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ABSTRACT

VARIATIONS IN ASSOCIATIVE MEMORY DESIGN

Mehmet Akar
M.S. in Electrical and Electronics Engineering
Supervisor: Prof. Dr. M. Erol Sezer
August 1996

This thesis is concerned with the analysis and synthesis of neural networks
to be used as associative memories. First considering a discrete-time neural
network model which uses a quantizer-type multilevel activation function, a
way ol selecting the connection weights is proposed. In addition to this, the
idea ol overlapping decompositions, which is extensively used in the solution
ol large-scale problems, is applied to discrete-time neural networks with binary
neurons. 'T'he necessary tools for expansions and contractions are derived,
and algorithms for decomposition of a set equilibria into smaller dimensional
equilibria sets and for designing neural networks for these smaller dimensional

equilibria sets are given. The concept is illustrated with various examples.

Keywords : Hopfield neural network, associative memory design, multilevel

activation function, overlapping decomposition
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OZET

CAGRISIMSAL BELLEK TASARIMI UZERINE
CESITLEMELER,

Mehmet Akar
Elektrik ve Elektronik Mihendisligi Bolimi Yiksek Lisans
Tez Yoneticisi: Dr. M. Erol Sezer
Agustos 1996

Bu tez sinir aglarimm gagrisimsal bellek olarak kullanilmas: amaciyla ¢oziimlen-
mesi ve tasarimi ile ilgilidir. Oncelikli olarak, ayrik zamanda nicemleyici tir
[onksiyon kullanan bir sinir ag1 modeli i¢in baglant: agirhiklarimim se¢imi i¢in
bir yol énerilmigtir. Buna ek olarak, buytik 6l¢ekli problemlerin ¢oziimiinde
cok¢a kullamlan ortligen parcalama teknigi, iki durumlu sinir hicreleri kul-
lanan ayrik zaman sinir ag modellerine uygulanmigtir. Genigletme ve biizme
icin gerekli kurallar ¢ikarilmig ve bir denge vektorleri kiimesinin daha kiiglik
boyutlu iki denge vektorler: kiimesine denk olarak indirgenebilme ve bu kiigiik
boyutlu kiimeler igin sinir aglar1 tasarumi igin algoritmalar verilmistir. Konu

degisik 6rneklerle aydinlatilmigtir.

Anahtar Kelimeler : Hopfield sinir ag1, cagrigumsal bellek tasarimi, ¢ok seviyeli

harcketlendirme fonksiyonu, ortigen pargalama
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Chapter 1

Introduction

There are problems in nature (pattern recognition for example) which are easily
solved by people and animals but which are difficult to solve with today’s digital
computing technology. These kinds of problems have two characteristics : they
are ill-posed and their solutions need an enormous amount of computation. To
overcome these difliculties, scientists have been working hard for many years
to build intelligent systems that can model the highly complex, nonlinear and
parallel structure of the human brain. As a result, neural networks which try

to model the brain became one of the challenging fields.

Work on neural network models has a long history, but interest on neural
networks has arised since Hopfield [1, 2] proposed his model, and neural net-
works have been used to solve many problems in various fields such as control,

classilicalion, pattern recognition and optimization.

Neural networks consist of computational elements called neurons and
weighted connections between these neurons. Neurons are multi-input, single-
output, nonlinear processing units which form a weighted sum of its inputs and

passes the result through a nonlinear function, called activation [unction.

With a proper choice of the connection weights, the neural network can store
some desired vectors as asymptotically stable equilibria of the network. 1his
problem, called the associative memory design problem, has been analyzed
by various researchers using both discrete-time and continuous-time neural

network models. In [1, 2], Hopfield used the outer product rule to store a given



set of memory vectors for the restrictive case ol orthogonal patterns. Later
in [3, 4], the authors proposed the projection learning rule which guarantees
any set of desired memory vectors to be stored as equilibria of the network.
In (5, 6, 7], Michel and his coworkers used the eigenstructure method in which
the connection matrix is synthesized so that the memory vectors hecome the
ecigenvectors of that matrix with a single positive eigenvalue. In [8], Lillo et al
used the brain-state-in-a-box model to realize an associative memory. Later
Perfetti [9], using the same model, developed some criteria to increase the basin
of attraction of the desired patterns and based his synthesis procedure on this
criteria. T'he past work on the design of associative memories is reviewed in

detail in Chapter 2.

All the above work use two-level activation functions. Using multilevel
activation functions help us to decrease the number of neurons used. In [10, 11],
the authors used the outer product rule to design networks using multilevel
activation functions. In [12], the authors based their synthesis procedure on
local stability, global stability and equilibrium constraints they derived. Other
work concerning neural networks using multilevel activation functions include

(13, 14, 15, 16]. All this work is reviewed in detail in Chapter 3.

[n this thesis, we first consider a discrete-time neural network model and
analyze the associative memory problem in the case of multilevel activation
functions. We propose a way to compute the connection matrix and comment
on the stability issues. The advantages and disadvantages of using multilevel
activation functions are illustrated with an example using the existing methods

and the proposed method.

In the rest of the thesis, we employ the concept of overlapping decompo-
sitions, which is used in the large-scale system design problems, to relieve the
computational work in designing associative memories. The idea of overlapping
decomposition design is to obtain the global solution to a large-scale problem
by dividing the system into a number of smaller subsystems sharing some com-
mon parts, and then combining the individual solutions of these subsystems.
The concept of expansions and contractions are made precise, and necessary
conditions are derived so that the overlapping decomposition methodology can
be applied to the design of associative memories. A decomposition algorithm
is given to decompose the desired set of equilibria into two smaller dimensional
equilibria sets equivalently and a design algorithm is given to design neural

networks for these smaller dimensional equilibria sets. Finally the concept is

2



illustrated with various examples.

This thesis is organized as follows. In Chapter 2, we suinmarize the past
work on associative memory design using binary activation functions. In Chap-
ter 3, we first review the past work on neural networks using multilevel ac-
tivation functions and then analyze the associative memory design problem
considering a discrete-time neural network model with a multilevel activation
function. In Chapter 4, we first review some results on expansions, contrac-
tions and overlapping decompositions {rom large-scale system theory, and then
apply the idea to the design of neural networks. In Chapter 5, we give various
examples on the application of the ideas presented in Chapter 4. In Chapter

6, we give the concluding remarks.



Chapter 2

Review of Associative Memory

Design

Design of associative memories has attracted great attention alter Hopfield
[1, 2] proposed a nonlinear continuous model which can be realized by electronic
circuitry. The equation governing the electronic circuit is described by a set of
first order ordinary differential equations as
1 @;
Cit; = ZTU/,(”L,) - [—fl +0L, t=1,....n (2.1)
y (3

=1
where x; is the input voltage of the nonlinear amplifier, /; is a fixed bias cur-
rent, and fi(+) represents the input-output characteristics of the amplifier called
the activation function, which is usually a smooth, saturation type nonlinear-
ity such as a sigmoid function. C; and R; are capacitor and resistor values,

respectively, and T; are interconnection weights.

Letting @ = [z 2y ... @)%, f2) = [fulzy) falwy) ..o fulel)]F, b =
[(1,/C1, [)Cyy. .. L JCL)Y, A = diag{1/RyCy, 1/ RyCy,. .. 1/ R,CLY, and 1" =
[13;/C'], the above class of neural networks can be described more compactly
as

t = —Ax + Tf(z) + b (2.2)
which represents a dynamical system with state @ € R", and a fixed input

heR"



The discrete counterpart of the above continuous model can be described

by a first order nonlinear difference equation as

e(k+1) = [T z(k) + b) (2.3)

where @ and b are the state and the bias input respectively.

Associative memory problem is to store a desired set of patterns as stable

mernories of the neural network. The problem corresponds to solving for A,

T and b in the continuous-time case and solving for T and b for the discrete-

time case. The desired characteristics of the resulting neural network should

be [17, 18]:

.

34

6.

[lach prototype pattern stored as an asymptotically stable equilibrium

point of the system.

A minimum number of asymptotically stable equilibrium points of the
network which do not correspond to prototype patterns (i.e., spurious

states).

A non-symmetric interconnection structure, which eases difficulties in the

implementation of neural networks.

The ability to control the extent of basin of attraction about the equilib-

rium points corresponding to stored patterns.

Learning (i.e., the ability to add vectors to be stored as asymptotically
stable equilibrium points to an existing set of stored vectors without af-
fecting the existing cquilibria in a given network) and forgetting (i.e., the
ability to delete specified equilibrium points [rom a given set of stored
equilibria without affecting the rest of equilibria in a given network) ca-
pabilities.

A high storage and retrieval efficiency, i.e., the ability to efficiently store
and retrieve a large number (compared to the order n of the network) of

patterns.



2.1 Continuous-Time Neural Networks

Now we will concentrate on the continuous-time model with sigmoidal non-
linearity and summarize some of the results that appeared on the design of
associative memories. We wish to store m desired patterns y*, 1 < ¢ < m (i.e

y' = f(x%) ) as stable memories of (2.2).

2.1.1 The Outer Product Method

A set ol parameter choices determined by the Outer Product Method (1, 2] is
given by

m

T =Y 9yy)", A=1, b=0 (2.4)
7=1

The name of this method is motivated by the fact that T consists of the sum of
outer products of the patterns that are to be stored as stable memories. This
method requires that y*, 1 < i < m, be mutually orthogonal (i.e., (y*)7y? =0
when ¢« # 7). Advantages of outer product rule are learning and lorgetting.
Learning is accomplished by modifying (2.4) as

/11 — /[|+ayl(y[).l , /4 — 1 , b: O (2'5)
where y' is a new memory to be learned by the network. Forgetting is accom-

plished by modilying (2.4) as
T - T—ay' (), A=1, b=0 (2.6)

where ¢! is a stored memory to be forgotten by the network. In both cases,
« > 0 is a small constant which determines the rate of learning or lorgetting.
[ixperience has shown that networks designed by this method can store ef-
fectively only up to 0.15n [18] arbitrary vectors as equilibrium points where
n denotes the order of the network. Moreover, design by outer product rule
results in neural networks that are required to have symmetric interconnection
structure, which gives rise to spurious states in addition to posing dilliculties in
implementations. Another important attribute of this method is that networks
designed by this technique are globally stable (i.e., all trajectories of the net-
work tend to some equilibrium point), as can be shown using a suitable energy

function.



2.1.2 The Projection Rule

When the desired prototype patterns y*, 1 < i < m, to be stored in (2.2)
as stable memories are not mutually orthogonal, a method called the Projec-
tion Learning Rule [3, 4, 19] can be used to synthesize the interconnection

parameters for (2.2). Let ¥ = [y',...,y™]. Then
T =%5 ) A=1, b=0 (2.7)

is the set of parameters for (2.2) where 1 is the Moore-Penrose pseudo-inverse
[20] of ¥. We note that T given above satislies the relation 'Y = ¥ which
shows that T is an orthogonal projection of ™ onto the linear space spanned
by y*, 1 <4 < m (hence the name Projection Rule). When yi, 1 < i < m,
are mutually orthogonal, the Projection Learning Rule and the Outer Product
Method coincide. This method has two advantages over the Outer Product
Method. First, networks designed by this method are capable ol storing effec-
tively 0.5n [18] equilibrium points. Secondly, this technique guarantees that a
network designed by this method will always store a given vector as an equilib-
rium point. However, this equilibrium point need not be asymptotically stable.
Since the Moore-Penrose pseudo-inverse can be computed iteratively, there are

also adaptive learning and forgetting rules [3, 4].

2.1.3 The Eigenstructure Method

T'his technique [21, 5, 18, 22] also utilizes the energy function approach, thus
guarantees to store the desired set of patterns as stable memories. ‘I'he patterns
nced not be mutually orthogonal as in the Outer Product Method. In the
following, we outline Michel’s algorithm [22] for the case when the desired
sel, consists of bipolar vectors, ie., ' € B* = {y € R* 1 y; = L or y; =
—1,i = 1,...,n}, and the activation functions are saturation nonlinearities.

The algorithm is as follows:
Algorithm 2.1 (Michel’s algorithm)

[. Compute the n x (m — 1) matrix
Y = [yl . ym, . 7ym—l. _ ym] (28)

7



2. Perform the singular value decomposition of Y as Y = USVT where U
and V are unitary matrices and X is a diagonal matrix with the singu-
lar values of Y on its diagonal. Letting U = [u',... u"] we know that

u',...,u™ is an orthonormal basis for R". If we let k denote the dimen-

T OT “the Inear snace avanned B s I | T = '
sion of the linear space £ spanned by the vectors y' —y™, ... ym=1 —ym
then w',... u* is an orthonormal basis for £ and w**! ... w" is an or-

thonormal basis for £,
5 m ey o AP 4 ) - end M
3. The parameters of the neural network are given as

k n
T = T Z(’Lti)(lti)'r_TZ Z (ui)(ui)T ’
=1

i=k+1
A = I, b=ry"—Ty" (2.9)

where 7 > 1. It is shown in [21, 5] that when 7, > 0 is sufficiently large,
all desired patterns are stored as stable memories. In fact, all vectors
in £, B" are stable memories, where £, is the afline space given by

L + ?/m.

lFor the eigenstructure method, iterative learning and forgetting rules have also

heen worked for the above design scheme [18].

2.2 Discrete-Time Neural Networks

The discrete-time neural networks are described as in (2.3), where the activa-

tion functions are a saturating linearity defined as

1 ifa>1
filz) = T i —l<ae<|
-1 ifa< =1

Li et al considered this model in [5]. In their paper they find all the solutions
ol the above difference equations, hence characterize all possible equilibria and
asymptotically stable equilibria. Then considering a symmetric I', they define
the energy function I(z) = —a®(T — I)x — 22Tb, and show that the energy

decreases monotonically along non-equilibrium solutions of the system and each

8



non-equilibrium solution converges to an equilibrium, hence the neural network
is globally stable, under the assumption that the eigenvalues of T' are greater

than -1.

‘I'he synthesis procedure they propose is the same as the method they
proposc for the continuous-time case. In another paper [18], they derive
the learning and forgetting algorithms for the given synthesis procedure.
They also show that the computational complexity of incremental learn-
ing/forgetting algorithm approaches O(mn?) asymptotically while the com-

plexity is O(n® + mn? + m*n + m?) for the classical learning.

The brain-state-in-a-box(BSB) neural model, which was first proposed by
Anderson [23] in 1977, is another discrete-time neural network model which
can be described by a set of first order difference equations as

e(k+1) = f(a(k) + aWa(k)) (2.10)

where * € R” (denoting the neuron variables), & > 0 is the step size, W €
R™" (representing the interconnections of neurons) and f(-) is the saturating
lincarity given above. The function f(-) is responsible for the name given to the
above equation, as the state vector x(k) lies in the “box” H,, = [—1, 1]", which
is the closed n-dimensional hypercube. Later Hui and Zak [24] generalized this

model by introducing the vector ab:
alk+1) = f( (1, + oW )a(k) + ab) (2.11)

where b € R™ (representing bias terms). Lillo et ol [8] used this generalized
brain-state-in-a-hox (GBSB) model to realize an associative memory. In their
paper the desired prototype patterns are mapped to the corresponding asymp-
totically stable vertices of the hypercube. To summarize their results, let
Lx)=(1, + aW )2 + «b (2.12)
One can verily [25] that a vertex 2* of the hypercube H, is asymptotically

stable equilibrium of the GBSB model if

(L(z™))ix; >1 , i=1...n
Their main contribution is the following theorem:
Theorem 2.1 Let Y = [ y* ... y™ | € R™™ be the malriz of protolype
patterns. Assume that the prototype patterns arve linearly independent so thal

9.



rank(Y)=m. Let B = [b...b] € R™™. Suppose D € R"™ " is a strongly row

diagonal dominant malriz whose components satisfy
n
dig > > |dij] , i=1,...,n (2.13)
J=1,j#i

and A € R™" s a matriz whose components salisfy

n

Xi<— 3 Ayl—=bi, i=1...n (2.14)
i=Lg#i
If
W= (DY - B)Y'+A(l, - YY) (2.15)
where YT = (YTY)"WWT | then all of the desired patterns will be stored as

asymptotically stable equilibrium points of the hypercube H,.

They also provide a simple algorithm to select D, b, and A so that W can

be computed from the theorem. Their four step algorithm is as follows:
Algorithm 2.2 (Lillo et al)

L. Select a strongly row diagonal dominant matrix D € R™*",

2. Select the components of the vector b such that

dig < Y Mgl + b, i=1...n
J=1,4%#1

and
m

b:Zciy(i) , >0, ¢
=1

l...n

Picking b to satisfy the first condition helps to ensure that the negatives
of the desired memories are not stored as spurious states. Picking b to
be a linear combination of the desired prototype vectors as in the second
condition helps to ensure that the trajectory will be sent toward a stable

vertex.
3. Pick a matrix A € R™™ such that (2.14) is satisfied.

4. Compute W with (2.15).



[n the paper, the authors also show that this design procedure can also be
used for signum activation function. However, the network designed by this
technique is not guaranteed to be globally stable. Also, existence of learning
and forgetting algorithms and storage and retrieval efficiency of the network

have not been worked out yet.

Later BSB wodel is analyzed by Perfetti [9]. In this paper the author
derives some sullicient conditions which guarantee: i) the absence of non-binary
asymptotically stable equilibrium points, ii) the absence of binary equilibrium
points near a desired memory vector. The main contribution in the design
given in this paper is that it allows one to optimize a design parameter which

controls the size of the attraction basins of the stored patterns.

The author first shows that if w; >0 , ¢ =1,...,n, then only the vertices
of the hypercube can be stable equilibria. If we also have w; =0 |, ¢ =
l,...,n, then there is no equilibria at Hamming distance 1 or n — 1 from the
stored vector. However, the most appealing part of the work in the paper is

the following theorem.

Theorem 2.2 None of the vertices £ satisfying H(E, &%) < k or H(£,£*) <

n — k is an equilibrium point if

n
Z'wi.,,-fifj > 2k11’17';1.x wil , t=1,....n (2.16)

=1

where H(E,€%) denotes the Hamming distance between € and £*.

For a design procedure, the conjecture the author follows is that increas-
ing the basin of instability of the given patterns will increase their basin of
attraction. Clearly, one can impose the conditions in the theorem. However,
these sullicient but not necessary conditions are very strict. So, to incrcase
the domain of attraction of the stored patterns, Perfetti’s strategy is the max-
imization of the left-hand sums in the theorem.

According to the considerations outlined above, Perfetti’s synthesis strategy
can be formulated as follows: Assume o = 1. I'ind W such that é is maximun,
subject to the linear constraints

n
Zwijylgk)y‘gk) >6>0 , i=1,....n, k=1,....m (2.17)

J=1
—1<w; €1, nj=1,...,n (2.18)

11



wij =wi o, tF], Li=1n (2.19)

’u)ii:O 5 = 1,...,77, (22())
and to the nonlinear constraint
/\min(_”/) > =2 (221)

Without constraints (2.18) the maximization of § would be meaningless. Note
that constraint (2.21) which is required for the global stability ol the network
is obtained from [5]. Due to the large number of unknowns and constraints,
it is cumbersome to look for the optimal é using classical simplex method,

therelore the author proposes the following algorithm:
Algorithm 2.3 (Perfetti)

1. Find W = WO 50 as to satisfy the lincar constraints (2.17-2.20) with
6=0

(a) Il a solution exists, the vectors y!...y™ are stored as equilibrium
points of the neural network. Then let r=1, choose §(!) > 0 and go
to step 2.

(b) If a solution does not exist, it is impossible to store the vectors
y!...y™ in the associative memory using a zero-diagonal connection
matrix.

2. Find W = W) 50 as to satisly the linear constraints (2.17-2.20) with
6 = 607 > 0. If a feasible solution to (2.17-2.20) exists go to Step 3.

Otherwise go to Step 4.

3. IPind the minimum eigenvalue AU ot WL TEAY) S 9 then increase

min min
r by 1, increase 6 and go to Step 2. Otherwise go to Step 4.
1. Let W = W01 and o = 1. The vectors y' ... y™ have been stored as

asymptotically stable equilibria of the neural network.

A time-consuming task of the proposed synthesis procedure is the repeated
application of Step 2. Therefore, the author proposes a more eflicient algorithm
by defining the constraints in (2.17-2.20) as an unconstrained optimization

problem.

12



[t seems that the basic advantage of this technique over the existing ones
is that there is no stable equilibria at Hamming distance one from the desired
patterns provided that such a solution exists with zero-diagonal connection
madtrix constraint. A great disadvantage ol this technique is the complexity of
linding a solution. There are no learning and [orgetting rules [or this method

and a storage capacity analysis should have to be worked out as well.

13



Chapter 3

Neural nets with multilevel

functions

In this chapter, we consider the analysis and synthesis of neural networks using
multilevel activation functions. We first review the literature on the subject.
Then considering a discrete-time neural network model, we state the conditions
for a set of desired patterns to be asymptotically stable equilibria of this model
nsing the multi-level quantizer shown in Figure 3.1. We then show that the
quantizer-type functions with the same number of saturating levels are equiva-
lent in the sense that there is a transformation which maps the design param-
eters computed for one type of function to be used for another quantizer-type
function. In the rest of the chapter, we deal with the analysis and synthesis
problem of associative memories using multi-level activation functions. We fi-
nally conclude the chapter with an example illustrating the advantages and

disadvantages of using multilevel [unctions.



3.1 Past work on neural nets with multilevel

functions

In VLSI implementations of artificial feedback neural networks, reductions in
the number of neurons and in the number of interconnections are highly desir-
able. If an n-dimensional vector with each component of ¢-bit length is to be
stored in a neural network with binary state neurons, then an n x ¢ order sys-
tem may be used. Alternatively, an n-dimensional neural network may be used
for this purpose, provided that each neuron can represent a ¢-bit information,
which is possible by using a ¢-level activation function [or the neurons. In the
former case, the number of interconnections will be of the order (n x ¢)?, while

in latter case, the number of interconnections will be only of the order n?.

Outer product method has been used in the design of discrete-time neural
networks which make use of quantizer-type multilevel activation function [10,
[1] but we know that this design technique is successful only in the case of

orthogonal patterns.

In [13], the stability, capacity and design of a nonlinear continuous-time
neural network are analyzed.They derive a set of sufficient conditions for the
asymptotic stability of each desired equilibrium and phrase these conditions
in terms of linear equations and piecewise linear inequality relations. ‘The
authors then suggest to solve these inequality relations either using methods
such as Tourier elimination or using another neural network which can solve

inequalities, but they do not provide specific information about this.

[n [14, 15], the authors analyze a discrete-time neural network with contin-
uous state variables updated in parallel and show that for symmetric connec-
tions, the only attractors are fixed points and period-two limit cycles. They
also present a global stability criterion which guarantees only lixed-point at-

tractors by placing limits on the gain of the sigmoid nonlinearity.

[n [16], Meunier et al introduce networks of three-state (-1,0,+1) neurons,
where the additional state embodies the absence of information. An extensive
simulation study has been carried by the authors on the information processing

capacity of these networks.

In [12], the authors consider a class of synchronous, discrete-time neural
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networks described by first order linear difference equations. A local qualitative
analysis of neural networks is conducted independent of the number of levels
employed in the threshold nonlinearities. In doing so, the large scale systems
methodology is used to perform a stability analysis. Next by using cnergy
[unctions, the global stability is established. Ilinally a synthesis procedure for
the neural network to store some memories as asymptotically stable equilibrium
points is developed based on local stability, global stability and equilibrium
constraints. In the paper they apply this synthesis procedure to a gray level
image processing example, where each neuron can assume one of the sixteen

values.

3.2 Analysis and Synthesis of neural nets

with multilevel functions

Clonsider a discrete-time neural network model described by
a(k+1) = [T a(k) + D) (3.1)

where x(k) € R" is the state vector at instant k, 7' € R™*" is the interconnec-
tion matrix, b € R™ is the bias term and f(z) = [fi(xy) fa(xz) ... fulxn)]”
with f;(+) a multi-level quantizer-type function with A" levels as shown in Itig-
ure 3.1, We assume that f;(-) are right continuous. Note that the neural

network in (3.1) is completely characterized by a triple (f, T, ).
We begin by stating the equilibria conditions for the neural network model

(3.1) as a theorem whose proof is trivial, and is omitted.

Theorem 3.1 A wvector y. is an asymptotically stable cquilibrium of the newral

nelwork model (3.1) with the mulli-level function given in [Migure 3.1 if and only
of
a) y. € 2}, where Zg = {do,dy,...,dx_1}, and
b) il satisfies (componentwise) the inequalities
c<Ty.+b<e (3.2)
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Figure 3.1: Quantizer-type multi-level function with K levels

where
C if'yei:dl , l:vl_,?,,...,.[(—[
(S (3.3)
—00 7f Yei = d()
1 HYai=d , 1=0,1,... K -2
G = (3.4)
00 if Yei = dr—)

It is clear that neural network described by (3.1) has at most K™ asymptotically
stable equilibrium points.
Before going on to the synthesis problem, we will consider the [ollowing
problem.
Problem 3.1 Given a neural network, characterized by (f,T,0), with a sct
{y¥) , j=1,2,...,m} of equilibrivm points. Lel [’ defined as
f@)=af(Br+v)+6

be another K-level quantizer with quantization levels d. = ad; +6
0,1,..., K — 1, where at, 3, 7, 6 are constants and o, 3 # 0. Find, if possible,

T =
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1" and b such that the set of equilibria of the neural network (f',T',V) is

(::(:(Lct[y {yé(j) = ayéj) + be R ] = 1,2, ... ,’I’I’L} where e = [l .. l]T cR™.
We give the solution to the above problem in the following theorem.

Theorem 3.2 The choice
, 1 ! ~ )

T"'=—-T, 0V==-b—=ec— —T¢ 3.5

of y /3) /5( o ¢ (3.5)

solves Problem 3.1.

Proof: Let y, = [di, di, ... d;,]7 be an equilibrium of (f,T,b) and consider
y, = ay, +6e = [ad;, +6 ... ad;, + 8]". Using (3.5), we have

I
Ty, + b = 5(IYe+b—7e)

so that ! |
—(c—ve) < Ty, +b < =(T—~ve).
Le=0) o= )

[owever, the discontinuity points of f" are, by definition, ¢/ = (¢;—v)/p , i =
1,2,..., K — 1. Hence,
< Tyl 40 < @

s0 that y! = ay. + de is an equilibrium of (f*,T",V').

Conversely, il y! is an equilibrium of ( f',17,0'), then y! = vy, + ée lor some

equilibrium y, (= l\yé — ;‘i—c) of (f,T,0b).

[&

Theorem 3.2 simply states that all K-level quantizer activation [unctions
are equivalent in the sense that, with the parameters 7" and b chosen suitably,
the associated neural networks have equivalent equilibria sets. This allows the
(uantization levels and the discontinuity points of the activation functions to

he chosen as desired to simplify the analysis and design procedures.

[ the next section, we will concentrate on the associative memory design

using multi-level activation functions.
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Irigure 3.2: Quantizer-type multilevel with 2K levels

3.3 Design of neural nets using multi-level

functions

In this section we will consider methods of designing neural networks using
multi-level quantizer type functions. We will in particular consider symmetric
2[(-level quantizer type functions as shown in Iigure 3.2 for easier representa-
tion of equilibria constraints.

lFor this quantizer, the equilibria constraints for the memory vector y to
be asymptotically stable equilibria ol the neural network model (3.1) can be

formulated as:
¢ < (Ty + b)l <¢ , t=1...n (3.(5)

where

N
|
—_
[S
=
l
—
S

yi— 1 ify;

—o0 ily = —(2K — 1)

_ yi+ 1 ity #£2K -1
. = (3.8)

¢ = ‘
00 ify; =2K — 1

Based on design methods derived for two state neurons, we will now outline
similar methods for the design of neural networks with multi-level functions.

[for convenience we repeat the problem of associative memories at this point.
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Problem 3.2 Given m vectors which are the columns of the matriv ¥ =
[y .y, find T and b such that the columns of Y are stoved as Jixed points

in the newral network model (3.1).

['rom the equilibria constraints (3.6), we note that if we can find 7 and b
such that 1'y@ + b = yU), 5 = 1,2 ... m, then clearly all the equilibria
constraints are satisfied. So our problem reduces to finding a solution for the
matrix equation TY + B =Y, where B=[b ... b] € R".

If rank(Y’) = m then the projection learning
T=YY", Yi=(Ty)"'tv?" =0 (3.9)
can be used to synthesize the neural network. Clearly, for this choice of pa-
rameters Ty = y for y = y(j), J = 1,2,...,m, thus equilibria constraints

(3.6) are satisfied. However, for this choice of system parameters we also have

T(-y) = (—y) for each y = yU), 5 =1,2,...,m, which means that negatives

are also stored. To get rid of the negatives, first note that the set of constraints
Ty(j) +b= y(-'i) , g=1...m
is equivalent to the set of constraints
']_'(y(;i) — y(m)) — y(j) — y(m) ,j=1...m—1, b= y(m) — Pyt

Therefore we may let Y = [y(1) — ym) o ym=b _ 0] and again by the

projection learning rule we obtain the solution

r[v — )7)71’ , )_/T — ()—/T)—}')—l)_/'l' , b — y(m) . /]*vy(mr) (:;'J-O)

However, if rank(Y) # m, it is clear that we cannot use the projection
learning rule. Therefore we should look for a more general result. Again let us
consider the case b = 0 first. In this case, the general solution to 7Y = YV is

given as

T =00+ XU} (3.11)
where U = [uy ... wg] € R™* and Uy = [upyy ... uy] € RO ave or-
thonormal matrices, X € R™ ™ %) is an arbitrary matrix and k is the rank

ol the matrix Y. If we denote the space spanned by the columns of ¥ as L,
then columns of U; form a basis for £ and columns of U, form a basis for £*.

Clearly U, and U, can be obtained from the singular value decomposition of
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Y. We can use the matrix X for decreasing the number of spurious states. A
particular choice is X = —7U, with 7 > 0 arbitrary. For this choice, we obtain

the system parameters as
T=UUF —7UF | b=0 (3.12)

Now we show that with the choice of (3.12), the vectors that are in the column
space of Uz are not equilibria. Assume that a vector v is in the column space

of U,, i.e., there exists some vector z such that v = U,z. Then
. T e
Tv = DU Upz — TU U Ugz = —7Uyz = —10

Since 7 > 0, equilibria constraints (3.6) are not satisfied, therefore v is not an

equilibrium. In this way, we decrease the number of spurious states.

Using the solution (3.12), we always store the negatives of patterns in ad-
dition to the desired patterns. To get rid of this situation, we can use the bias
term. Using the same trick we did for projection learning rule, we may let
Vo= [y =yt oyl (M) and apply the same procedure we applied

above and obtain the solution
T = Ul(_fir — TUQ(]:;F , b= y(’”) - 'I';l/("‘) (3.13)

where (7, = [0, ... %,] € ROV and Uy = [w,4, e Tyy) € RUDX0=r=1) e
orthonormal matrices and r is the rank of the matrix Y. If the space spanned
by the columns of Y is denoted by L, then columns of U, form an orthonormal
hasis for £ and columns of U, form an orthonormal basis for Zl, respectively.

Again Uy and U, can be obtained from the singular value decomposition of Y.

Induced by the more general results given in (3.12) and (3.13), we can
enhance the result of projection learning rule by adding a term similar to the
secoud term in (3.12) and (3.13). These solutions are given as

T =YYyl — (1, — YYT) , )/T — (Y’I'Y)—I vy’ L b=0 (3.14)

T — )f/)"/‘f . 7_(1” _ )/)/T) , Y/T — ()_/'1'17)—1)7’1‘ : b — y(m) _ rlxy(-m.) (;IB)

Now we will illustrate the design procedures we proposed above and compare

the results with the existing design methods [or the binary-state neurons.

Example 1 Assume that we have the columns of the [ollowing matrix to be

stored in a neural network using the 4-level quantizer shown in Figure 3.3.
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Figure 3.3: 4 level quantizer
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Since the 4-level quantizer allows each neuron output to have 4 distinct values,

columns of Y can be stored in blocks of size 2. By using the code

-1 —1 1 I

— —3 — —1 — 1 — 3

—1 1 | =1 l



the memory matrix becomes

-1 3 -1 3 -
-1 -3 3 -1
V=1 3 1 -3 —
-t 1 1 -1
33 1L 3]
Now we will apply various methods:
[. Direct solution of the equilibria constraints: This method yields the
system parameters
0.5394 —0.2351 —0.2106 —0.0245  0.1372 |
—0.2459  0.4303 —0.3279  0.0410 —-0.0615
T'=1-0.1689 —0.2860 0.5811 —0.1261  0.0586 | , b =0
—0.0380 —0.0489 —-0.0380  0.4892  0.0054
i 0.0598  0.0054  0.0598 —0.0543  0.7772 J

with 136 asymptotically stable equilibria. The weight matrix is not symmetric

and all the initial conditions converge to some equilibria.

2. Projection Learning Rule: Using T'= YY1 where YT = (Y7Y)"'V7 | we

g(‘l,

T =

This method yields 502 stable equilibria.

0.7337
—0.3424
—0.2663
—0.0761

0.0380

—0.3424
0.5598
—0.3424
—0.0978
0.0489

—0.2663
—0.3424
0.7337
~0.0761
0.0380

and the negatives of the desired patterns

—0.0761
—0.0978
—0.0761
0.9783
0.0109

0.0380
0.0189
0.0380
0.0109
0.9946 |

b=0

The weight matrix is symmetric

are stored automatically. Another

attribute of the network is that it is globally stable.

3. Bnhanced Projection Learning Rule: 7' = YYt — 7(] — YY), Tor

different values of 7 we analyze the network characteristics and summarize the

{)‘;
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number of stable equilibria and the number of limit cycles in Table 3.1. Below

we give the weight matrices for 7 = | and 7 = 10. For 7 > 10, we can not

decrease the number of spurious states any [urther.

[

0.2731 —0.5775 —0.4769 —0.1006  0.1752
—0.5883 —0.0099 —0.6703 —0.0568 —0.0126
T=1, T=1| -04352 —0.6284 03148 —0.2022  0.0966 , b=10
—0.1141 —-0.1468 —0.1141  0.4675  0.0163
] 0.0978  0.0543  0.0978 —0.0434  0.7718 J
[ —2.1236 —3.6590 —2.8736 —0.7854 0.5176 |
—3.6698 —3.9719 —-3.7518 —0.9373 0.4276
=10, T'=1] —2.8320 —3.7099 —2.0820 —0.8870 0.4:390 , b=20
—0.7989 —1.0272 —0.7989  0.2718 0.1141
i 0.4402  0.4945  0.4402  0.0544 0.7229 J

If we use the degree of freedom in b, we hope to enhance our results. For that
reason we form the new matrix by subtracting the columns of Y {rom the last,

column. Call this new matrix Y. We will choose b as b =7, — Ty,. Now we

will apply various design methods.

r

I. Projection Learning Rule: Using T' = 57)7T, b=79y,— 1%y, , the system

])i'l.l'él.]]](ﬂ(}el‘s are C()l']’l])llt@(l as

[ 0725 —0325 —0.275 —0.050  0.125 | [ _0.20
—0.325  0.525 —0.325 —0.150 —0.125 0.40
T=1{-0275 —0.325 0.725 —0.050 0.125 { , b= ] —0.20
—0.050 —0.150 —0.050  0.900 —0.250 0.60

| 0.125 —0.125  0.125 —0.250  0.125 | | 200

This set of parameters yield a globally stable neural network with 134 equilib-
ria.

2. linhanced Projection Learning Rule: 7' = YYt— (I =YY, b =
7, — 17, For different values of 7 we tabulate the number of stable states and

the number of limit cycles in Table 3.2. Below we give the system parameters

2. .



for 7 = 3. As can be seen from Table 3.2, we can not decrease the number of

spurious states below 10.

( —0.10 —-1.30 —1.10 —0.20 0.50 | I —0.80 |
—1.30 —=0.90 —1.30 —0.60 —-0.50 1.60
=3, T=|-1.10 —1.30 —0.10 —0.20  0.50 , b=1-0.80
-0.20 —-0.60 —0.20 0.60 —1.00 2.40

| 050 —0.50  0.50 —1.00 "2'50J ] 8.()()J

Now we will carry out the design in the case of binary state neurons.

L. Projection learning rule: T' = YY1, where YT = (YTY)~'V7 with b = 0,

yields a symmetric and globally stable neural network with 40 stable states.

2. T =nYY = (I =YY", b= 0. With the choice of 7y = 1 and 7, = 1,
we obtain a neural network with 8 stable states, 4 of which are the negatives
of the desired patterns. This network is not globally stable, i.e. there are limit

cycles.

To get rid of the negatives, the only possible way is to use a bias term b.
For this purpose, we form the matrix Y by subtracting columns of the matrix

Y from the last column. Then b can be computed as b = yy — T'y,.

200 02 00 00 0

N

Yi=1 000 -22 -22 20 o
~202 00 ~22 -2 0 -2

I. Projection learning rule: T = YV where V1 = ( YY) This
method yields a globally stable neural network with 16 equilibria.

2.7 =nYV—n(l- SA/YA/T) with 7 = | and 7, = 1 yields a globally stable

4

neural network with the desired memory vectors only.

As we mentioned earlier, the advantage of using multi-level functions in
neural networks is to decrease the number of connections, however as we sce
from the example, it has a major disadvantage. Since we decrcased the dimen-
sion ol the state space, we gave up using some of the freedom we had, thus

increased the possibility of more spurious states.

()5
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T 1 3 5 | 10
# of equilibria | 64 | 28 | 20 | 14
# of cycles 0 [ 128 | 246 | 332
Table 3.1:  Properties of the wneural network for different 7,
=YY —7r(I-YY") and b=0
T | 3 5 | 10
# of equilibria | 37 | 14 | 14 | 14
# of cycles | 107 | 223 | 230 | 282
Table 3.2:  Properties of the neural network for different 7,

P =YYt —r({ =YY and b=7, — T7,

206
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Chapter 4

Decomposition Methods

Decomposition-aggregation techniques have been used extensively for the anal-
ysis and solution of large-scale problems. The conjecture of these techniques
is to obtain the global solution to a large-scale problem by dividing the sys-
tem into a number of smaller subsystems and then combining the individual
solutions. T'he decomposition can be carried out in two ways, disjoint decom-
position where the subsystems carry very weak interconnections that do not
affect the overall system perlormance and overlapping decomposition where
the subsystems share information with other subsystems, which may affect the

overall system performance.

In this chapter, we first deal with disjoint decompositions and cases in which
it can be helplul. Then we review the literature on overlapping decompositions
and apply the method to the design of neural networks. Considering discrete-
time neural network model, we first develop the necessary tools for expansions
and contractions, then we give algorithms for decomposing a set of equilibria
into two smaller sets of equilibria and for designing these smaller dimension
neural networks. We finally conclude by applying the idea to the continuous-

{ime neural networks.



4.1 Disjoint Decompositions

Consider the discrete-time neural network model

x(k+1) = f(Walk) +b) , a(k) =g (4.1)
Partitioning the state vector a(k) € R™ as @ = [« I ... 2%]7, we induce a

disjoint decomposition of the matrices W and b as

[ WL W Win | [ 5, ]
Wy W, W, ‘
W o= s e A B b (4.2)
| Wi Wi, Wnn | by

and the above system can be represented as an interconnection of N subsys-
tems:

vk +1) = /;( I/Viiil,‘,'(/c) + b; + Z I/Vij:v_,,-(_/s)) , t=1,2,...,N  (4.3)

j=Lisi

" - 1 STyt . * M . : - t - N .
l'o achieve our main goal ol reducing the design of the neural network into
designing lower dimension neural networks, we should somehow have the above
subsystems decoupled from each other. This is possible only il the off-diagonal
elements of W are weak enough not to affect the equilibria of the overall system.
[lowever, if this is the situation we can also design the neural network using
Wi = 014 % j, that is we can reduce the design into N independent designs.

Now let us illustrate the concept with a simple example.

Consider a stick of three pieces. Assume that each piece can either he white
or black. Let our desired colored sticks be (BBB,BBW), where “B” denotes
black stick piece and “W” denotes white stick piece. It is clear from the desired
patterns that whatever the color of the 3rd sfick piece is, the color of the first
and the second piece is black, therefore all 3 pieces are independent of each
other, which means that we can design a one-neuron neural network for cach
picce and then combine these individual solutions. Now let us add (WWW)
to the desired set above. With this addition, all the stick pieces can assume
both colors and we cannot have an equivalent disjoint decomposition. The
best disjoint decomposition should have the first and second states in the first
subsystem and third state in the second subsystem. Ioven in this case, our
global solntion tends to store (WWB) in addition to the three desived stick

Lypes mentioned above.
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I'rom this simple example, we see that we can use disjoint decomposition
either in trivial cases or in finding suboptimal solutions to the overall system

design.

4.2 Overlapping Decompositions

As we mentioned in the previous section, disjoint decomposition is not helpful
other than in trivial cases. In such situations, allowing the subsystems to
share information of the system provides some flexibility. In the colored stick
example overlapping the information in the first or in the second state, we are
able to transform the state space to a disjoint one in a larger space. Designing
these disjoint systems and by back translormation, we obtain a solution with

no spurious patterns.

With the motivation ol having disjoint subsystems in an expanded space,
the concept of overlapping decompositions has been used in several practical
situations. In [26, 27], Tkeda et al used this scheme for constructing decen-
tralized optimal control strategies, while Calvet in [28] applied the idea for
the solution of a system of linear equations. In [29], the authors proposed
a graph-theoretic decomposition procedure to decompose a large-scale system
into weakly coupled overlapping components.

In this section we first review some results on overlapping decompositions
of dynamic systems [26, 27, 29, 30] and in the remainder of the chapter we

apply this idea to the design of neural networks.
4.2.1 Linear Systems

Expansions and Contractions

Consider two systems S and § described by

S: T = A (1.1)

and
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where @ € R™ and & € R" with # > n. Let the solutions of (4.4) and
(4.5) corresponding to the initial conditions xy and &y be denoted by (1, )
and &(,29). Suppose there exist constant matrices U and V of respective

dimensions n X 7 and 7 X n, such that UV = [, and
Ug(t, Vo) = a(t, x0) (1.6)

for all € R and 29 € R*. Then § is called an expansion of S and S a

contraction or restriction of S.

To derive conditions for expansions and contractions in terms of matrices
we write A = VAU + M where M is a complementary matrix of appropriate
dimensions. I'his matrix represents a freedom in choosing an expansion. From
(1.6) it is clear that S is an expansion of S il and only if (/A'V = Al =
[,2,...,or equivalently, if and only if UM'V =0, i =1,2,.... Two particular

cases are of special interest:
. Type I expansions : MV=0. In this case, in addition to (4.6), we also
have #(t, Vay) = Va(t,zo) for all t € R, xp € R™

2. T'ype Il expansions : UM=0. In this case, we have Uz (L, &o) = a(t, Uiy),

forall t € R, 2y € R™

Overlapping Decompositions

l.et us partition the state z of the system § in (4.4) into three vector compo-
nenls as ¥ = [:1;,11' :zrfﬁ' .‘lf;{']T the dimensions of which are such that n;4+n,+ns = n.

The overlapping decomposition has a representation

&y (L) A Ay A (1)
S Iz(i) = AZI /122 A23 .’lfz(l) (117)
&3() Azt Asz Ass a3(t)

where the dotted lines indicate the portions of the system matrix A induced by
the overlapping partition (@, 22) and (22, v3) of the state . The decomposition
of § above is an overlapping decomposition into two subsystems and can casily

be extended to cover any number of interconnected overlapping subsystems.

Defining the new state as & = [i{ Lzr ]1 of the system § where &) = [;vl’ :zrﬁ ]‘1

and &y = [¢1 @117, the new state @ is related to @ as & = Va where the n x n
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translormation matrix V is

1, 0 0]
0 I, 0
V= (4.8)
0 I, 0
000 & |

and Iy, Iy, Iy are the identity matrices with dimensions compatible with the

components x,,vq,23. Choosing the matrices

(0 A, 1A, 0
L 0 0 0 : :

0 SAgy —=Aoy ()

U=|0 i1, L1, 0 M = 2 e (1.9)

[ 1

0 —§A22 5/122 0
0 O 0 /3 ,

|0 —3An  1dsm 0

a possible Type I expansion system has the form

FAU Arz 0 A

3 :_i'l(t) _ | A”;g Ol ) (4.10)
Ziz(l) Agl 0 A22 A23 zz(l)

Az 0 Asy Asy ]

4.2.2 Nonlinear Systems

The inclusion concept can be generalized to nonlinear systems with more con-

straints than in the lincar case [30]. Consider two dynamic systems

S: &= f(l,2) (1.11)
and

S: T = f(,7) (1.12)

where x(t) € R™ and &(t) € R™ with 7 > n are the states of S and S.
I'he functions f: R x R*™ — R"™ and j? : R x R* — R are assumed to be
sufficiently smooth, so that solutions x(¢; to, o) and &(¢; o, To) of S and S exist
and are unique for all initial conditions ({o,2z¢) € R x R™ and (lo, &9) € R X R"

and for all ¢ > ty3. We use the linear transformations
g=Va , e=Uz (1.13)
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where V i1s an 7 X n constant matrix with tull column rank and U is an n x n

matrix with full row rank.

Definition 4.1 The system S is said to be included in the system & if there
exist constant matrices U and V of dimensions » x 5 and 7 x n such that

7V = [, and for any ({o,29) € R X R", &9 = Vap implies

a(bto, o) = UZ(Lto, 30) , L2 1y (1.14)

To derive conditions for inclusion, represent the function as
(6, &) = VF(t, Uz) + m(t, &) (4.15)

where 1 1 R X R"* — R" is called a complementary function. I'or S to include

S, m is required to satisfy the restrictions stated in the following theorem:

Theorem 4.1 [30] S includes S if either
i) m(t,Vay=0, VY(t,z) € R x R", or (4.16)
i) Um(t,g) =0, V(%) € R xR" (4.17)

hold.

Moreover, in [30] it is shown that if the equilibrium points of the system &
arc preserved under the transformation @ = Va, i.e. m(f,Va) = 0 at the
equilibrium points of &, then the stability ol the equilibrium points of the

system S imply the stability of the equilibrium points of the system S.

4.3 Application to Discrete-Time Neural

Networks

Clonsider the system § described by
S a(k+1)= f(Wa(k)+b) , x(ho) =20 (4.18)

where a(k) € R™ is the state vector at instant k, W € R™™ repre-

sents the interconnection structure, b € R™ is the bias term and f(x)
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. . . T . . y " 1 . . . .
[fi(z)) ... fu(zs]" € R™ whose components use the same activation function.

We associate with this system another system S described by
S: Fk+1) = f(Wa(k)+b) , &(ko) = &0 (4.19)

where #(k) € R™, W e R | b € R* with s > n and _/7(.%) =
(L&) ... fa (:i'ﬁ]T € R™ whose components use the same activation func-
tion. Let @(k; ko, xo) and &(k; ko, Fo) denote the solutions of the systems S and

S, respectively.

Definition 4.2 The system S is said to be included in the system S if there
exist constant matrices U and V of dimensions n x 7 and 7 x n such that

[7V = I, and for any initial state o of S, we have

w(k; ko, o) = U (k; ko, Vo) , k2> ko (4.20)

To derive conditions for expansions and contractions, we let
W=VWU+M , b=Vb+n (4.21)
where M and n are complementary matrices.

Theorem 4.2 The system S includes the system S if either

(7) MV =0, n=0, Vf(e)=f(Va), or (4.22)
() UM=0, Un=0, Uf&) = fU%) (4.23)

hold.

Proof : We give only the proof of (i), as the proof of (ii) is similar. I'rom
(4.18), (4.19) and (4.22) it follows that if #(k) = Va(k), then

Fk+1) = f(VWU+ M)Va(k)+ (Vb+n))
= f(V(Wz(k) + b))
= Vf(Waz(k)+b)
= Vak+1)
Then, by induction on &k, we have that &g = Vo implies 2(k, ko, &9) =

Valk, ko, o) for all k > ko and all g € R", so that Uz(k, ko, Vay) =
x(k, ko, xo)-
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4.3.1 Overlapping Decompositions of Neural Networks

The purpose of using overlapping decompositions in solving the associative
memory problem is to reduce the computational complexity of the design pro-
cedure at the expense of some increase in the dimensionality. In doing so,
however, we must take extreme care to make sure that the solution of the ex-
panded problem can be contracted to a solution of the original problem. This

puts some limitations on the type of expansions we can use as we explain below.

Suppose that a neural network & = (f, W,b) is designed to have a set
X, ol stable equilibria corresponding to a set of patterns to be stored. Let
S = (/, W,Z)) be a Type I expansion of § satisfying (4.22). Then it is easy
to show that for any @ € &, Va € X, (set of stable equilibria of S ). Hence,
X, D X, that is, the desired set of patterns can be extracted from the
equilibria of the expanded system. On the other hand, if we use a Type Il
expansion satisfying (4.23), then all we can guarantee is that U X, C X, in
which case all of the desired patterns may not be extracted from the equilibria
ol the expanded system. For this reason, we will use Type | expansions in the

design of associative memories.

Consider the following overlapping decomposition of the neural network

given in (4.18).

w(k+1) Wi Wi, Wis (k) by

S : iL'g(lif _I__ 1) = j ‘/‘/21 1/1/22 ‘/‘/23 Ilfz(/if) + ()2

;133(,[3 + ]_) [/V;“ ‘/V32 Was 1153(]\'7) (73
(1.24)

where the dotted lines indicate the portions of the system matrix W induced

by the overlapping partition (z1,22) and (22, 3) of the state x.

Delining the transformation matrix V' as

(1, 0 0
0 I, 0
V= : (4.25)
0 I, 0
(000 k|

where Iy, I3, I3 are the identity matrices with dimensions compatible with the
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components xy,vq,x3 and choosing

[

0 %‘/Vu
0 %]/sz
0 — % I/sz

0 —1iWy,

t

—3 Wi,
1

-3 Wa,
1
5 Waa

%‘/Vaz

0
0

OJ

n=>0

(4.26)

a possible expansion of & is obtained as an interconnection of two subsystems

described by

.'i‘g(/c + 1) =
where 7y = [T 211 &, = [of 21]7,
o wa owe |
W= T Wy =
| Wy Way i
e W |
W, = 208y =
| Wy Wi i

and

[0 Wi

| 0 ‘/Vg;}J

r ]
‘/V21 0

| Way 0|

7b1:

JiWh& (k) + Wiga(k) + by)
Jo(Waita (k) + Way i (k) + by)

(4.29)

(4.30)

. f(:z'l,nl-}-ng )]T D /~2(%2) = [/‘(‘%21) .. ./.'(:llv;il,ng—i-n.;;)]]‘

Clearly, if Wy, = 0 and W,y = 0, then the two subsystems are decoupled and

therefore can be designed independently. This, however, puts some restrictions

on the structures of the W, and W, matrices ol the subsystems. They have to

bhe of the form

. Wi Wiy
W, = )
0 I/V 22

Now suppose that a set of desired memory vectors ¥ =

7 =

vy € R*

1,2,...,m, are given.

. W,

2:

Wi,

2 0

Wia

[v' ...
The following algorithm may be

(4.31)

y"] where

used for the design of the desired neural network by means of overlapping

decompositions.



Ifigure 1.1: Threshold function
Algorithm 4.1 (Divide and Design Algorithm)
[. Find a transformation matrix V and expand the memory vectors as

Y = VY = (4.32)

2. Design subnetworks with W; as in (4.31) and b; as in (4.29), (4.30) to

store the memory matrices Y; , ¢ =1,2.
3. Compute W and b by contraction.
Example 1 Suppose that we want to store the columns of the [ollowing matrix

as fixed attractors of the discrete-time neural network given in (4.18) using the

activation function in IFigure 4.1.

r0 0 01 l-
000 I 1
Y=10 1111
001 01
_0 0 L 0 lj

Suppose that we take V' as
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- -
0 0 0 0
0 1 0 0 0
0 0 1 0 0
V=|_ - - _ _
0 01 0 0
0 0 0 1 0

0 0 0 0 1 |

that is we overlap the 3rd row. Transforming the equilibria matrix ¥ by V we

obtain
( 0 0 0 1 1
0 0 0 1 1
) 0 1 1 1 1
Y=| - - _ - _
0 1 1 1
O 0 1 0 1
0O 0 1L 0 1 |

Now the problem is reduced to solving for 2 neural networks of dimension 3
which have equilibria as the columns of the following matrices.
0 01 011

VYi=loo 1], Ye=]001
01 1 00 I

Taking into account also the condition MV = 0 with the equilibria con-
straints of the above subsystems, the following solution results in no spurious

states lor the subsystems.

L1 1 —2.5 1 00 —0.5
Wi=|111],bh=]-25|,Wa=|1 11/, b=|-25
00 | ~0.5 L1 1 —25
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Using

[ L T
] OO Z‘_Z‘OO
(1000 0 0 ¢ 2
00 L —Loo
01 0000
00 L —Lygoy
U={002L 1oo]|, M= 2
00 -1 Lo
0000 1 0
00 -+ Loy
00000 I P

we can obtain the system parameters by contraction as

(L1 10 0] =y
11100 —2.5
W=100100|,0b=]-05
00 1 1 1 —2.5
00 1 1 1] | —2.5 |

We note that this solution results in a globally stable network with no spurious

states.
Clearly solutions of Steps 1 and 2 in the “Divide and Design algorithm”

(1.1) do not seem so trivial. Now we will try to supply solutions to these steps.

I'or the solution of Step 2 we can use the following algorithm:
Algorithm 4.2 (Design Algorithm)
1. desiredset=tempset=Y; next=ok=1;
2. while ok=1
2.1. if a solution to the constraints exist, leasible=1;
2.2. else, feasible=0 , next=next+1.

2.3. il feasible=1
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2.3.1. find all equilibria — eqset, and let unwantedset={ eqset-Y }
2.3.2. for i=1:length(unwantedset), for j=1:length(desiredset)
2.3.2.1 count=1
2.3.2.2 if HD!(unwantedset(i), desiredset(j))=1
2.3.2.2.1 dl(count)=desiredset(j)
2.3.2.2.2 tl(count)=unwantedset(i)
2.3.2.2.3 count=count+1
end;
end; end;
2.3.3. desiredset=desiredset |J d1(next)
2.3.4. tempset=tempset {J t1(next)
2.4. clse
2.4.1. desiredset=desiredset - d1(next)
2.4.2. tempset=tempset - t1(next)
end
2.5. if next=length(tl) ok=0 end

end

Llamming distance
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The solution to step 2.1 can be obtained using either simplex algorithm or
Fourier elimination. The main idea behind the design algorithm (4.2) is as
follows. First we find an initial solution for the equilibria constraints and
compute the equilibria set for this solution. Then we try to send each spurious
state in this equilibria set to a memory vector which is at unit Hamming
distance and converges to a desired memory vector. We iterate until all the
possible spurious states are sent to desired equilibria.

On the other hand, the decomposition is a critical process since the advan-
tage ol overlapping decomposition heavily depends on how large the overlap-
ping block is. Therefore in our designs we want to decomposc the equilibria set
such that the overlapping block size is at most 2. Below we give an algorithm

to identify the groups and the row to be overlapped.

Input: The desired memories matrix Y = [y! ... y™] € R™*™
Algorithm 4.3 (Decomposition Algorithm)

I‘or each row of Y do

1. Number the other rows from 1 to n — 1

2. Let set=0), otherset={1,2,3,...,n — 1}. We assume that set and otherset

with the overlapped row form the groups in the decomposition.
3. ¢ =1, mmnimum=2"
4. while (¢ <n — 1) and (minimum>m)

4.1. Set y =1

4.2. while (j <length(otherset)) and (minimum>m)

4.2.1. elt=row of Y corresponding to j-th element of otherset
4.2.2. templ=set U {elt}, temp2=set -{elt}

4.2.3. Compute the number of equilibrium points corresponding to
groups templ and temp2.
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4.2.4. If eqnum < minimum , minimum=eqnum and index=j
end
4.3. set=set {J {index}, otherset=otherset—{index}
end

Output: The row to be overlapped and the groups.

It is clear that there may be no equivalent overlapping decomposition for the
design of desired memories. In this case, either we take the optimal solution,
ot we revise the algorithm for the search of two or more overlapping rows. Now

we illustrate the above algorithm with an example.

Example 2 Assume that we want to store the columns ol the following matrix
as lixed attractors of the discrete-time neural network given in (4.18) using the

threshold function given in IYigure 4.1.

[0 00000000001
000000000111
00000001 1 1 11
0000000O0T1 010
Y=[0000001111T1/1
000001 1 1 1 111
001110000000
010110000000
(010010000000,

The algorithm is applied to each row of Y and the results are summarized
in Tables (4.1)-(4.9). In these tables, the (irst row shows the elements of the
variable “set” in the algorithm. Below the first row, the values of “templ”
and number of equilibria are shown for each iteration of the inner loop in the
algorithm. The indices denoted by “*¥” are suboptimal solutions and those
with “#+” are the optimal solutions. From the tables we conclude that we can
decompose the equilibria set Y into 2 overlapping blocks in various ways. The

groups with the overlapping block are shown below.
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. Groups:123,3456789 if row 3 is overlapped
2. Groups:12345,56789 if row 5 is overlapped
3. Groups:123456,6789 if row 6 is overlapped

Now we will design the neural network with the 5th row overlapped. Choose

the expansion matrix V as

L
[a—
fan)
L
<

0 0

—
[a)
(e e et

0

0
1%

(= e = e N e I == T

0
0010

[ e N = = T o B e S e B
e e = T = T s S e
[ -
o N e = o S s B e
(o= e N e S e
<
—

‘I'ransforming the equilibria Y by V we obtain

[

< < [t
[y
[ o < < <
fan) (=] <o <
L <
<
—
—
—_

[ e == - T o S e S e
[ o = Y o
[ e = = T o S e S

(o e = N e e 2 = S e
—
i
—
—_—
-

0
0
0
0
. 0
0
0
0
0

I 0 I 1

S o <o
(== e
[l e N e
<
<
(==l e
<

000 0|

0 1 0 01
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Now the problem is reduced to solving for 2 neural networks of dimension

5 which have equilibria as the columns of the following matrices.

[0 00000 1] (000000 1]
00001 11 0000011
Yi=loo0o 1111 1|,Y=|00111°00
0001010 0101100
B T R (01 001 00,

Taking into account also the condition MV = 0 with the equilibria con-
straints of the above subsystems, the following solution results in no spurious

states for the subsystems.

[ 1020 -1 [ 15 ]
1110 0 —L5
Wi=| 0010 ]| ,b=]|-15
1011 0 ~1.5
0000 1 | 0.5 |
[ 1000 o] 05 |
1100 —I ~0.5
Wo={|-3120 1| ,b=]-15
3111 1 —1.5
2101 1 |15 |
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Using

- ; 0000 -2 200
L 000O0O0O0O0OO0ODU
0000 ©0O 000
0L0O0OOO0OOO0O0O0
0000 1 -Loo
001 0O0O0O0O0O0O
0000 0 000
000100O0O0O0O
0000 4 L 00
U=100004 1 0000]|,M= ’
0000 45 500
00 00O0O0T1LO0O0O
0000 — 100
0000O0O0O0OTLO0O o
0000 2 =300
000000O0O0T1O0 _
0000 2 -3200
000000000 !
) ) (0000 1 —1L 00
we can obtain the system parameters by contraction as
[ 1020 1000 0] [ 15 ]
I 110 0000 0 —1.5
0010 1000 0 —1.5
-1 011 0000 0 —1.5
W=/ 0000 1000 0f,0b=f-05 (4.33)
0000 1100 —I ~0.5
0000 -3120 1 —-1.5
0000 -=3111 1 1.5
L 0000 2101 1] | —L.5 |

The solution given in (4.33) results in a globally stable network with no spurious

states.
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1 16 162 1624 16245 || 162453
PAI9) 2 |25 ([ 2" (25 (| 3 |31 4f 3 |29 3|25 7 |21l
20020 3 (33| 3 [ 3L || 41265 |25 7 (25 8 |21
3119 4 |25] 41255260729 8|25
A (205 [ 25| 5 [25 | 7 (3L ) 8|29
512011622 7 (3L 8 |31
6 |19 7 |25 8 |31
T 2L 8 |25
S |21

Table 4.1: 1st row overlapped

1 16 163 1632 16324 || 163245
I* 130 2 [20)) 2 [22)2°[23 || 4123 h 201|719
20019 3 19 (|3 {21 | 4 (23] 5 [23] 7 [24|8]| 19
3120 4 [20( 4 |22 5 (237 |27 8 |24
4119 5 |20 5 |22 7 [281{ 8 |27
5119 6% | 18] 7 |28 8 |28
6 |17 7 [20] 8 |28
T 119 8120
S 119

Table 4.2:

2nd row overlapped

0 2 21
L1513 ][3=]12
> 113315 3 |18
3134 ]18] 4 |18
4117 l5 (18] 5 |16
5 (176 16 7 |18
6 |15 718 8 |18
71| 8|18
8 |17

Table 4.3:

3rd row overlapped




6 61 612 6123 | 61234 || 612345
{20 ) L= 23002726 3" (27 || 4°[26 |5 [23( 7] 20
20200 2 [23( 3 {26)4 |27 5 26| 7 261/ 8] 20
31200 3 (23 4 {26 5 |27 7 {30 8|26
4 1200 4 | 23] 5 |26 7132 8|30
5 (20 5 [23|| 7 |32 8 |32
G*| 18] 7 |30 8 |32
71200 8 [30
§ |20
(able 4.4: 4th row overlapped
0 2 21 213
{16t [ 15 )3~ |14 (|4 | 12
2714 3 |15 4|16 5 |18
316 4 (184 5 [19] 6 |16
4 |14 )5 |18 6 [LI7T| 7 |18
51166 (167 [19] 8 |18
6 |14 7 {18 8|19
7116 8 |18
8§ |16

Table 4.5: 5th row overlapped

) 6 67

L |17 1 |18 1 20

2 1154 2 |16 2 18

311714 3 |18 3 120

4 |15 4 |16 4 18

5 1171 5 |18 5 20

6*1 1317 15| 8|12

7T 115 8 |15
8 |15

Table 4.6: 6th row overlapped
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2 21 213 2135 21356 || 213564
A9 I p20 13 (23| 4 (270 4 |24 (4*|197]| 22
2017 3 (20 | 4 [ 28 |5 23] 6* |20 7 |25(8]| 22
3419 4 (27 5 [ 23] 6 |23 7 (28 8|25
ALIT 5 (200 6 [ 23] 7129 8|28
51090 6 |20 7 [28( 8 |29
6 |19 7 |25 8|28
T 122 8|25
8 |22
Table 4.7: 7th row overlapped

0 8 82 827 8271 82713 || 827135
D191 (20 1 [ 22 1* [ 233" |23 4 |24 (4] 19
2017127 |18 || 3 [22 3 {23 | 4 (27 5|21 (6] 17
3019 3 (20| 4 (28 4 (28} 5 (23] 6 |21
A VAT 4 (18| 5 [22) 5 (23} 6 |23
S5 1190 5 (20 6 (22 6 |23
6 |19 6 [20 || 7|21
70200 7119
8113

Table 4.8: 8th row overlapped

0 2 21 213 2135 | 21356 || 213567
L2001 )23 13|26 4 |32 4 (30 41264/ 20
I8 || 3 123 || 4 32527 (6|26 T 238 18
31200 4 |300 5 (26 6 (27 7 [26( 8 |23
4 11815 |23 6 |26 7 |27 8 |26
51200 6 (23| 7 [26] 8 |27
6 {20 7 |23 8 (26
71201 8|23
8 120

Table 4.9: 9th row overlapped




Chapter 5

Examples

Example 1 This example is taken from [6]. The desired memory vectors are
the columns of the following matrix. We will again use the threshold function

given in Iigure 4.1.

[0 10 1 1
L1110
00100
101 10
L |rroon
10011
01 101
10010
L iL1o
(11010

Il we apply the decomposition algorithm (4.3) to Y, we see that there is no
equivalent decomposition if we overlap only one row. However, if we apply the
algorithm with two rows overlapped, we see that various equivalent decomposi-

tions exist. Among them, let us take the groups (1,3,4,5,7,8) and (2,3,4,6,9,10).



Then the expansion matrix becomes

I I 00000O0O0©O0O0 -
001 000O0O0OO0CO0
0001 O0O0O0O0O0O0
0000100O0O00
000O0O0OO0OTILOO0OO

Vo 000O0O0OO0COCT!1 0O
01 00000O0O0OO0CTCO
001 00O0O0O0O0O0
0001 00O0CO0O0O0
0000O01O0O0O0O0
0000O0O0O0O0OT1O

(000000 000 I

Transforming the equilibria matrix Y by V we obtain

"

00 L 101 101 1 11]
100 1 1
=l0o 1101
101001 1L 01 1 11
(1001 10000100

0
0

-

Now the problem is reduced to solving for 2 neural networks of dimension 6
which have equilibria as the columns of the following matrices.

01 0 1 (1110
0010 0010
. 1 0 1 1 1 0L 0
)/l: 7)/2:
1100 100 |
0 1 1 0 1110
_1001J L ()OJ
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Taking into account also the condition MV = 0 with the equilibria constraints
ol the above subsystems, the following solution results in no spurious states for

the subsystems.

g 0 -2 -1 1 2] [ 05 |
0 1 0 0 0 0 05
v | 0 1 O T
1 —1.33 067 2 —1 0.67 0.5
] 9 -1 1 0 -1 0.5
- 51 -2 -3 L5
L 01000 [ 05 |
0 10000 0.5
P SR I P
1 -2 1000 0.5
1 10000 0.5
1 -1 000 0] 05
Using
(10000000000 0]
000000100000
0200000350000
00L00000%L000
y_ |00 0100000000
000000000100
000010000000
000001000000
0000000000 T0O
(00000000000 1|




and

[0 0 —100 0000 0 10000 0
0 050 00000 —0.50 000 0
0 050 050 00 00 —050 —0.50 0 0 0
0 —0.665 —0.335 0 0 0 0 0.665 0335 0 0 0
0 1.00 —050 0 0 0 0 —1.00 050 0 0 0
b |0 200 L5000 00 200 ~150 0 0 0
0 0 —050 0 0 0 0 0 0500 0 0 0
0 —0.50 00000 050 000 0
0 —050 —050 0 0 0 0 050 0000
0 1.00 —050 0 0 00 —1.00 05 0 0 0
0 —0.50 00000 050 0000
0 050 00000 —0.50 000 0|
we can obtain the system parameters by contraction as
[ 1 0 0 =2 -10 1 200] [ 05 ]
0 1 0 I 00 0 000 —0.5
0 0 1 0 00 0 000 —0.5
0 0 1 1 00 0 000 —0.5
woo | 710 —L33 06T 2 0 1 067 0 0 e 0.5
0 -1 -2 L 00 0 000 0.5
-1 0 2 -1 10 0 —-100 0.5
—1 0  —4 31 0 =2 =3 0 0 1.5
0 1 1 0 00 0 000 —0.5
I 0 00 0 000, | —0.5 |
(5.1)

The solution given in (5.1) results in a globally stable network with no spu-
rious states. In Table (5.1) we compare the performances of various neural
networks using different metheds. The network parameters for the eigenstruc-

ture method and Perfetti’s method can be found in [6] and [9], respectively.
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IFor Lillo’s method, we choose the matrices

( 6.000 -0.550 -—1.050 0.250 0.650 1.450 0.350 —=0.700 0.150 —0.500
—0.650 7.800 0.200 -0.600 [.150 —-0.350 0.750 1.200 -0.850 —0.300
1.050 0.750 6.050 0.250 —-0.350 —-0.650 —0.500 —0.900 0.650 0.250
—-0.350 -0.200 -0.600 4.500 -0.650 -0.550 -0.750 0.150 0.350 0.450
0.450 0.150 —0.900 0.700 6.200 -—-0.600 —1.150 0.450 —0.400 0.500

D= 0.850 —0.700  0.900 —1.000 0700  7.900  0.300  0.250  1.550  0.850
0.250 —0.100  0.750 —1.300 —0.850 —0.500  7.000  1.350  0.600 —0.550
—1.250 —1.100 0.400 0.350 —0.850 —0.750  0.850 7.700  0.450  1.150
0450  0.650 —1.050  0.150 —1.200 0950  0.600  0.550  G.750  0.550
| —1.100 0400 0300 -0.650  0.250 0350  0.500 -1.100  0.600  6.000 |
and
[ _8.330 —0.120 0520 —0.940 0.290 —0.430 0960 —0.230 —1.340  1.040 |
—1.080 —15.570 1.070 0960 —1.430 1420 —0.670 0710 —1.200  0.990
0.850 —1.460 —12.080  0.320 —1.450  0.140 0380 —1.410 —0.560  0.230
~0.540 0450  0.940 —10.030 0710  0.560 —1.110 0760 —0.550 —1.190
A —1.190  0.210 1150 —0.860 —9.400 —0.780 1130 —1.230 —0.370  0.280
- 0.910 —0.330 0440  0.890 —1.310 —11.520  0.280 1380  —0.510  1.090
—0.750  —0.080 —1.020 1110 0640 —1.380 —12.230  0.870 —0.940 —1.380
—0.790  0.550 —0.920  0.450 —0.170 —0.680 —0.550 —11.020 1440 —0.810
0.490  —0.840 1200 —1.310 0.860 —0.630  0.450 —0.350 —12.360  0.720
| 0730 0100 —1.430 -0.650 —0.050 1300 1400 0.260 160 —9.500 |

to compute the system matrices as

1791 —0.547 —=3.648 —3.044 —3.559 2.061 1.652 —0.922 —1.767 2.025
—-2.183 —-7.693 —0.748 2.834 -—-0.383 —2.765 1.071 —1.031 6.677 5.252
—3.454  —1.241 —=5.778 1.727 —4.854 —4.974 0.514 —1.544 —=0.341 —1.092

—2.602 3.529 1.244 —4.660 —2.902 2.547 —2.530 2.180 2.529 —=2.361

\V —-4.506 —0.502 =3.117 =3.921 1.244 1.138 0.186 -0.286 —1.082 3573
N =
1.493 —2.117 —=5.815 3.908 1.343 —-0.459 —1.192 2.852  —2.297 =2.244
1.620 0.806 -0.979 —1.182 0.520 —4.599 —=5.531 -5.829 -0.051 —4.901

—-1.929 —1.156 0.285 1.443 —1.529 0.813 —7.543 —4.027 —0.266 3.485

0.352 6.485 —0.726 3.002 -—-1.208 -—1.628 0.261 -0.161 —=5.035 3.0922

0.274 1.636 —1.150 —3.608 1.624 —3.474 —2.448 1.108 2.696 —l.l-")TJ

T
b:[l 3 =3 1 111 =13 1]

We note that W and b given above are used in the generalized BSB model (2.11)

with o = 0.3 for the simulation of the method by Lillo el al.



Example 2 This example is taken from [7]. The patterns to be stored are the

five vectors considered in the Ixample | along with the following vector

Y :[‘
y“’z[o 00110110 1]

We will again use the threshold [unction given in Figure 4.1. I we apply
the decomposition algorithm (4.3) to this set of equilibria, we see that there
is no equivalent decomposition if we overlap only one row. However, if we
apply the algorithm with two rows overlapped, we see that various equivalent
decompositions exist. Among them, let us take the groups (1,3,4,5,8) and

(1,2,5,6,7,9,10). Then the expansion matrix becomes

[ 1 0000O0O0O0O0OO0 |
001 000O0O0O00D
0 00100O0O0O0CO
000010O0O0O0O

000O0O0O0OTOO
1 0000O0O0O0OO0OO0

V =

01000O0O0O0OO
000O0100O0OTO0T®O0
0 000O0T1O0O0O0OQO
0000O0O0O1O0O0OQO
000O0O0O0GCOO0OT1OPO

0 000000CO0O0 L,




Translorming the equilibria set by V' we obtain

- 010110 |
001000
I 01 1 01
1 10011
011011

7 1 001 00
I'1 1100
001001
I 01100
1001 11
I 11 100

110101

Now the problem is reduced to solving for 2 neural networks of dimensions 5
and 7 which have equilibria as the columns of the following matrices.

(010110

(0101 111100

1001j 1 111 0
110101j

Taking into account also the condition MV = 0 with the equilibria constraints

of the above subsystems, the following solution results in no spurious states (or



the subsystems.
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we can obtain the system parameters by contraction as

W =

—1

0

0

|
<
=

e e == L e B e T

0 0
0 -1
0 -1
0 —1
0 1
0 2
0 1
2 1
0 -2
0 3

0 0 0
0 0 O
0 0 -1
0 0 0
0 0 0
-2 -6 0
-1 0
0 0 0
0 -1 0
0 -2 0

—

b=

5

NI

W34

[\ 4

5}

-

(5.2)

The solution given in (5.2) results in a network with no spurious states. How-
ever the solution has limit cycles. In Table (5.2) we compare the performances

ol various neural networks using different methods. The system parameters for

eigenstructure method and Perfetti’s method can be found in [7] and [9]. For

the Lillo’s method, we use the same strongly row diagonal dominant matrix D

we used in Example 1 and

-
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—1.280
—1.000
~0.020
—-0.110

0.390

1.040

-1.360
—-10.150
—1.220
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0.390
-0.040
~0.700
1.320
0.710
—0.260

0.540
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—-12.370
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1.150
1.190
—1.230
—1.350
0.680
1.020

0.540  1.300
~0.350 —1.300
—0.250  0.600

—11.620 —0.400
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1.230  —1.320

1.310  —1.280

0.780  0.810

1.500  1.170
—0.690 —0.250
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—0.800
0.110
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to compute the system parameters

[ 2.442 —0.253 —4.053 -3.161
—-1.971 —4.156 0.602 —1.499
—3.009 1.281 —-3.692 —0.830
—-3.989 0.577 -0.989 —2.503
W _ —4.385 —0.254 —2.123 —-4.807
1.499 0.435 —2.876 0.128
0.486 —2.709 —1.976 0.914
—2.158 -—2.648 -0.791 1.838
1.511 7.480 0.876 1.491

| 1.099 1.595 —0.496 —1.932
b= [ 0 2 —4
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1.365

1.349
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2.449
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~0.627
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"
2202022]

—-0.293 0.201
7.284 1.845
1141 —2.454
0.937 0.336

—1.324 3.438

—-0.065 —3.095

—-0.769  —1.534

—3.398 6.263

—-2.360 1.694

0.885 —0.175

We note that W and b given above are used in the generalized BSB model (2.11)

with « = 0.3 for the simulation of the method by Lillo et al.

Example 3 In this example we will try to realize the character set given in
Jligure (5.2) as asymptotically stable equilibria of a 25 neuron neural network

s

using the threshold function given in Figure 4.1. Assume that we code the
prototype patterns such that black pixels are denoted by “0”s and white pixels

are denoted by “1”s.

Numbering and decomposition of the neurons into 4



pieces are shown in Figure 5.1.
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Now the problem is reduced to solving for 4 neural networks ol all dimension



9 which have equilibria as the columns of the following matrices.
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‘I’he above solutions result in globally stable neural networks with 33, 62, 35
and 38 asymptotically stable equilibria, respectively.- By contraction we obtain
a neural network with 6769 equilibria. The number of patterns converging to
cach desired prototype is shown in Table (5.3).

If we try to synthesize the neural network using the methods described in
Chapter 2, we will not succeed because among those methods, outer product
rute will be able to store only 3 of the patterns, projection learning rule, eigen-
structure method and method by Lillo et al [8] will store all the 22° patterns.
For this set of patterns, Perfetti’s method is not even applicable since there are

prototype patterns which are at unit Hamming distance from each other (5 &

6,8 & 9).
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Method OPM | PLR | Eigenstructure Lillo et al | Perfetti | overlapping
method
# of stable vectors 41 122 20 8 10 5
# of vectors converging 38 24 84 143 112 240
to y(J)
# of vectors converging 41 28 75 62 58 128
to 3/(2)
# of vectors converging 73 34 113 16 82 512
Lo y("”)
# of vectors converging 38 24 84 29 133 16
Lo n/{")
# of vectors converging 68 33 105 56 127 128
Lo y( 5)
total # of adjacent 33 30 40 9 16 35
vectors in the basins of
attraction
Table 5.1: Comparison of different methods for Example 1
Method OPM ([ PLR | Eigenstructure " Lillo et al | Perfetti | overlapping
method
# of stable vectors 81 282 18 10 14 [
# of vectors converging 48 9 36 46 126 16
to y“)
# of vectors converging 10 14 64 16 23 224
o y(2)
# of vectors converging 31 13 85 11 53 120
Lo y(-g)
# of vectors converging 34 9 36 18 122 16
Lo y“)
# of vectors converging 35 14 66 48 123 32
to y( 5)
# of vectors converging 11 5 29 50 30 240
to y(G)
total # of adjacent 29 18 52 3 51 35
vectors in the basins of
attraction
Table 5.2: Comparison of different methods for Example 2
Pattern A B C D 0] I’ G H 1 J
# of vectors | 10240 864 288 6016 120 384 768 122880 1344 2088
converging
Pattern P R U -V Y K L M N O
# of vectors 7680 368 5120 | 56832 | 39376 | 768 | 1920 79680 651392 | 6720
converging
Pattern Z 1 2 3 1 5 6 7 8 9
# of vectors 128 5376 24 576 56 432 144 512 216 648
converging

Table 5.3: Basin of attraction of the prototypes for Example 3
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Figure 5.2: Characters to be recognized by the neuaral network
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Chapter 6

Conclusion

[u this thesis, we dealed with the associative memory problem in various as-
pects. We first showed that quantizer multilevel functions with the same num-
ber of saturation levels are equivalent. We then presented a characterization of
the connection weights for a discrete-time neural network model using quan-
tizer type multilevel functions. With an example we illustrated that while
usage of multilevel activation function decreases the number of neurons used,
it increases the possibility of more spurious states as a result of decreasing the

dimension of the state space.

In the rest of the thesis, we applied the idea of overlapping decompositions
to the associative memory design. Considering a discrete-time neural network
model, we first developed the necessary tools for expansions and contractions,
then gave an algorithm to solve the associative memory problem in a larger
state space. We provided the algorithm for the decomposition of the equilibria
set into two smaller dimension equilibria sets equivalently and the algorithin
for the design of these subsystems in a suboptimal way. We illustrated the
effectiveness of the method by a pattern recognition example. We note that
design by use ol overlapping decompositions yields sparse or nearly sparse
matrices which provides the neural networks to be more easily implemented.

At this point, generalization of overlapping decompositions to the design ol
continuous-time neural networks is straightforward. However, one other thing
needs to be mentioned. In the design of associative memories by means ol

algorithm (4.1), we set Wy in (4.29) and Wy, in (4.30) to zero, but one can
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use Wys and Wi in Wy, and Wy, as a means ol decreasing the number of

spurious states.

It is obvious that associative memory design problem will be continued to
be analyzed in various aspects. One research topic is a good characterization
ol the connection weights [or the multilevel activation function so that the de-
sired characteristics of associative memories are satisfied. Another interesting
research topic may be to find a better algorithm for design of neural net-
works which can be incorporated in the “Divide and Design” algorithm given

in Chapter 4.
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