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ABSTRACT

NONLINEAR OBSERVER DESIGN WITH APPLICATION 
TO THE SYNCHRONIZATION OF CHAOTIC SYSTEMS

Ercan Solak
M.S. in Electrical and Electronics Engineering 

Supervisor: Assoc. Prof. Dr. Omer Morgiil 
August 1996

Observers cire used to estimate the states of dynamiccil systems whenever 
are not available through direct measurements. Although the design of lin
ear observers is a well-developed branch of control theory, its counterpart for 
nonlinear systems is a relatively new field.

In this thesis, an observer construction methodology is proposed lor a chiss 
of nonlinear systems satisfying certain conditions. Then, the problem of syn
chronizing chaotic systems, which has found recent appliccitions in the area of 
secure message transmission, is addressed from the observer design point of 
view. In the design, we exploited one of the essential properties of the chaotic 
systems that the trajectories remain in a bounded region of the state space. It 
is also shown that, for certciin well-known chaotic systems, the system structure 
enables one to nse linecir observer schemes in order to have global synchroniza
tion.

Keywords : Nonlinear observers, chaotic systems, cluios synchronization.
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ÖZET

DOĞRUSAL OLMAYAN GOZLEYICI TASARIMI VE 
KAOTİK SİSTEMLERİN EŞZAMANLAMASINA 

UYGULANMASI

Ercan Solak
Elektrik ve Elektronik Mühendisliği Bölümü Yüksek Lisans 

Tez Yöneticisi: Doç. Dr. Ömer Morgül 
Ağustos 1996

Gözleyiciler, dinamik sistemlerin durumları doğrudan ölçümlerle elde 
edilemediğinde, bu durumları tahmin etmekte kullanılırlar. Idoğrusal gözleyici 
tasarımı, kontrol kuramının gelişmiş bir dalı olmasına rağmen, bunun doğrusal 
olmayan sistemlerdeki karşılığı göreceli olarak yeni bir alandır.

Bu tezde, doğrusal olmayan sistemlerin belli şartları sağlayan bir sınıfı 
için bir gözleyici tasarım yöntemi önerilmiştir. Daha sonra, son zaman
larda güvenli bilgi aktarımı konusunda uygulama alanı bulan, kaotik sistem
lerin eşzamarılanması problemi, gözleyici tasarımı noktasından ele ahnmıştır. 
Tasarımda, kaotik sistemlerin yörüngelerinin, durum uzayının sınırlı bir 
bölgesinde kalması özelliği, vurgulanarak kullanılmıştır. Ayrıca, bazı çok 
bilinen kaotik sistemler için, sistem yapısının global eşzamanlama amacıyla 
doğrusal gözleyici kullanımına olanak verdiği gösterilmiştir.

Anahtar Kelimeler : Doğrusal olmayan gözleyiciler, kaotik sistemler, kaos 
eşzaın anlam ası.
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Chapter 1

INTRO DUCTIO N

In all control strategies, the state feedback gives more degrees of freedom to 
the designer than that the output feedbiick does, which is clearly evidenced 
by the fact that output is an algebraic combination of the states. Therefore 
it is natural for a system designer to seek to have the system states or their 
estimates available. While in some cases this can be achieved by a direct 
measurement, in general either the additional complexity required to perform 
a reliable measurement or the very nature of the system becomes a hindrance 
to such an approach.

A common solution to this problem is to incorporate into the design a new 
system Ccilled “state observer” or “state estimator” which gives an estimate 
of the true states using only the directly measurable variables of the system, 
namely, the output and the input. Under some mild conditions, any state feed- 
l:>a.ck scheme performs as well even when the state variables in the fbrmulation 
are rephiced by those of the observer [1, page 251].

Other than a control objective, one can design an observer for the sole 
purpose of monitoring hard-to-measure variables of the system and using those 
estimation towards some other aim, such as system diagnostic [2].

Although the theory of observer design for linear systems is a well-developed



field, its counterpart for nonlinear systems is a relatively new briinch of control 
science, see [3]. Almost all of the existing research in this field focuses on 
some restricted classes of nonlinear systems scitisfying certain conditions, see 
[4, 5, 6, 7, 8, 9, 10, 11].

Recently, independent of the ongoing research on nonlinecu· observer theory, 
there has been an increasing interest in the synchronization of chaotic systems 
through a set of common signals, see [12,13, 14,15]. The motivation underlying 
these attempts is the secure transmission by exploiting the non-periodicity of 
the chaotic sigiicils. We show that this task can also be formulated as an 
observer design problem, where the original system cind the observer are the 
two systems to be synchronized and the system output is the common signal.

The thesis is organized as follows; in the second chapter a survey on the 
existing nonlinecir observer theory is presented with a brief reminder lor the 
linear counterpart. Бог each method, the advantages and the drawbacks are 
liighlighted. The discussion in the third chapter begins with the exposition of 
the limitations of linearization method. Then cin exiDlicit eigenvalue assignment 
procedure is given to improve the method based on the transformation of the 
system to observer canonical form, see [16]. Fourth cluipter is an account of 
our application of the nonlinear observer design techniques to clmotic synchro
nization. We also indicate some special cases where the design is simplified due 
to the special form of the system. We also furnish the above approach with 
several examples of well-known chaotic systems.

The thesis is concluded with the description of an observation technique 
inspired by the gradient descent dynamics and a summarizing view of our 
work.



Chapter 2

BASICS AND OVERVIEW OF 

LITERATURE

2.1 Observability and Observer N otions

Observer design Ccui be defined as the construction of an auxiliary dyuainical 
system driven by the measurable varicdiles of the origirud system such as its 
input and the output. Assuming that the state variables of the observer can 
easily be measured, we require those states to be a good estimation of the true 
states. Genercdly a priori knowledge of the system model is assumed. Namely, 
given a, dynamical system described by.

X — /(.r, ,r(0  ̂ '̂ 'o?

y = Hx),

then the observer is a system described by,

X = F (x,y ,u ),

( 2 . 1)

( 2 .2 )

(2.;i)

which satisfies.
lim(;r(f) — x(t)) = 0,>-oo ■ (2.4)



where, .t G R ” , G R" , 'U G R™ , j/ G R'' , /  : R" x R™ —>■ R" , h : R" ^  R>" 
a.nd F  : R" x R'  ̂ x R^ ^  R".

When (2.4) is satisfied for every initicil conditions .t(0) G R '‘ cuid .4(0) G R" , 
(2.3) is a global observer for (2.f),(2.2). ff convergence is guarcuiteed for .4(0) 
in some neighborhood of x(0), then we have a local observer.

Since the observer (2.3) estimates the set of all the system sta.tes, it is 
also Ccilled a “full order observer”. When some of the states are cWciilable 
either through direct measurements or in the output, the set of stcxtes to be 
estimated Ccin be reduced, yielding a “reduced order observer” [17, page 461]. 
In our work, we deal with full order observers.

For the above approach to work, observabi 
that hcxs to be satisfied by the system.

is ¿m important condition

Definition 2.1.1 [1] Consider the system (2.1),(2.2). Two states xq and .ri 
are said to be distinguishable if there exists an input function u(·) such that 
//(·,.To,u) 7̂  y{-,Xi,u), where y{-,Xi,u), i - 1,2 is the output function of 
the system (2.1), (2.2) corresponding to the input function u{·) and the initial 
condition t (0) = Xi. The system is said to he locally observable at tq G R"' 
if there exists a neighborhood N  of xq such that every x G N  other than xo is 
distinguishable from Xg. Finally, the sy.stem is said to be locally observable if 
it is locally observable at each Xg G R. If the neighborhood extends to all the 
state .space then we have global observability.

Note that two states may be indistinguishable for some set of inputs but 
existence of any one distinguishing input is enough to guarantee local observ
ability. In the next section we will see that analysis is quite simplified when the 
system is linear. For linecir systems, notions of local and global observability 
are the same. Further, if a linear system is observcible for an input function , 
so it is lor any input function.



'I'he following theorem summarizes the a):>ove mentioned properties of a. linear 
time invaricuit system described by,

2.1.1 Linear Case

X — Ax -)- Bu, .'c(O) —

y =

(2.5)

( 2 .6 )

where A G G G

T heorem  2.1.1 For the system (2.5), (2.6) the following are equivalent,

1. The pair (C, A) is observable.

2. The following rank condition is satisfied;

< c  ^
CA

rank

j

= 77,. (2.7)

2. for any polynomial p(A) = A" + aiA“  ̂ -f . . .  + a,,,_iA + a,(, a,; G R, i = 
f ,2 , . . .  ,n , there exists a constant matrix K  G R” ”̂’· such that det(A/ — 
A + KC) = p(X).

P ro o f : See [18]. □

One immediately realizes that the input has no effect on the observability 
of the linear system.

Hence lor an observable LTI system we can construct the observer as,

X = Ax + Bu + K{y -  y), .7(0) = xo, 

y 6hr,

(2 .8 )

(2.9)

5



where A, B  and C are the same as in (2.5) , (2.6) and K  G is the gain
nicitrix. Let us define the state error as e = x — x. 'I’hen the error dynamics is 
given by,

e = X  — X ,

= Aæ -  Aæ -  KC{x -  £·), 

=  (A -K C )e . ( 2 . 10)

Thus, since (C, A) is observable, lor a conjugate set of complex numbers 
{A|, A2, .. .  A,i} on the open left hcdf plane, we can find a K  G such
tha.t the eigenvalues of A — KC  correspond exactly to this set, i.e..

det(A/ -  A + KC) = 1[{X -  A;), (2.11)
¿=1

yielding a globcilly exponentially stable error system.

2.1.2 G eneralization to  N onlinear System s

There are some subtleties involved in the notion of observability for nonlinear 
systems. First, the distinguishability of any two states depends on the input 
function. There may exist some input function that yield the same output 
function lor two different initicd conditions although they are distinguishable. 
Another peculiarity is that in general, observability may only be satisfied lo
cally. For excunples of such Ccises, soxi [1, pcvges 415-416].

To give a sulficient condition for the local observability of cui autonomous 
system, we successively differentiate the output and impose a rank condition 
to be able to extrcict the state information out of these quantities.

We consider a single input single output, (SISO), time-invariant nonlinear 
system,

X = f ix ) ,  .r(0) = .To, (2.12)

y = h{x). (2.14)

'lb see the pattern, let us successively differentiate the output with respect to



time,

y = à{x)
y = V/i(.x·) ■ .i· = V/i(.x) ·/(.«)
ÿ = ViVhix)-f{x))-fix),

where Vli(x) = · · ■ ■, is the gradient vector of h{x). Reineni-
beriiig the definition of the Lie derivative L^O of a function 0{x) with 
respect to a vector field <f{x),

L^Oix) = < Vd(.r),cp(.T)>,
L^^O(x) = L M 4 ~'(Hx)),
LlOix) = Oix),

we can express the time derivatives of the output as,

y = Hx), 
y = Lfh(x), 

ij = L'jhix),

= L'}-^h(x).

Let us define the observability nicitrix Q{x) as,

= i

h{x)

L jH x)

U}-^h{x)

dx
(2.14)

Note that when the system is LTI, Q{x) becomes the constant observability 
matrix introduced in (2.7).

T heorem  2.1.2 (Sufficient condition for local observability) Consider the 
system (2.12), (2.13) and let xq G R" be given. If Q{xo) has rank n, then the 
.system is locally observable at xq.



R em ark  2.1.1 This condition is also sujficient for the existence of a nonlin
ear diffeornorphic coordinate transformation z = T{x), such that, in the new 
coordinates the system is linear up to outpxit injection. Namely,

Proof : See [1, pages 418- 421]. □

z — A z ( j { y ) ,  z(0) — zq,
y = Cz,

toith (C,y\) observable. Obviously, the auxiliary system,

z = Az-I- g{y) + Ki;y -  y), (̂O) = zo,

y Cz,

(2.15)

(2.16)

(2.17)

(2.18)

is an exponential observer for (2.15), (Ê.16). For an in-depth discussion of the 
calculation of the nonlinear state transformation, see [19, page 244j-

2.2 M ethods of Observer C onstruction for

Nonlinear System s

Determination of the nonlinear state transformation mentioned above is quite 
difficult and to our knowledge, no systematic procedure has been proposcid 
to explicitly solve this problem. Instead, nicuiy attempts luive been made to 
deal with specific classes of nonlinear systems. In [20], a sufficient condition in 
terms of the gradients of the system function and the output function is given. 
Another approach is to impose a Lipschitz condition on the system nonlinearity, 
which would enable the linear error dynamics to suppress nonlinear effects [8]. 
[16] uses a similar constraint together with a nonlinear trcuislbrmation.

Here, we first give a brief description of analysis method ol [8]. Then 
a detailed exposition of the last technique proposed in [16] follows, since! in 
our work we use this design strategy together with ¿in eigenvalue assignment 
procedure of ours.



As inentioned before this is an analysis approach rather than a constructive 
one. But the following discussion is useful in the sense that it exposes the 
limitations of the linearization approach. First, we state the following well- 
known lemma;

2.2.1 Linearization M ethod

Lem m a 2.2.1 (Bellm an-Gronw all) Let u{·) , and k(·) be real, valued 
■pieceioist continuoxLS functions on R+. If u{·) satisfies

then ,

u(t) < ç{t) -(- /  k{T)u{T)dT, Vt > 0,
Jo

«(¿) < f( l)  + /  4>(T)k(T)e-lr Î̂ '̂ '̂̂ dT, Vi > 0.J 0

(2.19)

( 2 .20)

P ro o f : See [21, page 476]. □

Consider the following cuitonornous system,

X = Ax + g(x), x{0) = xo, 

y = Cx,

( 2 .21)

( 2 .22)

where the differentiable function g : R" ^  R" satisfies the following Lipschitz 
condition;

||.j(;ai) -  </(«2)11 < L\\ui -  -U2II, V'Ui,ti2 G R ’\  (2.23)

where L > 0 is a Lipschitz constant. In the following discussion || · || denotes 
either the sttindard Euclidecin norm or the matrix norm induced by the 2-norm, 
unless otherwise stated. For a dehnition see [1, page 22].

Assume the pair (C, A) is observable. Hence we can choose a gain matrix 
K € such that Ac = A -  K C  is a stable matrix. Then for a symmetric
and positive definite matrix Q € R'*^”, there exists a symmetric a.nd jiositive 
definite rmitrix P € R"^" such that the following Lyapunov matrix ecpiation 
is satisfied,

ÀfP  -k PAc = -Q .  (2.24)



For the system (2.21) , (2.22) we construct the following observer,

X = Ax + g(x) + K(y -  y), ,'i;(0) = Xq,

y = Cx. (2.26)

Defining the error to be e = x — :r, its dynamics becomes,

e - A c e +  yix) -  g{x). (2.27)

To check the stability of (2.27) we use the Lyapunov function V = Pe. We 
note that for symmetric positive definite matrices P cincl the following holds 
for Vii e R ”,

Kmn{P)\\u\\^ < U'̂ 'PU < A„„,(7")||n||^

><min(Q)\\uf < < Ama:t-(Q)||w|r

By taking the time derivative of V cdong the error trajectory,

V = Pe + e^Pe,
= e^'iA'fP + PA,)e + 2e^'P [(/(.x) -  .(/(.7·)],
< — Qe + 2||P||||i^(.'i;) — (y(7)||||£||,

< -{K n in {Q )-2 L \„ U P ))\\e \\\
^rniniQ ) -  L 2V.

[2A,naJP)

I fence we Ccin have an exponentially decaying bound on the Lyapunov function. 
Namely,

1/(0 < l/(0)e-"'̂ ', (2.;io)

where 7 = 2aZ !(p)' ~ (2.28), we have,

IIW/dF < < ^'na.iP)
“  AminiP) ~ ^miniP) ~ Amin{P)

or

<
^mznly )

Thus, for a given Lipschitz constant L if

r̂nin (Q)
^ 2A„,aAP)

-  L > 0

10



then the observer states converge to the actual states exponentially fast. Also 
note that the matrices P and Q are determined by the choice of the gain matrix 
K  in the observer system.

An alternative way to see the same result, which could be related to our 
work in the sequel, is to use the solution of (2.27) as follows:

e{t) = e '̂=''£(0) + /  [g{x{T)) -  (]{x{t))]cIt. (2.34)
./0

Since Ac is stcible, the following holds tor some M  > 0 and cv > 0 ;

.Acts < Me — at

By taking norms a,nd using (2.35) in (2.34), we obtain

I|c(i)|| < M e-"'||£(0)|| + rM e-"('-^)||<7(.r(r)) -  ,9(.t ( t ) ) ||( /t .
J  0

Using the Lipschitz condition (2.23), and multiplying by

||£(i)e"'|| < 7V/||£(0)|| + t  ML\\€{r)P'‘̂ \\dT.J 0
Finally, applying Lemma 2.2.1 and multiplying by , we obtain

||e(i)|| < 7V/e-("-^'")^||e(())||.

Hence if
r

M ^  ’
then the estimation error decays to zero exponentially fast.

(2.35)

(2.36)

(2.37)

(2.38)

(2.39)

This method relies on the suppression of the nonlinearity by linear dynam
ics. VVe will have more to say about the limits of this approach in the next 
chapter. For now, we stcite a lemma about the loccd performance of the above 
observer.

Lem m a 2.2.2 For the system (2.21), (2.22) assume that the pair (C ,/1) is 
observable, y : R ” R “ differentiable and that the followiny is satisfied,

lim||D(/(α,■)|| = 0 , (2.40)

where D(j{·) denotes the Jacobian ofg{·). Then there exists a matrix K  € R''̂ '̂̂  
.such that (2.33) holds ?/||e(0)|| < r and ||a:(i)|| < r, V/ > 0 for a sufficiently 
small real number r > 0.

11



P ro o f : Observability of (0, A) implies the existence of a K  G such that
Ac =  A — K C  is a stable matrix. Then we can find two symmetric and positive 
matrices P  and Q which satisfy (2.24). in a ball of radius R > 0, a Lipschitz 
constant L can be chosen to be [22, page 199],

T = sup{||79(/(.'c)|| I ||.'r||<77). (2.41)

Now choose R > 0 such that L given by (2.41) satisfies (2.3.‘3). Such an R  can 
always be found since (2.40) holds.

Note that (2.25) can be written as

¿ = (/I -  KC)x  + g(x) + KCx. (2.42)

Since Ac = A — K C  is a stable matrix, it ciin be shown that the solutions of 
(2.42) remain bounded pi'ovided that ||.'r(0)|| cuid ||a:(¿)|| are sufficiently small. 
To see this, we write the solution of (2.42) as

x(t) = e^^h'f(O) + t  e^^^^-^\j{x{r))dT + f  6\r(h)dr. (2.4;3)
Jo Jo

Staljility of Ac implies the existence of the constants M] > 0 and ó > 0 such 
thcit

< Mie-*'. (2.44)

By tciking norms in (2.4.3) and using (2.44) we obtain.

i(i) || < M ,e-“ \\x(0)11 + / '‘ M ,e-‘('-'l||i,(.T(T))||(/r
Jo

+ / ‘Mie-^('-")||/iC'||||.T(T)||dr. (2.45)
Jo

Now assume that ||.c(0)|| < n  and ||.t(Z)|| < Vt > 0. By using (2.23) in 
(2.45) one has

||.iU)l! < M,e-“ n + J ‘ _  „-«■). (2, i6)

By multiplying both sides by and using Lemma 2.2.1,

+ f  M ,L  
Jo

(2.47)

12



Вз̂  routine integration and then multiplying by e , (2.47) cun be simplified
as

where
Mi\\KC\

Ai = -, Л2 — M\.

(2.48)

(2.49)
6 -  M il

Now, the con.stant R > 0 in (2.41) could be chosen sufficiently small so tha.t L 
given by (2.41) satisfies 6 — MiL > 0. Then from (2.48) it Ibllows that ||;r|| is 
also bounded. Moreover, the existence of sufficiently small ri and V2 guarantees 
that the Lipschitz constant given in (2.41) rerriciins valid for Vt > 0. Hence 
we can se(. r = ?’2 so that, whenever ||£(0)|| < r and ||'a(/)|| < r, (2.25) is an 
observer for the system (2.21),(2.22).

R em ark  2.2.1 The condition of (2.4O) is always satisfied when the system 
description (2.21) is obtained by the linearization of a nonlinear system around 
an equilibrium, point in which case g necessarily contains at least second order 
terms.

2.2.2 Transformation to Observable Canonical Form

This section is devoted to the exposition of an observer design method for 
nonlinear systems proposed by [16]. Since we used cui improved version of this 
method in our work, an elaborate treatment of this technique is given next. 
First we need to establish a. lemma.

Lem m a 2.2.3 Let Ai,A2, 
given below,

l/(A) =

, A„ € R  and consider the Vandermonde matrix

\n—1 \7i—2
Лп An

\n—1 2

Ai 1 

A2 1

An 1

(2.50)
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Then for any cv > 0 and c > 0, there exist 0 > Ai > A2 .. .  > A„ such that the 
following is satisfied

Ai +  ^(A)||c =  —a. (-••̂ 1̂)

P ro o f : See [16]. □

Now we give the description of the observer cis a theorem in the lines of

T heorem  2.2.1 [16] Let Q{x) he the observability matrix defined in (2.14) f^̂ '' 
the system (2.12) , (2.13). Ij

H I has fidl rank [or all x 6 R ”,

H 2 L'[h(^~^(u)) is unifonnly Lipschit.z for all Ui,U2 ^ , i.e. the followiny
holds for some 7 > 0 ;

U '« i)) -  L[h{^  V ’ ''2))|| <  7ll'«i -  U2 W,

then there exists a finite gain vector K  G R" such that the solution of the 
following system equation,

ic = fix) + Q-Hx)I<{y -  h(x)), ;i-(0) = Xo

converges exponentially to the solution of (2.12) , (2.13).

(2.52)

P ro o f : Let us define the nonlinear state transformation;

= $(:r) =

h{x)

Lfh(x)
X C R ” (2.53)

U p iiix )

14



which admits inverse because of the implicit function theorem and H i. In the 
new coordinates the system (2.12),(2.13) becomes;

i  = Az + 

У -  бЬ.,

(2.54)

(2.55)

where A G B  6 C G R^^" are given by the Brunowsky canonical
form:

/1 =

0 1 0 . .. 0 0

0 0 1 . .. 0 0

, B =

0 0 0 1 0

0 0 0 0 1

, C = [1 0 . . .  0]. (2.56)

In the same way, defining z = $(;c) , the observer (2.52) assumes the form

¿ = Az + B r;h (^ -^ (z ))  + K(y -  Cz), z = ^(xo). (2.57)

Then the dynamics of the error in the transformed domain is given by

e = (Л -  KC)e + В L]h(φ-^(z)) -  1 ]/1(ф-^(.г)) (2.58)

Since the pair (C, /1) is observable, by an appropriate choice of the ieedl)a.ck 
gain matrix K , the eigenvalues of Ac = A — KC  Ccin be assigned arbitrarily. 
Now, assume that the assigned eigenvalues, A = {Ai, A2, . . . ,  A,J are all real, 
negative and distinct such that 0 > Ai > . . .  > A„,. Then the matrix Ac can l)e 
diagonalized by the Vandermonde matrix. Namely, we have

/1, = 1/-HA)A1/(A), (2.59)

where Л = (Hag [Ai A2 . · · A„]· To see this, note that

— hy 1 0 .. .  0

- h  0 1 .. .  0

’̂n—1 0 1

- K  0 .. .  0

(2.60)

15



The clicuacteristic polynomial of cun eiisily be calculated to be 

p(s) = det(a/ -  Ac) = 5” + kıs'^~^ + + ·. · + K -\s  + K,.

We know that for an eigenvalue \ i  of Ac , p(A,;) = 0 is satisfied. Namely, 

ЛГ = -k y X r^  -  k2K~^ + . . . -  kn-yK - k n ,  г = 1, 2, ,  n.

Now rewrite (2.59) as
V(X)Ac -  Л1/(Л).

The RHS of the cibove equation is a matrix given as

AV(X)

n—1A? A”
\n \n—l Л2 Л2

\n \n—l7̂1

A? A, 

X‘ A,

A). A,I

Also, the LHS of (2.63) can be calculated as

'  '£\-A;„_,AJ) a
i = l

£ ( - a-.,_,aA) а г ‘
i = ll/(A)/le =

n — 1 
1 AI A[

X‘ h

n—1

(2.6;

(2.6

E ( - ^ T - , A 1 ) A r ‘ . . .  A,̂ , A„
L j= i

By using (2.62) in (2.65), we obtain (2.63).

'i'hen we liave
=. l / - ‘ (A)e^‘ l/(A).

The solution of (2.58) can be written as

К(Л)в(г) = e^4/(A)£(0)

+ e^^^-^W{X)B [ЬЩ Ф -'[z{t ))) -  и}11{ф-Ч,Цт)))] dr. (2.67)

16



Taking the 2-norm of both sides and using H 2 and the fact that ||l/(A)/i|| = 
/n, we have

\ \ У Ш т  <  | |V '( A ) e (0 ) | |e " ^ 4  Г е " ' ( ‘ - ^ ) \ А 7 | | ^ ^ “ '(А ) | | |П / (Л )е ( т ) | | г /т .  (2 .68 )
к/ О

Now we multiply both sides by Lemma 2.2.f to write

||K(A)£(0|| < e(̂ ^+ll'"“'(^)ll^-")p/(A)£(0)||. (2.69)

Lemma 2.2.3, we can choose the eigenvalues of (A — КС) such that the 
exponent

Ai + ||С "‘(А)||\/п7 = - «  (2.70)

in (2.69) becomes negcitive. Hence we obtciin

||nA)£(t)|| < e - “‘||l/(A)£(0)||, a > 0 . (2.71)

Let <Ji > 0 and cr„ > 0 be the maximum cuid the minimum singular values of 
V̂ (A), respectively. Then we have

<T|||«|| < ||C(A)n|| <(7„||«||, V ue R'L 

Thus, from (2.71) we obtain

On

■¡howing the exponential decay of observation error. □

(2.72)

(2.73)
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C hapter 3

LIMITATIONS AND  

IM PROVEM ENTS

3.1 A Bound on the Linearization M ethod

It would be useful if we could give an explicit bound on the a.chieva.ble peidbr- 
niance l)y the linearization method, lb  do this we proceed, as in the |)revious 
sciction, by writing the solution oi the error ecpiation. First we state the tbllow- 
ing lemma, relating the maximum eigenvahu; of a sta.l)le matrix to the condition 
number of its dicigonalizing matrix.

Lem m a 3.1.1 For a matrix A G with real, distinct and negative eigen
values 0 > AI > A‘2 > . · · > A„, let T  G denote the rnatrix of eigenvectors
of A, i.e., A = TAT~^, where A = diug[ Ax A-2 ·.. A„ ]. Then the following 
inequality is satisfied,

where (Jn{A) denotes the mrnirii'urn siiigidar value of A and || · || is the niatrix 
norm induced by the 2-norin.

18



P ro o f : Let v G R ” be a vector of unity norm and fx a real number that is 
different than any eigenvalue of A. Also let r = Av — fiv. d'hen we have,

V — T A.T^'^v — fxv,
= (TAT-^ -  fil)v,

= T iA -n iy i '- ^ v ,

or

'l aking the norm,

where

V = T(A -  ^d)-^T~'r.

ı < l |Γ | | | | ( ^ - , . í ) ■ ‘IIWIIï'■‘ll.

| | ( A - ^ / )  1̂1 = m|ix(|Ai -  ')  = (min |A,· - /(|)

Thus, we have
m in |A , - H < l | r | | | | T - ^ | | | | r | | .

(;L2)

m

(3.4)

(3.5)

Now, let (v, ¡.i) be an eigenvector-eigenvalue pair of the perturbed matrix A-\-8A 
with 11̂11 = 1. Expressing this as

{A + 8A)v = /iu. (3.6)

or
8Av = A'v — /iu.

a.ji d using (3.5), one ha.s

,n m |A .-M |< ||M ||||r || | | '/ '1 - 1 1

(3.7)

(3.8)

Clioose the perturbation matrix 6 A such that A +  8A. becomes singulcir and 
choose yU = 0. Then

min I A,: I
p ^ < l | M | | .  ( « )

Since the minimum norm perturbcition to make a matrix singular is the oiui 
whose norm is equal to the minimum singuhu· Vcilue of the perturbed matrix[23, 
page 330], we finally get.

min I A,· I
ITIIIlT-ni -  '^«(^)· □ (3.10)
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Note that this rcitio can be readily identified with the ratio introduced in 
(•2.39).

A shorter proof of the same result can be given as follows; we first write 
tlic SVD of A as

/1 =

and equcii

= T’AT'-h

Taking the inverse of both sides, one has

= T h - ^ T - \

or
2-1 ^  v '̂^TA-^T-^U.

By taking norm and using the unitarity of U and V, we obtain

'' — 111 ^  11 '7'' 11 11 A — U111 ̂  ' — 111l|S -‘ l| <

or
1 < И 1Ы [  □

(3.15)

Lem m a 3.1.2 For the system

X = Ax + (j(x\ •'i’(O) = .'t'o,

y = C\r,

let the eigenvalues of Ac = A -  KC be all real, negative and distinct. Then the 
observer (2.25), (2.26) is not guaranteed to work if L > cr„(Ac), where L is the 
Lipschitz constant of g{·) and cr„(Ac) is the smallest singular value of Ac.

Proof: Here we repeat the error equation;

e = Ac6 + g{x) -  g(x), e(0) = eo,

and write the solution of (3.19) as,

20



Assuming the eigenvalues of Ac are all real, negative and distinct, we Imve the 
Jordan form of Ac as Ac = TAT~^ where T is the matrix of eigenvectors of /Ic. 
J'hen (3.20) becomes,

eit) = Te^^r-ho  + f  [g(x(T)) -  (/(a-(r))] dr. (3.21)
Jo

Taking 2-norm of both sides cind using the Lipschitz property of g{x), one has 

\ m \ \  < l | r | | | | r - ‘ ||||£ol|e"‘ ‘ +  l | r | | p - ‘ || / ‘ e^-(‘ - '> i||e (r)||< iT , (3.22)
J  0

where Ai is the eigenvalue closest to the iniciginary axis. Ap23lication of Lemma
2.2.1 to (3.22) yields,

cond(T)(L+^^)t (3.23)

where cond(T) =

||e(i)|| < co?id(r)||eo||e"

r “ ‘|| denotes the condition number of T. For the

(3.2^

exponent in (3.23) to be negative, we require that

cond{T)
> L.

By Lemma 3.1.1, the quantity on the LHS of (3.24) cannot be larger than 
ij(/b;), the minimum singular value of Ac- □

Note that the LHS of the inequality (3.24) can be adjusted by varying 
the feedback gain matrix K  cind this point rritiy be exploited in the observer 
design. The inequality (3.24) gives a bound on the Lipschitz constant of the 
nonlinearity g(·) so that the observer given by (2.25), (2.26) is guaranteed to 
provide cui estimate of the states of the system (2.21), (2.22). Hence in this 
approcich, in order to toleriite a larger class of nonlinearities, the LHS of (3.24) 
may be maximized with an appropriate choice of the feedback gain K. Below 
such a maximization is given cis cui exanq^le.

E xam ple 3.1.1 Suppose Ac G is stable and in companion form.

- k i  1

- k 2 0
(3.25)
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which can be diagonalized by the Vandermonde matrix,

V =
A 1 

aA 1
(:l.26)

wliere a > 1 and A < 0 and A , a A are the eigenvalues of A^. 'I'lien, using 
1-norm [1, page 22] we can write,

1 — aX
1 = rnax{2, | Aa A| ) ,  ||I/ ^||i =

A — aX (3.27)

The case where |A + aA| < 2 is easily ruled out by considering the ordering 
of the eigenvalues in the Vandermonde matrix. Thus for |A + aA| > 2, the 
quantity to be maximized is

6’(A,a) =
-A A — aA

||V||i||V-M|r ( l - a A ) ( l+ a ) ·

Taking the partial derivatives of C'(A,a) with respect to A,

dC{X,a) 1 ______

(3.28)

dX (1 -a A )2(l -ha)'-^’ (3.29)

we see that C(A, a) increases in the direction of decreasing A. Also the solution 
of

dCiX,a)
da

=  0,

is found to be

 ̂ “  A ’

(3.30)

(3.31)

whose mcixirnurn value is 1 -|- \/2· The gains ki and k2 are given by the formula

ki -  2A +  V2A2 -  A, ·̂2 =  Â  -f- AV2A2 -  A. 

We can calculate the maximum value of 6'(A,a) as

C '( -o o ,l  +  v'J) = ---------«  0.17
' ’ ’ (1 + ^2 )(2+ V 2)

This is illustrated below by a 3-D plot of C'(A,a).

(3.32)

(3.33)
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lambda
0 0

Figure 3.1: C(X,a)

Hence for ci suitable design we choose a = v ^ + 1  and then choose A as large 
as possible. This, of course, is restricted by the inaxirnurn obtainable gain in 
the impleinentation.

3.2 A n Eigenvalue Assignm ent Procedure for 

Vanderm onde M atrix

In the previous chapter, we intentioiicilly skipped the discussion of the eigen
value assignment scheme that is required to make the exponent of (2.69) neg
ative. In [16] it is claimed that it would be enough if the maximum eigenvalue 
in the Vandermonde matrix is chosen to be larger in magnitude than the Lips- 
chitz constant. This can ecisily be contradicted by an example. Instead we give 
an explicit eigenvcdue iissignment procedure for the error in (2.73) to converge 
exponentially to zero.
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Lemma 3.2.1 The determinant of the Vandermonde matrix is given by

Jet(V(A)) = clet
\n—l \n—2 /A 9 /A 9

A, 1

A2 1

\n—l \n—2 \ 1An An .. .  Aŷ 1

n(A¿ -  A,,). (3.34)
i>j

Proof : See [24, page 3]. □

Now we a.re ready to describe our eigenvalue cissignment procedure by a theo- 
rern. Note that in [16] 2-norm was used. However, in the following discussion

we will use oo-norm, which is defined for A € as , = rn^ax^ [a,·,·I, 
i=i

[1, page 22]. Since cdl the p-norrns are topologically equivalent in R”· [2.5, page 
258], this will make no major difference cipart from changing the Lipschitz 
constant in Theorem 1 of [16]. Also the exponent given in (2.73) will be

— cv — A i -p q j j H  (A)||oo. (3.35)

Theorem 3.2.1 Let F(A) denote the Vandermonde matrix constructed with 
the set S\  — {Aj, A2, . . . ,  An}, and let Ai = a‘“ Â for some A < 0 and a > 1. 
Then, ?[/ ]A| and a are sufficiently large, we have ||l^~’(^)||oo independent of A 
and

ln n | | l/- '(A )| U  =  l .  ( : « 6 )

Proof : We know that the inverse of a nonsinguhir rncitrix is found by dividing 
its adjoint matrix to its determinant. Let M(A) denote the inverse of the 
Va.ndennonde matrix. Then to find the element in the last row of M{A) 
we delete the last column and row of 14(A) and calculate the corresponding
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CO factor. Namely,

rnn,i - ( - 1)
¿+n

<let,(l/(A))
clet(

Ar^ A r ‘̂ A? Ai

\  7 1 — 1  

" ^ ¿ - 1

\  7 1 — 2 AL, A,-,
\  7 1 — 1  

" ^ ¿ + 1

\  n — 2  

' ^ t + l Â +i

\  7 1 — 1 \  n - 2

^ 7 1 Â Xri

It is easy to see that, the matrix on the RHS of (3.37) can be scaled to get 
another Vandermonde structure. Then using Lemma 3.2.1, one has

Aj . . .  Â _iÂ .|_i. . .  (Ap A(;)

rnn,i =  ( - 1)i-{-n
P>(]

n ( A , - A , )
P>'l

(Canceling the common terms in the products we get,

n
m,,,· = ( - 1)·+”-------- -------------

n
p>(]

(p=i)v(q=i)

Now we assign Xj = where a > 1 and A < 0,

(3.39)

i-\-n _
n « > '- ‘A
pizi

J ]  -a"-^)A '
P><]

(p=i)v((i={)

Obviously the numbers of the factors in both of the products are n — 1, thus 
cancelling A’s.

n  <·’'■'
_ / _j yt+n_________P '̂^_____________m „ , - i  i)

P>1
(p=i)v(q=i)
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or by calculating the product in the numerator, we obtciin

n~ —7?. + 2 —2r

r n n , i  =  ( - 1)
¿+n

n  («”- ■ - a ·-·) '
p>(]

(p z = i )v (q = i )

(3.42)

4’he degree of the denominator can be calculated cis the .sum of the degrees of 
ecich product term. To see the calculation, let us write out the denominator cis

Y [  ( a ' ^ - 1 =  (a " - ‘
p > n

{ p = i ) v ( q = i ) (n-O times
+ (a*-^ -  . . .  (a‘- ‘ -  1) .

(i-i) times

'L'hen we obtain,

deg n  (
P>(]

( p = i ) v ( q = i )

a'‘- ‘ -  a''-'
¿+1

n{n -  1) + {i -  f)('i -  2)

For i > 1, the degree of the denominator is greater than that of the numerator, 
but lor i = 1 they are equal. Thus one can conclude that, lor the above 
assignment procedure, the last row of will uniformly converge to

lirri rrin = ( - 1)"+  ̂ 0 0 . . .  0 (3.43)

Note that the last row of V is independent of A.

Now, we will prove the dornincinceof this last row when calculating the oo-norm 
of F “ (̂A). To do this, let us consider an arbitrary cofactor ( — 1 of
F, where j  ^  0. By deleting the row and ( n —jY''' column of F, one obtains
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Дп-1

aa-\-xn-i

^ (̂п-1)(п-1)дг1-1

Ai+i A·'-^ A
а^-Ид./+1 a A

^(¿-1)0 + 1)д.7-|-1 а(‘"|)('-^)Д^-1
„¿(.7 + i)Ai + l (РЬ-1)д./-1 a‘X

^(п-1)(.7- 1)д -̂1 a'^-\

(Jonsiclering the definition of the determinant of a matrix, to calcuhite the 
determinant of we pick n entries no two of which lie in the same column
or row and multiply those to get cin element in the summation that we carry 
out over all possible permutations. A Ccireful inspection reveals that the degree 
in A of the determinant of K(7i-j) is least one less than the degree in A 
of the determinant of V̂ (A) beca.use a row and ci column are- missing in the 
multiplications. Hence,

deg^(det(K(n-i))) < tlegA(det(l/{A))),

which implies tluit,
lin, = 0.

(;i.44) 

(3 4-')')Л-.-0О det(l/(A )) ' ^
Hence, as |A| gets larger, all the rows of H “ ^(A) other than the last row uni- 
I'ormly converge to n zero-row vector. Then for |A| and a sufficiently large, 
the absolute sum of the hist row of H~^(A) will be clornincint. In this case 
II H “ '(A)Ilex, is given by

l|r-‘0 )IU = E
n̂ -n+2-2ta 2

¿=1
P>(!

(p=i)v(q=i)

□ (3.46)

Although it is cumbersome to determine the exact relation between A cuid 
a tor (3.46) to be Vcilid in the general Ccise, here we give the results tbr n = 2,3.
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For n = 2

and

F-^A )

V{\)  =

1
aX — \

A 1 

a A 1

1 -1  

-aA A

For 11=3

||F  |̂|oo = for a > ~Y -  1.
CL — 1 A

V{X) =

A2 A 1 

a‘̂X'̂  aX 1 

a'̂ Â  a?X 1

(3.47)

and

A'̂ (â  — l)(a^ — a){a — 1)

(a — d^)X (d^ — 1)A (1 — a)A

(id* — a )̂A  ̂ (1 — (d')A  ̂ («  ̂— 1)A'·̂

(a* — cd)X'  ̂ (cd — d̂ )X'  ̂ (a — « )̂A*

liv̂ - 1 |
cd + 1 , 2

(T T T F  > “ A-

Now we give a step by step outline of the observer design procedure;

1. Given a nonlinear single-input single-output T1 system

X = f ix ) ,

y = Hx)·,

find Q{x) by using (2.1

(3.49)
(3.50)
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2. Determine if Q(x) has rank ?r for all x G R ”.

3. If so, this means that the nonlinear state transformation ,2 = $ ( .7;) is 
invertible, where $(·) is defined in (2.14). Then, using oo-norm, find a 
global Lipschitz bound 7 on the function Lyh(^~^(z)).

4. Choose a > 1 cind by using (3.46), calculate

»  = 7 l | r - ‘(A)|U. (3.61)

!'). Assign the first eigenvalue A such that ||C nA)||oo depends only on a and

A < -10. (3.52)

The nLimber cv = A + re determines the lower l)ound on the exponential 
decay rate of observation error.

6. Assign the remaining eigenvalues as

\i = a'~^A, i = 1, . . . ,  n. (3.53)

7. Determine the gain vector K  by using

■s"' +  ̂ + . . .  + kn-is + kn = (s — A| )(s — A2) .. .  (-S — A,,,). (3.54)

and K  = [A)] k‘2 . . .  kn]^.

8. Construct the observer as

= fix) + [Q{x)r' l<{y -  h{x))· (3.55)

VVe conclude this chcipter by mentioning a disadvantage of the above eigenvalue 
assignment procedure. Usually the observer gciins are so high that the transient 
oscillations in the convergence may be quite damaging in practiced cipplications, 
apart from the fact that such high gains are not so easy to implement.
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Chapter 4

APPLICATIO N TO 

SYNCHRONIZATION OF

CHAOTIC SYSTEMS

Kxicciiitly there luis been ci great deal of interest toward the synchronization of 
nonlinear systems operating in a chaotic regime, its major applica.tion area is 
the secure transmission of inibrmation imposed on chaotic signals, 'rite non- 
periodicity of tlie chaotic signal makes it almost impossible to tap into the 
clmnnel by classical methods. On the other hand, the intented receiver of the 
information has to possess means, which, assnmedly no ea.vesdropper has, of 
(t.xtracting the inibrmation out of the chaotically moduhited signal. Apart from 
a robust synchronizing scheme, the receiver end of the communication has the 
('.xtra. knowledge of the system model that has produced the chaotic signals.

In this chapter we show that synchronization of chaotic systems can be 
a.chieved by using state observers in the receiver end. For some clmotic systems 
the results of the linecU' ol)server theory can easily be applied while for some 
otlier cases one needs to employ the obseiwer construction methods described 
in the previous chapter.
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The fact that the system operates in chaotic regime Ccui be exploited to 
facilitate the observer design. Loosely speaking, the trajectories of a, cliaotic 
system pcisses through almost all points in a bounded region of the sta.te space, 
d'his peculiarity enables one to dehne globciJ Lipschitz bounds on the nonlin- 
earities involved.

In Figure 4.1, a cornmuniccition system using chaotic signals in modulation 
is depicted. Here, s(t) and y{t) can be viewed as two states of a chaotic system. 
We modulate s{t) additively by the message signal m{t) and send the resulting 
signal f{t)  to the receiver end. Also another state y{t) of the chaotic system 
is directly sent to the receiver end through a different channel. This sigiml is 
used to reconstruct s{t) which, in turn, is subtracted from f{t) to get ci copy 
of the original message.

'rrnnsmitter

Figure 4.1; A communication system using chaotic modulation

4.1 Synchronization by Exploiting the Sys

tem  Structure

A common approcich to the synchronization problem is the one that has been 
proposed in [12, 13]. In this section we will briefly outline their method with 
an excunple. This method is based on the separation of the system into two 
subsystems, i.e..

u = ./'(«, io), 

w = <jiu,to).
( 4 . 1)

(4.2)
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(4.3)

where u G R ” , to G R ’" , /  : R ” x R™ ^  R" and ^ : R" x R™ R ”\  At 
the receiver end, we replicate the second subsystem cind call it the “response 
system”.

w = g{u,w). (4.4)

VVe assume that the state u of the first subsystem is known and is directly sent 
to the receiver end. Thus this scheme can be viewed as some of the original state 
vcU'iables driving the response system, for that rccison our origiiici.1 sj^stem is 
called the “drive system”. The two systems synchronize if the error = lu — w 
goes cisymptotically to zero.

lim ew{t) = 0.¿—>■00 (4.5)

Although the scheme may seem simple at first ghirice, there does not exist an 
explicit procedure to choose response subsystem to guarcuitee the stability of 
error system. Moreover there may not exist any plausible choice at all, see

Example 4.1.1 [13] Consider the Lorentz chaotic cittractor system

i  = -  z), (4.6)

ij = - x z  + rx -  y, (4.7)

z = xy — bz. (''l-S)

We choose the parameters a -  16 , b -  4, and r = 45.92 so that the system 
operates in chaotic regime. Then dubbing y and 5; as the response variables, 
we replicate the response system at the receiver end. Note that the first state 
variable x{t) is sent as the synchronizing signal.

y =  - X Z  + rx -  y, 

z = xy — bz.

(4.9)

(4.10)

Below is shown the convergence of the response variable y to the true state of 
the system for a typical initiiil condition cind for the above choice of parameters.
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Figure 4.2: Convergence of y{t) of the response system to y{t) of the drive 
system for the initial conditions .TfO) = 5 , ;i/(0) = 5 , z(0) = —4, ?/(()) = — fO, 
and .'¿(0) = 15.

4.2 Observer Based Synchronization

'L'lie synchronization problem described so far can also be addressed from the 
ol)servation point of view, see [26, 27]. We can take the common synchronizing 
signal to be the system output of the drive system and the response system can 
be chosen as a full order observer. Then it becomes possible to use existing 
observer design strategies for the purpose of synchronization. Besides, tlie 
system output is not a priori defined for chaotic systems. Hence one can t.ailor 
an output such that the observer design is facilitated.

Another peculiarity of the chaotic systems is that, since the trajectories 
always remain in a compact region, we can alwciys find a global Lipschitz bound 
on the nonlinecvrities involved. Thus the observer proposed in the previous 
chapter works globally whenever a diffeomorphic transformation to Brunowsky 
canonical form can be found.

In the following discussion, we first expose the simplification of the observer 
design for two classes of nonlinear systems, then the nonlinear state transforma
tion method is applied to Rossler and Lorentz systems and the Chua oscillator.
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4.2.1 System s in Lur’e Form

We consider the class of systems having the structure shown in Figure 4.3. 
Here L(.s) represents the transfer function of a single-input single-output LTI 
system cincl ?i(·) : R  ^  R  is a rnernoryless nonlinearity. This is the well-known 
Lur’e form which have been heavily investigated [1] and is known to exhibit 
chaotic behavior for certain cases. Such a system can always be synchronized 
using a global observer. We assume that L(ii) is a strictly proper transfer 
function, then we can find an observable realization (A, B, C) of L(s) such 
that L(s') = C{sl  — A)~'^B. Rewriting the system description in state space,

X = Ax — Bn{y),

y = Cx,

(4.11)

(4.12)

we choose the observer as

X — Ax — 

y = Cx.

i.{y) + l\{y - y ) , (4.13)

(4.14)

lence the error dynamics is given by

e = /R.£, (4.15)

where, by the observability of {C,A) , Ac = A -  K C  can be chosen to be a 
stable matrix with an appropriate choice of K. The idea is just the design of 
observer for a system that is linear up to output injection.
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Example 4.2.1 Let L(ii) and ?г(·) be

L(.s) = - 1
•S'* + ¿¡2 + 1.25s’ ■n(rj) =

- k y  \y\ < 1

2ky -  2k sgn(?/) 1 < |j/| < 3 

3k ssniy) l?/l > 3

(4.16)

with A; =  1.8 . This s.ystem is known to exhibit chaotic behavior for this set of 
parameters [28]. Realization is given by

0 1 0 0

A = 0 0 1 , B = 0

0 -1.25 -1 1

, 6' = [ 1 0 0 ]. (4.17)

Below is shown the system’s chaotic behavior cirid the exponential convergence 
of the observer states to the system stcites when the observer is as described 
above. The feedbcick gain is chosen as K  =
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Figure 4.4; (a) The chciotic behavior of the system. (b)-(c)-(d) System and the 
observer states for :c(0) = [1, —1, —0.1]  ̂ and :i'(0) = [—2, —2, f]^

Example 4.2.2 The well-known Chua’s Oscillator circuit [29] can also be rep
resented in Lur’e form. The state equations are,

Ro 1Xi

1 G G
•̂’2 -  -T T ^l “  7T®2 +0 2 ^2 ^2

G G
X3 — ^2 •2'’3 J_ '·

where xq = %l , ‘x-2 — '̂ 2 , X3 = > and G = The nonlinear resistor is
described by ir = / ( vr), where /  : R  ^  R  is a three segment piecewise linear
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R=-

Figure 4.5: Cima Oscillator

N„

function given as

=  G2X3  +  0 .5 (Gri —  G 2){\x 3 -\- E \  — I.T3 — i?|),

and Gy < 0 , G'2 < 0 , jF > 0 are some constants.

If the output is chosen as ij = X3, the system is already a reiilization of 
Lur’e form with

A =
L - 1 X2 0 0
1 G g_ , E  = 0C'2 C2 C2

0 G G 1
C'l Cl J - c ,  .

, C = [0 0 1], (4.22)

and
n(i/) - Giy +  0.5(G'i — G'2)(|î/ + E\ — \y — E\). (4.2·])

For the simulations, to facilitate the numericcd integration, we define a new 
independent variable r  = and scale Xy by After these changes the 
system is rewritten as {Ro = 0)

Xy =  - / 3x 2,

X2 = ;ci — X2 + X3,

X3 - ax2  -  a x s  -  t t /X-'î-'s),

where cv =  9r and 8 = ^ .  The linear part of this system is observable 
if a  /  0. We choose the parcuneters as Gy — 0.8 , G 2 = 0.5 , cv =  8 , 
¡3 — 11, E = 1, and G  - 0.7. When we give excirnples of observer design

(4.25)
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by nonlinear state transformation, we will see tlicit the Chua’s oscilhitor also 
satisfies the necessary conditions for such a diffeornorphic transformation to 
exist, see Example 4.2.7. Now, we give the simulation results for the above 
design with K  = [ - f , | ,  -1]^.

(b)

Figure 4.6: (ci) The chaotic behavior of the Chua Oscillator. (b)-(c)-(d) System 
and the observer states for .t(0) = [0.1, 0.1, 0.1]̂  and ¿(0) = [—2, —2, 2]̂

38



4.2 .2  Forced O scillators

( 'onsicler an n*'’’ order differential equation

(4.27)

where F  is a differentiable function of its arguments. Van der Pol and Duff
ing s,ystems are two examples of the above type displaying chaotic behavior. 
(Jhoosing ;ri lo and Xi = , i = 1, 2, , we write the state space
representation of (4.27) as

X = Ax -h Bg{x) -\- Buy (4.28)

where

A =

0 1 0 

0 0 1

0

0

. . .  0

. . .  0

0 1

0

B  =
0

1

, ,</(-c) = -F {x ) ,  u = h{t).

With the choice of output y — x’x, the above representation is in the 
Brunowsky canonical form of previous chapter. Hence the eigenvalue assign
ment procedure described therein can directly be applied to design the observer 
a.s

X — Ax  4- Bg{x) + Bu + K{x\ — ;ci). (4.29)

'rtns observer has been used in [30] to design controllers for the purpose of 
driving following two systems to stable limit cycles.

E xam ple 4.2.3 As a first example of this type, consider the following forced 
Van der Pol oscillator;

X 4- d(x^ — 1)7; X = a cos wt + r(f). (4.30)

It was shown in [31] that lor various values of d , a and ro, this oscillator 
exhibits a large variety of nonlinear phenomena, including chaos. This system 
is in the form given by (4.27) with

Fix,  i )  = d{x^ -  1)4’ + ;r. (4.31)
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Transforming to stcite space coordinates cind choosing y = rct, we obtain

¿1 = x-z, (4.32)

¿2 =  —d{x^ — l )x2 — X i+ acosw t  + r(t). (4.33)

VVe note that, although the nonlinearity is not globally Lipschitz, the solutions 
vvliich are of interest to us remain in a bounded convex region ii, of the stcite 
s|race. Thus a Lipschitz constant can be found by

wliere

7. = sup||V/(,T)||co,
xeii

ere, /(.'!’) = —d{x\ — l)xz — Xi- Proceeding this way.

(4.34)

l| V /(x )| U  =  II
—2clxiX2 — 1 

-d{x j  -  1)

ind
L = supmax{|2da:i.T2 + 1|, \d{xl — 1)|}.

(4.35)

(4.36)

For a pcirticulcir trajectory with d = 6 , a = 2.5 , w = 3, we inspect the plmse 
portrait of (4.32),(4.33) to set L =  241, then we arbitrarily pick a rcitio r > 1. 
The first eigenvalue is chosen such that

A ] — A --------~L
V —

(4.37)

and the second eigenvalue is given by A2 = rA. Finally the gains are found by 
ec] iiating

+ k\s + kz = (.s — Aj)(s — A2). (4.38)

So, choosing '/’ — 4 and A = —403, we find A2 —16f2 , AT = 2015 , k l  — 
649636.

One can use this observer to design a state feedback for the purpose of 
eliminating chaos. Using the bifurcation diagram given in [31], it can be seen 
that for certain different ranges of the parameter d , the system exhibits chaos 
or limit cycle. Hence effectively changing the vcilue of this pai'cimeter with state 
feedback of the form rit) = dfix j  -  l)rc2, the system belmvior can be changed 
from chaos to limit cycle, with the new parameter being d„, = d — dj. For 
the present example, the bifurcation diagram reveals that when d = 6 , the
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system oi^erates in chaotic regime, and for d — 0.5 , we have a limit cycle. Tims, 
choosing dj = 5.5 we achieve the desired change. When the feedback states are 
taken from the observer, a nordinear feedback of the form r{t) = 5.5(x'f — l)x2, 
still drives the system to a stable limit cycle, see [30]. In the simulations both 
the chaotic regime and the limit cycle are shown. Note that the convergence 
of the observer stcites to the system states is quite fast while we luive a hrrge 
overshoot in £2·

( h )

0.04 0.06
time

(d)

Figure 4.7: (a) The chciotic behavior of the Van der Pol forced Oscillator, (b) 
The limit cycle when the observer-state control is cipplied (c)-(d) System and 
the observer states for .'c(O) = [0, 0]'̂ ' and ¿(0) =  [1, 1]'̂ .
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E xam ple 4.2.4 Our second example for forced oscillators is Duffing Equation 
which is used to model different natural phenomena, see [32]. It is described 
b.y the differential equation

X +  üqX + ciix + a,2X̂  = <7 cos ivt + r{t). (4.39)

The bifurcation structure of this system with respect to pcirameters ciq , rq , 

0,2 can be found in [32].

The state space description of Duffing equation iIS

Xl — X2,

X2 = —aoXi — aiX2 — ci2xi  + qcostot + r(t).

(4.40)

(4.4f)

Although the observer design scheme of the previous example is quite applicable 
here, we note that the system becomes a realizcition of Lur’e form when ;ri is 
chosen as output. Then the observer given by

= X2 + k i ( y - x i ) ,  (4.42)
£-2 =  -cioxi -  CI1X2 + k2(y -  Xl) -  «22/'̂  + q cos wt + r(t) (4.43)

works globally and converges exponentially to the true states. With appropri
ate choice of ki and A.2, we can place all the eigenvalues of A — K C  on the open 
left half plane. This is always possible since the pair (C, A) with

A =
0 1

-ao - a i
, C = [ 1 0 (4.44)

is ol)servable whenever ciq ^  0. The pcirameters cire chosen such tha,t the 
system operates in chaotic regime, ao = 0.25 , ai = 0.2 , íí2 — 1 , q = 7.5 and 
w = 1. Then by choosing the gain vector K  such that A — K C  is stable, we 
construct the observer (4.42),(4.43). Here we give the simulation results for

i< = [ f · t í )·'· “ ‘<1 ’·(') = 0-
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(a)

Figure 4.8; (a) The chaotic behavior of the Duffing system, (b)-(c) System 
and the observer states for ;c(0) -- [2, 2]'-̂  and ;c(0) = [—3, — 1]^·

4.2.3 R ossler and Lorentz System s

E xam ple 4 .2.5 A common test system for the performance of synchronization 
schemes is the Rossler system,

;ci = -X 2 -  X3-, (4.45)

.'C2 = Xi +  ax2 , (4.46)

=  -CX3 +  X1X3 +  6. (4.47)
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This sз^steın exhibits chciotic motion tor certain range of parameters a > 0 , 
/> > 0 , c >  0, [13].

We first try y = Xi. Using (2.14),

d
Q(x) = -¡- = -rax dx

Xi

-X-2 — X3

—xi — ax2 +  CX3 — X1X3 — b 

0 01

0 -1  -1

— 1 — X3 —a c — xi

which is singular lor a;i = a + c. Thus, the sufficiency conclition of global 
observability is not met for this choice of output since x = ^(x)  is not a 
globally invertible transformation.

This time, we choose y =  X2· Then $(.t) becomes (the constant input b can be 
ignored)

.T = Tx,  (4.48)
X2 0 1 0

4>(.t) = xi +  ax2 z= 1 a 0

— X2 — X3 T CIX\ T oî X‘2, a — 1 + -1

and d^
Qix) = —  = T, 

ax
(4.49)

which is always nonsingular, enabling us to define a global diireomorphic state 
transformation by x = $(a·). In the new domain the state eqiuitions become

¿1 — -'¿2, (4.50)

¿2 = 23, (4.51)

3̂ = / ( '0 ^ (4.52)

where

f{z)  = - c z i  + (ca -  1)Z2 + { a -  c)z3 -  az\ -  az^ +  (a^ + l)ziZ2 + 2:22:3 -  «.^1-2-3.
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A Lipschitz bound on f ( z )  can be found by

L = sup||V /(·.')||^,
zeQ

(4..5;j)

V f ( z )

where is the cornpcict donuiin confining the chaotic trajectories of the system.

—2azi + (a^ + l )z2 — cizs — c 

~2azi + (a^ + — 2az2 +  z:i +  (ca — 1)

-azy + Z2 + (a -  c)

—c — 2a 

ca — 1 

a — c-¿3

+

—2a a?' 1 —a

+ 1 —2a 1

- a  1 0
=  D z ^ E .

Using (4.48) we can write

||v /(^ ) iu  < ||Z)|U||.H|oo + ||i?||oo,
< l|i> IU I|T M x |U  + l i r i u  ( i M )

Thus for a parameter choice of a = 0.2 , 6 = 0.2 , c = 5 , (4.54) becomes

||V /(;r)|U  < (1.64)(2.16)||.t |U  + (5.4)
= (3.5424)||a;|U+ (5.4) (4.55)

Hence the Lipschitz constant L can be found by replacing ||.c||co in (4.55) 
by the maximum absolute coordinate of the trajectories. Inspecting a typical 
ti'cijectory we find a bound on the maximum absolute coordinate as ||.'c||c<,. < 18. 
Thus the Lipschitz constant Ccui be assigned L = 70. Picking a ratio a = 3 and 
using (3.48) we obtain

V  +1
= 2.5

(3 -  1)2
Hence the largest eigenvalue Ai is assigned such that

(4.56)

Ai =  A < -(70)(2.5) -  -175. (4.57)

Let us choose A = —180. Then we obtain X2 = aX = —540 cincl A3 = a^X = 
— 1620. The feedbcick gciin matrix is calculated using (3.54) as

ky = 2340, k2 = 1263600, ¿3 = 157464000. (4.58)

Below are shown the simulation results for this choice of gains.
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Figure 4.9; (a) The chaotic behavior of the Rossler system (b)-(c)-(d) System 
and the observer stcites for .'c(O) = [1, 1, 1]  ̂ and ;r(0) =  [1.1, 0.9, 0.99]^.

0.04

E xam ple 4 .2.6 Consider the system described by

¿1 = -fiXx + X-iX·!·, (4.59)

¿2 = -ax2  + (XXZ·, (4.60)

¿3 = -pX2 -  X-i -  XiX2·, (4.61)

cdso known as the Lorentz chaotic attractor. When the output is chosen cis one 
of the states, y = ,t,:, i = 1, 2,3 , it can be shown by some lengthy but routine 
calculations tluit the state transformation defined in (2..53) is not invertible.
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But hou’e, we would like to stress an interesting observation that we obtained 
through simulations. For cill of the chaotic systems thcit are investigcited in our 
work, we noted that the observers designed by considering only the linear part 
of the system perform globally converging state estimation. Namely, given a 
chaotic system of the form

X = Ax + g{x), (4.62)

y = Cx, (4.63)

where y{·) contains only nonlinear terms, the observer

X = Ax + g(x) + K{y -  Cx) (4.64)

works globally for Ac = A — K C  stcible. Hence we are led to conjecture that 
such an observation scheme is always valid for chaotic systems. Although the 
behavior of the chcvotic systems is not well-understood for the present [33], there 
have been reports that chaotic systems may have superior properties that can 
be employed in control applications [34, 35]. Further developments in this field 
may reveal the underlying ¡paradigm which, as it seems, enabled us to simplify 
the observer design for chaotic systems. If our conjecture turns out to be true, 
then such an observer design would be quite a simplification, considering the 
pathologically high feedback gains that is obtained in the design using the 
nonlinecir stcite transformation to observer canonical form [36].

For now, we give the simulation results for the Lorentz system. The system 
is separated into linear and nonlinear parts as

X = Ax + g{x), 

y = Cx,

(4.65)

(4.66)

where

0 0 X3X2

/1 = 0 — (T a , 9 {x) = 0

0 p - 1  _

, C =  [0 1 0]. (4.67)

Note that with this choice of output y — X2, the pair iC,A)  is observcible. For 
the pcirameter set u = 10 , /d = |  and p =  28 , we assigned the three eigenvalues 
of Ac = A — KC,  real, negcitive, and distinct by choosing K = [0, ^ ] .
Below cire shown the simulation results for this choice of giiins.
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(a) (b)

Figure 4.10: (a) The chaotic behavior of the Lorentz attractor (b)-(c)-(d) Sys
tem and the observer states for a:(0) = [5, 5, -4]-^ and :c(0) = [ - 2, -3 , 4] .̂

E xam ple 4.2.7 {Chua Oscillator revisited) We have already seen that with 
the appropriate choice of the system output, Chua oscillator can be represented 
as a rccilization of a system in Lur’e form. This example shows that it is also 
possible to transform the systeim by a diffeornorphic change of coordinates to 
observer Ccuionical form. Let us rewrite the system equations

:r 1 ¡3x2̂ (4.68)

X2 = a;i -  X2 + .̂ 3, (4.69)

;i'3 = CYX2 -  axs -  ^/(.г·з), (4.70)
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and choose the output y = Xi. Then using (2.53), the coordinate transforma
tion is given by

Zi =  X y ,

-¿2 = -^a,-2,

23 = -i^Xi + ftx2 -  /3x:h

(4.71)

(4.72)

(4.73)

or

where

Hence

T

Q{x)

z ■- Tx, (4.74)

1 0 0

0 0 (4.75)

-/3 -1^ .

d^ix)
dx

= T (4.76)

is nonsingular whenever ¡3^0 .  This corresponds to the condition that ^  0 
which is trivially satisfied.

After some routine but tedious algebraic manipulations the system equations 
in the new coordinates can be obtained as

¿1 =  ^2, (4.77)

¿2 = ^3, (4.78)

¿3 = g{z), (4.79)

where

[z) =  -aidzy -  f h 2 -  (a -h 1)^3 + -  -.^3). (4.80)

A Lipschitz bound on g{z) can be found as

L  ■= sup ||V.(/(i
zeR"

-a /J  -  f /'(■)

_ - ( a  +  1) -  g / ' ( · )  J

(4.81)
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Using the tact that |/^(·)| ^  , tor the set of pai’cimeters G\ =  0.8 , G'2 = 0.5,
cv = 8 , ^  = 11 , G' = 1, and G - 0.7, the Lipschitz constant can be assigned 
as L — 189. Note that, although the nonlinearity is not differentiable at two 
points, this poses no problem in the assignment of the Lipschitz constant. 
Picking a ratio a =  .3 and using (3.48) we obtain

+ 1
T = 2.5(3 -  1)'̂

lienee the largest eigenvalue Ai is assigned such that

Ai =  A < -(189)(2.5) = -472.5.

(4.82)

(4.83)

Let us choose A = —475. Then we obtain X2 = aX = —1425 and A3 - a^X = 
—4275. The feedback gain matrix is calculated using (3.54) as

h  = 6175, h  = 8799375, h  =  2.89 x 10^ (4.84)

Below is the sirnulcition results for these unusually huge gains.
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(a)

0.015

(c) (cl)

e4.11; fa
and the observer states for x(O) — [0.1, 0.1, O.!]·“ and x(0) =  [—1, 1, —I]·“.
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Chapter 5

A N  OBSERVER W ITH  

G R A D IE N T  UPDATE

In this chcipter we examine the possibility of adapting the gradient descent 
algorithm to observer design. The observer discussed in the previous chapter, 
like many existing observers, is a replica of the original system with the additive 
injection term calculated using the error between the outputs of the system and 
the observer. Namely, given a single-input single-output TI nonlineiir system

X f ix ) ,

y == h(x),

tlie observer is constructed as

X  = f i x)  -P Gix)iy -  hix))

( 5 . 1 )

(5.2)

(5.3)
output error injection

Note that x = x is an equilibrium point of the error system since the injection 
term in (.5.3) diminishes when x = x. This is equivalent to assert that if

(5.4)

then

— ’̂(̂ o) 0̂ ^ R-i-

xit) — xf i) for V/ > ¿0. (5.5)
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Another observer form that satisfies this condition might be

y{x) -  cj{x)
X  =

xj{x) -  (j{x) m ) (5.6)

wliere g : R ” —> R  and K  G R"^” are the parameters to be chosen in the
design such that the error system is stable. In order to overcome a possible
singularity at x =  x =  0 , g{·) should be chosen such that ,(/(0) ^  0. Note that 
while we have an additive injection in (5.3), in (5.6) dynamics are modified by 
a rnultipliccitive term.

Now consider the system given in (5.1),(5.2). Choose the observer as

X = F{x,xj), (5.7)

y = y{x),  ( 5 -8 )

where F : R" x R  —> R" and g : R ” —> R  are to be determined later in the 
cuudysis. Let us define the output error as

=  l(y - yf- (5.9)

We would like to update the observer state in the opposite direction of its 
contribution to the output error defined above. To do this, we calculate the 
directional derivative of the output error with respect to the observer states.

dso  d ij
= - ^ \ y - y ) ^ox ox
= -[/i(a;)-<?(·^)] V<7(x·)·

Then, we choose the observer dynamics as

i  = S [h{x) -  <yf(x)] Vg(x)

where E = diag[(7i, <T2, . . . ,  fn] «md cri > 0 are constant scalars. 

To satisfy the equilibrium condition we should have

F{x, h{x)) = f ix )

(5.10)

(5.11)

(5.12)

or
'B[h(x) -  g ix)]^g ix) = fix ) .

(5.13)

(5.14)
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We see 1,licit (5.14) is a system of nonlinear partial differential equations with 
/(·) and h{·) known and ^(-) to be solved. Also note that S brings n free 
parameters.

Assuming (5.14) has ci solution go(x) , the observer becomes

h{x) -  go{x)
X  = m ) ·li{x) -  go{x)'

Note that this observer hcis the form given in (5.6).

(5.15)

Although the existence of a solution for (5.14) seems unlikely for all /(·) and 
/i.(·), it may still be possible to obtain plausible simplifications by narrowing 
down the class of nonlinearities involved. This issue together with the stability 
problem of the error system will be investigated further in a future work.
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Chapter 6

CONCLUSION

In this work, we addressed the problem of synchronizing cluiotic systems from 
the nonlinear observer design point of view. A solution to this problem is pro
vided for some classes of nonlinear systems scitisfying some mild requirements. 
In doing this, properties of chciotic systems is exploited in order to simplify the 
observer design.

Observer design is achieved by first transforming the nonlinear system to 
observer canonical tbrm and then choosing the output error injection gciins in 
this transformed coordinates. An explicit eigenvalue assignment procedure is 
given in order to choose the gain vector. This procedure is incoiq^orated in a 
step-by-step design scheme.

We provided a restriction on the class of nonlinearities for which the linear 
observer design paradigm is guaranteed to yield exponentially decaying errors. 
For this, we derived a bound on the ratio of the minimum eigenvalue of a 
matrix to the condition number of its matrix of eigenvectors.

In applying the above nonlinear observer design techniques to the synchro
nization of chaotic circuits, we noted that for certain widely known chaotic 
systems (e.g. (Jhua oscillator) the system output can be chosen such that the
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system becomes linear up to output injection, which admits simple globcil ob
server. Besides, based upon the simulations we carried out, we conjectured 
that linear observer design schemes are directly applicable to nonlinear sys
tems operating in chaotic regime. Such a technique does not sulFer from the 
shortcomings of the observer based on the nonlinear state transformation to 
observer canonical form.

In the latter design, observer gains are unusually large which may cause se
rious problems in the actual implementations. Moreover, the system structure 
shoidd satisfy certain requirements in order for the transformation to e.xist. 
However, the former design does not involve any state transformation.

Finally we proposed a gradient descent observer for noidinear systems. Al
though restrictions imposed in this design seem rather stringent, this topic 
can be further investigated by narrowing down the class of nonlinear systems 
involved.

Another topic of further research is the issue of finding the underlying 
behavior of chaotic systems that led us to conjecture that the linear observer 
techniques can be applied for this class of nonlinear systems.
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