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ABSTRACT

VARIATIONS IN ASSOCIATIVE MEMORY DESIGN

Mehmet Akar
M.S. in Electrical and Electronics Engineering 

Supervisor: Prof. Dr. M. Erol Sezer 
August 1996

This thesis is concerned with the anaiysis and synthesis of neurai networks 
to be used as associative memories. First considering a discrete-time neurai 
network modei which uses a quantizer-type muitiievei activation function, a 
way of seiecting the connection weights is proposed. In addition to this, the 
idea of overiapping decompositions, which is extensiveiy used in the soiution 
of iarge-scaie probiems, is appiied to discrete-time neurai networks with binary 
neurons. 'I’lie necesscuy toois for expansions and contractions are derived, 
and algorithms for decomposition of a set equiiibria into smaiier dimensionai 
equiiibria sets and for designing neurai networks for these smaiier ciimensionai 
equiiibria sets are given. The concept is iiiustrated with various exarnpies.

Keywords : Hopfieid neurai network, cissociative memory design, muitiievei 
a.ctiva.tion function, overiapping decomposition
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ÖZET

ÇAĞRIŞIMSAL BELLEK TASARIMI ÜZERİNE 
ÇEŞİTLEMELER

Mehmet Akar
Elektrik ve Elektronik Mühendisliği Bölümü Yüksek Lisans 

Tez Yöneticisi: Dr. M. Erol Sezer 
Ağustos 1996

Bu tez sinir ağlannm çağrışımsal bellek olarak kullanılması amacıyla çözümlen­
mesi ve tasarımı ile ilgilidir. Öncelikli olarak, a.yrık zamanda nicemleyici tür 
tbnksiyon kullanan bir sinir ağı modeli için bağlantı ağırlıklarının seçimi için 
bir yol önerilmiştir. Buna ek olarak, büyük ölçekli problemlerin çözümünde 
çokçci kullanılan örtüşen parçalama tekniği, iki dururnlu sinir hücreleri kul­
lanan ayrık zaman sinir ağ modellerine uygulanmıştır. Genişletme ve büzme 
için gerekli kurallar çıkarılmış ve bir denge vektörleri kümesinin daha küçük 
boyutlu iki denge vektörleri kümesine denk ohırak indirgenebilme ve bu küçük 
boyutlu kümeler için sinir ağları tasarımı için algoritnuılar verilmiştir. Konu 
değişik örneklerle aydınlatılmıştır.

Anahtar Kelimeler : Hopfield sinir ciğı, çağrışımsal bellek tasarımı, çok seviyeli 
hareketlendirme fonksiyonu, örtüşen parçcdarna
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Chapter 1

Introduction

There are problems in nature (pattern recognition for example) which are easily 
solved by people and animals but which are difficult to solve with today’s digitcd 
computing technology. These kinds of problems have two chai'cicteristics : they 
are ill-posed and their solutions need an enormous amount of computation. To 
overcome these difficulties, scientists hiive been working hard for many years 
to build intelligent systems that can model the highly complex, nonlinear and 
parallel structure of the human brain. As a result, neural networks which try 
to model the brain became one of the challenging fields.

Work on neural network models has a long history, but interest on neural 
networks has arised since Hopfield [1, 2] proposed his model, and neural net­
works Imve been used to solve many prol^lems in various fields such as control, 
classification, pattern recognition and optimization.

Neural networks consist of computational elements called neurons and 
weighted connections between these neurons. Neurons are multi-input, single­
output, nonlinear processing units which form ci weighted sum of its inputs and 
passes the result through a nonlinear function, called cictivation function.

With a proper choice of the connection weights, the neural network can store 
some desired vectors as asymptotically stable equilibria, of the network. This 
problem, Ccvlled the associative memory design problem, has been analyzed 
l)y various researchers using both discrete-time and continuous-time neural 
network models, in [1, 2], Hopfield used the outer product rule to store a given
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set of memory vectors for the restrictive case of orthogonal patterns. Later 
in [3, 4], the authors proposed the projection learning rule which guarantees 
any set of desired memory vectors to be stored as equilibria of the network. 
In [5, 6, 7], Michel cuid his coworkers used the eigenstructure method in which 
tlie connection mcitrix is synthesized so that the memory vectors become the 
eigenvectors of that matrix with a single positive eigenvalue. In [8], Lillo et al. 
used the brain-state-in-a-box model to retilize cui cissociative memory. Later 
Perletti [9], using the same model, developed some criteria to increase the bcisin 
of attraction of the desired patterns and based his synthesis procedure on this 
criteria. 'I'he past work on the design of cissociative memories is reviewed in 
detail in Chapter 2.

All the above work use two-level activation functions. Using multilevel 
activcition functions help us to decrease the number of neurons used. In [10, 11], 
the authors used the outer product rule to design networks using multilevel 
activation functions. In [12], the authors based their synthesis procedure on 
loccil stability, global stability and equilibrium constraints they derived. Other 
work concerning neurcil networks using multilevel activation functions include 
[13, 14, 15, 16]. All this work is reviewed in detciil in Chcipter 3.

In this thesis, we first consider a discrete-time neurcil network model and 
aiicilyze the cissociative memory problem in the case of multilevel activation 
functions. We propose a. Wciy to compute the connection matrix and comment 
on the sta.bility issues. The advantages cind disadvantages of using multilevel 
activation functions are illustrated with an excirnple using the existing methods 
a.nd the proposed method.

In the rest of the thesis, we employ the concept of overlapping decompo­
sitions, which is used in the large-scale system design jiroblems, to relieve the 
computational work in designing cissociative memories. The idea of overlapping 
decomposition design is to obtain the global solution to a large-scale problem 
by dividing the system into a number of smaller subsystems sharing some com­
mon pcirts, and then combining the individual solutions of these subsystems. 
4'he concept of expansions and contractions are made precise, and necessary 
conditions are derived so that the overlapping decomposition methodology can 
be applied to the design of associative memories. A decomposition algorithm 
is given to decompose the desired set of equilibrici into two smaller dimensional 
equilibria sets equivcilently and a design algorithm is given to design neural 
networks for these smaller dimensional equilibria sets. Finally the concept is
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illustrated with various excuriples.

This thesis is organized as follows. In Chcipter 2, we summarize the piist 
work on associative memory design using binary cictivation functions, in Chap­
ter 3, we first review the past work on neural networks using multilevel ac- 
tiva.tion functions and then analyze the associative memory design problem 
considering a discrete-time neural network model with a multilevel activation 
function. In Chapter 4, we first review some results on expansions, contrac­
tions and overlapping decompositions from large-scale system theory, and then 
apply the idea to the design of neural networks. In Chapter 5, we give various 
examples on the application of the idecis presented in Chapter 4. In Chapter 
6, we give the concluding remarks.



Chapter 2

Review of Associative Memory 

Design

Design of associative memories 1ms citti'cicted great attention after liopfiekl 
[1,2] proposed a nonlinear continuous model which Ccin be realized by electronic 
circuitry. The equation governing the electronic circuit is described by a set of 
first order ordinary differential equations as

GiXi — ^ Tijjj(xj) — ^  + /,· , i — 1, . . . , n 
i=i '

( 2 . 1)

where ;c,: is the input voltage of the nonlinear amplifier, is a fixed bias cur- 
I'C'nt, and /¿(•) represents the input-output characteristics of the amplifier called 
the activa.tion function, which is usually a smooth, saturation type nonlinear­
ity such as a. sigmoid function. Ci and Ri are capacitor and resistor values, 
respectively, and Tij are interconnection weights.

Letting X = [x\ X2 ··· f ix )  = [./i(·г·ı) ,/2(.'t2) ··· fn{xn)V, l> =
[/,/f-h , h l C \  . . . ,  In/CnV, A = dia.g{l/i2iCh, I /R 2C2 , . . . ,  1/RnC,,.}, and 7' = 
[7q7 L7], the crbove class of neural networks can be described more compactly 
a.s

i  = - A x  -b T f(x )  + b (2.2)

wliich represents a dyimmical system with state x G 7l'\ and a fixed input 
b e 'R’\
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The discrete counterpart of the above continuous model can be described 
l)y a first order nonlinecir difference equation as

x{k + f) = f{T  x{k) + 6)

where x cind 6 are the state and the bias input respectively.

(2.3)

Associative memory problem is to store a desired set of patterns as stable 
memories of the neural network. The problem corresponds to solving for A, 
d' and I) in the continuous-time case and solving for T and b tor the discrete­
time case. The desired characteristics of the resulting neural network should 
be [17, 18]:

1. Each prototype pcittern stored as an asymptotically stable equilibrium 
point of the system.

2. A minimum number of asymptotically stable equilibrium points of the 
network which do not correspond to prototype patterns (i.e., spurious 
states).

3. A non-symmetric interconnection structure, which eases difficulties in the 
implementation of neural networks.

4. The ability to control the extent of basin of ¿ittraction about the equilib­
rium points corresponding to stored patterns.

5. Learning (i.e., the ability to add vectors to be stored as asymptotically 
stable equilibrium points to an existing set of stored vectors without a.f- 
fecting the existing equilibria in a given network) and forgetting (i.e., the 
ability to delete specified equilibrium points from a given set of storcxl 
equilibria without affecting the rest of equilibrici in a given network) ca­
pabilities.

6. A high storage and retrieval efficiency, i.e., the ability to efficiently store 
and retrieve a large number (compared to the order n of the network) of 
patterns.



2.1 C on tin uou s-T im e N eu ra l N etw ork s

Now we will concentrate on the continuous-time model with sigrnoidcd non­
linearity and summarize some of the results that appeared on the design of 
a,ssociative memories. We wish to store m desired patterns y \  1 < i < m (i.e 
;//' = f { x ‘) ) as stable memories of (2.2).

2.1.1 The Outer Product M ethod

A set of parameter choices determined by the Outer Product Method [1, 2] is 
given by m

r  = , A = I  , 6 = 0 (2.4)
i=i

'f'he name of this method is motivated by the fact that T consists of the sum of 
outer products of the patterns that are to be stored as stable memories. This 
method requires that y \  I < i < m, be mutually orthogonal (i.e., {y^Y'y^ = 0 
when i ^  j)· Advantages of outer product rule are learning and forgetting. 
Lecirning is accomplished by modifying (2.4) as

T  ^  T + m /{ y Y A = I , 6 = 0 (2.5)

where y‘ is a new memory to be learned by the network. Forgetting is accom­
plished by modifying (2.4) as

r  T -  ay‘iy‘f  , /1 = /  , 6 = 0 (2.6)

whcu'e ;// is a stored memory to be forgotten by the network. In botli cases, 
cv > 0 is a small constant which determines the rate of lecirning or forgetting. 
F.Kperience has shown that networks designed by this method can store el- 
foctively only up to 0.15?i [18] arbitrary vectors as equilibrium points where 
n denotes the order of the network. Moreover, design by outer product rule 
results in neurcd networks that are required to have symmetric interconnection 
structure, which gives rise to spurious states in addition to posing dilliculties in 
implementations. Another important attribute of this method is that networks 
designed by this technique are globally stable (i.e., all trajectories of the net­
work tend to some equilibrium point), as can be shown using a suitable enei'gy 
function.



2.1.2 T he Projection  Rule

When the desired prototype patterns y \  1 < i < ?'n, to be stored in (2.2) 
as stalile memories are not mutucilly orthogonal, a method called the Projec­
tion LecU-ning Rule [3, 4, 19] can be used to synthesize the interconnection 
parameters for (2.2). Let S = Then

T = , /1 = 7 ,  6 - 0 (2.7)

is the set of parameters for (2.2) where is the Moore-Penrose pseudo-inverse 
[20] of S. We note that T given above satisfies the relation T'S = S, which 
shows that T is an orthogonal projection of R" onto the linear space spanned 
by ?/', 1 < 'i· < rn (hence the name Projection Rule). When y \  \ < i < rn, 
are mutually orthogonal, the Projection Learning Rule cind the Outer Product 
Method coincide. This method has two advantages over the Outer Product 
Method. First, networks designed by this method are capable of storing effec­
tively 0.5??. [18] equilibrium points. Secondly, this technique guarantees that a 
network designed by this method will alwa.ys store a given vector a.s an equilib­
rium point. However, this equilibrium point need not be asymptotically stable. 
Since the Moore-Penrose pseudo-inverse Ccui be computed iteratively, there ¿ire 
also adaptive learning and foi’getting rules [3, 4].

2.1.3 T he Eigenstructure M ethod

This technique [21, 5, 18, 22] cdso utilizes the energy function approach, tlms 
guarcuitees to store the desired set of patterns as stable memories. 'I'he patterns 
need not be rnutiuilly orthogonal as in the Outer Product Method. In the 
following, we outline Michel’s algorithm [22] for the case when the desired 
s('t consists of bipolar vectors, i.e., y·̂  6, = {?/ € 'R·"' : 'iji = 1 or y,: =
— 1,/ = 1,...,?? ), cuid the activiition functions are saturation noidinearities. 
'File cilgorithm is as follows:

Algorithm 2.1 (Michel’s algorithm)

1. Compute the ?? x (?'?? — 1) matrix

F  =  [ ? / ^ - n (2.8)



2. Perform the singular value decomposition of Y as Y = UEV'^ where U 
and V cire unitary matrices and S is a diagonal matrix with the singu­
lar values of Y on its dicigoiml. Letting U = [ tP ,. . . ,u ”] we know that

is an orthonormal basis for If we let k denote the dimen­
sion of the linecir space jC spanned by the vectors y' — y"\ . . . ,  y"'~^ — y"\ 
then . . . ,  is an orthonormal basis for C cind , td'· is an or­
thonormal basis for

3. 'Pile parcuneters of the neurcil network are given as

T  = T, - T ,  ("■')(«··)''■ .
¿—1 /· —

A = I  , 6 = Txi/”‘ - ' / y ' ‘ (2.9)

where ti > 1. It is shown in [21, 5] that when T2 > 0 is sufficiently large, 
all desired patterns are stored as stable memories. In fact, all vectors 
in £„ are stable memories, where is the affine space given by
C +

I'br the eigenstructure method, iterative learning cuid forgetting rules have also 
been worked for the above design scheme [18].

2.2 D iscrete -T im e N eu ra l N etw ork s

d’lie discrete-time neural networks are described as in (2.3), where the activa.- 
tion Functions are a saturating linearity defined as

/¿(^0 = {

1 if > 1

X if ■— 1 < .7; < 1 

-1  i f ; r < - l

Li e/ a/considered this model in [5]. In their paper they find all the solutions 
of the above difference equations, hence clmracterize cill possible equilibria and 
asymptotically stable equilibria. Then considering a symmetric T, they define 
the energy function E{x) = —x^'(T — I)x  — 2xA b, cuid show that the energy 
decreases monotonically along non-equilibrium solutions of the system and each
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non-equilibrium solution converges to an equilibrium, hence the neural network 
is globcilly stable, under the assumption that the eigenvidues of 1’ are greater 
than -1.

'I'he synthesis procedure they propose is the Scune as the metliod tliey 
propose for the continuous-time case. In another paper [18], they derive 
tlie learning and forgetting iilgorithms for the given synthesis procedure. 
I'hey also show that the computational complexity of incremental learn­
ing/forgetting algorithm approaches O(rnn^) asymptoticcilly while the corn- 
ple.xity is 0(n^ -b rnn^ rn^n + rn^) for the classical learning.

The brci.in-state-in-a-box(BSB) neurcd model, which was first proposed by 
Anderson [23] in 1977, is another discrete-time neurcil network model which 
can be described by a set of first order difference equations as

x(k + l) = f{ x (k )  + aW x{k))  (2.10)

where x € 77” (denoting the neuron variables), a  > 0 is the step size, W E 
■ĵ nxn (i-epresenting the interconnections of neurons) iuid /(·) is the saturating 
linearity given above. The function /(·) is responsible for the luune given to the 
above equation, as the state vector x{k) lies in the “box” 77,j = [—1, 1]”, which 
is the closed ?i-dimensional hypercube. Later Hui and Zcik [24] generalized this 
model by introducing the vector ah:

x(k + 1) = / (  ( + «14/ )x{k) -b ab ) (2 .11)

wliere h E /7” (representing bias terms). Lillo et al [8] uscxl this generalized 
brain-state-in-a-box (GBSB) model to recdize an associative memory. In their 
pa.per the desired prototype pcitterns are iruipped to the corresponding asymp­
totically stable vertices of the hypercube. To summarize their results, let

L{x) = ( /„ + «14/ )x + ab (2 .12)

One can verify [25] that a vertex x* of the hypercube Hn is cisymptoticaily 
stable equilibrium of the GBSB model if

{L{x*))ix* > 1  , i — I .. .  n 

Their main contribution is the following theorem:

T heorem  2.1 Let Y  = [ y'- . . .  ?/'" ] E 77”^’” be the matrix of prototype 
patterns. Assume that the prototype patterns are linearly inde-perndent so that

9



rank(Y)=m. Let B = [b.. .h] e Suppose D e 7^"^” is a strongly row
diagonal dominant matrix whose components satisfy

^  7 — 1, . . . , 72
.7 “ A ».7 7*“ *

rt'ftf/ A € TZ'"·̂ '" is a matrix whose components satisfy

(2.13)

^ii ^ l  ̂ — I. . . . 7i· (2.14)

//■
H/ = (Z ir -  B)Y^ + A(7:„ -  r r ^ )  (2.15)

where Y^ = {Y^Y)~'^Y^, then all of the desired patterns will be stored as 
asymptotically stable eqrtilibrium points of the hypercube Tin ■

They also provide a simple algorithm to select D, 6, and A so that W  can 
be computed from the theorem. Their lour step cilgorithm is as follows:

Algorithm 2.2 (Lillo et al)

1. Select a strongly row diagonal dominant matrix D G

2. Select the components of the vector b such that
n

^  ^  ̂ Î '̂ ¿.71 5 7- — I . . .  7¿
.7 = 1,.7?̂*

a.nd
 ̂ £¿7/̂ *) , e; > 0 , -i = 1 .. .  n

¿=1
Picking b to satisfy the first condition helps to ensure that the negatives 
of the desired memories are not stored as spurious stcites. Picking b to 
be a linecir combination of the desired prototype vectors as in the second 
condition helps to ensure thcit the trajectory will be sent towcird a stable 
vertex.

3. Pick a matrix A G 7̂ "^" such that (2.14) is satisfied.

4. Compute W  with (2.15).

10



In the paper, the authors also show that this design procedure Ccin also be 
used lor signum activation function. However, the network designed by this 
technique is not giuiranteed to be globally stable. Also, existence of lecirning 
and forgetting cilgorithms and storcige and retrieval eiiiciency of the network 
liave not been worked out yet.

Later BSD model is ¿uicilyzed by Perfetti [9]. In this paper the author 
derives some sufficient conditions which guarantee: i) the absence of non-binary 
asymptotically stable equilibrium points, ii) the absence of biimry equilibrium 
points near a desired memory vector. The main contribution in the design 
given in this paper is that it ¿dlows one to optimize a design parameter which 
controls the size of the attrciction basins of the stored patterns.

The author first shows timt if tvu > 0  , i = i , . . . ,  n, then only the vertices 
of the hyperculDe can lie stable equilibria, if we also have tva = 0 , i =
1, . . .  ,?i, then there is no equilibria at Hamming distance 1 or n — 1 from the 
stored vector. However, the most appeciling part of the work in the paper is 
the following theorem.

Theorem 2.2 None of the vertices satisfying < k or <
n -- k is an equilibrium, point if

’ '/■ = 1, · · ■, n 
i=i

(vhere danotes the Hamming distance between f  and f'*.

(2.16)

For a. design procedure, the conjecture the author follows is that incrc:a.s- 
ing the basin of instability of the given patterns will increase their bcisin of 
attraction. Clearly, one can impose the conditions in the theorem. However, 
these sufficient but not necessary conditions are very strict. So, to increase 
tlie domain of attraction of the stored patterns, Perfetti’s strategy is the max­
imization of the left-hcuid sums in the theorem.

According to the considerations outlined above, Perletti’s synthesis strategy 
can be formulated as follows: Assume cv = 1. Find W  such that 6 is maximum, 
subject to the linear constraints

XI > 6 > 0 , i
:i=i

1 ^  Wij , 'b J 1 ,. . . ,  /?/

If

I , . . . ,  7?. , k=  i,...,/77. (2.17)

(2.18)



W i j  =  W j i

Wi
i· 7̂  i  , = 1,
?: = 1,...,??.

(2.19)
(2.20)

and to the nonlinecir constraint

KniniW) > - 2 (2.21)

Without constraints (2.18) the maximization of 6 would be meaningless. Note 
that constraint (2.21) which is reciuired for the global stability of the network 
is obtained from [5]. Due to the large number of unknowns cuid constraints, 
it is cumliersome to look lor the optimal 8 using classical simplex method, 
therefore the anthor proposes the following algorithm:

Algorithm 2.3 (Perfetti)

1. Find W — so iis to satisfy the linear constraints (2.17-2.20) with
h = 0

(a) If a solution exists, the vectors are stored as eciuilibrium
points of the neural network. Then let r= l, choose > 0 and go 
to step 2.

(b) If a solution does not exist, it is impossible to store the vectors
. . .  i/™ in the associative memory using a zero-diagonal connection 

matrix.

2. Find W  = kFh·) as to satisfy the linear constraints (2.17-2.20) with 
8 = ¿f'd > 0. If a feasible solution to (2.17-2.20) exists go to Step 3. 
Otherwise go to Step 4.

3. Find the minimum eigenvalue of W '̂'K If A„) -„ > —2 then increase 
r by 1, increase 8 and go to Step 2. Otherwise go to Step 4.

4. Let W  = ITh’-i) vectors ;(/* ...y"'' have been stored a.s
asymptotically stable ecpiilibria of the neural network.

A time-consuming task of the ¡proposed synthesis procedure is the repeatc'd 
application of Step 2. Therefore, the author proposes a more efficient algorithm 
by defining the constraints in (2.17-2.20) as an unconstrained optimization 
problem.

12



It seems tluit the basic advantage of this technique over the existing ones 
is that there is no stable equilibria at Hamming distcince one from the desired 
patterns provided that such a solution exists with zero-diagonal connection 
matrix constraint. A great disadvantage of this technique is the complexity of 
iinding a solution. There are no learning and forgetting rules for this method 
and a storcige capacity analysis should have to be worked out as well.

13



Chapter 3

Neural nets with multilevel 

functions

I I I  this chapter, we consider the analysis and synthesis of neural networks using 
multilevel activation functions. We first review the literature on tlie subject. 
Then considering a discrete-time neural network model, we state the conditions 
for a set of desired patterns to be asymptotically stable equilibria of this model 
using the multi-level quantizer shown in Figure 3.1. We then show that the 
(|uantizer-type functions with the same number of saturating levels are equiva­
lent in the sense that there is a transformation which maps the design param- 
('ters computed lor one type of function to be used lor another quantizer-typc^ 
function. In the rest of the chapter, we deal with the analysis and synthesis 
problem of associative memories using multi-level crctivation functions. We (i- 
nally conclude the chapter with an example illustrating the a.dvcuitages and 
disadvantages of using multilevel functions.

14



3.1 P a st w ork on neural n ets w ith  m u ltileve l 

fu n ction s

in VLSI implementations of artificial feedback neural networks, reductions in 
tlie number of neurons and in the number of interconnections are highly desir­
able. If an 'n-dirnensional vector with each component of </-bit length is to be 
stored in a. neural network with binary state neurons, then an n x q order sys­
tem may be used. Alternatively, an ?7,-dirnensional neurcxl network may be used 
tor this purpose, provided that ecich neuron can represent a f/-bit inibrmation, 
which is possible by using a ^-level cictivation function for the neurons. In the 
former Ccise, the number of interconnections will be of the order (n x </)̂ , while 
in latter case, the number of interconnections will be only of the order .

Outer product method has been used in the design of discrete-time neural 
networks which make use of quantizer-type multilevel activation function [10, 
11] but we know that this design technique is successful only in the case of 
or t hogonal pat terns.

In [13], the stability, ccipacity and design of a nonlinear continuous-time 
neural network are cinalyzed.They derive a set of sufficient conditions for the 
asymptotic stability of each desired equilibrium cuid phrase these conditions 
ill terms of linear equations and piecewise linear inequality relations. 'I’lie 
authors then suggest to solve these inequality relations either using methods 
such as I'()urier c'limination or using ¿uiother neural network which can solve 
iue<iualities, but they do not provide specific information ¿xbout this.

In [14, 15], the authors analyze a discrete-time neural network with contin­
uous state variables updated in parallel and show that for S3mimetric connec­
tions, the only attractors are fixed points and period-two limit cycles. They 
also present a global stability criterion which guarantees only fixed-point at­
tractors by plexcing limits on the gain of the sigmoid nonlinearity.

In [16], Meunier el al introduce networks of three-state (-1,0,-(-1) neurons, 
where tlie additional state embodies the absence of information. An ext(Misiv(' 
simulation study has been carried by the authors on the information processing 
capacity of these networks.

In [12], the authors consider a class of synchronous, discrete-time neural



networks described by first order linear difFerence equations. A local qualitative 
analysis of neuriil networks is conducted independent of the number of levels 
employed in the threshold noidinecu-ities. In doing so, the large scahi systems 
methodology is used to perform a stability analysis. Next by using energy 
functions, the global stability is established. P'inally a synthesis procedure for 
the neural network to store some memories as asymptoticidly stable equifibrium 
points is developed based on focal stability, globed stability and <K|uilibrium 
constraints. In the paper they apply this synthesis [)rocedure to a. gray level 
image procc^ssing example, where each neui'oii can a.ssume one of the sixteen 
values.

3.2 A n alysis  and S yn thesis o f  neural n ets  

w ith  m u ltileve l functions

Consider a discrete-time neural network model described by

.'f(A: + l) = l i T x i k )  +  b) (3.1)

where x{k) € 'Tl"' is the state vector at instant k, T  G jy the interconnec-
tion matrix, b G 7^” is the bias term cind f{x)  = [/i(.'Ci) f 2{x2) ■■■ fn(xn)V  
with /,:(·) a multi-level quantizer-t3q;)e lunction with K  levels as showm in hig- 
ure 3.1. We assume that /¿(•) are right continuous. Note that the neural 
network in (3.1) is completely characterized by a triple (/, J ', />).

We begin by stating the equilibria conditions for the neural network model 
(3.1) as a theorem whose proof is trivial, and is omitted.

Theorem 3.1 A vector Pe is an asymptotically stable equilibrium of the neural 
network model (3.1) with the multi-level function given in Figure 3.1 if and only

if

a) Pt € Z f, where Z i -  {do,dj,. . . , dji^i], and

b) it satisfies (componentwise) the inequalities

£ < T pe b < c (3.2)
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Figure 3.1: Quantizer-type rnulti-level function with K levels

where

Ci = <

Q if-rjei = cli , / = 1, 2, . . . ,  K -  1

-OO ifyei = do

Cl+1 i f y e i  =  di , / =  0 ,1 ,..., /v -  2
OO i fyei=dK^i

(3.3)

(3.4)

It is cleivr that neural network described by (3.1) has at most / i"  asymptotically 
equilibrium points.

Before going on to the synthesis problem, we will consider the Ibllowing 
problem.

Problem  3.1 Given a neural network, characterized by with a set
 ̂ j  = 1, 2, . . . ,m )  of equilibrmrn points. Let f  defined as

f i x )  = Oifijdx -b 7) -1- (3

be another K-level quantizer with quantization levels d\ = adi -(- 8 , i =
0, — 1, where a, f f  7 , 8 are constants and a, fd f  0. Find, if possible,

17



T' and 6· such that the set of equilibria of the neural network ( / ',  T", b') ii 
exactly = evi/p̂  + ¿e , j  = 1, 2, . . . ,  rn] where e = [1 ...  1] *̂’ G 7?.’\

W(5 give the solution to the above prol)lem in the following theorem.

Theorem 3.2 The choice

T' - — T b' = - 6  -  - e __ —
a /3  ' p  f r  a fd

Te (3.5)

solves Problem 3.1.

Proof: Let ··■ equilibrium of ( f ,T,b)  and consider
■iy' = aye + he = [evi/q + 6  .. .  ad{„ + 8]^. Using (3.5), we have

so that

T%  + b'= -{Tye + b - ^ e )

h e - 7 0  <  T %  +  V <  t ( c - 7 e ) .

Ifowever, the discontinuity points of f  are, by definition, c[ = {ci — ^f)lfi , i = 
1,2, . . . ,  K  — 1. Hence,

c' < T X  + l/ < c'

so that ;(/' = crije + ¿e is an equilibrium of ( f /T ',b ') .

Convcu'sely, if ?y( is an equilibrium of {f'/T \b ') , then y'. = aye + Se for some 
('(|uilibrium ye (= ;̂ij'e ~ ^e) ol iJ,T,b).

Theorem 3.2 simply states that all ii-level quantizer activation functions 
are ec|uivalent in the sense that, with the parameters T  and b chosen suitably, 
the associated neural networks have equivalent equilibria sets. This allows the 
(|uantization levels and the discontinuity points of the activation functions to 
be chosen as desired to simplify the aruilysis cind design procedures.

In the next section, we will concentrate on the associative memory design 
using multi-level activation functions.
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2 4 2(K-I)

-(2K-1)

Figure 3.2; Quantizer-type multilevel with 2K levels

3.3 D esig n  o f neural n ets using m u lti-leve l 

fu n ctions

In this section we will consider methods of designing neural networks using 
niulti-level qucintizer type functions. We will in particular consider symmetric 
27i-level quantizer type functions as shown in Figure 3.2 for easier representa­
tion of equilibrici constraints.

For this quantizer, the equilibrici constraints for the memory vector y to 
be asymptotically stable equilibrici of the neural network model (3.1) can l)e 
Formulated as:

Qi <  +  )̂г· <  Ci , i  =  1___ n  (3 .6 )

w I le re

C; — ^

Di -  1 if Vi ^  - { ‘IK  -  1) 

-oo  if iji = - { ‘IK  -  1)

■iji + 1 if ■iji ^  2 K -  1 

oo if ‘fji = 2K — 1

(3.7)

(3.8)

Based on design methods derived for two state neurons, we will now outline 
similar methods for the design of neural networks with multi-level functions. 
For convenience we repeat the problem of associative memories at this point.
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Problem 3.2 Given m vectors which are the columns of the rnatrix V = 
find T and b such that the columns o fY  are stored as fixed points 

in the neural network model (3.1).

From the equilibria constraints (3.6), we note that if we can find T  and b 
such that + b -  j  = 1, 2, . . . , 'm, then clearly all the equilibria
constraints are satisfied. So our problem reduces to finding a solution lor the 
matrix equation T Y  + B = Y, where B = [b .. .  6] 6 '7?·".

if rank(K) = rn then the projection learning

T  = = {Y'^'YY^Y'^' , 6 = 0 (3.9)

can be used to synthesize the neural network. Clearly, for this choice of pa­
rameters Ty = y for y — j  = 1,2, . . . , m,  thus equilibria constraints
(3.6) are satished. However, for this choice of system parameters we also have 
T( —y) — {—y) for each y = y^^\ j  = 1, 2, . . .  ,?)r, which means tlmt negatives 
are also stored. To get rid of the negatives, first note that the set of constraints

T 6 = 2/̂ ·'̂  , j  ■= I .. .  rn

is equivcdent to the set of constraints

T{y(i) -  = .yii) _  yOn)  ̂ j  = 1. . .  rn - 1 , 6  =

'I'lierefore we may let Y  — . . .  yG>·-̂ ) _  again by the
|)rojection learning rule we obtain the solution

T = Y Y ^  , Y^ = (Y'^'Y)-^?'^' , 6 = (3.10)

However, if rank(F) rn, it is clear thcit we cannot use the projection 
learning rule. Therefore we should look for a more general result. Again let ns 
consider the case 6 = 0 first. In this case,· the general solution to TY = is 
given 1 as

T = (fiU(' + X U j  (3.11)

where if\ = [rii . . .  'Ua,] G and LI2 = . . .  a,re or-
tlionorrnal matrices, X  € is an arbitrary matrix and k is the raids;
of tlie matrix H. If we denote the space spanned by the columns of Y as C, 
then columns of Ui form a basis for C and columns of U2 form a basis for C'^. 
Clearly IJ] and U2 can be obtained from the singular value decomposition of
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Y. We Ccin use the matrix X  for decrecisiiig the number of spurious states. A 
particulcu' choice is X  = —TIJ2 with r  > 0 arbitrciry. For this choice, we obtain 
the system parameters as

T = UiU'[ -  tÛ UJ , 6  =  0 (3.f2)

Now we sliow that with the choice of (3.f2), the vectors that are in the column 
space of [/2 are not eciuilibria. Assume that a vector v is in the column space 
of U21 i.e., there exists some vector such that v = U2Z. Then

Tv  = UJJIU2Z -  rU2UlU2i - T U 2 Z = -TV

■Since r  > 0, equilibria constraints (3.6) are not satisfied, therefore v is not an 
equilibrium. In this way, we decrease the number of spurious stcites.

Using the solution (3.12), we cilways store the negatives of patterns in ad­
dition to the desired patterns. To get rid of this situation, we can use the bias 
term. Using the same trick we did lor projection leiirning rule, we rna.y let 
y = [yU) _  yb'O _ _ _ y(»«-i) _  y('«)j ¿vnd apply the Scune procedure we applied 
above and obtain the solution

T = U^Uf -  TU2OJ , 6 = -  T'yb») (3.13)

where Ui = [ui . . .  u,.] G 7̂ ("-Ux’· and U2 = [w,.+i . . .  G 0 are
orthonormal matrices and r is the riink of the matrix Y. If the space spanned 
by the columns of Y  is denoted by £,  then columns of Ui form an orthonor■rnai
ba.sis for C and columns of IJ2 form cui orthonormal basis lor respectively. 
.Again Ui and IJ2 can be obtained Irorn the singulai· value decomposition of V' .

Induced by the more general results given in (3.12) and (3.13), we can 
enhance the result of projection learning rule by adding a. term similar to the 
second term in (3.12) and (3.13). These solutions are given as

T  = YY^ -  t {L -  YY^)  , . = (Y'^'Y)-' Y'·' , 6  = 0 (3.14)

T = Y Y ^  - T { I n - Y Y ^ )  , Ŷ  = (Y^'Y)"‘Y'̂ ' , b = (3.15)

Now we will illustrate the design procedures we proposed above and compaix' 
the results with the existing design methods for the binary-state neurons.

Example 1 Assume that we have the columns of the following matrix to be 
stored in a neurid network using the 4-level quantizer shown in Figure 3.3.
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P'igure 3.3: 4 level quantizer

V =

-1 1 -1 1

1 1 1 1

-1 -1 1 -1

1 -1 1 1

1 1 -1 -1

1 -1 -1 1

-1 1 1 -1

1 -1 -1 I

1 1 1 1

1 1 -1 1

Since the 4-level qucuitizer allows ecich neuron output to have 4 distinct values, 
columns of V can be stored in blocks of size 2. By using tlie code

-1
^  -3

-1
^  -1

1
^  1

1

-1 1 _ -1 1
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the memory matrix becomes

Y =

-1

-1

3

3 -1  

-3  3

1 -3

1 1

3 1

3

-1

-1

3

- 1

Now wc! will apply various methods:

1. Direct solution of the equilibria constraints: This method yields the 
s.ys tern parameters

0.5394 - -0.2351 -0.2106 -0.0245 0.1372

-0.2459 0.4303 -0.3279 0.0410 -0.0615

T  = -0.1689 - ■0.2860 0.5811 -0.1261 0.0586 , 6 = 0

-0.0380 - 0.0489 -0.0380 0.4892 0.0054

0.0598 0.0054 0.0598 -0.0543 0.7772

with 136 asymptotically stable equilibria. The weight matrix 
and all the initial conditions converge to some equilibria.

is not s^mimetric

2. Projt
get.

iction Learning Rule: Using T  == vvliere = (Y' ' 'Y)-'Y'^\ we

0.7337 --0.3424 -0.2663 -0.0761 0.0380

-0.3424 0.5598 -0.3424 -0.0978 0.0489

:/' = -0.2663 --0.3424 0.7337 -0.0761 0.0380 , 6  = 0

-0.0761 --0.0978 -0.0761 0.9783 0.0109

0.0380 0.0489 0.0380 0.0109 0.9946

This method yields 502 stable equilibria. The weight matrix is symmeti-ic
and the negatives of the desired patterns are stored automatically. Another 
attribute of the network is that it is globally stable.

3. Enhanced Projection Learning Rule: T  = YY^  — t (I — KV'^). For 
different values of r  we analyze the network characteristics and summarize the
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uuinber of stable equilibria and the iiurnber of limit cycles in Table 3.1. Below 
we give the weight matrices for t  — I ¿uid r  = 10. For r  > 10, we can not 
decrease the number of spurious states cUiy further.

1 , T =

r  -  10 , r  =

0.2731 -0.5775 -0.4769 -0.1006 0.1752

-0.5883 -0.0099 -0.6703 -0.0568 -0.0126

-0.4352 -0.6284 0.3148 - 0.2022 0.0966 , /> = 0

-0.1141 -0.1468 -0.1141 0.4675 0.0163

0.0978 0.0543 0.0978 -0.0434 0.7718

-2.1236 -3.6590 -2.8736 -0.7854 0.5176

-3.6698 -3.9719 -3.7518 -0.9373 0.4276

-2.8320 -3.7099 -2.0820 -0.8870 0.4390 , b = 0

-0.7989 -1.0272 -0.7989 0.2718 0.1141

0.4402 0.4945 0.4402 0.0544 0.7229

If we use tlie degree of freedom in b, we hope to enhance our results. For that 
reason we form the new matrix by subtracting the columns of V from the last 
column. Call this new matrix Y.  We will choose b as b = y,̂  — Ty, .̂ Now we 
will apply various design methods.

1. Projection Learning Rule: Using T  = Y Y \  b = y.̂  — Ty.i , the system 
parameters are computed as

T =

0.725 -0.325 -0.275 -0.050 0.125 - 0.20

-0.325 0.525 -0.325 -0.150 -0.125 0.40

-0.275 -0.325 0.725 -0.050 0.125 - 0.20

-0.050 -0.150 -0.050 0.900 -0.2.50 0.60

0.125 -0.125 0.125 -0.2.50 0.125 2.00

'ITiis set of pcirarneters yield a globally stable neural network witli 134 ecpiilib- 
ria.

2. Fidianced Projection Learning Rule: = YY^ — r( I  — FF^), b =
y  ̂— Tŷ .̂ For different values of r  we tabulate the number of sta.l)le states and 
the number of limit cycles in Table 3.2. Below we give the system parameters
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for r  = 3. As can be seen from Table 3.2, we can not decrease the number of 
spurious states below 10.

3 , T =

- 0.10 -1.30 - 1.10 - 0.20 0..50 -0.80

-1.30 -0.90 -1.30 -0.60 -0..50 1.60

- 1.10 -1.30 - 0.10 - 0.20 0.50 , ¿ = -0.80

- 0.20 -0.60 - 0.20 0.60 - 1.00 2.40

0..50 -0.50 0..50 - 1.00 -2.50 8.00

Now we will carry out the design in the Cci.se of binary state neurons.

1. Projection learning rule: T = Y Y \  where Y^ = (Y^ Y)~'Y^'  with 6 = 0, 
yields a symmetric and globally stable neural network with 40 stable states.

2. T = T\YY^ — T2(/ — YY^)., 6 = 0. With the choice of ti = 1 and t2 = 1, 
we obtain a neural network with 8 stable states, 4 of which are the negatives 
of the desired patterns. This network is not globally stable, i.e. there are limit 
cycles.

4b get rid of the negatives, the only possible wa.y is to use a bias term 6. 
I'br tliis purpose, we form the matrix Y  by subtracting columns of the matrix 
Y from the last column. Then b can be computed as 6 = j/.i — Ty^.

- 2 0 0 0 2 0 0 0 0 0

0 0 0 -2 2 -2  2 -2 0 0

-2 0 2 0 0 -2  2 -2 0 —2

1. Projection learning rule: T  = YY^  where Y^ __ (Y' '̂ Y)-^Y'‘\ 4'hIS
tmithod yields a globally stable neural network with 16 equilibria.

2. T  = Ti YY^ — YY^) with T] = 1 and t-z = 1 yields a globally stable
iieui'al uel.work with the desired memory vectors only.

As we m e n tio n e d  e a r lie r , th e  advanta.ge of us ing  nuilti-lev(d runctioiis in 
neural networks is to decrease the numljer of connections, however as w(.' see 
Iroin the example, it hcis c\. major disadvantage. Since we decreased the diuK'ii- 
sion of tlie state space, we gave up using some of the freedom we had, thus 
increased the possibility of more spurious states.
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T f 3 5 10
^  of equilibria 64 28 20 14

#  of cycles 0 128 246 332

Table 3.1: Properties of the neural network for different r, with
T = F r l  -  r ( /  -  YY^)  and 6 = 0

T 1 3 5 10
^  of equilibricx 37 14 14 14

#  of cycles 107 223 230 282

3.2: Properties of the neurcil network for different r , with
7' = y Y^ -  t {I -  YY^)  and b = y,̂  -
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Chapter 4

Decomposition Methods

Decoiiiposition-aggregation techniques have been used extensivel}^ for the anal­
ysis and solution of large-scale problems. The conjecture of these techniques 
is to obtain the global solution to a large-sccile problem by dividing the sys­
tem into a number of smaller subsystems cind then combining the individual 
solutions. The decomposition can be carried out in two ways, disjoint decom­
position where the subsystems carry very wecik interconnections that do not 
affect the overall system performance and overlapping decomposition wliere 
the subsystems share inibrrricition with other subsystems, which may affect the 
overall system performance.

In this clia,|)ter, we first deed with disjoint decomi)ositions and cases in which 
it can be helpful. Then we review the literature on overlapping decompositions 
and apply the method to the design of neural networks. Considering discrete- 
time neural network model, we first develop the necessary tools for expansions 
and contractions, then we give edgorithms for decomposing a set of equilibria 
into two snicdler sets of equilibria and for designing these smaller dimension 
ncniral networks. We finally conclude by applying the idea to the continuous­
time neural networks.
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4.1 D isjo in t D ecom p osition s

(Consider the discrete-time neural network model

:r(̂ - + l) = f i W x i k )  + 6 ) , .x-(̂ o) = :t'o (4.1)

Partitioning the state vector x{k:) G 7?." as x = [x·/ x f . . .  xjf]'^\ we indnce a 
disjoint decomposition of the matrices W  and b as

IV =

W ii 14/i2 14/, N h> '

14/21 14/22 I4/27V
, 6 = b2

_ W n i W n 2 b ^

(4.2)

and the above system can be represented as an interconnection of N  subsys­
tems:

,x,:(A:-f 1) = Ji{WiiXi{k) + hi ^  WijXj{k)) , ?, = 1,2, ...,7V (4.2)

'I'o cichieve our rricun goal of reducing the design of the neural network into 
designing lower dimension neural networks, we should somehow hcive the alrove 
subsystems decoupled from each other. 'Phis is possible only if the oif-diagonal 
elements of W  are weak enough not to affect the equilibria of the overall system. 
However, if this is the situation we can also design the neural network using 
Wij = 0 i ^  ), that is we Ccui reduce the design into /V independent designs. 
Now let us illustrate the concept with a simple example.

Consider a stick of three pieces. Assume that each piece ca.n either be wliite 
or black. Let our desired colored sticks be (BBB,BBW), where ‘VB” denotes 
Irlack stick piece and “W” denotes white stick [)iece. It is cleai' from tlie desired 
patterns that whatever the color of the 3rd stick piece is, the color of tlie first 
and the second piece is black, therefore all 3 pieces are independent of each 
otlier, which means that we can design a one-neuron neural network Idr each 
|)i('ce and then combine these individual solutions. Now let us add (WWW) 
to the desired set above. With this addition, all the stick pieces can assume 
both colors and we cannot have an equivalent disjoint decomposition. 'I'Ik' 
best disjoint decomposition should have the first and second states in tlie first 
subsystem and third state in the second subsystem. Even in this case, our 
global solution tends to store (WWB) in addition to the three desired stick 
ty|)es mentioned above.
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From this simple example, we see that we can use disjoint decomposition 
either in trivicil cases or in finding suboptirricil solutions to the overall system 
design.

4.2 O verlapping D ecom p osition s

A.s we mentioned in the previous section, disjoint decomposition is not hclprul 
other than in trivial cases. In such situations, cdlowing the subsystems to 
share information of the system provides some flexibility. In the colored stick 
example overlapping the information in the first or in the second state, we are 
able to transtbrm the state space to a disjoint one in a. larger space. Designing 
these disjoint systems and by back transformation, we obtain a solution with 
no spurious patterns.

With the motivation of having disjoint subs3cstems in an expanded space, 
tlie concept of overlapping decompositions has been used in several practical 
situations. In [26, 27], Ikeda et al used this scheme for constructing decen- 
f.ralized optimal control strategies, while Calvet in [28] applied the idea for 
tlie solution of a. system of linear equations. In [29], the authors proposed 
a graph-theoretic decomposition procedure to decompose a large-scale system 
into weakly coupled overlapping components.

In this section we first review some results on overlapping decompositions 
of dynamic systems [26, 27, 29, 30] and in the remainder of the chapter we 
apply this idea to the design of neural networks.

4.2.1 Linear System s

Expansions and Contractions

(k)iisider two systems S  and S  described by

S  : X = /hr (hi )

and
<S : X = A x

29
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where x G T?." and x G 7^” with n > n. Let the solutions of (4.4) and 
(4.5) corresponding to the initial conditions xq and Xq be denoted by x(l.,Xo) 
and x{t,xo). Suppose there exist constant matrices if cuid V of respective 
dimensions n X h and h x n, such that iJV = /„ and

Ux{t, l/.To) = x{t,Xo) (4.6)

lor all i G TZ and .ro G TZ'’’. Then S  is called an expansion of <S and S  a 
contraction or restriction of S.

To derive conditions lor expansions and contractions in terms of matrices 
we write A = VAU + M  where M  is a complementary matrix of appropriate 
dimensions. 'This matrix represents a freedom in choosing an expansion. From 
(4.6) it is clear that S  is an expansion of S  if and oidy if UA‘V = A \  i = 
1, 2, . . . ,  or equivalently, if and only if f/M 'F  = 0, i = 1, 2, . . .  . Two paxticular 
cases are of special interest:

1. Type I expcinsions : MV=0. In this case, in addition to (4.6), we also 
have .t(î , F.To) = Vx{t,XQ) for all t G TZ, xq G 7^".

2. 'Lype II expansions : UM=0. In this case, we have Ux(l,,Xo) = .!;(/;, f/.fo), 
lor all t G 7?., Xq G 7^”.

Overlapping Decompositions

Let us partition the state x of the system <5 in (4.4) into three vector compo­
nents as X = [,r/ x ?2 the dimensions of which are such that ni+?''2+«3 = '»■· 
I’he overlapping decomposition has a representation

S:

.'¿l(0 An 12 Ars

•'¿2(0 -= M i /I22 M a

xa{t) ^31 A-İ2 Aaa

xiil.)

X2{t)

xsiO

(4.7)

where the dotted lines indicate the portions of the system matrix A induced by 
the overlapping partition (aq, 0:2) and (,r2, Xa) of the state x. 'I'lie decomposition 
of <S above is an overlapping decomposition into two subsystems and can easily 
be extended to cover any number of interconnected overlapping subsystems.

Defining the new state as x = [,'cf x. ]̂'  ̂ of the system S  where ,i:| = [,r / x^Y  
and ;i.'2 = [xY  ̂ Die new state x is related to x as x = Vx where the h x n
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trcinsibrmation matrix V is

V =

h 0 0

0 /2 0

0 /2 0

0 0 /3

(4.8)

a.iicl 7], / 2, /3 are the identity matrices with dimensions compcitible with the 
components .T| ,;r2,.'i-'3· Choosing the matrices

U -

0 -f/ll2 0
/1 0 0 0

0 If If 2^2 2^2 0 M  =

0 2 ^22 - 5 A 2 2 0

0 2 ^ 2 2 0
0 0 0

^ 3  .
0 - i A 3 2 f /1 . 3 2 0 _

a possible Type I expansion system has the form

S  :

A n A i 2 0 A 1 3

£q( 7 ) A21 A22 0 A23

i’2 ( 0  _ A21 0 A22 A 2 3
A31 0 A32 A 3 3

Xl(t)

•hit)

(4.9)

(4.10)

4.2.2 N onlinear System s

'I'he inclusion concept can be generalized to nonlinear systems with more con­
straints than in the linear case [30]. Consider two dynamic systems

md

where x{t) € 7b” and x{t) G 7b” with h > n are the states of S  and S. 
The functions /  : 7b x 7b" —> 7b” and /  : 7?. x 7b" —>■ 7b” are assumed to l)e 
sufliciently smooth, so that solutions x(t·, fo, ;ro) and ¿0, i’o) of <5̂ and <5 exist 
and are unique for all initial conditions (¿0, Xo) G 7b x 7b" and (¿0, Xo) G x '7b"' 
and for all t > Lq. We use the linear transformations

<5: X = f i t ,  .-c) (4.11)

S : X = f i t ,  x) (4.12)

X = Vx , X — Ux 
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where V is cui h X n constant matrix with full column rank and U is an n x 77, 
ma.trix with full row rank.

Definition 4.1 The system <S is Sciid to be included in the system S  if there 
exist constant matrices U cind V of dimensions n x h and h x n such that 
UV = In and lor any (¿o,-'fo) G 1  ̂ x I'o = Vxq implies

x(t] to-,Xo) — Ux(t] to,xo) , i > h: (4.14)

4b derive conditions lor inclusion, represent the function as

f { t ,x)  = Vf{t ,Ux)  + mit .x) (4.15)

where m : H x  7?." ^  7^" is called a complementary function. For S  to include 
<S, rh is required to satisfy the restrictions stated in the following theorem:

Theorem 4.1 [30] <S includes S  if eithei

i) fn{t,Vx) = 0 , V(b .t) € 7?. X '7?.”, or
ii) Ufn(t,x) = 0 , V(i, .t) G IZ X TZ"'

(4.16)

(4.17)

hold.

Moreover, in [30] it is shown that if the equilibrium points of the system S  
arc preserved under the transiormation x — Vx., i.e. ?h(/;, Vx) = 0 at tlie 
(X|uilibrium points of <S, then the stability of the equilibrium points of tlie 
system S  imply the stability of the equilibrium points of the system S.

4 .3  A p p lica tio n  to  D iscre te -T im e  N eu ra l

N etw ork s

Consider the system S  described by

<S: x{k + i ) ^  f {Wxik)  + b) , x(ko) = xo (4.18)

where x{k) € 77." is the state vector cit instiint k, W  € 'j^nxn 
scuts the interconnection structure, b E 77" is the bias term and f(x) =
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[,/i (-i''i) · · · fnixn]'^ € 7?.” whose components use the Scune activci.tion function. 
We associcite with this system another system <S described by

S  : x{k + 1) = f iWx i k )  + b) , xiko) = xo (4.19)

where x(k) G 7^”, W  G , b G 7^” with h > n and /(£■) =
[./ı(■4■ı) ··· fni^nV  ^ whose components use the same activation func­
tion. Let x(k; ko,Xo) and x(k; ko.,Xo) denote the solutions of the systems S  and 
<S, respectively.

Definition 4.2 The system S  is said to be included in the system S  if there 
e.xist constant matrices U and V of dimensions n x h cuid h x n such thcit 
[JV = In arid for any initial state ;co of <S, we have

.r(A-j k{)̂  ^o) Ux{^k  ̂k()y '̂o) ·} k k() (4.20)

To derive conditions for expansions and contriictions, we let

W  = VWU  -b M , b = V b  + n 

where M  and n are complementary matrices.

(4.21)

Theorem 4.2 The system. S  includes the system S  if either

{i) M V  = 0 , = 0 , Vf i x)  = f iVx ) ,  or
(ii) UM = 0 , Un = 0 , Uf(x) = f iUx)

(4.22)

(4.23)

Proof : We give only the proof of (i), as the proof of (ii) is similar. From 
(4.18), (4.19) and (4.22) it follows that if x{k) = Vx(k),  then

x(k + 1) = f i i V W U  + M)Vx{k)  -b {Vb + n))
= f{V{Wx{k) + b))

= Vf{Wx{k)  + b)

= Vx{k + l)

Then, by induction on we have that xq = Vx’o implies x(k,ko,Xo) = 
Vx(k,ki),xo) lt>r all k > ko and all xg G 7Z", so that (7x(k, kg, Vxq) = 
x( k, /¡:o, .f’o)·
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4.3.1 O verlapping D ecom positions o f N eural Networks

The purpose of using overlapping deconipositions in solving the associative 
niernory problem is to reduce the computational complexity of the design pro­
cedure at the expense of some increase in the dimensionality. In doing so, 
however, we must tcdce extreme care to make sure that the solution of the ex­
panded problem can be contracted to a solution of the original problem. This 
puts some limitations on the tŷ ê of expansions we can use as we explain below.

Suppose that a neuriil network <S = (/, IT, 6) is designed to have a set 
A’e of stable equilibria corresponding to a set of patterns to be stored. Let 
S  = ( / , IT ,6) be a Type I expcinsion of S  satisfying (4.22). Then it is easy 
to show that lor any x 6 T'e, Vx  G Te (set of stcible equilibria of <S). Hence, 
UXc 3  'I’e, I'hat is, the desired set of patterns can be extracted from the 
ec|uilibria of the expanded system. On the other Imnd, if we use a Type 11 
expansion satisfying (4.23), then all we CcUi guarcuitee is that C .T, in 
which case all of the desired patterns may not be extracted from the equilibria 
of the expanded system. For this reason, we will use Type 1 expansions in the 
design of associative memories.

Consider the Ibllowing overlapping decomposition of the neural network 
given in (4.18).

xi(k +  1 ) I T u lTx 2 lTi3

< 5  : X2(k + 1 ) =  / 1T21 IT22 IT23

xsik +  1 ) _ H b i IT32 IT33

Xiik)

X2ik)

x,{k)

+

/>1

b-2

ki

\

/
(4.24)

wfiere the dotted lines indicate the portions of the system matrix W  induced 
l)y the overlcipi^ing partition (a,’i,,r2) and (x2 ,X3) «1 fhe state x.

Defining the transformation matrix V as

V =

/1 0 , 0

0 /2 0

0 /2 0

0 0 /3

(4.25)

where /i, fy, /3 are the identity matrices with dimensions compatible with the
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components ,'г̂ ı,.г·2,.г'з choosing

h  0 0 0

[J = 0 I h  \ h  0

0 0 0 h

, M =

0

0

0

¡ m 2 - ¡ m 2 0

IW 22 - ¡ W 22 0

- ¡ m 2 ¡W22 0

-¡Ws2 ¡ m 2 0

■//. =  0

a. possible expansion of S  is obtciined as an interconnection of two subsystems 
described by

<5: .Ti(A: + l) = /i(M/phi(A0 + M/i2.T2(i:) + 6i) 
£-,(^•+1) = ¡2{W-2X2{k) + W2,Mk)  + h)

n  =  [ x -r X 2 -  1

’  W y y m 2  ' 0  14/13 b i
I T i  = , 14/12 = ) —

_ M /-21 W 2 2  _ 0  W 2 3  j .  ^ 2 .

IT 2 2 m 3 H /21 0 ’  6 2 '
I T 2  - , 14/21 = 7 h  =

_ H /32 1 4 / 3 3 . W n  0  _ . < .

a.nd

, / l ( ® l )  —  [ ./(if ’ l l )  ■ ·· f { ^ l , n \ + n 2 ) Y  1 . / 2 ( ^ 2 )  —  [ . / ( Î 2 1 )  · · ·  ./(•f'2,7i,2+)i..·))]^

Clearly, if Wy2 = 0 and W21 = 0, then the two sid^systems are decoupled and 
therelbre can be designed independently. This, however, puts some restrictions 
on the structures of the Wy cind IT2 matrices of the subsystems. They have to 
l)e of the form

’  14/11 m i2 ' 14/22 0
I T i  =

0 W22 .
, 14/2 =

_ ki/32 H / 3 3 .

Now suppose that a set of desired memory vectors Y = [;(/ ‘ . . .  ;(/'“] wliere 
?;'■ € 7?"' , i — 1 ,2 ,... ,?7i, are given. The following algorithm may be
used for the design of the desired neural network by means of overta,ppiug 
decompositions.
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Figure 4.1: Threshold (unction

Algorithm 4.1 (Divide and Design Algorithm)

1. Find a transfonriation mcitrix V and expand the memory vectors as

V = FV =
F'l

(4.32)

2. Design subnetworks with PVi as in (4.31) cind bi as in (4.29), (4.30) to 
store the memory matrices Yi , i = 1, 2.

•3. Compute W  and b by contraction.

Example 1 Suppose that we want to store the columns of the following matrix 
as fixed attrcictors of the discrete-time neural network given in (4.18) using the 
activation function in Figure 4.1.

0 0 0 1 1

0 0 0 1 1

Y =  0 1  1 1 1

0 0 1 0  1 

0 0 1 0  1

Suppose that we take V as
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V

ol)ta.in

V =

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

Transibrmirig the

0 0 0 1 1

0 0 0 1 1

0 1 1 1 1

0 1 1 1 1

0 0 1 0 1

0 0 1 0 1

we

Now the problem is reduced to solving lor 2 neural networks of dimension 3 
wliich have equilibria as the columns of the following matrices.

0 0 1 0 1 1

b'l = 0 0 1 , = 0 0 1

0 1 1 _ 0 0 1

Taking into account also the condition M V  = 0 with the equilibria con­
straints of the above subsystems, the following solution results in no spurious 
states for the subsystems.

1 1 1 - 2 .5 1 0 0 - 0 .5

IT, = 1 1 1 , ¿1 = - 2 .5 , m  = 1 1 1 , k  = - 2 .5

0 0 1 - 0 .5 1 1 1 - 2 .5
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0 0
1

9 0 0

1 0 0 0 0 0
L

0 0
i
9 0 0

0 1 0 0 0 0
L

0 0
\

0 0

u  = 0 0
1

2

1

2
0 0 ,  M  =

0 0

2

_  1 
2

2

1
2 0 0

0 0 0 0 1 0

0 0
_  1 

2
1
2 0 0

0 0 0 0 0 1
J

0 0
1

2

1

2
0 0

vve can

We 
states.

w

as

1 1 1 0 0 - 2 .5

1 1 1 0 0 - 2 . 5

0 0 1 0 0 , ¿ = - 0 . 5

0 0 1 1 1 - 2 .5

0 0 1 1 1 - 2 .5

s in cl globally stable network with no spurious

Clearly solutions of Steps 1 and 2 in the “Divide and Design algorithm” 
(4.1) do not seem so trivial. Now we will try to supply solutions to these steps, 
for the solution of Step 2 we can use the following algorithm;

Algorithm 4.2 (Design Algorithm)

1. desiredset=tempset=Y; next=ok=l;

2. while ok=l

2.1. if a solution to the constraints exist, leasible=l;

2.2. else, feasible=0 , next=next+l.

2.3. iffeasible=l
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2.3.1. find all equilibria ^  eqset, ¿uicl let unwcuiteclset={ eqset-Y }

2.3.2. for i=l:length(unwantedset), for j=l:length(de.siredset)

2.3.2.1 courit=l

2.3.2.2 if HD^(unw£uitedset(i), desiredset(j))=l

2.3.2.2.1 d 1 (count)=desiredset (j

2.3.2.2.2 tf(count)=unwcuitedset(i)

2.3.2.2.3 count=count+l

end;

end; end;

2.3.3. desiredset=desiredset IJ df(next)

2.3.4. tempset=ternpset U tl(next)

2.4. else

2.4.1. desiredset=desiredset - df(next)

2.4.2. tempset=ternpset - tl(next)

end

2.5. if next=length(tl) ok=0 end

end
 ̂ I l a n i m i i i g  d is t a n c e
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The solution to step 2.1 can be obtained using either simplex algorithm or 
Fourier elimination. The main idea behind the design algorithm (4.2) is as 
follows. First we find tin initial solution for the equilibria constraints and 
compute the equilibria set lor this solution. Then we try to send each spurious 
state in this equilibria set to a memory vector which is at unit Hamming 
distance and converges to a desired memory vector. We iterate until all the 
possible spurious stcites cire sent to desired equilibria.

On the other hand, the deconq:)osition is a criticcil process since tlie advan­
tage of overlapping decomposition heavily depends on how large the overlap­
ping block is. Therefore in our designs we want to decompose the equilibria set 
such that the overlapping block size is at most 2. Below we give an algorithm 
to identify the groups and the row to be overlapped.

Input: The desired memories matrix F  = [j/̂  . . .  ?/”*] € 7?.”^”'·

Algorithm 4.3 (Decomposition Algorithm)

For each row of Y  do

1. Number the other rows from 1 to n — 1

2. Let set=0, other.set={l, 2, 3,..., n — 1}. We ¿issurne that set cuid otherset 
with the overlapped row form the groups in the decomposition.

3. /i = 1, minimum=2'‘

4. while (i < ?i — 1) and (iriinirnum>m)

4.1. Set j  = I

4.2. while (j <length(otherset)) and (minimurn>m)

4.2.1. elt=row of V corresponding to j-th element of otherset

4.2.2. tempf=set U {elt}, temp2=set -{elt}

4.2.3. Compute the number of equilibrium points corresponding to 
groups tempi and ternp2.
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4.2.4. If eqnurn < minimum , minimum=eqiium cuicl inclex=j

iiicl

4.3. set=set (J {index}, otherset=othcrset—{index} 

end

Output: The row to be overlapped and the groups.

It is clear that there may be no equivalent overhipi^ing decomposition lor the 
design of desired memories. In this case, either we take the optimal solution, 
or we revise the algorithm for the search of two or more overlapping rows. Now
we illustrate the above cdgorithm with an example.

Example 2 Assume that we Wcint to store the columns of the following matrix 
as lixed attractors of the discx'ete-tirne neural network given in (4.18) using the 
threshold function given in Figure 4.1.

0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 1 1 1

0 0 0 0 0 0 0 1 1 1 1 1

0 0 0 0 0 0 0 0 1 0 1 0

0 0 0 0 0 0 1 1 1 1 1 1

0 0 0 0 0 1 1 1 1 1 1 1

0 0 1 1 1 0 0 0 0 0 0 0

0 1 0 1 1 0 0 0 0 0 0 0

0 1 0 0 1 0 0 0 0 0 0 0

applied to each row of 3 and the resi
in Tables (4.1)-(4.9). In these tables, the lirst row shows the elements of the 
variable “set” in the algorithm. Below the lirst row, the values of “tem pi” 
and number of equilibria are shown for eiich iteration ol the inner loop in the 
algorithm. The indices denoted by “*” are suboptinicil solutions and those' 
with “**” c'..re the optimal solutions. From the tcibles we conclude tliat we can 
decompose the equilibria set Y  into 2 overlapping blocks in various ways. The 
groups with the overlapping block are shown below.
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1. Groups:123,3456789 if row 3 is overlapped

2. Croups: 12345,56789 if row 5 is overlapped

3. Groups: 123456,6789 if row 6 is overlapped

Now we will design the neural network with the 5th row overhi 
the expansion matrix V as

:;d. Choose

V

1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

'rransibrming the equilibria V l̂ y V we obtain

V

0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 1 1 1

0 0 0 0 0 0 0 1 1 1 1 1

0 0 0 0 0 0 0 0 1 0 1 0

0 0 0 0 0 0 1 1 1 1 1 1

0 0 0 0 0 0 1 1 1 1 1 1

0 0 0 0 0 1 1 1 1 1 1 1

0 0 1 1 1 0 0 0 0 0 0 0

0 1 0 1 1 0 0 0 0 0 0 0

0 1 0 0 1 0 0 0 0 0 0 0
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Now the problem is reduced to solving for 2 neural networks of dimension 
5 which have equilibria as the columns of the following matrices.

K, =

0 0 0 0 0 0 1 0 0 0 0 0 0 1

0 0 0 0 1 1 1 0 0 0 0 0 1 1

0 0 1 1 1 1 1 , -V2 = 0 0 1 1 1 0 0

0 0 0 1 0 1 0 0 1 0 1 1 0 0

0 1 1 1 1 1 1 0 1 0 0 1 0 0

Taking into account also the condition M V  = 0 with the equilibria con­
straints of the above subsystems, the ibllowing solution results in no spurious 
states for the subsystems.

Wi =

IV2 =

1 0 2 0 -1 -1.5

1 1 1 0 0 -1.5

0 0 1 0 1 , ¿1 = -1.5

-1 0 1 1 0 -1.5

0 0 0 0 1 -0.5

1 0 0 0 0 -0.5

1 1 0 0 -1 -0.5

-3 1 2 0 1 , b2 = -1 .5

-3 1 1 1 1 -1.5

-2 1 0 1 1 -1.5
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u

0 0 0 0 9 1<) 0 0 0 0
1 0 0 0 0 0 0 0 0 0 L L·

0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0

0 0 0 0 i9 9 0 0 0 0
0 0 1 0 0 0 0 0 0 0 L L

0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0

0 0 0 0 i \9 0 0 0 0
0 0 0 0 12 12 0 0 0 0 , M  = L

0 0 0 0 12 19 0 0 0 0
0 0 0 0 0 0 1 0 0 0

0 0 0 0 _  j_9 19 0 0 0 0
0 0 0 0 0 0 0 1 0 0 L

0 0 0 0 32 _  39 0 0 0 0
0 0 0 0 0 0 0 0 1 0

0 0 0 0 32 _  3 2 0 0 0 0
0 0 0 0 0 0 0 0 0 1

0 0 0 0 1 - i 0 0 0 0

we can obtain the systerii parameters l)y contraction as

\V

1 0 2 0 -1 0 0 0 0 -1.5

1. 1 1 0 0 0 0 0 0 -1.5

0 0 1 0 1 0 0 0 0 -1.5

-1 0 1 1 0 0 0 0 0 -1.5

0 0 0 0 1 0 0 0 0 , h = -0 .5

0 0 0 0 1 1 0 0 -1 -0.5

0 0 0 0 -3 1 2 0 1 -1.5

0 0 0 0 -3 1 1 1 1 -1.5

0 0 0 0 -2 1 0 1 1

(4M)

The solution given in (4.33) results in a globally stable network with no spurious 
states.
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1 1 16 162 1624 16245 162453
r 19 2 25 25 3 31 3 29 3* 25 7* 21
2 21 3 33 3 31 26 5* 25 7 25 8 21
3 19 4 25 4 25 5 26 7 29 8 25
4: 21 5 25 5 25 7 31 8 29
5 21 6* 22 7 31 8 31
6 19 7 25 8 31
7 21 8 25
8 21

Table 4.1: 1st row overlapped

(b 1 16 163 1632 16324 163245
r 13 2 20 2 22 2* 23 4>|C 23 5* 21 7 19
2 19 3 19 3* 21 4 23 5 23 7 24 8 19
3 20 4 20 4 22 5 23 7 27 8 24
4 19 5 20 5 22 7 28 8 27
5 19 6* 18 7 28 8 28
6 17 7 20 8 28
7 19 8 20
8 19

Table 4.2: 2nd row overlapped

0 2 21
1 15 1* 13 12

13 3 15 3 18
3 13 4 18 4 18
4 17 5 18 5 16
5 17 6 16 7 18
6 15 7 18 8 18
7 17 8 18
8 17

Table 4.3: 3rd row overlapped
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0 6 61 612 6123 612.34 612.345
1 20 1 * 23 2* 26 3* 27 .4* 26 5* 23 7 20
2 20 2 23 3 26 4 27 5 26 7 26 8 20
3 20 3 23 4 26 5 27 7 30 8 26
4 20 4 23 5 26 7 32 8 30
5 20 5 23 7 32 8 32

6 * 18 7 30 8 32
7 20 8 30
8 20

Table 4.4: 4th row overlapped

(3 2 21 213
1 16 r 15 3* 14 12

2* 14 3 15 4 16 5 18
3 16 4 18 5 19 6 16
4 14 5 18 6 17 7 18
5 16 6 16 7 19 8 18
6 14 7 18 8 19
7 16 8 18
8 16

Table 4.5: 5th row overlapi^ecl

0 6 67
1 17 1 18 1 20
2 15 2 16 2 18
3 17 3 18 3 20
4 15 4 1,6 4 18
5 17 5 18 5 20

6 * 13 7 * 15 12
7 15 8 15
8 15

Table 4.6: 6th row overhipped
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2 21 213 21.35 213.56 213564
1 19 r 21 23 4 27 4 24 /[.* 19 7 22

2’ 17 3 21 4 28 5* 23 6* 21 7 25 8 22
3 19 4 27 5 23 6 23 7 28 8 25
4 17 5 21 6 23 7 29 8 28
5 19 6 21 7 28 8 29
6 19 7 25 8 28
7 22 8 25
8 22

Table 4.7; 7th row overlap2:>ed

1 8 82 827 8271 82713 827135
1 19 1 20 1 22 r 23 3* 23 4 24 4 19
2 17 2* 18 3 22 3 23 4 27 5* 21 6 17
3 19 3 20 4 28 4 28 5 2.3 6 21
4 17 4 18 5 22 5 23 6 23
5 19 5 20 6 22 6 23
6 19 6 20 7* 21
7 20 7 19
8* 13

Table 4.8: 8th row overlapped

2 21 213 2135 213.56 213.567
1 20 1* 23 26 4 32 4 30 4 26 4 20

2* 18 3 23 4 32 5* 27 6* 26 7* 23 8 18
3 20 4 30 5 26 6 27 7 26 8 23
4 18 5 23 6 26 7 27 8 26
5 20 6 23 7 26 8 27
6 20 7 23 8 26
7 20 8 23
8 20

Table 4.9: 9th row overlapped
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Chapter 5

Examples

Exam ple 1 This excunple is taken trorn [6]. The desired niemory vectors are 
tlie columns of the following matrix. We will agciin use the threshold function 
given in Figure 4.1.

V =

0 1 0 1 1

1 1 1 1 0

0 0 1 0 0

1 0 1 1 0

1 1 0 0 1

1 0 0 1 1

0 1 1 0 1

1 0 0 1 0

1 1 1 1 0

1 1 0 1 0

algorithm (4•3) to Y, we see that there
e(|uiva.lent decomposition if we overlap only one row. However, if we apply the 
algoritlun with two rows overlapped, we see thcit various equivalent decomposi­
tions exist. Among them, let us take the groups (1,3,4,5,7,8) and (2,3,4,6,9,10).
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1'hen the expansion iricitrix becomes

V

1 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1

'I'ransforming the equilibria imitrix V by V we obtain

0 0 1 1 0  1 1 0 1 1 1 1

1 0 0 1 1 0 1 0 0 0 1 1

y^ '=  0 1 1 0  1 0  1 1 1 0  1 0  

1 0  1 0  0 1 1 0  1 1 1 1  

1 0 0 1 1 0 0 0 0 1 0 0

Now t,he problem is reduced to solving for 2 neurcd networks of dimension fi 
whicli have equilibria as the columns of the following matrices.

0 1 0 1 1 1 1 0

0 0 1 0 0 0 1 0

1 0 1 1 1 0 1 0

1 1 0 0
,

1 0 0 1

0 1 1 0 1 1 1 0

1 0 0 1 1 1 0 0
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Taking into account cilso the condition M V  = 0 with the equilibria constraints 
of the cibove subsystems, the following solution results in no spurious states for 
the subsystems.

IT, =

1 0 - 2 -1 1 2 -0.5

0 1 0 0 0 0 -0.5

0 1 1 0 0 0 -0.5
-> (h =

-1  ■-1.33 -0.67 2 -1 0.67 0.5

-1 2 -1 1 0 -1 0.5

-1 -4 3 1 -2 -3 1.5

1 0 1 0 0 0 -0.5

0 1 0 0 0 0 -0.5

0 1 1 0 0 0 -0.5
m  = , 1’2

-1 -2  1 0 0 0 0.5

1 1 0 0 0 0 -0.5

1 -1  0 0 0 0 -0.5

u  =

1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0

0 1
2 0 0 0 0 0 1

2 0 0 0 0

0 0 1
2 0 0 0 0 0 1

2 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 1
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a.ncl

M

0 0 -1.00 0 0 0 0 0 1.00 0 0 0

0 0.50 0 0 0 0 0 -0..50 0 0 0 0

0 0.50 0.50 0 0 0 0 -0.50 -0.50 0 0 0

0 -0.665 -0..335 0 0 0 0 0.665 0.335 0 0 0

0 1.00 -0.50 0 0 0 0 -1.00 0.50 0 0 0

0 -2.00 1.50 0 0 0 0 2.00 -1.50 0 0 0

0 0 -0.50 0 0 0 0 0 0.500 0 0 0

0 -0.50 0 0 0 0 0 0.50 0 0 0 0

0 -0.50 -0..50 0 0 0 0 0.50 0 0 0 0

0 1.00 -0.50 0 0 0 0 -1.00 0.5 0 0 0

0 -0.50 0 0 0 0 0 0.50 0 0 0 0

0 0..50 0 0 0 0 0 -0.50 0 0 0 0

we can obtain the system parameters by contraction ci.s

W  -

1 0 0 -2 -1 0 1 2 0 0 -0.5

0 1 0 1 0 0 0 0 0 0 -0.5

0 0 1 0 0 0 0 0 0 0 -0.5

0 0 1 1 0 0 0 0 0 0 -0.5

-1 0 -1.33 -0.67 2 0 -1 0.67 0 0
, ¿ =

0.5

0 -1 -2 1 0 0 0 0 0 0 0.5

-1 0 2 -1 1 0 0 -1 0 0 0.5

-1 0 -4 3 1 0 —2 -3 0 0 1.5

0 1 1 0 0 0 0 0 0 0 -0.5

0 1 -1 0 0 0 0 0 0 0 -0.5
(5 . 1)

The solution given in (5.1) results in a globallj^ stable network with no spu­
rious states. In Table (5.1) we compare the perfornicinces of various neural 
networks using different methods. The network parameters for the eigenstruc- 
ture method and Perfetti’s method can be found in [6] and [9], respective!} .̂
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For Lillo’s method, we choose the iricitrices

D =

6.000

- 0 .650

1.050

- 0 .350

0 .450

0 .850

0 .250

- 1.250

0 .450

- 1.100

- 0 .550

7.800

0 .750

- 0.200

0 .150

- 0.700

- 0.100

- 1.100

0.650

0 .400

- 1.050

0.200

6 .050

- 0.600

- 0 .900

0.900

0 .750

0 .400

- 1.050

0.300

0 .250

- 0.600

0 .250

4.500

0 .700

- 1.000

- 1.300

0.350

0 .150

- 0.650

0.650

1.150

- 0.350

- 0.650

6.200

0.700

- 0.850

- 0.850

- 1.200

0.250

1.450

- 0 .350

- 0 .650

- 0 .550

- 0 .600

7.900

- 0.500

- 0.750

0.950

0.350

0.350

0.750

- 0 .500

- 0 .750

- 1.150

0.300

7.000

0.850

0 .600

0.500

- 0 .700

1.200

- 0.900

0 .150

0.450

0.250

1.350

7.700

0 .550

-1.100

0.150

- 0.850

0 .650

0 .350

- 0 .400

1.550

0.f)00
0 .450

6 .750

0 .600

- 0 .500

- 0 .300

0 .250

0 .450

0 .500

0.850

- 0 .550

1.150

0.550

6.000

a.nd

A  =

- 8 .330 - 0 .120 0.520 - 0.940 0.290 - 0.430 0.960 - 0.230 - 1.340 1.040

- 1.080 - 15.570 1.070 0.960 - 1.430 1.420 - 0 .670 0.710 - 1.200 0.990

0.850 - 1.460 - 12.080 0.320 - 1.450 0.140 0.380 - 1.410 - 0 .560 0.230

- 0 .540 0.450 0.940 - 10.030 0.710 0.560 - 1.110 0.760 - 0 .550 - 1.490

- 1.190 0.210 1.150 - 0.860 - 9.400 - 0.780 1.130 - 1.230 - 0 .370 0.280

0.910 - 0 .330 0 .440 0.890 - 1.310 - 11.520 0 .280 1.380 - 0 .510 1.090

- 0 .750 - 0 .080 - 1.020 1.110 0.640 - 1.380 - 12.230 0 .870 - 0.940 - 1.380

- 0.790 0 .550 - 0 .920 0 .450 - 0.470 - 0.680 - 0.550 - 11.020 1.440 - 0.810

0 .490 - 0 .840 1.290 - 1.310 0.860 - 0.630 0.450 - 0.350 - 12.360 0.720

- 0.730 0 .100 - 1.430 - 0.650 - 0.050 1.300 1.400 0 .260 1.160 - 9.500

to compute the system matrices as

VV =

1.791 - 0 .547 - 3.648 - 3.044 - 3.559 2.061 1.652 - 0.922 - 1.767 2.025

- 2.183 - 7.693 - 0.748 2.834 - 0.383 - 2.765 1.071 - 1.031 6 .677 5.252

- 3.454 - 1.241 - 5.778 1.727 - 4.854 - 4.974 0.514 - 1.544 - 0..341 - 1.092

- 2.602 3 .529 1.244 - 4.660 - 2.902 2.547 - 2.530 2.180 2.529 - 2.361

- 4.506 - 0.502 - 3.117 - 3.921 1.244 1.138 0.186 - 0.286 - 1.082 3.573

1.493 - 2 .117 - 5.815 3.908 1.343 - 0.459 - 1.192 2.852 - 2.297 - 2.244

1.620 0 .806 - 0.979 - 1.182 0.520 - 4.599 - 5.531 - 5.829 - 0.054 - 4.901

- 1.929 - 1.156 0.285 1.443 - 1.529 0.813 - 7.543 - 4 .027 - 0 .266 3.485

0.352 6.485 - 0.726 3.002 - 1.298 - 1.628 0.261 - 0.161 - 5.035 3.922

0.274 1.636 - 1.150 - 3.608 1.624 - 3.474 - 2.448 4.108 2.696 - 1.157

b = 1 3 -3 1 1 1 1 - 1 3 1
yr

We note that W  and 6 given cibove ¿ire used in the generalized BSB model (2.11) 
with a -
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Example 2 This example is tciken from [7]. The pcittems to be stored are the 
five vectors considered in the Excuriple 1 along with the Ibllowing vector

0 0 0 1 1 0 1 1 0 1

We will cigciin use the threshold function given in Figure 4.1. If we a 
the decomposition algorithm (4.3) to this set of equilibria, we see tlmt there 
is no equivalent decomposition if we overlap only one row. However, if we 
apply tlie algorithm with two rows overlapped, we see that various equivcdent 
decompositions exist. Among them, let us take the groups (1,3,4,5,8) cuid 
(1,2,5,6,7,9,10). Then the expansion nicitrix becomes

1/

1 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0

1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1
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Transforming the equilibria set by V we obtain

y  =

0 1 0 1 1 0

0 0 1 0 0 0

1 0 1 1 0 1

1 1 0 0 1 1

0 1 1 0 f 1

1 0 0 1 0 0

f 1 1 1 0 0

0 0 1 0 0 1

1 0 1 1 0 0

1 0 0 i 1 1

1 1 1 1 0 0

1 1 0 1 0 1

Now the problem is reduced to solving lor 2 neural networks of dimensions 5 
a.nd 7 which have equilibria as the columns of the Ibllowing matrices.

K, =

0 1 0 1 1 0

0 1 0 1 1 1 1 1 0 0

0 0 1 0 1 1 0 0 f 1

f 0 1 f , n  = 1 0 0 1 1 0

1 1 0 0 0 1 1 0 1 1

1 0 0 1 1 1 1 1 0 0

1 1 0 1 0 1

'l aking into account also the condition M V = 0 with the equilibria constraints 
of the above subsystems, the following solution results in no spurious states for
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the aubsystems.

m  =

1 0 0 0 0 -0.5

0 0 0 -1 -1 0.5

Wi = -1 0 0 -1 0 ·) ¡h -- 1.5

0 0 0 1 0 -0.5

1 0 2 1 0 -2.5

1 0 0 0 0 0 0 -0.5

0 0 -1 0 0 1 0 0.5

0 0 1 0 0 0 0 -0.5

3 0.5 2 _2 -6 0.5 -4 , h  — 3.5

1 -0.5 1 -1 1 -0.5 0 0.5

1 0.5 -2 0 -1 0.5 0 1.5

-1 1 3 0 -2 1 0 -0.5

и  =

1
2 0 0 0 0 1

2 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 1
2 0 0 0 1

2 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 1



vve Ccui as

W =

1

0

0

-1

0

3

I

1

1

-1

0 0 0 0 0 0

0 0 -1 0 0 0

0 0 -1 0 0 -1

0 0 -1 0 0 0

0 0 1 0 0 0

0 0 2 - ■2 -6 0

0 0 1 - •1 1 0

0 2 1 0 0 0

0 0 -2 0 -1 0

0 0 3 0 -2 0

. (5.2) results in a networl·

0

1

0

0

0

0

0

0

0

0

0.5 - 4  

-0.5 0

0

0.5

1

0

0

0

-0 .5

0.5

0.5

1.5

, i> =
-0 .5

3.5

0.5

-2 .5

1.5

-0.5
(5.2)

ever the solution has limit cycles. In Table (5.2) we compare the performances 
of various neural networks using different methods. The system parameters for 
eigenstructure method and Perfetti’s method Ccin be found in [7] and [9]. For 
the Lillo’s method, we use the same strongly row diagonal dominant matrix D 
we used in Example 1 and

A =

- 1 0 .0 6 0 - 1 . 3 6 0 0 .5 4 0 0 .5 4 0 1 .3 0 0 - 0 .3 5 0 0 .0 6 0 0 .9 9 0 - 1 . 4 0 0 - 1 . 3 1 0

0 .0 9 0 - 1 0 .1 5 0 - 1 .4 8 0 - 0 .3 5 0 - 1 .3 0 0 - 0 .2 5 0 0 .5 6 0 0 .2 7 0 1 .290 1.040

0 .0 8 0 - 1 . 2 2 0 - 1 2 .3 7 0 - 0 .2 5 0 0 .6 0 0 1.230 0 .7 9 0 - 0 .7 1 0 - 1 . 3 6 0 0 .7 1 0

- 0 . 5 2 0 0 .4 0 0 0 .7 7 0 - 1 1 .6 2 0 - 0 .4 0 0 - 0 .7 6 0 1 .4 5 0 0 .6 7 0 0 .7 6 0 0 .4 5 0

- 1 . 2 8 0 0 .3 9 0 1 .1 5 0 - 0 .6 8 0 - 9 .1 4 0 0 .8 0 0 - 0 .0 7 0 - 0 .7 9 0 - 0 . 6 8 0 - 0 . 4 2 0

- 1 . 0 0 0 - 0 . 0 4 0 1 .1 9 0 1 .2 3 0 - 1 .3 2 0 - 9 .7 6 0 0 .0 1 0 0 .0 5 0 - 0 . 5 4 0 1 .4 6 0

- 0 . 0 2 0 - 0 . 7 0 0 - 1 .2 3 0 1 .340 - 1 .2 8 0 0 .0 0 0 - 9 .7 7 0 - 0 . 6 7 0 1 .240 0 .0 9 0

- 0 . 1 1 0 1 .3 2 0 - 1 . 3 5 0 0 .7 8 0 0 .8 1 0 0 .9 8 0 - 1 .1 2 0 - 1 1 .5 4 0 0 .5 7 0 1 .100

0 .3 9 0 0 .7 1 0 0 .6 8 0 1 .5 0 0 1 .1 7 0 - 0 .8 0 0 - 0 .5 8 0 - 0 . 4 5 0 - 9 .1 3 0 0 .2 7 0

1 .0 4 0 - 0 . 2 6 0 1 .0 2 0 - 0 .6 9 0 - 0 .2 5 0 0 .1 1 0 - 0 .1 0 0 - 0 .6 4 0 - 0 . 9 7 0 - 9 .6 6 0
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1 2 3 4 5

6 7 K 9 10

1 1 12 13 14 15

K> 17 1 K 19 2 0

21 2 2 2 3 2 4 2 5

1 2 3

6 7 8

1 1 12 13

1 1 12 13

lO 17 18

21 2 2 2 3

3 4 5

8 9 lO

13 14 15

13 14 15

18 19 2 0

2 3 2 4 2 5

O r i g i n a l Occoinpt>sctl

Figure 5.1; Original and decomposed systems 

to compute the system parameters as

W =

2 .4 4 2 - 0 . 2 5 3 - 4 .0 5 3 - 3 .1 6 1 - 2 .9 0 8 2 .004 0.7.58 - 0 .9 9 3 - 0 . 2 9 3 0 .2 0 1

- 1 .9 7 1 - 4 . 1 5 6 0 .6 0 2 - 1 . 4 9 9 - 0 .1 7 1 - 0 .6 2 7 - 1 .9 4 9 - 1 .6 4 4 7 .2 8 4 1 .845

- .3 .0 0 9 1 .281 - 3 .6 9 2 - 0 . 8 3 0 - 4 . 4 0 9 -2 ..3 3 3 - 1 .1 6 1 - 2 . 8 5 7 1.141 - 2 .4 5 4

- 3 . 9 8 9 0 .5 7 7 - 0 . 9 8 9 - 2 ..5 0 3 - 4 .2 8 9 0 .7 0 0 1 .8 6 3 4 .8 7 7 0 .9 3 7 0 .3 3 6

-4 ..3 8 .5 - 0 .2 5 4 - 2 .1 2 3 - 4 . 8 0 7 1 .365 1.011 - 0 . 8 6 6 - 0 .2 0 5 - 1 .3 2 4 3 .4 3 8

1 .4 9 9 0 .4 3 5 - 2 . 8 7 6 0 .1 2 8 1 .3 4 9 3 .4 7 5 - 4 .6 0 4 - 0 .7 0 9 - 0 .0 6 5 - 3 .0 9 5

0 .4 8 6 - 2 . 7 0 9 - 1 . 9 7 6 0 .9 1 4 - 0 .6 1 4 - 5 .4 6 1 - 1 .9 3 9 - 4 . 6 0 6 - 0 . 7 6 9 - 1 .5 3 4

- 2 .1 .5 8 - 2 . 6 4 8 - 0 .7 9 1 4 .8 3 8 - 1 . 7 5 8 - 1 .0 3 3 - 4 . 8 2 9 - 3 .0 9 2 - 3 . 3 9 8 6 .2 6 3

1.511 7 .4 8 0 0 .8 7 6 1 .491 - 0 .1 3 9 - 0 .1 8 5 - 2 .8 1 5 - 2 . 0 1 0 - 2 .3 6 0 1 .6 9 4

1 .0 9 9 1..595 - 0 . 4 9 6 -1 .9 .3 2 2 .4 4 9 - 4 .6 4 5 - 3 .0 1 4 3 .8 6 1 0 .8 8 5 - 0 .4 7 5

b = 0 2 -4 2 2 0 2 0 2 2

We note that W  and 6 given cibove are used in the generalized BSB model (2.11) 
with Cl' =

Example 3 In this excimple we will try to realize the character set given in 
Figure (5.2) as asymptotically stable equilibria of a 25 neuron neural network 
using the threshold function given in Figure 4.1. Assume that we code the 
[prototype patterns such that black pixels are denoted by “0”s and white pixels 
are denoted by “l ”s. Numbering and decomposition of the neurons into 4
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pieces are shown in Figure 5.1.

V ''' =

1 1 0 1 1 1 0 1 0 1 0 0 0 u 0 0 1 1 1 0 0 1 J 1 0

0 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1

.1 0 0 0 0 0 1 1 1 1 0 1 1 1 1 0 1 1 1 J 1 0 0 0 u

0 0 0 0 1 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 0 0 0 I

0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 0 1 1 1 J 0 0 0 0 0

0 0 0 0 0 0 1 J. 1 1 0 0 0 J i u 1 I 1 J 0 1 1 1 1

0 0 0 0 0 0 1 1 1 1 0 1 0 0 0 0 I 1 1 0 0 0 0 0 0

0 1 J 1 0 0 1 1 1 0 0 0 0 0 0 0 1 1 1 0 0 J 1 1 0

1 1 0 1 1 1 1 0 J 1 1 J 0 1 1 1 I 0 1 1 1 1 0 1 1

1 I 0 1 1 1 1 0 1 1 1 1 0 1 1 0 1 0 1 J 0 0 0 1 1

u 1 1 1 0 0 1 1 0 1 0 0 0 J J 0 1 1 0 1 0 1 1 1 u

u 1 1 i 1 0 1 1 1 1 0 J 1 1 1 0 1 1 1 i 0 0 0 0 0

0 1 1 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0 1 0 0 1 1 J 0

u 1 1 1 0 0 0 1 1 0 0 1 0 1 u 0 1 ] 0 0 0 1 1 1 0

1 0 u 0 .1 0 1 1 1 0 0 1 1 1 0 u 1 1 1 0 1 0 Q u 1

0 0 0 0 1 0 1 1 1 0 0 0 0 0 1 0 1 1 1 1 0 1 1 1 1

0 0 0 0 1 0 1 1 1 0 0 0 0 0 1 0 1 1 0 1 0 J 1 1 u

0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 0 0 0 0

0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 J 0 0 0 1

0 J 1 1 0 0 1 1 1 0 J 0 0 0 1 1 1 0 1 1 1 1 0 1 J

0 0 0 u 0 1 J 1 0 1 1 1 0 1 1 1 0 1 1 1 0 0 0 u u

1 0 0 J 1 1 1 0 1 1 1 1 0 1 1 1 1 u 1 1 J 1 0 1 1

0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0

0 0 0 0 0 1 1 1 1 0 J. 1 0 0 0 J 1 1 J 0 0 0 0 u u

0 1 1 1 1 0 1 1 1 1 0 1 0 1 1 0 0 u 0 0 1 1 0 1 1

0 0 0 0 0 0 1 1 J J 0 0 0 0 0 1 1 1 J 0 0 0 0 0 0

0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 J 1 1 0 0 0 u 0 u

u 0 0 u 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 1

0 u 0 0 0 0 1 1 1 0 0 0 0 0 0 0 1 J 1 0 0 u 0 0 0

0 0 0 0 0 0 1 1 1 0 0 0 0 u 0 1 J J 1 0 0 0 0 u 0

Now the problem is reduced to solving for 4 neural networks of all dimension
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9 which hcive equilibrici as the columns of the ibllowing rnatricc s.

0 0 0 0 1 1 0 1 1
1 1 0 1 0 1 0 0 0

u 0 u 0 1 1 0 0 0
0 0 u 0 1 J 0 0 0

u 1 1 0 1 I 1 u 0
J u 0 0 1 1 0 1 1

0 1 1 0 1 1 0 u 0
0 0 0 0 1 1 0 1 J

0 1 0 0 1 1 0 0 0
u u 0 0 1 i 0 1 0

1 1 0 1 J 0 1 1 0
0 1 1 0 1 1 0 u 0

1 1 0 0 1 0 0 0 0
1 1 0 J 1 0 1 1 0

V ./  ^ 0 1 u 0 1 0 u 1 1
0 1 1 0 J 1 0 i 1

0 1 0 0 1 J 0 1 1
0 1 1 0 0 1 0 1 0

1 0 0 1 1 u 1 1 0
0 1 J 0 1 1 1 0 0

1. J 0 1. 0 1 0 0 0
0 0 0 L 1 1 1 1 0

1 1 0 1 J. J. 0 0 0
J 0 0 1 1 0 1 1 0

0 1 0 0 0 0 1 1 0
0 0 0 1 1 1 0 0 0

0 0 0 1 1 1 0 0 0
0 1 1 0 1 1 0 1 0

1 1 0 1 0 1 0 1 1

0 1 1 1 0 1 0 0 0
1

0 0 0 1 1 0 1 J 0
0 0 1 1 1 0 0 0 0

0 0 0 1 1 0 0 u 1
0 0 0 1 1 1 1 1 1

i i 1 1 1 1 0 0 u
0 0 1 1 1 0 1 1 0

1 1 0 J 1 0 u 0 1
0 0 0 1 1 1 0 0 1

0 0 1 1 1 1 0 0 0
0 0 0 1 1 1 0 1 1

U 1 1 1 1 1 1 1 1
0 0 0 1 1 1 0 0 0

Q 0 0 1 1 0 0 0 0
1 J 0 1 J 0 0 0 0

0 1 1 0 1 1 0 1 1
0 1 1 0 1 1 0 1 1

'T< 01 1 1 J 0 1 J J 0
i J u 1 0 1 0 1 1 V  ^ —  > M —

u1 1 0 0 1 0 1 1 0
1 1 1 1 1 1 J 1 1

0 1 0 1 0 0 1 1 u
1 1 0 1 0 0 0 1 0

0 0 1 J 1 1 1 1 1
1 1 0 1 1 0 0 J 0

0 0 1 1 0 1 1 1 0
0 0 1 1 1 0 0 0 1

1 1 0 1 J 0 0 u 0
1 1 0 1 1 0 1 1 0

0 0 1 0 1 1 0 1 1
1 1 0 1 1 0 0 0 1

0 1 1 J 1 1 0 0 0
0 0 0 J 0 1 0 1 1

0 0 0 1 J 1 0 0 a
0 u 0 1 1 0 0 0 0

0 1 1 0 0 0 0 1 I
1 1 1 1 1 1 0 1 1
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0.5

-0.5

-0.5

-0.75

, k  = 1.667

-0.5

-0.5

-0.5

-0 .5  _

г

0.5

¿2

0 0 0 0 0 0 0 0 Iί —

1 0 -1 0 0 0 0 0 0 -0.5

0 1 1 0 0 0 0 0 0 -0.5

0 0 1 0 0 0 0 0 0 -0.5

3 -1 0 1 0 3 1 0 -1 -3.5

-1 -2 1 0 2 0 0 0 1 , bs = 1.5

0 0 1 0 0 1 0 0 0 -0.5

1 0 3 0 -1 -2 1 0 0 -0.5

0 0 -1 0 0 0 1 0 1 -0.5

0 0 -1 0 0 0 0 0 1 -0.5

0.5

-0.75

-0.5

3.5

-0.75

-0.5

-0.5

-0.5
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w .

1 0 0 0 0 0 0 0 0 -0.5

1 1 0 0 0 0 0 0 0 -0.5

0 0 1 0 0 0 0 0 0 -0.5

1 0 0 1 0 0 0 0 0 -0.5

0 -1 -3 -1 0 2 0 -2 2 , 6, = 3.5

-1 0 2 0 0 1 0 -1 -1 -0.5

-1 0 0 0 0 0 1 0 0 -0.5

0 0 0 -1 0 0 1 0 0 0.5

0 0 0.5 0 -1 0.5 _2 1 2 _ -0 .5  _

The above solutions result in globally stable neural networks with 33, 62, 35 

and 38 asymptotically stable equilibria, respectively. By contrciction we obtcun

а. neurcd network with 6769 equilibria. 3^he number of patterns converging to 

each desired prototype is shown in Tcible (5.3).

11' we try to synthesize the neural network using the methods described in 
Chcipter 2, we will not succeed because among those methods, outer product 
rule will l)e able to store only 3 of the patterns, projection learning rule, eigen- 
structure method and method by Lillo et al [8] will store all the 2'·̂ '’ patterns. 
For this set of patterns, Perfetti’s method is not even applicable since there are 
])rol,otype patterns which are at unit Hamming distcince from each other (5 k,
б, 8 k  9).
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M e th o d O P M P L R E ig e n s tr u c tu r e
m e th o d

L illo  e t  al P e r le t  ti o v e r la p p in g

o f  s ta b le  v e c to r s 41 122 20 8 10 5
#  o f  v e c to r s  c o n v e r g in g  
to

38 24 84 143 112 240

#  o f  v e c to r s  co n v e r g in g  
to

41 28 75 62 58 128

#  o f  v e c to r s  c o n v e r g in g
to  7/'·')

73 34 113 16 82 512

o f  v e c to r s  c o n v e r g in g  
to

3 8 24 84 29 133 16

#  o f  v e c to r s  c o n v e r g in g  
to

68 33 105 56 127 128

to ta l  ij: o f  a d ja c e n t  
v e c to r s  in  th e  b a s in s  o f  
a t tr a c t io n

33 30 40 9 46 35

Table 5.1: Compcirison of different methods for Example 1

M e th o d O P M P L R E ig e n s tr u c tu r e
m e th o d

L illo  e t  a l P e r fe tt i overlaf^p ing

o f  s ta b le  v e c to r s 81 282 18 10 14 6
o f  v e c to r s  co n v e r g in g  

to
48 9 36 46 126 16

o f  v e c to r s  c o n v e r g in g  
to

10 14 64 16 23 224

#  o f  v e c to r s  c o n v e r g in g  
(,o ,p'>

31 13 85 11 53 120

#  o f  v e c to r s  c o n v e r g in g  
to

34 9 36 18 122 16

o f  v e c to r s  c o n v e r g in g  
to  !/'■')

35 14 66 48 123 32

#  o f  v e c to r s  c o n v e r g in g
to  y(<^)

11 5 29 50 30 240

to  tell #  o f  a d ja c e n t  
v e c to r s  in  th e  b a s in s  o f  
a t t m e t io n

29 18 52 3 51 35

,

Table 5.2: Comparison of different methods for Flxample 2

P a tte r n A B C D E F G n I .1
o f  v e c to r s  

c o n v e r g in g
1 0 2 4 0 86 4 288 6 0 1 6 120 384 768 1 2 2 8 8 0 1344 268 8

P a tte r n P R U V Y K L M N 0
:ff: o f  v e c to r s  
c o n v e r g in g

7 6 8 0 3 6 8 5 1 2 0 5 6 8 3 2 3 9 3 7 6 768 1920 7 9 6 8 0 6 5 1 3 9 2 6 7 2 0

P a tte r n Z 1 2 3 4 5 6 7 8 9

zff: o f  v e c to r s  
c o n v e r g in g

128 5 3 7 6 24 576 56 432 144 512 216 6 4 8

Table 5.3: Basin of attraction of the prototypes lor Example 3
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Chapter 6

Conclusion

In this thesis, we dealed with the associative memory problem in various as­
pects. We first showed that quantizer multilevel functions with the Sciine num­
ber of saturation levels are equivalent. We then presented a characterization of 
the connection weights for a discrete-time neural network model using quan­
tizer type multilevel functions. With an example we illustrated that wliile 
usage of multilevel activation function decreases the number of neurons used, 
it increases the possibility of more spurious sta.tes as a result of decreasing the 
dimension of the state space.

In the rest of the thesis, we applied the idea of overlapping decompositions 
to the associative memory design. Considering a discrete-time neural network 
model, we first developed the necessary tools for exi:)ansions and contractions, 
then gave an algorithm to solve the associative memory problem in a larger 
state space. We provided the algorithm for the decomposition of the equilibria 
set into two smaller dimension equilibria sets equivcdentty and the algorithm 
for the design of these subsystems in a suboi^tirniil way. We illustrated the 
effectiveness of the method by a pattern recognition example. We note that 
design by use of overlapping decompositions yields sj^arse or nearly sparse 
matrices which provides the neural networks to be more easily implemented.

At this point, generalization of overlapping decompositions to the design of 
continuous-time neural networks is straightforward. However, one other tiling 
needs to be mentioned. In the design of associative memories by means ol 
algorithm (4.1), we set W 12 in (4.29) and VV21 in (4-30) to zero, but one can
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use Wis and H/31 in W u  and W 21·, as a rnecins of decreiising the number of 
spurious states.

It is obvious that associative memory design problem will be continued to 
be analyzed in various aspects. One research topic is a good characterization 
of the connection weights for the multilevel activation function so that the de­
sired chciracteristics of dissociative memories are satisfied. Another interesting 
research topic may be to find a better algorithm lor design of neural net­
works which can be incorporated in the “Divide and Design” algorithm given 
in (¡hcipter 4.
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