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ABSTRACT

REGRESSOR BASED ADAPTIVE INFINITE IMPULSE
RESPONSE FILTERING

Emrah ACAR
M.S. in Electrical and Electronics Engincering
Supervisor: Assist. Prof. Dr. Orhan Ankan
July 1997

Superior performance of fast recursive least squares (RLS) algorithms over the descent
type least mean square (LMS) algorithms in the adaptation ol I'IR systems has not been
realized in the adaptation of IIR systems. This is because of having noisy observations
ol the original system output resulting in significantly biased estimates ol the system
parameters. Here, we propose an adaptive lIR system structure consisting of two parts: a
two-channel IR adaptive filter whose parameters are updated by a RLS type algorithm,
and an adaptive regressor which provides more reliable estimates to the original system
output based on previous values of the adaptive system output and noisy observation of
the original system output. Two different regressors are investigated and robust ways of
adaptation of the regressor parameters are proposed. The performance of the proposed
algorithms arc compared with successful LMS type algorithms and it is found that in
addition to the expected convergence speed up, the proposed algorithms provide better
estimates to the system parameters at low SNR value. Also, the extended Kalman filtering
approach is tailored to our application. Compartison of the proposed algorithms with the
extended Kalman filter approach revealed that the proposed approaches provide improved

estimates in systems with abrupt parameter changes.

Keywords: Adaptive IIR Filtering, ARX, RLS, Kalman Piltering
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OZET

DOGRULTUCU TABANLI UYARLAMALI SONSUZ ITMELI
SUZGECLEME

Emrah ACAR
Elektrik ve Elektronik Muhendisligi Bélumii Yiksek Lisans
Tez Yoneticisi: Y. Do¢. Dr. Orhan Arikan
Temmuz 1997

Sonlu itmeli (FIR) siizgeclerdeki hizli OEK (RLS) algoritmalarmm BOK ( LMS) al-
goritmalarina gore olan iistiin performanslari, sonsuz itmeli (IIR) siizgeclerin uyarla-
masinda heniiz yer almamgtir. Bunun nedeni uyarlamal siizgegteki piiriizlii referans
dolayisiyla sistem parametrelerinin yanh olarak kestirilebilmesidir. Bu caligmada, iki
kisundan olugan bir uyarlamali sonsuz itmeli siizgecleme yapisi onerilmistir: Ik kisun,
doniigiim temelli ¢ok kanalli en kiigiik kare kdgegen yapisindaki QR-MLSL algoritmasiyla
uyarlanan iki kanalll sonlu itmeli siizgeg; ikinci kisim ise uyarlayan sistem sonuclan ve
orjinal siizgecin piiriizli referanslar ig1ginda, goézlenemeyen gercek referansin kestiriminde
bulunan bir dogrultucudan olugmustur. iki farkl: tip dogrultucu incelenmis ve dogrultucu
parametrelerinin dayanikl belirlenme yollar1 6nerilmigtir. Onerilen algoritmalarin, bilinen
metodlarla kargilagtirilmas: yapilmig ve yakinsama hizindaki artigin yamsira disiik sinyal
giiriiltii durumunda daha dogru kestirimler elde edilmigtir. Ayrica genigletilmig Kalman
siizgecleme yontemi probleme uyarlanmigtir. Onerilen dogrultucu temelli algoritmalarla,
genellegtirilmis Kalman siizgeglemenin kargilagtirilmasinda, ani degisim gosteren sistem-

lerin tanimlanmasinda 6nerilen algoritmalarin daha yiiksek bagarumni oldugu gozlenmistir.

Anahtar Kelimeler: Uyarlamal siizgecleme, Kaliman silizgecleme, OBK ( RLS) algoritmast
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Chapter 1

Introduction

Adaptive filters have found widespread use in many different signal processing ap-
plications where there is no reliable prior information on the system parameters or
the parameters vary in time. Mainly because of its simplicity in implementations, a
Finite Impulse Response (FIR) system structure is usually preferred for the adap-
tive filter. However, the choice of I'IR structures severely limits the performance of
the adaptive filters when the required adaptation necessitates the use of filters with
poles as well as zeros. However, even in these cases, the natural choice of using an
adaptive filter with Infinite Impulse Response (IIR) structure has not found much
room in applications. The major reason behind this fact is the lack of IR adapta-
tion algorithms which robustly converge to the desired system parameters in a short
time. The trade-off between the convergence and bias of the estimated system
parameters has been the subject matter of many investigations on HR adaptation

approaches [1-6].

There are two main approaches to adaptive IIR filtering, based on two diflerent
definitions of the error sequence which is iteratively tried to be minimized by the
adaptation algorithm. In the output error formulation, the error sequence is delined
as the difference between the desired and the output sequences of an R filter
whose parameters are adjusted iteratively by the adaptation algorithm. Although,
the output error formulation is a very natural extension of the FIR adaptation
concept, unlike the IR case, the weighted least squares cost function is no more

quadratic with respect to the adaptive IIR system parameters. This limits us to use
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slowly converging gradient descent adaptation techniques which is not acceptable
especially for systems whose parameter changes faster than the convergence of the
adaptive system. Furthermore, the cost surface may have complicated local minima
structure making it very difficult for the gradient descent algorithms to converge to
the globally optimal IIR system parameters. Also, stability monitoring becomes a
critical issue in the output error adaptation. Many of the difficultics of the output
error formulation do not exists in the equation crror formulation where the error
sequence is defined as the difference between the desired sequence and the output of a
two—channel FIR filter whose inputs are the available input sequence and one-sample
delayed desired output sequence. Since the corresponding weighted least squares
cost function is quadratic with respect to the two-channel FIR filter parameters,
fast recursive least squares adaptation algorithms can be used to obtain the globally
optimal system parameters. However, even in the sufficient order modeling, when
there is an additive measurement noise in the desired sequence, the obtained results

are biased estimates of the unknown system parameters.

In order to capture the beneficial features of the equation error formulation and
reduce the bias in the converged parameters, various bias remedy approaches have
been proposed [2-4,6-8]. In some of these approaches the error sequence is defined
as a convex combination of the equation and output error sequences [3]. Then,
the least squares cost function is tried to be minimized by using a gradient descent
algorithm based on the instantaneous gradient estimate. [t has been shown that with
a judicious choice of the convex combination parameter, significantly more accurate
parameter estimation can be achieved [2,3]. However, because ol the use ol an
update strategy based on instantaneous gradient estimate, the speed ol convergence

of these algorithms is slow.

[n this thesis, we propose an adaptive IIR system structure consisting ol two
parts: a two—channel FIR adaptive filter and an adaptive regressor which provides
more reliable estimates to the original system output. As shown in I%ig. 2.1, the
two-channel FIR adaptive filter has as its inputs the input ol the original system,
x(n), and the delayed output of the regressor, w(n), which is an estimate to the
original system output, w(n). This way, the parameters of the adaptive filter can
be updated efficiently by using a multi-channel recursive least squares algorithm
such as QR-MLSL [9,10]. We consider two different adaptive regressors to provide
reliable estimates to the original system output causally based on adaptive system

output, y(n), and noisy observations, d(n). The first type of regressor provides an
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estimate to w(n) as a convex combination of the y(n) and d(n), where the convex
combination parameter 7, is adapted based on the convergence of the iterations. In
the adaptation of 7y, the regressor performs O(N) multiplications where N is the
order of the adaptive system. In the second type of regressor, a simplified Kalman
filter is used to provide the estimate, w(n), to w(n), where the required state space
model of the system is obtained from the adapted system. The required number of
multiplications of the Kalman regrssor is O(N?). In chapter 3, we investigate both
regressors and provide robust ways of adapting their paramecters. Also in the same

chapter, the steps of the adaptation algorithms for both regressors are tabulated.

In chapter 4, the well known extended Kalman filter algorithm is tailored to
our application [11-13]. It is shown that since the resultant algorithm requires
no-matrix inversions, system parameters can be estimated by computing O(N?)
multiplications. Also, a robust way of updating the required covariance matrices is

provided.

In chapter 5, we provide extensive comparison results between the approaches
investigated in this work and earlier proposed approaches to IIR adaptation [2,3,
12,13]. In chapter 6, we provide the conclusions of our work and address potential

areas for future work.



Chapter 2

ITR System Model and Proposed
Adaptive IIR Filter Structure

2.1 IIR System Model

As shown in Fig. 2.1, in a typical adaptive filtering application, iuput, x(n), and
noisy output, d(n), of an unknown system are available for processing by an adap-
tive system to provide estimates, y(n), to the output of the unknown system as time
progresses. If the ultimate purpose is to keep track of the variation in the unknown
system parameters, the required processing is called as adaptive system identifi-
cation. Ilowever, there are many other important application areas of adaptive
filtering such as adaptive prediction, noise cancelling, echo cancelling and channel
equalization, where the primary purpose is not the estimation of the unknown sys-
tem parameters [5, 14, 15]. The approaches we will investigate in this thesis are

generally applicable in all these application areas.

[n our investigation the unknown system or plant has an [IR model whose output

can be compactly expressed as a function of its previous values and its input as:

N M
w(n) = Za_y‘w(n =)+ bix(n—1i) = Q'l‘(_/)(n), (2.1)
=1 i=0
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Original System v(n)

B(z) +
3 win]—»0O

x(n) - H(z)= AQ)

d(n)

—»| B(z) |
+Y ym ;
Regregsor

A
) -A(z) .
/ w(i

Adaptation - ----

» Algorithm

Figure 2.1: Common structure of IIR—+ and IIR-Kalman adaptive systems.

where @ is the vector of direct form system parameters:
. -
1)1 bM ] = [a’ bj J ) (2.2)

0= [al an by

and é(n) is formed by the previous values of the output and the present and past

values of the input:
1
w(n —N) z(n) a(n—1) w(n — M) }
(2.3)

¢(n) = [w(n—l)
T

[ w(n)T x(n)f

In the above relation, the system is assumed to be time-invariant. Time varying
systems can be modeled with @ which has time-varying entries. Qur aim is to develop
adaptation algorithms that can be utilized for both time-invariant and time-varying
systems. However, the variation of the system parameters should be either a slow

function of time, or else, abrupt changes in the system parameters should occut

infrequently in time.

2.2 A Regressor Based ITR Adaptive Filter Structure

In IR adaptive filtering, the model is a tapped-delay-line and only the input samples
determine the output of the plant and the model. No feedback loop exists inside the
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system and stability in BIBO sense is always assured. In adaptive IIR filtering, due
to the feedback existing in the system, we are faced with the problem of deciding on
the feedback signal used in the adaptive system when we have noisy observations of
the actual system output. Hence, as shown explicitly in Fig. 2.1, we need a regressor
that causally performs the required estimation of the feedback signal based on the

noisy output d(n) and the output of the adaptive filter y(n), which is obtained as:
AT N
y(n) = " (n)(n) (2.4

where Q(n), the vector of estimated system parameters, can be written as:
. X X X T
f(n) = [ ai(n) -+ an(n) bo(n) bi(n) bar(n)
A T
= [ an)t b(n)T (2.5)

and qA/)(n) is the vector of the regressor output, w(n), and the system input, z(n):
~ Y‘
p(n) = [ win—1) -+ w(n—-N) z(n) az(n-—1) x(n— M)

T
= [v‘v(_n)T x(n)T | - (2.6)

The performance of the adaptive filter heavily depends on how well the regressor
provides estimates to the actual system output w(n). The two well known formula-
tions of adaptive IIR filtering, namely the output error (OL) and the equation error

(EE) formulations, correspond to two different types of regressors.

In the OE formulation, the vector éo("’) is described as

¢,(n) = [ y(n—1) -+ yln—=N) z(n) x(n-1) a(n — M)
T
= [ y(n)T x(n)t (2.7)
which corresponds to a regressor whose output is the output of the adaptive filter.

In the EE formulation the signal vector, én( n) is given as:

éﬂn) = [ dn—=1) -+ dn—=N) z(n) z(n —1) z(n — M)
T
= [ d(n)T x(n)T
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which corresponds to a regressor whose output is the noisy observation ol the system
output, d(n) = w(n) + v(n).

Since the least squares cost function of ElS lormulation is quadratic in terms
of the parameter vector 0, fast converging recursive least squares techniques can
be used in the adaptation. However, because of the additive measurement noise,
v(n), the converged parameter values are hiased estimates of the actual system
parameters [7,16-18]. In the OF formulation, the least squares cost function is not a
quadratic function of the parameters. Hence, we are hound to use LMS type gradient
descent techniques in the adaptation. When these LMS type adaptation algorithms
converge to the global minima of the cost function, the obtained paramecters arce
unbiased estimates of the cost function. Unfortunately, not only LMS type gradient
adaptation methods converges slowly, but also, they may converge to a local minima
of the cost surface. Various algorithii:s have been proposed to combine the beneficial
features of the OF and EE [ormalism in one algorithm [1-4,6,7,19]. Notably, the bias
remedy least mean square equation error (BRLE) [2] and the composite regressor
algorithms (CRA) [3] are proposed to obtain low biased parameter estimates by
using gradient descent type adaptation [11,16-18]. However, since the corresponding
cost [unctions o’ these algorithms are not designed to be quadratic with respect to
the parameters, recursive least squares techniques cannot be utilized to obtain fast

converging estimates to the parameters.

In the first vart of our work, we also try to combine the desired features of
both OL and EE formalism in one formulation where the cost function is kept as
a quadratic function of the parameters. As suggested in I%g. 2.1, this is achieved
by choosing the adaptive filter as a two-channel I'IR filter with inputs x(n) and
w(n — 1). Then, the corresponding weighted least squares cost [unction becomes:

n

J(8,n) = S (d(k) — 0" p(k))2A"*, (2.9)

k=1

which is a quadratic function of 8, because ¢(n) is a fixed sequence of vectors deter-
mined by the past parameter estimates 0(n — 1),0(n ~2),---,0(0). llence, efficient
multi-channel FIR recursive least squares techniques can be used to obtain param-

eter estimates al time n, 0(n), as the minimizer of .J (0, n.).

In the following chapter, two different types of regressors will be investigated
in detail and corresponding recursive least squares adaptation algorithms will be

presented.



Chapter 3

Proposed Regressors

The performance of the regressor based IIR adaptation structure largely depends
on how well the actual system output is estimated by the regressor in I'ig. 2.1. In

this chapter, we investigate in detail two types of regressors.

3.1 IIR-v Algorithm

I[n the first class, the regressor output is estimated as a convex combination of the

noisy observations, d(n) and the adaptive filter output, y(n) as
ﬁ)(?l) = 7110”(77') +(1- 771)?/(”)\/’ , 0<y,. < (_3. l)

where 7,;/ is the regression coefficient. In the following, the [IR adaptation algorithm

which uses this type of regressor is referred to as [IR—~.

The proper choice of v, should be based on a measure of the reliability of the
estimated system parameters. A significant deviation of y(n) [rom d(n) is an indi-
cation that the system parameters are not reliably estimated, and hence, 4, should
be chosen close to 1, so that equation error type adaptation should take place. On
the contrary, if y(n) closely follows d(n), then to reflect our level of confidence to
the estimated system parameters, v, should be chosen close to 0, so that output

error type adaptation should be performed. We propose to base the measure of

8
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reliability of the estimated system parameters to the statistical significance of the
observed deviation between y(n) and d(n) sequences. For this purpose, one way
of choosing v, is based on weighted estimate of the expected encrgy of the error

sequence e(n) = d(n) — y(n):

P oAie(n —i)? (3.2)

n 1 ) .
=0 )\tl

L(n) =

where A, is an exponential forgetting factor that can improve the performance of the
estimator. In this approach, the regressor parameter 4, is an increasing function
of L(n), because large values of L(n) is an indication of deviation from the true
system parameters. In our investigation, we observed that the critical properties of
the functional form between L(n) and +, are the boundary values {; and [, such
that v, = 0 if L(n) < {; and 4, = 1 if L(n) > l;. In between these two boundaries,
various forms of increasing functions can be used. In order to determine which
values for {; and [; should be used, we investigated the expected value of the L(n)
for the cases of v, = 0 and v, = 1, which correspond to output and equation error
adaptation cases respectively. Assuming that v, = 0 and the estimated parameters
have converged to the actual ones, the observed error sequence, ¢(n) will be equal
to v(n), the additive Gaussian observation noise. Hence, the expected value of L(n)
will be o2, the variance of v(n). Therefore, {1 is chosen as o2, Likewise, when v, = 1
and convergence of weights are established, expected value of L(n) is equal to the
variance of e(n) sequence for the equation error formulation. Since equation error

ep(n) is related to the output error ep(n) as [2]:
e(n) = eo(n) — &’ (n)ep(n), (3.3)

when v(n) is white noise, the variance of eg(n) can be written as:

N
var (ep(n)) = o2 [ 14 ) ai(n) (3.4)

=]
at the time of convergence to true parameters. Hence, we propose to use:

N
=02, L=Uds(l+> a}) (3.5)
=1
where U > 1 is introduced so that -, should not be kept fixed at | near the conver-

gence point of the equation error adaptation.
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FFor computational efficiency, the actual form of functional relation hetween L( n)

and -y, is chosen as follows:

0 L(n) <,
MUY < ) < b
Yo = 2 ) 0
lI—(1- &)(1(25;81))31 < L) <y
1 L{n) > 1,

where £ and p are two parameters providing some control of the actual shape of
the curve in between two boundaries [; and l,. Fortunately, we observed that the
behavior of the algorithm is not so sensitive to these shape parameters. For cach

iteration, this regression algorithm requires (N +11) multiplications which is O(N).

Some examples of the above functional relation (3.6) can be scen in Fig. 3.1 for
. g

various shape parameters.

3.2 IIR-Kalman Algorithm
In the second class, we consider a Kalman regressor structure based on the following
state space model of the original system [11-13, 15]:

wn+1) = Aw(n)+ Bx(n) vV (3.7)
d(n) = Cw(n+1)+v(n) (3.8)

where C = [ 1 Q0 --- 0 ] and the state transition matrices are:

_al _(L2 LIS —.aN — o
by b by
1 0 0
( 0 0 0 .
L A=1 9 o 1 0 , B= . (3.9)
00 0 0
0 0| -

Since the actual parameters are unknown, we cannot use the state space model

directly in the estimation of w(n). However, if we form A and B matrices by using
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the estimated parameters at time n, we get the following state space model:

win+1) = An)w(n)+ B(n)x(n) + u(n) (3.10)

din) = Cw(n+1)+v(n) (3.11)

where u(n) is introduced as an additional noise term to the system dynamics to
account for the approximations in A and B by A( n) and B (n), which arc equal to:

- A -

_&1(71) —flg(n) e —aN(TL) ) ) A
1 0 0 F ()0(7'1,) [)I ('”) [)]\/[(n)
A 5 0 0 0
0 0 0 0
0 1 0 i

(3.12)
Since the approximation in A(n) and B(n) only limited to the first row, the addi-

tional process noise u(n) can be written as:

u(n) = | u(n) 0 0 (3.13)

In order to apply Kalman estimator on the approximate model given by Eqns. (3.10)
and (3.11), we need the covariance matrices R,(n) and R,(n) of u(n) and v(n)
respectively. In addition, we need an initial estimate to the state vector w(0) and
the variance of the initial system error R,(0). The covariance matrix R,(n) is
determined by the variance of u(n) for which a robust way ol approximation is
presented in the Appendix A. The steps of the corresponding Kalman estimator are
given in Table 3.1, where ./Al(n),l;(n),v“v(n) are defined in Eqns. (3.12), (2.6) and the
notation of 7(y ;) is used to denote the first diagonal entry of the matrix 7. Note
that the output of the regressor 1(n) is the first entry in the estimated state vector
Wr(n + 1) and also the a—priori state estimate Wx (n + I|n) is obtained cfficiently
by using the output of the adaptive filter and the previous states of the Kalman
filter. The actual forms of the matrices in the above algorithm can be exploited for
more efficient computation of the regressor output w(n). lor each iteration, the
Kalman regressor requires (3N? + 2N) multiplications, hence it is O(N?). The IR

adaptation algorithm which uses this type of regressor is referved to as [IR:-Kalman.

The required two—channel FIR adaptation can be efficiently performed by using

QR-MLSL algorithm which is a rotation-based multi-channel least squares lattice
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7
Wr(n+1n) = [ y(n) wr(n—1) wr(n— N+ 1) ]
Pn+1n) = An)P(nln)An)" + Ru(n)
_ P(n + 1n) r
g(77') - cP(n + ]-ITL)(I,I) + 0_12} [ 1 0 0 ]

Pntiln+1) = (T=60)[1 0 - 0])P(u+th)

Wr(n+1) = Wg(n+1n)+G(n) (‘l(”) — Wi (n+ l|n)(|,1,)>
w(n) = Wr(n+1)ay

Table 3.1: Equations of IIR-Kalman State Estimator

algorithm with many desired features [9]. The steps of this algorithm are given in
Table 3.2. For each update, this algorithm requires O(4N) multiplications. The
required direct form parameters for the Kaliman regressor can be easily computed
by using standard mapping rules between lattice and divect form parameters [9].
The structure of multi-channel lattice FIR. filter and the mapping rule is explained

in the Appendix B.
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Initializations:

RY,(0) = RP,(0) = VéIxy TF,(0) = IP,(0) = 05y L¢,(0) = 0yy,

= p

Time recursive equations: For n=1,2,...
~ ~ T :l‘
fy(n) = bo(n) = x(n) = [ 2y(n) az(m) | doln) =y(n) Fo(t) = 1

Order recursive equations: For p=1,2,..., pnaa

Qi | VBB = ) VA= | [ RS ) }
| fa) by_i(n—1) | 0" bl(n)
Q;’,(n) - \/~XRbp(n - 1) \/Xf‘bp(” —1) \/X_I_‘e,,(n ~1) )
L b,j;_l(n - 1) fz;[—l(”) ép_1(n—1)

RE,(n) TP(n) I°(n)
o fI(n) &n—1)
Ap(n — 1) = Fp_1(n — 1) cos 05, (n) cos 07 ,(n)
Parameter Identification:
Kf,(n) = RE,(n)"'T1,(n)
KP,(n) = RP,(n)"'TP,(n)
K®,(n) = RP,(n)7'L*,(n)

Used Transformations:

f,(n) = £,(n)/Fp(n — 1) Bp(n) = by(n)/F,(n) ep(n) = cp(n)/Fp(n))
/);’,,1, 0,’;12 are the angles of Givens rotation corresponding to Qﬁj( n).

The last diagonal element of Qg(n)is the products of cosines.

Table 3.2: QR-MLSL Algorithm and Parameter Identification in the Two-Channel
Lattice Form



Chapter 4

System Identification by
Extended Kalman Algorithm

We propose the regressor based RLS algorithms for their potential of providing
more reliable feedback signal w(n) in the presence of output noise. In the IR~
Kalman algorithm, a boot-strap method is used for an alternating estimation of
the system output and its parameters. The Kalman regressor provides estimates to
the noise free output, and then an RLS type adaptation procedure first updates the
adaptive system parameters and then compute the output of the adaptive system,
y(n). As discussed in [11-13], these two stages of the adaptation can be combined
into one in an augmented state space description of the system. This approach has
been proposed for combined state estimation and tracking of slowly varying system
parameters once a close initial estimate to the system parameters is available [12, 13].
In this chapter, we provide the augmented state space description corresponding to
[IR adaptive filtering and then derive the corresponding extended Kalman algorithm
for the estimation of the augmented state. Also, we use a robust method, which is

presented in the Appendix A, for the choice of the required covariance matrices.
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The augmented state space description which will be exploited for joint estima-
tion of the system output and its parameters is given as:
w(n+1) A(n)w(n) + B(n)x(n) u(n) (4.1)
= +
O(n+1) O(n) s(n)

with the corresponding observation model of:

n+1
d(n) = [C of ] VAV( b + v(n). (4.2)
O(n+1)

Here, u(n) is the noise sequence vector on the output estimates, which we call as
process noise as in IIR-Kalman framework, and s(n), which is assumed to be un-
correlated with u(n), is the noise vector on the parameter updates. Since A(n)w(n)
involves multiplication of augmented state variables, extended Kalman filter algo-

rithm should be used in recursive estimation of the augmented state variables.

Ior the following general state space model, the extended Kalman filter has been

proposed for efficient estimation of the state
Znt1 = FulZa) + Hul2zn)E, (4.3)
r, = /Yn(zn) + Qn (/14)

where F,, and &, are vector-valued functions and H,, is a matrix-valued function
with continuous first-order partial derivatives. In the case of zero-mean uncorrelated
Gaussian noise sequences, { and 7n_, with
E{€ T} = Qué(k = 1), E{nnT} = Si6(k —1), I S zl} =0 V[ (4.5)
Si5p F = =EOL ) MMy 5 = Or0lk ) 0= b (k)
Ui
the steps of the extended Kalman filter algorithm are given in Table 4.1, as it was

derived in [12].

This general form of the extended Kalman filter can be specialized to our appli-

cation by using the following substitutions:

-
Zp = [ w(n)l 0(n)T ] , T, =d(n)
” T
Fal(2n) = [ (A(n)w(n) + B(n)x(n))l 0% (n) ] . Hu(z,) =1 (1.6)
T
Xu(2za) =Cw(n) , £ = [ u(n)? s(n)? } , 1, =v(n).
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The steps of the corresponding algorithm, that will be referred to as K, is given in
Table 4.2. As seen from this table, the initial estimates of the states, the covariance
matrices of the initial state estimate, the system and observation noises are required.
A robust way of approximating the covariance matrix R,(n) is presented in the
previous chapter and the Appendix A. Since the matrices have special structures,
we can simplify the required computational complexity of the EKI'. For instance,
both u(n) and the observation matrix has only one non-zero entry, simplifying the

vector-matrix operations. Hence, no matrix inversion is required in our application.

For each update, the EKF algorithm requires (12N?% + 3M?% + 12NM + 17N +
9M + 4) multiplications which is an order more than that of IIR—+ and around 9

times more than that of IIR-Kalman algorithms.

Initialization: Poo = FE{zoza} , %o = [5{z0}
OFn-1,, OF 1, !
7Dn,n—l - [52—71_1' Zn—l)] ’Pn—l,n—l ,:azn_l (Zn,—l)
+ Hn—l(_in—l)Qn—lH;lL‘_l (in—l)
2nln—l = fn—l(in—l)

OX, . !
gn, = 7)77,,71,—1 I:OKTH(Z7L|71—1)‘|

ox, . 0X, . ’
[[_(znhl-—l):l 7:’11,,71,—1 [—(Z‘Il.l'll.—l)] + S'n,

0z, 0z,

-1

0X,

73'n.,n = l:I - gn ['a—z;(in|n—l)j'jl ’Pn,n,-l

Zpln = Znjn-1 + gn (rn - ‘/YTL(ZN,"H,—[))

Table 4.1: Equations of General Extended Kalman Algorithm

In the following chapter, we provide extensive comparison results hetween the

presented algorithms and LMS type regression algorithms: CRA and BRLL.
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w(0) | Wz ,
Initialization: W(O) = L{AW(O)} . P(0[0) = Rw(0) 0
0(0) ] ] 6(0) 0 Ry(0)
w(n + 1|n) ] 3 [ A(n)Ww(n) .\ B(n)x(n)
_@_(n + 1|n) ] i Q(n) 0
g Ro(n
P(n+1n) = J(n)Pnn)T(n)" + (n) O
0 Ro(n)
P
J(n) = 0 0
0 I1\/1+N+1
0 = P(n + 1in) 1
Gg(n) P+ L))+ 7) [ L0 o]

w(n + 1)

Q(n +1)

(
Pti+1) = (1-6m[1 0 0])Pe+ 1w
[ + G(n) (d('}'z.) —w(n+ 1|77v)(1,1))

Table 4.2: Equations of Extended Kalman Algorithm Applied in Adaptive IR I'il-
tering
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Simulation Experiments

In order to compare the regressor based fast RLS algorithms proposed in chapter 3
and the EKIF algorithm discussed in chapter 4 with the earlier proposed gradient
descent IIR adaptation algorithms BRLE [2] and CRA [3], their performances over

synthetically generated examples are given in this chapter.

The steps of BRLE and CRA algorithms are given in Table 5.1 and Table 5.2

= d(n) - g, (n)B(n)

= d(n) - “' (n)d(n)

) i

) (n)O(r

ai(n+1) = &i(n)—l-ueg(n)[ (n—1)—71eo(n—14)] <=1,2,---, N
)

biin+1) = Z)i(_n + )+ peg(n)e(n—y3) 7=0,1,---, M
Remedy Parameter: 0<r<1
determined by 7 = min(k ”d) n)l
lleo(n)II”

Table 5.1: Equations of Bias—-Remedy Least Mean Square Equation Isrror Algorithm
(BRLE)

For the required multi~channel RLS adaptation of the system paramecters in the
regressor based algorithms, rotation-based multi-channel least squares lattice algo-
rithm (QR-MLSL) given in Table 3.2, is used [9]. By using simple transformation

19
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W(n) = ~d(n) + (1 - )y(n)
. r
p(n) = [v“v(n)T x(n)?
e(n) = d(n) - érl‘(n)é(n)

Q(n +1) = Q(n) + Méf?;)e(n;)
L+ ug (n)d(n)
Composition Parameter: 0<~<1

Table 5.2: Equations of Composite Regressor Algorithm (CRA)

rules, the direct form parameters can be obtained from the reflection matrices of the
adapted two-channel FIR lattice filter [9]. In the following results, the parameter

error vectors are computed as:

eo(n) = 8 — O(n) (5.1)

where 0 is the actual and @(n) is the estimated direct form parameters.

The adaptive filters are “all-zero” initialized during each experiment. The sta-

tistical results come from the the ensemble average of 50 realizations.

5.1 Simulation Example 1

In this first example, the same LTI second order IIR system analyzed in [2,19] is
used in a system identification application. The transler function of the original
system is:

_ |

1= L7271 40722522
The input sequence is a unit-variance white Gaussian process. T'he output noise

H(z) (5.2)

process, v(n), is chosen as white Gaussian noise process. The output noise variance
is varied to investigate the sensitivity of the performance of the algorithms to the

level of SNR.

leg(n)]|* corre-

In Fig. 5.1, the squared norms of the parameter ervor vectors,

sponding to the compared algorithms are plotted as a function of time. The standard
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deviation of the output noise, o, is set to 0.5. The forgetting factor A of the QR-
MLSL algorithm is chosen as 0.999, and the parameters of the regressor subsystem
of Eqns. (3.5) and (3.6) are chosen as A\, = 0.9,p = |,k = 0.7, = 2. For the
[IR-Kalman regression algorithm, the initial variance estimate, 5%(0) is chosen as
unity and the smoothing factor, 4 is chosen as 0.9. The EKF algorithm has also
initialized with all-zero initialization for the augmented state vector with the same
smoothing factor and unit 62(0) as well as the diagonal entries of the covariance
matrix Rg(0). In order to better resolve the carly convergence behaviors of the
compared algorithms, a logarithmic time axis is used in Fig. 5.1. As scen from this
figure, the proposed algorithms have converged to an error level of -10 dB earlier
than the 1000%* sample, but the LMS type algorithms converge to the same error
level at about 40000** sample. EKT algorithm, performing the best, converges to
-20 dB at around 50000%* sample. Here, the same step-size of 0.0005 is used for
the CRA and BRLE algorithms. As recommended in [2] and [3], the composition
parameter v for CRA is chosen as 0.9, and the remedier parameter of BRLE, 7(n)
llg(r)ll 1)

is chosen as mln(” ik

Although the corresponding results of RLS equation error and output error adap-
tation are not shown in I'ig. 5.1, they converged to error levels of -7 dB and 5 dB
respectively, which are significantly higher than those of compared algorithims here.
Therefore, as initially expected, the performance of the regressor based RLS ap-

proaches can be better than both the equation and output errov formulations.

The tracking errors plot, ||w(n) — y(n)||* of the compared algorithms are shown
in Fig. 5.1. EKF and CRA algorithms have lower tracking errors, but the proposed

regressor algorithms have a very fast convergence.

In order to compare the error on the parameters at the convergence of the algo-
rithms, we repeated this experiment at different noise levels. The obtained ||eq(n)||*
results are given in Table 5.3 and figured in [ig. 5.2. I[n this experiment the best
performing algorithm is found as the EKI" algorithm. However, EKI® requires an or-
der more multiplications than IIR—+ algorithm. As seen [rom these results, at high
SNR (low levels of o), LMS type algorithms converge to lower error levels. However,
as the SNR decreases (high values of ¢,) the proposed algorithms start providing
closer or better results than LMS type algorithms, which is an important advantage
in many practical applications. Note that, the tabulated results correspond to the

error levels at the 5000% sample for the proposed algorithms and 50000 samples
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for the EKF, CRA and BRLE algorithms. Since, in many important applications,
the speed of convergence is very critical, the proposed algorithms provide a good
trade-off between error levels and the speed of convergence even at high SNR. Also,
[IR—+ provides comparable results to [IR-Kalman although it requires an order less

number of multiplications.

Oy I[IR—y IIR-Kalman  EKI* CRA BRILE
0.0500 | -74.5756 -82.2542 -74.5538  -84.9733  -77.383%
0.1000 | -50.9257 -56.2936 -69.4997  -62.5078  -55.7208
0.2500 | -24.1973 -27.1816 -38.8864 -32.1684 -28.3855
0.5000 | -10.2770 -10.9023 -21.2782  -11.3103  -10.2322
1.0000 | -1.4034 0.4040 -5.6237  3.6105 3.5396

Table 5.3: Squared parameter error norm in dB at convergence of the algorithms at
different noise levels for Example |

5.2 Simulation Example 2

In this example, the performance of the algorithms arc compared when there is an
abrupt change in the system parameters. For this purpose, we used the following
time—varying transfer function for the original system:

0.275940.51212~140.512127240.27592 3 n < 500
1-0.0012~140.65462—2-0.0775z—3 o (5.5)

0.72414+0.18792—140.48792=240.72412=% =
140.0012z-140.65462—2+40.07757—2 n 2 500

H(z,n)=

The input is chosen as zero-mean unit variance white Gaussian process. I'he output
noise v(n) is chosen as a zero-mean white Gaussian noise with a variance of 0.25.
The step—size of CRA and BRLE algorithms is set to 0.01, because a larger value for
it would cause instability in the convergence. The composition parameter, v of CRA
is set to 0.5, and the remedier parameter, 7(n) of BRLIS is determined as in the [irst
cxample. The forgetting factor of the proposed algorithims is set to 0.99 for a better
tracking of the variations in the system parameters. lor [IR-Kalman algorithm,
5%(n) is chosen as unity and smoothing factor, 3, as 0.9. The parameters of lIR—v in
Eqns. (3.5) and (3.6) are chosen as A, = 0.95,p = I,k = 0.3, = 5. EKI" algorithm
was also initialized with all-unit variances for all the elements in the state vector with
the same smoothing factor of IIR-Kalman. In Fig. 5.4, ||lep(n)||* of each algorithm

is shown. As seen from these results, both CRA and BRLIL, whose performance are
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very close to each other, are outperformed by the proposed algorithms. [IR—v and
[IR-Kalman have the best performance where EKT algorithm has converged to a
higher error level. This is an expected result in the light of the first experiment where
the convergence speed of the proposed algorithms were found as significantly faster
than BRLE and CRA algorithms. Again, at an orderless amount of multiplications,

[IR—~ provides comparable results to IIR-Kalman.

5.3 Simulation Example 3

In this example, the performance of the proposed regressor algorithms are compared
with the output error and equation error regressors when there is an abrupt change
in the system as in the previous example. The time-varying system transfer [unction
of the simple one-pole system:
—L 1 n <400
H(z,n)={ oo~ (5.4)
LT0.9187 n > 400

The input sequence is chosen as in the second example. The output w(n) is dis-
turbed by a zero-mean white Gaussian noise process with o, = 3. The parameters
of the regressor based algorithms are set as in the second example except the forget-
ting factor of the adaptation algorithm A, which is chosen as 0.95. The output error
and equation error regressor methods are also combined with the same adaptation
algorithm, QR-MLSL, with the same forgetting factor. The corresponding |les(n)]|*
performance and the tracking performance, |jw(n) — y(n)||* ol each algorithm are
shown in Fig. 5.5.a and Fig. 5.5.b. The shown results are ensemble averages of
250 realizations. As seen from Fig. 5.5.a, the proposed regressor algorithm provide
more reliable estimates to the system parameters than the equation and output er-
ror regressors. Following the abrupt change in the system, the proposed regressor
algorithms track the equation error regressor for a short time, attaining a fast con-
vergence then they keep reducing the estimation error even after the convergence of
equation error regressor. At convergence, the proposed regressor algorithms have the
lowest error level in the estimated parameters. Similar conclusions on the tracking
performance of the compared algorithms can be drawn {rom I%g. 5.5.b, where the
proposed algorithms converges rapidly to lower error levels in output tracking. This
example demonstrated one more time the improved performance of the proposed

regressor algorithms in time-varying systems.
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Figure 5.1: Results of first example: (a) squared norm of parameter error as a
function of time. Logarithmic time axis is used to resolve carly convergence behavior
of the algorithms, (b) output tracking error

[w(n) —y(n)||* as a function of time.
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Error Level at convergence (dB)
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I'*gure 5.2: Bar chart of squared parameter error norm in dB at convergence of the
algorithms it different noise levels for Example 1
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Figure 5.3: Bar chart of squared parameter error norm in dB (it convergence ol
the regressor algorithm when the mixing p¢irgimeter, 7,,, is kept const;int during the
iter¢itions for Example 1. Corresponding v¢irigince of the output noise is 0.20. Note
tluit the nmrginal OE and EE formulations hgive jiirger error levels, timn . composed
regressor.
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Conclusions and Future Work

In order to be able to use fast converging recursive least squares adaptation al-
gorithm in adaptive IIR filtering, a regressor based adaptive system structure is
proposed. In the proposed approach, an adaptive regressor provides estimates to
the actual system output based on the available noisy observations of the system
output and the output of the adaptive system. Then, the estimated output and
the system input are fed to a two—channel adaptive FIR filter whose parameters are
updated by using a rotation-based multi-channel recursive least squares algorithm.
Two different regressor algorithms, with number of multiplications in the O(N) and
O(N?) respectively, are proposed to provide reliable estimates to the system oul-
put. Robust ways of updating the parameters of the regressors are presented. Also,
motivated from the use of Kalman regressor in the proposed adaptation structure,
extended Kalman filter algorithm is applied to joint estimation of the system pa-
rameters and system output. By exploiting the special structure of the state space
description of the adaptive system, it is shown that the corresponding extended
Kalman algorithm does not require any matrix inversions and can be implemented

by performing O(N?) multiplications.

The proposed regressor based adaptive [IR algorithms are compared with the ex-
tended Kalman approach as well as earlier proposed LMS type approaches: BRLIE
and CRA. Based on extensive set of simulations it is found that for time-invariant
systems, the proposed algorithms not only converges faster than LMS type algo-

rithms, but also, provide more reliable parameter estimates at low SNR. Also in the

28
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simulation of the systems with abrupt changes in their parameters, it is observed
that the proposed regressor based adaptation algorithms outperform the extended
Kalman, BRLE and CRA algorithms establishing faster convergence to lower error

levels.

As [uture work, the required modifications in the proposed algorithms in the pres-
ence of colored output noise can be investigated. Also, output tracking performance
of the algorithms should be compared in the case of insufficient model order. More
importantly, stability monitoring of the adapted system should be incorporated to

the adaptation algorithm.



Appendix A

An Efficient Method of

Estimation of var(u(n))

In the output error approach, the noise free output state is estimated by
wo(n) = a7 (n)W(n) + b’ (n)x(n) (A.1)

where the previous estimates of the output w(n) is fed back to the adaptive system.
[lowever, in the equation error approach, the output is estimated by the noisy
observation of it:

wp(n) = wn) + v(n). (A.2)
By denoting the parameter error vectors &(n) — a and b(n) — b as da(n) and §b(n)

respectively, Eqn. (A.1) can be written as:

Wo(n) = [a+6an)]’ [w(n)+ éw(n)] + [b + éb(n)]" x(n)
w(n) + 6a’ (n)W(n) + 6b%(n)x(n) + a'sw(n)

= w(n) + u(n) (A.3)
where dw(n) and dw(n) are defined as w(n) — w(n) and W(n) — w(n) respectively.
Therefore, the estimate (A.3) which corresponds to the prior estimate of the state in

Eqn. (3.10), and the estimate (A.2), which corresponds to the observation estimatein
[qn. (3.11), are optimally combined by the Kalman estimator so that the variance

of the overall estimator is the lowest possible. Since both Equs. (A.2) and (A.3)

30
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are individual estimators of w(n), under the assumption that w(n) and v(n) are
uncorrelated white Gaussian random processes, the optimal estimator of w(n) is

given by:

2 2
. o)
Wopt(n) = L —wp(n) + Y —bo(n A4
opt(n) o2 + ol 5(n) a,ﬁ-l—rfgw()(”) (A4)

where cach estimator is weighted as inversely proportional to ils variance. The
. o . . . . 2 2 . . >
variance of this optimal estimator is U—‘;ﬁ% Thus, the covariance matrix of the state
u v
estimate provided by the Kalman filter, is

2,2
E{éw(n)swT(n)} = TuTu_y (A.5)

oo
Now, by using the definition of u(n) deduced from Eqn. (A.3):
u(n) = 6aT(m) () + 5bT (n)x(n) + a¥ 6w (), (A6)
and assuming that a(n), 6b(n) and dw(n) are uncorrelated, we get:

2.2
o2 = Wl (n)Rsa(n)W(n) + xT(n)Rap (n)x(n) +||af| 2 —Tv_ (A7)
~- : ol 4 ol ‘

T

2

2 can be found as

Then, o

o _ T4 lalPo? + T+ Jjajrod]’ + 4702

O-‘le 2 (A'é)

Since a is not known, during the iterations o2 can be approximated by replacing a
with &(n), as well as the covariance matrices for the estimation errors are replaced

with their approximations:

E{sa(n)éa’(n)} =~ - i ; ié‘z\(r,,)&a(n)'f‘ = Rsa(n) (A.9)
=1

E{8b(n)sb" (n)} nl 1f)éi)(n)éb(n)”'='7isb(n) (A.10)
—li=1

where éa(n) = a(n) — a(n — 1) and éb(n) = b(n) — b(n — 1) are the updates on
the estimated parameters in two consecutive iterations. Under mild assumptions, it
can be shown that Eqns. (A.9) and (A.10) provide reliable estimates at convergence.

Then, the estimate of the o2 at time n results as:

T + ||a]202 + /[T + ||a&]|202]* + 4T o2
53y = L IAIPSS WQ la]1%o2] | )
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where

T = Wl (n)Rea(n)W(n) + xT(n) Ry (n)x(n). (A.12)

In order to have smoothly varying estimate during the iterations of the Kalman

filter, a smoothing factor, £, can be added in the following update on the estimate:
5in) = Bei(n~1)+(1—-p)s: |, 0<p<I. (A.13)

In the simulations, the smoothed estimate, 52(n), is used.



Appendix B

Two—Channel Lattice Structure

of an IIR Filter

An adaptive IIR filter can be structured as a two-channel F'IR filter as in I"ig. B.1.

The order equations of p'* section of the lattice are:
£,(n) = f_(n)-K". b,, (n—1) (B.1)
by(n) = b, (n—1)— Kf "t (n). (B.2)
and the output of the filter is defined as:
Pmaz 1
= 3 Kb (13.3)

Figure B.1: Multi-channel I'IR lattice structure
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where K¥, and KP, are the forward and backward predictor matrices of size 2 x 2
and K®, is a 2-dimensional vector of joint process estimator. The forward and
backward prediction errors are f,(n) and b,(n) for p* scction at time n. The input

vector 1s equal to:
"
X(n) = fo(n) = bo(n) = [ zi(n) aa(n) J (B.4)

When the input of the first channel, z1(n) is chosen as the input ol the original
system, z(n), and the second channel input, @a(n), is chosen as the one-sample
delayed version of the reference output signal, w(n — ), the shown structure is
similar to an IIR system. Taking the first channel input as x(n) and the second
channel input as w(n) (the output of the regressor), the adaptive system output,
y(n), can be computed. In fact, the lattice form coefficients are adapted by a
QR-MLSL algorithm. The direct form parameters can be found by a simple map-
ping of the reflection matrices. Notice that, the numerator coefficients of the IIR
system, b, is the output response of the filter when z,(n) = 8(n) and z(n) = 0.
Similarly, the denumerator coefficients a is the output response due to the inputs
z1(n) = 0 and z2(n) = 6(n). The output can be computed by lattice recursions in
Eqns. (B.1), (B.2), (B.3). This mapping is necessary to watch the estimated direct

form coefficients and corresponding estimation ervor, eg(n) defined in ligun. (5.1).
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