < 7 < 1

Table 5.2: Equations of Composite Regressor Algorithm (CRA)

rules, the direct form parameters Ccin be obtained irom the reflection matrices of the 
cidapted two-channel FIR lattice filter [9]. In the following results, the parameter 
error vectors are computed as:

eo{n) -  9_-0{r )̂

where 0 is the actual and 0_[n) is the estimated direct form pa.rameters.

The cidaptive filters are “all-zero” initialized during each experiment. The sta­
tistical results come from the the ensemble average of 50 realizations.

5.1 Simulation Example 1

In this first example, the same LTI second order IIR. system analyzed in [2,19] is 
used in cl system identification application. The traxisfer function of the original 
system is:

H{z) =
1 (.5.2)

1 -  1.7z-^ +  0.722.5.?-'· '̂
The input sequence is a unit-variance white Gcuissian process. 'I'he output noise 
process, v(n), is chosen as white Gaussian noise process. The output noise varicince 
is varied to investigate the sensitivity of the performance of the algorithms to the 
level of SNR.

In P’ig. 5.1, the squared norms of the parameter error vectors, ||efy(';i.) corre­
sponding to the compared algorithms are plotted as a function of time. 'I'he stcuidard
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deviation of the output noise, cry is set to 0.5. The forgetting factor A of the Q R - 
MLSL algorithm is chosen as 0.999, and the parcimeters of the regressor subsystem 
of Eqns. (.3.5) and (3.6) are chosen as A„ =  0.9, p =  1,a: =  0.7, fJ =  2. For the 
IIR-Kalman regression cilgorithm, the initial variance estimate, al{0) is chosen as 
unity cind the smoothing factor, /3 is chosen as 0.9. The EKF algorithm has cilso 
initialized with all-zero initialization for the augmented state vector with the same 
smoothing factor and unit 5-^(0) as well cis the dia.gonal entries of the covariance 
matrix 7io{0). In order to better resolve the Ccirly convergence behaviors of the 
compared algorithms, a logarithmic time axis is used in Fig. 5.1. As seen from this 
figure, the proposed algorithms have converged to an error level of -10 dB eiirlier 
than the 1000̂ *̂ Scimple, but the LMS type algorithms converge to the sa,me error 
level at about 40000* '̂' sample. EKF algorithm, performing the best, converges to 
-20 clB at around 50000*  ̂ sample. Here, the same step-size of 0.0005 is used for 
the CRA and BRLE algorithms. As recommended in [2] and [3], the composition 
parameter 7 for CRA is chosen as 0.9, and the remedier parameter of BRLE, r(?i) 

is chosen as m in ( j i^ ^ ,  1).

Although the corresponding results of RLS equation error and output error adap- 
tcition are not shown in Fig. 5.1, they converged to error levels of -7 dB and 5 dB 
respectively, which are significantly higher than those of compared algorithms here. 
Therefore, as initially expected, the performance of the regressor based RLS ap- 
pi'oaches can be better than both the equation and output error formulations.

The tracking errors plot, ||in(n) — y{n)\\̂  of the compared algorithms are shown 
in Fig. 5.1. EKF and CRA algorithms have lower tracking errors, but the proposed 
regressor algorithms have a very fast convergence.

In order to compare the error on the parameters at the convei’gence of the a.lgo- 
rithms, we repeated this experiment at different noise levels. The obtained ||eii(??.)||̂  
results are given in Table 5.3 cind figured in Fig. 5.2. In this experiment the l)est 
performing algorithm is found as the EKF algorithm. However, EKF requires an or­
der more multiplications than HR—7 algorithm. As seen from these results, at high 
SNR (low levels of cr„), LMS type cilgorithms converge to lower error levels. Howev(M·, 
as the SNR decreases (high values of Uy) the proposed aigorithms start providing 
closer or better results than LMS type algorithms, which is ¿m important cidva.ntage 
in many practical applications. Note that, the tabulated results correspond to the 
error levels at the 5000^  ̂ sample for the proposed algorithms and 50000' '̂ samples
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lor the EKF, CRA and BRLE algorithms. Since, in many important applications, 
the speed of convergence is very critical, the proposed algorithms provide a good 
trade-off between error levels and the speed of convergence even at high SNR. Also, 
IIR- 7  provides comparable results to IIR-Kalman although it requires an order less 
number of multiplications.

(J V IIR- 7 IIR-Kcilman EKF GRA BRI.E
0.0500 -74.5756 -82.2542 -74..5538 -84.9733 -77.3835
0.1000 -50.9257 -56.2936 -69.4997 -62..5078 -.55.7208
0.2500 -24.1973 -27.1816 -38.8864 -32.1684 -28.38.55
0.5000 -10.2770 -10.9023 -21.2782 -11.3103 -10.2322
1.0000 -1.4034 0.4040 -5.6237 3.6105 3.5396

Table 5.3: Squared parameter error norm in dB at convergence of the algorithms at 
different noise levels for Example 1

5.2 Simulation Example 2

In this example, the performance of the algorithms are comjrared when there is an 
abrupt change in the system pariimeters. For this purpose, we used the following 
time-varying transfer function for the original .system:

H{z,n)
Q.2759+0.5121;г~^+0.512L·‘;-'-^+0.2759.?-'^ ^  rnn

l - 0 . 0 0 1 ; j - l + 0 . 6 5 4 6 ; ^ - ^ - 0 . 0 7 7 5 . ~ - ^  ’ ^
0 . 7 2 4 1 + 0 . 4 8 7 9 ^ - ^ + 0 . 4 8 7 9 . ? - ^

1 + 0 . 0 0 1 ^ - 1 + 0 . 6 5 4 6 ; ? - 2 + 0 . 0 7 7 5 ?
n > 5 0 0

(h.3)

The input is chosen as zero-mean unit variance white Gaussian process. Tlie output 
noise v(n) is chosen as a zero-mecin white Gaussicui noise with a varia,nce of 0.25. 
The step-size of CRA and BRLE algorithms is set to 0.01, because a larger value for 
it would cause instability in the convergence. The composition parameter, 7 of GRA 
is set to 0.5, and the remedier parameter, r(?7.) of BRLE is determined as in the first 
example. The forgetting factor of the proposed algorithms is set to 0.99 for a better 
tracking of the variations in the system parameters. For IIR-Kalman algorithm, 
d-'iin) is chosen as unity and smoothing factor, fC as 0.9. 'I'lie pcira.meters of HR—7 in 
Eqns. (3.5) and (3.6) cire cho,sen as =  0.95, p =  1,/i =  0 .3 ,// =  5. EKF algorithm 
was also initialized with all-unit variances for all the elements in the state vector with 
the same smoothing factor of IIR-Kalmcin. In Fig. 5.4, ||eii(?7.)||·̂  of each algorithm 
is shown. As seen from the.se results, both CRA and BRLE, whose performance are
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very close to each other, are outj)eriormed by the proposed algorithms. 1111,—7 and 
IIR—Kalman have the best performance where EKF algorithm has converged to a 
higher error level. This is an expected result in the light of the first experiment where 
the convergence speed of the proposed algorithms were found as significantly faster 
than BRLE and CRA algorithms. Again, at an orderless amount of multiplications, 
IIR—7 provides comparable results to IIR-Kalnmn.

5.3 Simulation Example 3

In this example, the performance of the proposed regressor algorithms cue compared 
with the output error and equation error regressors when there is an abrupt change 
in the system as in the previous example. The time-varying system transfer function 
of the simple one-pole system:

E(z ,n )  =
1

1 + 0 . 9 8 ^

t
n <  400 

n > 400
(5.4)

l-0.98.r-i
The input sequence is chosen as in the second example. The output ■w(n) is dis­
turbed liy a zero-mean white Gaussian noise process with a„ =  3. 3'lie parameters 
of the regressor based algorithms are set as in the second example except the forget­
ting factor of the adaptation algorithm A, which is chosen as 0.95. 'The output error 
and equation error regressor methods are also cornlrined with the same adaptation 
algorithm, QR-MLSL, with the scvme forgetting factor. The corresponding ||eii(?i)||'̂  
perlbrmance cuid the tracking performance, ||iy(n) — ?/(n)||̂  of each algorithm are 
shown in Fig. 5.5.a and Fig. 5.5.b. The shown results a.re ensemble averages of 
250 realizations. As seen from Fig. 5.5.a, the proposed regressor algorithm provide 
more reliable estimates to the system parameters than the equation and output er­
ror regressors. Following the abrupt change in the system, the proposed regressor 
cilgorithms track the equation error regressor for a. short time, attaining a. fast con­
vergence then they keep reducing the estimation error even after tlie convergence of 
equation error regressor. At convergence, the proposed regressor algorithms have the 
lowest error level in the estimated parameters. Similar conclusions on the tracking 
performance of the compared algorithms can be drawn from Fig. 5.5.1), where the 
proposed algorithms converges rapidly to lower error levels in output tracking. This 
example demonstrated one more time the improved performance of the proposed 
regressor algorithms in time-varying systems.
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Param eter Estimation Error (dB)

50 г

40

( a)

Tracking Error I w(n)-y(n) 1̂  (dB)
“ I------------------ Г" “I--------r

30 -

■ O' 'v'· ' . · . .BRLE
'' '  ̂V;":-V

IIR -K A LM A N

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
time

(b )

Figure 5.1: Results of first excimple: (a) squcired norm of parameter error as a 
function of time. Logarithmic time axis is used to resolve early convergence helmvior 
of the algorithms, (b) output tracking error ||rw(?7,) — y{n)\\'̂  as a function ot time.



Clmpter 5. Simulation Experiments 25

Error Level at convergence (dB)

0.05 0.10 0.25 0.50
Standard Deviation of Noise a

I'^gure 5.2: Bar chart of squared parameter error norm in dB at convergence of the 
algorithms ¿it different noise levels for Example 1

Error Level at Convergence (dB)
61------------ 1------------ 1------------ 1------------ 1------------ 1------------ 1------------ 1------------ 1------------ 1------------ 1------------ r-

III·

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Mixing Parameter Y

Figure 5.3: Bar chart of squared parameter error norm in dB ¿it convergence ol 
the regressor algorithm when the mixing p¿ır¿ımeter, 7,,, is kept const¿ınt during the 
iter¿ıtions for Example 1. Corresponding v¿ıri¿ınce of the output noise is 0.2o. Note 
tluit the nmrginal OE and EE formulations h¿ıve ¡¿irger error levels, tlmn ¿1 composed 
regressor.



Chapter 5. Simulation Experiments 26

Parameter Estimation Error (dB)

Figure 5.4: Results of second example: squared norm of the parameter error as a 
function of time when the parameters of the original system are abruptly changed 
cit time 500.
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Param eter Estimation Error (dB)

( a )

Tracking Error I w(n)-y(n) l  ̂ (dB)

(b)

Figure 5.5: Results of third example: the original system parameters are abruptly 
changed at time 400, (a) squared norm of parameter error as a function of time, (b) 
output tracking error — ?/(n)|P as a function of time.



Chapter 6

Conclusions and Future Work

In order to be able to use fast converging recursive least squares adaptation al­
gorithm in adaptive HR filtering, a regressor based adaptive system structure is 
proposed. In the proposed approach, cin adaptive regressor provides estimates to 
the actual system output based on the available noisy observations of the system 
output and the output of the adaptive system. Then, the estimated output and 
the system input are fed to a two-channel adaptive FIR filter whose parameters are 
Lipdcited by using a rotation-based multi-channel recursive least squares algorithm. 
Two different regressor algorithms, with number of multiplications in the 0 {N )  and 
0(N'^) resj^ectively, ¿ire proposed to provide reliable estimates to the system out- 
i:>ut. Robust ways of updating the parameters of the regressors are presented. Also, 
motivated from the use of Kalman regressor in the proposed adaptation structure, 
e.xtended Kalman filter algorithm is applied to joint estimation of the system pa- 
rcuiieters and system output. By exploiting the special structure of the state space 
description of the adaptive system, it is shown that the corresponding extended 
Kaliricin algorithm does not require any matrix inversions and can be implemented 
by performing 0 { N ‘̂ ) multiplications.

The proposed regressor based adaptive HR algorithms are cornparcid with the ex­
tended Kalman approach as well as earlier proposed LMS type approaches: BKTF 
and CRA. Based on extensive set of simulations it is found that for time- invariant 
systems, the proposed algorithms not only converges faster than LMS ty|)e algo­
rithms, but also, provide more reliable parameter estimates at low SNR. Also in the

28
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simulation of the systems with abrupt changes in their parameters, it is observed 
that the proj^osed regressor based adaptation algorithms outperform the extended 
Kalman, BRLE and CRA algorithms establishing faster convergence to lower error 
levels.

As future work, the required modifications in the proposed aJgorithrns in the pres­
ence of colored output noise can be investigated. Also, output tracking performance 
of the algorithms should be compared in the case of insufficient model order. More 
importantly, stability monitoring of the adapted system should be incorporated to 
the adaptation ¿ilgorithm.



Appendix A

An Efficient Method of 

Estimation of var(u(n))

In the output error approach, the noise free output state is estimated by

luoin) =  a^(?r)w(n) +  b' ’̂('/i)x(?7.) (A .l)

where the previous estimates of the output to(n) is fed bciek to the adaptive system. 
However, in the eqiuition error cipproach, the output is estimated by the noisy 
observation of it:

Wn;{n) =  to{n) +  v{n). (A .2)

By denoting the parameter error vectors a(n) — a and b (7i) — b as Sa{n) and ¿b(y7.) 
respectively, Eqn. (A .l)  can be written as:

w o { i i )  =  [a + ¿a(?7)]̂  [w(n) + ¿w(??.)] + [b + ¿'b(?7.)]·̂  x(y7.)
=  w(n) +  ¿ a ^  (y 7 )w (y 7 ) +  ¿ 'b ^  (yy.)x(y7,) +  a ^  ¿w (y7.)

=  w(n) +  u{n) (A.d)

where Sio(n) and 8w{n) are defined cis w{n) — 1 0 (11) cuid w(y7.) — w(y7.) respectively. 
Therefore, the estimate (A..3) which corresponds to the prior estimate of tlie state' in 
Eqn. (3.10), and the estimate (A .2), which corresponds to the observation estimate in 
Eqn. (3.11), are optimally combined by the Kcilman estimator so that the variiince 
of the overall estimator is the lowest possible. Since both Eqns. (A .2) and (A.3)

30
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cire individual estimators of under the assurnijtiou that u(?7.) and v(n) are
uncorrelated white Gaussian random processes, the optimal (ristirnator of w(n) is 
given by:

Woptin) = WE{n) +  , S vo{n) (A.4)

where each estimator is weighted as inversely proportiorml to its variance. The
2 2

variance of this optimal estimator is 4 ^ .  Thus, the covciriance matrix of the state 
estimate provided by the Kalmim filter, is

E{Sw{n)6w^{n)} =  I.

Now, by using the definition of u{n) deduced from Eqn. (A.3): 

u(n) = da"^(n)w(?r) + 8h^ (?r)x(?r) + a-'’6w(?r), 

and assuming that ¿a(n), ¿b(n) and 8w(n) cire uncorrelcited, we get:

al -  w'^{n)1Zs&{n)w{n) +  {n)'R.sh{n)Mn) +||a||’'‘2
K  +  y ,

(A.5)

(A.6)

(A.7)

Then, cr„ can be found as

T + ||a||V,^ + 7[T + ||a ||V g f+  4Tag
(A.8)

Since a is not known, during the iterations a'f̂  can be approximated by replacing a 
with a(?r), as well as the covariance matrices for the estimation errors are rephiced 
with their cipproximations:

E{Sa{7i)8sl (n)} ~  -------------'y^Sa{ii)Sa(r)y ='Rsix{n)
1 ¿=1

E{6h(n)6h^{n)} ~  — ¡— ¿¿'b (?0^ 'b(n)'^ ' =  7 ,̂rt>(n)
«  -  1 ¿=1

(A.9)

(A.IO)

where 6a{n ) =  a [n ) — a(n — 1) and ¿b(?2) =  b(?i) — b(?7. — 1) are the updates on 
the estimated parameters in two consecutive iterations. Under mild assumptions, it 
can be shown that Eqns. (A.9) and (A.IO) provide reliable estimates at convergence. 
Then, the estimate of the at time n results as:

T +  ii&iiv; + ( A. l l )
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when
T =  W·̂  (n)7^fia(n)w(?i) + x.'^(n)7lsi:,{n)x(n). (A.12)

In order to have smoothly varying estimate during the iterations of the Kcilman 
filter, a smoothing factor, ¡3, can be added in the following update on the estimate:

\{n) = jdcrlin -  1) + {\ -  ¡3)dl , ^<f 3<l . (A.13)

In the simulations, the smoothed estimate, du(??,), is used.



Appendix B

Two—Channel Lattice Structure 

of an HR Filter

An adaptive HR filtei' Ccin be structured cis a two--chauuel FIR, filter as iu Fig. B .l. 
The order equations of section of the lattice are:

b p ( r i )  =  b p _ i (? ? ,  -  1 )  -  K ^ ^ ^ fp _ i(?

and the output of the filter is defined as:
Ртах

y(n) =  ^  К'',^Ьр_,(п).
(=:i

x[n]

33

(B. l )

(B.3)
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where and K^p are the forward and backwcird predictor rnatrices of size 2 x 2  
and K®p is a 2-dimensional vector of joint process estimator. The forward and 
backward prediction errors are fp(n) and bp(n) for section at time n. 'I'lic input 
vector is equal to:

x(n) =  fo(?2) =  bo(n)
: 7

.Tt(??.) X2{n) (B.4)

When the input of the first chcumel, Xi(n)  is chosen as the input of the original 
system, and the second channel input, X2 {n), is chosen as the one-sample
delciyed version of the reference output signal, io{n — 1), the shown structure is 
similar to an IIR system. Taking the first chcinnel input as x{n) and the second 
channel input as w{n) (the output of the regressor), the adaptive system output, 
i/(?r), can be computed. In fact, the hittice form coefficients are adapted by a 
QR-M LSL algorithm. The direct form parameters can be found by a sirrqDle map­
ping of the reflection matrices. Notice that, the numerator coefficients of the IIR 
system, b, is the out}Dut response of the filter when :ri(??,) =  8{v) and x{n) =  0. 
Similarly, the denumerator coefficients a is the output response due to the inputs 
.Tĵ (ji) =  0 and X2 {n) =  8{n). The output C c i n  be computed by lattice recursions in 
Eqns. (B .l), (B.2), (B.3). This rucipping is necessary to watch the estimated direct 
form coefficients and corresponding estimation error, eo{n) defined in Eqn. (5.1).
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