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A b stract

:iATION OF CLEAN AND 
EPI-GROWN SI(OOl) SURFACES USING SCANNING 

TUNNELING MIC:R()SCX)PY

II. O'/gi’ir ()'/('!·
M. S. ill Physics

Sii|)<'i vis()i·: .Xssoc. Prof. Rccai I'illiall ioi';Iii 
J a i i i u i r v  1 9 9 G

III ( liis lİK'.sis, cl('aii and <‘|)i-grovvn Si(üü 1 ) (2x  I ) suriacc's ai(' aııalysc'd by 

Scanning 'I'nnnc'ling Micioscopy (S'l'M). 'I'lu' S'l'lM and IMlra High Vacuum 

SysicMii (UH V) in which thc' microscope is installed, are dc'scrihed. A brief history 

of the studic's on the' rc'coristruction and ruudamental leaturc's of the Si(OOl) 

surface is also given, f'irst, the sample and tip |)rc'paration technicpies were 

optimized. Sample prc'paration method, which inclndc;s both e.v situ chemical 

and in situ heating clc'aning procedures, was found not to give routinely the 

clc'an and atomically flat surfaces, because of the criticality of the' temperature 

values used during heat treatments. The monoatomic steps, dimcM' rows, delects 

such as missing dimer and dimer groups, were observed on clc'aii Si(OOl) surfaces. 

Double height step formation due to contamination was also detc'cted on a few 

sa.m|)l('s. Buckling of dimers which is bcdievcxl to bc' due mainly to either the 

high dc'fect density or tip-surface interaction, was observeebon one sample. Si 

and Ce were grown epita.xially on the silicon substrate, with 0.1 I ML and 0.2 ML 

coverages, respectively. 'Flie Si growth on Si(OOl) was found to occur as island



lomiation because of the low substrate teruperature (~  .’lOO °(') . Strong shape 

anisotropy and diilusional anistropy in the grovvtii have been observed. On tlie 

otiu'r hand, th(‘ large coverage of Ce on Si(OOl) at a relativ('ly high substrate 

t('m|)('ra.tui(' ( ~  hOO °( ') ,  ar(' r('sult('d in step How growth ratlu'r than individual 

island rormatioii on the t('irac('s.

K ey w o rd s : Scanning 'runneling Microscope, Ultra High Vacuum, 

Si(001)(‘2 x i )  reconstruction, Epitaxial growth.
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t e m i z  v e  ü z e r i n e  e ş ü r g u s e l  t a b a k a

BÜYÜTÜLMÜŞ SI(OOl) YÜZEYLERİNİN TARAMALI 
TÜNELLEM E MİKROSKOBU KULLANILARAK ATOMİK 

DÜZEYDE İNCELENMESİ

H. Özgür Özer 
Fizik Yüksek Lisans

Tez Yöneticisi; Assoc. Prof. R.ecai Ellialtioğlıı
Ocak 199C

Bu tezde, teiniz ve üzerine eı^örgüsel tabaka büyütülınü;^ Si(ÜÜ 1 ) (2 x  1) 

yüz(\yl('i'i daraınalı 'Füıu'Hi'me Mikroskobu (Td'M) kullanılarak ineekMiınifjtir. 

'r'FM V(' onun i(,’ine yiM'leijtirildiği Ultra Yüksek Va.kuın Sistemi ayıklanmaktadır. 

.'\\U'ica, Sİ(OOl) yüzeyinin yc'iıidi'H yapılanması V(> teııu'l özellikleriyle ilgili 

yalnjimılanıı kiMiı bir larilıyeHİ tle verilmektedir. İlkolnrak, örnek ve iğıu' lıazırlaıııa. 

tc'knikleri optimizi' edildi. Hem sistem dusı kimyasal İkmii d(> sistem iyi ısıtarak 

temizleme jırosedürleri iyeren örnek hazırlama yönteminin, özellikle ısıtmada 

kullanılan sıeaklık deği'rh'rinin kritikliği yüzünden, düzenli bir ijc'kilde tcMiıiz ve 

atomik seviyede düz yüz(\yler vermediği görülmüijtür. 'I’emiz Si(ÜO 1) yüzeylerinde 

bir atom yüksekliğindeki basamaklar, yiftil sıralar, ('ksik yil’til V(' yiftil grupları gibi 

kusurlar gözlenmi.'îtir. Kirliliğe bağlı yift atom yüksekliğindeki basa.mak ohujumıı 

da birkay örnekte ortaya yıkarılmii t̂ıı·. Balalıca sebebinin yüksek kusur yoğunluğu, 

ya da TTM  iğnesinin etkisi olduğuna inanılan yirtillerin a.simetrikle.' ĵmesi olayı da 

bir öriK'kte göriilnıüstür. Si ve Ce silisyum ana yü/(‘yi üzi'riıu', sırasiyla 0.11 ve

m



'5.2 ınoiK)-tal)aka.la.rla., ('sörgüsel olarak l)üyiitiilıniistıir. Si’uıı Iniyümesi, clüfsük 

ana yüzey sıcaklığıiKİaıı 3ÜÜ °(.') dolayı, ada olusuııuı ‘peklinde'gercjcvkk'i^nıifstir. 

Büyümede yöıı bağımlı ya|)ilanma ve yayılma tesi)il, edilmi.st ir. Diğer yandan, 

g()r('e(' yüksc'k sıcaklıkla (~  üOO °(') <;ok miktarda (¡e kaplanması, teraslar 

üz('rind(' ki'iıdi bajsına adaların olıı.':5iımıında.n (;ok basamak akımsı fs('krmd(' bir 

büyünu'yU' sonıujanımsl.ır.

A n a h ta r

sözcükler: Taramalı Tünelleme Mikroskobu, Ultra Yüksek Vakum Sis

temi, Si(001 )(2x  1) yeııid(M) yapılanma, D̂ jörgüsc'l büyüme.
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C hapter 1

Introduction

TİK' phenomciioii оГ t uiiiieling lias been known Гог more than six^y years-ever 

siiic(' th(' romuilation of (jiiantum nu'clianics. As oik' of tlu' main consequenc'cs 

of (|iia.ntiim iiK'chaiiirs, a i>ai‘i.irl(‘ slid) as an (‘l(‘etroii, whirl) ra.n lx* (h'so’iIx'd 

by a. wave rnnrtion, has a. linite pi’obability оГ ('i)t('ring a rlassirally foiTichh'D 

i4‘gion. (Jonseqiiently, the particle nuiy tunnel through a pot.c'nlial barrier which 

s('parat('s two classically ¿vllowed regions.

Tunneling phenonu'Da lias been first proposed by Oppenh('imer‘ in 1928 as 

a 14'sult of his theoretical studies on the ionization of hydrogen atoms in a 

co)istant electric (i('ld. h'saki’̂ and (¡iaver'^ were' (he first two scientists who 

obs('rv('d ('lectron tunni'ling ('xp('riment.ally, in p-n jn))(i.ions and in planar nu'tal- 

oxid('-metal ¡unctio))s, i('spectively. Tu)))i('ling of ( ’oopi'i* paii’s Ix'twi'c'n two 

supei4*onductors was prc'dicted by Josephson.'^ ddu'se three' scie'iitists rc'ceived 

the Nobel Prize in Physics for İ973, for their contributions to the investigation 

of tunneling phenomena.

l)('vic('s such as Nh'lal-lnsulator-Metal (MIM) diode's, hot е'1е'еМ)Ч)п transistors, 

supe'j’conducting (|uantum interference devices, which use tu))nermg through an 

insulating bai’rier like oxides, were clevelope'd in 1970s. llowe'ver, barriers such 

as oxides, do not permit either to change the width of the l)cirrier or to reach 

t he surface of each ele'ctrodes for surface investigations. In that rc'spect vacuum 

(amiu'ling, the most im|)ortant feature of scanning tunm'ling microscope', has

1



aiii aclvantage's.

'I'lie |)r('d<'C('ss()i· of .STM is the 'ropogra])liiner <l('veloped by Young ct al.,''’ 

the basic principle' of which is iic'ld ('mission. It. is vc'ry similar to tlu' scanning 

tnmu'rmg microscope' as far as its ope'ralion is conce'ine'el, i.e'. ii, use's a. sharp 

tip a.nel the' scanning is achie'X'e'el by pie'/oe'le'ctric translators. The' lie'lel ('mission 

cnrre'iit is ke'pt constant by adjusting the' re'lative' position of t,he' t ip to the' surface', 

llowe've'r the' late;'ra.l and ve'rtical re'solutions we're limited to 1000 Л and 30 A 
re'spe'ctively, due to I'elatively large distance l.)etvv4'en ti|:> and surface of several 

hundre'd A in the' lie'lel ('mission re'ginu'.

Te'agiu' '̂ and l\)|)pe*' have' obse'rve'd vacuum t.uniu'rmg in 107S and 1081 

re'spe'ctively. llowe've'i· Ibiinig and Rohrei* we're the' liist to use' vacuum l.unnermg 

as a. microsco|)e'. In 1082 Hiimig, Kohre'r and coworke'rs '̂'’·’ have' constiaict.e'd 

t h(‘ scanning t nnneTmg microscope' by obse'rving vaciinm InniK'ling on plal.innni 

sani|)l('s vvit.li t-ungst('ii lip. 1ч)Г this construction Biniiig and Rohie'r re'ce'ive'd l.lie' 

Nolx'l Prize' in Idiysics in I08G.

1.1 B rief Theory of Scanning Tunneling 

M icroscopy

Scanning tunneling microscopy is a powerful and a uni((ue tool for the:' 

inve'stigation of structural and ele'ctronic pro[)ertie's of surface's, in order to 

iiiid('rst-and what is measure'd by STM and inter|)re't the image's, several the'ories 

are' develo|)('d by scientists. Before trying to understand the the'ory of STM, good 

understanding of the basic principles of vacuum tunneling is ne'ce'ssary.

( ' I i i i p l c r  I .  l i l i  r o d i i c l  i o n  2

1.1 .1  V acuum  Tunneling

In vacuum tunneling the' |)otential in the vacuum re'gion acts as a barrier to 

e'le'ctrons l)etw(îen the two metal electrode's. In the casê  of S'l'M, these e'leîctrons 

correspond to the surlace and the tip. Fig.J.i shows this barrier schematically. 

The transmission proliability for a wave incident on a one-dime'nsional liarrier can



Cliiiptcr L liiimcliiction

F ig u re  1.1: Schemat ic оГ poteiilial barric'r Ье1л\чч'и elec*t loch's Гог vacuum 
I uuueliiig
The (laslicHl lines correspoiid to the t'erini levels of the electrodes. 'There is voltage 
dill(44'ii(4' V across tin' gnp.

('asily l)(̂  calculat(4l. 'Г1к' solutions of Schrckliugcu-’s (4|uatioii iiisich' a recta.iigular 

barrier in one climeiisioii have the iorm

Ф 1 /.
( I . l )

'Thus the crucial pa.ra.meti'r is л:, vvIk44'

Ir
( 1.2 )

where /'J is tlu' (Miergy of the state, and Vh is the potential in the barrii'r. in 

gi'iieral Vĵ  may not b(' constant across the gap, but- for the sak(' of simplicity let 

us assume rectangular l)arrier. In tlie simph'st cas(‘ V)̂  is tlu' x’acuum h'vel, so for 

states at the hcn’ini l('V(d, \4i — l·] is just the work runction.

The transmission probability, and hence the tunneling current, decays 

(wpoiK'utially with l)arri(M·•width d as

I oc ( — 2 к  d

For tunneling betwixui two metals witli a voltage diiler('nce V across the 

gap, only the states within eV  above or b(dow the Fermi Ic'vcd can contribute 

to tunneling. The electrons in states within eV  below the Fc'rmi lev(d on tlie 

negative side tunnels into the empty states within (V  above' the T'ermi level on



llu' |)()sitiv4' sid(\ Oihi'r sla.t(\s cannot contribut.(' ('¡I.Ikm* Ix'caiisi' there' arc' no 

('I('ct.i4)ns to t.imnc'l at. Iiighc'r ('nei’gy, or bc'caiisc' tlic'rc' is not any c'lnpty state to 

i nniK'l into at lovvc'i* c'lK'rgy.

Clinptcr 1. liitrochiction -1

1Л*2 STM  Im aging

'Пк‘ basic ich'a. iinclc'rlyin̂ ii; S'FM is cjiiit.e simple'. As illnsti-ate'el in h'ig. 1.2 a. sliar|) 

tip is brought close cMiongh to the surface' that at a e’onveniienl. ope'rating voltage, 

ty|)ically 2 mV to 2 V, a measurable tunueliiig current, typically be'tween 0.1 uA 

a.nel 10 uA , is obtaine'd. Tlie'rc' are basie*ally two mode's of ope'rat.ion of STM. 

The first and the most use'd one is the constant current mode' in which the tip is 

se'anned over tlie surface, while the tunneling current is ke|)t e*onstant by changing 

the' vertical ))osition of I he' tip with a control circuit·. The cont rol circuit achieve's 

this l)y applying suitable' voltages to tlie r; Piezo. The a.])|)lie'd volta.ge' to the 

pie'zoeh'c’tric di’ive's simply give's the' path of t he' ti|). If a. line' se'an in ,r dii4'ei.ie)n 

is e'xte'iided to many line's in у direction, an image' which consists of a ma.|) г:{л\ у) 

of the tip position versus lateral position is obtained.

In the' se'cond mode', name'ly the e’onstant height, mode', as the' name' sugge'sts 

the tip is kc'pt. ne'arly at a constant he'ight during the' se*an and the' tunnc'rmg 

e urrc'iit is monitore'd. The' control circuit only kc'eps t he' ave'rage' curre'iit constant, 

'riien a we'ighteel sum ol / anel у |)lotte'el ve'i-sus ,r lorms the' image'.

hkie’li moele' has its e)Wii iKlvautage's. ( ’onstant e/urre'iit nmele' e*an l)e' use'el to 

scan surfaces whie*h are' not atomically flat. On the' otJiei· liaiiel, the ce)nstant 

height mode allows for much faster scanning of atomically Hat surfaces since only 

the electronics, not the P,iezo, must re ŝpoud to the structure' passing uneler the' 

tip. hast, imaging is import.ant in the* se'nse* that it e'liabh's re'se'arelu'rs t.o study 

proe-e'sse's in re'al t ime, minimizing iimige distortion elue' to pie'ze)e'le'e*tric емч'е'р a.nel 

thermal drift.



( Ih llfirr I. Inf rnillirl inn

CONSTANT CUkRl-NT MODk CONSTAN'r HlilGHT MODI·:

Figure 1.2: Basic Stm
'Two modes of operation ol’ Stjn. The daslied lines are tlu' contours Followed by the tij)

1.1 .3  T heory of STM

As long as the resolution of STM is of the order of a nanonietcM* or larger, it 

is adecjiuite to interpret tlie iniage as a. surlace topograph. However, if tlie 

concc'rn is on atomic resolution images, it is not evcMi clear what is meant by 

a. i.opograph. The most reasonable definition is that a topogra.])li is a contour 

ol constant charge' (h'lisit.y. This contradicts the princi|)le of vacuum tunneling 

whicdi says only the (‘h'ctrons near the Fenni level coiitributc' to tiinneling, even 

though all electrons below the Fermi level contril^iite to the charge density. Tlie 

following theory develo|)('d J)y Tersoff and ITamamd^ is explanatory ('ven in case 

of atomic resolution.

In first orch'r pc'rturba.tion theory, the' tunneling cnrrc'nt is

E l/('v )| i -  /(fcV)l -  AKHi -  /(fi„)l)|A/,.„r'i(+ 1·' -  ii„), ( i..i)/ =

vvliere f ( E ’) is the Fenni I'linction, V is tlie applied voltage, is the tunneling 

matrix (dement Ix'tvvec'ii states (/>,, and //v of the respc'ctive (dectrodi's, and /v',,. 

is the energy of the staU' i/v· I'w pnr|)os('s, the b'ermi rnnetions can be



Chciptcr I. ¡¡itrodiicHoii

i('l)lac(Hl by their zero-t.('inperature values which an' unit step functions. In this 

ca.s(' th(' above ('((uatioin in tlie limit of small voltage', r('duc('s to

/ = -  Er).
II

( 1 . 5 )

'I'liese equations are ((uite simple. The problem is to evaluate' the tuimeliiig 

matri.K el('in<‘iits. Ilardevii“ showed thai, umh'r (('rtaiii assumptions, the 

tnniK'ling matri.x (‘lenu'iil.s can b<' e.xpressed as

//"
M,u, = ~  J d s  · (■</';v //v  -  V’.vv/.;,), ( l . G )

wli('i4' the integral is ov('r any surface lying ('iitirely within tlu' barriei· region. If 

W(' choose a plane for tlu' surrace of integration, and lu'glect tlu' variation of tlu' 

potential in the region of integration, tlien the surface wave function at this plane 

can be conveniently expanded in the generalized i)lane-wav(' form

'/’ =  J  <V<i< ''■'•c“*·̂ , (1.7

wh(‘i4' is height теаашчч! from a suitable origin at the апгГасч', and

/,·- =  /V- +  q ( 1.8)

A  similar ('X|)ansion applies for tiu' other electrode, replacing «<j with /\j, 

with ~i — and X with x  — Xj. Here X/ and r:i ai’e the laii'ral and vertical 

components of t.lx' position of the tip, r('sp(‘ctiv('ly. 'I'Ik'ii, substituting these 

wave functions into hxi.I.G, the matrix elements can be olitaiiu'd as

•l7r'̂ /i'̂
m ( 1 . 9 )

Thus given the vvav(' riiiictioiis of the surface and tip, a simple c’.xpix'ssiou for the 

t unneling matrix elenu'iit and tunneling current can be found.

However the atomic structure of the tip is generally not known. What would 

!)(' tlu' criteria in the ('stimation of the atomic structure of tIu' tip? 'There are two 

important points to b(> considered in this respect. T'irst, th<' aim is maximum 

possible resolution, hencc' the smallest possible tip. 'The thing wanted to be
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iii(‘asiii4'(l is lli(' |)го|х'г1 i('s u\ llu' 1>аг(‘ surfaca', iiol. 1 lu‘ compK'X iiil.(‘ractiiig sysUMii 

ol l ip and siii’l’acr. 'Г1к‘Г('Го1Ч', tlu' id(xvl STM t i|) would consist of a. ma.llicnia.tical 

point soni’co of ciiiTont., whose position is (hnioted Г/. ,ln that cas(% Kcpl.T) for the 

tunneling cinTC'iit r(4luc('s l.o'^

/ •xElVv(iOl'^<^(/v-/■;/.■) = /НIV,/w··)· (I.IO)

dMius tlie ideal STM w'ould simi)ly measuie р(г/, A’/.·), naiiK'ly t he local density 

of states at AV’ (LDOS). Id)OS explicitly nieans th(' charge (h'lisit.y from states at 

th(' Fermi level. The LDOS is evaluated for the ban' surface. It. doesn’t dep(Mid 

on the complex tip-sample system. The only depiMidcmce i-elatc'd t,o tlu' tip is its 

position. Therefore according to this model STM has a simph' interpretation as 

measuring a |)roperty of t he bare surface.

Movvcv(4\ 'I rrs(df I laniann 'Пк’огу is valid only lor large* I ij) sa.m|)l(* s(*para. 

l ions. 1ч)г small s(‘|)ai-a.t.ions, in oi’der t-o int(*rprc*t t he* images, a d(*tailed analysis 

of the tip sani[)le intc'raction is necessary, since the* inti'raction is strong enough 

to ailect tlie measureiiKMits. Various studies on this sub jeedT̂  have shown that 

the complex interacting system of the tij) and the sani|)l(' alleds IJk' corrugation 

amplitude.

1.2 Scanning Tunneling Spectroscopy

Scanning tamiuding spe'ctroscopy providexs informat.ion com|)l('m('nta.ry to tiu' 

information obtained in conventional topographic imaging. By nuxisuring the 

di'tailed dependenci' of the tunneling currcnit on the applied \’oltage at specilic 

loc'ations of the sam|)le, it. ispossible to obtain a mccisurc of tlu' (dc'ctronic density 

of stal.c's of tlu' sainph* on an atomic scahx If both l lu' eii('rgi(\s and th(' spatial 

locations of the electronic states are known, direct, comparisons witli the theory 

can be made. Ilowevi'r, a general theory for the use of STM for the spectroscopy 

of (dectronic surface' stat.e's has not yet been develo|)ed. Since l lu' ('Ic'ctronic states 

of the tip and their inti'raction with the sample surface' have lo  be' considere'el for 

e'ach samplotip combinatie)n, the evaluation of a. gene'ral tlu'e)ry is (|uit(' elidicult.
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TuiiiK'liiig spc'ctroscopy ill planar junctions was sliidiecl long bc'forc STM.''" 

llow('V(M·, the (l('V('lopnuMit of spatially-r(\solve(l s|)ectroscopy with STM stinui- 

laled the intc'rest in this area. Because of the difficulty of cah/ulating /(r / ,  V) in 

g('ii(M‘al, the studies mostly focused on / (K ) ,  without considi'ring th(' d('pend(Mice 

to the i)osition of tlu' tip.

Selloni et suggested that the results of Tersoff and llaiiianid^  ̂ could be 

(|ualitatively generali'/('d for modest voltage's as

/( I / )  a
J e j ,

(1.11)

wh('re V") is the barrie'r transmission coefficient, and p{E)  is t.he local density

of state's give'll by lOep 1.10 at e>r ve'ry iie'ar tJie' sui’fae*e', anel assuming a. e-e)iistant 

(h'lisity e)f state's lor t.lie‘ tip. Ilowe'vei·, this simi)le' me)ele'l de)e‘s ne)t, e*e)ine' uj) with 

a straightforward interpretation for the tunneling s p e 'c t r u m .In  particular, the 

de'rivative d l/d V  has ne) simple (le|)eiiele'iie*e on the' ele'iisit.y e)f state's +  V̂ ).

It e’an be' said that a sharp feature in the density of states of t he sample (or tip), 

at- an ene'rgy Ei' +  V', will leael to a feature' in J {V)  or its ele'iivatives at ve)ltage

I'.

However, there is a problem with the above stcite'inents. 'The' problem is the 

streing V''“de'peiide'iie‘e' e)f the transmissie)ii e‘e)e'ffie’ie'iit, 7 ’(/'T\ ’), whie’li re'sults in 

a distortion of feature's in the spe'ctrum.^·* Strose'io, he'enstra, anel coworkers *̂·* 

prope)se'el a sim|)l(' solution te) this pre)ble'iii. do e'liminat.e' the e'xpone'iitial 

ele'pe'iielence of T{.l·.\V) e)ii V" tlu'y ne)rmalize d l / d V  by eliN'ieliiig it by ¡IV · 

Therefore the (juantity d\w 1 fd\nV  is mostly useel lor identification of density 

of states in the STM re'sults.

The're' is an impe)rt-ant problem in tunne'rmg s|)e'ctrosee)py stuelie's. The 

e'h'e-tronic ele'iisity of stale's of the' tip is usually unknown, so it is not so simple' 

to extract the knowledge' of the electronic structure' e)f the' surfa.ee' from the' 

spectroscopy measurements. This problem can be e)vercome' by using the same 

tip, consec|uently having a constant background during all me'asurements.

In ae‘e‘e)i*ela.ne*e' with the' mode's e>f STM imaging the're' are' varie)us type's 

e)f scanning tunneling spe'ctroscopy. These are constant current, constant
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s('|)aration, and \'arial)l(' soparalioii s|)(4‘lroscoi\y, lo iiaiiu' a. low. SiiiC(' iii 

(‘onst anl ciiiTí'nt s|)(4·! roscopy, iii t racing llu' bias \'oll,ag(' in llu' s|)(4‘ili(4İ intcM’vab 

l\’|)ic*ally l)('l\V(4'ii two valiu's symnu'tric with 1ч\ч|)(ч1 lo zímo, i Ik' zcvo v a l u e  of 

11и‘ N'ollarc cansí's 1|к‘ lip lo rrasli inlo IIk‘ sainpl<‘, lilis iiKxl·* is (‘\p(‘rim(‘i)lally 

dilliciill lo p(*ilonii. ('uiislanl sc'pa.ialioii spt'clroscopy is Ilır rxprriiiuMilally 

mosl рг('Г(мт(ч1 oii(\ ll is rallun* simpl(\ if no spalial r('solnlioi) is wanlcnl. Al a. 

conslanl sc'paralion, llu' applied v'ollag(' is varicxl о\'('г llir spc'cilit'd inlrrval udiilc 

simnllaiH'ously measuring llu' InniK'ling enrr('iil. 11ovv('V(m\ in ord(M‘ lo eoiax'la.U' 

llû  Inimeliiig spectra with llie lopogra.pli оГ llie surfacey llie spc'clroscopy musí be 

cari‘i(4İ oul simullaiu'onsly vvilli llu' lo|)ograpliic imaging. This was first а.(‘1п('\чч1 

('xpí'rimenlally by Hamers et al.,̂ ^̂  and called spatially resolvc'd speclrosco|)y. ll 

can be done periodically at many points on the sample as well as at a lew points. 

Spatially rc'solvx'd spectroscopy is mor(' comph'xand ('xpc'rinunilally mor('difficull 

to a.chiev(', not only b(‘cans(' of the necessity of a more' complicat'd conli’ol circuit, 

but due to the need For v('ry stable STM tips, which are very diflicult to pre|)are.

1.3 STM  on Semiconductors

Scii.imiiig 'rumiHiiig Microscope can be us('d to image only nK'tals and (1ор(ч1 

si'inicondnctors, sinc(' its working principle' is th(' timiK'ling of ('l('ctrons. 

This s(*(‘iiis to b(' a limitation on tlu' applications. lIow('\’('r, with th(' ns(‘ 

of the t('clmi(iues developed For scanning tunneling microscopy, many otlu'r 

surFaci' si'iisitive instrunu'nts have b('('ii devc'loped since' tlu' iinx'ntion oF STM. 

Atomic Force M icroscope,N ear-Field Optical Scanning M icroscope,Scanning  

Tunneling Optical M icroscop e ,B allistic  Flectron limission Microscope" '̂  ̂ are 

some oF these instruments in which various intercictions are usc'd For microscopy 

to analyze dilFerent physical properties.

Since' its invention, STM has became a wielely used instrument te) investigate 

s('miconelue‘tor surfaces. This is not just be'causc' e)F the ре)\\ч'г e)F STM or the 

iH'ex'ssity to inve'stigate' the topographic anel electronie* propertie's oF the'se surFace's 

on an atomic scab', but elue to a ])roperty oF th('S(' surFaei's that make's the'in
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\('гу suilabh' sani|)l('s loi· STM moasiii4'in(Miis, as \\ч'11. 'ITis |)Г ()|)( 'г1 ,у  is tlu' 

i('coiislrii(‘t,ioii of bulk liM iniiiatccl semicoiKİuclor surlaci's, vvliicli will b('(liscııss(4İ 

ill (l('lail ill (TapUM' .‘b  H('(4)iisti-ii(‘l.i()ii of I. Ik ' surfaci' r(\siilts in l<irg(' cori'iigalioii 

(Я1 t,li(‘ sıırfaci', as larg(‘ as a IV'vv Л. 'Tlu'Si' larg(‘ (4;rnigation ampliliuli's аг(' V(M\y 

('a.sy to (let(4*t with STM and can Ocvsily be соп\чм1(ч1 into an illustrative gray 

l(‘\4‘l imag(.\ TİK're are other features of seinicondiictor siirfac('s, sncli as dimers 

and steps, that hav(' rcdatively larger lateral sei)arations, wliich also makes the 

surface properties to Ix' ('asily resolved. On the otlu'r hand tlu' reconstructed 

s(Mniconductor surface may exhibit consid(M*al)le loc’al dilferiuices in eh'ctronic 

stnictui’i'. Ih4*a.iis(‘ of the rc'asons stati'd abovay s('mic‘ondiiclor surfaci's ai4' 

us(4İ as mod('l systcMiis for the development of scanning tuniK'ling microscopy 

tc'chnicjiies. Besides, surface science has also gained much about scmiiconductors 

wit h th(' usag('ofSTM. Ih'iiceit can be said that STM and scMiiicoiiductor surface's 

had a. mutual scie'iitihc lile.

In t.li(' last. 20 ye'ai's, se'iniconduct.or te'dmology has also gaiiu'd an acce'h'i’at.ion. 

Silicon basc'd integraii'd circuits, especially, have Ix'c'ii (h've'lope'd with very high 

yic'ld. Iloweve'r, the' t-c'clmological thirst foi* faste'i* and smalh'i· (h'vices ('iiforcc's 

scii'iit ilic i4'S('arch on se'iniconductors. Side' and C!a As lu'te'rost ruct ure's have' 

Ix'gun t.o lorm th(' liasis ol high-spe'ed se'miconduc'tor t.e'chnology. It. is we'll 

unele'rstoexl that, t.e) ine*re'ase' the eiuality anel spe'e'el e)f he'te'i4)structure baseel 

ele'vie'e's, ve'ry thin laye'is, soiiu'time's e)idy a. lew nmimla.ye'rs e>f strue’t.ure's are' 

lU'e’e'ssai’y. This e*an be' ae’hieve'd with Me)le'e*ular Be'ain Kpitaxy anel re'hite'el 

t.ee*lmic|ue's . However, almost all semicondiict.e)r surfaces cont ain single atom high 

st.e'ps separated by few hundreds of Л. Tims without processing of the surİace, 

it is impossible to obtain atomically flat layers having honmge'iious thickne'ss(?s. 

'This pre)ble'in binigs t he iie'ce'ssity te) inve'sl.igal.e' l-lu' se'inie4)ndiie t.e)|· surla.ce's anel 

e'pit.axial growth at. an at.e)mic le've'l. The aim is to eh'e-re'ase the' numbe'r e)f ste'ps, 

which will allow homogenous growth of hiyers on substrates. By using STM it 

is pe)ssible' to e)bse'rve' the' me'chanisms of growth, aiiel to unele'rstanel the' gre)wth 

conditions giving the best surfaces. By association of MBB anel STM systems, 

ev<4i real time* image's e>f ('pil.a.xial gi4)Wth can be' ae4|uire'e|.
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In lilis t.İK'sis, \V(‘ аМ('іП|)1(ч1 lo iiiv(\sliga.l(' Ιΐκ' сКчііі and Si/ (! ('  gi’ovvn 

Si(UUI) snrfac'os using S'PM. SainpK'/lii) річ'рагаііоп nuMliods, Sd'M a.naJysis 

of Si(()01 )(2 X I ) i4M4)nslnıci.(4 İ siii-fa.(4' and Ιΐκ' iirsl. r(‘snlls of Si/C!(' grovvlli on 

Si(OUl) arc prcs(nıl(4 İ. ΊΊιο insirumcnis, iiiainl}' ΐΐκ' IMIV-S'TiM sysUnn, аіч' 

also d('S(Tİb(4 l. TİK’ lıistory of llıc ІІі(Ч)іч'Ііса1 and ('хрс'гіпи'піаі slndic’s on llu' 

i444)nslni(‘lion of I İ K ’ Si(ÜÜI ) surface is bricdy reviewed, as W ( 'l l .
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U H V  STM  System

2.1 U ltra  High Vacuum System

'I'lic ('X|)('riineiits wove ¡хм'Гоппсч! with a scaiming tunneling mici-oscope which 

is installed in an ultra, high va.cnnin (UIIV) syst('ni, which has Ь(ЧЧ1 (h'signed 

and constnicl I hy Oral and KHiall iughi.··'' I'he scln'inatic diai’.ram ul the ll|IV 

.'iysteiii is j',i\'eii in 1''1|',.·.!. I. The 1111sysici ii  is coiiipused ul' twu chandters uiie 

for preparation, and the other Гог STM measurements. The analysis chamber 

contains a Low Lvnergy Kh'ctron Diilractiou (LEED) iiistrunu'iit, which is used 

l(j determine tlu' cleaidiiK'ss of the sample snilaci', as well. 'Г1кме is a. carousel 

on which Гонг ti|)s and/or sample's can 1и' stored in the analysis chamiH'r. 'I'he 

caronse'l al.so s('i v('s as the sa.mple hohh'r Гог Ll^dsl) instrunu'iit,

'l'h(' hast lintry I^ock (I'EIj), which is isohitcd IVom the UIIV chandler with a 

gate' va.lve, is used to transrer the tips and samples into UIIV without bre'aking 

the vacuum. hTL is attached to a linear-rot ary magnetic transl'er arm (МТЛ), on 

which the samples and t ips are loaded to be transl’erred into l.lu' main chandler.

The main chainbc'i· is evacuated with a 00 1/s triodc' i)nmp a.nd a 

Titanium Sublimation l^imp (TSl^). The l^EL is pumped with 60 1/s Varian 

'rnrbornolecidar I^ump backed l.iy a double stage rotary pump. Л nude ion 

gauge and a pirani gauge are used to measure the pix'ssures оГ the main chand.)er 

and th(' backing liiK' ol turbo, respectively. ЛИ these gauge's toge'tlu'r with the

12
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S a n p le  S t a g e  

8< e -^ b e a n  h e a t e r

S a n p le  M a n i p u l a t o r

F A S T  E N TR Y  LOCK

M a g n e t i c
T r a n s f e r
A r n

10 c nI_______ r

F ig u r e  2 .1 ;  Schemat ic diagram of the UHV system. Taken from Ref. 26.

bakeout heaters, TSP. leak detection unit are controlled by an intelligent ion 

gauge controller.
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In order to get- pri'ssiires of the order of torr l)ak('oiit is inevitable.

Detachable alumiiiuiii i)aii(ds with glass fiber insulation are us('d for the bakeout 

ov(Mi, and tliree ceramic insulated heaters with total power of 2.2 KVV are used 

lor baking the sysi.('in. 'TIk' bakc'out of tlu' syst-inn typically lasts 2 and a. half 

days, at, IbO Aft-(*r tlu' bak('out all tlu' lilaiiUMits in t lu' syst('in a.r<' d('-gass('d. 

The base pressure of the system is ^  .2 x 10“ torr.

2 .1 .1  Tip/Siim ple Transfer

Aft(M· loading the samph'/tip into the Fast. Faitry bock, turbomoh'cular pump is 

run for about 1.5 hours. Then the (¡ate Valve is opened and the sample/tij) is 

transferred onto the sample manipulator via a maglietic transfer arm. During 

transler, tiu' prc'ssui'c' inci4'as('s t-o low 10“*'̂ t-orr клчТ tluMi di'ops t-o t-lu' bas(' 

pi’('ssiii4' (piickly all('i· closing the gat-c' val\’(*. 'Г1к' sainph' mani|)ulator is an 8- 

inch t,raved bedlows se'ah'd push-pull rnu'ivr/rotary-motion lec'dtlirougli. It has a 

stainless steel sample' stage' with an intc'gral e'-beam lie'ate'r. fib t.i'ansler the sample 

anel tip from the manipulator to the STM and LKFD a pince'r-gri]) wobble stick 

is use'd.

2 .1 .2  E -b eam  sam ple heater

The' e'-be'am lu'ate'i* is me)unte'el e)ii the' ma.nipulat,e)i· IVe)in the' baedv, as she)wn 

in Fig.2.2. A tantalum wire point welch'd on an Sl’̂ M lilament holder serve's 

as the' iilame'iit. ddie' sample holder is helel on the' he'at('r with tantalum leaf 

springs. Sample is grounded and the tantalum iila.ment is kept at -1200 V. 

TİK' D(! ciii’i’e'iit. passing thre)ugh the' (ilaine'iit is nse'd t-e) e‘e>iitre)l the' ('missie)n 

ciirre'iil,. 'The' sa.mple's can be* he'ate'd up l-e) M50 by this ti'e liniepie'. d'lie*

liaiiiple temperature is measured with a simple Imiii.e made pyrometer, which is 

placed on the viewport, such that the position of its pinhole is to ce/mcide with the 

e-enter of the sampler Since the intensity of the blae’kboely ra.eliatie)n reaching the 

pyrometer is dei^endent on the distance betwc'en thet pyrome'tei- and the sample, 

and the're is a viewport between them, the* |)yroni(*ter must be* eaJibi-ate'd in situ.
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F ig u r e  2 .2 :  e-beam sample heater. Taken from Ref. 26.

The calibration is done with respect to the melting point of silicon.

2.I.T Si ;m<l (J<‘ lOv.ipoial.or.s

There are two evaporators for silicon and germanium in the preparation chamber. 

They are mounted to -l-])in power feedthroughs on 2.75 inch O.D. flanges.

The germanium source is made up of 0.5 mm diameter tungsten wire in the 

form of a basket. Germanium granules are put into the basket and the basket is 

attached to· the power feedthrough pins by inline barrel connectors.

On the other hand, a rectangular silicon wafer piece clamped by tantalum  

clips serves as the silicon source. The silicon wafer piece is heated by passing AC 

current through the wafer. Since in growth processes of a few monolayers the 

exposure time is very important there are shutters for both sources to start or 

end the growth.
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2.2 STM

TİK' S'l 'M is mouiiti'd on a IMIV nuilti-s('al Напдч' in i Ik' analysis cliainlxM·. Tlio 

scl icmalic of IIk' S'TM is дм\чм1 in and llu' paiMs аг(' ('xplaiiu'd in d('(.ail

Im'Iow.

2 / 2 . 1  V i l > r a l ; i o i i  T s o l a l i o n

l/\t('i'nal vibrai ions all/cl. 1 lu' dislancc' 1)('1.\\ччм1 I Ik' l ip and 1 lu' sainpli', and Ik'Iux' 

llu' l.iiniuding (*niT('nl.. T I kmx'Io k ', il llu' mi(Tos(‘o|)(' is not isolaU'd li’om ('x(-('nia.l 

\’il)ra.l.ions, siicli as llu' x’ibi'a.lions ol lahoralorv’ lloor which has an a.m|)lilnd(' 

of iJu' order of a. microiiK'l('r, il wonid Ix' impossihh' lo obtain ri'liabh' ima.g('s.
I

In onr Sd\M, vibration isolation is |)i4)\’id(Mİ by a singh' stage' spring snspt'iision 

tog('th('r with ('ddy cime'iit da.m|)ing. Hase' е)Г the' mie‘i4)scope' is snspe'iid('d with 

lour stainle'ss sle'e'l springs as shown in h'ig. ’2M.  In additie)ii, ( liene* are' lenii· Sm ( V) 

magiK'l.s (’la.mpe'd to a stainless ste'C'l I’iiig which re'sts on collars. Tlu'se' magne'ts 

te)gether with the' сорре'г plate's monnte'd on the STM  base' pre)\'iele' e'ddy ci m ’e'iit 

da.m|)ing.

2 .2 .2  Coarse Approach

Tlu're' ai4' se'\4'i-al ce)arse' appi’oaeT me't.liexls used for Ь'ГМ, name'ly, e'le'ct,i4)st-a.t.ic 

louse', magne'tically drixe'ii slider, ine*hwhe)rm motoi· etex In e)iir Sd/Vl a. ])iezo 

elri\’e'ii st,ie‘k-slip type' slieleM' is nse'd lor e‘e>arse' appre)a.e-|i. In this way tJie' sample' 

exiii be' pecsit,ie>ne‘el in t.We> ex t he>gexlal elii’e'e’t.iexis. As it is se'e'ii in h'ig.2. I, t.he'slide'r 

is e-ompos('d of tlire'e' piee-es. Tlie ce'iitra.l pie'e-e on whieii the' pie'zos are iiiouiite'd, 

is sandwiched betwee'ii t he' two i)ieces e’ontaining the' rails.

O[)e'ration of the' sliele'i* is as follows“*': If the' pie'ze) ve)ltage' is slowly incre'ase'd, 

t.he'll the upper and lowe'r electrodes of the pie'zo [)late' are mo\'e'd latercilly with 

re'spect to e'ach othe'r unde'r the shear stix'ss. Since' the pie'zo motion is slow, 

nppe'r sliele'i* |)ie'ce' mo\e's with t.lie' pie'ze). If the' pie'ze) \4)ltage' is ne)W siielele'iily 

switclu'el t() ze'ro volts, t he'ii t he' balls glne'el te) t-he' pie'ze) will siidele'niy e’onu' ba.ck
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F ig u r e  2 .3 : .Scanning Tunneling Microscope.From Ref. 26.

to tlieir original positions. However, the upper block will not follow piezo motion 

because of its relatively higher inertia and slides with respect to the balls. This
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10 nrn

t i p

Figui'e 2 .4  : Two-Axes Slider. From Ref. 26.

whole cycle makes one stej). Step size and direction of the motion can be adjustc'd 

respectively by changing the amplitude and polarity of the applied voltage.

Sample is clamped between a stainless s((>el leaf spring and a U-shaped plate 

mounted at the top slider piece. After loading the sample to tin' slider, it is moved 

towards the tip by ap])lying voltage ])ulses. By obser\’ing with a xlO telescope 

this manual approach is stopped when the samjile is brought \’ery close to the 

tip. The rest of the ap])roach is maintaiiK'd by the computi'r, automatically. In 

the automatic approach, tip is first ret racted liefore each st(>|) and released after 

the step, while sei'king for the tiumermg curriMit. .After the tuiiin'ling is si'iised, 

the program keeps the sam])le position within a specified range.
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2.2.3 Scanner

Our STM has a single tiilx' |)iezo scanner. Л stainless steel tip-lioUling station 

wit h t iny point“WeUhHl h'af springs is gliK'd to t he' IVont. (MuI of tlu' t ulx'. 'Г1к' t.ip 

liohh'r is insi'rtc'cl in t.liat staiioii by using tlu' \vol)l)l(‘ stick. 'Tlu' ont('r ('h'ct.roih' 

of t.lu' pi(VA) t nl)(' is s('paiat.(4l into Гонг ([inuli’ants in ord('r t.o acldu'vc' scanning in 

.V and // din'ctions. Tlu' whole' tube is responsible Гог the motion in .r direction, 

i.('. tJie ;j voltage is a|)plied to all four qnadriints while iinu'r electrode is kept 

grounded. Tlu' scaniK'r has a range of 6000 A in each direction. This means, one 

can adjust. t.h(' st.('p si/д' of tlu' sainph' hohh'r as large' as (ilHH) .Л during rough 

approach.

2 .2 .4  Tip

ri|) pre'paratioii is oik' nl I Ik' most important problems ol STM users'. In orde'i* l.o 

obt ain atennic r(‘se>lnt ieni, an al.omically sharp tip coiitaiiiiiig al most a h'W atoms 

at, the ajx'x- is necessary. Kven it yon buy a comnu'rcial SdAT yon are' not given 

pre'pare'el tips. All STM nse'rs in the' we)i‘ld pre'pare' tips tlu'inse'lV('s. The're' are' 

se.'\4'ral tens of methoels of tip preparation. y\ltliongh lilte'e'ii ye'ars have' passeel 

since' the inve'ntie>n e>l Sd\M, article's e>n ne'w tip pre'paratie)n t.e'elmie|nê s ai’e still 

iK'ing pnblisheel.'^'’̂ ''̂

Tungsten, goleb platinum are' typie*al me'tals nse'el as STM tips. We use 0.2 

mm eliaineter tnngste'ii wire' to |)re'pare' tips. Oni· me'thod is ele'ctrochemical 

e'tching.^‘‘ As illnstrateel in Fig.2.5 , a straight tungsten wire is inserted in the 

be'ake'i* e:ontaining 10 % КОИ solution (loate'd on (XTi.  A e*arbon ele'e‘trode is 

immerseel in the solution. When a DC bias, typie’ally 6.5 to 7.5 Volts, is applied 

betwc'en the carbon elee*trode and the tungsten wire', the KOI I solution etches 

the the:' wire. Alter a lew minutes the wire is broken at the interlace ol the two 

lieiniels. The lalling ]:>iece is a candidate (or being a tip. To avoid elamaging ol 

the' sharpiu'ss, the' ('te’hiiig pre)e’ess is ste>ppe'el as se)e)ii as the' |>ie‘ce's bre'ak е>1Г lre)m 

the' timgste'ii wire'. 11ie' shape' aiiel sha.i’piu'ss e)l the' I,ip ele'|)e'iiels e>ii the' a.p|)lie'el 

ve)lt-age, the position ol the carbon electroele, the edeanline'ss e>l the' solution, and
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'run‘»sicn wire

Carbon Blcctrodc

10% KOH

CCI4

F ig u re  2 .5 : Tip Etching

how strcvight the wire' is. Tlierelore, each time the tips were pii'pared, we have to 

come up with a new recipe.

The tips |)reparecl with this method are point welded onto th(' stainless ste(il 

tip holders, then degreased rrom hydrocarbons by cletining with trichloroethane, 

acc'toiK*, m(‘tliaiiol and d(‘ioiiiz(Hl watc'r, sii(’C('ssiV('ly. Alti'i· Ix'ing iiiS('rt(Ml to tlu' 

tip transfer |)lates, the' tips are ready to l)e transferri'd into the DllV chamber. 

SEM image of a tyi)i(‘a.l tiĵ  preparc'd in this way is givcni in l·'ig.2.().

Siiic(' the only way to nnd('rsta.nd wli(‘tli(‘r a. tip will work or not is to ns(' it in 

an STM, it is nec(\ssa.ry to prepare  ̂ more' tha.ii oik' tip to to obta.in a reasona.ble 

yield. Another imjx)rtant problem in tip preparivtion is the' oxidation of the 

tips during etching and point welding. With an oxidized tip, it is impossible to 

obtain reliable STM results. Although there is an e-beam tip heater in the UHV 

system, since it hasn’t been optimized yet the tips can’t be anneeded or cleaned 

from oxides. Th('refoi’(' ultimate' care should Ix' taki'ii to avoid oxidation of the 

tips during ex situ preparation.

Once the tunneling is obtained, the quality of the tip is understood by means 

of taking I-V curves. Ik'sides the ex situ preparation of the tip, there are other 

piocesses that can be applied, by which one CcUi make the ti|) operational. For 

example, applying short pulses to sample bias voltage stimulates tip switching.
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h'lgin’o 2 .0 : Sl·'/̂ 'l picl.iirc of an STM l.ip

i.c. capturing or leaving atoms from the apex, is an elfectivc' method. Taking 

dummy scans is anothei· way to make tlie tips moi'e stalrle. I'iveii dipping into 

the sample can be used iu case of emergency. Sometimes a clean ti|) may become 

mistable or a dirty tip may become atomically sharp tlurijig the o|)eration of the 

microscope. An example of an initicilly sliarp ti[) getting blunt while irnciging 

the S i(0 0 1 )(2 x l) surface is given in Fig.2.S. On the other hand, Fig.2.7 shows a 

Si(001) surface inicvged by a multi atom tip.

Another interesting example of an artifact caused by the tip is shown in 

Fig.2.9. A large area scan of a Si(OOl) sample is dis])layed. If the step at the 

right of the image is cai'efully observed, a contrast difference between the upper 

terrace of the step and the band near the step will be notice. This is believed to 

be caused by a double tip .’ The situation can be schenuitically described as in 

Fig.2.10. Initially, tip 1, which is closest to the surfiice, scans the upper terrace 

of the step. Later, when tip one extends downward to reach the; lower terrace, tip 

2 interrupts by tuimeliiig from the upper terrace. The result is an image which 

is a repetition of the same region scanned first by tip 1 cind later by tip 2.
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F ig u re  2 .7 : S i(0 0 1 )(2 x l) siu-race iniagecl vvitli a multi atom tip.

F ig u re  2 .8 : liiitiallv 
surface.

ile imaging tlie S i(ü ü l)(2x l)

2.3 Electronics and the Com puter Interface

'I'Ik' S'l’M electronics used in this thesis has been constructi'd, and the data 

ac(|iiisition and image processing softwares hav<' Ih'ími written by Oral.· *̂’ A certain
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F ig u re  2 .9 : Λ st('|) on a. Si(OOI) sm l'aci' iinagi'd by a (kniMc' tip.

scan tii reel ion
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from lip 1 IVom ii|)2
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F ig u re  2 .1 0 : A possible sduMnalic cK'seriptioii o ía  double' (,ip arliiaci.

bias voltage is applied to the sample and the tunneling current is measured with 

the preamplilier mounted at the back of the sctuiner. This preamplifier is the 

fiOut-e'iid of tlie i-v coiiV('rt('r. Tlu' gain of the amplifier is 100 mV/ηΛ . The 

control circuit, with tlu' tunneling current a.nd output voltage iid'ormation, keeps 

th(' tip-sampl(' s('para.t.ion within a spe'cihi'd range'. The' spe'chication of the' tip- 

sample separation is accoinplished by setting the tunneling current to a Ci'rtain 

value, and this is adjuste'd by the user.

Λ DT2821F data acquisition card is used tor the computer interface. The 

control of the STM is performed by an î hSG based personal computer having 

SO ΜΠ IIDI) and a \ (̂!/\ color monil.oi’. Data. ac(|uisition and image' pre)e'e‘ssing
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soflvvari' is аЫ(' to record S T M  images at· constant, ciirri'iit and constant lieiglit 

mode. In tlu' constant current mode, the tip is slovvdy scaniHHİ over the surface, 

vvhih' it is maxl(' to follow the vertical corrugations on tlu' sam|)h' surface, the 

tip |)osition, (K,  is Г(чч)1ч1(ч1. TİK' scan sp('('d and the gain of the reading can 

!)(' s('l('ct('d by t h(' us('r. At each |)oint., four voltage nu'asuri'iiu'iits are averagc'd 

t.o ('limiiiati'  t.lu' noise'. In the constant height mode, the tip is scanned ove'r 

the surface very fast while the tunneling current is re'corded. 1-V curves can be 

ac(|iiir('d at any point., and it is possible to store tlu' i-v curve's for future reference.

Th('  image data, is store'd in a 128x1 28 or 25()х2Г)() matrix.  'Гор or 2-1) vic'w

of t lu' image' is displaye'd just aft.e'r t he' scan has Ix'c'ii made'. It is possible' to store'

t.lu' images in elata. hies foi· further proce'ssing. Ih4'vie)us imag('s e*a.n also be' rc'ael 

fre)m t he' mass st,e)rag(' te; make' e4)mparise)n be'twe'i'ii snrfae4's. Va.rie)us elisphiying 

iimeh's are' available' like' t.e>p vie'w, 2-1) vie'w anel 2-1) vie'w wit h shaeling.

Cle'iu'rally, t.he' re'sults of the scans are not easy to inter|)re't without image

pre)cessing. Th e  storeel image's are displayeel and proex'ssed by aimther software. 

'The' hiiite' sh)|)e' that the' image's nsually have', ean be' еч)гге'е2.е'е1 by a. sh)pe' 

ee)ire'e*tie)n snbi4)utine'. 'Пк'ппа! elrift n i w  he  e'liminate'el by aimthe'r subroutine'. 

Ne>isy image's exi.ii be' hll.e'ie'el by le)W pass еч)ПVe)liltie)li e)!’ liie'dia.n type' (ill.e'rs. 

'I'liene' ai’e' '/e)omilig, and c i 4 )S S  se‘ctie)iiing e)ptienis. The' ce)iitrast ol the' image' e'an 

be' ine re'ase'el by hisl,e)giaiii e'e(narr/alie)ii.
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Si (0 0 1 )(2 x l)

Because of its electroiuc properties silicon has an important role in semiconductor 

ti'clmology. y\lthougli there are materials having relativel_y sui)erior electronic 

properties, like (!aA s, its abundance in tlie earth’s crust, and hence its 

iii(‘xi)ensiveness lias made Si one ol the most vvich'ly used ehmients in advanced 

technology, I’rom semiconductor microehictronics to solar cells. Silicon is a Group 

IV element with an indirect band gap energy of 1.17(‘V. It, forms tetrahedral sp3 

bonds, ('xhibiting a diamond crystal structure, d'he tetragonal bond structure 

plays an important role on the reconstruction of the Si(OOl) surface.

As mentioned earlii'r, STM and semiconductors have been in a cooi)erative 

relation since the invcmtion of S'l'M. Especially Si was tlu· most widely used 

.siMuiconductor in the development of scanning tunneling microscopy techniques 

and theories. Further, the controversies on the structure of Si surfaces, which 

are going to be discussed later, histed with the first STM investigations. The 

iirst semiconductor surface imaged with S'l'M was the 7 x 7  n'construction of 

Si( 111 What does ”7 x 7  ı■e(·oııstгıı(·t¡oı¡” mean? Dili' to the covaJi'iit natiiri' of 

their bonds, clean semicoiidiictoi' surfaces nmlergo a process called reconstruction. 

'I’he periodicity of thi’ surface atoms is dilfereiit than that of tin.' bulk a,toms, 

'f'he leason is cpiite clear. A simple bulk termination at the surface leaves a large 

number of unsatisfied (dangling) bonds. This results in a large free energy. As in 

evi'ry event in nature, the trend is to lower this fri’e energy. This is a.chieved by tin;

2.')
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reaiTaiigerneiit of the surrace atoms to decrease tlie nuiiiber of tlu; dangling bonds, 

g(Mierally at some cost in increasing tlu* fraction of tin* free (‘lu'igy (h'rived from 

siirfa.c(' sti-(‘ss.'“’ TIk' terminology ”ni x ii” r(ders to the two dinn'iisioital Milh'r- 

ilKlici'S needed to describe tlie .'¡iil'lin'e niiil. <'ell in leniis ol bnik lattice vectors. 

On an ”m X n” reconstrnct('d snrfa.c(', tin' lattice constant in one direction is 

m tiiiu's th(' btdk lattice constant, and n tinu's that in tin' other dir<'ction. In 

the following sections, the reconstruction of the Si(OOl) surface' will be discussed 

Ix'ginning from the first moeh'ls proposed on its structure after the' first Td'lED 

observations.

3.1 Dim erization on Si(OOl)

Si(001) suri*ace displays a reconstruction that is a relatively sini[)le mocliiication 

of tlie bulk terininated structure. Initially, just ait('r terniination, each surface 

atom has two dangling bonds and is bonded to two subsurface atoms. A small 

disi)lacernent, without bond breaking, results in pairing of the surface atoms to 

form ’’dimers” . Thus the number of dangling bonds is reduced from 2 to 1. This 

structure is a stable configuration ¿ind called 2 x 1  reconstruction of Si(OOl).

In their Low Energy Electron Diffraction (LEED ) studies on ,Si(001) surface, 

Sclilier and Earnsworth*^  ̂ detected half-integral beams which they understood, 

could not aris(' from surface atoms in a bulk configuration. They proposed tliat 

t,h(' oI)s(M‘V(m1 2 x 1 snrfac-(' nu'sh was consistcMit with a sti'iictiirc' created when 

adjacent rows of surface atoms moved together in a bonding interaction. A 

schematic diagram of the Si(OOl) surface is shown in Eig. 3.1. This proposition 

of surfcice atom pairs (dimers) was not easily accepti'd for many years, because 

LEED investigations ¿ifter those of Schlier and Ecirnsworth yielded higher order 

diffraction s p o t s . T h e  intensity and sharpness of the spots were strongly 

dependent on sample treatment. It was clccir that only a. symmetric dimer 

structure could not be the reason tor all the observations.

Various otlier models, such as vacancy'^^’*̂* and conjugated chain models,^''' 

W('re proposed. This debate ended when electronic structuii' calculations by
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SKIOO)
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F ig u r e  3 .1 ; Schematic diagriun of the Si(OOl) reconstructed surface. Taken from 
Ref. 40.

Appelbaum et al. on the dimer and vacancy models,^® and by Kerker et al. on 

the conjugated chain m o d e l ,w e r e  compared with the photoemission data of 

Rowe. *̂  ̂ The conclusion was that the surface dimer model appeared to explain 

most of the experimental results.

More than 20 years after the first LEED  study, although dinu'rs were generally 

recognized to be the principal feature of the reconstructed Si(OOl) surface, some 

dissatisfaction arose because of an important inconsistency. Again in LEED  

stiidi<‘s, besid<'s iiilcgral and hall int(‘gra.l beams, 1/1 order beams vv<'r<‘ sometimes 

ob.serv(‘(l. However, the dimei· model could only (*xpla.iii the existence of integral 

and hall integral dillraction.

The invention of Scanning Tunneling Microscope was a turning point in the 

investigation of the reconstructed Si(OOl) surface on the atomic scale. The 

structure of this surface' was almost clear with the first STM results of Tromp, 

Hamers and Demutli.*’ These images, though still having left some problems 

unresolved, clearly established important points regarding reconstruction of 

Si(OOl) surface. The most important one was the verification of the dimer model; 

the other models seemed not to match the topographic features of the surface. 

Another interesting point was that asym m etric (buckled) dimers which could give 

rise to 2 x 2  or 4 x 2  symmetries, were observed at the surface together with the
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F ig u r e  3 .2 : Schematics of the c (4 x 2 )  and p (2 x 2 )  domains on reconstructed 
Si(OOl) surface.
First layer atoms, second layer atoms, symmetric, and asymmetric dimers are 
indicated.From Ref. 39.

sym m etric dimers. Buckled dimer is the dimer in which one atom is at a higher 

position than the other.

The symmetries c (4 x 2 )  and p (2 x 2 ) are due to the orientations of the atoms 

in the adjacent buckled dimers. Fig.3.2 shows c (4 x 2 )  and p (2 x 2 ) configurations 

schematically. The arrows denote the asym m etric dimer on the surface with the 

tip of the arrow indicating the up atom of the dimer.

In their later study on the atomic structure of Si(OOl) surface, Hamers et 

al. concluded that far from ‘defects only symmetric dimers were observed, while 

buckled dimers were often observed near surface d e f e c t s .T h e y  have shown 

that dimer buckling was easily stabilized by vacancy-type defects and that these 

defects forced most of the dimers in particular buckling orientations. They have 

also raised the idea that the dimers might be dynamically buckling about the 

eciuilibrium configuration at a certain time period. However, the dimers are 

observed to be symmetric on the time average since this period is short compared
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to the STM nieasurement time. A suggestion on the reason of such a flipping 

was that it could l)e iiidnced by STM tip [)ertnrbatioii.·*·^ Heccnitly, Clio and 

Joannoponlos^ * have brought an interesting explanation to tin' STM induced 

asymnu'try. dT(\y have' shown (-hat tlu' li|) snrla.cc' inti'raciions a.i*(' signiiica.nt 

(Miough to flip and bind an asymmetric dimer to the tip. As the tip is then 

mov('d along the siirfaci', dimers are ilip|)e(l tracking the tip and cr('at(' what 

appears to b(' a symmetric image in the scan.

TİK' possibh' r('asoi)s ol buckling W('r(̂  l-ri(Mİ (,o lx» giv(Mi in a. nnmIxM· of 

n‘ coiiiiiiuii puinl- i)l I s( iidies was Mial ( Ik* cliarce l-raiisler wil-liiiiIK lies II. IV'

a. single dimer could give rise to buckling, which might be eitlu'i· stii.tic or dynamic 

(oscillating). However, later Pandey‘̂ ‘ has sliown that buckling involving charge 

( ransler to the to|) aiom was an artifact of (.ight-binding calculations. He ioiind 

that nonbnckled dimer is (energetically most favorable, l)ut buckling up to a dimer 

tilt angle of 10° did not increase the total eiK'rgy significantly.

As cl result, empirical tight-binding calculations liy Chadi, '̂ '̂ ps(eiidopot(ential 

calculations by I^aiidc'y,^  ̂ Payne et al.,‘̂  ̂ and Roberts and N('eds‘  ̂ did not come 

up with satisfying conclusions about dimer l)uckling. Speculative explanations 

W('re made on tliis subject. The question ’’Which configuration is more stable, 

buckled or sym m etric?” couldn’t be answered exactly for years.

Wolkow, during liis low temperature STM studies on Si(001) surface, resolved 

the long-standing probh'in r(:^garding tlie dimer configuration.^''^ He showed that 

on cooling to 120 K, the number of buchled dimers increased at tlie expense 

of symmetric a|)p(*aring diiiK'rs, and concluded that only bistabh* dimers could 

ii-ccount for this obs(‘rva,(.ion. Wolkow conc(Mitrat(‘d on tlici indnence of surface 

(h.dects on the dimer configuration. Symmetric appearing delects, such as 

’’missing dimer” type, do not induce iHickling. On the other hand, the defects 

which are themselves asjmimetric, cause buckling in the neighboring dimers. As 

had been observed by dVomp et ¿ih, the magnitude of buckling decayed ¿dong a row 

with increcising distcince from a defect. The buckling orientcition Wcis ¿dternating 

from one dimer to the next. Alerluind et al.^‘̂ presented a simple strcun argument 

to ¿iccount for this ¿dteriiciting buckling pcittern. As shown in k îg. .̂i], the up end
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F ig u r e  3 .3 : A simple schem atic view of the lattice strain which acts to couple 
adjacent dimers in an anticorrelated manner. From Ref. 48.

of a buckled dimer causes second layer atoms to come together while the down 

end pushes second laj^er atom s apart. To compensate this distortion adjacent 

dimers buckle in the opposite direction.

In contrast to room tem perature images, images taken at 120 K show extended 

regions of buckled dimers. .At room temperature, buckling decays in length of six 

to eight dimers, while at 120 K it extends along a row, in most cases, with no 

apparent decay in magnitude. Adjacent buckled rows can interact in two ways. 

The first and the most common one is the case in which zigzag pattern of buckled 

rows are out of phase, that result in c (4 x 2 )  symmetry. The second one is p (2 x 2 )  

sym m etry which results when the zigzag pattern is in phase. If the defects are 

randomly distributed among the surface, then p (2 x 2 )  can be seen as often as 

c (4 x 2 ) .

3 .2  Steps

Steps are the fundamental structures of Si(OOl) surfaces. The stepped Si(OOl) 

surface has been intensively studied because of its importance in the hetero

epitaxy of III-V semiconductors, particularly GaAs and SiGe on Si. Steps on 

Si(OOl) surface display a complex behavior that depends on many factors. Angle 

of m iscut, annealing and growth conditions, contaminants, and surface stress are
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exaiiijiles of those factors.

Step is tlie bouiulary between two successive terraces. Because of the 

l.et.i'agoiial bond struct l i r e  of silicon, th<’ dimers on two succc'ssivi' t.ei'i'a.c<'s which 

ar(‘ .s('parated liy a. monoatoiuic step, arc' p<‘rp(Midicular to ('a.ch other. More 

ch'arly, the diinerization direction changes l)_y 90° through a monoatomic step. 

Ste])s are named due to the dimerization direction on the upp(‘r terrace. If tlie 

dinu'r rows on tli(' upper terrace run |)arallel to the step edg(\ tlien the step is 

t.yp(' A, lalx'h'd S,.). 'l'y|)(' B is the stc'p the upper terrace of wliich contains dimer 

rows aligned p('ri)endicular to its edge, and is labeled as S/ .̂ On a. Si(OOl) surface 

tluMC a.re not only single (luonoatomic) st.c'ps, but doubh' stc'ps as wc'll. Doiilih' 

st('ps are tlie ones through which tlie dimerization direction does not change, i.e. 

th(' dimer rows are in tlu‘ same in both the ui)per and lower terraces of the step. 

'I'lu'.si' st(‘ps are also labeled as l),.i and l)/y depniding on their typi*.

d'lie singh' sl.('p height in the [001] direction for (he diamond la.l.(.ice is 

(i/·! |.;UjA, vvlu're a — r).l;jl A is tlu' bulk silicon lattice constant. Surfa.ces

misciil. from ( he [001 ] direction, known as vicinal siirlaces, display a iiK'a.n distance 

between single steps, i.e. mean terrace width, given by u /I tan a- where cv is 

the miscut angle. Surfaces cut toward the [110] or tiu' [110] direction displaj' 

two distinct (.ypc's of single steps. When tlu' surface is til(,<'d l.oward a direction 

intermediate between [110] and [110], steps of mi.xed iype A and type B character 

r('sult. Since (.ype A s(.eps are fornu’d by (Ik* sides of tIu' dinH’r rows tlu\y arc' 

very smooth. On the' other hand the ends of dimer rows form the (-ype B steps 

that thc.'se steps have a. (.endency to form kinks. Surface's with miscut angici larger 

than a few dc'grees have tj'|)e B doul^le ste[)s. Since tlie dimerization direction is 

( he same on terraces se])arc\,tecl by a double step, these surfaces are referred to as 

single cloniaiii or primitive.

Chacli has proposed models for single and double steps of type A and type 

Id.'’“ These are shown in Fig.3.4. Formation energies of type A and type B single 

stc'ps were calculated to be 0.01 eV and 0.15 eV, respectively, while type A and B 

doidrle step formation energies were found to be 0.54 eV and 0.05 eV, respectively, 

'riierefore Ha steps, having the lowest formation energy, seems to he energetically
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(a)

F ig u re  3 .4 : (a)-(cl) Top views of S.4, D,4, Sb , and Db  steps respectively. 
The dimerization direction of the topmost atoms is along the [110] direction. The 
dashed hnes indicate the step positions. Open circles denote atoms with dangling 
bonds. Larger circles are used for upper-terrace atoms. Taken from Ref. 50.

preferred among the others. IIow(*ver, for example, the existence of two terraces 

on a surface requires two steps of single type, while the number is reduced to one 

in case of a double step. Since the formation energy of a Db step is lower than 

the totiil of the formation energies of S..i and Sb  steps, Db  step is energetically 

favored over S.4 +  Sb steps. Hence for years the vicinal Si(OOl) surfaces had been 

thought to have only one equilibrium state in which only double steps are present. 

However, it has been observed later that small vicinal angles, on the order of 1° 

or less, lead to stal:>le single-stepped surfaces. Alerhand et al. liave brought an 

explanation for these ob.servations. They showed that, at viciiuil iuigles more 

than 2°, the eciuilibrium is double stepped, but for small angles single steps are 

stable.

In this chapter a history of the Si(OOl) surface was given, and the fundamental 

Icatiires of the recon.stnicted surf;i.C(‘, i.<‘. dimers, steps (‘tc., was <*.\plain<‘d. d'lie 

S'l'M image's, which are explanatory examples of the features described in this
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cliaptiM', will I)e pivseiitcd <uicl cliKcuKSod in the following cliaptc'i·.
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Results

111 Chapter 2 the iiistruiueiits and preliminaries to get an S'I'M image were 

('xplained in detail, and the structure of the Si(OOl) surface was presented in 

ChaptiM· ih In this chapter, the sample cl('a.niiig proci'dure followed hy the images 

of clean Si(OOl) reconstructed surface' will be given. Later, a. lew images of Si 

and (¡(' grown Si(OOI) sample's are' going l.ei be shown and elisensse'el in light of 

the' pie'vieius stnelie's, beith tlie'eire'tie'a.l aiiel e'.xpe'rillie'ntal.

The' sample's iise'el in (he' e'.xpe'riine'iils vve'ie' e'lit ill the' form of (ix8  

mm re'ctangles, from 525 /mi thick, P-doped, n-type Si(OOl) wafers with 

1- 10 ilem ix'sistivity oriented to within 0.5° of (001) plane'. 'The samples 

we'ie first cleaiu'd from hydrocarbons by ele'greasing with a (diir-step proce'ss 

including trichlorethyle'iie, acetone, methanol and deionized water, respectively, 

'rrichlorethylene, acetone, and methanol steps are performed in ultrasonic bath 

each lasting 9 minutes.

An in situ cleaning process is inevitable to obtain an atomically flat and clean 

surface, since there is a native oxide layer on silicon wafers, which immediately 

grows when exposed to atmosphere evi'ii tifter etching. There arc' three common 

methods of cleaning silicon surfaces in UHV. The first is the s[)utter cleaning of 

the surface with low energy noble ions like Ar" ,̂ followed by the annealing of the 

sample to eliminate the damage created by bombardment.®^ The second method 

is high temperature etching®^ of the native oxide layer on the samples without any

21
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rx situ chemical cleaning. 'Лк' third method inv4)lv(\s both an (w situ chemical 

ch'aning and an in situ cleaning. '.Пк' sample is first, cleaiu'd clKMiiicall}  ̂ with 

s('V4'ral oxid(' wet ('tch-regrowth cy’cles and finally a passivation la.y('r is grown on 

l.li(‘ surface'. This passix^ation laye'r works as a prote'ctive' layci* as W('ll, during 

carriage' and transler of the' sample's to UIIV. In IMIV' t.lie' passiva.tion hiye'r is 

e'\’ape)riit,e'el e>lf the siirfae'e' at a t,e'mpe'rat,iii4' of ~  900 ddiis t hirel me'thod is

iise'el te) eT'an Si(OOl) sample's in our ex|)e'rime'iits.

In the following se'ct ion, edeaning procedui*es used for Si(OOl) surfaces in UIIV 

is ge)ing to be' descrilK'd lyy giving examples of uncleaned samples. Then clean 

Si(OOl) surface image's will l)e interpreted. The last se'ction is elevoted to silicon 

anel ge'rmanium growt h e)ii Si(OOI).

4.1 S i (0 0 1 )(2 x l)

'Г1и‘ (*^xl) i4'ce)nstruct,ion of the Si(OOl) surface' was e'X])lailu'el in Chapte'r 

Te) summarize', e'very atom of the bulk te'rminateel Si(OOl) surface has two 

unsat,urate'd bonels. The' large fre'e energy elue' to this be)iiel bre'akings is minirnizeel 

by the' pairing of the' ne'ighboring atoms. The iimele'l of the' re'e’onstructed surface' 

was pi4'senteel in hhg. d.l. As most of the se'iniconducte)r surface's, Si(OOl) exhibits 

a st,e'ppe'el strue-ture'. Ih'eause of the' t.e'traheelral boiieling e)f Si, the' dimers oil 

te'i rae-e's se'parat,e'el by me)iie)-atomic ste'ps lie' |)егре'иеГк*и1аг t,e> e'ach e)ther.

Above' t,he' cle'aning me'tlmel was elescribe'd roughly. The ele'taile'd elescriptions 

of l)e)th e'X situ and in situ |)roce'sses are' as follows. The' chemical cleaning 

me'thod useel for the e'xpe'riments is the' Shiraki''·'' e'tedi-re'growt h procexlure. This 

me'tlmel is use'd mainly te) cle'a.n the' e-arbon contamination, l)iit it also works 

lor e)xide re'inoval from the surface automatically. After ele'gre'asing the wafer 

fi4)in liyelroe*a,rbe)ii e'ontamination as ele’se’ribe.'d above', it is ede'aiu'el by e)xide' ('te*h- 

re'growth in acinous 1% 111·' and Nll·^:H202:Il·20  (l:ln ‘{) solutions, rc'spc'ctively. 

Ammonia and pere)xiele' solutions were of ele'ctronic grade, with 25% ¿uid 30% 

e4)iie4'ntrat,ions, re'spe'ctix'e'ly. The' sample' is dip[)e'el in the' se)lutions for 30 se'c, 

anel rinse'el with e)ve'rllowing de'ionizeel wate'r for a minute' and elrie'd with blowing
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F ig u r e  4 .1 ; Schematic STM occupied and unoccupied state contours and their 
relation to the underlying dimers. Alter Ref. 56.

dry nitrogen gas between the etch-regrowth cycles. At least 5 etch and regrowth 

cyeh's ai4' performed to ch'an the samples, the hist step being o.xide regrowth for 

a minute. Then the samples are cleaned with ov(;rilowing d(Monized water for 2 

minutes. Samples are dried with blowing dry nitrogen gas before transferring into 

the load-lock chamber. This chemical cleaning is performed on a wet bench inside 

a Class-100 clean room and the sample is transferred to the STM lab in a covered 

P(.‘tri dish and quickly loaded into the fast entry lock to eliminate contamination 

or further oxidation.

The sample is then transferred to the UHV system and degassed by e-beam  

heating at ~  600 °C for about 10 hours. The pressure is kept in the 10“ °̂ ton- 

range during degassing. Then the sample is flashed to ~  900 °C for 2 minutes 

followed by a sudden increase to about 1050 °C. After waiting again for 2 minutes 

at this value the tem perature is set to ~  900 °C for a minute. Finally the sample 

is slowly' cooled down in a few minutes.

The cleaned sample is left on the sample manipulator for about 15 minutes, 

and then transferred to the sample carousel in order to cool down and for 

LEED  analysis as well, if necessary. The sample tem perature drops to the STM  

tem perature in about 1.5 hours. Then the sample is transferred to the slider and 

it is ready for STM analy'sis.

Following the procedure described in Section 2.2 tunneling is obtained. In all
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F ig u re  4 .2 : An image' of a Si(OOI) surface roughened lu'cause of improper 
pre'paraLioii.
'I'lio iinage size is 191x10 1 A. Sample voltage and tiiiiiu'l nirrent are' -2 V and 1 iiA, 
respectively.

('xpe'rimeiits, negative sami>le bias is chose'ii , because' tlie S'I’M image's taken at 

positive sam|)le bias de) not give tlie exact topograph e)f the Si(OOL) s u r f a c e .A s  

is sedie'inatically illuslrate'el in Fig. 1.1, at |)ositive l)ias, maxima are' not observed 

e)ii elimers but betwe'e'ii llie'in, llovve've'r at ue'gative' bias maxima, are' coiiu'ide'iit 

with dimers. 'I'liis proble'in se'ems to bring only a shift in the' image', but for 

instance, if an .S,.i type' ste'j) is imaged at positive bias tlie dime'r rows at the step 

e'elge will be seen thinne'r tlian they really are. Therefore negative sample bias is 

me)ie' convenient to work with. The image's throughout this (lu'sis are all fillexl 

state' image's.

The Si(OOl) sample's were used only for one experiment eaeh. Since a clean 

sample begins to be contaminateel by the residual gases in the UIIV chamber after 

a.be)ut 10 hours, it must be recleaned for longer experiments. I biwever, Oral̂ *̂  has 

le'cently shown that the' number of elelV'cts appe'are'el te> incre'ase' with the' number 

of ch'aning cycle's. The'refore lor e'ach trial a new Si(()0l) sample' was pre'pare'd.
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F ig u re  4 .3 : A large area scan of a ,Si(001 )(2 x  I) sample.
'I'lie image size is 912x912 A. 'I'he sample vollage and (iiniiel nirn'iit, are -2 V and I 
n/V, respectively.

y\s miglit be ex])ect(4l, such a critical ex situ and in situ sample preparation 

did not routinely end with satisfactory results. Although this cleaiung procedure 

is found to work (juite well,·̂ '·’ since most of the processes, from chenncal cleaning 

to e-beam heating, are manually acliieved, it was didicnit to follow the same 

sl,e|)s for every sample, and hence to g(>t clean and ckdect І Ѵ ( Ч '  samples in every 

tieatm ent. 'Го analy/x' the sample with IdiliD instrument is a good way to 

imdei'sl.aiid whether it is clean or not. A sharp dilfra.ction pattc'im nusms that 

the region from which the electrons are'dilfracted is clean. However, this does 

not allow us to conclude that the sample is entirely clean. There may be regions 

that remain still contaminated. Therefore during S'l’M analysis, it is nece,ssary 

1.0 carry the tip to different regions of tlie sami)le until a clean part is found.

It is very important to heat the sample at a right temperature. Exceeding the 

desired temperature values is as inefficient as heating the sample to insufficient 

t('m|)eratures. Even the speed of sam))le cooling to room temperature is a critical 

st(‘p. 'ГІИ' heating of tiu' Si(OOl) surface above' a critical temperature' re'sults in
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F ig u re  4 .4 : A large area, scan oC a Si(()OI )(2 x  1) sample.
'I'lie image size is I2ir>x I2ir) A. 'I'lie sample' vnllage ami I.iiiiik'I (•iii reiil. are' 2 V and 
I IIA, respeclively.

iiiici4)scopic ruiiglieiiiiig ol I.lie s i i r la c e .I 'l n ·  image ol siicli ,i siirlace is sliuwii 

ill F ig .1.2. Two large area images of two diilereiit Si(OOI) sample' are given in 

l'’ig.d.3 and l'’ig. l. l. In IIk' lirst oiu*, lu'ar tli(> sU'ps islands appear wliicli ,s('('ms 

to be unremoved contaminalion. 'i'liese s(.ructure.s are' belic've'il to l)e due to 

contamination which se'rvc'd as a tiipy mask during III·' dip or o.\id<' r<'grovvth.‘̂ '’ 

1'ortnna.tely, there' are cle>an reigions whieh may pe'iinit for smaller areia S'l'M 

scans. However, the region displayed in Fig.4.4 is almost totally contaminatexl, 

most probably by oxides. These two samples were cleaned with tlie same' metlioel 

as tlie others. As it is mentioned before, a small unnoticable' deviation from 

the procedure may have an extremely negative effect on the sample surlace 

clea.idiness.

During tlie optimization of the tip/.sani|)le pr(.'])aration proe e'elnre.s, the initial 

e)bjective was to get a general view of the surface, and to take images showing 

the terraces and steps on a relatively large scale, rather than insisting on atomic 

resolution. Fig.4.5 shows a large area image of Si(00f) surface exhibiting a large
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F ig u re  4 .5 : An image of Si(00J) surface exliibiting a large' number of steps. 
The image size is (iÔ x̂GOrS A. 'The sample voltage and limiiel nirreiit are -2 V and 1 
iiA, resi)ectively.

number of ste'ps. 'I'lie black hob' lU'ar ( lu' top most si.e'p in tin' ligim* is most 

|)robably clue to a lip crash during prc'vious scans. As nu'nlioiu'd before, vicinal 

Si(OOl) surface's have an avc'iage terrace width dependc'iit on tin* miscut angle n 

with the ratio a /{  I tan n ), which givc's for our saniph's of 0..5° miscut an average 

tc'rracc' width of about IbO A. From the image' in h'ig. l.r) (he' ave'rage' te'rrace 

width is calculatc'd to l)C' a.|)proximate'ly 170 A which is in good agrc'ement with 

the expc'cted value.

It was mentioned in'Chapter 2 that for vicinal Si(OOl) sml'aces having a 

miscut angle le'ss titan i°, the single steppc'd structure is most stable. Thus the 

Si(001) sample's usc'd in this study, be'ing 0.5° misorie'iitc'd, have' a. single ste'ppc'd 

c'cinilibrium structure. No double steps have btien ob,served in general througliont 

the experiments. Only at a small region of one sample, a double step was imaged, 

which is believed to be due mainly to the heat treaiment. 'I'lie image is shown 

in h'ig.l.ii. 'Г1|(' (irsl, st('p from the' h'ft is an Sp type' single' lu'ight stc'p. A 

small portion of the' topmost tc'rracc' which ends with an Sh type stc'p was grown
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Figure 4 .6 : An image oi Si(OOl) suil'ace exhibiting a. double step.
The iniago size is l̂8()X lf̂ (i A. The saai|)le voltage and tiimiel current are -2 V and 1 
iiA, respectively.

through the S..i type st(‘p and stopped there ronning 1)/̂  type' double height ste|). 

In addition, a bright region, the reproducibility of which is verified with a lew 

more scans of the same area, i.e. it was not accidental, is seen near the double 

step. An image of another scimple, shown in Fig.1.7, shows a similar behaviour. 

Again, tlie topmost ten-ace caught tlie underlying tc'rrace, and a double step is 

formed. Surprisingly, as in the previous figure, there is a contamination near the 

double step. The contaminations seen in these images are most probably SiC 

islands, wliich are known to act as pinning sites for steps.-'’'* The annealing 

temperature of 1050 °C is sufficient to cause the evaporation of oxides from 

tlie surface whereas the removal of silicon carbide reciuires higher temperatures. 

Some of the determinants of the stepping of Si(OOl) surface are ruigle of miscut, 

annealing and growth conditions, contaminants, and surface stress. In the case of 

the double stepped sample in Fig.4.6, emphasis must be given to contaminants as 

the most important determinant, In summary, tlie particle on top of the terrace, 

which is believed to be a carl)on contamination, is responsibh' lor the formation
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F ig u re  4 .7 : Another iinage of Si(OOl) .surface exhibiting a double step. 
'I'he image size is 150-1 xilO I A. The sample voltage aiul timiiel ciiiTeiit are -2 V and 
iiA, respectively.

of the double s

Having l)een succesful in cleaning a lew samples and obscMved steps and 

terraces on tlie samples, we determined an imaging strategy for the rest of the 

study. Usually large area, scans were taken first to lind a. clean and atomically flat 

rc'gioii on the sample. If the scanned area was not found to be clean enough, then 

the sample was movc'd h'ft/right using the ;r-srKler in ordc'r to find an appropriate' 

14'gion. A typical large are'a scan of a Si(OOl) sample cleaned with the previously 

<l('scril)('d method is dis|)lavyed in l·'ig.4.8. Uven thopgli the wide'ly spactxl mono- 

atomic steps a.i’(' clearly seen, which means that a. high vertical r(‘sohitioii was 

obta.iiied, becau.se of the iiisulliciency of the number (,)f pixels, the image is far fi4>m 

giving information about the cleanliness and iitomically flatness of the sample. 

In addition, since no lateral atomic resolution was obtained in this image, no 

conclusion could be drawn out about the characteristics of the steps at a first 

look. However, since it is known that the ends of the dimer rows form the Ss 

steps, and the sides of those form the Sn, Sjy sti'ps are expected to be rough,
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F ig u re  4 .8 : A large area scan of a S i(0 0 1 )(2 x l) sample.
Tlie image size is G08x()08 A. Tlie samj)le voltage and tunnel cunent are -2 V and 1 
iiA, respectively.

while S.-i ste|)s are exhibiting a rc'latively smooth structure. ( 'onseiiuently it can 

!)(' argued that the st(‘ps at the u|)p('r lel't and lower rigid cormu's are S,,i type 

and the one lying between them is an S« type step.

After iinding an a|)propriate region on the sample, the tip was moved over the 

surface to an atomically (lat section and high resolution image’s were tried to be 

taken. Fig.4.9 shows the high resolution scan of the Si(001)(2x 1) sample after 

moving the tip to tlie lower right corner of the region displayed in F''ig.4.8, uecir 

the mono-atomic step. 'I'he scan area was set in order for the image to include 

that step. Though not clean enough, the sample exhibits the fundamental feature 

of S i(001)(2x  l) reconstructed surface, namely the dimer rows. 'I'he reason for 

the iimvge not being totally clean is not only the dirtiness of the' sample surface, 

but the tip switches which are clearly seen to occur many times, as well. L3ecause 

of those tip artifacts the change of dimerization direction, i.e. the passage from 

(2 X 1) to (I X 2) domain, at the step, and tlu’ step its(‘lf a.r<‘ not visihh'. 1 low(‘ver, 

the dark region ruiiniiig parallel to l lie dimer rows is known to correspond exactly
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F ig u re  4 .9 : lligli i'('.solulioii S'I'M ima.g<‘ of a. Si(()01 )(‘2 x  I) sample'.
'I'lic ¡mage size is 194x 191 A. The sample voltage and tunnel current are -2 V and I 
iiA, respectively.

to the position of the third step of the image displayed in Fig. 1.8. This enabled 

us to check the validity of the previous argument on the types of steps of the 

large area scan. The high resolution image clearly tells that tlie step of interest 

is ,Sa type, which is exactly the conclusion of that argument. Thus smoothness 

was found to be a criteria for the investigation of the stepjred surfaces and the 

determination of the step characteristics.

Again a large area scan of a Si(00f)'(2 x 1) sample surface is displayed in 

Fig .4 .i0 . Three steps, the types of which can not be extracted Irecause of the low 

resolution, are clearly visible. Then moving the tip near the top most step a high 

resolution image Wcis taken, which is shown in Fig.4.11. In this image, although 

the upper tc-ri'acc' of the step was not pc'rlectly traced, the switch from (2 X 1) 

domain to (1 x 2) domain at the type step is obvious. The dimer rows of the 

upper terrace are only seen near the step, while on the lower terrace individual 

dimer rows are quite clear. In addition, single, double and multi dimer vacancies, 

which are the biisic types of defects on Si(00I)(2 x I), can be seen. Single and
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F ig u re  4 .1 0 : A large area scan ol' a S i(0 0 1 )(2 x l) sajuple.
'I'lio image size is GOHxGOS A. Tlie sample voltage and timiiel cuiTeiit are -2 V and 1 
IIA, respectively.

double missiug dimers and a vacancy Гопшч! by tlie disaitpearancc оГ one of the 

atoms of two adjacent dimers are shown in l·dg.4.Γ2.

'I'lu' difl('i4'iit kinds ol va.canci('s a.i(' mori' clearly visibh' in tin' high resolution 

imag(' presi'iited in [''ig.·!.I.'h Pandey proposed missing dimer type' (h'fect on the 

basis ol Uieoretical calciilatioiis. ' ' VVlien a. dimer is missing, ionr broken bonds a.re 

present in the snbsnrla.ee layer. Dinieri/.atioii in tin' second layer in tin' direction 

parallel to the dimer rows eliminates those broken bonds. 'I'liis stabilization is 

|)artially oilset by the elastic strain induced by the dimerization. However, if the 

ckdects are sndiciently far'apart so that their elastic strain iic'Ids do not overlap, 

the net energy is lowered. '

Another large area image of a sample prepared with the same method is shown 

in Fig.4.14. The surface is seen to be very clean. The relatively high resolution 

image given in Fig.4.15 was taken after moving tip to the lower right region of 

the previous figure. Dimer rows on the upper and lower terraces of an Ŝ i type 

step can be seen to be perpendicular to each other. Fiirtlier, the surface lias
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F ig u re  4 .1 1 : A small area scan of a S i(0 0 1 )(2 x l)  sample.
After moving the tip to the upper right corner of Fig.4.10.The image size is 260x140  
A. The sample voltage and tunnel current are -2 V and 1 nA, respectively.

F ig u re  4 .1 2 : The three different types of vacancies on Si(001)(2 x 1) surface. 
From  Ref. 26.

a very high density of defects, such as missing dimers, missing dimer groups. 

The part of the upper terrace near the lower right corner, if carefully inspected, 

ap|)(‘ars to contain buckled dimer rows. The reason for the dimers to be buckled 

on this surface is clearly understandable. As it is mentioned previously, surface 

defects which themselves are asymmetric in nature, are the main reasons of dimer
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F ig u re  4 .1 3 : A high resolution image of Si(OOl) surface.
The image size is U5x7X A. The sani])le voltage ami tuiuiel current are -2 V ami I 
iiA, rosi)ectiv(’ly.

buchliug. However, the buckling does not extend along the complete dimer rows, 

rather decays in a. length of live to ten dimers. It must be ke|)t also in mind 

that tip-sample interaction induces buckling as well. Due to t he buckling of the 

dimers, small regions of p (2x2) and c (4 x 2 )  domains are visible in the image. 

As well as vacancies and tip perturbation, step edges also induce luickling of 

dimers.'"

4.2 Si and Ge growth on Si(OOl)

Crystal growth has been, a technologically and scientifically atti'active area 

lor many years. In the last 20 years, the advent of the t(4’hni([uc!s such as 

mol(‘ciilii.r-beaiii ('pitaxy (Mill·’ ) and chemical v a p o r , t ? i ’owi ng vc'ry 

thill epita.xia,l lilms has opened the possibility of the development of useful 

(4('ctronic, optoelectronic, magnetic, bioc'hictronic devices. In these technologies 

tlu' growth mechanism is extremely imi)ortant. I'or ехатрк ;, achievement of good
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F ig u re  4 .1 4 : An image ol' a. Si(0()l) surface 
'I'lie imago size is (iOSxiiOS A. Sami)lo voltage anil tuimol nirront are -2 V anil 1 iiA, 
losiK'ctivoly.

|)('rlonnance in electronic or optoelectronic ilevices reiiuires ('pitaxial films with 

tliicknesses in some cases as small as a few atomic layers. As a result of tin' 

need to labricate ever smaller and more di'iisely packeil microelectronic devices, 

the covalent materials ol groups III, IV anti V ol the periodic table of elements 

have been attracting a lot ol al.tnitioii. I'lspeciall}' Si(h' based heterostnicl,tires, 

bc'canse ot tlieir electronic and optical properties, are promising, in addition to 

being coiupatil)le with matured Si technology. They oiler potential integration 

with the conventional silicon integrated circuits. Heterostructnre and superlattice 

activi' regions in these devices givi' vi'ry high piM'formance.

Si homo-epitaxial and Ce hetero-epitaxial growth on Si(001) have been studied 

by many groups using It has bi'eii found that tlii' substrate

(.emperii.tiire, growth rate and the structure of the substrate played an important 

role in epitaxial growth. Atomistic mechanism of crystal growth can be explained 

by the terrace-ledge-kink model®'  ̂ as shown in Fig.4.16. The model describes the 

surfaci' mor|)liology in terms of tn'races, sti'ps of a single atom high (th(' ledg('s).
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F ig u re  4 .1 5 : A high resolution inuige of a S i(0 0 1 )(2 x l) surface.
The image size is 304x304 A. Sample voltage and tuimel current are -2 V and 1 iiA, 
respectively.

kinks in tliese steps, and adatoms and vacancies. Crystal growth from the vapor 

l)egins with the creation of excess moijile adatoms on the surface. An atom that 

lias reached the surface will perform a random walk until it meets a step or another 

adatom. The deposition rate and the magnitude of dilfusion coefficient determine 

tlie path of the adatom liefore it meets another. If two adatoms meet, they may 

together Ibrm the nucleus of an island. On the other hand, an adatom may find 

a step and stick to the to the step or may cross over the step, before it meets 

another adatom. Thus there are basically two categories of kinetic processes that 

an adatom is subject to: motion on a flat terrace and interactions with steps.

There are three different growth modes. The first one is the layer by layer 

growth in which the crystal layers are formed such that the new layer is not 

started to grow until the first layer is c;om])lete. In 3D island growth, the islands 

themselves first grow three dimensionally and later unite to form tlie overlayer. 

Tlu  ̂ last mode, Stranski-Krastanov growth, is a mixture of the first two modes. 

'I'he first few layers are grown layer by layer, and 3D growth takes place then.
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F ig u r e  4 .1 6 : Atomic mechanisms of crystal growth in the framework of the 
terrace-leclge-kink model.
Arriving atoms (a), land on the surface which contains terraces, steps (b), vacancies (c) 
and kinks (d). Atoms can evaporate (e), move on the terrace (f), cross over steps (g), 
nucleate new islands (h ) or become incorporated into steps. From Ref.(physicstoday)

In the following subsections the images of Si and Ge grown Si(OOl) samples 

arc going to be displayed and discussed.

4 .2 .1  Si on Si(OOl)

Si was grown on Si(OOl) by using the Si evaporator which was described in 

Chapter 2. The Si(OOl) sample was cleaned with the same method as in the 

previous section. During the degassing of the sample, the evaporator was degassed 

as well. The Si source had been calibrated before, as to provide a growth rate  

of 0.073 M L/rnin at 9.25 Arms c u r r e n t . S i  was deposited for 1.5 minutes on 

the sample to obtain a coverage of ~  0.11 monolayers (M L). The substrate 

tem perature was kept at ~  300 °C during growth. After a cool down of 1.5 

hours the sample was loaded to STM.

A large area scan of the surface taken at *2 V sample bias and 1 пЛ tunneling
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F ig u re  4 .1 7 : STM image of 0.15 moiiolayer.s of Si deposited on Si(OOl) surface. 
ia.i>e size is 608x608  A.

current is shown in l''ig.f.!7. Althougli the image is not clear enough, the Si 

islands grown on the substrate can Ix' s ('< m i . 'I'Ik' islands on siicc('ssiv(' U'rracc'S, 

obeying tlie dimeiizatiou direction of tlie substrate, are grown |)erpendicular to 

each otfier. '['lie uppc'i· terrace of the Hb wt.c'p seems to contain a. rehrtively low 

(h'usity of Si islaiuls. 'I'lie reason will l)e discussed in the following paragraphs 

with a more clear image of the same sample taken with a. bettc'r tip, shown in 

l·’ig.■l.i8.

'I'lic· islands running perpendicidar to the dimer rows of the substrate are 

c leai ly visibhi. The islands are grown rectangular, i.e. thei(‘ is a. strong shape 

anisotropy. 'I'liis shape' anisotropy is due t.o the high sticking coc'dicient at tin* 

ends of the dimer rows compared to the sitles of them. In addition, the formation 

('iK'rgy of S,-i type step being lower than that of Sy type step, contribute to 

iJu' shai)e anisotropy, as well. More clearly, since the sides of the islands are 

,S,i type steeps and their ends are Sb ste])s, to minimize the formation energies 

the width of the rectanguhir islands become as small as |)Ossibh', soiiu'times 

ludy a IV'w dimers wid('. Srivastara ('t al. considerc'd the colh'ctive motion of
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X* G 4 .1 8 .  S1J\I O.l.) iiK)iic)Iivy(M’s o( Si (l(*|)osil.c(l on .Si(()()l) suriticx*
linage si'/(' is GOSxGOS A.

(leiisc'ly |)acU('cl adatoms and proposetl tliat the o|)(Miing of dinu'r l)onds in the 

nnderlying layer, to accomodate the new layer, dill’ers in two directions, causing 

III·' .ini;;otro|.ic slrnctiire.·'·' Mo et .d, have eN|)laiiied the ani;iotro|)ic sha.|.e 

ol islands simply hy an anisotropic accomodation coellident.'·'^ Accomodation 

can he nnderstood microscopically in t('rms of tiu' pathways and transition 

prohahilities for energy transler so that an arriving atom can stick to an e.xisting 

island. II the accomodation coefficient of an api)rdacliing atom at the side of 

a glowing dimei cliain i.s much less than it i.s at tht' end ol the chain, atoms 

will ('ffectively reflect olf tIu' side and stick only on the nids. 'I'lie more the 

accomodation coefficient/lifters in different directions, tlie more anisotropic the 

giowth shape will be.

ft is also obvious that the island number density at the middle terrace is higher 

compared to the other two terraces. The reason is the huge difference between the 

diffusion coefficients in two perpendicular directions. Mo et. al. have calculated 

the diffusion coefficient along the dimer rows to be appro.ximately fOOO times 

that in the direction perpendicular to tlie dimer rows.^* (Jonsec[uently, for an
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adatom arriving at tli(> middle terrace, it is difficult to travel through the steps, 

while it is easier to migrate along the substrate dimer rows parallel to the step. 

'I'he situation is reveisc'd lor the other two terrace's. The adatom arriving on 

th('S(' t('rraces prc'lers to migrati' through tlu' stc'p and cross over the st('p. 'The 

dillusion coellicient is strongly dependent on the substrate teunperature, as well. 

An island is observed to merge with tin* S/i type step at the lowc'r left part of the 

image. This is a sign оГ the growth via step flow, which is expected to occur at 

higlier substrate temi:)eratures and high deposition.

4 .2 .2  Ge on Si(OOl)

(¡e was also grown on Si(OOl) surface to understand tin' nature of this 

h('teroepitaxy. The sample was cleaned ex situ and in situ as described before. 

'I'lu' ( ¡e  .source which supplies a growth rate of 0.13 ML/min at 7.2 Ai-,ns current, 

was also degassc'd for 1-5 hours during tin' d('ga.s of tin' sainpl·'. (le was d('posit('d 

on tin' saiiiph' which was l«'pt at ~  500 “(■, lor 25 minut('s to obtain a. i'ov('rag<' of 

~  3.25 ML. Again the saiuph'was h'ft 1.5 hours to cool down toS'l'M t('mp('ra.tui(', 

ami loaded into the microscop('.

ІЗеІ'оге proisenting the images of the Ce grown Si(OOl) sample, it will be useful 

to have a look at tlui pii'vious STM studies on the heteroepitaxy of Ce on Si(OOl). 

(¡('growth on Si(OOl) is a. good ('xa.mj)l('of Stranski-Krastanov growth modi'. Mo 

('t al. have reported that above a deposition of ~  3 ML, up to which layer lyy layer 

growth is dominant, 3-D growth took p l a c e .P y r a m i d a l  3-1) islands begin to 

be form, which were referred to as ”hut clusters”. Tln^y have also shown that in 

order these hut clusters to grow, the substrate temperature had to be kept lower 

than 800 K. At temperatures exceeding 850 K macroscopic clusters which are 

similar to hut clusters in shape but huge compaixxl to them, form the majority of 

the surface. This 3-D growth is due to the high strain in the epitaxial layers which 

is a result of 4% lattice mismatch between Si and Ce. The strain is weakened by 

the first three monolayers and the overgrown 3-D islands on top are inelastically 

relaxed by forming dislocations.



( 7i;(/>/(·/· /. Ursulls

Figure 4 .19: S'I'M imago of ~  3.2 moiiolayors of (!o dopositod on Si(()Ü I) Kurface. 
Imago ,si/,(' is (iO(Sx(iO(S A .

F ig u r e  4 .2 0 :  S'PM imago of ~  3.2 monolayors of Cle deposited on Si(OOl) surface. 
Image' size is (ifiOx KiO A.

As well as Si/Si(0ül) and C!e/Si(()() 1), SiCle alloy growth on Si(OOl) lias lx 'en



('hiipl.cr  -/. l iv su its

F ig u r e  4 .2 1 ;  STM image of ~  3.2 monolayers of Ce deposited on Si(001) surl'ace. 
iat>:e size is 299x215  A.

t he subject to a great d('al of interest. In tİK'ir recent study, Oral and KllialtiogliA'* 

lia.V(' inv('stigat<'d tin' initial stage's of Side' alloy formation on Si(OOl) surface. 

They have observed that the higli strain due to the' lattice misimitch resulted in 

ce)mplete buckling of the' l.o|) most layf'r of the substrate as \V('I1 as the ove'riayer 

it.self. ( k)nse((uently, there appears a transition from (2 x 1 )  symmetric to c (4 x 2 )  

antisymnu'tric ce)n(igui'ation. 'I'lu'y have' also shown that at a k ) W  te'inperature' 

of 310 °(h tlu' growth occurred as island formation with minimal island island 

intei’action, while at a higher temperature, 170 °(!, step flow was taking place as 

the main growth mechanism due to the fact that the dilfnsion h'ligth of an adatom 

is larg('r than tlu' av('rag(' ti'rrace k'ligth at sncli temp('iatnr('s. ,'\t an inU'rmediate 

t.c'mpei'atnre of .390 °d , aXoms and ishuids interact with one anotlu'i· but not with 

the steps, such that they can reach a configuration which was observed to l>e the 

formation of missing dimer rows, resulting in (2 x n )  ordering of the alloy.

'I'Ik' image shown in l''ig.4.19 is a scan of the 3.2 Mb Cle grown Si(001) sample. 

Only a. st('p th(' type of which can not b(' extracti'd, is se('ii. 'I'lu'ie is not any 

{¡(' ishmd on the surface. Another regicni of tin' saiiipk' is imaged, and again no
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island forinatioii is obsc^rved, as sliowii in Fig.4.2ü. A ])ossil>le explanation may 

b(' that it is a step (low growth due to high substrate tein|)('rature. Complete 

monolayers were íormed in the first stages of the growth, and then the arriving 

adatoms rattier than interacting with each other, rcxiched tlu' steps and were 

captured because of the high surface diffusion rate at elevated temperatures.

A relatively liigli resolution image of the same sample is given in Fig.4.21. 

The dimer rows of the surface are visible. However, there is a high density of 

defects, ('specially missing dimer grou])s. Under some of the openings from the 

top layer, the dimerizaton on the subsurface layer is seen. This image supports 

th(' idea that the growth occured via step flow. Only almost complete overlayers, 

nol. individual (\c islands, ar(i observed. Although th(' diiiK'r rows are scx'ii, the 

r('solution of the image is not suificient to lead to Fui ther int(‘rpi(‘tations.

In this work, we aimed to observe different typc.'s of epitaxial growth. At 

low temperatuixis, the island growth mode is obtained wherc'as at rather high 

t('inperatur(i's the growth occurs via step flow. VVe grew silicon on Si(Oül) surface 

at 4Ü0 displaying island formation and germanium also on Si(OÜi) surface at 

bOO which ('xhibits stc'p flow mode. 1 would like to strc'ss that the objc'ctive 

was to com[)are growth at different temperaturc^s rather than comparing Si versus 

(!e growth.
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Conclusion

'i'lic clean and epi-grown Si(001)(2x 1) reconstructed surfaces liave been analysed 

using the UHV-STM, in tliis thesis work. The tip prei)aration and sample cleaning 

tehniciues were optimized first. To obtain an atomically sharp and clean tip was 

ratlier difficult. The samples, cleanliness of which were confirmed with LEED  

analysis, were observed to contain localized contaminations, such as oxides and 

SiC.

The surface features like steps and dimers, known to be the building blocks 

of tin; reconstruction of Si(00f) surface, were observ(‘d on clean samples. A high 

density of defects like missing dimer and dimer groups, were detected on Si(OOi) 

surface. The theoretical estimation of the average terrace with for our samples 

is 160 A . We have found the average terrace width experinumtally to be 170 

A . 'I'liis is in quite good agreement with the expected value. Our samples were 

expected not to contain double height steps because of small vicinal angle of 0.5°. 

However, on a few samples double step formation was observed. We believe that 

this is due to SiC contaipination. This agrees well with the suggestion that SiC 

islands behave as pinning sites for s te p s .d 'h e s e  sites would cause vacancies and 

dislocations during growth. In Si and SiGe based devices the dislocations would 

not alter the performance drastically, if the dislocation density is not too high. 

However, such dislocations may be decorated by impurities during the growth 

and/or fabrication. Accordingly, silicon carbide mediated d('fects and dislocations

57
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may cause tlie clegradaliou of device performances. Although tlie propagation 

and interactions of dislocations, especially threaded and misfit dislocations, are 

vvc'll studic'd in the literature, tlie nucléation of such dislocations yet have not 

heeii iiivc'stigaU'd t.lioroiigldy. We lu'ru'Vi' tliat Si(! acts as a iiiicleation sit(' for 

dislocations.

Buckling of the dimers, which is believed to be induced either by vacancy 

ty[)e defects or tip-sample interaction, was also observed. The buckled dimers 

vv('re seen along the rows which are close to surface defects. |)(2x2) and c (4 x 2 )  

symmetric domains, whicli is a coirsecpuMice of buckling, are imaged on one clean 

Si(ÜOl) sample.

Finally, .Si and Ce w('re grown epitaxially on Si(üül) surface, witli 0.11 ML and 

3.2 ML coverages, respectively. The Si growth on Si(OOl) occured as individual 

island h)rmation b('ca.ns(' of the low cov('rag(‘ and low substrate l.emperatur(‘ ( ~  

300 °C). In contrast. Ce growth was determined to occur via stej) How due to 

tin* high substrate ( ~  500 °(1) temp('ratnr<‘. No individual island formation was 

observed on terraces. C(' overlayers were found to dimerize lik(' Si.

lùirtliei·, in Si growtii, a. strong ani.sotropy was obsc'rved in l.lu' shapes of 

individual Si islands. 'I'liis ani.sotropy is dn<' to the larger sticking coellicieiit at 

the ('lids ol dimer rows than that at the sides ol dimer rows. II tin' sich's ol a. 

dimer row are considen'd to be Sn and S,i type sU'ps a possibh' expla.na.tion of 

the shape anisotropy may be the following. All the atoms at the edge of an Sa 

type step are satui'cited and there are no dangling bonds available for a diffusing 

suiface ¿idatoin or dinu’r. On the other hand, the row of atoms on the lower 

t<'rrace right next to cvn Sjy type st(.'p have not coinplek'd tlu'ir coordination, so 

that they would behave as cictive sites for the incoming dimers.

The rectangular islands were grown perpendicular to the underlying dimer 

rows of the substrate. There was also a diifusional anisotrop}\ Since it is easier 

for the adatoms to migrate along the dimer rows than perpendicular to them, 

the island density on the upper terraces of Ŝ i type steps were found to be larger 

than that on the lower terraces. Both the shape and diffusional anisotropies in 

growth can be reduced by increasing the coverage and/or substrate temperature.
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l''or a more cli'tailed sludy of tlic growth process, ex])erim(Mils with different, 

(o\’<'rages and snbstrate temperatures, must be carri('d out.
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