
DESIGN AN
OF A SYSTEM POR MAPW

TEXT MEANING REPRESEN

: : TURFISN SMNTENCES:

... ATH ESiS. ■■ ■■.

SMBMUTTED TO THE DEPARTMENT OF COMPUTER
ENQINEERiNO AND INFORMATION SCIENCE

AND THE INSTITUTE OF ENGINEERING AND SCIENCES

OF Ell,KENT UNIVERSITY
IN PARTIAt FULFIl,LMEN"^ OF THE REGUIREMENTS

' 'FORTM EDEGREEOF . ;

MASTER OF SCIENCE

S«lm An MGfAt T«misEf!E«i)f

- ■f SS ·!?

DESIGN AND IMPLEMENTATION
OF A SYSTEM FOR MAPPING

TEXT MEANING REPRESENTATIONS
TO F-STRUCTURES OF
TURKISH SENTENCES

A THESIS

SUBMITTED TO THE DEPARTMENT OF COMPUTER

ENGINEERING AND INFORMATION SCIENCE

AND THE INSTITUTE OF ENGINEERING AND SCIENCE

OF BILKENT UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTER OF SCIENCE

S e l M i J A Uviratl-

By
Selman Murat Temizsoy

August, 1997

P
1 3 f?

■ Τ ^ έ

ІЯ 99-

Ь й - І 8 3 5 0

I certify that I have read this thesis and that in my opinion it is fully adequate,
in scope and in quality, as a thesis for the decree of Master of Science.

Asst. Prof. Ilyas Çiçekli (Principal Advisor)

/ /

I certify that I have read this thesis and that in opinion it is fully adequate,
in scope and in quality() ŝi a ¡fhesi» for the d^f^e of Master of Science.

Assoc.'l^rof. Halik/ ItaVGüvenir
(j

I certify that I have read this thesis and that in rny opinion it is fully adequate,
in scope and in cpiality, as a thesis for the degree of Master of Science.

rAsst. Prof. Özgür Uluso;

Approved for the Institute of Engineering and Science:

Prof. Dr. Mehniet
Director of Institute of Engineering and Science

11

ABSTRACT

DESIGN AND IMPLEMENTATION
OF A SYSTEM FOR MAPPING

TEXT MEANING REPRESENTATIONS
TO F-STRUCTURES OF
TURKISH SENTENCES

Selman Murat Temizsoy
M.S. in Computer Engineering and Information Science

Advisor: Asst. Prof. Ilyas Çiçekli
August, 1997

Interlingua approach to Machine Translation (MT) aims to achieve the translation
task in two independent steps. First, the meanings of source language sentences
are represented in a language-independent artificial language. Then, sentences
of the target language are generated from those meaning representations.
Generation task in this approach is performed in three major steps among
which the second step creates the syntactic structure of a sentence from its
meaning representation and selects the words to be used in that sentence. This
thesis focuses on the design and the implementation of a prototype system that
performs this second task. The meaning representation used in this work utilizes
a hierarchical world representation, ontology, to denote events and entities, and
embeds semantic and pragmatic issues with special frames. The developed system
is language-independent and it takes information about the target language from
three knowledge resources: lexicon (word knowledge), map-rules (the relation
between the meaning representation and the syntactic structure), and target
language’s syntactic structure representation. It performs two major tasks in
processing the meaning representation: lexical selection and mapping the two
representations of a sentence. The implemented system is tested on Turkish
using small-sized knowledge resources developed for Turkish. The output of the
system can be fed as input to a tactical generator, which is developed for Turkish,
to produce the final Turkish sentences.

Keywords: Machine Translation, Interlingua Approach, Natural Language
Generation, Text Meaning Representation, Syntactic Structure Representation,
Ontology, Lexicon

m

ÖZET

METİN ANLAMSAL GÖSTERİMLERİNİN
TÜRKÇE CÜMLE YAPILARINA

DÖNÜŞTÜREN
BİR SİSTEMİN TASARIMI VE UYGULAMASI

Selman Murat Temizsoy
Bilgisayar ve Enformatik Mühendisliği, Yüksek Lisans

Danışman: Yrd. Doç. Dr. Ilyas Çiçekli
Ağustos, 1997

Bilgisayarla Çeviri problemine Interlingua yaklaşımı çeviri sorununu birbirinden
bağımsız iki aşamada gerçekleştirmeyi amaçlar. Önce, kaynak dildeki cümlelerin
anlamları doğal dilden bağımsız, yapay bir dilde temsil edilir. Sonra, hedef dildeki
cümleler bu anlamsal gösterimlerden üretilir. Metin üretim görevi bu yaklaşımda
üç ana aşamada gerçekleştirilir ve ikinci basamakta anlamsal gösterimden
cümlenin yapısal özellikleri çıkartılır ve cümlede kullanılacak sözcükler seçilir.
Bu tezde bu ikinci basamağı gerçekleştirebilecek prototip bir sistemin tasarımı
ve uygulaması amaçlanmaktadır. Bu çalışmada kullanılan anlamsal gösterim
olayları ve varlıkları temsil edebilmek için dünyanın sıradüzensel bir gösterimi
olan ontolojiden yararlanmaktadır ve ayrıca bu gösterim anlamsal ve pragmatik
özellikler için farklı yapılar kullanmaktadır. Geliştirilen sistem dilden bağımsızdır
ve dile ait bilgileri üç ayrı bilgi kaynağından alır: sözlük (anlamsal ve
yapısal sözcük bilgisi), dönüştürme-kuralları (anlamsal gösterimle cümle yapıları
arasındaki bağlantı), ve hedef dilin yapısal özelliklerinin gösterimi. Sistem
anlamsal gösterimi işlerken iki ana görevi yerine getirir: sözcük seçimi ve cümlenin
iki gösterimi arasında dönüşümü. Uygulanan sistem Türkçe için geliştirilmiş
küçük-ölçekli bilgi kaynaklarıyla test edildi. Bu sistemin çıktısı Türkçe için
geliştirilmiş bir yüzeysel üreticinin yardımıyla amaçlanan Türkçe cümlelerin
üretilmesinde kullanılabilir.

Anahtar Sözcükler: Bilgisayarla Çeviri, Interlingua Yaklaşımı, Doğal Dil Üretimi,
Metin Anlamsal Gösterimi, Sözdizim Yapısal Gösterimi, Ontoloji, Sözlük

IV

ACKNOWLEDGEMENTS

I would like to express my deep gratitude to my supervisor Asst. Prof. Ilyas
Çiçekli for his guidance, suggestions and valuable encouragement throughout the
development of this thesis.

I would like to thank Assoc. Prof. Halil Altay Güvenir and Asst. Prof. Özgür
Ulusoy for reading and commenting on the thesis and for the honor they gave me
by presiding the jury.

I thank my family and my friends Alper, Ayşin, Ebru, Erdem, Evrim, Eylem,
and Gürhan, for everything.

Contents

1 Introduction 1

2 Linguistic Background 6

2.1 Thematic R o le s ... 7

2.1.1 A g e n t .. 8

2.1.2 A uthor.. 8

2.1..3 Instrument 9

2.1.4 Patient.. 9

2.1.5 Experience!'... 9

2.1.6 B enefactive ... 10

2.1.7 T h em e .. 10/
2.1.8 S ou rce .. 10

2.1.9 G o a l .. 10

2.1.10 P a t h .. 11

2.1.11 Locative L· T i m e ... 11

2.1.12 Manner 11

2.1.13 R eason.. 11

2.1.14 P u rp o se ... 12

2.2 A s p e c t ... 12

2.2.1 Perfective/Imperfective... 12

2.2.2 T e lic /A te lic ... 13

2.2.3 Punctual/D urative.. 14

VI

2.2.4 Iterative/Sem alfactive.. 15

2.3 Tense.. 15

2.4 M odality .. 18

2.4.1 Epistemic M odality .. 19

2.4.2 Expectative M odality... 19

2.4.3 Deontic M od a lity ... 20

2.4.4 Volitive M od a lity ... 20

2.4.5 Potential M o d a lity .. 20

2.5 Speech-Act 21

2.6 A ttitu d e .. 22

2.6.1 Evaluative Attitude.. 22

2.6.2 Saliency A ttitu d e ... 22

2.7 Stylistics.. 23

3 Knowledge Resources Si Representation Languages 25

3.1 O ntology.. 26
/
3.2 Text Meaning Representation... 31

3.2.1 Tab le-of-Contents... 32

3.2.2 Instantiated Concepts 33

3.2.3 Time F ra m e s ... 33

3.2.4 Temporal Relations.. 34

3.2.5 Aspect Frames 35

3.2.6 Modality F ra m es ... 36

3.2.7 Attitude Frames.. 36

3.2.8 Speech-Act F ram es.. 37

3.2.9 Coreference Fram es.. 37

3.2.10 Focus F ram es... 38

3.2.11 Set Frames 38

3.2.12 Domain Relations... 40

CONTENTS vii

3.2.13 Stylistics Fram e.. 40

3.2.14 A TMR E xam ple ... 41

3.3 Feature Structure Representation... 43

3.3.1 An F-Structure E xam ple.. 51

3.4 Generation M ap -R u les.. 52

3.5 Generation L ex icon ... 57

4 Computational Model 61

4.1 Lexical Selection M od u le ... 63

4.1.1 Context-Dependent Selection 64

4.1.2 Context-Independent Selection.. 65

4.1.3 Selection Algorithm.. 70

4.2 Map-Rules Application M o d u le .. 72

4.2.1 Meaning Requirements C h e c k .. 75

4.2.2 Application of F-Structure Update Operations................... 76

4.3 Main M o d u le .. 79

4.4 An E xam ple.. 84

5 Implementation 91

5.1 TM R Parser.. 92

5.2 Representation of Knowledge Resources... 96

5.3 Time Complexity of the S ystem .. 99

6 Conclusion and Future Work 103

Appendix 107

A A Sample Run of the TM R Parser 108

B A Trace of the Model 111

C Sample TMRs L· F-Structures 117

CONTENTS viii

List of Figures

1.1 Black-Box Model of a Machine Translation System 1

1.2 Computational Model of Interlingua Systems.................................... 3

1.3 Architecture of the Designed S y s te m .. 5

3.1 An Imaginary Ontology Structure... 29

3.2 Frame-Based Representation of F-Structure 44

3.3 Representation of Turkish Simple Sentences 45

3.4 An Example for Control In form ation ... 47

3.5 Representation of Turkish Complex Sen ten ces................................ 47

3.6 An Example for Conjunctive Complex Sentences............................. 48

3.7 An Example for Linked Complex Sentences....................................... 48

8.8 Representation of Turkish Noun P h ra ses .. 49

3.9 F-Structure of “Bir elma verecektik” 50

3.10 F-Structure of “Kitap okuyan kadın” 51

3.11 An Imaginary Map-Rules Structure.. 54

3.12 Map-Rules Structure of an E n tity ... 55

4.1 Computational Model 62

4.2 Lexical Selection M od u le ... 72

4.3 Map-Rule Application M odu le ... 74

4.4 F-Structure Representation 77

4.5 Main Module of Computational M o d e l ... 82

5.1 Architecture of the TMR Parser.. 96

IX

Chapter 1

Introduction

Machine translation (MT), one of the most complex and comprehensive branches
of computational linguistics and artificial intelligence, aims at developing systems
that take a text in one language, source language, and produce a text in another
language, target language, such that the meaning resides in the source text is
transfered into the target text through using knowledge about those languages
[12, 13]. So, the black-box model of a machine translation system is defined as
the system shown in Figure 1.1.

rINPUT TEXT IN SOURCE LANGUAGE

MACHINE TRANSLATION SYSTEM

OUTPUT TEXT IN TARGET LANGUAGE

Figure 1.1: Black-Box Model of a Machine Translation System

There are three major computational approaches to machine translation
problem: direct, transfer, and interlingua [13, 10]. Dzreci approach carries out the
translation task using a large set of language-pair dependent rules for structural
and lexical choices. In this approach, there is not any intermediate representation
of neither the source nor the target language, and the analysis of the source text
directly produces the target text. This approach can be characterized as word-
to-word translation with some local word-order adjustment. Examples of such
systems are SYSTRAN [30] and older versions of SPANAM [29].

Transfer approach, unlike the direct approach, is based on the independent

1

Chapter 1. Introduction

analysis of the source text from the generation of the target text. Transfer-based
MT systems generally produce a kind of syntactic representation of the source text
in this analysis phase. Then this representation is translated into the intermediate
representation of the target text from which the final target text is generated. So,
in this approach, the source and the target language are in direct contact in the
translation step between the intermediate representations. This methodology is
frequently used for bilingual translation systems since the translation between the
two intermediate representations must be developed for every language pair in a
multilingual environment (exponential growth with the increase in the number
of languages). Among the transfer based translation systems are EUROTRA [1]
and METAL [4].

Interlingua approach, similar to transfer approach, is based on the
independent analysis of the source text. The difference of this approach comes
from its treatment of the translation step. In interlingua MT systems, the
source and the target language are never in direct contact. Instead, a language
neutral, artificial meaning representation is produced in the analysis step. This
meaning representation is input to the generation phase of the target text. This
approach has two major advantages over transfer approach: it is more appropriate
for developing multilingual MT systems since the analysis and the generation
modules of a language are developed for once, and transfer step is not constrained
to neither the source nor the target language because of language-independent/
representation. But, it has general disadvantages: designing a language-
independent representation which covers most of language phenomena is difficult,
and both the analysis and the generation phases become more complicated. This
approach stresses the fact that meaning is language-independent, and languages
are encoding systems used by humans to present their view of world to each
other. Among the systems conforming to the interlingua design are Ultra [8],
Kant [26, 21], and Microcosmos [3, 18].

The methodology that is utilized in this work is the interlingua approach
[10, 22, 26, 23]. It separates the analysis task from the generation task using an
artificial meaning representation. Generally, the analysis step firstly extracts the
syntactic structures of the source text sentences, and then produces the meaning
representation through a semantic analysis. The generation phase performs
these two steps in reverse order, producing the syntactic structures of the target
text sentences using the semantic information, and generating the final target
sentences from these syntactic structures. This division of the analysis and the
generation tasks into two independent steps is based on the observation that

Chapter 1. Introduction 3

meaning takes certain forms in any natural language. The computational model
utilized by interlingua approach is shown in Figure 1.2.

ANALYSIS MODULE

GENERATION MODULE

Figure 1.2: Computational Model of Interlingua Systems

The generation step, mentioned above, should perform seven different tasks
[22]. Content delimination is the phase in which the propositional and the
rheoterical goals which are overtly realized in the source text and the remaining
goals to be inferred by the text consumer are planned. Determination of the
sentences’ boundaries of the planned goals is done in text structuring phase.
Referring to entities without explicitly mentioning them is a common phenomena
in languages and text consumer is responsible for making inferences about those
entities. Coreference treatment phase introduces reference phenomena whenever
its usage is appropriate or needed. Open-class lexical items of the target language
which are to be used in the target text are selected in lexical selection phase.
Syntactic construction phase is responsible for creating the syntactic structure of
each planned sentence from its meaning representation, and introducing closed-
class lexemes to the target text whenever needed. Determination of the word
ordering of a sentence, which is also a common phenomenon in languages, is
achieved in constituent ordering phase. The final phase, realization, introduces
necessary morphological markings to the words and produces the final sentences.
These seven tasks defined above can be grouped into three major phases in
generation task [22]:

1. Text Planning: Performs the first two tasks, content delimination and text
structuring, and returns the meaning representation of every individual
sentence to be appeared in the target text.

2. F-Structure Creation: Performs the next three tasks, coreference treatment,
lexical selection, and syntactic construction, and returns the complete

syntactic structure of each sentence with lexical items inserted.

3. Tactical Generation: Performs the last two tasks, constituent ordering and
realization, and generates the final target sentences.

Chapter 1. Introduction 4

The goal of this work is to design a prototype system that performs the
second task, /-structure creation, in a language independent way. The developed
system takes the meaning representation of a sentence as input and constructs
the syntactic structure of the target sentence as output by utilizing various
knowledge resources fed into the system. In other words, the system makes
transfer between two representation languages, the text meaning representation,
a frame-based, artificial language for representing the propositional content of
a sentence with semantic and pragmatic information embedded, and the feature
structure representation, also a frame-based, artificial language for representing
the syntactic properties of a sentence such as its verbal phrase, its grammatical
roles (subject, direct object, etc.), and its noun phrases [10, 22].

To achieve this task, three knowledge resources are utilized by the system:
ontology, lexicon, and map-rules [10, 22]. Ontology is a kind of hierarchical world
modeling in which the semantic properties of entities and events of the real world
are represented in an abstract way. Ontology provides abstract concepts that
are used to define propositions in text meaning representation. Lexicon provides
the morphological, syntactic, semantic, and pragmatic properties of the target
language’s words. The relationship between the information provided in text
meaning representation and the feature structure representation of the target
sentence is defined in map-rules. The computational architecture of the system
designed in this work is described in Figure 1.3.

Note that, there is not any language-dependent information in the developed
system. All information about the target language is provided in the lexicon and
the map-rules knowledge resources. Currently, the implemented tool is tested on
Turkish and the feature structure representation of Turkish is taken from Hakkani
[11] in which a tactical generator for Turkish is designed and implemented. The
meaning representation utilized in this thesis is taken from the Microcosmos
project [18, 3].

Before analyzing the computational model, the necessary linguistic back
ground about semantic and pragmatic phenomena that are covered by the
text meaning representation is given in Chapter 2. Then, the structures of
the representation languages (text meaning representation and feature structure
representation), and the information content of the knowledge-bases (ontology.

Chapter 1. Introduction

Figure 1.3: Architecture of the Designed System

lexicon, and map-rules) are presented in Chapter 3. Next, the computational
model, which makes transfer between the two representation languages, is
explained in detail in Chapter 4. Chapter 5 presents the implementation of the
described model in Prolog. Finally, the conclusions about this work and future
work that can be carried out are given in Chapter 6.

Chapter 2

Linguistic Background

Knowledge-based approach to machine translation, which is the methodology
used in this work, is heavily based on the meaning resides in expressions.
Translation task in this method is achieved through extracting the functionally
complete meaning of a source expression, in which all kinds of ambiguities
are removed, and constructing the target expression from this meaning
representation. To represent the meaning of an expression, knowledge-based
approach utilizes theories from two linguistic fields: semantics [9], study of literal
meaning that is grammaticalized or encoded, and pragmatics^ study of meaning
that depends on the situation in which an expression is produced.

' Semantics deals with the propositional meaning of an expression that can
be determinable without any information about the speech context. In other
words, it is the study of decontextualized meaning that resides in expressions.
The propositional meaning is comprehended by a consumer through matching
the producer’s model of world with the model of world that is encoded by the
expression itself. Languages encode the world with a major distinction between
entities, independent individuals that are not obliged to be temporarily situated
like a human, and events, the relations between entities that are essentially tied
to change in time like the act of break. Entities are generally encoded as nouns
and events as verbs by languages. Since events are temporal relations between
entities, they are represented as predicates that take entities as their arguments
with its temporal properties embedded. The set of arguments of an event is
limited, and the semantic relations that define the connection between an event
and its participants are called as thematic roles. The temporal properties of an
event are analyzed in two distinct topics: aspect, internal structure of an event,
and tense, temporal relations of an event with other events. The producer’s
thought about the truth of the expression, its commitment, etc., also affects the

6

literal meaning and encoded as modality in languages.

Pragmatics, in contrast, deals with the contextualized meaning of an
expression such as the producer’s intention, the consumer’s expected response,
the situation in which the expression is produced, the historical background,
etc. Utterance of an expression causes some kinds of acts to be performed by
both the speaker and the hearer, and these acts are explored in pragmatics
under speech-act topic. Speech-act concerns, especially, how the intention of
a speaker, like assertion, command, promise, etc., is conveyed by grammatical
constructions. Qualification of an expression’s component with respect to its
relevance, importance, etc., in the communication context is also syntactically
realized in languages by word choices, word ordering, etc., and this phenomena
is studied in attitude. The relationship between the speaker and the hearers, and
the social and the cultural context in which communication takes place have an
effect on the way an expression is constructed and these issues are analyzed in
stylistics topic.

Before going into how meaning representation is achieved in knowledge-
based approach, the types of semantic and pragmatic information utilized in this
representation, thematic roles, aspect, tense, modality, speech-acts, attitude, and
stylistics, are needed to be explained in detail and the following sections describe
each phenomena independently with some demonstrative examples.

/

2.1 Thematic Roles

Chapter 2. Linguistic Background 7

Thematic roles can be basically defined as semantic relations that connect entities
to events. But this simple definition can cause thematic roles to be confused
with other linguistic phenomenon, so this definition should be clarified. First,
since events are temporarily situated relations between entities, thematic roles
cannot be used for expressions that denote properties of entities, like in “The
ball is red” . Second, they are not the semantic counterparts of grammatical
roles such as subject, direct object, etc. Grammatical roles are syntactic features
of a sentence that can determine the word order, case marking, etc. The
distinction can be observed in “It rained ice in Chicago” in which ‘it’ is the
subject of the sentence, but the entity ‘ it’ denotes, weather, clouds, etc., does
not participate in the predication and is not associated with any thematic role.
Also in passive construction, the grammatical roles of entities are changed, but
their thematic roles are remained unchanged (passive construction does not affect
the propositional meaning). Third, thematic roles cannot be directly read from

Chapter 2. Linguistic Background 8

morphological cases. This independence can be exemplified with “ / have that
book” in which ‘T is marked with nominative case in English, but it is marked
with locative in the Turkish sentence “0 kitap ben-dd' with the same meaning. So,
thematic roles must be found in the outside of the systems of morphological cases
and grammatical roles, they are constant semantic relationships of predicates and
its arguments [9].

Thematic roles are classified into two broad categories: participant roles,
the arguments necessitated by the predication, and non-participant roles, the
arguments necessitated by semantic context. Non-participant roles can be
extracted from an expression without spoiling the main propositional meaning
and they are used to provide contextual information about an event. For example,
in sentence “Tom hit the ball in the stadium” , ‘stadium’ can be successfully
extracted without disturbing the propositional meaning although deletion of ‘ball’
results in a meaningless expression. The participant roles are also classified into
three categories: logical actors (agent, author, and instrument), logical recipients
(patient, experiencer, and benefactive), and spatial roles (theme, source, goal).
There are six types of non-participant roles, which are location, path, time,
manner, reason, and purpose [9].

2.1.1 Agent

Agent identifies the argument which is the deliberate, potent, or active instigator
of a predicate. Agency is generally connected with volition, will, intentionality,
and reasonability. So, in sentence “Tommy drove the car” , ‘Tommy’ stands for
the agent since he carried out the action deliberately. Even in a situation where he
is forced to drive, like in “Terrorists forced Tommy to drive the car” , he is still the
agent since agency is concerned with the execution, not with the circumstances
that give rise to the predicate.

2.1.2 Author

Author, like agent, is the primary executor of a predicate and has all the
characteristics of an agent except it is not the direct cause of the act. Author
lacks the properties of animacy like volition, intentionality, reasonability, etc.
The distinction between the roles agent and author can be shown by sentences
“Bill floated down the river” and “The canoe floated down the river” . In the
first sentence, ‘Bill’ is the agent because of the deliberateness in the act (if he
is unaware of the situation, then this meaning is paraphrased like “Bill’s body

floated down the river”). In the second sentence, ’canoe’ is the author since it
does not carry out the act deliberately.

2.1.3 Instrument

The argument which is the means by which a predicate is carried out is the
instrument. Instruments must be acted upon by something else, since they
got no energy to carry out an event by themselves. The ‘knife’ in sentence
“Ellen cut the salami with a knife” is the instrument (note that ‘Ellen’ is the
agent). Instruments can be also abstract entities like ‘ improbable ideas’ in “The
administration dazzled us with improbable ideas” . Note that, even in the absence
of an agent, an entity, whose source of energy is external, is marked as an
instrument like ‘rock’ in “The rock broke the window” .

2.1.4 Patient

Patient identifies the cirgument which undergoes, is changed by, or is directly
affected by a predicate. Just as the agent is the primary executor of an event,
so the patient is the primary recipient. So, ‘car’ in “The man cleaned the car”
and ‘glass’ in “The boy broke the glass” are the patients of the predicates. Note
that, a patient must come out as changed as a result of an action, so ‘ letter’ in
“I received a letter” is not the patient of the predicate (it is the theme of the
predicate).

Chapter 2. Linguistic Background 9

2.1.5 Experiencer

Experience!’ identifies the argument whose internal state or constitution is affected
by a predicate. For example, in “Buddy smelled the flower” , if the interpretation
of the sentence is such that smell of the flower came over Buddy (does nothing
volitionally). Buddy is marked as experiencer (other interpretation is that Buddy
smelled the flower volitionally, agent). Since the argument should have an internal
state to register the effect, experiencers are generally humans, at least animates.
Experiencer generally denotes participant humans who perceive and interpret
external data (have a working disposition), take in the data uncontrollably (lack
volition), or respond subjectively (have private worlds).

Chapter 2. Linguistic Background 10

2.1.6 Benefactive

Bcmefcictivc identifies the argument that derives actions or entities from the
actions of others in predicates. For example, in “Dr. Frankenstein made his

son a monster” , if tlie interpretation of the sentence is such that ‘son’ comes to

the possession of a monster, then it is marked as benefactive (other interpretation
is that Dr. Frankenstein converted his son into a monster, patient). Note that,
neither the goodness of the result (in “Tom lost the game for his team” ,‘team’
is the benefactive), nor the co-optation of the constituent (in “Mary bought
lunch for Bob” , ‘Bob’ is the benefactive) is required for marking an argument
as benefactive.

2.1.7 Theme

Theme identifies the argument that denotes the displaced entity in a motion
event like ‘arrow’ in “Tom shot the arrow through the air” . Although there is
a similarity between the roles patient and theme (both undergoes acts), themes
are different in that they are not modified by the displacement itself. Note that,

‘ letter’ in “I received a letter” is the theme of the predicate since ‘ letter’ denotes
the argument that is the displaced entity in the predicate.

2.1.8 Source

Source identifies the argument that denotes the point of origin in motion events.
So, ‘Ireland’ in “Bob was flown in from Ireland” is the source of the predicate.
Sources, as the points of origins of predications, are not purely restricted to spatial
events, they can be found in events that express any actional or stative sources,
like ‘sun’ in “The sun gives off heat” and ‘wine’ in “Wine can turn into a vinegar” .
Note that, ‘heat’ in the first sentence is the theme and ‘vinegar’ in the second
one is the goal (explained in the next section).

2.1.9 Goal

Goal identifies the argument that denotes the destination point of motion events.
So, ‘England’ in “My wife went to England” is the goal of the predicate. Like
sources, goals can denote entities in events that express any actional or stative
destinations, like ‘Ellen’ in “I told Ellen a story” . The same observation made
in the analysis of sources is valid, abstract entities, like ‘story’ in the previous

Chapter 2. Linguistic Background 11

example sentence, can be themes of predicates which have destination arguments.
So, in “His thoughts run from liberian to Libertarian” , ‘his thoughts’ is the theme,
‘ liberian’ is the source, and ‘Libertarian’ is the goal of the predicate.

2.1.10 Path

Path identifies the argument that denotes the trajectory of the displaced entity,
the theme or the agent, in a motion event. For example, ‘along the river’ is the
path in sentence “I walked along the river” . The definition of a path depends
on the nature of the ground, such as the ground’s liquidity (“The knife went
inside the pool of chocolate” is meaningless), its countability (“The ant ran
between the hamburger” is meaningless), etc., and the nature of trajectory, such
as curvature (“I ran around the running track”), boundedness (“The dog ran
across the street”), etc.

2.1.11 Locative &: Time

Arguments that denote the fixed spatial organizations of events are the locatives
of predicates. They can be the site of a predication or its static position, like ‘sky’
in “The clouds floated in the sky” and ‘store’ in “My mother works at a store” .
Time identifies the argument that denotes the time of occurrence of an event in
a predication, like ‘yesterday’ in “I got the physics final exam yesterday” .

/

2.1.12 Manner

Manner identifies the argument that denotes the way in which an event is carried
out. Arguments of manner are used to express intensity like ‘heavily’ in “I knocked
the door heavily” , speed like ‘quickly’ in “I ate the meal very quickly” , attitude
like ‘unwillingly’ in “I studied all weekend unwillingly” , etc.

2.1.13 Reason

Reason identifies the argument that denotes the prior conditions of a predication,
like ‘fear’ in “I ran from fear” . Reasons link other events to a predication by means
of the motivation of an agent, so they are connected to the intentions of an agent,
like ‘need to keep fit’ in “Bob jogs because of his need to keep fit” . Note that,
reasons should precede their predications, so the second clause in “Tom is wearing

Chapter 2. Linguistic Background 12

a tie since he has a job interview this afternoon” is not the reason of the predicate
(in fact there are two distinct predicates in this sentence).

2.1.14 Purpose

Purpose identifies the argument that denotes the result or the consequence of a
predicate like ‘checkup’ in “I went to the doctor for a checkup” . Though purposes
and reasons seem very much alike, they are sharply different in meaning; purposes
denote the contextual end points of predications and reasons are the motivational
sources of predications. This distinction can be observed from the sentence “I
went to doctor because of my checkup” in which ‘checkup’ denotes the reason.

2.2 Aspect

Events are temporarily situated relations between the entities and aspect defines
the way an event is distributed through the time frame in which it happens. In
other words, aspect provides information about the internal contour of an event.
How languages encode the internal structure of an event can be shown by the
following two sentences:

“John ran”
“John was running”

Although both sentences denote the same event that is situated in the
past, the ways they located the event in that past time frame are different. The
first sentence expresses the motion event as a complete act, and the second one
stretches that act into a continuous interpretation. So, aspect operates on an
event structure like a mathematical procedure that adds properties to the basic
expression to derive new ones {run+ p a stex ten s io n —> r u n p a s t -\-continious).
There are four major classes of aspects [9, 5]: perfective/imperfective, telic/atelic,
punctual/durative, and iterative/semalfactive which are explained in the following
sections.

2.2.1 Perfective/imperfective

The distinction between these two properties is based on the way an event is
viewed from the outside of its temporal frame. Perfective aspect construes an
event as a complete unit whether or not that event has itself came to an end.

Chapter 2. Linguistic Background 13

On the other hand, imperfective aspect is associated with events that are viewed
as incomplete, nonunitized. The distinction between these two properties can be
shown by the following sentences;

“I have written the letter”
“I was writing the letter”

(perfective)
(imperfective)

Although the event in the second sentence can be temporarily related with
another event (“The phone rang while I was writing the letter”), the same
mechanism cannot be applied to the first sentence since perfective events are not
internally structured. So, perfective property causes an event to be understood
from a conceptual distance as a single unanalyzed whole. It is used when an
event’s internal complexity is much less relevant to the interpretation that its
unitization. Perfectiveness can also be directly encoded through lexicals like the
distinction between eat/eat up, fill/fill up, etc. Imperfectives are also compatible
with adverbs of manner because they are internally structured, like in “He wrote
the letter slowly” .

If an event is not used in perfective, languages can encode just one point
in the event’s time frame instead of directly encoding it as imperfective. Two of
such aspectual properties are inceptive, way of denoting the initial point of an
event like in “We began to talk together” , and terminative, way of encoding the
end point of an event like in “We stopped talking to each other” .

2.2.S Telic/Atelic

This aspectual property identifies the distinction between the events that denote
composite acts constructed by a process with a requisite result and other events.
Telic events are resultative, and they have built in goals that must be reached
in order to be successfully asserted, and necessarily imply previous events.
The distinction between telic and atelic events can be shown by the following
sentences:

“Bill reached New York” (atelic)
“Bill drove to New York” (telic)

The first event, although it has a built-in goal, is atelic since it does not
identify a process that results in the requisite goal. So, telic events can be defined
as processes that exhaust themselves in their consequences, and even they are
interrupted, the processes that precede the results hold. Note that, if the event

Chapter 2. Linguistic Background 14

in the first sentence is interrupted, then its proposition is nullified, but this is not
the case for the second sentence.

There are also other criteria that can be applied to identify whether an
event is telic or not. For example, telic events are ambiguous with ‘almost’ in
English since they are formed by a process and a result.

“Bill almost reached New York” (unambiguous)
“Bill almost drove to New York” (ambiguous)

1. ‘nearly started the process of driving’
2. ‘nearly came to the result (reached New York)’

Atelic events are also sensitive to durative interpretation since they express
only the results of events. So, atelic events cannot be used with ‘for’ in English,
which is used to introduce duration.

“Bill reached New York in two hours”
“Bill drove to New York in/for two hours”

2.2.3 Punctual/Durative

Events that are momentary and have no temporal duration are marked as
punctual events. On the contrary, events whose time frames are distributed
over time are identified as durative events. The distinction between punctual and
durative events can be observed in the following sentences:

“Lisa received a letter” (punctual)
“Lisa climbed the tree” (durative)

Punctual events are sensitive to time phrases that denote some kind of
duration, as in sentences “How long did it take for Lisa to receive a letter” and
“Lisa received a letter for a while” which are both nonsense. Durative events are
sensitive to adverbs of moment like ‘at once’ in English, but they do not disallow
their usage, only their interpretations are changed. Eor example, the sentence
“Lisa climbed the tree at once” refers to the beginning of the process. Languages
provide tools that convert punctual events into duratives, like progressivization
in English (“John was receiving packages all afternoon”).

Both very short events like “The worm inched along” and single undif
ferentiated acts like “Fred sat” are not thereby punctuals (both have a time
duration). Also, even though momentaneous events appear to be goal directed.

Chapter 2. Linguistic Background 15

momentaneousness does not directly translate into telicity, like the verb ‘reach’ in
English. Also, there is no relation between punctuality and perfectiveness as there
is no relation between duration and imperfectiveness. Punctuality and durativity
are inherent features of the meanings of events; perfectivity and imperfectivity
are means of viewing events.

2.2.4 Iterative/Semalfactive

Many languages make further aspectual distinction with regard to the quantity
of an event. Semalfactive events consist of a single act, and iterative events have
multiple subevents, or they are repeated, or they are cycled in a time frame.
The following sentences show the distinction between semalfactive and iterative
events:

“Bob broke the window”
“Bob broke all the windows”

(semalfactive)
(iterative)

Since the act of breaking is a punctual event, the second sentence must
be interpreted as a repetitive act of breaking (plurality of the patient). So, the
second event is iterative. Iterative property also indicates the events that have
multiple subevents like in “I shook his hand” and represents events that must
be conceptualized in a phase like in “The cursor is blinking on the monitor” .
Note that, all kinds of serial productive events are marked as iterative like “That
factory produced twenty F-16 planes last year” .

2.3 Tense

Tense is the way that an event is explicitly indexed for a time frame. It
is the grammatical or morphological means that languages use to locate an
event in time. Events in linguistic expressions are located on an unbounded,
unidimensional extent of time outward from a central zero point, the moment
of speech. The time is modeled by languages as an ordered scale of precedences
and subsequences relative to a baseline. The time line encoded by languages
is inflexible and stable. For example, the utterance “I wrote a letter” always
refers to an event that occurred prior to the time of speech. So, languages hand
down to its speakers certain temporal constants, like past, future, etc. The time
line is also imprecise, that is, kinds of times that constitute linguistic time are
not very exact. For example, the hours of a day are not grammaticalized in any

Chapter 2. Linguistic Background 16

language. Instead, the time line is a simple extent and very gross units of time are
sufficient to capture temporal notions. So, tense provides the deictic properties
like ‘ location in time’ and ‘relative order’ which require a reference point for their
determination. In contrast, aspect gives the nondeictic contours of an event in
its time frame [9, 6].

As mentioned, tense reflects a deictic structure with its two deictic points,
the contextually situated reference point and the located point, and the direction
and the remoteness of the relation between these two points. Tense locates
events in the time with respect to a fixed temporal reference point, and then
specifies the relation of the event to that temporal center by some direction and
remoteness. For example, in “Bob bought a cake” the reference point is the
moment of speech, the located point is the event’s occurrence time, and the
direction is past. Languages also encode the degree of remoteness between the
two points (the event’s occurrence point and the reference point), which can be
observed in the following sentences:

“I would get up at 5:00 A.M.”
“I just got up”

(distal, some time ago)
(proximal)

So, the structure of a language’s tense system can be defined with four
properties:

• Tense Locus: the reference point
/ · Event Frame: the located point

• Direction: precedes, coincides, or follows
• Remoteness: distal, or proximal

There are two choices of tense locus that are encoded by languages: absolute
tenses and relative tenses. Absolute tenses take the present moment of speech as
the tense locus and assign distance and direction from the speaker as the deictic
center. For example, “John will run to the home” denotes the event of running
which follows the speaker’s present position in time. Relative tenses take some
other event or moment as the tense locus, and its usage can be shown with the
following sentence:

“The man sitting in the chair was rich”
1. ‘the man who was sitting .. . ’
2. ‘the man who is sitting .. . ’

Observe that, in the example above, ‘being rich’ is expressed in an absolute
tense, but ‘ sitting’ has no inherent temporal reference (the ambiguity presented).

Chapter 2. Linguistic Background 17

The present moment of speech does not apply to the event ‘sitting’ , it inherits its
tense locus from some other event or some other specified time. Absolute tenses
are associated with syntactically and semantically autonomous events, and they
are overwhelmingly found in the main clause (independent construction). On
the other hand, relative tenses are used with events that are dependent on both
the meaning and the form of the other events expressed in an utterance, like in
subordinate clauses.

There are also two choices of event frame that are encoded by languages:
simple tenses and perfect tenses. Simple tenses, the fundamental tenses, choose
a single point on the time line to bear a relation to the tense locus, like in “Andy
jumped” and “Andy is jumping” . In contrast, perfect tenses select two distinct
points other than the tense locus, like in “Tom had seen the movie” . Note that,
the event ‘see’ is not only in the past relative to the moment of speech, but also
prior to another past event. This third point, which denotes the other event, is
called as time reference. Perfect tenses require a complex, dual structured event
frame. That is, the event frame is to be judged as prior to or temporarily up to
a projected reference point other than the moment of speech. So, in usages of
perfect tenses, two event frames are evoked in relation to the tense locus.

According to direction and remoteness, languages use two different systems:
vectorial systems, undifferentiated extension of time from the tense locus, and
metric systems, division of time line into definite intervals (like tomorrow, next
week, etc.). Since the scope of this work covers only the vectorial languages,
metric systems are not explained. Direction in the vectorial systems is a tripartite
domain:

• Past (prior to)
• Present (coincident with)
• Future (subsequent to)

Past denotes an undifferentiated temporal extent moving away from the
present moment into the already known or completed, and with enough temporal
removal into the unknown and hypothetical. As the temporal distance increases,
past is generally connected with nonactuality, hypotheticality, counterfactuality,
and improbability. Present denotes an area of time line simultaneous with the
moment of speech. Present is neither a specific point nor a vector itself, it
is an ideal temporal segment that extends in both directions from the present
moment. Present is connected with on-line activity, actual events, and likelihood
of occurrence. It is also used to encode generic and timeless events as well
as habituais. Also, incomplete events and events that have some degree of

Chapter 2. Linguistic Background 18

extensions (states) are sometimes encoded using present Future denotes a vector
stretching outward from the present moment in an undifferentiated extent into the
unknown and unrealized. Since future is connected with unknown, it is generally
used to encode inception, prediction, intention, potential, volition, supposition,
nonactuality, etc.

2.4 Modality

Speakers often qualify their statements with respect to believability, reliability,
and general compability with world or accepted facts. The area of semantics that
concerns how such qualifications, made by speakers, are encoded by languages
is modality. So, modality can be defined as the semantic information that is
associated with the speaker’s attitude or opinion about what is said [9, 27].

Modality signals the relative actuality, validity, believability, etc. of the
content of an expression and affects the overall assertability of an expression.
For example, in sentence “Apparently, Maria bought another cat” , the word
‘apparently’ denotes the epistemic (state of knowledge) stance of the speaker
about the event expressed in the sentence. The speaker, obviously, is not sure
about the occurrence of the event when the sentence is uttered, and ‘apparently’
sets up a belief context, or a possible world. Note that, modality is not only
objective measures of factual status, but also subjective attitudes or orientations
toward, the content of an expression.

Although languages encode some modality phenomena through modals,
there is no direct relation between them. Modality is a semantic phenomenon
that denotes the content of an expression which reflects the speaker’s attitude
or state of knowledge about a proposition. Modals are grammatical phenomena
that encode a set of semantic and pragmatic properties through word inflections
and auxiliary words.

The basic denotation of modality is the opposition of actual and nonactual
worlds. So, modality is the way a language encodes the comparison of an
expressed world with a reference world. Thus, modality is another semantic
phenomenon that shows deictic structure with deictic points as the two worlds
that are compared. The basic dichtonomy is a scale, and the factual status of a
proposition depends on the extent to which two epistemic deicitic points diverge.
This divergence is translated into possibility, evidence, obligation, commitment,
etc. The deictic structure of modality can be observed in the following sentences:

Chapter 2. Linguistic Background 19

“John may go”
“John might go”

The first sentence expresses the possibility of John’s going in the future.
Although the second sentence expresses the same possibility, it is more
epistemically removed from the state of affairs. So, the first expression is closer
to the real world compared with the second one in the remoteness scale. It
can be observed from previous explanations that, there are different types of
modalities and five of them, epistemic, expectative, deontic, volitive, and potential,
are explained in detail.

2.4.1 Epistemic Modality

Epistemic modality can be defined as the structural and semantic resources
available to a speaker to express judgment of the factual status of a state of
affairs. It concerns the truthness of an expression, but the truthness that is
relativized to the speaker. So, the scale of the epistemic modality goes from
‘someone does not believe that X ’ to ^someone does believe that X\ For example,
in sentence “I was planning to go to the school today” , the speaker expresses that
the event ‘going to school’ did not occurred (he does not believe the truthness of
proposition go{speaker, school, today)). In sentence “I heard that Bob cheated in
the exam” , although the speaker did not expose to the event of cheating (s/he is
not sure), s/he asserted the proposition cheat{Bob, exam) with a high probability
of occurrence.

2.4.2 Expectative Modality

Expectative modality can be defined as the structural and semantic resources
available to a speaker to encode the likelihood of a state of affairs to
occur. So, the scale of the expectative modality goes from ‘someone does
not plans/intends/expects that X ' to ‘‘someone plans/intends/expects that X\
Considering the same sentence given in the previous section, “I was planning
to go to the school today” , the speaker expresses the likelihood of occurrence of
the event of his/her going to the school (since s/he was planning to do it). In
sentence “Most probably. Bob will not be here before 11 o ’clock” , the speaker
expresses that s/he does not expect Bob’s arrival before some time. Note that,
the speaker’s expectation is not exact, can be nullified.

Chapter 2. Linguistic Background 20

2.4.3 Deontic Modality

Deontic modality expresses the imposition of a state of affairs on individuals, with
modality as deixis, the imposition of an expressed world on a reference world. In
other words, deontic modality encodes the restriction of possible future states of
affairs to a single choice. So, the scale of deontic modality goes from ^someone
believes that the performer of an action must not be X ’ to ‘‘someone believes that
the performer of an action must be X\ For example, in sentence “You’d better
go to a doctor” , the speaker tries to restrict the possible kinds of actions that
the hearer can perform to only the event of going to a doctor. In sentence “You
should not drink cold water after playing football” , the speaker tries to make the
hearer to exclude a kind of action, drinking cold water, from the state of affairs
that can happen after playing football. Note that both sentences are not at the
opposite end points of the scale, none of them implies obligation.

2.4.4 Volitive Modality

Volitive modality expresses the preference of a state of affairs in a possible world
to become a state of affairs in the reference (real) world. In other words, volitive
modality encodes the will of someone about a state of affairs to become real.
So, the scale of volitive modality goes from ‘someone does not desire that Y ’
to 'sorheone desires that X\ For example, in sentence “Bob wanted to be a
m ath^atician” , the speaker expresses Bob’s preference to be a mathematician
in past (note that expression also contains an epistemic modality that the speaker
does not believe in ‘Bob is a mathematician’). In sentence “If the decision was left
to me, I would not go to that university” , the speaker expresses his/her reluctant
in going to a specific university.

2.4.5 Potential Modality

Potential modality expresses someone’s potency in making a state of affairs in
a possible world real in the reference world. In other words, potential modality
encodes the effectiveness, potency of an actor on some on-going process and
his/her ability to create new state of affairs in the real world. So, the scale
of potential modality goes from ‘ someone is not effective on/capable of X ' to
‘‘someone is effective on/capable of X\ For example, in sentence “I can afford
$300 per month for a house” , the speaker expresses that s/he is capable of paying
$300 every month. In sentence “Bob did not understand what was going on” , the

Chapter 2. Linguistic Background 21

speaker states that Bob had no effect on the on-going states of affairs.

2.5 Speech-Act

In a speech situation, an utterance causes some kinds of acts to be performed
by both the producer and the consumer. One of these acts can be defined as
the conveyance of the speaker’s intention to the hearer through that utterance.
Speech-Act concerns the production of linguistic tokens such as questions,
commands, promises, etc., under certain conditions with underlying intentions.
In other words, intentions of a speaker are delivered through certain grammatical
constructions and speech-act identifies the relationship between the intentions
and the grammatical constructs.

For example, the sentence “I promise to bring your notes tomorrow
morning” is utterred to define a future act of the speaker (bringing the hearer’s
notes at a specific time) whose performance is not obvious to both the speaker
and the hearer. Note that, expression states that the speaker intends to do that
act under the assumption that the hearer prefers the speaker doing that act.
Utterance of promise places the speaker under an obligation for doing that act.
So, given the conditions listed above with the speaker’s intention explained, the
speech act promise is produced with ‘X promise to do . . . ’ in English.

Currently, three types speech-acts are used in this work: declaratives,
interrogatives, and imperatives. Declaratives are used by speakers to convey some
kind of information to the hearer and it is the speech-act type which has no
special construction in English, all sentences other than the ones with different
speech-act types are declarative sentences. So, sentences “I went to the cinema” ,
“I frequently play tennis” , and “I am going to study all day tomorrow” are
declaratives. There are two types of interrogatives: yes-no questions and wh-
questions. Yes-no questions are produced by speakers to learn the truthness of a
proposition for which the sentences “Did you have a breakfast” and “Can you ride
a bycle” are examples. Speakers use wh-questions to learn a specific participant
of a predication which is not known by the speaker. In English, nearly for every
thematic role there is a special word in querying that role, like who for agent. The
sentences “Who broke the window” and “When are you going to take your last
final” are examples for wh-questions. Imperatives are used by speakers to make
the hearer to perform some kind of act. The sentences “Open the window” and
“Fill in the blanks” are examples of imperatives.

Chapter 2. Linguistic Background 22

2.6 Attitude

Speakers often qualify the constituents of an expression with respect to their
relevance and importance to the meaning that is to be conveyed. Attitude
concerns how such qualifiactions made by speakers are encoded in languages.
Although both modality and attitude encode some qualifications made by the
speakers, they reflect different phenomena of languages. Modality is the semantic
information that is associated with speaker’s opinion about the overall statement
or an event expressed in that statement. Attitude is the pragmatic information
which covers the modifications of the consituents of a statement, especially the
participants of an event, made to assign importance, evaluation, etc., to them.

For example, the sentence “It was Bob who stole the money” has the same
propositional meaning with “Bob stole the money” , that is steal{Bob, money).
The reason for which the first sentence is uttered in a different form from the
second one is the speaker’s intention to put an emphasis on the agent. That
is, the first sentence is used to express Bob as the important participant of the
stealing event. Note that, attitude, like modality, has a scaled structure (eg.
important, unimportant, irrelevant). There are different types of attitudes and
two of them, evaluative and saliency, are explained in detail.

2.6.1 Evaluative Attitude

Evaluative attitude expresses the way a speaker encodes his/her own point of
view about a constituent in an expression. The scale of evaluative attitude varies
with the goodness that the speaker attaches to that component. High evaluation
is attached to the appreciated components, and low evaluation is attached to the
components that are disgusted by the speaker. For example, in sentence “He
treated me in a bad manner” , the speaker expresses his/her low evaluation about
the way someone’s, denoted by ‘he’ , treatment of him/her.

2.6.2 Saliency Attitude

Saliency attitude is used to define the importance or relevance of a statement’s
component. The scale of saliency attitude varies with the importance that the
speaker attaches to a text component. High saliency is attached to the entities
that the speaker wants to be stressed, and low saliency is attached to the entities
that the speaker mentions as background. So in sentence “It was yesterday the
window was broken by Bob” , ‘yesterday’ is the constituent that is emphasized

Chapter 2. Linguistic Background 23

and ‘Bob’ is the component that is mentioned with low relevance.

2.7 Stylistics

The relationship between the prodncer of an expression and its consumers,
and the social and the cultural environment in which the communication takes
place generally affects the way that expression is constructed. Producers
take into account their knowledge about the consumers and the social context
when they utter expressions and this information is reflected in lexical choices,
grammatical structures used, etc. Stylistics is the branch of pragmatics that
involves in exploring how conveyance of meaning depends on these two contextual
information. For example, consider the following sentences:

“Could you please open the window”
“Open the window”

Although both sentences’ structures are used to make a consumer to perform
a certain act, the way how this meaning is presented to the consumer radically
differs. The first sentence is generally uttered in a formal situation, and in
the second one the situation is such that the producer is in a higher statue
compared with the consumer. Note that, stylistics reflects the structure of the
relationship between humans, so it is also defined on a scale. This structure can
be demonstrated by the sentence “Can you open the window” which defines a
situation between the two extremes given as examples above. Stylistics can be
analyzed in six different subtopics: formality, respect, politeness, simplicity, color,
and force.

Formality scales situations from cases in which there is no specific
relationship between the producer and the consumer, like a dialogue between the
representatives of two countries, to cases in which the producer and consumer
knows each other very well and have a sincere relationship, like the conversation
between very close friends.

Respect scales situations from cases in which the relationship between the
producer and the consumer is well defined according to social and cultural status
of them and the opinions of one is very important for the other to cases in which
both the producer and the consumer do not take care the other.

Politeness scales situations from cases in which behaviors and requests of the
producer and responds of the consumer are well defined and restricted by social

Chapter 2. Linguistic Background 24

and cultural context to cases in which the context is irrelevant (no restrictions)
to the dialogue that is made between the producer and the consumer.

Simplicity scales situations from cases in which the exchange between
producer and consumer is not restricted by any information context, like
conversation between two expert doctors about the diagnosis of a patient, to cases
in which producer tries to explain a phenomenon that is outside the knowledge
of the consumer, like the conversation between a doctor and his/her patient.

Color scales situations from cases in which the producer tries to decorate
the things s/he wants to be conveyed in an impressive way through defining an
imaginary world, exaggarated feelings, etc., like in poems and novels, to cases in
which information exchange between the producer and the consumer is the only
purpose, like in technical reports.

Force scales situations from cases in which the producer has the power to
make the consumer to perform a certain act, like the prohibition of smoking of a
doctor to his/her patient, to cases in which the producer has no control on the
behaviors and thoughts of the consumer.

Chapter 3

Knowledge Resources L ·

Representation Languages

The goal to be achieved in this thesis, as mentioned, is to design a
prototype system that generates the feature structure representation of a natural
language sentence from its language independent representation. The language
independent representation is called as text meaning representation (TMR) which
is developed for the Microcosmos project at New Mexico State University
[18, 3, 19]. To achieve such an independent representation, two resources of
knowledge are utilized: speaker's world knowledge about entities, events, their
relationships and interactions, and linguistic information about semantic (aspect,
thematic roles, modality, etc.) and pragmatic (speech-act, stylistic factors, etc.)
issues explained in Chapter 2. Also, additional information about the overall
situation (relations between events, references to entities, time references, etc.) is
provided in TMR representation whenever it is appropriate. The feature structure
(f-structure) representation of a sentence is used to encode the syntactic properties
of that sentence such as open-class and closed-class lexical items to be used, verbal
phrases, grammatical roles, noun phrases, and other complex structures.

The generation system requires introduction of lexical items and mapping
between the structures of TMR and f-structure representations. To handle such a
task, the designed system uses four knowledge resources: ontology, lexicon, map-
rules, and em f-structure representation of the target language. Ontology is a
hierarchical representation of speaker’s world knowledge about entities, events,
and their relationships in an abstract way. The knowledge that is provided
in ontology is language independent. Lexicon contains information about the
relationship between open-class lexemes of the target language and abstract
entries (concepts) of the ontology which are used in TMR. This relationship

25

Chapter 3. Knowledge Resources & Representation Languages 26

is achieved through defining a lexeme in the lexicon by limiting the abstraction
provided by an ontology entry. Lexicon also contains information about semantic
and pragmatic properties of open-class lexemes and usages of closed-class words.
Map-rules define how the content of a TMR is related to the syntactic structure
of the target language. They encode how available information is extracted from
a TMR and how such information updates the syntactic structure of a sentence.
F-structure representation of the target language is given as a seperate knowledge
resource to avoid any language-dependent information inside the system.

To reach a complete understanding of how these representation languages
(TMR and f-structure) and three knowledge resources are related with each other,
each of them is analyzed individually, starting from more abstract notions to
language specifics. First, ontology and text meaning representation are described,
then utilized f-structure representation of the target language, Turkish in our
case, is presented, and finally two knowledge resources, lexicon and map-rules,
that provide the interface between TMR and the target language are explained
in detail.

3.1 Ontology

Natural, language expressions are produced to convey some information, held by
producers, about entities and events of the world, including relationships hold
among them and interactions occur between them. So, to represent the meaning
of an expression in a language neutral way, an abstract model of the world is
needed. Ontology is the computational model that is designed for meeting this
need [2, 17, 16]. It is the knowledge resource that provides general information
about the world in a hierarchical way like a human-being realizes the world.
Note that, ontology does not contain any information which is specific to any
human-being.

Every entry, called a concept, in the ontology is a primitive symbol that
represents a proposed abstraction about a set of things in the world. It captures
their common properties and their relations with other concepts. Each concept is
represented by a frame and knowledge is encoded through feature-value pairs and
slots. Feature-value pairs are used to encode the properties of a concept. Slots
are special constructions and they are utilized to group feature-value pairs that
describe the aspects of a concept’s general property.

Each concept represents either a group of entities or a set of similar events.

Chapter 3. Knowledge Resources &: Representation Languages 27

A concept which is created for a group of entities decomposes the definition into
a set of properties that any entity from that group can take. Each property takes
its values from a well defined domain and representation of real world entities is
achieved through instantiating these properties with specific values. For example,
humans can be represented with the following simplified frame:

concept

definition

HUMAN
■ type common ¡proper

name human-names
gender male/female
age > 1 & < 120

_ job teacher/engineer j . . .

In this example, humans are defined by only five proi^erties: type^ name,
gender, age, and job. Type property is introduced to make a distinction between
humans whose names are known by the speaker and others. So, if the property
type takes the value common, then the property name is undefined. To show
how a real human, Ali, a male at the age of 25 who is a computer engineer, is
represented by such an abstraction, the following instantiated H U M AN frame
is given.

concept HUMAN
■ type proper

name Ali
definition gender male

age 25
. . job computer-engineer _

Representation of events with concepts is somehow different from represen
tation of entities in the ontology, since they are like predications over arguments.
So, a concept which is created for a set of similar events contains the argument
structure of those events under roles slot, besides definitions of their properties.
Roles slot defines all possible thematic roles that set of events can take. For
example, events that describe some motion of an actor from one location to
location can be represented by the following frame:

concept ACTOR-MOTION
agent ANIMATE

roles source LOCATION
destination LOCATION
instrument ARTIFACT

Chapter 3. Knowledge Resources & Representation Languages 28

Four arguments are defined for an actor-oriented movement: agents source,
goal, and instrument. Observe that, the values of an event’s arguments can
be limited to other concepts from the ontology, like value domains used in the
definition of an entity. Following example is given to show how a real event, the
movement of a human, Ali, from Ankara to Istanbul in an airplane, is represented
by instantiating AC TO R -M O TIO N concept defined previously.

concept

roles

ACTOR-MOTION
agent HUMAN(Ali)
source CITY(Ankara)
destination CITY (Istanbul)
instrument V EH IC LE(airplane)

Although the concepts in the examples above are named with English words,
they are not simple mappings of those words’ senses into renamed entries in the
ontology. The ontology is a language independent world modeling such that a
concept can represent a set of lexemes of any language. For example, HU M AN
can be used to denote the nouns John, man, woman, girl, etc. in English, and
AC TO R -M O TIO N can be used to represent the verbs go, come, reach, etc. in
English.

The whole ontology is constructed through connecting individual concepts
by a set of relations. The main relation, is-a, forms an inheritance mechanism in
the "ontology. It constructs a concept hierarchy that is determined according to
the abstraction a concept provides. That is, a concept that defines a subset of
entities or events covered by another concept is connected to that concept with an
is-a link. The child concept provides additional information that constrains the
abstraction defined in the parent concept. In this way, enumeration of knowledge
in one level representation is avoided, the common properties are encapsulated
by parent concepts. Also with this relation, decomposition of interpretation is
achieved, which is similar to the way humans realize the world. Note that, a
concept can inherit from more than a parent concept, which forms a multi-parent
tree structure in the ontology.

The general structure of an imaginary ontology is shown in Figure 3.1. Note
that the root, ALL, has two child concepts, E N T IT Y and E V E N T , that define
the two main categories used in the representation of the world knowledge. The
inheritance mechanism utilized in the design of the ontology is shown for both
entity and event concepts. The entity A N IM A T E covers all animals in the
world with common properties gender, height, weight, etc. H U M AN , a kind
of A N IM A T E , has additional j^roperties like type, name, job, etc. The event

Chapter 3. Knowledge Resources & Representation Languages 29

Figure 3.1: An Imaginary Ontology Structure

M O TIO N represents all kinds of events that somehow contain a movement and
it has common thematic roles source and goal. AC TO R -M O TIO N identifies
M O TIO N events that are performed deliberately by some actor and have
additional arguments agent and instrument. Also observe that, even the most
abstract concepts, like E V E N T with time and ALL with location, provide the
common properties of its child concepts.

The concepts in the ontology are also related with each other through a
variety of other relations. These links do not impose an inheritance mechanism,
but allow to define specific relationships that exist between concepts. For
example, is-part-of is used to encode the relationship between the constituents
of an entity and the entity itself. For example, a monitor is a constituent of a
computer, so its definition should be as follows:

concept MONITOR

definition

. is-part-of COMPUTER .

Such links are defined whenever appropriate to make general inferences
about the relations between concepts or to fill gaps in expressions that are
supposed to be completed by the text consumers.

A developed ontology can be utilized in several ways in an interlingua
MT system and three of them are used in this work. Its first usage in this
work, as mentioned, is in text meaning representation. Besides using linguistic

Chapter 3. Knowledge Resources L· Representation Languages 30

information, the TMR of a natural language expression is constructed through
defining the entities and the events that are referenced in that expression, and
these entities and events are represented by concepts from the ontology. Since
a concept is a generic representation of a set that have similar properties,
the representation of real world entities and events in a TMR is achieved
through instantiating the features used in the definitions of those concepts.
Two previously given examples, H U M AN and A C TO R -M O T IO N , explain how
concepts are utilized in text meaning representation.

Ontology is also utilized in the design of the generation lexicon. Since
the words of a language generally encode entities and events of the world, the
definition of a word sense is made by using of a concept. Since concepts in the
ontology are generic entities or events, the definition of a word sense should limit
the abstraction provided by a concept through constraining the value domains of
the features and excluding some of the properties of that concept (remember that
concepts ai’e not mappings of word senses). So, the definition of a word sense is
made by instantiating a concept in the ontology. Observe that, instantiation is
used in both text meaning representation and generation lexicon, cind this builds
the connection between the open-class lexical items of the target language and
the representation provided in a TMR.

Finally, ontology is used in the design of the map-rules. Since an
instantiated concept in a TMR inherits the definitions of all its ancestor concepts.
That is, the features of the ancestors'can be used in the instantiation, the mapping
between TMR and f-structure representation should be done in a way such that
it follows this hierarchical structure. So, mappings that are common to all
children of a concept are associated with that parent concept. In other words,
the applicable map-rules of a concept are collected from concepts which are on
the path from that concept to the root in the ontology tree.

There are also some general advantages in developing an ontology for
machine translation systems and the important ones are given in the following
list [16]:

• Ontology enables an MT system to share knowledge between analysis and
generation lexicons, since it is an interface between the two processes. It
also eliminates the need for bilingual dictionaries between language pairs in
a multi-lingual translation environment. Analysis and generation lexicons
are constructed only once for an MT system that utilizes an ontology in
this way.

Chapter 3. Knowledge Resources &: Representation Languages 31

• Ontology can be utilized to fill meaning gaps in expressions. Situations
in which producers do not provide some specific information explicitly, but
instead suppose their consumers to infer that information, are very common
in natural language use. In such cases, an MT system can make inferences
by using the relations defined between concepts {made-of, is-part-of,
etc.) in the ontology which improves the quality of text understanding
(in analysis phase).

• Ontology can also be used to resolve semantic ambiguities that reside in
expressions by making inferences through utilizing the topological structure
(is-a) and the content of the ontology itself. For example, whether
an event has semalfactive or iterative interpretation can be resolved by
using that event’s time properties (whether it is punctual or not, etc.).
Remember that, a punctual event in progressive tense requires an iterative
interpretation.

3.2 Text Meaning Representation

In interlingua machine translation approach, the translation between the source
and,-the tcirget language is achieved through describing the meaning conveyed
in sentences of the source language in an intermediate representation which is
language-independent [24, 15, 24, 23]. The intermediate representation which
is used in this work is taken from the Microcosmos project [19, 18, 3] and it
is called text meaning representation, or shortly TMR. To get such a genei’cil
representation, various knowledge resources are utilized: ontology (language-
independent world knowledge), semantic properties (temporal relations, aspectual
properties, modality information, etc.), and pragmatic information (speech-acts,
speaker’s attitude, and stylistics factors). Also, there are a few special constructs
which are used to handle some phenomena in language that are not covered by
the above resources, such as time references, entity references, and sets.

To achieve language independence in TMR, no specific information about
the source language is included inside TMR such as that language’s lexical items
and syntactic structures. So, syntactic information such as a sentence’s verbal
and noun phrases, its tense, its grammatical roles, and its word ordering are
avoided in this representation. Instead, the resources mentioned above are used
to capture the meanings of individual elements and their relationships. In this
way, both the propositional and non-propositional meaning expressed in a source
sentence can be represented.

Chapter 3. Knowledge Resources &: Representation Languages 32

Text meaning representation is a formal, frame-based language in which
the meanings of open-class lexical items are represented by instantiating concepts
from the ontology. But, instantiations of concepts are not enough to capture the
overall meaning I'esides in a sentence. So, information cibout the semantic and
the pragmatic properties of a sentence and the relations between the components
should also be described. To facilitate this, the TMR language contains special
notations for representing aspectual properties, speaker’s attitudes, modalities,
speech-acts, etc. The followings are the list of frames that are used in meaning
representation, and each frame is explained and exemplified in their usage in the
rest of this section.

• Table-Of-Contents
• Instantiated Concepts
• Time Frame
• Temporal Relations
• Aspect Frame
• Modality Frame
• Attitude Frame

• Speech-Act Frame
• Coreference Frame
• Focus Frame
• Set Frame
• Domain Relations
• Stylistic Information

3.2.1 Table-of-Contents

This frame type is used for providing a summary of propositions, relations, and
discourse information about the overall sentence. It is used to extract general
knowledge about the representation in hand without searching for frames in TMR.
It is filled after all the frames in a TMR are created, and it contains knowledge
about the following frames in a TMR: the list of events, temporal relations,
attitudes, modalities, focuses, coreferences, domain relations, the speech-act and
the stylistic information frames. Its corresponding structure is the following:

table-0 f-contentsi
speech-act
heads
temporal-relations
attitudes
modalities
focuses
stylistic- factors
coreferences
domain-relations

speech-acti
list-0 fiEVENTi)
list-o f {temporal-reli)
list-0 f(attitudei)
list-0 f{modalityi)
list-of{focusi)
stylisticsi
list-0 f (core ferencci)
list-0 f(domain-reli)

3.2.2 Instantiated Concepts

This type of frames are constructed through setting some of the properties of
concepts defined in the ontology to make the connection between the real world
and the meaning representation. As explained, there is a major classification in
the ontology that splits the concepts into two main categories: events and entities.
This distinction extends to the representation in TMR. Events are used to denote
propositions expressed in a sentence, so they require extra information about
their aspectual properties, their time of occurrences, and theie propositional
truthness assigned by the producer, in addition to the definition provided by the
ontology. This extra information is represented through aspect and time slots,
and polarity feature is used to denote the expressed judgment about the truthness
of the expression. This feature takes either positive or negative value. Entities
correspond to the arguments of the expressed propositions, so instantiations are
made by just filling a set of features which are provided in the definitions of those
concepts.

Chapter 3. Knowledge Resources & Representation Languages 33

READ; HUMAN;
agent HUMANi type common
theme BOOKi gender female
aspect
time

aspecti
timei

age > 17

polarity positive BOOKi
type fiction

The incomplete TMR given above is used to reiDresent the proposition
read{woman, fiction-book). Observe that, the connection between the propo
sition and its arguments is made through thematic roles agent and theme, and
the required additional information about aspect, time, and polarity are given
in the event READi. A woman is represented by a HUMANi whose gender
is female and whose age is greater than 16, and a fiction book is defined by a
BOOKi with its type as fiction.

3.2.3 Time Frames

This type of frames are used for two reasons. P'irst, they are utilized for relating
the events in an expression temporally, including the moment of speech. In this
usage, the contents of time frames are irrelevant to the meaning representation
since such frames are used to relate the occurrences of events in the time line
through temporal relations (tense in Chapter 2). So, only a dummy information

Chapter 3. Knowledge Resources L· Representation Languages 34

is provided with absolute feature, which is utilized in processing time frames. The
following is the structure of time frames when they are used for this reason.

timei
absolute past j present j future

Second, they are used to provide excict time references that are made in an
expression. In other words, this usage is utilized whenever the time of occurrence
of an event is mentioned explicitly in an expression. There are three types of
time references that are handled in this work;

• Fixed Times : “I will go to Istanbul on Sunday.", “I have an exam at
13:40."

• Durations : “I have been working for two hours."

• Intervals : “The school was built between 1985 and 1988."

The following frame structures are the proposed representations of these
time references:

time; time;
day Sunday! . . . ¡Saturday duration daŷ week .̂ . . , hour
date 1 / . . . / 3 1 unit integer
month January! · · -¡december
year 0 / . . . / 2 0 0 0 timei
hour 1,1 : 3 0 , l (a m), \{pm) beginning day .̂ . . , hour

end day .̂. .^hour

3.2.4 Temporal Relations

This type of frames are used to represent the relations between the time of
occurrences of events that are expressed in a sentence. They are utilized to
find the tense (in Chapter 2) of a sentence which is to be generated. This type
of frames, like other relation frames, has two arguments which are time frames,
and a relation type that can take one of the following values:

• After. Relates two events that do not interleave in the time line (for past
and future). For example, this relation type is used for the sentence “I went to
the cinema” which is uttered after the occurrence of the real event.

• At: Relates two events that occur at the same time. This relation type
is used for sentences such as “While I was studying, he was listening music very
loudly” .

Chapter 3. Knowledge Resources L· Representation Languages 35

• During: Relates two events such that one event occurs in a time interval
which is captured by the duration of the other event. In sentences such as “When
you phoned me, I was watching TV.” , this relation type is used.

• Extend: This relation type is utilized whenever the relationship between
the two events are indeterminate, like the present tense usage in English, (in “I
frequently go to the city library” , the event can take place before, after, and even
at the moment of speech)

The following is the structure of the temporal relation frames:

temp-reli
type
argi
arg2

a f ter I at I during I extend
t im c j
timek

3.2.5 Aspect Frames

This type of frames are used to define the aspectual properties (defined in
Chapter 2) of every event, except the speech-act, in an expression. They provide
knowledge that can be utilized in lexical selection, syntactic marking and tense
determination. The following is the structure of aspect frames:

aspecti
phase
duration
iteration
telicity

perfect / begin ! end / continue
momentary / prolonged
single/multiple
true/ false

In cases when the value of a feature in an aspect frame cannot be
determined, unknown filler is used. Two examples are given to show how the
aspectual properties of an event are represented in a TMR.

‘‘He broke the windows”
aspecti

phase perfect
duration prolonged
iteration multiple
telicity true

“I am going to the school”
aspectj

phase
duration
iteration
telicity

begin
prolonged
single
false

Chapter 3. Knowledge Resources L· Representation Languages 36

3.2.6 Modality Frames

This type of frames are used to represent information about someone’s opinion
on an event or an entity that is expressed in a sentence. A modality frame is
defined through four features: ij/pe, value^ scope^ and attribution. Type takes
its value from the modality types described in Chapter 2 and value is a kind
of scaling about the strength of that opinion. Scope refers to the entity or the
event on which the opinion is held and attribution refers to the human who has
that opinion. A modality frame can also take ci time frame in its definition which
provides an extra information about the time at which the opinion is held. The
structure of modality frames is shown below:

modality i
type
value
scope
attribution
time

epistemic / deontic / volitive / potential / expectative
[0..1] (real)
CONCEPT
HU M AN / speaker / hearer
timei

The following two examples show how the modality information defined in
Chapter 2 is used in text meaning representation.

“You should go to a doctor”
modalityi

type
value
scope
attribution

deontic
> 0.80
GOi
speaker

“He is supposed to be here”
modalityj

type
value
scope
attribution

expectative
1
HUMANi
speaker

3.2.7 Attitude Frames

This type of frames are used to encode someone’s attitude toward an entity or
an event expressed in a sentence. The structure defined for modality frames is
also used in the representation of attitude frames. Its type tcikes one of the two
values, saliency or evaluative, that are also defined in Chapter 2. Two examples
given below show the usage of attitude frames in TMRs.

“It was that boy who broke the window.” “The circumstances are worse than ever.”
attitudei

type
value
scope
attribution

saliency
1
HUMANi
speaker

attitudej
type
value
scope
attribution

evaluative
0
CIRCUMSTANCEi
speaker

Chapter 3. Knowledge Resources L· Representation Languages 37

3-2.8 Speech-Act Frames

The information about the speech situation is given by using this type of frames.
Currently, a speech situation is defined by five features: type (speech-act type:
declarative^ interrogative^ or imperative)^ scope (the reason for which the
expression is produced), producer and consumer (contributors of the situation),
and time (its time of occurrence). The structure of speech-act frames is the
following:

speech-act i
type
scope
producer
consumer
time

declarative / interrogative / imperative
CONCEPT
HU M AN / speaker / author
HU M AN I hearer I reader
timei

The distinction between written and spoken expressions is handled by
producer and consumer features that can provide extra information about the
stylistic issues. The time of the speech is utilized in determining the temporal
relations between the events expressed and the moment of speech. Following two
examples are given for explaining the usage of speech-act frames:

“Stop watching TV.”
speech-act i

type
scope
producer
consumer
time

imperative
STOPi
speaker
hearer
time;

“I bought a new cassette.”
speech-act j

type declarative
scope BUYi
producer speaker
consumer hearer
time time;

Speech-act frames can also take modality and attitude frames to represent
opinions and attitudes held in the time of the speech about the entities and the
events referenced in the expression.

3.2.9 Coreference Frames

Referring to entities without explicit definitions is a common phenomenon in
natural languages. Coreference frames are utilized to handle references in texts.
They are also used to avoid enumeration of instantiated concepts and time frames
in meaning representation. The following is an example about the usage of
coreference frames:

Chapter 3. Knowledge Resources L· Representation Languages 38

“Mary asked for that book and took it with her.”
ASKi TAKEi

agent HUM AN{ agent
theme BOOK; theme

HUMANj
BOOK;

coreference; HUMAN;, HUMANj
coreferencej BOOK;, BOOKj

3.2.10 Focus Frames

This type of frames are used in TMR to represent expressions of emphasis. For
example, in a passive construction, although the propositional content does not
change, the emphasis of the expression is changed. It can also be used for handling
free word ordering phenomenon in languages such as Turkish. It has two features,
the first one denotes the frame on which the emphasis is put, and the second
one represents the degree of emphasis. Its usage is exemplified by the following
incomplete TMR:

“He was punished by the manager for being late.’
PUNISH; speech-act;

agent HUM AN; type
patient HUMAN; scope

declarative
PUNISH;

focus;
scope
value

HUMANj
1

focus focus;

In the example above, HUMAN; represents the manager and HUM ANj
denotes the person who was punished. Without the focus; frame, the sentence
is realized as “The manager punished him for being late.” . So, representation of
the emphasis on the patient in this sentence is achieved using focus;.

3.2.11 Set Frames

This type of frames are used to represent a broad range of phenomenon such as
definite and indefinite sets, ordinals, superlatives, and existentials. A set frame is
defined with four features: member-type, cardinality, members, and excludes.
The member-type feature can be a concept like STUDENT, or an instantiated
concept to constrain the set into a more specific one such as STUD ENTs who

Chapter 3. Knowledge Resources L· Representation Languages 39

take physics courses. Its cardinality denotes the number of entities which belong
to that set, and its value can be either exact (2) or an interval (> 4). Some
of the members can be enumerated in members feature for representing sets like
STUDENTS who take physics courses including John, Marry, and Charles. Also,
some of the entities who satisfy the set properties can be excluded using excludes
feature for denoting sets like STUDENTs without Erdem, Ay§in, and Evrim.
So, the following is the structure of set frames used in this work:

seti
member-type
cardinality
members
excludes

CONCEPT
integer/range
CONCEPT
CONCEPT

The following examples show how set frames are utilized in TMR to handle
some of the phenomena mentioned previously.

‘‘They went to the cinema.”
GO,

agent seti
destination LOC ATIONi

seti
member-type
cardinality
excludes

HUMAN
> 1
speaker ̂hearer

“There are two apples on the table.”
FRUIT,

type apple

setj
member-type
cardinality

speech-acti
type
scope

FRUIT,
2

declarative
seti

set.

L-ke all the books other than these two.”
KEi setj
agent seti member-type BOOKi
theme setj cardinality > 2

\ ; excludes setk

member-type HUMAN setk
cardinality > 1 member-type BOOKi
members hearer cardinality 2
excludes speaker

Chapter 3. Knowledge Resources L· Representation Languages 40

3.2.12 Domain Relations

This type of frames are used to represent explicit connections between events or
entities. They are introduced to provide:

• Dependence between constituents (since, although, etc.).

• Adjacency between constituents like conjunctions (and, or, etc.).

• Relations between constituents like exemplification (such as, like, etc.).

Like temporal relations, domain relation frames take two arguments and
relate them by a domain relation type. The structure of domain relation frames
is as follows:

domain-relationsi
type reason / enumeration / particular I exclusive-or / etc.
argi CONCEPT
arg2 CONCEPT

The examples below explain the usage of domain relations in TMR.

“Since All didn’t study enough, he didn’t pass the exam.”
STUDYi

agent

PASSi
agent
theme

HUMANi

HUMANj
EXAMi

coreferencci
HUMANi, HUMANj

domain-relationi
type
argi
arg2

reason
STUDYi
PASSi

“I will either go to the cinema, or stay at home.’'
GOi

agent
destination

HUMANi
LOCATIONi

STAYi
agent
location

HUMANj
HOMEi

coreferenccj
speaker, HUMANi, HUMANj

domain-relationr
type
argi
arg2

exclusive-or
GOi
STAYi

3.2.13 Stylistics Frame

Situations in which expressions are produced generally affect lexical selection and
grammatical construction. For example, usage of slang words is inappropriate

Chapter 3. Knowledge Resources <fe Representation Languages 41

in technical writing. All such information is provided by stylistics (described
in Chapter 2) frame in TMR which defines various aspects of the stylistic
information that can be used in generation phase. The following is the structure
of stylistics frames:

stylistici
formality
respect
politeness
simplicity
color
force

[0..1] (range)
[0..1] (range)
[0..1] (range)
[0..1] (range)
[0..1] (range)
[0..1] (range)

3.2.14 A T M R Example

To show how a TMR is constructed for a given expression, the following Turkish
sentence is analyzed and its corresponding TMR is constructed with detailed
explanation:

“Kitap okuyan kadına bir elma verecektik”
(“We were going to give an apple to the woman who was reading a book”)

There are two events in the sentence above: G fV E , the main event, and
READ, which gives additional information about the woman. The construction
starts with the main event, G IV E , which has three arguments. Its source is a set
of HU M A N that includes the speaker, its destination is also a HU M A N whose
gender is fem ale and age is greater than 16, and its theme is a FR U IT (note
that reference to theme is unimportant). The speaker refers to the beginning
of the event (phase,begin), and the event is punctual and there is no repetition
[(duration,momentary), (iteration,single), (telicity,false)]. The source has an
expectation that, the event will occur with a high probability (modalityi).

GIVEi FRUITi
source seti type apple
destination HUMANi reference indefinite
theme FRUITi
polarity positive aspecti
aspect aspecti phase begin
time time\ duration momentary
modality modal ityi iteration single

telicity false

Chapter 3. Knowledge Resources L· Representation Languages 42

set\
member-type HUMAN time\
cardinality > 2 absolute past
includes speaker

modalityi
HUMANi type expectative

type common value > 0.75
gender female scope GIVEi
age > 17 attribution set2
reference definite time time2

Then, the construction continues with the event READ, which has only
two arguments. Its agent is the woman who is the destination of G IV E , and
its theme is a B O O K (note also that reference to the theme is unimportant).
The speaker refers to a midpoint of the event’s time frame {phase,continue),
and the event is a process and there is no repetition [{duration,prolonged),
{iteration,single), {telicity,true)].

READi aspect2
agent HUMAN2 phase continue
theme BOOKi duration prolonged
polarity positive iteration single
aspect aspect2 telicity true
time time^

time^
BOOKi absolute past

reference indefinite

Next, the information about the speech situation is encoded. The whole
sentence is an assertion {type,declarative), and its scope is the event G IVE. At
the time of the speech, the speaker knows that the event G IV E did not occur
{modality2)‘

speech-acti modality2
type declarative type epistemic
scope GIVEi value 0
speaker speaker scope GIVEy
hearer hearer attribution HUMANz
time time4 time times
modality modality2

time^
absolute past

The temporal relations between the expressed events and the moment of
speech must be defined next. The event G IV E is about to occur during the

Chapter 3. Knowledge Resources L· Representation Languages 43

event READ (iemp-re/i), and the sentence is produced after the event READ
(iemp-re/2).

temp-reli
type
argi
arg2

during
timei
time^

temp-rel2
type
argi
arg2

after
time4
timei

Note that, there are frames that are not filled in previous parts due to
their equivalence with other defined frames. This information is given through
coreference frames. The expectation {modalityi) is held by the source of
the event G IV E {coreferencei) and it is at the same time with that event
{coreference2). As mentioned, the destination of G IV E is the agent of READ
{coreferences). The belief {modality2) is held by the speaker {coreference^)
and it is at the same time with speech {coreference4).

coreferencei seti, set2

coreference2 time2 ̂ timei
coreferences HUMANi, HUMAN2
coreference4 times ̂ time4
core f erence^ speaker., HUMANs

After these phcises. the last frame, table-of-contents, is filled
summary about the major frames in this TMR and the construction
is finished.

Ici
speech-acti speech-acti
heads GIVEi, READi
temp-rels temp-reli, temp-rel^
modalities modalityi, modality2
attitudes NIL
sets set\, seİ2
focuses NIL
stylistics NIL
coreferences coreferencei, coreference2 , coreference^,

coreference^, coreferencery
domain-rels NIL

3.3 Feature Structure Representation

Although meaning in natural language expressions is at the core of the knowledge-
based, interlingua MT methodology that is utilized in this thesis, the way a

Chapter 3. Knowledge Resources k Representation Languages 44

specific language encodes meaning syntactically is also central to a generation
system. Syntactic encoding of a language covers how the distinction between
the arguments of a verb is made by using case markings and word order, how
auxiliary verbs and inflectional endings are used to represent tense and aspect of
a sentence, and how noun phrases are constructed.

Since the ultimate goal is to produce target sentence from TMRs,
the interface between meaning representation and target language’s syntactic
structure should be achieved, and a sentence’s syntactic structure is represented
by using a special formalism, called feature structure, in this work. The system
developed and implemented in this work, as mentioned, produces the feature
structure representations of target language sentences from input TMRs. The f-
structure formalism of Turkish, which is our test language, is taken from Hakkani’s
thesis [11]. Our system produces an output that can be fed into Hakkani’s tactical
generator to generate the final Turkish sentence.

Feature structure representation is used to cover the syntactic properties of
a sentence for a specific language. This representation also contains the lexical
items to be used in the final sentence. F-structure representation is also a frame-
based formalism and have two kinds of constructions. The first one, feature, is
the minimal unit of this representation and it is only formed by feature name
and a value from a predefined domain,. Features are used to represent the names
of syntactic properties such as tense, voice, etc. The second one, slot, is used
to represent grammatical functions such as a sentence’s verb, its subject, etc. A
slot contains a set of feature-value pairs and other slots that are constituents
of that function. So, syntactic properties that are used to describe a general
syntactic construction are grouped under a slot. The general structure of f-
structure representation is shown in Figure 3.2:

feature^ valuei,i/ . . . /valueî r,

featurei valuei_i/ . . . /valuei_r,

slot^

sloti

Figure 3.2: Frame-Based Representation of F-Structure

Syntactic structure of Turkish sentences can be cinalyzed in three main

Chapter 3. Knowledge Resources & Representation Languages 45

constructional categories [11, 28]: simple sentences^ complex sentences^ and noun
phrases. The f-structure representation of Turkish sentences used in this work uses
these major categories. The first category, simple sentences., covers expressions
like ‘‘Kadın camı kırdı” (“The woman broke the window”), “Ali kitap okumak
istedi” (“Ali wanted to read a book”). Complex sentences are differentiated from
simple sentences by relations like conjunctions (and, or, etc.) and constructions
like although, since, etc. Although simple sentences can express more than one
event, the events other than the main one fill the grammatical roles of the main
event. In complex sentences, events are not related through grammatical roles,
but in structural relations instead. Simple sentences of Turkish are represented
by the frame shown in Figure 3.3.

clause-type
s-form
voice
speech-act

question

verb

arguments

adjuncts

control

predicative / attributive / existential
infinitive / adverbial/participle / finite
active / re flexive / reciprocal / passive / causative
imperative/optative / necessiative /
wish/interrogative/declarative

type yes-no/wh
const list.of {subject, dir-object, etc.)
root
sense
tense
aspect
modality
subject
dir-object
pred-property
source
goal
location
beneficiary
instrument
value
time
place
manner
path
duration
topic
focus
background

verb
negative / positive
present / past / future
progressive/habitual / etc.
potentiality

noun-phrase/sentential-clause
noun-phrase/sentential-clause
noun-phrase/sentential-clause
noun-phrase / sentential-clause
noun-phrase/sentential-clause
noun-phrase / sentential-clause
noun-phrase/sentential-clause
noun-phrase/sentential-clause
noun-phrase / sentential-clause

noun-phrase/sentential-clause
noun-phrase / sentential-clause
noun-phrase/sentential-clause
noun-phrase / sentential-clause
noun-phrase / sentential-clause

constituent
constituent
constituent

Figure 3.3: Representation of Turkish Simple Sentences

Chapter 3. Knowledge Resources & Representation Languages 46

There is also a structural classification in the analysis of simple sentences
and it is provided in clause-type feature. Predicative sentences are used to encode
events defined in the ontology. The grammatical verb is a lexeme whose category
is verb in this type of sentences. They can take all the arguments shown in
Figure 3.3 except pred-property. “Ali okula gitti” (“Ali went to the school”) is
an example of a predicative sentence. Attributive sentences corresponds to the
entities with a set their properties defined in the ontology. The grammatical verb
is a lexeme whose category is either noun or adjective in attributive sentences.
The structure of attributive sentences is simpler compared with predicative
sentences, only subject and pred-property from arguments, and time and place
from adjuncts are the allowed arguments of an attributive sentence. “Ali çalışkan
bir öğrencidir” (“Ali is a hardworking student”) and “Bu koltuk çok rahat” (“This
armchair is very comfortable”) are examples of attributive sentences. Existential
sentences cover expressions of type “There is . . . /There are . . . ” and correspond
to the sets which are the scopes of the speech-acts in TMR. They have the simplest
structure with only the slots subject, time, and place. “Dün bölümde bir seminer
vardı” (“There was a seminar at the department yesterday”) is an example of
existential sentence.

The feature s-form is introduced to differentiate between normal sentences
and sentential clauses which act as noun phrases to rich definitions of constituents.
Normal sentences, defined in the previous paragraph, cire represented by using
s-form /finite pairs. Sentential clauses that define acts like “to play football”
in “Ali top oynamak istiyor” (“Ali wants to play football”) are represented by
s-form /infinite pair. In this example, the sentential clause is the dir-object
constituent of the main sentence “Ali wants to . . . ” . Sentential clauses can be used
as adjectives like “The child who was playing football” in sentence “ Top oynayan
çocuk camı kırdı” (“The child who was playing football broke the window”) and
this usage is represented by s - f orm/participle. The last pair, s - f orm/adverbial,
covers sentential clauses which are used as adverbs like “by walking” in sentence
“Okula yürüyerek gittim” (“I went to the school by walking”).

Question slot is introduced to cover interrogative sentences. The pair
type/yes-no is used to represent expressions like “Did you . . . / I s he . . . ” and
type/wh pair covers expressions like “Which book . . . /W h o broke . . . ” . The
const feature takes the thematic role as its value which is missing and queried in
the sentence when its type is wh. So, in “Which book have you chosen?” the
const takes the value of theme and in “Who broke the window?” agent is the
value of the feature const.

Chapter 3. Knowledge Resources & Representation Languages 47

Control slot is introduced to handle free word ordering in Turkish. The
feature topic defines the constituent which connects the sentence to the previous
context and appears as the first constituent in the sentence. The feature focus
is used for the constituent that is emphasized (important) and appears in the
preverbal position. The last feature background defines the constituent that
gives additional (but not necessary) information and appears in the postverbal
position. So, the sentence “Pencereyi Ali kırdı dün” (“It was Ali who broke the
window yesterday”) has the control structure shown in Figure 3.4.

topic dir-object
focus subject
background time

F'igure 3.4: An Example for Control Information

Complex sentences are constructed through combining simple sentences
by conjunctions (and/or/etc.) and relations (since/although/etc), which are
generally represented by domain relations in text meaning representation. Two
new frames, shown in Figure 3.5, are introduced to cover complex sentences.

type conjunction
conj and/or/etc.
argi complex-sentencei
arg2 complex-sentence2

type linked
link-relation rel-type
argi complex-sentencei
arg2 complex-sentencc2

Figure 3.5: Representation of Turkish Complex Sentences

The first frame in Figure 3.5, conjunction, is used for expressions like “Ali
kitaplarını aldı ve okula gitti” (“Ali took his books and went to the school”).
This sentence is represented by the f-structure shown in Figure 3.6.

The second frame, linked, is used when there is a relation between the two
sentences like “Ali yeterince çalışmadığı için sınavı geçemedi” (“Since Ali didn’t
study enough, he couldn’t pass the exam”). The f-structure corresponding to this
sentence is given in Figure 3.7.

Chapter 3. Knowledge Resources &: Representation Languages 48

type conjunction
conj and
drgi f-structure(“Ali kitaplarını aldı”)
o>Tg2 f-structureÇ''Ali okula gitti”)

Figure 3.6; An Example for Conjunctive Complex Sentences

type linked
link-relation için
argi f-structure(^‘'Ali yeterince çalışmadı”)
arg2 f-struçture{‘'‘'AH sinavi geçmedi”)

Figure 3.7: An Example for Linked Complex Sentences

Noun phrases are the basic grammatical constructs that are used as the
arguments of the verbal phrase (denotes the main event) in a sentence. So,
arguments like subject and direct-object are generally noun phrases (only exception
is the sentential clauses). Noun phrases of Turkish can be analyzed by dividing
their structures into five main constructs [11, 28] and f-structure representation
of noun· phrases is shown in Figure 3.8:

• Referent: Contains the head of a noun phrase, which is the only mandatory
element. It provides information about the word used as the head (its root
and category) and its agreement properties (person,number). The simplest
noun phrases like “adam” (“man”) are represented by just filling this slot.

• Classifier: Contains the constituents that classify the head noun with known
entity sets such as “dış işleri bakanı” (“minister of foreign affairs”) and “fizik
kitabı” (“physics book”).

• Modifier: Contains the constituents that give additional information about
the head noun and they are analyzed in four categories:

— Modifying Relation: Provides information about the properties, which
can be a comparison with other entities, of the head noun, such as
“vazo gibi bardak” (“glass like a vase”), “camdan kitaplık” (“book
case made of glass”).

— Ordinal: Denotes the order of the head noun in a sequence of entities,
such as “birinci koşucu” (“The first runner”), “son kitap” (“the last
book”).

Chapter 3. Knowledge Resources L· Representation Languages 49

— Quantative Modifier: Expresses the quantity of the head noun in three
different ways: by a cardinal like “üç kitap” (“three books”), with
a 7'ange like “üç beş kitap” (“three to five books”), or with fuzzy
adjectives like “çok fazla gürültü” (“too much noise”).

— Qualitive Modifier. Gives qualitive properties of the head noun,
such as “kırmızı kurşun kalem” (“red pencil”), “şişman çocuk” (“fat
boy/girl”).

referent

classifier

roles

argument

agreement

root lexeme
category noun/verb/ . . .
person first / second/third
number singular /plural
drop positive/negative

modifier

specifier

possessor

control
noun-phrase

role agent / patient / theme / etc.
arg case-frame

modifier-relation

ordinal

quantifier-modifier

qualitive

control
set-specifier

specifier-relation

demonstrative
quantifier
definite
referential
specific

argument list-of (noun-phrase)
drop positive / negative
move positive/negative

quantifier

control

relation gibi / kadar / etc.
argument list-of (noun-phrase)
order ilk/sonuncu/etc.
intensifier positive / negative
low integer
high integer
p-name adjective
intensifier çok / en / sonuncu / etc
emphasis quantative / qualitive

list-of (noun-phrases)
relation dair / ait / etc.
argument list-of (noun-phrase)

bu/§u/o
positive / negative
positive/negative
positive / negative
positive/negative

Figure 3.8: Representation of Turkish Noun Phrases

Châpter 3. Knowledge Resources L· Representation Languages 50

clause-type jnedicative
s-form finite
voice active
speech-act declarative

verb

arguments

root 'ver'
category verb
sense positive
tense past
mode future

subject referent

dir-object
referent

agr person first
number plural

drop positive

argument

agreement

root 'elma'
category noun

person third
number singular

goal

specifier quanfier definite negative

[F-Structure for READ (Figure 3.10)]

Figure 3.9: F-Structure of “Bir elma verecektik”

• Specifier: Contains the constituents that are used to make a distinction
between the head noun and a set of similar nouns in the context. These
constituents are also divided into five categories:

- Quantifier: Denotes the the quantity of head noun, such as ‘dier çocuk”
(‘^every child”), ‘Tazı kitaplar” (“some books”).

- Demonstrative: Used to point out the head noun, such as “bu kitap”
(“this book”), “şu çocuk” (“that child”).

- Specifying Relation: Used to distinguish the head noun through
mentioning its relationship with other entities, such as “kitabın
solundaki kalem” (“pencil at the left of the book”).

- Set Specifier: Used to express head nouns that are members of a
specific set, such as “kalemlerden kırmızısı” (“The red one among the
pencils”).

Chapter 3. Knowledge Resources &: Representation Languages 51

• Possessor: Denotes the owner of the head noun, such as “onun kalemi”
(“his pencil”), “çocuğun kitabı” (the child’s book), etc.

3.3.1 An F-Structure Example

To show how a sentence in Turkish is represented by using f-structure
representation, the same example which is used for the explanation of TMR
construction is given. The corresponding f-structure representation of the
sentence below is given in Figure 3.9 and Figure 3.10

“Kitap okuyan kadına bir elma verecektik”
(“We were going to give an apple to the woman who was reading a book”)

clause-type predicative
s-form participle
voice active
speech-act declarative

root 'oku'

verb
category
sense

verb
positive

tense past

arguments

root 'kadın'arguments category noun
subject referen t

agreement
person
number

third
singular

root 'kitab' ■1
arguments category noun

dir-obj ect referen t

agreement
person
number

third
singular

Figure 3.10: F-Structure of “Kitap okuyan kadın”

Chapter 3. Knowledge Resources & Representation Languages 52

3.4 Generation Map-Rules

There is not any knowledge about a specific natural language in text meaning
representation. So, information such as grammatical roles and syntactic
properties of a sentence is not available in the frames of a TMR. But, such
information should be used in tactical generation for handling a language’s
syntactic encoding of meaning. The interface between f-structure representation
of a language’s sentence and TMR is achieved by using map-rules. Map-rules
encode language specific information about how meaning resides in TMR is
related to the target language’s syntactic structure. A map-rule is used to check
the contents of TMR frames for finding specific information, and update the
syntactic properties of the current sentence if this information is found in the
input TMR [10, 22, 20].

Map-rules are developed for the following purposes [10]:

• To relate thematic roles, such as agent, theme, source, of events to their
corresponding grammatical roles, such as subject, dir — object, in target
sentences.

• To create specific features in the f-structure. Some examples of such features
are tense, clause-type, number, and person. Their values are determined
by checking the existence of various filler ¡value pairs in a set of TMR
frames.

• To find the relations between the events of a single sentence. These
relations are extracted from either domain relations or available contextual
information. Contextual relatedness can be explained by the sentence
“John, who came to your birthday party, went to America last month” .
In this sentence, the event “came to your birthday party” is used as a
definite description for John.

• To update an information which was created previously by a more general
map-rule and should be changed to handle new information extracted from
TMR. The passivization rule which changes the verb’s argument structure
is an example of this type of map-rules.

• To create a new slot in the f-structure whose value is not directly mapped
from a semantic slot in TMR. This type of map-rules are generally created
to introduce closed-class lexical items to the f-structure such as prepositions,
conjunctions, etc.

Chapter 3. Knowledge Resources L· Representation Languages 53

The structure of a map-rule is the following [10, 20]:

Map-Rule
Generation- Language
Rule-Type
Application-T ype
C ontent- C onditions
New-In formation

The first slot, Generation-Language, provides the name of the language for
which that map-rule is written for. The second slot, Rule-Type, denotes the type
of the entity that map-rule is created for. The value of Rule-Type can be a lexical
item from the lexicon, a concept from the ontology, the name of a TMR frame
which is not an instantiated concept (modality, speech-act, etc.), or the name of
some special language phenomena (like one way of relating events described in
Chapter 4). A map-rule whose Rule-Type is a lexical item is generally created
for two reasons: to provide the relation between the thematic structure of that
lexical item and its corresponding grammatical role structure {kiri in Figure 3.11,
and to introduce closed-class words that should be used with that lexical item in
certain contexes.

TMR frames which are instantiations of concepts are processed by map-rules
written for those concepts. Such map-rules cover general syntactic properties of
those concepts, and they are designed in such a way which follows the hierarchical
structure of the ontology. That is, map-rules that can be applied to all of the
children of a concept is attached to that parent concept. In this way, enumeration
of common map-rules is avoided. So, the set of applicable map-rules of a concept
consists of all map-rules created for its ancestor concepts and that concept itself.

For example, in Figure 3.11, starting with the concept B R E A K , the
PU N C TU A LITY concept determines the tense of the sentence, E V E N T
concept creates the clause-type and the sense information, and the ALL concept
introduces sentence-form feature. So, map-rules which are applicable to a TMR
frame that is an instantiation of a concept can be collected by just starting with
that concept and traversing the ontology in a bottom-up fashion until the root
concept ALL is reached.

Map-rules whose Role-Type are the names of special TMR frames (focus,
attitude, domain relations, etc.) are created for processing semantic and
pragmatic phenomena that are introduced to meaning representation with those
frames. The inheritance mechanism used for processing concepts is not applicable
to map-rules designed for these special frames. These map-rules are used to
process information contained in those special frames, and a map-rule created

Chapter 3. Knowledge Resources L· Representation Languages 54

Figure 3.11; An Imaginary Map-Rules Sti'ucture

for such a frame cannot be used for other frames. For example, map-rules can
be developed to determine speech-type and voice features of a f-structure from
speech-act frame in a TMR.

The third slot, Application-Type, in a map-rule can be filled with two
different values, exclusive or any, and its value determines the processing type
of that map-rule. The first type, exclusive, is utilized to create a set of
mutually exclusive structural mappings which are used to determine the value of
a feature from a set of TMR frames Determination of the tense of a sentence and
determination of noun phrases’ agreement values {number, person) are examples
which require exclusive processing. Map-rules of type exclusive are designed such
that their conditions for success are contradictory. That is, only the conditions
of one rule from that set can succeed in any context which can exist in any
TMR. For example, in determination of tense value, contents of an event’s aspect
frame, its temporal relation with speech moment, and any modalities that are
available in the input TMR are checked by those exclusive rules, and only one rule
succeeds with a returned tense value. To design map-rules which are mutually
independent from others, the second method of application, any, is provided.
This method is used for separating map-rules which are created for introducing
different syntactic phenomena of the target language. So, the general structure
of map-rules associated with a single entity is like in Figure 3.12.

The fourth slot, Content-Conditions, specifies the meaning requirements
that must be satisfied for the application of a map-rule. These requirements are
represented as a list of references to TMR frames and their contents. To apply
a map-rule, each reference must be found in TMR. Since the content of a TMR
is not limited and predetermined, map-rules developed for a language should be
TMR independent. So, making references to arbitrary frames and their contents

Chapter 3. Knowledge Resources Representation Languages 55

Figure 3.12: Map-Rules Structure of an Entity

are meaningless, and only four frames and their contents are allowed to be referred
in defining the meaning requirements of a map-rule. These four frames are:

• Frameprocessing for which the map-rule is activated

• FramCevent which is the event that contains Frameprocessing

• Framecontext is utilized for handling special events that provide nonpropo-
sitional meaning (like modality and speech-act) to meaning representation.
Event H E AR (in “I heard that . . . ” , the usage of H E AR is not an event,
it is for denoting epistemic modality) is an example of Framecontext usage.

• Framespeech which is the speech-act frame of the current TMR.

Thq contents of these frames can also be referenced. Also, frames which are used
to introduce linguistic phenomenon for these frames such as aspect and modality
frames can be used in specifying meaning requirements.

There are various methods provided for checking the content of TMR
frames. The first method is used whenever a special feature/value pair is needed,
and the feature/value pairs of a linguistic frame are tested by special rules. For
example, the first example given below checks whether the polarity feature of
Frameprocessing is positive or not, and the second one tests the whole aspect
frame of Framcgyent for values (per feet, single, moment ary, fa lse).

re f (F ra m ep rocess in g , polarity, positive)
aspect(Frameevent ■, [perfect, single, momentary, false])

♦

The second method is utilized when the existence of a feature is the only criterion
that is required. For applying this method, two rules are provided: exist and
not-exist, and their structures are given in the following examples (note that, the
rule exist returns the value of agent feature if it is inside the Frameprocessing·, and
the rule not-exist succeeds if Framespeech does not contain focus feature).

Chapter 3. Knowledge Resources S¿ Representation Languages 56

exist(Rvci7Tiepj‘ocçssiyıĝ (iç€7îtj ai'ue'l
not-existi Frame speech·, focus)

If there is a requirement to check whether different references are pointing to
same TMR frame or not, or whether two different frames are coreferenced or not
in the input TMR, the third method is utilized. Four rules are provided to handle
this type of constraints: same, not-same, core/ , and not-coref, and their usage
are shown by the following examples:

samelLramepYQeessitig, R ̂umeçyç'̂ ıi)
coref Ispeaher, Fram€p,’QQçs$i-ng)

To check whether a set of frames are related to each other through frames like
temporal relation or domain relation, the fourth method is used. It gets a set of
frames and the relation type between them, and searches in TMR whether they
are all connected through that relation type or not. To exemplify this usage, the
following examples are given:

timela fter , [r ame speech, Fr ame , F r ame)
ciomainireason, iFrameeQjiiQxi, Framesyentf)

The fifth slot. New-Information, specifies the update operations which
will be performed by that map-rule on the f-structure. If all the requirements
specified in Content-Conditions are satisfied, then a list of new information
are processed to update the f-structure being constructed. Three types
of update operations are provided: feature-addition, slot-addition, and
slot-to-slot-mapping. Feature-addition adds a new featurejvalue pair to the
f-structure, slot-addition inserts a new slot in the f-structure which is not created
yet, and slot-to-slot-mapping bounds the features that are created for a TMR
frame to a slot in the f-structure. Their structures are given by the following
examples:

f eatur e{tense, past)
slot{dir-object)
map{Fr ame event-ogent, subject)

The overall structure of map-rules is exemplified with the following
examples:

maprule(turkish, kir\, exclusive,
^existíFramep-pQeessing Î agent, Sloti),
exist^Framep'pQeessing, patient, Slotf),
not-exist{Framespeechi focus)]
[map{Sloti, subject), map(Slot2 , dir-object)])

Chapter 3. Knowledge Resources L· Representation Languages 57

maprule(turkish^ punctuality^ exclusive^
[modality{Frameeyent-> [deontic ̂equal(1) ̂speaker ̂FramCeyent])·,
modality{Framespeech’, [epistemic^ equal(O) ̂speaker ̂FramCeyent])-,
aspect{FrameeyQrit ? [perfect^ single ̂momentary^ false])^
time{after, [Framespeech, Framceyent])]
[feature(desc-verb^ necessiative)^ feature(mode^past)])

3.5 Generation Lexicon

Lexicon is one of the two knowledge resources which are utilized to establish the
connection between meaning representation and the target language. It contains
information about open-class word senses and closed-class lexemes of the target
language which can be utilized in any phase of the generation. Each entry in
the lexicon corresponds to a word sense of the target language and provides
information about word’s phonological, morphological, syntactic, semantic, and
pragmatic properties [25, 1 0 , 20]. Such information can be used in the selection
of words to be used in target sentences, the introduction of syntactic realizations,
and the resolution of inflectional and sound changes in the final construction
[7, 1 0 , 14].

Each entry in the lexicon consists of a number of slots (each possibly having
multiple fields) for integrating various levels of lexical information, and that entry
is indexed on its sense for a specific word. The slots which can be used in the
definition of a lexeme are CAT (syntactic category, such as verb, noun), ORTH
(orthography, eg. abbreviations, variants), PH O N (phonological knowledge),
M O RPH (irregular forms, inflectional properties, inflection classes), SYN (syn
tactic features, such as countability), STRUC (sentence or phrase-level syntactic
inter-dependencies), SE M (semantic information, such as subcategorization,its
parent concept from the ontology, and its meaning definition), and PR AG M
(pragmatic knowledge, such as stylistic information). To exemplify how a word
sense is defined in the generation lexicon, the following examples are given.

adamı kırı
CAT category noun CAT category verb

root adam root kir
SYN countable yes SEM is-a BREAK

proper no subcat-info
SEM is-a HUMAN requires patient

definition optional agent.
type common means
gender male
age > 17

Chapter 3. Knowledge Resources & Representation Languages 58

Five of the slots used in the definition of a lexeme, which are ORTH,
PH O N , M O RPH , SYN , and STRUC, are utilized in tactical generation. Since
this phase is out of our scope, these slots are not explained in detail. The interface
between concepts (denoting events and entities) used in a TMR and words of
the target language is established using semantic and pragmatic properties of
words provided in the lexicon. Each entry whose category is noun or verb is
an instantiation of a concept from the ontology, and this information is given
in SEM slot with is-a link. So, for every TMR frame which is an instantiated
concept, there is a set of candidate lexicon entries which are also children of
the same concept. Since there can exist more than one entry in the lexicon for
a concept, it is important to choose the most appropriate one. This selection
problem is overcome by using various sources of information that is provided in
SEM and PR AG M slots.

Since a verb cannot take all thematic roles defined in Chapter 2 as its
argument, its thematic structure should be constrained. Also, some verbs cannot
be used without certain thematic roles. All such information is provided in SEM
slot under subcategorization feature. For example, word ‘kir’ in Turkish, which is
corresponding to word ‘break’ in English, cannot take the thematic roles source
and destination, and it should be used at least with a patient. It can also take
roles agent and means, but they are optional, eg. ’Cam kırılmış.’ (’The window
was broken.’). This information is given in subcat-info which contains the list of
roles that a lexeme requires and takes optionally. The rest of the roles are assumed
to be rejected by that lexeme. The following is the structure of subcategorization
information:

lexemei
SEM subcat-info

requires
optional

list-o f (thematic-roles)
list-0 f (thematic-roles)

The second source of information is also provided to limit the thematic
structure of an event. Although the subcategorization information supplies the
general thematic structure, it has no constraint on the values of these thematic
roles. The values of thematic roles can also be restricted to specific concepts from
the ontology. These cases generally captures word senses which have very specific
usages. For example, the verb ‘look up’ can be a child of concept SEARCH,
but its theme should be something like a textual source of knowledge. To handle
such phenomenon, there is a slot role-value-info in SEM slot which introduces

Chapter 3. Knowledge Resources L· Representation Languages 59

such restrictions on the values of thematic roles. The following is the structure
of role value information:

lexemei
SEM role-value-info

role\ list-of(allowed-concepts)
role2 list-0 f(allowed-concepts)

So, the example ‘ look up’ has the following lexicon entry:

look-upi
SEM is-a SEARCH

subcat-info
requires agent, theme
optional manner

role-value-in fo
theme DICTION ARY/ENCYCLOPEDIA

The most important source of information on which the selection task
depends is the meaning definitions of lexicon entries. The definition of a lexeme is
achieved by constraining the meaning space of the parent concept. The meaning
space is limited by reducing the size of the value domains that concept is defined
on. For example, the concept H U M AN corresponds to all of the words of a
language which are used for referring to a human-being. But usages of these
words are limited by the properties of the human-being that is referred to (eg.
the word ‘man’ cannot be used for a human whose gender is female). The meaning
definition is also contained in SEM slot with definition slot. So, the definition
of word ‘car’ can be the following:

cari
SEM ts-a

definition
power
surface
wheels
purpose

VEHICLE

motor
road
four-wheels
human-transportation

The last source of information which is provided in the lexicon is about
pragmatic properties of lexemes. Especially, the stylistic knowledge affects word
selection. For example, the words chosen in formal writing, literature, and
speech between close friends are quite different. The usage of slang words is
a common practice in daily speaking between friends, which is very inappropriate

Chapter 3. Knowledge Resources L· Representation Languages 60

in formal situations. To handle such usages, stylistic constraints are provided
under stylistics in PRAGM . For example, the word ‘herif’ , which has same
meaning as ‘adam’ (‘man’ in English), in Turkish is used in informal situations
with a negative meaning. So, its PR AG M slot can be the following:

herifi
SEM

PRAGM

ts-a
definition

type
gender
age

stylistics
formality
respect
politeness
simplicity

attitude
type
value

HUMAN

common
male
> 17

0
0
0
1

evaluative
0.2

In addition to information about meaning and usage differences between
words, the lexicon also provides knowledge about the relation between the
thematic roles of a lexeme with its grammatical realizations. That is, map-rules
specific to a lexical item may be introduced in the lexicon. This information is
utilized whenever there is an ambiguity about the mapping between thematic roles
and their grammatical counterparts. For example, noun phrases are generally
the..fillers of both subject and dir-object. So, whether the f-structure created for
agent is placed inside subject or dir-object slot is determined by using map-rules
provided by the lexical item. This knowledge is defined in map-rules of SEM
slot. The following can be an example to clarify the usage of this information:

k\r\
SEM is-a BREAK

map-rules
map-rule(turkish, kırı, exclusive,

êxist(^FramCpj’QQ̂ĝ i'fig, agent, Sloti)>
exist(Frameprocessing > patient, Slot2),
not-exist{ Frame speech 1 f((̂̂ us)],
[map[Sloti, subject),
map{Slot2 , dir-object)])

Chapter 4

Computational Model

The computational model described in this chapter is designed to transfer the
TMR of a sentence to its corresponding feature structure representation of that
sentence in the target language. To achieve this task, the model should select the
open-class words to be used in that sentence, construct its syntactic structure,
determine the grammatical roles, and introduce closed-class lexical items through
processing the frames in the TMR [10, 2 2].

The model developed is language independent, that is, in its processing
modules there is no special information about a target language. The relation
between the abstract representation (TMR) of a sentence and the f-structure
representation of that sentence in the target language is constructed by using
sepárate knowledge resources developed for the target language. These knowledge
resources, explained in Chapter 3, are the lexicon (word information), the map-
rules (the relation between the information in TMR and f-structure of the
sentence), and the feature structure representation of the target language (the
encoding of syntactic structure). So, to produce the f-structure of a sentence in
a target language from an input TMR, these three knowledge sources should be
developed and introduced to the computational model as the knowledge resources
of the target language. Turkish is chosen as a target language to test the
developed computational model. To achieve generation, small-sized resources
of Turkish lexicon and map-rules together with a complete Turkish f-structure
representation are provided.

The model processes the frames in the TMR one by one in a specific order.
This order is dynamically updated depending on the obtained information from
the frame being processed. There are two types of frame-processing operation,
and one of them is selected depending on whether the processed frame is an
instantiated concept or not. The frames that are instantiated concepts should

61

Chapter 4. Computational Model 62

introduce open-class lexical items, and all the map-rules that are derived from
the ontology together with the map-rules associated with the selected lexical item
should be processed. The other frames, which are used to introduce semantic and
pragmatic information in a TMR, at most select closed-class lexemes and only
the map-rules associated with their type are processed [1 0 , 2 2].

These two tasks, lexical selection and map-rule application, are handled
in two separate submodules. Although these two submodules work in parallel
in the main module, their way of processing TMR can be developed separately.
The first submodule, lexical selection module, is activated for the frames that are
instantiations of concepts. It uses the lexicon developed for the target language
to decide the open-class word to be used for that concept in the target sentence.
First, it creates a candidate lexeme set by using the relation between the concepts
and lexemes, and selects the most appropriate one from that set by using the
meaning in TMR and properties of lexemes. The second one, map-rule application
module, processes all map-rules associated with the current frame and updates
the constructed f-structure. It first collects the set of applicable map-rules using
the lexicon, the ontology, and the map-rules knowledge base, and then fires them
in the order in which they are collected. First, it checks whether the conditions
required for the application of a map-rule are satisfied by the information in the
TMR or not, and it updates the f-structure for the successful map-rules by using
the feature structure representation of the target language. The architecture of
the computational model developed in this work is described in Figure 4.1.

Figure 4.1: Computational Model

Each submodule and their usage in the main model are explained in the

Chapter 4. Computational Model 63

following three subsections; the lexical selection module, the map-rule application
module, and the main module. Finally, how the computational model works on
a TMR is exemplified through a simple Turkish sentence.

4.1 Lexical Selection Module

The task of selecting the most appropriate words for the target language sentence
is handled in this module. There are two main problems to be solved for
lexical selection in generation: resolution of synonymy and near-synonymy, and
imperfect matches between the meaning in a TMR and the words of a target
language. The first problem can be defined as selecting between a set of lexemes
which introduce nearly the same meaning in the target language. The second
problem is encountered when a word in the source language, eg. English, has
not any matching word in the target language, eg. Turkish. This problem arises
since sometimes the source language makes finer differentiation on an event or an
entity through different wording. In order to resolve these problems, knowledge
available in the lexicon is utilized such as stylistic information, subcategorization
information, meaning definition [7, 2 2].

In order to achieve the goal of selecting near-perfect open-class words, the
lexical selection module should carry the meaning resides in the TMR frame into
the target sentence. So, the lexical selection in this work is maiidy based on
the meaning distance between the TMR frame and the lexemes in the candidate
set. To do this, a distance assigning capability between the meaning of the TMR
frame and the meaning introduced by the use of the candidate word in the target
language is utilized. This module calculates proximities between the meaning in
a TMR and each candidate lexeme, and returns the closest one as the selected
lexeme. In calculation, the module makes use of the definition of a lexical item
provided in the lexicon. Although the proximity of meaning is the major criterion
used in the lexical selection, there are cases in which meaning comparison is not
enough for perfect selection. In such cases, the semantic structure of a lexical item
with its pragmatic properties should also be taken into account. Such information
is also obtained from the lexicon.

The lexical selection module can be divided into two distinct phases;
context-dependent selection and context-independent selection. The first phase
checks the semantic structure constraints of the candidates and eliminates those
whose requirements are not satisfied by the TMR. The second phase sorts the
remaining candidates according to their calculated proximities to the meaning in

Chapter 4. Computational Model 64

the TMR frame and returns the one with the minimum distance. If there is still
ambiguity in the selection, pragmatic constraints such as stylistic information
is utilized in this phase and finally the best-matched candidate is returned as
the selected word [10]. In the following subsections, the context-dependent, the
context-independent selection, and the main algorithm are analyzed in detail.

4.1.1 Context-Dependent Selection

The semantic structure of an event or an entity represented in a TMR can affect
the choice of lexical item to be used in a language. This submodule checks
whether the semantic structural constraints of a lexical item is satisfied in the
TMR frame and the lexemes that reject the current structure are eliminated from
the candidate list. Currently, two different sources of information are utilized in
this module:

• Subcategorization Requirements

• Role-Value Requirements

Subcategorization requirements, as explained, identify the thematic
structure of a word. Each word in the lexicon has information about the roles
it requires and takes optionally. These requirements are compared with the
thematic structure of the TMR frame for which the lexical item to be selected.
If there is a mismatch between the requirements and the structure of that frame,
then the candidate lexeme is rejected. There are two sources of mismatches: a
rolé' required for the lexeme is not available in the TMR frame, or a role inside
the TMR frame is rejected by that lexeme. For example, consider the following
two lexemes:

lexemei
is-a
subcat-info :

requires
optional

CONCEPTrr

: agent
: theme

lexeme^
ts-a CONCEPT,
subcat-info :

requires
optional

m

agent,theme
goal

Since both lexemes are instances of CONCEPTm, they are in the list of the
lexeme candidates for a TMR frame which is an instantiation of that concept. If
there is such a frame, then the following selectional criteria is used to check the
thematic role constraints:

Chapter 4. Computational Model 65

if TMR frame has role agent
then if TMR frame has role theme

then if TMR frame has role goal
then select lexemej
else select lexeme ̂ & lexemej

else select lexeme ̂
else reject both lexemes

Role-Value requirements, further limit the usage of a word through
constraining the values which the thematic roles can take. This kind of limitation
is introduced for lexemes with very specific usages. Generally such lexemes are
introduced to define a specific instantiation of an event or an entity which reduce
the number of words for expressing the same meaning, eg. terminological lexicals.
Whenever such information is available in the lexicon, this module checks the
values of those roles in the TMR frame and eliminates the lexemes that have
mismatches. For the following example, having the thematic role agent is not
enough for a TMR frame to satisfy semantic constraints of the lexemtk, the
value of its agent should be an instantiation of the concept HU M AN .

lexemek
is-a
subcat-info

requires
optional

role-value-info
AGENT

CONCEPT

: AGENT
: PATIENT

: HUMAN

4.1.2 Context-Independent Selection

The meaning wanted to be expressed in a language affects the word choice since
each word provides a specific range of meaning to the sentence in which it is
used. This meaning contribution of a word is defined in the lexicon and it is
compared with the meaning resides in the TMR frame to calculate its proximity.
This module is responsible for calculating a penalty for each candidate lexeme,
which corresponds to the proximity between the meaning in the TMR frame and
the lexicon entry of that lexeme. The candidates are sorted with respect to those
assigned penalties, and the lexeme with the minimum penalty is returned as the
selected word for that frame. In proximity calculation, every slot-value pair in the
lexeme and the TMR frame are compared, and in the cases of imperfect matches,
penalty values are assigned to those slots. These penalties are normalized by the
contribution ratio of those slots to the overall meaning in the usage of that lexeme.

Chapter 4. Computational Model 66

The ratios are defined in the lexicon by importance values which are introduced
whenever appropriate. The overall distance is computed through adding the
individual penalties assigned to the slots that have different values. The following
heuristics are utilized in this module for the calculation of the proximity.

1. Introduction of extraneous meaning is minimized by assigning a predefined
maximum penalty to a slot which is used in definition of the lexeme, but
not contained in the TMR frame.

2. Uncoverage of meaning is reduced by assigning a fraction of the maximum
penalty to a slot which is contained in the TMR frame, but not used in the
definition of the lexeme.

.3. Meaning match of a slot, which exists in both the lexeme and the TMR
frame, is proportional to the distance in ordered values such as color, and
the size of intersection in values of range such as age.

4. The calculated match is normalized by the domain sizes of the feature-
values to minimize the distance in larger domains compared with smaller
ones.

5. The final distance returned by the fourth heuristic is rated by its importance
on overall meaning, so a mismatch on a less important slot will have a

■- smaller influence on the proximity.

6 . The quality of total match is the sum of weighted penalties of common
slot-filler pairs together with penalties from the first two heuristics.

In calculating the distance between the values of a common slot, two things
should be taken into account: the domains (or value sets) that define the allowed
values of a filler, and the cardinality of the filler in the meaning pattern. According
to the relationship between the values, domains can be divided into three different
types:

• Unordered Domains : When the values are symbolic and they cannot be
ordered on a specific metric, their domain is declared to be unordered.
Since there is no ordering between the values, the distance between any two
values in such a domain is assumed to be equal. The domain of things
that can be read (book, article, newspaper, etc.) is an example of an
unordered domain.

Chapter 4. Computational Model 67

• Discretely-Ordered Domains : If the values are symbolic and they are
ordered according to some criteria, then their domain is declared to be
discretely-ordered. Because of ordering, the distance between two values
in such a domain is proportional to the number of values lies between them.
Months of a year can be an example for a discretely-ordered domain.

• Continiously-Ordered Domains : When the values are numeric type
and the standard order is used, their domain is declared to be
continiously-ordered. In such domains, the distance between two values are
proportional to the difference between them. This difference is normalized
with the smallest unit of the domain increments. For this type of domains,
height and age can be given as examples.

The distance metrics used in context-dependent selection for domain types in
cases of value mismatches are given below:

TYPE
Unordered

Discretely
Ordered

C ontiniously
Ordered

DISTANCE
1

num-of-values-between -f 1

abs{valuetmr —valueiç
unit-size

EXAM PLE
value frame = newspaper^
valueiexeyrie = magazine^
assigned-distance = 1

value frame = febvuary^
valueiQXQme — 771 ay ̂
values-between = {marché april}^
assigned-distance = 2 + 1 = 3

Valueframe ~ 60,
valueiQXQrne ~ 4 3 ,
unit-size = 2,
assigned-distance = = g

It is mentioned that, in the fourth heuristic, the distance calculated is
normalized by the size of the domain. Since there is a maximum penalty
defined for the first heuristic, the distance should also be normalized by this
maximum penalty. So, the following equation gives the final penalty for a slot
with mismatched values:

penalty = maximum-penalty x
distance-calculated

domain-size

The final penalty of a slot also depends on the cardinality of values which
are used as fillers in a TMR frame. The cardincility of a filler in a TMR frame
can be one of the following three types:

Chapter 4. Computational Model 68

• Single Fillers : If a filler in a TMR frame is filled with only one value,
then its cardinality is defined as single. Because of one value, the distance
is calculated by just taking into account the domain of the filler. Animate
gender (exclusive) can be an example for single filler.

• Enumerated Fillers : When a filler in a TMR frame is filled with more than
one value, its cardinality is defined as enumerated. In such a filler, every
value of the set must be considered. So, the method utilized for such fillers
is to compute the distance for every value and combine these penalties by
some criterion. Currently, there are two methods for combining: disjunctive
merging (the minimum of the penalties is assumed to be the overall penalty)
and conjunctive merging (the mean of the penalties is calculated and
assigned as the overall penalty). For example, the wheels slot in the
definition of a motorbike, [ue/iic/e, [[power, motor], [ty/iee/s, [2 ,3]]]], can be
an example for enumerated filler.

• Ranged Fillers : When a filler is filled with a range values from an ordered
domain, either discrete or continuous, its cardinality is defined as ranged.
In such a filler, the size of the intersection between the filler of the TMR
frame and the lexeme is the major criteria for calculating the proximity.
But, also the range size of each filler is contributed to the final penalty to
ensure that the small-sized ranges are preferred to larger ones when the
intersection size is equal. An example for ranged fillers is the definition
of a human set whose age is in a specific age range such as childhood
[human, [[type, common], [gender, unknown], [age, (4,12)]]].

If the cardinality of filler is not single, the final penalty is calculated by the
following equations:

TYPE PENALTY
Enumerated penaltyi : assigned penalty for valuei in TMR frame

n : the cardinality of the filler
penalty — penaltyi (Disjunctive)
penalty = ̂ x Ya=i penaltyi (Conjunctive)

Ranged inter : size of intersection
rangei '■ size-of-rangcTMR ~ inter
rangc2 '· size-of-rangeiexeme ~ inter
penalty = inter - | x (rangei 4- rangc2)

After a penalty is calculated for every slot in both the TMR frame and the
lexeme, total penalty is calculated by the following equation in which n is the

Chapter 4. Computational Model 69

total number of different slots found and importancei defines the contribution
ratio of sloti to overall meaning defined in the lexicon (assumed to be 1 if not
defined).

n

total-penalty — ^ penaltyi x importancei
i=l

We can exemplify the distance calculation methods introduced in this
section by the following example. Both the TMR frame, which is an instantiation
of concepti, and the lexemej, which inherits that concept, are imaginary to show
all types of calculations that can be done.

concepti lexemej
si oÍq̂ valued is-a concepti
sloÍ2 valuec2 definition
slots valuecs slotii valúen {importancei — 0 .6)
slot 4 valuecA slot2 valuei2 (importance2 = 1 -0)
slot^ {valuecs ̂valuece} slots valuéis (importances = 0 .8)
slots (valuec7 ̂valuecs) slot4 valuei4 (importance4 = 0 .2)

slots valuéis (importances = 0.4)
slots (valuéis ̂valúen) (importances = 0 .6)

maximum-penalty = 10

ratioifor heuristic2) — 0 .8

SLOT DOMAIN TYPE PENALTY CALCULATIONS
slotii not important slotii is not in the frame, heuristici^

penaltyi = max-penalty = 1 0

si ot qi not important slotd is not in the lexeme, heuristic2 ^
penalty2 = max-penalty x ratio(for heuristic2) = 8

slot2 U nordered domain-size = 4, distances(valuec2^valuei2) = 1,
penaltys = 10 X (1/4) = 2.5

slots Discretely
Ordered

distance4 = values-between(valuecs^ valuéis) = 3,
domain-size = 1 0 ,
penalty4 = 10 x ((3 + 1)/10) = 4

slot4 C ontiniously
Ordered

distances = dif ference-between = valuec4 — valuei4
unit-size = 1 , domain-size = 50
penaltys = 10 x ((8 /l)/50) = 1.6

slots Discretely
Ordered

domain-size = 5,
distances,! = values-between(valuecs^ valuéis) = 1 ,
penaltyQ,i = 10 X ((1 + l)/5) = 4,
distancee.2 = values-between(valuece, valuéis) = 0 ,
penaltye.2 = 10 x ((0 + l)/5) = 2,
penaltye(¿i,j^rictive) = rnin(4,2) = 2,
P^^^lty6(conjunctive) 2 (^ ^

Chapter 4. Computational Model 70

SLOT DOMAIN TYPE PENALTY CALCULATIONS
slotQ Continiously domain-size — 20, unit-size = 1,

Ordered inter section-size = 6 = inter,
range-size{ frame) = 1 0 = range\,
range-size(lexeme) = 8 = range2 ,
penalty-j = 10 X (6 - |((10 - 6) + (8 6)))/20= 1.5

So the overall proximity between the frame {concepti) and the lexeme
(lexemej) is calculated through Y)ipenaltyi x importancei with calculated
penaltyi (conjunctive merging is used and if not defined importancti is taken
as 1).

total-penalty{lexemej) = (10 x 0.6) + (8 x 1) + (2.5 x 1)+
(4 X 0.8) + (1.6 X 0.2) + (3 X 0.4) + (1.5 x 0.6)

= 21.72

After calculating the penalty of each lexeme candidate for a TMR frame,
this phase sorts the candidates in increasing order based on those penalties. If
there is still ambiguity in selection, more than one lexeme have the minimum
calculated penalty or the differences between the first candidates are lower than
some predefined threshold, this phase uses the information about the speech
situation to resolve this ambiguity. This is because the speech situation has also
an influence over selection of words by the speaker. So, stylistic information
such as formality, color, force, etc. and pragmatic information such as speaker’s
attitude available in TMR is checked with the pragmatic definition of each lexeme
in the lexicon. This utilization also improves the quality of word selection in
generation.

4.1.3 Selection Algorithm

Whenever the current frame for being processed is an instantiation of a concept
in the ontology, then the lexical selection module is called by the main module
to get an open-class lexeme corresponding to that frame. The first task of this
module is to find out all candidate lexemes from the target lexicon by getting those
entries who are also instantiations of the concept used in the definition of that
frame. After obtaining the candidate list, the context-dependent selection module
is activated to remove lexemes whose contextual requirements are not satisfied
by the TMR frame. The remaining candidate lexemes are sent to the context-
independent selection module which chooses the most appropriate word for that
TMR frame by using meaning comparison and speech situation properties. In

Chapter 4. Computational Model 71

cases when only a single lexeme remained in the candidate list after context-
dependent selection, that word is directly sent as the chosen lexeme for the target
language and context-independent selection is skipped to avoid halting with no
candidate.

There are cases in which the lexical selection module cannot succeed in
choosing the final word because of insufficient knowledge in the lexicon or the
TMR. In these cases, the selection module activates another submodule, which
is called augmentor^ to get help from the user or to inform the designer of the
lexicon about its failure. Activation of the augmentor is the only case in which
the main module interacts with the user. The followings are the cases in which
the augmentor is activated:

• No lexeme is found in the lexicon which inherits the concept that the TMR
fi’cime is built on, which means that a new lexical item is needed in the
lexicon which corresponds to that concept.

• All candidates are eliminated in context-dependent selection. Either a new
word from the target language is needed whose contextual requirements do
not conflict with the current TMR frame, or the contextual constraints of
some candidate lexemes in the lexicon should be relaxed.

• Every candidate gets a penalty which is higher than a predefined maximum
threshold in context-independent selection. This distance threshold is used
to ensure that the lexeme selected is somehow close to the meaning resides
in the TMR frame. Generally a new word should be added to the lexicon.
Otherwise, the definitions of some candidates should be revised to release
their specifications somehow.

• There are more than one candidate remained after the context-independent
selection. This means that neither the proximity calculation nor the speech
situation test can reduce the number of candidates to one. Either the
definitions of some candidates should be constrained to represent more
specific meaning expressions, or the meaning representation in TMR should
be made richer in contents.

With the two new submodules, the constructor of the list of candidate
lexemes and augmentor, the flow of the lexical selection module can be explained
by the following algorithm:

Chapter 4. Computational Model 72

Candidate-List := construct-candidates-list
if cardinality(Candidate-List) = 0

then lexical-augmentor{Candidate-List)
else Dependent-List := context-dependent-selection{Candidate-List)

if cardinality (Dependent-List) — 0
then lexical-augmentor{Dependent-List)
else if cardinality{Dependent-List) = 1

then return(Dependent-List[l\)
else Independent-List context-independent-selection{Dependent-List)

if cardinality(Independent-List) > 1

then lexical-augmentor{Independent-List)
else return(Independent-List[l])

The architecture of the lexical selection module together with its flow and
utilization of the lexicon, the input TMR frame, and the overall TMR, is described
in Figure 4.2.

REQUEST

SELECTED LEXEME

Figure 4.2: Lexical Selection Module

4.2 Map-Rules Application Module

The task of this module is to map the meaning representation in a TMR to a
frame-based grammatical representation, feature structure, of the target language
without lexical selection task. In order to achieve this task, the module makes
use of the map-rules written for that language which are introduced to the

Chapter 4. Computational Model 73

main module as a knowledge resource. As explained, map-rules are language
specific knowledge about the relationship between the meaning patterns in
TMR representation and the syntactic structure of the target language. Their
applications, which depend on certain meaning contexts, change the syntactic
knowledge created to be used by the tactical generation. So, this module is
responsible for collecting all map-rules applicable to a TMR frame, processing
them in a specific order, and updating the f-structure corresponding to the target
sentence.

There are two major categories of TMR frames when map-rules are applied
on them depending on whether the TMR frame is an instantiated concept from
the ontology, or not. The second category includes all frames which are not
instantiated concepts such as aspect, modality, focus, speech-act, etc. A TMR
frame from the first category, an instantiated concept, is processed by map-rules
written in two resources. The first resource is a set of map-rules written for the
open-class lexical item selected for that frame. The map-rules created for the
concepts in the ontology are the second source. All the map-rules written for a
concept used in the frame’s definition and the concepts that are ancestors of that
concept are applied in this module. The ancestor concepts are used since the
inheritance mechanism in the ontology is also utilized in the design of map-rules.
The map-rules retrieved from these two sources are processed in a bottom-up
fashion, from specifics to generals. In other words, the module starts with map-
rules associated with the selected lexeme, and applies map-rules written for the
concepts that are reachable from the concept used in instantiation by following
is-a relations in the ontology. In traversing the ontology, the module makes the
applications in breath-first order. A TMR frame from the second category is
processed by map-rules written for just its frame type. That is, the module uses
only the map-rules for speech-act when the frame to be processed is a speech-act
frame. The following algorithm describes the overall behavior of the map-rule
application module.

if Current-Frame is an Instantiated-Concept
then Map-Rules-List := get-maps(Lexical-Item)

Current-FS := apply-maps(Map-Rules-List, Current-FS)
Hierarchy-List := parent(Lexical-Item)
while Hierarchy-List 7 ̂ NIL do

Map-Rules-List := get-maps(first{Hierarchy-List))
Current-FS := apply-maps(Map-Rules-List, Current-FS)
New-Hierarchy-List := parents{first{Hierarchy-List))
Hierarchy-List := append{New-Hierarchy-List, Hierarchy-List)

else Map-Rules-List := get-maps(Frame-Type)
Current-FS := apply-maps(Map-Rules-List, Current-FS)

Chapter 4. Computational Model 74

In the algorithm above, get-maps collects the map-rules associated with its
input argument from the map-rules knowledge resource. The input of get-maps
can be a lexical item, a concept, or a frame used in TMR. The apply-maps
routine processes the list of map-rules to update the current f-structure being
constructed. Figure 4.3 shows the flow of the map-rule application module with
its relation with the knowledge resources and the input TMR.

BEGINNING OF MAP-RULE
APPLICATION MODULE

TMR FRAME

NOT INSTANT :a t e d c o n c e p t

GET MAP-RULES

ASSOCIATED WITH FRAME TYPE

APPLY COLLECTED

MAP-RULES

CONCEPT-QI EUE

WHOLE TMR

i n s t a n t ia t : :d c o n c e p t

GET MAP-RULES

ASSOCIATED WITH LEXICAL ITEM — -I — LE XIC O N

APPLY COLLECTED

MAP-RULES

ADD INSTANTIATED-CONCEPT
INTO CONCEPT-QUEUE

CONCEPT = FIRST(CONCEPT-QUEUE)

GET MAP-RULES

ASSOCIATED WITH CONCEPT

APPLY COLLECTED

MAP-RULES

ADD PARENTS(CONCEPT)
INTO CONCEPT-QUEUE

END OF MAP-RULE
APPLICATION MODULE

- < ^ s t r u c t u r |;;)

TARGET LANGUAGE
KNOWLEDGE RESOURCES

-|
J

< ONTOLOGY

Figure 4.3; Map-Rule Application Module

Processing of a map-rule in apply-maps is done in two steps. First the
meaning requirements for that map-rule are checked in the TMR. If the check
is successful, then the f-structure is updated by the new information defined in
that map-rule. Since the first step involves searching for specific knowledge in the
TMR, and the second step is the way how f-structure is constructed and updated,
these two phases are analyzed separately in the following two subsections.

Chapter 4. Computational Model 75

4.2.1 Meaning Requirements Check

This phase checks the meaning requirements of a map-rule from the input TMR
(T M R i n) · As explained in Chapter 3, the context requirements of a map-rule
are represented as a list of references to frames, their slots, and their features,
that can exist in a TMR. To apply the f-structure update operations of a map-
rule, every reference in the requirements list must be found in TMRin. So, it is
enough to check each reference iteratively to find the required meaning context of
a map-rule. This pluise processes the references individually in the given order,
and it continues with the next one after finding a reference in TMRin. Whenever
a reference is not found in TMRin, this phase halts with the failure of that map-
rule, and the remaining references are not checked. Otherwise, it means that all
references are available in TMRin ^nd the current map-rule’s update operations
can be applied.

There are two types of meaning context processing: exclusive and any.
Exclusive type is introduced to group a set of dependent map-rules, and
the application of one of them excludes the application of others. So, the
meaning requirements of each map-rule grouped under exclusive type are checked
individually until the meaning requirements of a map-rule from that set are
satisfied by the input TMR. After finding the successful map-rule, the remaining
map-rules in that set are not checked because of their exclusive property. Since
map-rules grouped under exclusive type are checked in an iterative manner by
the order defined in the exclusive set, the developer should guarantee that this
order is appropriate for that grouping. Any type is introduced to group a set of
independent map-rules. So, the meaning requirements of each map-rule from an
any set are checked individually, and on success its f-structure update operations
are performed without affecting the others in that set.

Each reference method described in Chapter 3 has a special processing
module that is activated in this phase accordingly. For example, ref(frame,
feature,value) calls a module which checks the existence of (frame,feature,value)
in TMRin, or aspect(frame,[value\,.. .,valuen]) activates a module which finds the
frame's aspect slot in TMRin, assume that it is aspecf, and checks the existences
of (aspect,,Feature\,valut\),.. .,(aspecti,Featuren, valucn) iteratively in TMRin.
Note that Featurei,.. .,FeaturCn are variables unified with the feature names in
aspecti. One ol the problems in this phase is to find the names of the frames in
TMRin which are referred through imaginary names like Frameprocessing· This
problem is solved through correspondences (such as [Frameevent = BREAK\))
which are stored and dynamically updated by the main module.

Chapter 4. Computational Model 76

4.2.2 Application of F-Structure Update Operations

After the meaning context required by a map-rule is satisfied by the input TMR,
the second phase, which performs f-structure update operations of that map-rule,
is activated. It processes each operation iteratively through using the f-structure
representation of the target language introduced as a knowledge resource to the
main module. It utilizes this resource to find the defined place of a slot or
a feature/value pair in the frame-based representation of f-structure since the
place information is not provided in the definition of a map-rule (only the names
of slots or feature/value pairs are given. Chapter 3). The three types of update
operations (frame-to-slot mapping, feature addition, and slot addition) which are
explained in Chapter 3 require different types of processing.There is a separate
processing module for each of them.

FrameTMR-to-slotps mapping operations provide the connection between
the semantic roles and the grammatical functions (such as mapping of agent to
subject). These operations may not change the f-structure being constructed
(FS), but gives information that can be utilized in future processing. There
are two cases in processing this type of operations. The first case means that
frarnexMR is processed previously by the main module and a set of feature/value
pairs and slots are inserted into a temporary f-structure (fram eps) which cannot
be connected to FS because of this missing map. These situations are handled
through inserting fram eps into slotps (connection achieved) and updating FS
such that it has slotps. The second case is occurred when fram ejM R is not
processed at that time. These case is handled by creating a dynamic knowledge
that informs the future processing about the map between framcTMR and slotps.
This information will be used in the future while the main module processes
framepMR through other map-rules.

Feature addition is the most general operation utilized in f-structure creation
and it is used to either introduce a new feature/value pair or update the value
of a previously inserted feature. This operation is achieved by using the feature
structure representation of the target language provided as a knowledge resource
to the main module. The frame-based notation used for the explanation of f-
structure in Chapter 3 is represented as a multi-parent tree in this knowledge
resource. In this representation, slots are denoted as the internal nodes of the
f-structure tree and feature/value pairs are represented as the leaves of that tree.
Figure 4.4 describes this proposed representation.

Features and slots in an f-structure representation describe distinct syntactic

Chapter 4. Computational Model 77

,,GOHNKCTION

Figure 4.4: F-Structure Representation

phenomenon in a natural language. So, they should be named uniquely, otherwise
they can be confused. Since the leaf node that contains a feature/value pair should
be found to insert that pair into an f-structure, a heavy top-to-bottom search is
needed.in both the frame-based and the tree representation of f-structure. But the
uniqueness property mentioned above can be utilized to overcome this inefficiency.
In this work, the proposed tree representation is improved such that the place
of a slot or a feature/value pair are found directly (indexing). After finding the
place, only a bottom-up traversal in the tree is required to update the f-structure.

Although the proposed representation is efficient, there is still one problem
that is not solved. Remember that, the arguments of a verbal phrase such as
subject, direct-object and time are noun phrases in Turkish. So, the utilized
uniqueness property does not hold for all cases. To handle this, slots that can be
used in the definition of more than one syntactic construction are represented
as individual trees in this work. In other words, there are two trees in the
representation of Turkish sentences: one for the verbal phrases and one for the
noun phrases. In this way, the uniqueness property is recovered.

Although there are more than one tree in the proposed representation, one
of them (M AI N) is not a child of others (after all, the overall structure is also a
tree). Since the child trees should be connected to M A I N in the final constructed
f-structure, a new information is needed (there are more than one place that child

Chapter 4. Computational Model 78

tree can be inserted). This information is provided by frame-to-slot mapping rules
which bound the results of some frames to specific places in the f-structure. So,
there are three cases that should be handled differently in an feature addition
operation:

1 . The feature/value pair to be inserted is in M AI N. Since there is no
ambiguity about the place, that feature/value is found as a leaf in MA IN.
Then, M A I N is traversed in a bottom-up fashion starting from the node
that contains the feature/value pair. Traverse is ended when the root of
M A I N is reached. For example, in Figure 4.4, to insert sense ¡positive.,
firstly it is found as a child of node uer6 , which is a child of root. So, the
traversal ends with the structure [uer6 , [[sense, posiifue]]].

2. The feature/value pair to be inserted is in a child tree. That feature/value
pair is found as a leaf of that tree, but the traversal ends with a root
different from MAI N. If there is a map information produced in the
previous flow of the processing, then this knowledge is used to make
the connection between the child tree and MAI N. For exaiTiple, if
per son ¡third is to be inserted into the tree in Figure 4.4, then first
[referent, Ifagr, [[person, i/izrd]]]]] is constructed. Finding that current root
is not MA I N , (a.ssuming that frameTMR is being processed currently)
it is checked whether there is a map information about frameTMR·
Finding that it is mapped to subject in MA I N , previously constructed
structure is inserted into subject and traversal continues in MAI N.
Finally, the following structure is produced from this update request:
[arguments, [[subject, [[referent, [[agr, [[person, i/iird]]]]]]]]].

3. The feature/value pair to be inserted is in a child tree and there is no
map information. Since, the structure that is constructed in the child
tree should not be wasted, this type of cases are handled by creating a
dynamic knowledge that the constructed structure is produced from the
process of the current TMR frame. This information can be used in
future if the missing map information is produced by other map-rules.
So, for the example given above, an information is created such that
[referent, [[agr, [[person,third]]]]]) is constructed from the processing of
fram eTM R ·

Upto this point, the insertion of a feature/value pair into an empty f-
structure is explained. In general, insertions are done into partially created

Chapter 4. Computational Model 79

f-structures. In this work, instead of changing the contents of the f-structure
being constructed directly, a merge operation is utilized to improve efficiency (to
avoid top-to-bottom search in the trees) during insertion. This merge operation
is activated whenever an f-structure operation creates a new substructure that is
to be inserted into the main f-structure. It also uses the uniqueness property of
an f-structure representation. There are four cases that should be handled in this
merge operation:

1 . The newly created structure contains only a feature/value pair and it is not
found in the main f-structure. In this case, the new structure is directly
appended to the main one.

2. The newly created structure contains only a feature/value pair and that
feature is inserted previously to the main f-structure. In this case, the
value of that feature is updated with its new value.

3. The parent slot in the newly created structure is found in the main f-
structure. Merge operation continues with the contents of that slots
recursively as if they are the structures to be merged. After this insertion is
achieved, the content of the main f-structure (except that slot) is appended
to the result of that insertion.

4. The parent slot in the newly created structure is not found in the main f-
structure. In this case, the content of the new structure is directly appended
to the main f-structure.

Slot addition can be performed by the techniques described for feature
addition and it is handled in the same way a feature addition operation is
performed.

4.3 Main Module

The main module of the computational module can be separated into two
independent consecutive operations. Processing the frames in the input TMR is
done in depth-first manner, which guarantees that a frame with all its children are
processed before any other frame in the TMR. Depth-first processing is utilized in
processing TMRs that have more than one event in their contents and explained
at the end of this section. The first step constructs the initial processing stack
which is filled with the following frames in the given order:

Chapter 4. Computational Model 80

• Main Event: The event that is the scope of the speech-act.

• Top Relations: Relations that connect the decomposed meanings in
the frames such as temporal relations, domain relations, coreference
information, etc. (obtained from table-of-contents)

• Events: List of all events in the TMR that are used in the definition of the
overall propositional meaning (excludes main event). The events list is also
obtained from table-of-contents.

Top relations are put before the events since they can relate available events
to the main event. The stack is updated such that a frame can not be inserted
more than once, and the most current one determines the processing place, the
old ones are deleted. Sometimes, a frame is processed not directly, but during the
process of another frame. Also, in this case, that frame should be deleted from
the stack. These two requirements are handled through maintaining a processed
frames knowledge, which is a list of frames that are processed until the current
processing stage. By using this list, a processed frame in the stack is directly
deleted without reprocessing.

After the initialization step is completed, the main phase parses the overall
meaning representation of a sentence. This phase continues until the processing
frame stack becomes empty. Each frame in the stack is processed through the
application of the lexical selection and the map-rules application modules, then
it is removed from the stack and added into the processed frames list. Then,
the frames that are children of this frame are inserted into the processing stack
and parsing continues on the next frame. The following algorithm describes the
overall behavior of the main module:

F-Structure := NIL
Processed-List := NIL
Processing-Stack := create-processing-stack
while Processing-Stack NIL do

Processing-Frame := pop(Processing-Stack)
if Processing-Frame is not in Processed-List
then F-Structure := process-f rame(Processing-Frame, F-Structure)

New-Processing-Frames := get-child-frames(Processing-Frame)
Processing-Stack := push{Processing-Stack, New-Processing-Frames)
Processed-List := insert(Processing-Frame, Processed-List)

return F-Structure

Chapter 4. Computational Model 81

The processing of instantiated concept frames is different from the
processing of other frames. If a frame is an instantiated concept, then the lexical
selection module is activated which returns the chosen open-class word for that
concept. Then, f-structure features which are defined for that lexeme in the
lexicon are directly inserted into the constructed f-structure. Finally, the map-
rules application module is called to update the constructed f-structure for that
frame. Frames of the second type are directly sent to the map-rule application
module. The following algorithm shows how the process of a single frame proceeds
in the parse phase.

if Processing-Frame is a CONCEPT
then Lexical-Item

F-Structure
F-Structure

else F-Structure

= lexical-selection-module(Processing-Frame)
= insert-lexical-features{Lexical-Ptem, F-Structure)
= map-rules-application-module{Processing-Frame, F-Structure)
= map-rules-application-module(Processing-Frame, F-Structure)

The architecture of the main module is shown in Figure 4.5 in which the
flow, usages of the submodules, their relationships with the knowledge sources,
and their effects on the processing information are described.

One thing that is not explained until here is how the events available in a
TMR are connected in the f-structure, that is how the main module processes a
TMR if there is more than one event in it. The need for special treatment arises
from the fact that every event in a TMR results in an individual f-structure
representation (structures that are rooted in MA I N , see Section 4.2.2). Since
there are more than one f-structure, the main module should decide on the f-
structure an update operation is performed. Depth-first processing is utilized
here which guarantees that every event with all its child frames in a TMR
processed individually. The main module should also constructs the final f-
structure through merging those individual f-structures as sentential clauses or
constructing a complex-sentence described in Chapter 3. There are three different
ways in which the events in a TMR are related:

• Thematic Role: Covers the cases in which an event fills the thematic role
of another event. “I want to read the books of Faucault.” is an example
for this type of relation in which there are two events, W A N T and READ,
and READ fills the thematic role theme of WANT.

• Domain Relation: Covers the cases in which two events are related through
a domain relation in a TMR. For example, in sentence “Since Ali didn’t
study enough, he couldn’t pass the exam.” , there is a causal relationship

Chapter 4. Computational Model 82

i3
PoSg<
tMO□gsgsMpq

Figure 4.5: Main Module of Computational Model

Chapter 4. Computational Model 83

between the two events STUDY and PASS and it is represented in the
TMR as domain-rel{reason, STUDY, PASS).

• Contextual Boundedness: Covers the cases in which one event is introduced
to give some contextual information about another event or its components.
In these cases, these two events should have some common property such
as each event is performed by the same agent, they occur at the same
time, or in the same location, etc. The sentence “Ali, who came to
your birthday party last month, went to America.” is an example for
contextual boundedness. The two events C O M E and GO are related to
each other through the same agent and the event C O M E is used as a
definite description of the agent of the main event GO.

The methodology utilized in this work is to process the main event of the
expression represented in the input TMR before any other events and determine
the relationship between the events afterwards. Each event other then the main
event causes the main module to restart with an empty f-structure and processing
stack filled with the new event. After constructing the f-structure corresponding
to that event, halting with empty processing stack, that f-structure is connected
with the f-structure created for the main event. So, handling each relation type
is achieved as follows:

• Themaiic Role: The f-structure created for the event which fills the thematic
role of the main event is inserted into the main f-structure through using
slot-to-slot mapping rules. In the sentence “I want to read the books
of Faucault.” , assuming that theme is mapped to dir-object, FSread is
inserted into the dir-object argument of the event W A N T as a sentential
clause {merge-events in the algorithm below).

• Domain Relation: A complex sentence is constructed from the ESmain
and the FSevent through using the map-rules written for the type of the
domain relation. So, in the sentence “Since Ali didn’t study enough,
he couldn’t pass the exam.” , FSstudy is connected to FS pass by
[[type, linked], [relation,'için'], [argi, FSstudy], [oî’î72, jf^5'p/i55]]
{activate-contextual-maps in the algorithm below).

• Contextual Boundedness: The f-structure created for FSevent is placed
into the slot PS of the FSmain which is created for the description of the
common context with the content of slotps is moved into FSevent· So, in
the sentence “Ali, who came to your birthday party last month, went to

Chapter 4. Computational Model 84

America” the content of subject in the FSqo is moved into the subject of
the FScome and this new structure is inserted into the subject of FSqo
(activ at e-domain-type-maps in the algorithm below).

The following algorithm is used to handle events other than the main one
through the methods explained for each type of relation:

if Processing-Frame is an event
then Event-Processing-Stack := list(Processing-Frame)

Event-F-Structure := main-module{Event-Processing-Stack)
if Processing-Event is bound to a slotps ia F-Structure
then F-Structure := merge-events(Event-F-Structure^slotFs^ F-Structure)
else F-Structure := activate-contextual-maps(Event-F-Structure^ F-Structure)

else if Processing-Frame is a domain-rel{type^ EventryT̂ aiu', Eventother)
then FVent-Processzng-Stack ·— list(̂ EventQfhQ'p)

Event-F-Structure := main-module(Event-Processing-Stack)
F-Structure := activate-domain-type-maps{Event-F-Structure^ F-Structure)

4.4 An Example

To get a clear understanding of how the computational model described in this
chapter processes an input TMR, an easy example from Turkish is given. The
sentence chosen for this example is “Kadın camı kırdı.” which is translated into
En^ish as “The woman broke the window.” . The activation of the submodules,
the lexical selection module and map-rules application module, by the main
module, and their effects on the f-structure are given through the example with
sample map-rules and lexicon entries. The TMR representation of this sentence
is the following;

tabl e- of-contents
speech-act speech-act 1
heads BREAKi
time-rels temp-rel\
attitudes NIL
modalities NIL
focus NIL
stylistics NIL
coreferences NIL
domain-rels NIL

Chapter 4. Computational Model 85

BREAKi
agent
patient
polarity
aspect
time

aspecti
phase
iteration
duration
telicity

speech-acti
type
scope
speaker
hearer
time

HUMANi
WINDOWi
positive
aspecti
timei

perfect
single
momentary
false

declarative
BREAKi
speaker
hearer
time2

HUMANi
type
gender
age
reference

WINDOWi
reference

timei
absolute

time2
absolute

temp-reli
type
argi
arg2

common
female
> 17
definite

definite

past

past

after
time2
timei

In this example, the main event is represented with BRE AKi whose
agent is defined as HUMANi and patient as WI NDOWi . The aspectual
properties of the event BREAKi is represented in aspecti., whose content is
determined by the information that ’kir’ is a punctual event. The event BREAKi
was occurred before the time of speech and this information represented in
temp-reli. Note that, since the expression refers to known entities which fills
the agent and the patient., both HUMANi and W I N DOWi have the feature
{ re f erence^ definite). The main module starts with the following initializcitions:

Processing-Stack = [BREAKiU^TTip-Teli.,speech-acti]
Processed- Frames = []
F-Structure = []

The first frame in Processing-Stack., BREAKi., is extracted as
Processing-Frame. Since BREAKi is an instantiation of a concept, first the
lexical selection module is activated. From Turkish lexicon, the lexical selection
module chooses the entry kırı which is a child of the concept B R E A K with the
following definition:

kırı
CAT category verb

root kir
SEM is-a BREAK

subcat-info
requires [patient]
optional [agent., means]

Chapter 4. Computational Model 86

Since it is the only candidate, it is directly sent to the main module
as the selected lexeme (note that subcategorization constraints are satisfied
by B R E A K i). Since Processing-Frame is an event, the default features
[category, verb] and [root,kir] are inserted into the verb slot and F-Structure
becomes:

F-Structure = [verb, [[category, verb], [root, A:ir]]]

Then, map-rules written for kiri are collected from the Turkish map-rules
and only the following rule succeeds:

maprule(turkish, k\r\, exclusive,
[exist! Frame processing > agent, Slot\],
exzst!Frameprocsssing ̂ patzent, Slot^],
not-exist! Frame speech·, focus)]
[map!Slotx, subject), map!Slot2 , dir-object)])

Slot\ is unified with HUMAN\ and Slot2 is unified with W INDOW x and
the following match information is produced by the map-rules application module.

map!H U M AN\, subject)
map!WINDOW\, dir-object)

The nicxp-rule application module starts traversing the ontology for map-
rules associated with concepts from the concept B R E A K . Map-rules for
B R E A K fail, and the following map-rule written for PU N C TU ALITY, the
only parent of B R E A K , succeeds and it updates both the F-Structure and the
Processed-Frames (the whole contents of aspecti and temp-reli are checked, so
they are declared to be processed).

maprule!turkish, PUNCTUALITY, exclusive,
[aspect!Frameprocessing > [perfect, single, momentary, false]),
time!after, [FramCspeecĥ P'̂ '̂hnep,.Qccgg{rig])]̂
[feature!tense, past)])

Processed-Frames = [aspecti, temp-reli]
F-Structure = [verb,[[category,verb],[root,kir],[tense,past]]]

The parent of PU N C TU ALITY is E V E N T and it has two map-rules that
succeed for the input TMR with the following changes:

Chapter 4. Computational Model 87

maprule(turkishy EVENT, any,
[r6 f {EvaTTiCspQQQfi, scope, FvaTnepj>QQQQsijig ,
[feature{clause-type, predicative)])

maprule(turkish, EVENT, any,
[ref {Frameprocessing, polarity, positive)],
[feature{sense, positive)])

F-Structure =
\\clause-type, predicative],
[verb, \\category,verb], [root, k\r], [tense,past], [sense, positive^

The following map-rule written for ALL, the parent of E V E N T , succeeds
and updates the F-Structure.

maprule{turkish, ALL, any,
[same{Erameprocessing ? Eraine event)] ·)
[feature{s- form, finite)])

F-Structure =
[[clause-type,predicative], [s-form, finite],
[verb, [[category, verb], [root, kir], [tense,past], [sense,positive]]]]

Since ALL is reached, the map-rule application module halts, and the child
frames of B R E A K i, which are HUM ANi, W IN D O W i, aspecti, and time\, are
inserted to Processing-Stack. Note that, since aspecti is processed in the process
of B R E A K i, it is not inserted, and the state of the main module becomes:

Processing-Stack = [HUMANi,WINDOWi,timei, temp-reli, speech-acti]
Processed-Frames = [BREAKi, aspecti, temp-reli]

The next frame to be processed is HUMANi and the lexical selection
module is activated which finds four entries from the Turkish lexicon that are
instantiations of HUM AN.

adamı
CAT category noun

root adam
SEM is-a HUMAN

definition
type common
gender male
age > 17

kadını
CAT category noun

root kadın
SEM is-a HUMAN

definition
tijpe common
gender female
age > 17

Chapter 4. Computational Model 88

çocukı
CAT category noun

root çocuk
SEM is-a HUMAN

definition
type common
gender unknown
age > 4 & < 11

bebeki
CAT category noun

root bebek
SEM is-a HUMAN

definition
type common
gender unknown
age < 4

Since kadmi gets no penalty because of exact match, it is returned
as the selected lexeme. Its default features, [category, noun] and [root,
kadın], are inserted into the argument subject because of the knowledge
m ap{HUM ANi, subject).

E-Structure =
[[clause-type, predicative], [s-form, finite],
[verb, [[category, verb], [root, kir], [tense,past], [sense,positive]]],
[arguments, [[subject, [[referent, [[arg, [category, noun], [root, ^adm]]]]]]]]]

No map-rule associated with lexeme kadm\ succeeds, and map-rule
application module starts traversing the ontology from the concept H U M AN .
Following map-rule written for H U M AN succeeds and updates the F-Structure.

mapruleÇurkish, HUM AN, exclusive,
[ref (Frameprocessing, type·, common)],
[feature(number, singular), feature(person, third)])

F-Structure —
[[clause-type,predicative], [s-form, finite],
[verb, [[category, verb], [root, kir], [tense,past], [sense, positive]]],
[arguments, [[subject,[[referent, [[arg, [[category, noun], [root, kadın]]],

[agr, [[number, singular], [person, third]]]]]]]]]]

The following map-rule associated with E N T IT Y , the parent of H U M AN
in the ontology, is successfully applied and the F-Structure becomes:

maprule(turkish, ENTITY, any,
[ref (Frameprocessing, reference, definite)],
[feature(definite, positive)])

F-Structure =
[[clause-type, predicative], [s-form, finite],
[verb, [[category, verb], [root, kir], [tense, past], [sense,positive]]],
[arguments, [[subject,[[referent,[[arg, [[category, noun], [root, kadın]]],

[agr, [[number, singular], [person, third]]]]],
[specifier, [[quan, [[de finite, positive]]]]]]]]]]

Chapter 4. Computational Model 89

Map-rules written for ALL are not applicable to HUMAN\, which ends
the processing of the map-rule application module. Since HUMAN\ has no
child frame, it is added to Processed-Fram es and Processing-Stack remains
unchanged.

Processed-Frames = [HUMAN\, BREAKi,aspectiU^'’̂ W-‘''^h]

The next frame from Processing-Stack is W I N DOW\ and following
operations are performed for it in the lexical selection and map-rules application
modules.

SelectedLexeme :
cam\

CAT category noun
root cam

SEM is-a W IN DO W

Map Information : map(WINDOWi,dir-object)
Default Features : \fcategory^noun]^[root^cam\\

(ARTIFACT = parent(WINDOW))
Applied Map-Rules :

maprule(turkish, ARTIFACT, any,
[]>
[feature(number, singular), feature(person, third)])

maprule(turkish, ENTITY, any, (ENTITY = parent(ARTIFACT))
[ref (Frameprocessing, reference, definite)],
[feature(de finite, positive)])

F-Structure =
[[clause-type,predicative], [s-form, finite],
[verb, [[category, verb], [root, fcir], [tense,past], [sense, positive]]],
[arguments, [[subject, [[referent, [[arg, [[category, noun], [root, kadın]]],

[agr, [[nг¿7?гöer, singular], [person, i/iird]]]]],
[specifier, [[quan, [[definite, positive]]]]]]],

[dir-object, [[re ferent, ^arg, ifcategory, noun],[root, cam]]],
[agr, ^number, singular], [person, t/iird]]]]],

[specifier, [[quan, [[definite, positive]]]]]]]]]]

Since W INDOW \ has no child frame, it is added to Processed-Fram es and
the next frame from Processing-Stack, timei, is declared to be Frameprocessing·
It has neither applicable map-rules nor child frames. So, the next frame, temp-reli
is extracted which is skipped since it is in Processed-Fram es. The next frame,
speech act\ causes application of the following map-rules.

Chapter 4. Computational Model 90

Applied Map-Rules :
maprule(turkish, speech-act, any,

[ref (Frameprocessing, type, declarative)],
[featureispeech-act, declarative)])

maprule(turkish, speech-act, exclusive,
[not-exist(F rame processing ? focus)],
[feature(voice, active)])

F-Structure =
[[clause-type,predicative], [s-form, finite],
[speech-act, declarative], [voice, active],
[verb, [[category, verb], [root, kir], [tense,past], [sense,positive]]],
[arguments, [[subject, [[referent, [[ar<jf, [[category, noun], [root, kadın]]],

[agr, [[number, singular], [person, third]]]]],
[specifier, [[quan, [[definite,positive]]]]]]],

[dir-object, [[referent, [[arg, [[category, noun], [root, cam]]],
[agr, [[number, singular], [person, i/iirc?]]]]],

[spedfier, [[quan, [definite, positive]]]]]]]]]

Frame tim e2 , which is a child of speech-actl is added to Processing-Stack.
Like timci, map-rules associated with time are not applicable for the input TMR,
and finally Processing-Stack becomes empty which causes the main module to
halt with the last shown F-Structure as the target sentence. Note that, map-rules
written for the concepts in the ontology provides abstraction in their construction
and also civoids enumeration (map-rule written for E N T IT Y).

Chapter 5

Implementation

The computational model described in Chapter 4 is implemented in Prolog. There
are two main reasons for choosing Prolog as the implementation language. The
first reason is the symbolic manipulation requirement of the computational model.
Symbolic manipulation is needed firstly in the map-rule application module to
check the content of a TMR. It is also needed in the lexical selection module
to compare the meaning of an instantiated concept frame in a TM R with the
definitions of lexemes provided in target lexicon. So, symbolic manipulation is at
the core of the computational model. The second reason is the ease in knowledge
base construction and efficiency in retrieval requirement. It is needed since the
computational model is heavily based on knowledge resources (ontology, lexicon,
map-rules, and f-structure syntax), which are utilized in processing the input
TMR. Since Prolog is one of the programming languages which is powerful in
both symbolic manipulation and knowledge-base construction, it is chosen as the
implementation language.

The implemented Prolog program takes another knowledge resource as input
which contains information about the languages that are currently available to
the system and their lexicon and map-rules as knowledge resources. It takes the
input TMRs from a file. There is a loading facility that is provided to load the
knowledge resources of another language or another file that contains difl’erent
TMRs. This loading facility first extracts all knowledge about the old language
or the old TM R file to lower the memory requirements of the system. Also, a
trace facility is provided which creates a report about how lexical selections are
done and which map-rules are applied while processing a TMR.

This chapter describes the real format of an input TM R that is processed
by the implemented Prolog program and explains how it is created in Section 5.1,
defines how the knowledge resources are represented in Prolog in Section 5 .2 , and

91

Chapter 5. Implementation 92

finally gives the time complexity of the overall system in Section 5.3.

5.1 TMR Parser

Text meaning representation of a sentence, which is the input to the developed
system, is created manually since currently there is no available tool that creates
such an input. Although the representation described for TM R in Chapter 3
is very user friendly, ease in understanding and creation, it is very difficult
to manipulate a TM R in that format. So, some improvements are made to
the representation of TM R that are not covered previously. First, to improve
efficiency in differentiating concepts from other values in a TMR, instantiated
concept frames are represented with a % preceding the concept name, and
direct concept references (see Chapter 3, in set frames) are represented with
a * preceding the concept name. Second, to avoid losing such a user friendly
representation, another tool, TMR parser, is developed to produce an equivalent
but different representation, that can be efficiently used in Prolog, from TMR
representation presented in Chapter 3. Third, to adopt the developed system
to the output of a text planner, multiple input TM R processing capability is
provided.

The implemented tool, TMR parser, that produces the real input TMRs
from TMRs written in the format described in Chapter 3 achieves two major goals.
The first goal is to eliminate the major disadvantage of manual construction, high
probability in making mistakes while writing. The second goal is to produce an
equivalent representation which is richer in content to improve efficiency and
handle multiple input TMRs. So, the tool is divided into two phases: parsing
textual input and producing the utilized Prolog representation.

The first phase takes the manually created textual input TMRs and
produces an intermediate representation which can be utilized effectively by the
second phase. This phase also produces a report about the syntactic mistakes
found in the input TMRs. Parsing the textual input is achieved through using the
definitions of concepts in the ontology and the definitions of linguistic (speech-act,
modality, etc.) and special (set, table-of-contents, etc.) frames. These definitions
are given to the parser as the syntax knowledge of TMR.

The description of a concept is extracted from the ontology by combining
its thematic roles with its definition. Since features from parent concepts can
be used in the instantiation of a concept, the complete definition of a concept

Chapter 5. Implementation 93

is obtained by getting the definitions of parent concepts and merging them with
the concept’s definitions. Remember that, the definitions of other frame types
are based on some required feature/value pairs and this distinction is provided
in the given syntax of TMR. Each frame type is described with a set of required
feature/value pairs and some other optionals. For example, a speech-act frame
must contain type, scope, and time features and can take producer, consumer,
modality, and focus features. Note that, an event frame must contain aspect,
time, and polarity features to provide its temporal properties and its truthness.
An event frame can also tcike modality and attitude frames as optionals. So, this
additional information is appended to the definition of a frame if it is used as
the description of an event. Also, an entity frame can take attitude optionally
and this information is embedded into the definition of a frame that denotes an
entity.

Each TM R in the textual input starts with table-of-contents frame. This
frame is used both in obtaining the general information (the list of event frames,
whether there are domain relations or stylistic information) about that TMR.
It is also used to determine the beginning of the next TMR. A frame list, that
contains frame names that are referenced in processing but not defined yet in
the TMR, is constructed initially from table-of-contents and updated every time
a new frame is parsed. A frame that is completely parsed is extracted from this
list. Each frame in the TM R is processed by getting its definition, reading its
content from the text and comparing the feature/value pairs which reside in input
TM R with its definition. Currently, seven sources of TM R mistakes are handled
in this phase:

1 . table-of-contents frame is not found, which is not allowed. So, it is handled
by skipping all frames until a table-of-contents frame is found and reporting
a fatal error that those frames are skipped.

2 . The name of an input frame is not found among concepts and TM R frame
types. Since there is no available definition for that frame name, only its
feature/value pairs with its name are converted into symbolic values and
no check about their validity is done. This error is reported such that the
name of that TM R frame is invalid.

3 . A required feature for a frame type is not found. An error message is
produced that the feature is required for that frame type.

4. A feature in the input TM R frame is not found in the definition provided.
In this case, that feature with its value are converted into symbolic values

Chapter 5. Implementation 94

and appended to the intermediate representation with a prompt that the
feature is not found in the definition.

5. The given value of a feature is not available in the feature domain. The
method utilized in the third item is applied with an error message that the
input value is out of the domain.

6 . A frame is not defined in the whole TM R although it is referenced in some
other frame (at the end of a TMR, there is still frames in the processed
list). An error message is produced such that the frame is not found in
input TMR.

7. A defined frame is not referenced in the other frames of a TMR. In this case,
cin error message is produced such that the defined frame is not referenced
in the whole TMR.

Each frame is represented as a list of feature/value pairs, including its frame
type, its frame index, and its content. Since there can be multiple TMRs, each
TM R in the textual input is separated from others by representing it as an
individual list. So, the output of this phase is a set of lists that represents the
TMRs in the textual input. The output of this phase for an individual TM R is
the following list structure which can be easily manipulated in Prolog.

type FrameT ypei
id Framelndex\

feature\ value\

feature^

type
id

featurei

featurem

valuer Framei

FrameT ypen
FrameIndeXn

valuei

valuem J Framen -I T M R t

Although this intermediate representation can be used as the input TMR
to the developed system, it is still somehow inefficient if the retrieval of a frame
with its feature/value pairs is considered. This is because a search is needed to
find the needed frame in the TM R list, and even a search is required to get a
feature/value pair in a frame of the input TMR. Also, determining whether an

Chapter 5. Implementation 95

instantiated concept frame denotes an event or an entity in the input TM R is a
time consuming job, since table-of-contents frame must be found to obtain the
list of event frames. Finding the children frames of a frame, which is required in
updating the processing stack, is also inefficient since all feature/value pairs of
that frame must be checked.

The inefficiencies of the intermediate representation is recovered by the
second phase which takes this representation of TMRs and produces an equivalent
but efficient representation of those TMRs in Prolog. This representation utilizes
the predicate-name/first-argument indexing facility of Prolog and the tripartite
{Frameid, Feature, Value) structure of a TMR frame. Since there can be
multiple TMRs in the input, the distinction between those TMRs should also
be achieved. So, the tripartite structure of a TMR frame is represented by the
following Prolog program:

clauscilFramei, Feature\, Value\).

clausedFramei, Feature^, Valúen)·

Although the same representation can be used for relation frames (temporal
relations, domain relations, etc.), since their content provides an unit information,
they are produced in the following way:

clausedRelationi, type, Value).
clausedRelationi, arg\,Framei).
clausedRelationi, arg ,̂ Framcj).

If
clausedRelationi, RelationType{Framei, Framej)).

While the second phase is processing the frames in a TMR, it constructs
three lists that contain the event frames, instantiated concept frames, and
parent/children relationships. This is done to avoid the inefficiencies arising from
the intermediate representation. The event list is extracted directly from table-
of-contents frame. The instantiated concept frame list and the parent/children
relationship list are updated at every frame that is processed. These lists are
represented by following Prolog program in which predicate index has the same
value as the clause index.

eventd Framed.
concept i (Framei).
relationdFramei, Framcj).

The overall architecture of the implemented TM R Parser is shown in the
Figure 5.1.

Chapter 5. Implementation 96

Figure 5.1: Architecture of the TM R Parser

5.2 Representation of Knowledge Resources

Since knowledge resources are at the core of the developed system and the
information which resides in them is retrieved all the time during the processing
of an input TMR, it is very important to design an efficient representation for
them in Prolog. The property of Prolog, predicate-name/first-argument indexing,
is'utilized in the design of knowledge resources like in the Prolog representation
of a TM R which improves the retrieval complexity a lot.

A concept in the ontology is composed of four components as described in
Chapter 3. The first component is its parent concepts and they are introduced
through is-a feature. The second one provides the allowed thematic roles
and the possible values those roles can take, and they are introduced through
roles feature. Roles feature is represented as a list of role-name/role-value-list
pairs. In the case of no specific role-value requirement, concept is given as
the content of the role-value-list. The third one defines the decompositional
properties of that concept with the domains of those properties by the definition
feature. Definition is represented as a list of feature-name/feature- domain
pairs. As explained in Chapter 4, there are three types of domains and
they are represented by unordered (domain-name, domain-size), ordered (domain-
name, domain-size), and numeric(start-point,end-point,domain-size,incremental-
unit). Domain-name provides the allowed values for that feature. The final
component is introduced if that concept has some relationships with other
concepts in the ontology such as is-part-of, made-of etc. So, the following is

Chapter 5. Implementation 97

an imaginary concept definition in the ontology;

concept-name(is-a, parent\).

concept-name(is-a, parentn)·

concept-name(roles,
[[rolei, [concepti, . . . , conceptj]],

[rolen, [concepti, . . . , conceptj]]]).

concept-name{de finition,
[[f eaturei, unorderedidomaini, size\)],
[feature2 , ordered{domain2 , size2)],
[featurez, numeric{begini, endi, sizes, uniti)],

[featuren, numeric{beginm·, end^iSize-n, unitm,)]])·

domaini{value\). domain2{valuei).

domaini(valuen)· domain2{valuem)·

concept-name{relation\, concepti).

concept-name{relatioiin., conceptj).

A lexeme entry in the lexicon is composed of four components, like a concept
entry in the ontology. Two of the components are same, roles and definition,
although their representations are a little bit different. First, the definition of a
lexeme divides the allowed thematic roles into two groups, required and optional
that are explained in Chapter 3 and this division must be introduced. Second,
instead of defining the domain of a feature, its allowed range of values with
its importance value should be provided. The third component provides the
lexeme’s categorical information in category. Last component is used if that
lexeme requires some pragmatic context in order to be used and this is given in
pragmatic. Also the concept which is used in the definition of the lexeme should
be provided. So, the following is an imaginary lexeme definition in the lexicon:

Chapter 5. Implementation 98

concept-name(language, lexemei).

lexemei{category, language,
[feature{category, Category), feature{root, lexeme)]).

lexemeiiroles, language,
[required{[[rolei, [concepti,. . . , concept j]],

[rolck, [concepti, · · ·■, concept j\^),
optional{\\rolei, [concepti,. , concept

[rolcm·, [concepti, ■ ■ - I concept j]]])]).

lexemciide finition, language,
[feature(namei, value\, importancei),

f eature{namem,valuem, importancem)])·

lexemeiipragmatics, language,
[stylistics([[color, valuei] , ...]),
attitude([[type, attitude-type] , ...])]).

All applicable map-rules for a frame type or a concept are grouped in a
unique set through using the any property which is described in Chapter 3.
T-his set comprises the set of independent rules and the rules that exclude the
application of some others are grouped under exclusive property. Since all of the
rules in that set should be applied to the input TMR, they can be represented as
a list of rules without degrading the efficiency. So, the map-rules associated with
an imaginary TM R type is represented in Prolog by the following format:

maprule(type, language,
rule(any, [rule{exelusive,

[[conditionsi,updatesi],

[conditionsk, updatesk]]),

rule{exelusive,
[[conditionsi,updatesi],

[conditions,n',wdo,tesTn]]),

[conditionsi,updatesi].

[conditionsn, updatesn]])).

Chapter 5. Implementation 99

As explained in Chapter 4, to improve efficiency of the tree representation
of /-structure is converted into one level hierarchic representation that is utilized
in ontology. Remember that, there are two kinds of construction in an f-structure
tree: slots and features. This distinction is provided through an argument
and the children slots of a slot form the parent-child relationships in the tree
representation. The domain of a feature is defined like in the ontology and the
roots of available trees are given by top-syntax features. So, the following is an
imaginary syntax definition of a specific language’s f-structure:

top-syntax{root\).

top-syntax(rootk).

syntax(rooti, featurei, feature, domaini).

syntax{root\, featurcm, feature, domainm).
syntax(rooti, sloti, slot, slot-name\).

syntax(rooti, slotn, slot, slot-name^).
domaini (val uei). domain^, (valuei).

domainiivaluef). domainm(valuej).

syntax(rootk, featurei, feature, domainp).

syntax{rootk, sloti, slot, sloC).

5.3 Time Complexity of the System

Since the computational model described in Chapter 4 is a knowledge processing
system and the complexity of knowledge requests and updates is dependent
on various aspects, its time complexity cannot be given in exact mathematical
notations. So, in this section, only the aspects that have an effect on the time
complexity of the system are explained with some approximations about their
complexities. First, note that all of the followings affect the processing time of
the implemented system:

Chapter 5. Implementation 1 0 0

• Complexity of each lexical selection request

• Complexity of meaning requirement checks defined in map-rules

• Complexity of each f-structure update operation request

• Overall complexity of the input TMR

The complexity of a lexical selection request depends on the content of the
TM R frame which activates the module and the information available in the
lexicon. In fact, there are six independent properties of these two resources that
affect the overall complexity of the lexical selection module and they are listed
below:

• Number of lexemes that are available in the lexicon which are defined by
the current TM R frame’s concept

• The complexity of the thematic roles definitions of the candidates which are
checked in context-dependent selection

• Number of candidates that are eliminated by the context-dependent
selection which affects the complexity of context-independent selection

• Number of features used as definition for both the TM R frame and the
candidate lexemes, since all of them should be checked

• Complexity of values in definition features since calculation requirements
of a single, enumerated, and range filler is different

• Need to use pragmatic information because of existing ambiguity in the
selection after context-independent selection

So, the complexity of lexical selection module can be calculated in the
following way, which is overtly depends on average values that are changed in
every update of the lexicon.

n — average number of lexemes found in the lexicon
m = average number of thematic role requirements for a lexeme
a = average proportion of elimination in context-dependent selection
p — average number of features used as definition
/3 — average proportion of single fillers
7 = average proportion of enumerated fillers
I = average length of an enumerated filler
p = average proportion of range fillers
p, — average proportion of using pragmatic information
Compprag = average complexity of pragmatic processing

Chapter 5. Implementation 1 0 1

Compiex-sel = n * m+
a * (3 n+
a * j * I * p * n+
a * p * p * n+
p * a Compprag

The complexity of a map-rule application, which is associated with a TM R
frame type, depends on that map-rule’s internal complexity. There are four
internal properties of a map-rule that have an effect on the overall complexity of
a single map-rule application, and they are listed below:

• Number of independent rules that are grouped under that map-rule by using
any type, since each of them should be checked individually,

• Number of exclusive rules in that any group, their internal complexity,
(number of rules grouped under those exclusive set), and the success rate
of each individual rule in that group,

• Number of references required for checking the content of the input
TM R and their internal complexity. For example, referring to a child
frame’s content of a TM R frame introduces more processing compared with
referring to the content of that TM R frame,

• Number of f-structure update requests made by that rule and the depth
of the feature in the f-structure tree to be inserted (map requests does not
introduce any time complexity).

So, the complexity of a single map-rule application can be calculated in the
following way which heavily relies on average values, like the previous calculation.

n = average number of independent rules grouped under any
a = average proportion of exclusive rules
m = average number of dependent rules grouped under exclusive
¡3 — average proportion for reaching a successful rule in exclusive
7 = average proportion for declaring a rule as failed
p = average number of references made in an individual rule
Compref = average internal complexity of a reference to TMR
r = average number of f-structure update operations in an individual rule
d — average depth of a feature in f-structure tree to be inserted

Company - J *p* Compref+
(1 - 7) * p * Compref + r * d

Chapter 5. Implementation 1 0 2

COTiipQXQl'iiglyQ — 'y ^ P ^ COTTtPi'Qj ^ jS ^ 7Tl~\~

p * Compref + r * d

C OTitPfYiQ^p-'j’XilQ — Q! 7Z COViipQxf^ly^siyQ~\~

(1 — a) * n* Comp,any

The overall complexity of processing an input TM R is heavily depends on
the complexity of the TM R itself. In fact, there are two things that determine
the processing time of a TMR: the number of frames that reside in the TMR,
and the number of frames that are instantiated concepts. Since processing of an
instantiated concept activates lexical selection module and causes the application
of all map-rules that are associated with the concept’s ancestors, the proportion
of instantiated concepts over the number of frames in a TM R have a big effect
in the complete complexity. Note that, the depth of the concept in the ontology
and the average number of parents of a concept (the structure of the ontology)
also affects the processing complexity. So, the complexity of the overall system
can be explained by the following calculation:

n — average number of frames in an input TMR
a — average proportion of instantiated concepts in TMR
d = average depth of a concept in the ontology
P = average number of parent concepts of a concept in the ontology

C ompp'j'QCQsgiYig — oi + ?z C ompiQx-gQi~\-

ot Ti ^ Co'mpffifip-'PiiiQ~\~

a * n * (/?* * Cornpmap -rule)+
(1 - a) =1= n * Compmap -rule

Chapter 6

Conclusion and Future Work

The goal of this work is to develop and implement a language-independent system
that takes the meaning representation of a sentence (TMR) [3, 18] as input
and produces the feature structure representation of that sentence in a target
language. To achieve such a task, the system utilizes four knowledge resources.
The first knowledge resource, ontology, provides the abstract representation of
the world and it is utilized in the meaning representation. The other three
knowledge resources provide information about the target language which are
lexicon (word knowledge), map-rules (structural mapping between meaning and
f-structure representation), and the feature structure representation of the tai'get
language. By using these knowledge resources and processing the input TMR, the
system selects lexical items and constructs the syntactic structure of the output
sentence.

Although the general structure of the system is taken from [10, 22], some
components described in the previous chapters are redesigned. First, the structure
of map-rules described in Chapter 3 is designed in this work. The proposed
method for checking the content of a TMR, meaning requirements of a map-rule,
are both efficient and modular. Also, with that method, the design of ad-hoc rules
is avoided which is one of the corner stones of interlingua methodology. Second,
the efficient and the general design of the feature structure representation is
also developed in this thesis. The algorithm for performing f-structure update
operations, which is described in Chapter 4, is also designed in this work. Third,
the order of frame processing (depth-first) is proposed and utilized in processing
TMRs that have more than one event inside. The method for making connection
between the events of a TM R (in Chapter 4) is also proposed and implemented
in the developed system.

The developed system is implemented in Prolog. Although the representa

103

Chapter 6. Conclusion and Future Work 104

tion utilized for TM R is user friendly and easy to create, it is very difficult for
processing by a programming language. So, a new representation is developed
that can be efficiently used in Prolog. Also, to avoid losing that user friendly
representation of TMR, a new tool, TM R Parser, is implemented that takes
TMRs from a text file and produces their Prolog representations with a report
about the possible mistakes encountered. Prolog representations of knowledge
resources are efficient in knowledge retrieval and modular.

The system that is developed can be used to produce the syntactic structure
of a language from the abstract meaning representation (TMR). This syntactic
structure can be then fed into the tactical generator of that language to achieve
generation of sentences in that language from TMRs. To process a TM R in a
language, only the knowledge resources should be developed without interfacing
with the system itself. Also, TM R Parser allows for checking semantic and
pragmatic phenomenon in a language without waiting for a parser to produce
the text meaning representation given as input to the system.

The implemented system is tested with Turkish. But, since developing
such a system is not an easy job, the sizes of the knowledge resources , lexicon
and map-rules, are very small. The contents of these knowledge resources are
generally developed to test the specific components of the developed system. So,
currently the system is far from covering Turkish lexical items and syntactic
constructions used for denoting semantic and pragmatic phenomenon. Many
lexical items should be added to Turkish lexicon and Turkish map-rules should
be redeveloped and made richer with a deep analysis of Turkish sentences. Only
with these developments, a real generation system for Turkish can be produced
with Hakkani’s tactical generator [11].

There is also some future work if the described and implemented system is
considered. First of all, connecting events that are not the main event of a TMR
is not handled by the current system. The algorithm that is used for relating
events (in Chapter 4) should be revised to cover these cases. Secondly, currently
available meaning requirement check methods may not be enough and new ones
should be designed with a new analysis of languages. Thirdly, although the
current parser covers most of the syntax of TMR, it still needs some refinement
to work properly for any TMR.

References

[1] D. Arnold and L. Tombe. Basic Theory and Methodology in EUROTRA.
Cambrige University Press, Cambridge, 1987.

[2] J. R. Bateman. Ontology construction and natural language. In Proceedings
of International Workshop on Formal Ontology, pages 83-93, Padua, Italy,
1993.

[3] S. Beale, S. Nirenburg, and K. Mahesh. Semantic analysis in the
mikrokosmos machine translation project. In Proceedings of the 2nd
Symposium on Natural Language Processing (SNLP-95), Bangkok, Thailand,
August 2-4, 1995.

[4] W. S. Benneth. The linguistic components of metal. In Working Paper,
Linguistic Research Center, University of Texas, Austin, 1982.

[5] B. Comrie. Aspect. Cambridge University Press, Cambridge, 1976, 1991.

[6] B. Comrie. Tense. Cambridge University Press, Cambridge, 1985, 1990.

[7] B. J. Door. The use of lexical semantics in interlingua machine translation.
Machine Translation, 4:3:135-193, 1993.

[8] D. Frawell and Y. Wilks. Ultra: A multi-lingual machine translator. In
Proceedings of Machine Translation Summit HI, Washington, DC, 1991.

[9] W. Frawley. Linguistic Semantics. Lawrance Erlbaum Associates, Hillsdale,
New Jersey, 1992.

[10] K. Goodman and S. Nirenburg. The KBMT Project: A Case Study in
Knowledge-Based Machine Translation. Morgan Kaufmann, San Mateo,
California, 1991.

[1 1] D. Z. Hakkani. Design and implementation of a tactical generator for turkish,
a free constituent order language. Master’s thesis, Bilkent University, Ankara
Turkey, July 1996.

105

REFERENCES 106

[12] W. J. Hutchins. Machine Translation: Past, Present, Future. Ellis Horword
Ltd., Chichester, U.K., 1986.

[13] W. J. Hutchins and H. L. Somers. An Introduction to Machine Translation.
Academic Press, London, U.K., 1992.

[14] J. R. Leavit, D. Lonsdale, H. Keck, and Nyberg E. Tooling the lexicon
acquisition process for large-scaled knowledge-based machine translation. In
Proceedings of IEEE Tools for AI, 1994.

[15] J. R. Leavitt, Lonsdale D., and A. Franz. A reasoned interlingua for
knowledge-based machine translation. In Proceedings of Canadian Artificial
Intelligence Conference, Banff, Canada, 1994.

[16] K. Mahesh. Ontology development for machine translation: Ideology and
methodology. In Memoranda in Computer and Cognitive Science MCCS-96-
292, Las Crues, New Mexico State University, 1996.

[17] K. Mahesh and S. Nirenburg. A situated ontology for practical nip. In
Proceedings of Workshop on Basic Ontological Issues in Knowledge Sharing,
International Joint Conference on Artificial Intelligence, Montreal, Canada,
August 19-20, 1995.

[18] K. Mahesh and S. Nirenburg. Meaning representation for knowledge sharing
in practical machine translation. In Proceedings of the FLAIRS-96. Track
on Information Interchange, Florida A I Research Symposium, Key West,
Florida, May 19-22, 1996.

[19] K. Mahesh and S. Nirenburg. Semantic classification for practical natural
language processing. In Proceedings of Sixth ASIS SIG/CR Classification
Research Workshop: An Interdisciplinary Meeting, Chicago IL, October 8 ,
1995.

[20] T. Mitamura and E. Nyberg. Hierarchical lexical structure and interpretive
mapping in machine translation. In Proceedings of COLING-92, Nantes,
France, July, 1992.

[21] T. Mitamura and E. Nyberg. Controlled english for knowledge-based mt:
Experience with the kant system. In Proceedings of 6th International
Gonference on Theoretical and Methodological Issues in Machine Translation,
Leuven, Belgium, July 5-7, 1995.

REFERENCES 107

[2 2] S. Nirenburg, J. Carbonell, M. Tomita, and K. Goodman. Machine
Translation: A Knowledge-Based Approach. Morgan Kaufmann, San Mateo,
California, 1992.

[23] S. Nirenburg and C. Défrisé. Application-oriented computational semantics.
In Computational Linguistic and Formal Semantics. In Johnson, R. and
Rosner, M., editors, pages 223-256, Cambridge University Press, 1994.

[24] S. Nirenburg and K. Goodman. Treatment of meaning in mt systems.
In Proceedings of Third International Conference on Theoretical and
Methodological Issues in Machine Translation of Natural Languages, pages
171-188, University of Texas, Austin, 1990.

[25] S. Nirenburg and V. Raskin. The analysis lexicon and the lexicon
management. Computers and Translation, 2:177-188, 1987.

[26] E. Nyberg and T. Mitamura. The kant system: Fast, accurate, high-quality
translation in practical domains. In In Proceedings of COLING-92, Nantes,
France, July, 1992.

[27] F. R. Palmer. Mood and Modality. Cambridge University Press, Cambridge,
1986, 1991.

[28] Korkmaz T. Turkish text generation with systemic-functional grammar.
Master’s thesis, Bilkent University, Ankara Turkey, June 1996.

[29] M. Vasconcellos and M. Leon. Spanam and engspan: Machine translation
at the pan american health organization (paho). Computational Linguistics,
11:122-136, 1985.

[30] P. Wheeler. Changes and improvements to the european commission’s
Systran system. In Proceedings of the International Conference on the
Methodologies and Techniques of Machine Translation, Cranfield Institute
of Technolog}q U.K., 1984.

Appendix A

A Sample Run of the TM R
Parser

To show how the implemented TM R Parser is utilized in finding the mistakes
that are made in the manual creation of input TMRs and constructing
input format of TMRs, a simple example is given in this section. This
presents a simple TM R created for the sentence “Ali went to the school”
there are some deliberate mistakes.

table-0 f-contentsi
speech-act speech-acti
heads %go\
time-rels temp-reli

%goi %humann\
agent %human\ type proper
destination %locationi name ‘AH'
polarity positive
aspect aspecti %locationi
times timei type school

reference definite
aspect 1

phase perfect timei
iteration single absolute past
duration prolonged
telicity tru times

absolute past
speech-acti

type declarative temp-reli
scope %goi type after
time timc2 argi time2

arg2 timei

108

Appendix A. A Sample Run of the TMR Parser 109

The first phase of the parser gets this textual TM R and produces the
following list of mistakes that are encountered in that TMR.

ERROR !!!
FEATURE

ERROR !!!
FEATURE

ERROR !!!
FRAME

ERROR !!!
VALUE

ERROR !!!
FRAME

ERROR !!!
FRAME

ERROR !!!
FRAME

= times is not found in DEFINITION of %go\

= time is required by DEFINITION of %go\

— %humanni is not found in ONTOLOGY

= tru is not a valid value in DEFINITION of aspecti

= %humani is referenced in %goi, but not defined

= time2 is referenced in speech-acti, but not defined

= times is defined, but not referenced in the TMR

After correcting the mistakes found in the TMR, the new input is parsed
again by the first phase and the following intermediate list representation of the
TM R is produced.

Intermediate-List-Representation =

[[[iype, ic], [id, 1], [heads, [[go, 1]]], [temp-rels, [1]]]
[[type, instantiated], [name, go], [id, 1], [agent, [human, 1]],

[destination, [location, 1]], [polarity,positive], [aspect, 1], [time, 1]]
[[type, instantiated], [name, human], [id, 1], [type,proper], [name, ‘‘AH']]
[[type, instantiated], [name, location], [id, 1],

[type, school], [reference, definite]]
[[type, aspect], [id, 1], [phase,perfect],

[iteration, single], [duration,prolonged], [telicity, true]]
[[type, time], [id, 1], [absolute,past]]
[[type, speech-act], [id, 1], [type, declarative], [scope, [go, 1]], [time, 2]]
[[type, time], [id, 2], [absolute,past]]
[[type,temp-rel], [id, 1], [type,after], [argi,2], [args, 1]]]

The second phase processes the list above and produces the following Prolog
program which is the real input to the computational model described in Chapter
4.

clause\{speech-act, inst(speech-act, 1)).
clause\[temp-rel, inst{temp-rel, 1)).

clausel{inst(go, 1), agent, inst(human, 1)).

Appendix A. A Sample Run of the TMR Parser no

clausel(inst(go^ 1), destination, inst(location, 1)).
clausel(inst(go, 1), polarity, positive)).
clausel(inst(go, 1), aspect, inst(aspect, 1)).
clausel(inst(go, l),tim e, inst(time, 1)).

clausel(inst(human, 1), type, proper)).
clausel(inst(human, 1), name, ‘AH')).

clausel(inst(location, 1), type, school),
clausel(inst(location, 1), reference, definite).

clausel(inst(aspect, l),phase,perfect).
clausel(inst(aspect, 1), iteration, single).
clausel{inst{aspect, 1), duration,prolonged).
clausel(inst{aspect, 1), telicity, true).

clausel{inst(time, 1), absolute, past).

clausel(inst(speech-act, 1), type, declarative).
clausel(inst{speech-act, 1), scope, inst{go, 1)).
clausel{inst(speech-act, 1), time, inst{time, 2)).

clausel{inst{time, 2), absolute,past).
clause\{inst{temp-rel, 1), after[inst{time, 2), inst{time, 1))).

head\{inst{go, 1)).

concept\{inst{go, 1)).
conceptl(inst(human, 1)).
conceptl[inst{location, 1).

relationl(clausel, inst{speech-act, 1)).
relationl(clausel, inst{temp-rel, 1)).
relationl(inst{go, l),inst(human, 1)).
relationl{inst(go, l),inst(location, 1)).
relationl(inst(go, l),inst(aspect, 1)).
relationl(inst(go, l),inst(time, 1)).
relationl(inst(speech-act, inst(go, 1)).
relationl(inst(speech-act, inst(time, 2)).

Appendix B

A Trace of the Model

To explain, once more, how the computational model described in Chapter 4
processes an input TMR, the following example is presented. In this example,
the trace facility of the implemented Prolog program is used instead of manual
writing. The input TM R is created for the Turkish sentence “Ali camı kıracaktı.” ,
which can be translated into English as “Ali would have broken the window” .
This sentence expresses an expectation about the event, which did not occur
{modality2) 1 in the past [modalityi).

table-o/contents
speech-act speech-acti
heads BREAKi
temp-rels temp-reli
modalities modalityi^ modality2

BREAKi modality 1
agent HUMANi type expectative
patient WINDOWi value 1
polarity positive scope BREAKi
time timci attribution speaker
modality modalityi

speech-acti
HUMANi type declarative

type proper scope BREAKi
name ali time time2

modality modality2

WINDOWi
reference definite time2

absolute past

1 1 1

Appendix B. A Trace of the Model

aspecti modality2
phase begin type epistemic
iteration single value 0
duration momentary scope BREAKi
telicity false attribution speaker

timei temp-reli
absolute past type after

argi time2
arg2 timei

1 1 2

Giving this TM R as an input to the implemented system with the trace
facility activated, the following output is produced. To save space, some of the
failed rules are not shown.

START PROCESSING FRAME = inst(break,l)
LEXICAL SELECTION

Found Lexicals for Concept = break
[kirl]

Only one Lexeme defined for:
CONCEPT = break
LANGUAGE = turkish
LEXEME = kirl

END (LEXICAL SELECTION) !!!
Selected Lexeme = kirl

MAP-RULE APPLICATION (CONCEPT) !!!
feature(category,verb) is added
feature(root,kIr) is added
F-Structure Updated

Applying Any-Rule
Found = exist(processing,agent)
Rule Succeeded !!!
map(agent,subject) is applied
F-Structure Updated

Found = exist(processing,patient)
Rule Succeeded !!!
map(patient,dir-object) is applied
F-Structure Updated

Any-Rule Applied

Applying Any-Rule
Applying Exclusive-Rule

Rule Failed !!!
Not Found = head(hear)
Not Checked =

Appendix B. A Trace of the Model 113

ref(context, theme,event)
time(after,[speech,context,event])
modality(speech,[epistemic,lse(0.75),speaker,event])
aspect(event,[perfect,iterative,momentary,true])

Rule Failed !!!
Not Found = aspect(event,[perfect,iterative,momentary,true])
Not Checked =

time(after,[speech,event])

Rule Failed !!!
Not Found = aspect(event,[continue,iterative,prolonged,true])
Not Checked =

time(after,[speech,event])

Found = time(after,[speech,event])
Found = modality(event,[expectative,eq(l),speaker,event])
Found = modality(speech,[epistemic,eq(0),speaker,event])
Found = aspect(event,[begin,single,momentary,false])
Rule Succeeded !!!
feature(tense,future) is added
feature(mode,past) is added
F-Structure Updated

Exclusive-Rule Applied
Any-Rule Applied

Applying Any-Rule
Found = ref(processing,polarity,positive)
Rule Succeeded !!!
feature(sense,positive) is added
F-Structure Updated

Found = ref(speech,scope,processing)
Rule Succeeded !!!
feature(clause-type,predicative) is added
P'-Structure Updated

Any-Rule Applied

Applying Any-Rule
Found = same(processing,event)
Rule Succeeded !!!
feature(s-form,finite) is added
F-Structure Updated

Any-Rule Applied
END (MAP-RULE APPLICATION) !!!

Indirectly Processed !!! (inst(aspect,l))
Indirectly Processed !!! (inst(modality,l))

Appendix B. A Trace of the Model 114

PROCESSED !!! (inst(break,l))

F-STRUCTURE =
[[s-form,finite],[clause-type,predicative],
[verb,[[sense,positive],[mode,past],[tense,future],[root,klr],[category, verb]]]]

START PROCESSING FRAME = inst(human, 1)
LEXICAL SELECTION

Found Lexicals for Concept = human
[adam 1 ,kadln 1 ,Cocuk 1, All 1]

Starting CONTEXT-DEPENDENT Selection
Lexical = adaml OK !!!
Lexical = kadinl OK !!!
Lexical = Cocukl OK !!!
Lexical = Alii OK !!!

End of CONTEXT-DEPENDENT Selection
Remained Lexemes = [Alil,Cocukl,kadInl,adaml]
Starting CONTEXT-INDEPENDENT Selection

Lexical/Penalty = Alil/0 !!!
Lexical/Penalty = Cocukl/19 !!!
Lexical/Penalty = kadinl/27 !!!
Lexical/Penalty = adaml/27 !!!

End of CONTEXT-INDEPENDENT Selection
END (LEXICAL SELECTION) !!!
Selected Lexeme = Alii

MAP-RULE APPLICATION (CONCEPT) !!!
feature(category,noun) is added
feature(root,Ali) is added
F-Structure Updated

Applying Any-Rule
Found = ref(processing,type,proper)
Rule Succeeded !!!
feature(number,singular) is added
feature(person,third) is added
F-Structure Updated

Any-Rule Applied

Applying Any-Rule
Rule Failed !!!

Not Found = ref(speech,scope,processing)
Not Checked =

Rule Failed !!!
Not Found = ref(processing,reference,definite)
Not Checked =

Any-Rule Applied

Appendix B. A Trace of the Model 115

Applying Any-Rule
Rule Failed !!!

Not Found = samefprocessing,event)
Not Checked =

Any-Rule Applied
END (MAP-RULE APPLICATION) !!!

PROCESSED !!! (inst(human,l))

F-STRUCTURE =
[[s-form,finite],[clause-type,predicative],
[verb,[[sense,positive],[mode,past],[tense,future],[root,kir],[category, verb]]],
[arguments,
[[s ub ject, [[referent, [[arg, [[root, Ali], [cat egory,noun]]],

[agr,[[person,third],[number,singular]]]]]]]]]]

START PROCESSING FRAME = inst(window,l)
LEXICAL SELECTION

found Lexicals for Concept = window
[caml]

Only one Lexeme defined for:
CONCEPT = window
LANGUAGE = turkish
LEXEME = caml

END (LEXICAL SELECTION) !!!
Selected Lexeme = caml

MAP-RULE APPLICATION (CONCEPT) !!!
feature(category,noun) is added
feature(root,cam) is added
F-Structure Updated

Applying Any-Rule
Rule Succeeded !!!
feature(number,singular) is added
feature(person,third) is added
F-Structure Updated

Any-Rule Applied

Applying Any-Rule
Rule Failed !!!

Not Fouird = ref(speech,scope,processing)
Not Checked =

Found = ref(processing,reference,definite)
Rule Succeeded !!!
feature(definite,positive) is added
F-Structure Updated

Any-Rule Applied

Appendix B. A Trace of the Model 116

Applying Any-Rule
Rule Failed !!!

Not Found = same(processing,event)
Not Checked =

Any-Rule Applied
END (MAP-RULE APPLICATION) !!!

PROCESSED !!! (inst(window,l))

F-STRUCTURE =
[[s-form,finite],[clause-type,predicative],
[verb,[[sense,positive],[mode,past],[tense,future],[root,kir],[category, verb]]],
[argunaents,
[[subject,[[referent,[[arg,[[root,Ali],[category,noun]]],

[agr,[[person,third],[number,singular]]]]]]],
[dir-object,[[referent,[[arg,[[root,cam],[category,noun]]],

[agr,[[person,third],[number,singular]]]]],
[specifier,[[quan,[[definite,positive]]]]]]]]]]

START PROCESSING FRAME = inst(speech-act,l)
MAP-RULE APPLICATION (FRAME) !!!

Applying Any-Rule
Found = notexist(processing,focus)
Rule Succeeded !!!
feature(voice,active) is added
F-Structure Updated

Found = ref(processing,type,declarative)
Rule Succeeded !!!
feature(speech-act,declarative) is added
F-Structure Updated

Any-Rule Applied
END (MAP-RULE APPLICATION) !!!

Indirectly Processed !!! (inst(modality,2))
PROCESSED !!! (inst(speech-act,l))

F-STRUCTURE =
[[s-form,finite],[clause-type,predicative], [speech-act ,declarative] ,[voice,active],
[verb,[[sense,positive],[mode,past],[tense,future],[root,kIr],[category, verb]]],
[arguments,
[[subject,[[referent,[[arg,[[root,Ali],[category,noun]]],

[agr,[[person,third],[number,singular]]]]]]],
[dir-object,[[referent,[[arg,[[root,cam],[category,noun]]],

[agr,[[person,third],[number,singular]]]]],
[specifier,[[quan,[[definite,positive]]]]]]]]]]

Appendix C

Sample TM Rs L · F-Structures

In this section, some more TMR examples fro Turkish sentences are given to show
how the fi’cimes and the ontology are utilized to represent the meaning inside an
expression. Each sentence presented below is given to show different structures
used in TMR. The feature structure representations given for these examples are
produced by the developed system (only the output format is changed).

Example 1:

The first sentence is given to demonstrate a simple sentence representation. Note
that, the event that is described by that sentence is punctual {aspecti).

“Adam kadına bir kitap verdi”
“The man gave an apple to the woman”

table-0 f - contents
speech-act speech-act\
heads GIVEi
temp-rels temp-reli

BOOKi
agent HUMANi reference indefinite
theme BOOKi
goal HUMAN2 aspecti
polarity positive phase perfect
aspect aspecti duration momentary
time timei iteration single

telicity false
MANi
type common speech-acti
gender male type declarative
age > 18 scope GIVEi
reference definite time time^

117

Appendix C. Sample TMRs & F-Structures 118

HU MAN 2 timc2
type common absolute past
gender female
age > 18 temp-reli
reference definite type after

argi time2
timei arg2 timei

absolute past

F-Structure =
[[s-form,finite], [clause-type,predicative], [speech-act,declarative], [voice,active],
[verb, [[sense,positive], [mode,past], [root,‘ver’], [category,verb]]],
[arguments,

[[subject, [[referent, [[arg, [[root,‘adam’], [category,noun]]],
[agr, [[person,third], [number,singular]]]]],

[specifier, [[quan,[[definite,positive]]]]]]],
[dir-object, [[referent, [[arg, [[root,‘kadın’], [category,noun]]],

[agr, [[person,third], [number,singular]]]]],
[specifier, [[quan, [[definite,positive]]]]]]],

[beneficiary, [[referent, [[arg, [[root,‘kitap’], [category,noun]]],
[agr, [[person,third], [number,singular]]]]]]]]]

Example 2:

The second sentence is given to show how word ordering phenomena in Turkish
can be represented by a TMR. Note that, the salient argument, H U M AN i, is
updated with attitudei. Also, the argument which is given as a background (it
should not be mentioned), B O O K i, is marked with attitude2.

“Kadına o adam verdi kitabı”
“It was that man who gave something, the book, to the woman”

table-0/-contents
speech-act
heads
temp-rels
attitudes

speech-acti
GIVEi
temp-reli
attitudei, attitude2

GIVEi BOOKi
agent HUMANi re ference definite
theme BOOKi attitude attitude2
goal HU MAN2
polarity positive attitude2
aspect aspecti type saliency
time timei value < 0.25

scope booki
attribution speaker

Appendix C. Sample TMRs & F-Structures

HUMANi aspecti
type common phase perfect
gender male duration momentary
age > 18 iteration single
reference definite telicity false
distance far
attitude attitudei speech-acti

type declarative
attitudei scope GIVEi

type saliency time time2
value > 0.75
scope HUMANi time2
attribution speaker absolute past

HUMAN2 temp-reli
type common type after
gender female argi time2
age > 18 arg2 timei
reference definite

timei
absolute past

119

F-Structure =
[[s-form,finite], [clause-type,predicative], [speech-act,declarative], [voice,active],
[verb, [[sense,positive], [mode,past], [root,‘ver’], [category,verb]]],
[arguments,

[[subject, [[referent,[[arg, [[root,‘adam’], [category,noun]]],
[agr, [[person,third], [number,singular]]]]],

[specifier, [[quan, [[definite,positive]]],
[demons,o]]]]],

[dir-object, [[referent, [[arg, [[root,‘kadın’], [category,noun]]],
[agr, [[person,third], [number,singular]]]]],

[specifier, [[quan, [[definite,positive]]]]]]],
[beneficiary, [[referent, [[arg, [[root,‘kitap’], [category,noun]]],

[agr, [[person,third], [number,singular]]]]]]]],
[control, [[topic,beneficiary], [focus,subject], [background,dir-object]]]]

Example 3:

The third sentence is given to show how a passive construction in Turkish can
be represented by a TMR. Note that, in the sentence below, the passivization is
required because of unknown agent.

“Kadına bir kitap verildi”
“A book was given to the woman”

Appendix C. Sample TMRs &: F-Struct ures

table-of-contents
speech-act speech-acti
heads GIVEi
temp-rels temp-reli

GIVEi aspecti
agent unknown phase perfect
theme BOOKi duration momentary
goal HUMANi iteration single
polarity positive telicity false
aspect aspecti
time timei speech-acti

type declarative
BOOKi scope GIVEi

reference indefinite time time2

HUMANi temp-reli
type common type after
gender female argi time2
age > 17 arg2 timei
reference definite

timei
absolute past

1 2 0

F-Structure =
[[s-form,finite], [clause-type,predicative], [speech-act,declarative], [voice,passive],
[verb, [[sense,positive], [mode,past], [root,‘ver’], [category,verb]]],
[arguments,

[[dir-object, [[referent, [[arg, [[root,‘kadın’], [category,noun]]],
[agr, [[person,third], [number,singular]]]]],

[specifier, [[quan, [[definite,positive]]]]]]],
[beneficiary, [[referent, [[arg, [[root,‘kitap’], [category,noun]]],

[agr, [[person,third], [number,singular]]]]]]]]]

Example 4:

The example given below shows how an existential sentence is represented in
TMR. Note that, the main event of the representation is a set, which denotes an
existential construction.

“Masada üç fizik kitabı vardı”
“There were three physics book on the table”

Appendix C. Sample TMRs L· F-Struct ures

table-0 f-contents
speech-act speech-acti
heads seti
temp-rels temp-reli

sell TABLEi
member-type BOOKi reference definite
cardinality 3
locative TABLEi timei
polarity positive absolute past
aspect aspecti
time timei speech-acti

type declarative
BOOIU scope seti

type physics time time2

aspect 1 time2
phase perfect absolute past
duration prolonged
iteration single temp-reli
telicity true type after

argi time2
arg2 timei

1 2 1

F-Structure =
[[s-form,finite], [clause-type,existential], [speech-act,declarative], [voice,active],
[verb, [[sense,positive], [mode,past], [root,‘var’], [category,verb]]],
[arguments,

[[subject, [[referent, [[arg, [[root,‘kitap’], [category,noun]]],
[agr, [[person,third], [number,singular]]]]],

[classifier, [[referent, [[arg, [[root,fizik], [category,noun]]]]]]],
[modifier, [[quantifier, [[low,3], [high,nil]]]]]]],

[location, [[referent, [[arg, [[root,‘masa’], [category,noun]]],
[agr, [[person,third], [number,singular]]]]],

[specifier, [[quan, [[definite,positive]]]]]]]]]]

Example 5:

The following example is given to show how an attributive sentence can be
represented in TMR. Note that, the main event of the TM R is an instantiated
concept whose parent is an entity.

“§u siyah, spor araba Ali’nin”
“That black, sport car is Ali’s”

Appendix С. Sample TMRs L· F-Structures

table-of-contents

1 2 2

speech-act speech-acti
heads CARi
temp-rels temp-reli

CARi timei
type sport absolute present
color black
owned-by HUMANi speech-acti
reference definite type declarative
distance middle scope CARi
polarity positive time time2
aspect aspecti
time timei time2

absolute past
HUMANi

type proper temp-reli
name AH type extend

argi timei
aspecti arg2 time2

phase continue
duration prolonged
iteration single
telicity true

F-Structure =
[[s-form,finite], [clause-type,attributive], [speech-act,declarative], [voice,;
[verb, [[sense,positive], [mode,past], [root,‘Ali’|, [category,noun]j],
[arguments,

[[subject, [[referent, [[arg, [[root,‘araba’], [category,noun]]],
[agr, [[person,third], [number,singular]]]]],

[specifier, [[quan, [[definite,positive]]],
[demons,§u]]],

[classifier, [[referent, [[arg, [[root,‘spor’], [category,adjective]]]]]],
[modifier, [[qualitive, [[p-name,‘siyah’]]]]]]]]]

Example 6:

Next example is given to show how the set frame is utilized to represent a group
of human that includes the speaker (denoted as ‘we’ in English’).

“Yarın basketbol oynayacağız”
“We are going to play basketball tomorrow”

table-of-contents
speech-act speech-act\
heads PLAY\
temp-rels temp-reli

Appendix C. Sample TMRs L· F-Structures 123

PLAYi timei

seti

agent seti day tomorrow
type basketball
polarity positive speech-acti
aspect aspecti type declarative
time timei scope PLAYi

time time2

member-type HUMAN time2
cardinality > 1 absolute past
includes speaker

temp-reli
ict\ type after
phase perfect argi timei
duration prolonged arg2 time2
iteration single
telicity true

F-Structure =
[[s-form,finite], [clause-type,declarative], [speech-act,declarative], [voice,active],
[verb, [[sense,positive], [mode,future], [root,‘basketbol oyna’], [category,noun]]],
[arguments,

[[subject, [[referent, [[agr, [[person,first], [number,plural]]]]]]]]],
[adjuncts,

[[time, [[referent, [[arg, [[root,‘yarm’], [category,adverb]]]]]]]]]]

Example 7:

The example below is given to demonstrate how more that one event in a TMR
is related through thematic roles. Note that, in the following sentence the event
READi describes the theme of the main event WANT\.

“Adam kitap okumak istedi”
“The man wanted to read a book”

table-of- contents
speech-act speech-acti
heads WANTi, READi
temp-rels temp-reli, temp-rel^
coreferences coreferencei

WANTi aspect2
experiencer HUMANi phase begin
theme READi duration prolonged
polarity positive iteration single
aspect aspecti telicity false
time timei

Appendix C. Sample TMRs L· F-Structures

time2
aspecti absolute past

phase perfect
duration rhomentary speech-acti
iteration single type declarative
telicity true scope WANTi

time times
timei

absolute past times
absolute past

READi
agent HUMAN2 temp-reli
theme BOOKi type after
polarity positive argx time2
aspect aspect2 arg2 timei
time time2

temp-rel2
BOOKi type after

reference indefinite argi times
arg2 time2

124

core ferencei
speaker, HUMANi, HUMAN^

F-Structure =
[[s-form,finite], [clause-type,predicative], [speech-act,declarative], [voice,active],
[verb, [[sense,positive], [mode,past], [root,‘iste’], [category,verb]]],
[arguments,

[[subject, [[referent, [[arg, [[root,‘adam’], [category,noun]]],
[agr, [[person,first], [number,plural]]]]]]],

[dir-object,
[[role,

[[role,act],
[arg, [[s-form,infinite], [clause-type,predicative],

[voice,active], [speech-act, declarative],
[verb, [[sense,positive], [mode,past],

[root,‘oku’], [category,verb]]],
[arguments,

[dir-object,
[[referent, [[arg, [[root,‘kitap’], [category,noun]]],

[agr, [[person,third],
[number,singular]]]]]]]]]]]]]]]]

Example 8:

The following example is given to demonstrate how more that one events are
related in a TM R through contextual boundedness. In the example below, the

Appendix C. Sample TMRs & F-Structures 125

event READ i provides extra information about the theme of the main
REQUIRE^.

“Adam o çocuğun okuduğu kitabı istedi”
“The man required the book that child was reading”
table-of-contents

speech-act speech-acti
heads REQUIREi, READi
temp-rels temp-reli, temp-rel-z
coreferences coreferencei

REQUIRE^ BOOKi
agent HUMANi reference definite
theme BOOKi
polarity positive aspect2
aspect aspecti phase perfect
time timei duration prolonged

iteration single
HUMANi telicity true

type common
gender male timc2
age > 18 absolute past
reference definite

speech-acti
aspecti type declarative

phase per feet scope REQUIREi
duration momentary time time^
iteration single
telicity false time^

absolute past
timei

absolute past temp-reli
type after

READi argi timei
agent HUMAN2 arg2 time2
source BOOK2
polarity positive temp-rel2
aspect aspect2 type after
time timc2 argi time^

arg2 timei
HUMAN2

type common coreferencei
gender unknown BOOKi, BOOK2
age < 12
reference definite
distance far

Appendix C. Sample TMRs L· F-Structures 126

F-Structure =
[[s-form,finite], [clause-type,predicative], [speech-act,declarative], [voice,active],
[verb, [[sense,positive], [mode,past], [root,‘iste’], [category,verb]]],
[arguments,

[[subject, [[referent, [[arg, [[root,‘adam’], [category,noun]]],
[agr, [[person,third], [number,singular]]]]],

[specifier, [[quan, [[definite,positive]]]]]]],
[dir-object,

[[role,
[[role,theme],
[arg, [[s-form,participle], [clause-type,predicative],

[voice,active], [speech-act, declarative],
[verb, [[sense,positive], [mode,past],

[root,‘oku’], [category,verb]]],
[arguments,

[[subject,
[[referent, [[arg, [[root,‘çocuk’], [category,noun]]],

[agr, [[person,third], [number,singular]]]]],
[specifier, [[quan, [[definite,positive]]],

[demons,o]]]]],
[dir-object,

[[referent, [[arg, [[root,‘kitap’], [category,noun]]],
[agr, [[person,third],

[number,singular]]]]]]]]]]]]]]]]]]

Example 9:

The next example is given to demonstrate how domain relations can be used to
relate events in a TMR and the complex sentence representation constructed for
the sentence below.

“All çalışmadığı için fizik dersinden kaldı”
“Since Ali did not study, he failed his physics course”

table-of-contents
speech-act
heads
temp-rels
domain-rels

speech-act\
STUDYu F AI Lx
temp-reli, temp-rel2
domain-relx

coreferences core ferencei

STUDYx
agent
polarity
aspect
time

HUMANx
negative
aspectx
timex

aspect2
phase
duration
iteration
telicity

per feet
prolonged
single
false

Appendix C. Sample TMRs L· F-Structures

HUMANi time2
type proper absolute past
name AH

speech-acti
aspecti type declarative

phase perfect scope FAILi
duration prolonged time timez
iteration multiple
telicity true times

absolute past
timei

absolute past temp-reli
type after

FAILi argi timez
agent HUMAN2 arg2 timei
patient COURSE^
polarity positive temp-rel2
aspect aspect2 type continue
time time2 argi timez

arg2 times
COURSEi

type physics domain-reli
owned-by HUMAN3 type causal
reference definite argi STUDYi

arg2 FAILi

127

coreferencei
HUMANı, HUMAN-i, HUMAN3

F-Structure =
[[type,linked],
[linked-relation,icin],
[argi,

[[s-form,finite], [clause-type,predicative],
[voice,active], [speech-act,declarative],
[verb, [[sense,negative], [tense,past], [root,‘çalış’], [category,verb]]],
[argumnets,

[[subject, [[referent, [[arg, [[root,‘Ali’], [category,noun]]],
[agr, [[person,third], [number,singular]]]]]]]]]]],

[arg2,
[[s-form,iinite], [clause-type,predicative],
[voice,active], [speech-act,declarative],
[verb, [[sense,positive], [tense,past], [root,‘kal’], [category,verb]]],
[argumnets,

[[subject, [[referent, [[agr, [[person,third], [number,singular]]]]]]],
[dir-object, [[referent, [[arg, [[root,‘ders’], [category,noun]]],

[agr, [[person,third], [number,singular]]]]],
[classifier, [[referent, [[agr, [[root,‘fizik’],

[category,noun]]]]]]],
[specifier, [[quan, [[definite,positive]]]]]]]]]]]]

Appendix C. Sample TMRs & F-Structures 128

Example 10:

The following example is given to demonstrate how adverbial clauses can be
represented in a TMR. Note that, the feature value of a temporal relation frame
is introduced to represented the consecutive occurrences of the events READi
and GO\.

“Ali notu okur okumaz okula gitti”
“Ali went to the school as soon as he read the note”

table-o f-contents
speech-act speech-acti
heads GOu READi
temp-rels temp-reli, temp-rel^
core ferences core ferencei

GOi NOTEi
agent HUMANi reference definite
goal LOCATIONi
polarity positive aspect2
aspect aspecti phase perfect
time timei duration prolonged

iteration single
HUMANi telicity true

type proper
name Ali timc2

absolute past
LOCATIONi

type school speech-acti
reference definite type declarative

scope GOi
aspecti time times

phase begin
duration prolonged times
iteration single absolute past
telicity true

temp-reli
timei type after

absolute past argi timei
arg2 time2

READi value leqQA
agent HU MAN2
source NOTEi temp-rel2
polarity positive type after
aspect aspect2 argi times
time time2 arg2 timei

core ferencei
HUMANu HUMAN2

Appendix C. Sample TMRs & F-Structures 129

F-Structure =
[[s-form,finite], [clause-type,predicative], [speech-act,declarative], [voice,active],
[verb, [[sense,positive], [mode,past], [root,‘gif], [category,verb]]],
[arguments,

[[subject, [[referent, [[arg, [[root,‘Ali’], [category,noun]]],
[agr, [[person,third], [number,singular]]]]]]],

[goal, [[referent, [[arg, [[root, ‘okul’], [category,noun]]],
[agr, [[number,singular], [person,third]]]]],

[specifier, [[quan, [[definite,positive]]]]]]]]],
[adjuncts,

[[time,
[[adv-type,as-soon-as],
[argument,

[[s-form,adverbial], [clause-type,predicative],
[voice,active], [speech-act,declarative],
[verb, [[sense,positive], [tense,past], [root,‘oku’], [category,verb]]],
[argument,

[[dir-object, [[referent, [[arg, [[root,‘not’], [category,noun]]],
[agr, [[person,third],

[number,singular]]]]],
[specifier, [[quan, [[definite,positive]]]]]]]]]]]]]]]]

Example 11:

This example is given to show how a yes-no question is represented in a TMR.
Note that, the type of the speech-act frame is chaned to interrogative.

“Çocuk okula gitti mi?”
“Did the child go to the school”

table-0 f-contents
speech-act speech-acti
heads GOi
temp-rels temp-reli

GOi aspecti
agent HUMANi phase perfect
goal LOG AT 1 0 Ni duration prolonged
polarity positive iteration single
aspect aspecti telicity false
time timei

speech-acti
HUMANi type interrogative

type common scope GOi
gender unknown time time^
age < 12
reference de finite time2

absolute past

Appendix C. Sample TMRs L· F-Structures 130

LOCATION^
type school temp-reli
reference definite type after

argi time2
timei arg2 timei

absolute past

F-Structure =
[[s-form,finite], [clause-type,predicative], [speech-act,interrogative], [voice,active],
[verb, [[sense,positive], [mode,past], [root,‘gif], [category,verb]]],
[question, [[type,yes-no]]],
[arguments,

[[subject, [[referent, [[arg, [[root,‘çocuk’], [category,noun]]],
[agr, [[person,third], [number,singular]]]]],

[specifier, [[quan, [[definite,positive]]]]]]],
[goal, [[referent, [[arg, [[root, ‘okul’], [category,noun]]],

[agr, [[number,singular], [person,third]]]]],
[specifier, [[quan, [definite,positive]]]]]]]]]

Example 12:

Following example is given to show how a wh-question type sentence is represented
in a TMR. Note that, the question implies agent to be unknown and focus frame
is used denote the argument which is the topic of the question.

“Camlan kim kırdı”
“Who broke the windows”

table-0 f-contents
speech-act
heads
temp-rels

speech-acti
BREAKi
temp-reli

BREAKi

seti

timei
agent unknown absolute past
patient seti
polarity positive speech-acti
aspect aspecti type interrogative
time timei scope BREAKi

time time2
focus focusi

member-type WINDOWi
cardinality > 1 time2

absolute past

Appendix C. Sample TMRs &; F-Structures 131

WINDOWi
reference

aspecti
phase
duration
iteration
telicity

definite

perfect
prolonged
multiple
true

focusi
scope
value

temp-reli
type
argi
arg2

BREAKi.agent
1

after
time2
timei

F-Structure =
[[s-form,finite], [clause-type,predicative], [speech-act,interrogative], [voice,active],
[verb, [[sense,positive], [mode,past], [root,‘kir’], [category,verb]]],
[question, [[type,wh], [const,agent]]],
[arguments,

[[goal, [[referent, [[arg, [[root, ‘cam’], [category,noun]]],
[agr, [[number,plural], [person,third]]]]],

[specifier, [[quan, [[definite,positive]]]]]]]]]]

CS, EE, IE, MATH, or CHEM course, or with the consent of the advisor.

RESTRICTED ELECTIVES

Note: Restricted electives are to be chosen from among the courses below.

CHEM 423 Spectroscopy.. 3
CHEM 450 Quantum Chemistry...3
CHEM 452 Group Theory in Chemistry... 3
CHEM 460 Environmental Chemistry...3
CHEM 461 Biochemistry...3
CHEM 465 Nuclear Chemistry .. 3
CHEM 470 Polymer Chemistry...3
CHEM 472 Industrial Chemistry... 3
CHEM 480 Photochemistry... 3

GRADUATE PROGRAMS

The graduate program is tailored to develop research skills of students so that they can
pursue original and creative research at the highest level. Current research areas are nuclear
chemistry, polymer chemistry, theoretical chemistry and surface chemistry. The experimental
facilities include a Multichannel Analyzer together with a, ¡3 and 7 counters, FTIR, UV-Vis-NIR
Spectrometer, NMR, AAS, GC, ESCA, SIMS and Electrochemical instruments. Master of

Science in Chemistry

Admission: Applicants are required to have a B.S. degree in Chemistry, Chemical Engineer
ing or a related field. Students with a B.S. degree in other areas of science and engineering
may also apply. However such students are first accepted as a special student and only after
acquiring the necessary background in Chemistry are admitted to the graduate program. All
applicants must be fluent in written and oral English. Evaluation of applicants is based on past
academic record, reference letters and their performance in the entrance examination given
at Bilkent at the end of Spring Semester each year. Applicants who cannot take the entrance
examination .at Bilkent will be evaluated based on GRE Scores. (Also refer to the “Gradu
ate Admissions” section in the introduction of this catalog for the general graduate admission
requirements.)

Degree Requirements: In addition to at least 24 credit units of course work, the M.S. degree
candidate must prepare and successfully defend a thesis. The maximum duration of M.S.
study is 5 semesters.

DEPARTMENT OF CHEMISTRY IX

Doctor of Philosophy in Chemistry

Admission: Applicants must have an M.S. degree in Chemistry or a closely related field and
must take the graduate program entrance examination at Bilkent, given at the end of Spring
Semester each year. Applicants who cannot take the entrance examination at Bilkent, will be
evaluated based on GRE scores. Satisfactory knowledge of English is required. (Also refer to
the “Graduate Admissions” section in the introduction of this catalog for the general graduate

