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A bstract

ELECTRONIC AND ATOMIC PROCESSES IN NANOWIRES

Hatem Mehrez 
M. S. in Physics 

Supervisor: Prof. S. Ciraci 
September 1996

The variation of conductance of a nanowire which is pulled between two metal 
electrodes has been the subject of dispute. Recent experimental set-ups using 
a combination of STM and AFM show that changes in conductivity are closely 
related with modification of atomic structure. In this thesis electron transport 

in the nanoindentation and in the connective neck are studied and features 

of measured conductance are analyzed. Molecular Dynamics simulations of 
nanowires under tensile stress are carried out to reveal the mechanical properties 
in nanowires in the course of stretching. A novel type of plcistic deformation, 
which leads to the formation of bundles with “giant” yield strength is found. 

An extensive analysis on how abrupt changes in the conductance and the last 

plateau before the break are related with “quantization phenomena” and atomic 
structure rearrangements in the neck. By using ab-initio self-consistent field 
pseudopotential calculations we also investigated electron properties of nanowires 
and atomic chains and predicted the large yield strength observed in the center 

of connective neck.



Keywords:
conductance, nanowire, atomic structure, electron transport, 
nanoindentation, molecular dynamics, mechanical properties, 
bundles, self-consistent field, yield strength.
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ö z e t

NANOTELLERDE ELEKTRON VE ATOM SÜREÇLERİ

Hatem Mehrez 
Fizik Yüksek Lisans 

Tez Yöneticisi: Prof. S. Ciraci 
Eylül 1996

iki elektrot arasında çekilerek elde edilen nanotelde elektrik iletkenliğinin değişimi 
bilimsel bir tartışmaya yol açmıştı. STM ve AFM kombinasyonunu kullanan 
yeni deneysel düzenekler iletkenliğin değişiminin atomsal yapının değişimine 
bağlı olduğunu gösterdi. Bu tez çalışmasında STM uçu tarafından yapıları 
nanometre büyüklüğündeki batırmada ve bağlayıcı boyunda, elektron taşmımı 
konusu kuramsal olarak araştırılıp, ölçülmüş olan iletkenlik değerleri analiz edildi: 
Sünme esnasında nanotelin mekanik özelliklerini ortaya çıkarmak için gerilim 
altında Moleküler Dinamik benzeşimleri yapıldı. Çok büyük yığılma kuvvetine 
sahip atomsal lif yapısına yol açan yeni bir plastik şekil değişimi bulundu, 
iletkenlikte ani değişimlerin ve kopmadan önce son platonun kuvantum olayına 
ve atomsal yapı değişmesine nasıl bağlı olduğunun geniş bir açıklaması yapıldı. 
Kendi içinde tutarlı potansiyelimsi yöntemi kullanarak nanotellerin ve atom 
zincirlerinin elektriksel ve atomsal özellikleri ve bağlayıcı boyunun merkezinde 

yığılma kuvveti hasaplandı
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Anahtar
Sözcükler:

iletkenlik, nanotel, atomsal yapı, elektron taşınımı, nano 
batırma, moleküler dinamik, mekanik özellikler, lifler, kendi 
içinde tutarlı, yığılma kuvveti.
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C hapter 1

Introduction

1.1 P rob lem  d evelop m en t

Material systems of reduced size or dimensionality are of great interest, because 
they often do exhibit properties that are very different from those of the bulk 
materiell; among these , we state localization i^henomena in low dimensional 
systems,^ mechanical properties characterized by a reduced propensity tor the 
creation and propagation of dislocations in small metallic samples^ and quantized 
conductcince in point contacts which will be the locus of this study.

The first step for the discovery of conductance qiuintization is due to 
the seminal Scanning Tunneling Microscopy (STM) works of Girnzewski and 
his collaborators,^ who have investigated tip-sample separation distance in 
a controlled manner over cui extended range and they could observe clearly 
transition from the tunneling regime to the point contact. In Figure 1.1 we 
show the results obtained by Gimzewski et al. for the current /  versus distcince 
between the tip and surface. In Figure l.I-a, the jump from the tunneling regime 
to the Quantum Point Contact (QPC) is represented by arrow at C and in Figure
1.1 - b, where current versus pushing and retraction is drawn, plateau structure 
is revealed.

Independently from this work, some experimental set-ups were developed 
in order to study this process in two dimensional electron gas {2DEG). The

1



CHAPTER 1. INTRODUCTION

Figure 1.1: Tunneling current versus distance z for a clean iridium tip and 
polycrystalline Ag surface: (a) approach (Vt = 20mU), (b) approach and 
retraction {Vt — — 2mU).[Ref.3]

pioneering works have been reached by van Wees et ah'* as well as Whararn 
et al.,'' who were able to see quantum conductance phenomenon with cui 
error less than 5%. That has been a break-through in the field of ballistic 
transport in mesoscopic physics. The experimental set-up which introduced 
the quantization of conductance in 2D EG  is shown in Figure 1.2. In this 
system, point contacts are made on high-mobility molecular-beam-epitaxy-grown 
GaAs/AlGaAs heterostructure. The 2DEG, which is formed at the interlace 
between GaAs and AlGaAs slabs has mobility ~  and density
~  10 '̂ /̂m  ̂ .so that the Fermi wave length ~  lOOA.
On the top of the heterostructure, a metal gate is made with cui opening ~  
few \ p  (Fermi wave length) and much smaller than /e(mean free electron path). 
The point contacts are defined by applying a negative voltage Vg to the gate. 
For smcill Vg, the 2DEG (formed at the interface between GaAs and AlGaAs) 
which is underneath the gate is depleted and the conduction is taking phice at 
the contact only with width w ~  opening of the gates; by further decreiising of
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Figure 1.2: Schematic Diagram of 2DEG Quantum Point Contact, (a) lateral 
crossection view and (b) top view.

Fg, the depletion layer increases and the width of the point contacts is reduced 
griiducilly until it is pinched off completely. Therefore, with this novel device, we 
can vary the width of the QPC for a given device configuration by changing Vq 
only.
With this device, two terminal resistance of several point contacts as a function of 
gate voltcige was measured'*’® and in Figure 1..3 we show the experimental results 
of Vein Wees et ah'* after contact resistances are subtracted. It is clear from the 
graph that the conductance of the QPC as a function of F, changes in the form 
of a stair-case with steps of 2e^//i within a precision of few percent.

These experimental results have brought a new insight to the physics of 
QPC  which was known as early as the mid 60’s; Sharvin^ has calculated the 
conductance of a point contact using Drude approximation and found it to depend 
on the Fermi energy of the system and its geometry through the relation

2e2 A
G. = —

h Xf'
( 1.1)

F

where /1 is the contact area for 3D point contacts and slit opening for 2D.
Eventhough the results in Figure 1.3 are in agreement with the Sharvin’s 

approximation for conductivity; i.e, G ~  ro, the jumps in the conductivity 
are not consistent with the constant slope for the Gs versus to curve of 
Sharvin’s conductivity. In fact this main difference in conductivity between the
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Figure 1.3: Conductivity v.s Gate voltage for 2D EG  which shows clearly the 
conductivity quantization.Ref[4]

experimental results and the Gs is due to dimensional effects. In Sharvin’s study 
(and early approaches), point contacts scale length A/?, and as a result,
qucintization effect due to the constriction width w is smeai'ed out mainly due to 
the tunneling phenomenon; therefore in early studies quantization effect was not 
taken into consideration. However, with these new experimental results, a. more 
detciiled solution need to be carried out to show the ciuantum size effects, and 
this was cleared up'*’® in terms of the subband formation which was explained 
earlier.'

In order to understand this phenomenon better, we consider the following 
simple derivation. At the interface between the two slabs GaAs and AlGaAs, 
the 2DEG is constrained to a certain well cilong the {x^y) direction due to the 
depletion generated by the negative gate voltage, but it is free to move along the 
channel (z) direction. Therefore we Ccin represent the potential confinement by

V(x,y ,z)  =
0 for 0 < X < Lx and 0 < y < Ly 
oo otherwise

( 1.2)

The solution to this problem is quite simple and we can separate the wave function 
to lateral part (in the x and y direction) and longitudinal one (in the .2 direction).
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and we will get energy eigenvalue

,, ,, n'^ki
E — E%' x! -----2rn (1.3)

where is the propagation vector along the ^-axis.
On the (x^y) plane, we have approximated our potential as a quantum well with 
an infinite wall barrier and this would yield the vanishing of the wave function 
at the boundaries giving rise to only some possible eigenfunctions to the problem 
with eigenenergy spectrum

E.v,y = En,,n,j = ^  0 ^  0)

where Ux and iiy are quantum numbers describing eigenfunction solution cuid Lx 
and Ly cxre the width of the channel and accumulation layer respectively as shown 
in Figure 1.2.
We note here that Ly <C Fa,, therefore mciny eigenstates corresponding to different 
/7 values and Uy = 1 would have a lower energy eigenvalue compared to the state 
with n,j = 2; as a consequence, we can disregard the y dependence of the solution 
by assuming thcxt only nj, = 1 are the filled states of the system, so the energy of 
the system is

where the constant energy fi / (nyir/ LyY¡2m is taken to be zero by changing the 
reference of energy spectrum.
Connecting the chcxnnel to two reservoirs with Fermi energy Ep· 'At z = ±oo and 
keeping it at constant and small chemical potential difference Ay,  we can find 
the conductance of this QPC  through the relation G = I / V . In order to find the 
current / , we will use the relation

/  =  evpD(Ep)Ay (1.6)

where vp is the Fermi velocity, D(Ep) the density of states at Fermi level and 
A y  is the chemical potential. For the multiple subbands Ccise, we will Imve

I = eJ2 v„JEF)D„JEF)Aft (1.7)
rix
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where is the subband index. Assuming no subband interaction occurring in 
such a system, the generalization of the one band system gives

\/2mD{E) = 

v{E) =

I1E 2
'~2

Y  (with spin degeneracy and positive A:,)

E2

(1.8)

(1.9)

VVe note here that we have taken only electrons in the energy range AV ¿uid 
Ep + AyU (only these ones contribute to the effective current) and with positive 
A;,, in the calculation of D{E) because the ones with negative Au do not enter the 
chiuinel and they do not yield any current contribution to the system. Therefore

/  = x :e (£ :p  - ( 1.10)

hm ■where Ep — En^ = is the longitudinal energy of the electrons in band which 
has to be positive to be a current carrying state. Since J2nr ©(•¿'V “  -£'»,;) = N  ^  
totiil number of bcinds with energy E  below Ep so

Thus

2c
I  =

h

V h V h V h

(1.Ü)

( 1. 12)

Obviously we can understand better the staircase structure shown in Figure 
1.3. As the gate voltage is increased, the depletion layer decreases cillowing 
more stcites dipping below the Fermi energy and every state would contribute 
to 1 “quantum conductance” (2e^//i). Therefore, we can explain every step in 
conductivity graph of Figure 1.3 by dipping one more state below the Fermi 
level.

Eventhough this theoretical derivations made us understand better the 
experimental results, further investigations of the cipproxirnations need to be 
carried out to understand the applicability of the theory and this would include 
tests on the following parameters
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• The potential profile, which is assumed to be a perfect qucuitum well 
ignoring ciny variations which may occur due to surface roughness.

• Contacts occur at the 2 = ±oo and this would prohibit any tunneling or 
reflections at the boundary edges of the channel.

• Band mixing is ignored and this is true only at T = OA' and at perfectly 
smooth surface.

The effect of the confining potentials has been the object of detailed 
ccdculations.“’“ '̂* In these calculations, it W cis shown tlmt for long constriction 
(A. >> A/,'), the conductance is directly proportional to integer number of 
propagating modes or conductance channels cind increases with increasing width 
of constriction in steps of 2e^/h when a new channel opens up. Even in the case of 
constriction length ~  A/?, the conductance still show staircase structure with 
oscillatory behavior.'·^ However in the case of very short constrictions (A~ <C A/,·) 
where tunneling becomes important in such systems and the stair-case form is 
smeared out, and we cipproach Gh curve as —> 0.
Based on these theoretical studies, we can conclude that, the potential profile 
or surface roughness itself does not change the general feature of the G curve 
since ciny potential profile which yields quasi bound states give rise to such 
jumps in the conductivity whenever a new bound state dips below the I'ermi 
energy. However the length of the channel plays an important role in these 
calculations, since shorter constrictions cause more reflections of the eigenstates 
cit the boundaries of the channel and these would introduce oscillations on the 
pla.teauŝ ·'̂  of conductivity and, for Â  ^  A/r, tunneling phenomenon becomes 
pronounced and stair-case structure starts to disappear reaching Sharvin curve 

for A- ~  0.
Temperature dependence on conductivity in many subband system was 

studied throughly by M. Biittiker et a/.^*^and they found a genercilization of 
Landauer’s formula® at finite T. Another approach was used by Tekman and 
Ciraci, ·̂* who have used the variation of D(E) at finite T  in equation 1.7, 
while calculating the current / , and they found that for very thin constrictions
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(L.,; ~  2Xp) where the energy difference between energy eigenvalues are quite large 
compared to the case of wide ojaenings, temperature effects a,re quite snicill up to 
T = 5/f and they just diminish oscillations occurring at the plateaus. However, 
for the case of large openings (Lx ~  lOA;?), the inter subband mixing becomes 
very important and the stair-case structure disappears for T > 0 .6 /i. Within 
these theoretical calculations, based on free electron model and an approximate 
potential profile confinement, it is generally accepted that this model explains well 
the 2DEG experimental results, except for the resonance structure superposed 
on the plateaus which is due to reflections from the ends of the channel and was 
not detected experimentally.

Coming back to the work done by Gimzewski and Möller^ in which tunneling 
current exhibits a jump and saturates as the tip is brought closer to the sample at 
a certciin tip-sample separation distcince. If we use the results of this experiment 
and plot G versus tip displacement, a plateau would show up. Analysis has shown 
that the discontinuous jump is due to the adhesion of the tip to the sample, wliich 
happens when the tip-sample system is unstable at certain separation. In this 
case the tip elongates towards the sample and forms a mechanical contcict in 
the form of a neck as shown schematically by Gimzewski et al.A They have 
estimated the contact radius to be ~  \ p .  Therefore, length in such systems is of 
the order of \p^ and the observed trcuisport beyond the discontinuity in Figure
1.3 has to be associated with ballistic quantum transport. As a result it would l)e 
possible to generalize the theory applied to the 2DEG to this system. Garcia*' 
was the first one who pointed out that the point contact in STM is relat<xl 
to ballistic transport of electrons through QPC. Following these predictions, 
Lang*^ has simulated the point contact experiment by two jelliurn electrodes, one 
of them having an adsorbed Na atom on it cind thus representing a single atom 
tip. He found that the conductcuice saturates at a value of rße^lh and forms a 
plateau, where the Vcilue of 7] depends strongly on the identity of the material 
and it is only 0.4 for Na. Different approach was used by Ferrer et who 
have studied contact resistance of STM at a very small separation using tight- 
binding Hcimiltonian and Keldysh (non-equilibrium) Green’s function fornicdism
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arid they have found that the conductivity saturates at close contact ~  2. 5A. 
to a Vcilue ~  2e^//г. In parallel with these two different approaches, Ciraci and 
Tekinan^° Imve studied the transition from tunneling regime to point contact in 
STM within Self-consistent-field (SCF) pseudopotential method and they found 
thcit the variation of G as a function of tip-sample separation is sample and 
tip specific. Moreover, they have explained the observed jumps of G by the 
irregulcir enlargement of the contact area. Nevertheless, we Ccin state that the 
step structure can also be revealed in 3T> QPC, which seems to be explained by 
using ballistic theory. In treating the experimental results of Gimzewski et al.,^ 
we should note that the diameter of the neck is ~  Xp] as it is already concluded 
in the theoretical s tu d ie s ,th a t  we can not really expect shcirp qiuuitizcition in 
such experiments.

1.2 E x p erim en ts on Long Q uantum  W ires

Ifecently, by pulling the tip after nanoindentation^^"^·^ or by using a mechcinically 
controllable break junction system (MCBJ)^'^“^̂  long metal wires with diameters 
in the range of a few have been produced. As the crossection of the wire is 
rcxluced by stretching it continuously, the two-terminal conductcuice G Ims been 
measured. In Figure 1.4 we show the schematic description of a MCB.J ta.kcn 
from reference 25. Referring back to this figure, the sample in the shape of a metal 
filament is glued on a substrate (bending beam), then by bending the substrate 
in high vacuum, the filciment is broken. The electrodes, which are thus freshly 
exposed, are brought back into contact. The bending which is controlling the 
separation distance between the ends of the wire is controlled by tuning the piezo 
voltage Vp allowing fine adjustment of the separation between the electrodes. In 
the STM experiment, the tip is pushed into the surface beyond the separation 
distance at which the jump to QPC occurs cind then it is slowly retracted yielding 
to a long neck formation' '̂* of~ 40A.
Eventhough the experimental set-up of the STM and MCBJ are different, the 
principle of neck formation is the same: stretching a iruiterial with a small contact
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areci of ~  lOA cind measuring its two terminal conductance G. In fact these 
experiments have been done on a variety of rnatericils cUid here we will show some 
experimental results and make some comments on them.
in Figure 1.5, we show some experimental results obtained from Cu, Al, Na 
cuid Au. The conductivity in the first three plots were measured by MCB.J while 
that of gold was measured with STM set up. From these plots, we Ccin recognize 
some interesting features occurring in the conductivity measurements which are 
absent in Figure 1.3 showing the quantization in 2D EG. The most important 
differences include

• STM and MCBJ give the same general graph features for the conductivity.

• Results for Na (in Figure 1.5-c) show clearly that these experiments are 
quite irreproducible apart from the last plateau which survives for a longer 
time interval compared to the other ones.

EPOXY ADHESIVE 
NOTCHED mm^FILAMENT 

COUNTER SUPPORT 

BENDING BEAM

Figure 1.4: Schematic diagram for mechanically controllable break junction. 
Ref. [25]
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Figure 1.5: Conductivity in metal neck structures, (a), (b) and (c) are measured 
with MCB.J set up for Cu, A1 and Na respectively at 1.3/F as a function of 
l'^,(piezo voltage), (d) is Au conductivity measurement with STM set up ci.s a 
function of time before the neck breaking.Ref[25,22,26]

• For G > 6Go {Go - ‘¿e^/h) plateau structure starts to smear out and we 
cire in fact very close to Sharvin case.

• Plateaus may hcive jumps of ~  Go or ~  2Go-

• For A1 and Au (Figure 1.5-b,d), we can see some dipping phenomena in 
the conductivity measurement at the beginning of every lower plateau.

• For the A1 wire, we can also observe a small increase in the conductivity 
before the neck is broken.
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Figure 1.6: The conductance of a Pt junction at 1.3K as a function of Vp for two 
successive scans. In the first scan the transition was approached from the contact 
side whereas in the second scan the transition was aiDproached from the tunnel 
side.Ref[24]

Eventhough, metals are the best mciterials to be described by free electron model 
and as a result our generalization of quantization phenomenon would work best in 
such a system, we can see from the previous remarks that 3D QPC features differs 
from those of 2DEG. As a result simple generalization of the previous theory 
would most probably fail. In fact investigating other types of materials, such as 
transition metals (Pt) or semi-rnetals (Sb), shows well that this “quantization” 
phenomenon is quite fragile and it is too much material dependent. In Figure 1.6, 
we show the graph for Pt conductivity which exhibits the formation ol plateaus, 
but quite different from the ones shown previously. In this Figure, we also note 

that

The last plateau corresponds to a conductivity of 2Go-

• The slope of the last plateau becomes much more pronounced relative to 

that of Al.
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Figure 1.7: Three examples of conductance of a Sb contact at IMK as a function 
of Vp, with Vp increasing. The three curves are recorded for three different Vp 
sweeps. Curve (a) shows the behavior for a large decreasing contact size. In 
the mechanical contact regime shown in curve (c) as well as in curve (/;), the 
conductance is less than the quantum unit.Ref[27]

• Hystei'esis effect becomes much more inqaortant for this structure.

Concerning the results of semimetals, where we have taken Sb as an example, 
we show the variation of conductance in Figure 1.7. Here we can observe the 
following important feature

• “Quantization” phenomenon becomes nearly impossible to exphiin the 
plateaus which still occur but they exhibit jumps with a small traction 

of 2e^//г.

Within these new experimental results, it has become quite difficult to explain this 
“random” plateau formation with a simple generalizcition ol the theory applied 
to 2D EG. Hence, for the last three years the problem has been revisited with 
the hope of resolving this quantization phenomenon.
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1.3 T heories

It has l^een suggested that these plateaus occurring in the conductance in the 
QPC  regime are due to discontinuous change of atomic structure/'^’'̂ ’̂̂ '̂  and evei\y 
atom cit the narrowest part of the neck opens a channel when one of its states t„. 
is in common with the Fermi level. Even if e„, is above the E[,·̂  ballistic transport 
may still occur because the state is broadened and becomes a resonance'^‘̂ centered 
at

£ = Co. + A (1.13)

with FWHM r, and 1ms density

P a ( e )  =  A / 7 r [ ( e  -  e „  -  A ) ^  +  F 2 i - l (1.14)

The distribution Pa(c) may have a partial overlap with the Fermi level and hence 
the conductcince over this resonance may be smaller than Go- Therefore, the 
total conductivity ol the neck would be the sum of individual atom contributions 
which are at the neck. On the other hand, still there are some who believe that 
this sharp step structure indicates the unique transversal qucintization along the 
3Z1 c o n s t r i c t i o n , a n d  they cissurne that the energy states vary adiabaticcdly 
so that the channel mixing due to finite bias, temperature cuid saddle point 
potenticil is marginal. The height of each step is eqiml to 'u-multiplc of Go·, where 
n being the degeneracy of the corresponding state below Ep. In addition to this, 
marginal differences from “quantum” conduction could be well explained through 
scattering phenomenon due to potential variations at the neck. Until today, both 
views cire still a matter of dispute between different groups^^ and the quantization 
of conductance in atomic wires is not completely resolved.

In order to understand better the quantization phenomenon, we hcwe decided 
to make a study on the atomic and electronic properties of these nanostructures. 
Firstly, we will treat our system with free electron model in the bcdlistic regime. 
In the next cha2Dter, we will show our conductance calculation for different 
neck profiles in order to grasp the effect of quantization phenomenon in small 
systems. Following this, we will make a detailed atomic structure analysis for
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neck samples while pulling. Because in small systems such cis atomic scale 
wires, the mechanisms of deformation and hence propensity for the creation 
and propagation of dislocations is reduced.^ The structural changes occurring 
in such systems are quite different from the bulk material and for this reason we 
ha.ve rricide simulations with Molecular Dynamics^^(MDS) on small structures 
to understand structural deformation in them and attempted to investigate 
the control i^arameters including: pulling rate, temperature, crystal structure 
and interaction potential type. This study will be presented in chapter 3. In 
chapter 4 we will introduce Self-Consistent-Field (SCF) calculations for different 
neck scimples and infinite wires in order to understand the physical difference 
between the finite and infinite size nanostructures. Finally in the concluding 
section we address to the questions we raised while analyzing experimented results 
on the 3D QPC with the hope of providing better understanding.



C hapter 2

B allistic transport through ZD

QPC

2.1 T h eory  and general form alism

W(' have seen in Chapter 1 that in the 2 DEG, quantization plixinoinenoii of 
2D QPC  is clue to the quasi — ID nature of the system, and there were many 
theoretical studies devoted to explain this phenomenon. Now we would generalize 
the formalism'·^ which has been applied by Tekman and Ciraci.
In this ap2:)roach we will divide the space into three parts: 1) the left most and 
2) right most parts are two semiinfinite jellium electrodes, so the Shrddinger 
ecpiation in this portion of space would simply give a free plane wave particle 
solution. 3) the centred part of the constriction which is characterized by a 
laterally confining potential, and as a result, the solution of the Shrodinger 
equation in this region are subband wave functions arising from the (]uantization 
of the transverse momentum. The separation of space into jellium electrodes and 
constriction can be represented by using profile cordinernent V{x,y,z)  defined Iry

V(x,y ,z)  = \(j),n{z) + VQx,y,z)]0{z)0{d- z) (2.1)

where 0 is the step function and d is the constriction length; here the potential 
is taken zero in the left most {z < 0) and right most > d) i-egions, while

16
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at the constriction (0 <  ̂ < d), the potential has two parts, the longitudinal 
part (Pmiz) (which contains the variation of minimum value of potential along 
the constriction) iind the confining part Vc{x,y,z) (which gives rise to subband 
structure). For a general constriction, it may not be obvious and may even not 
be unique to decompose the potential V{x,y,z)  to this type of confining model, 
however, in necirly free electron a p p r o x i ma t i o n , t h e  3D potenticil of contact 
is obtained from SCF calculations and is parcirneterized

V{x, y, z; d) =  </>„,,(z; d) +  a{z] d){x^ +  ?/^ (2.2)

here X and y are transversal coordinates and is the longitudinal coordinate from 
left electrode towards the right electrode along the axis of contact; while d is the
constriction length.
The hamiltonian lor the QPC is written as

H =
2m*

V^ +  V{x,y,z) (2.3)

where m* is the effective mass^ of the electron propagating through the 
constriction and it is assumed to be isotropic. Therefore Shrodinger equation 
would have the form

rc æ h
2rn* dz^7 ^  +  +  ^o(x, y, z) ~) = 7í'0«,s(■г·, ?/, z)

(2.4)
where V|| = d^jdx^ + d^'/dy^, the term n corresponds to the subband wave 
function induced due to the confining potential V̂ (.'c, ?/, z) and the energy is 
assumed to be continuous due to the propagation along the  ̂axis. We note here, 

that the solutions of Shrodinger equation are two-lbld degenerate; if i/>n,/i(.'fb ?/>-̂ ') 
is a solution of eqiuition 2.4 with left current currying state, then Vhi,£;(·̂ ) 
also a solution and corresponds to the state which carries current in the opposite 
direction.

^In our calculations, we would use effective mass theory which treats the effect of the atoms 
|:)otential as renormalization of the free electron propagation energy. Our approximation is 
justified because our system size contains a large number of atomic cells and the external 
potential is slowly varying over atomic scale length.
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The solution of the equation 2.4 is not alwciys possible, because generall}/ the 
pcirtial differential equation is not separable. Then we have to deal with solutions 
onl_y for very special potential confinements in section 2.2 and approximate 
solutions for a general confinement is applied in section 2..3. However, for the time 
being we would suppose the subband wave functions ?y, z) ¿ind ?/>„ ¿¿(x, ?/, z)
are well known in the constriction and will find the conductance for such a system.

Assuming that the subband wave functions in the constriction are known, the 
general solution of the Shrodinger equation in all space is found by matching 
these solutions with the phuie wave nature of the wave functions at the jellium 
electrodes (z < 0 cind z > d). To this end the following conditions have to be 
satisfied

• Continuity of the wave function and its derivative at the left boundary of 
the constriction (z = 0).

• Continuity of the wave function and its derivative at the right boundary of 
the constriction (z - d).

• Boundary condition at  ̂ = Too which define incoming and outgoing waves.

Let us consider an incident plane wave from the left hand side of the constriction 
with wave vector Ki = k̂ „ is in the longitudinal direction. Aq,,,
and kŷ  are in the lateral direction, and its energy E  = /¿ |̂/C:P/2?'n*. Since in 
this problem, we are assuming that the characteristic length of the constriction 
is smaller than the electron mean free path i.e the contact is ballistic; therelbre 
plane waves at the left most and right most sides and at the constriction have 
the same energy E  and we will write the wave functions as

n
= j  dkxdkyÉ^^^^^'^'-'>É’̂ '̂^É’̂ '^U3- .̂{kx,ky) (z > d)
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where the first term of equation 2.5 corresponds to an incident phme wave and 
its reflection cit the left boundary of the constriction and this corresponds to the 
solution of the Shrodinger equation at the left most portion of space. The second 
term of our equation corresponds to the solution at the constriction and it is a 
combination of all the subband wave functions (left and right current carrying 
states). Finally the last term which corresponds to the solution cit the right most 
portion of space and it represents transmission through the constriction at .i' = d. 
Since the energy FJ in this system is conserved so kl(kx, ky) = 2rn*E/lP — k'f. — k  ̂
and while taking the square root of this quantity, the imaginary part of k~(k. ,̂ ky) 
is taken to be positive so that the function decays cis ^  ±oo in order to get 
physical solutions. Unknowns in the eqiuition 2.5 should be determined from the 
boundary conditions at ,? = 0 and z = d] continuity of the wave functions gives 
for = 0

= E  y, + „̂,£,.(.'1·, y, 0) J  (2.6)
n

a.iid for = d we get

2/, d) = {̂ I’u,e {x  ̂y, + ^n,£'(-U !/>n
= J dk^dkyP^dk.Fy)d îk,x îkyy]:^^^( f̂^ ĵ^^^  ̂ ^2.1)

Along the X and y direction the wavefunction continuity is gruiranteed, since all 
subband wavefunction solutions in the constriction would satisfy this condition, 
'riiis continuity of the wave function in the x and y direction guarantees the 
continuity of its derivative. However in the .ir direction we calcuhite the wave 
function derivative in order to match it at  ̂ = 0 and z = d and this would give

l-vk,, (.T,?/, z)l,=o = _  j  dkjkyzk,{k,,  (A·,, k,,)

= 5 ]  + ?,г,£;(·г■, 2/, -^)|,=oA,, (2.8)

this for z = 0 cind for z = d we get

( ; r ,  2/ ,  z)U=d =  E  I ¿ ' / ’» . £ ’ (•'*'5 2/> 2/ ,  )̂U=dAn,r<, [
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= J (2.9)

liciving expressed the boundary conditions for such a system, the coeflicients 
Aj: (̂k̂ .  ̂ky), Bj^.(kx,ky), and luive to be determined cis a function of
the incident wave vector Ki and this is done by solving equcitions 2.6, 2.7, 2.8 and 
2.9 simultaneously, and j^.{x,y, z) will be determined in ¿dl space. Eventhough 
those coeflicients can be determined exactly, the solution is not simple. We need 
to tcike the Fourier Transform (FT) of these equations in order to get rid of the 
X and y dependence in the final expression so that the manipulation of these 
equations will be ecisier; to do this we will define the 2D FT of a function f{x ,y)  
as

<ly) = ^  /_ "  dxdye--’̂ ^̂ e~̂ '>’̂ yfix, y) (2.10)

taking the FT of equation 2.6 and 2.7 we get

27T [¿'((/̂ . -  k^J)b{qy -  ky, )̂ + Aj^^{q^,qy) =

qyi d” H.n,Ei(lxi %■> }
n

\Hn,E{qxi qyi d)0̂  ̂ĵ , + rfri,/i'(<Z:i·) % 1  }(·̂ · ̂  0
n

where 11 and fl are used to denote the P'T of the subband wave function of ■tj> and 
■(/». Now taking the FT of equations 2.8 cind 2.9 we get

27T [iKJiq.^ -  k^„)8{qy -  ky^) -  ik^{qxiqy)Aj^^{q.^,qy) =

n

E  {ni,E (i.. 9,. <*)».,,?, + K e Ui·., <h„ <0 A„jr, }(2.12)
n

where If' and If' are used to denote the subband wave function derivatives of (/>' 
and along the .2—direction. From the previous two equations, elimination of 
the reflection coefficient Aj^.{qx^qy) gives

27r[2A;.J(i(</̂ . -  k g ,^ ) 8 { q y  -  k y j )
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(ly)^^n,Ei(lx ·, (¡y·) 0) ([ŷ
n

~i~[kz{(lx̂  qy)Hn,Ei(lx·, (Jy, 0) — q.ŷ  ())] |(2. L3)

and the elimination of transmission coefficient Bj^Xq^^qy) gives

Xv Qy)̂ n̂,E((Ix'> Qy·) + zTÎ  ̂ qŷ
n

+ [̂ ’̂ (</x-5 <Zl/)ri7l,£'(</.r5 </y, iO ~  0(2.14)

Equation 2.13 and 2.14 have to be solved simultaneously to obtcun the coefficients 
0̂  ̂ and f·-. where Ki is the incident plane wave vector. Here we note that 
equcition 2.13 stands for the transmission of incident plane wave into the subband 
states cit the enti’cince of constriction (z = 0), and equation 2.14 corresponds to 
the reflection of subband at the end of constriction (z = d). Therefore once the 
solution of Shrodinger equation (equation 2.4) in the constriction is determined 
and the snbband wave functions are known, the problem reduces to calculation 
of multiple reflections from the edges of the constriction, it is then a simple 
algebredc problem.
Assuirdng that these coefficients are determined, and 'if z) is calculated
throughout the constriction, we will detenrdne the current passing cicross the 
constriction in order to find out the conductivity. In order to calculate the current, 
it is clecu· that calculating through any contact crossing the a.xis at .2 = ẑ , 
would yield the same result, since the current inside the system is conserved. To 
do this we choose (z < Zo < d), so that the final current expression consists of 
subband wave functions. The current passing through the QPC  is related to tlie 
occupation of subbands as in the Landauer forrnula.^’̂ ^
'I’he current due to incident waves ?/)« and with energy E  can be written using 
the expectation value of the current operator

{'MM = J dxdy [V’*(a:, y^x, y) - C'(•'̂b '!j)'<hi-C ?/)] ̂  (2.15)
^Here we note that we are using the sign * in order to denote the effective mass if it is a 

superscript of the character cind a complex conjugate for any other variable.
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In our system we should take into account all contributions İroni all incoming 
states Hence,

J { E ) = 2 e  I  y, y, ~

Where J(E)  corresponds to the electric current due to the states with energy E. 
Here we have introduced the factor e in order to convert the probability current 
into the electriccd current. The iirefactor 2 takes care of spin degeneracy and 
1/ (27t)·̂  is the density of states in the 3 D /’f —space, S function selects the states 
which have energy E  and the step function 0  selects electrons with positive 
so that only electrons entering the channel are taken into account. In order to 
evaluate J{E) we will initially calculate at an arbitrary point
in the constriction.

7H,n

- [ i ’n,]sU=^oK,P, + + Au,E\z^^,Arn,Kj
(2.17)

In this equation, lor clarity we have dropped the {x,y,z)  factor which is iu tlie 
front of the subband wave functions; further manipulation of this equation yields

m,n
_ _/ _/

+  ’/ ’n.B I - ^=- 'o '0m, 7JI€)„ i , /q  }  ( 2 . 1 8 )

Finally we obtain

e 1 dky^j ( E )  = J_  /
ttIi 2tt Jkl -̂\rkl^<K%

Am I [ /  d.xY/?/V7*,fc.L.=,,y0'„,ŷ |,r=.r,J0,„./q
7) J. 77.
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+A*,7í*.[/ í¿-cí¿yK3'l-^=^oV4,¿’L-..o]0„,,,,e, (2.19)

Here wc have introduced a new variable K'^ = E 2m*fh^, and the f corresponds 
to the 2D integration in the A:—space such that + < Kp; with the constraint
k'i + kŷ  + k't̂  ̂ = Kp; has to be satisfied while evakuiting the previous integration. 
Now we will assume that our constriction is connected to two jellium electrodes 
at ,2 = ±oo and the electro-chemical potentials of these two reservoirs iire kept 
constant so that there is an infinitesimal difference A/j, - ¡iĵ  — /.ir > 0 between 
the electro-chemical potential of the left hand side and the right hand side of the 
reservoirs. In this circuit current would flow from the left reservoir to the right 
one and vice versa and in experiment we would measure only the effective one. 
I'o rnecisure the current due to one electrode, we should integrate J{E) factored 
l)y D(E), which is the electron occupancy with energy E, over all the energy 
range. In our calculation we will take D{E) = fpT){E) which is the Fermi-Dirac 
distribution at T = OK so that it corresponds to step function; therefore the 
current flowing through the circuit is

i'HL
I = J J{E)dE -  J{E)dE

C HR
— / J{E)dE ■= {¡XL — ER)d{pR)

I/O.
=  A¡.íJ{Ef ) — eVJ{Ep)

(where {/xl -  ftn) -> 0)

(fXfi = Ef , Fermi energyX2.20)

ff'he conductance is
G = ^  = eJ{EF) (2.21)

By determining J{E) from equation 2.19, we obtain directly the conductance in 
the constriction after multiplying by e. In the next section, we will solve this 
problem lor a uniform constriction, followed by an approximate solution for a 
more general potential type in section 2.4.
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2.2 C ylindrical In fin ite  W ell C onfinem ent

2.2.1 Formalism

In this section vve will assume that the confining potential is indepenclcnt from .r. 
As a result 4>m{̂ ) — 0 .̂nd Vc(x·, y, z) = K.(.c, y). Furthermore we assume that this 
|)otential is oidy radial. We first treat the infinite wall cylindrical confinement 
potential in this section. Then we consider parabolic one. Eventhough these 
profiles oversimplify the real potential, we believe that some insight of the problem 
could still be grasped. Our potential confinement would have the form

where V{p) =

( 2 .22)

(2.23)

V{r) =  0{z)e{d -  z)V{p)

0 p < 10
oo otherwise

Wh('re (/) and describe cylindrical coordinate system. This describes an 
infinite cylindriccil wall potential with uniform crossection, in the regions 0 < 
.i < d and 0 otherwise. Due to p dependence of the potential, we will write 
Slirödinger ecpiation 2.4 in cylindrical coordinate system a.nd it becomes

IP

where
72 I d d . I d'^ (2.25)

p dp' dp fP d(j)'̂
in cylindrical coordiiicite system; this equation is separtible and we can write

(2.27)

wliere the lateral wave function satisfies the differential equation

rP
[ - ^ V j j  + Vc(p)]^nip,(/^) = en^n{p,(f>)

with subband energy e„ and propagation vector along the ^-axis 7,,, satislyii

(2.28)/2??r* , s
In = \ l —r - c ^  -  ^n)h
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where the root with positive imaginary value is taken.
Since the potential in equation 2.27, has only p dependence, we can separate 
our equation into radial and rotational parts and we can rrurke the Ibllowing 
transformation: ^n ip . f )  — Rnt{p)P‘'̂  where the radial part R„,t
satisfies

r IP 1 d cl IPP 1  ̂ ,
+ (2.29)

with boundary condition Rni{w) = 0

Manipulating this equation with transforrncition p = au we get the following form

(2.30){“¿“I; “
2rncP

where ■ ■ -p— tni = 1

¿III cl R i l l

w
0

d'his represents Bessel’s equation of the first kind and its solution J/(u) is straight 
forwa.rd , however, the vanishing of the function at the boundary yields to only 
some possible eigenstate solutions

and

Rniip) =  AniJliUril—)to
IP

(2.31)

n̂l

(2.32)

2mw^
Hence the lateral wave functions have the form

^ni{pA) = AraJi{rcnA^

where / is the order of the Bessel function and Uni its zero, while the term 
Ant corresponds to the normalization constant solved through the equa,tion

pw r2'7T
/ pdp d(/)^niip,<l>)K'i'(py(l>) =  n̂n'dii'

Jo Jo
By solving this equation to find Ant, we get the final form of the lateral wa.ve 

function as

^nl{p, (/)) = y/%10 Jl+I (Unl)
(2.34)



CHAPTER 2. BALLISTIC TRANSPORT THROUGH 3D QPC 26

From equation 2.28 the longitudinal wave vector have the forr:n:n

2772

thus Jrd
kp \

_ {Unll^Tty
{wIXpf (2..35)

In the previous section we have shown how the solution of such a system is 
manipulated by taking the FT in the x and y directions, so now we will calculate 
this in cylindrical coordiricite system using

1
'(«) = ^ / n?)dp (2,:)6)

a .n d

¿TV Jo Jo \  10/

îJliKw)A — e - 'S ' ------------!----------j .

1 -  f ^ V\ w»l /
(2.37)

We note here thcit in this section we are using k = {k.,0^) instead of {qx.qy) as 
the FT basis. We will write again equations 2.13 and 2.14 which now have much 

simpler form

2'K‘2,k,^/{K — Ko) — { [^ ’^ (^ )  T  T  [^ z (^ )  ~  7n/]'^n;,r-l}  ) (2 .3 8 )

a .n d

2 :  { i f e ( K )  -  +  [ U P  +  7 n , l e - " “" ' l A „ ,  g }  =  0 ( 2 , : !9 )
nl

In order to solve such a system we will multiply every equation ( 2.38 and 2.39 ) 
l)y <[>*.;/(/i) and integrate over all k values, while using the orthogonality relation 
of the lateriil wave functions and thus its FT. The resulting equations are

27r7.2A.’2,j^,i'/'(^o) ~  ^ ) [2 { E n ' l ' ‘,nl T ' J n / n n ' ^ l l ' }  O jil T 2 { E n ' l ' ; n l  ' J n / n n ' ^ l l ' }  A,,,;]
nl

(2.40)
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and

'y  ̂ ' J n l ^ n n ' C E)n l p  t { R n ' l ' ;n l  d“ 'ynl^nn'^tt '}  (' A,(;J =  0
nl

(2.41)
Here 6nn' is the Kronecker delta, and the matrix element Kn't'-,ni is delined through 
the relation

Rn’l'-,nl = j  „,(/7)D(/c)$„/;/,„;(k) (2.42)

Now we Ccin rewrite equation.s 2.40 cuid 2.41 in a matrix form .so that we can drop 
oil' our summation terms and we would obtain

27Ti2k,^^HKo) = t { k  + f  )0  + i { k  -  f  )À (2.43)

and
i { k  -  f  )D̂ ''‘̂ 0 + i { k  + f  )e~‘̂ ''̂ A = 0 (2.44)

Hei'<' 0  and À correspond to the column vectors of the coefficients of tlie suirband 
wave functions with right and left going probability currents, respectively. <I> is 
the row vector of the transverse FT of the latercil wave functions. F is a diagonal 
matrix of propagation constant vectors corresponding to every eigen state, and 
k  is the longitudinal momentum matrix.

Now equations 2.43 and 2.44 correspond to the boundary conditions a.t = 0 
and = d respectively and they can be easily solved to lind out the subband 

coefficients

A = C^kk + iT^ik

0  = 2T r n - { k  + r ) ~ k k  -r)( .
~ l 2 - 1

(2.45)

2 k , j k  + ! ' ) - ' (2.46)

In order to find current J{Ef ) we refer back to equations 2.18 and 2.19 and we 

would get

(ir |j|^ ) = 0  _  ¿AU '̂A + ¿Aff'0  -  г

h 0^fH0 -  AtfViA] + 2[0tfvA] (2.47)
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where T/i and F/ cire the real and imaginary rncitrices of the matrix F, respectively. 
From these results, equation 2.19 would give us much simpler form by replacing 
the cartesian coordinate system with cylindrical one cuid by using the fact tha.t 
equations are independent of 0 .̂ Thus 

2e 1 kcIk.
= T T . C  + 2a ”> ie 'bA ]}

To further simplify we introduce the following nicitrices

n = 2 I -
A =

~r = {¡< + T ) - U r - f < )

(K + F)n -1

(2.48)

(2.49)

(2.50)

(2.51)

As a result, the conductance becomes

2 e ^  f K p  k,cIk  . o . . r -  . .
C\

z t ^
7 = 4 -  2TT /  ' 7̂ ^ :^ (/i)]$ (/c)[fiT H n-A 'fV iA ]$+ (/i) + 2QTn4)(K)[n\l\A]#t(K) 

h/ Jo L
(2.52)

In tins eciuation only and # are function of k. Since k.;{K) is real for |/i| < Kp··, 
one gets, by using equcvtion 2.42,

'SteK = 2nJ^ /cd/i$ (̂/c)A:;j(/i)l>(/v) (2.53)

Finally the conductance formula reduces to the form

2fi2
G = — tr a n^f/in  -  A^ffiA + 2i>?7i(lVr/A) K (2.54)

In this equation there are 3 terms contributing to the conductivity; the first and 
the second term cori'espond to right and left going wa.ves in the constriction, 
respectively. Resonance effect may appear in the system due to their relative 
phase difference. The third term, corresponds to evanescent states^ in the 
constriction.^^ For finite length constrictions, where tunneling phenomenon 
becomes important, this last term becomes important since it yields deviations 
from sharp steps structure.

^y\ssuniing perfect conductivity in the constriction; i.e, as d oo, such states
f with Cni > Ef ) do not contribute to conductivity
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Before introducing our results, we would like to bring the following issue to 
the reader cittention: Since we are measuring conductivity for a ballistic system 
(no scattering is occurring), shouldn’t we get G oo?

In fact this question has been addressed previously, while calculating the 
conductivity of 2DEG QPC. Imry^^ has showed that the finite resistance 
obtained in such formúlele was the contact resistance and did not correspond 
to the constriction resistance which has to be zero. This type of resistance 
mea.surement is known as two probe measurement and it has been thought that 
the resistance of ci perfect conductor vanishes for /our-probe measurement, where 
one uses different probes for the current and voltage measurements which are very 
weakly coupled to the device. In experimental set up, however, the lithographic 
shape of the current and voltage probes are the same in the ¿two-probe as well as 
the four-prohe measurements. For this reason it becomes impossible to assume 
weak coupling for the voltage probes. In lact Biittiker^*^’̂  ̂ has considered the 
coherent device consisting of the probes in addition to the loops or wire and 
calculated the scattering matrix for this device, where all probes are assumed 
to be connected to reservoirs at equilibrium. He has found tlicit the resistance 
VfUiishes ordy for very weak coupliiig(/o'ur'-probe iTiecisurernent) which does not 
correspond to the experimental conditions. As a result we have used ¿rwo-probe 
measurement to calculate the conductivity in our theoreticcil study.

2.2.2 R esu lts

In equation 2.54 we have obtained the hnal result of the conductivity for a 
perfectly cylindrical potential, by the integrcition over cill the incident wave vectors 
in ec[uation 2.52. The result is expressed only in terms of matrices. However, 
here we would like to mention an important difference between our results and 
experiments in which conductivity is measured. In the latter, G is measured as 
a function of Vp (piezo voltage) or the neck length, whereas in the former, it is 
calculated as a function of the electron density (or equivalently Xp) iind the area 
of the constriction A. Here we note that this mciin difference in conductivity
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inecisurement is clue to the fcxct that in the thceoretical studies, Cinergy bands 
l)elow the Fermi level (which defines our contact area) are the criteria lor the 
conductivity; however, experimentally, it is not possible to measure the contact 
area at the constriction. On the other hand, there were attempts to estimate the 
confining potential profile (which would give the contact area) as a function of 
pulling using sirnuhvtions with molecular dynamics,^® but these profiles are not 
uiuversal because they are obtained by empirical potential, and depend on initial 
structure configuration cincl stretch speed . It is, therefore, difficult to find out 
the correct potential profile confinement. Nevertheless, our SCF calculations as 
well as others’, h a v e  shown that parabolic j^otential confinement works well 
for one atom contact and infinite wall cylindrical potential parameterization is 
good for many atom point contact and this has motivated us to use tliem.

As shown in the ¡previous section, we have to calculate the propagation 
matrix F given by F„;,„'/' - and we should evaluate numerically the
longitudinal matrix K  given in equation 2.42 with the wave functions described 
by equation 2.37. An important point that is worth mentioning is that tlie off- 
diagonal elements of K  are very small compared to the diagonal elements. For 
the infinite wall confinement, they deviate from zero and they become appreciable 
only when the energy of the subband dips below the Fermi level. 'J’hus I’ and 
K  can be represented by finite dimensions, since in our calculations, we are 
interested at most upto the 5̂  ̂ energy subband. As a result, contributions from 
higher energy subbands would be small and we have noticed that 12x12 matrices 
give results with convergence less thcin 2%, and in all our ccilculations we have 
used 20 subbands to get better convergence.

Initially, we will investigate the case of a semiinfinite constriction. In such 
a system contributions from the left going and evanescent states should he 

eliminated cind, hence equation 2.54 becomes

G = ‘̂ t r  j 4([A + + f]" '^e(A 0 (2.55)

In Figure 2.1, we show the results for a perfect semiinfinite constriction, in 
which approximate quantization of conductcince is apparent. This point is (piite



CHAPTER 2. BALLISTIC TRANSPORT THROUGH ‘W  QPC 31

C o n t a c t  A r e a  [ “7

Figure 2.1: Conductance vs contact area due to trcUismission into seniiinfinite 
uniform constriction with cylindrical potential confinement

understandable, since ~  7„n, so that the trace in equation 2.55 approaches to 
iVp. Now if we consider incidence from the constriction, the reflection amplitudes 
are given by equation 2.51. Here one Ccin directly use conventional Landauer’s 

formula^ in the channel cind we get

2ê  r
Gl = —  |yV„ - (2.56)

where the first term is just the number of occupied subbands Np in the 
constriction and gives the incident waves. The second term is the contribution 
of the reflected waves, flere we note that G = Gl as a result of time-reversal 

symmetry.
After examining the the semiinfinite constriction case, we will locus on the 

finite length channels, here we will solve equation 2.54 completely to find the 
conductivity. The results of our calculations lor finite length constriction are 

illustrated in Figure 2.2.



CHAPTER 2. BALLISTIC TRANSPORT THROUGH 3D QPC 32

Figure 2.2: Conductance versus contact area due to trcuismission into a finite 
length uniform constriction with cylindrical potential confinement. The length 
of the constriction d is in units of Ai7.The grciphs have been shifted lor clarity.

The zero-length QPC  was studied earlier.*  ̂ Comparing the result obtained by 
using this formalism with Sharvin’s calculations,® we observe a great resemblance 
l·)(ítween them. The shcirp quantum steps have disappeared and there is n linear 
relation between the conductivity and the contact area as predicted previously by 
Sharvin. The washing of the quantum stej^s is not surprising, since as d 0 the 
probability of tunneling becomes apprecicible and this phenomenon dominates the 
conductivity. However, we can see in Figure 2.2 some deviations from Sharvin’s 
calculations; it is obvious that the “sti'ciight line” does not pciss through the 
origin and it exhibits some weak oscillations. The shift of the “straight tine” 
towards a larger contact area (A) value can be understood in terms of Heisenberg 
uncertainty relation. ApApp > fr, therefore as Ap  —>· 0 the transverse momentum 
App —>■ + 00. Since the largest possible transverse momentum is hkp·, if pA:y,’ < 1 
(or /l [Â ] < 0.08) transport is suppressed to yield zero conductance as one notices
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in our graph. The weak oscillations, on the other hand, rruiy be thought as being 
the precursors to quantized conductance. For e„/ > Ep the transport is via 
tuuueliiig cind the conductance increases exponentially; when this subband dips 
in the Fermi level, the iiciture of transport changes to ballistic transport, and the 
inaxiiTium conductance for the subband is limited by the quantum of conductance 
{rn2cP/h where rn is the degeneracy of the state). Therelbre the conductance due 
to this single subband saturates leciding to the Ibrmation of weak shoulder like 
features as it is shown in our graph.

As the length of the constriction increases, tunneling contribution decreases 
and step structure of the conductivity starts to appear. The aforementioned 
weak oscillations superposed on the classical Sharvin conductance, evolve to form 
quantized platecius for d > Xp/2. This quantization phenomenon gets better 
with increasing d and they occur at multiples of 2e^//i with a step jump of one 
or ituo quantum steps corresponding to the degeneracy of the wave function in 
the cylindrical coordiimte system. It should be noted that these quantized steps 
do not represent the real experimental results represented in Figures 1.5, 1.6
and 1.7. In the experiments the plateaus are sharp cind they do not display the 
same degeneracy, while in the theoretical calculations the conductcmce displays 
oscillations below the quantized values which increase for larger constriction 
lengths (d) and subbands with smaller energy eigenstates. These oscillations are 
due to resonances caused by the interface of right and left going wavefunctions in 
the constriction. To analyze these resonances, we examine equation 2.50. The 
matrix exp[iVd] consists of pure phases for occupied subbcuids and varying the 
contact area [A) (i.e varying F), these phases change as well, and this yield an 
interfa.ee between the first and second term in the brackets in equation 2.54. 
After understanding the origin of these resonances, we won’t study this lurther. 
4’he subject of resonance was taken into consideration throughly in previous 
s t u d i e s . N e x t  we will generalize our formalism to a much more complicated 
potential profile in order to represent the experimental confinement better.
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2.3 P arab o lic  P o ten tia l C onfinem ent

VVc have also solved our problem for a pcU’cibolic potential type. We have taken 
the potential form as

y{xAJ,z) = + %/) (2.57)

This would give a separable solution in the form of where (f) is Hermite
polynomial. The Fourier transform of these functions would also yield to Hermite 
polynomials. But unfortunately, the K  rnati'ix is not as simple as in the previous 
case (cylindrical infinite well confinement). Therefore, we have followed the 
same procedure described in the previous section, but evciluated our quantities 
numerically. Here we note that we have defined our length scale to,, = 
while calculciting the contact cirea. We show our results in Figure 2.3. In 
our plot, the step structure is resolved with a jump step of order IG',,, 2G'„ 
and 3G'„. This is due to the degeneracy for 2D parcdDolic potential. We note

respectively
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that the step structure is not well resolved as in the case for the infinite well 
confinement. For d — Xf I2, only the first step is resolved. For G > Go·, the 
l l̂ot resembles the Sharvin’s conductance. This is due to tunneling phenomenon 
which becomes pronounced for finite well potential. For d = Xp., oscillations 
start to appear on the plateau of conductance. Comparison of these results with 
the infinite well confinement, shows that the latter gives much better results 
compared with experiments. Therefore, while genercilizing our method to a more 
realistic potential, we will consider only infinite cylindrical wall.

2.4  N on u n iform  co n str ic tio n

2.4.1 Transfer M atrix M ethod

Eventhough in the previous section we could grasp the causes of quantization 
for conductivity, we could not get features that nicitch with the experimental 
results. Therefore, we have to generalize our Ibrrnalism to a much more realistic 
confinement, which includes the geometrical effects playing crucial roles in the 
(|uantization of conductance. In order to obtain conductance versus A curve for 
a realistic potential, we use the transfer matrix method. The underlying idea 
for the transfer matrix method is to divide the space into a number of small 
segments. Using the usual boundary mcitching technique (applied previously) at 
the interfaces between segments, the approximate solution is obtained for this 
piecewise constant potential profde. Increasing the number of segments until 
the convergence of the solution is obtained, the deviation between the exact and 
approximate solutions can be made iregligibly small.

Following the same reasoning, in our problem, we divide the nonuniform 
constriction into a large number of segments. In every segment </’„,(.?) and 
Vc{x-,y-,z) are assumed to be constant, (j)mizi) and Vc(x-,y.,Zi) at the i*'’’ segment. 
Thus, the solution for the subband wave function in this segment is the same as 
that of a uniform constriction with confining potenticil Vc{x·, y, Zi) and the zero of 
energy is shifted b}'̂  (f>,n(zi). Now we will divide the constriction into N segments
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and we would call our end points ¿Tq (at z=0) and zn (at z=d); the subbcuid wave 
functions in the interval Zj_i < z < Zi is

! / ,  z )  =  5 ; ;  ) }  ( 2 .5 8 )
nl

vvlieroi the latercil wave function in the segment is defined by the
equation

+ Vc{x,y,Zi) +

with subband energy Cniizi) and constant propagation vector

7ni(zi) --

M . x ,  y, Zi) = Cniiziyipniix, y, Zi) (2.59)

12rn
hi i r \E -  £n,(̂ .)l = A (2.60)

which is a function of segment index. Next, we have to find out the transfer 
matrix along the constriction. This is done by miitching the wave function and 
its derivative at the interfaces between the segments. To do this, we consider 
the interface at  ̂ = Zi (0 < i < N) ¿md we write our equation in intervals 
Zi- i < z < Zi and Zi < z < ^¿+i in the same form cis equcition 2.58 to get

nl  ̂ ^
= E  (2.61)

and its derivative along the z axis gives

cm r(x ,y ,z )
dz nl  ̂ ^

nl
+ 1) (2.62)

where A.t',· = Zi—Zi^i is the segment length and corresponds to 4>nt{x·, '!/■, Zi). 
The previous two equations yield to

E I  } Vi? = E  {»!:?■'’ + Ai)"‘>} vi;^" (2.6;
rd  ̂  ̂ nl
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and

nl
' nl - } d i  = E  {e!7'> -  a !;;^"} ,Ali

nl

',(0  ̂ „
(2.64)

Multiplying equations 2.63 cind 2.64 by ?/’n/ ¿uid integrating over all x and y
we get

^  = E { e !
n'V

and

f i l l  I 7̂1/  ̂ ^ n l   ̂ j T  i l l  /  ^  l ^ n ' l '  ^ n ' l '  j f ^ n l p i ' l '

nJV

where Shl'\)i, denotes the overlap of the lateral wave functions in segments i ¿uid 

i + 1 defined by

= J dxdyA{^PJ^'^iУl·n'l'{x,У,Zг+ı) (2.67)

VVe note that the lateral Wcive functions form an orthogoiicil complete set in every 
segment. However, because of the change in the contcict area, they do not luive 
such a property in different segments. Now we will write equations 2.65 and 

2.66 in a matrix form to get
= f0 ,,/r· Azr'̂ r0 (O q.

= f07n / : ( i )   ̂ z t , i + l  Z 0 + 1 ).¿r 'Â ,:0 (O _  g-tT 'Azi^(i') _  P p ĵ0 (*+l) _  ¿ (̂*+0

Therefore, the transfer matrix for the P''’ interface is

X. ¿,¿+1 1
T = -

z(i) f X7,z+1 z ( i )   ̂ ¿̂,¿+1 - (¿+1) "
g - ir  A.,: J 5- ^  p  5  p

. = (0 f,zr Azi J z{i)  ̂ z{ i+l )r s r

•fbE f Xi,i + 1 :x(0  ̂ Xfoi + l X (¿+1)
e~‘̂  - r  S  r

■fS'K ( ~i-<i+i i (»)“' x','+J ~(‘+01gU AZ. J 5. ^ p  p I

(2.69)
which connects the solution in the segment to that in the (i + 1)'̂ '' segment as

(2.70)
■ 0(0 ■ X̂,z+1 ’ 0 (‘+O '

A «
= T AO+0
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Helving found the transfer matrix which connects every two adjacent matrices, 
we can relate the constants in the first and the last segments through the relation

(2.71)
■ 0 (1) ■ x l , w ■ 0 (/v) ■

A(')
= T

A(^)

wliere
%l,N ( ^ - 1 )
T

¿=1
(2.72)

Now we will make use of the continuity of the wave function and its derivative 
at = 0 and = d; this is the Scirne ¿is a uniform constriction connected to a 
jellium reservoirs. Referring to equations 2.43 and 2.44 we get

+ r  + ( i ‘°̂  -  r  , (2.73)

and

(N) ^  ^  ^   ̂ (2.74)

and also,

(2.75)

(2.76)

Here $*(/Co) is the Fourier transform of the wave function in the first segment. 
Now we can solve the previous equations simultaneously to obtain the wave 
function in the N^'’’ segment. Therefore using equation 2.16 we calculate the 
conductivity in the constriction with vcirying crossection. in fact the solution 
of the conductivity is of the same form as 2.54, however, we need to make the

X z {N)  X̂ (AT) X X _
following trcinsformations Tnj  —> j and K  —>■ K  , while II & A will have
the following form

H = 2
x(l,N) x ( l , N )  z(N) r(N)

r p  _L r p  ^ t l  A z f i  ~ y  A z n

X ( 0 )  , r p-  r \ 1

T  4- T

(l,Af) x ( l ,N)  , = (W) zjN) '
T T 22 p21

-1 ^x(A0 '(A^)\7 ^
K  + r  (2.77)
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and

where

i iM\ -iN)yY — g*r n , (2.78)

~(M ) f ~ i M )  Z { M ) \   ̂ ( z ( M )  z { M ) \
P “ > = I k  + F  1 r  - K  1, ( w i t h M - 0 , A )  (2.79)

Before investigating our results we note tlmt using cylindriccil potenticd the 
overlap matrix of lateral wave function would have a simpler form
compcired with the general case and we get

Jo Jo s/TTWi Jl+l(Unl) y/^Wi+i Ji,+i(Un'l')
pdpdcp

^W-

\ f^  J i+l ) \ / ^  '̂ ¿̂+1 /'+1 )

“T— ------ r /  Ji Ji f « n ' / — 'j pdp ( 2 .8 0 )'d/4-i(ii„//) 7o V lOiJ V lUiJZOiWi-j-i '//+1 (rtTj;)̂ /;̂ .! (tin'/)

where we would u.se the definition to< = mm{tu/,'tOj+i} and te> =  •ma.'c{tw;,to/+i}

and

Thus

Ji urnl' =  Jl UI ^<,>- where m = n, n'. (2.81)

^nl,n 'V -

dll'

- ^ Y j  ( . r  Jl Jl
i ( u „ / ) J i + i ( u „ - / )  Jo V ■u;</ V lOy)

I  ( U  ( ) r J i { p ) J i ( ' —  —ty/tO/-|-i 'J/-)-l (tin/) J /+1 (tin'/) \  ti< J Jo \  ti< t0>

-----1-------------------- ^  i f  7̂  l)
“  ti;> n <  ( u ^ x u ^ Y  \ u >  lu·:̂  / J

lOitOi+i J/+ 
2

pdp

lulu

U <  J/ + l ( 3 t > )  tx<̂  xû  N
“ \^ u >  m > y

I o//' — > 4 ^

2.4.2 N anoindentation

(2.82)

d l l ' ^ i j l t j l  {otherwise)

In our model the nanoindentation is represented by a jellium substrate and 
jellium STM tip which has a cone angle 2o; and height 4Ay,·. We calculate the 
conductance of nanoindentation as the tip is pushed continuously towards the 
metal substrate. Here it is assumed that A increases continuously as in the
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continuum approximation to the matter, in which the excess material clue to 
the tip indenting the surface is implemented to the cylindrical neck growing at 
the contact. As a result the length d of the neck at the contact increases with 
increasing s, the distance indented in the material. In reality, d may be even 
relatively smaller since A is exj^ected to be larger near the surface. VVe have 
presented the results of our calculation for G{A) and G{s) in Figure 2.4. Note 
tliat due to the tunneling neither the jumps are steep nor the plateaus are flat 
in the G versus s curve. The important ciuestion to be addressed now is whether 
the steep jumps in experiment correspond to the quantization of G or not . Of 
course, for A ~  and d ^  Xf the electron energies in the contact are quantized 
with wide level spacings. The structure of G curves is only the manifestation 
of this phenomenon, but does not indicate the ciuantization of G itself. How 
sharp are the steps and how close are their heights to the multiples of Go (’em 
be taken as a criteria for the perfectness of the ’’quantization” and also as the 
signature for the formation of individual channels. Here we should emphasize 
tlie tact that the model used in Figure 2.4 is too idealistic. The actual contact 
shall be relatively shorter [d < Xp) and nonuniform, cind shall include severe 
structural disorder. The quantization of electronic states do not lead to the step 
structure of G. Tunneling becomes important for short d and the current carrying 
states are bcick-scattered from atomic disorders. As a result, the step structure is 
smeared out and plateaus disappear. For strong disorder (elastic mean free path 
If, < /), the chcinnel opeirings are delayed and the step structure is shadowed by 
the universal conductance fluctuations.^^ At the end, the sharp step structuixi 
is smoother and is even faded away, but the noticeable jumps of G{s) curves in 
the range of Go occur when A experiences sudden and large increase. In the 
experimental studies G is plotted with respect to s, since one cannot measure 
A precisely in the course of indentation. In reality, the dependence of A on s, 
i.e /l(s), is not a continuous function,'*“ but changes only at certain values of .s. 
Between two con.secutive abrupt chcinges of A, G would exhibit minor variation 
except changes due to the relaxation of atomic structure. Consequently, the (J 
vei'sus .s plots as presented in experimental papers generally reveal sudden and
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Figure 2.4: Conductance G versus cross section (a), and G versus displacement 
or push s (b) calculated for nanoindentation described in the inset. Dash-dotted, 
dotted and continuous lines correspond to 2a = 120°; 90° and 60°, respectively. 
Cone angle 2cv ~  60° corresponds to ci STM tip in the (111) orientation. Dashed 
line is the schematic description of the variation of G{s) upon the discontinuous 
change of the cross section while pushing. In (a), G{A) curves are up-shilted lor 
clarity.

much steeper jumps when A experiences abrupt changes; and this is represented 
by a schematic description of the variation of Gis) upon the discontinuous change 

of the cross section while pushing.



CHAPTER 2. BALLISTIC TRANSPORT THROUGH 3D QPC 42

z [X̂]

Figure 2.5: Resonant tunneling effect in the neck inducing spikes on the plateaus, 
(a) The surface profiles R{z), of the neck used in the calculations, (b) C versus 
ci'oss section A, calculated for surface profiles in (a). For A, the narrowest cross 
section is taken; and the the solid line is up-shifted by AGo for clarity in (b).

2.4.3 R esonant Tunneling

We have seen that in ballistic transport, whenever a subband energy c,a is below 
TV, it contributes to conductivity with ~  iGo or ~  2Go depending on the 
degeneracy of the subband. Now, we would think of widening the constriction at 
the center {z — d /2), therefore we would form a cavity (effective potential of which 
resembles to a quantum well) along the channel. Thus the constriction acts like a 
quantum well between two potential barriers for certain QPC  configurations.
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Such a structure leads to the foriricition of eigenstates at the center of the 
constriction which are bound to the cavity. In fact our molecular djuiarnics 
simulations and previous oneŝ *̂  indicate that connective neck can be widened 
locally in the course of stretch. While the form cind size of the local widening is 
modified in the course of the yield, a bound state may become aligned with Ejv 
temporarily. This way the necessary conditions are realized for resonant tunneling 
to occur cis in the double barrier reason ant structure (DBRT). As a result, a 
peak is formed on the plateau of the Cffs) curve before the threshold of a new 
fall. Since we do not know the actual variation of the local widening (it is too 
much e.Kperimental condition dependent), we illustrate the resonant tunneling 
effect by varying the diameter of the whole neck keeping the form (or surface 
profile) invariant in Figure 2.5-a. The calculated G vs A curves are shown in 
Figure 2.5-b. From these graphs, we note that the structure which corresponds 
to dot-dash curve merge to a plateau because it gives rise to several adjacent 
resoricUice structure; while that due to the continuous line representation (top 
curve in conductivity) is well resolved. On the other hcuid, the bottom curve, 
also reveals some resonance structure but it is hidden because it is occurring 
adjacent to the platecui.
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Y ield ing and Fracture 

M echanics o f N ano wires

3.1 M o tiv a tio n

ill the previous chapter, we have studied throughly ballistic transport in small 
structure; and we luive seen that direct generalization of the energy quantization 
|)henomenon in 2DEG  to the 3D Q.P.C. may explain some structural features of 
the conductivity such as the stair case feature with multiples of 2e^/h. However it 
fails for most of the other behaviors such as dips, subquantum steps, positive cuid 
negative slopes on the plateaus. We believe that the discrete nature of the wire 
is essential for various features observed experimentally. Therefore, a through 
analysis of the atomic structure as a function of stretch is necessary. In fact, recent 
experiments'**providing simultaneous measurements of force and conductance 
variations have shown that the observed jumps in conductance are connected 

with the sudden jumps in measured force. This phenomenon was predicted much 
earlier liy Ciraci and Tekman,*^ who proposed that the sudden changes of (J over 
tlie smooth Sharvin’s conductance originate from the discontinuous variation of 

the contact area.
d’he narrowest diameter of the nanowire prior to the break is oidy a. few angstrom 
or ~  A/7·, where discontinuous (discrete) nature of the metal dominates over its

44
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continuum description. For example, in this length scale, the level spacings 
of electrons (0.1 — leV) become easily resolved even at room temperature, 
and any change of atomic structure may lead to detectable changes in the 
related proj^erties. It becomes now clear thcit the yielding mechanisms of the 
nanowires are quite different from those of macrowires displaying bulk properties. 
'I’he unusucil plastic deformation of a connective neck under tensile stress and 
resulting discontinuous force variations were hrst predicted by Landnicin et al.A^ 
Subsequently, the mechanical properties of nanowire during pulling attracted 
interest.^ -̂'*'*

Various electronic processes, which resulted from elastic and phistic defor
mations of a nanowire are not fully understood yet and deserve further study. 
'I'lierefore we have investigated yielding and fracture mechanisms of nanowire 
which is pulled by an external agent. To understand the origin of these 
mechanisms and cibrupt force variations, we also performed cin extensive aiudysis 
of atomic structure in the course of pulling. In particular, we followed the motion 
of the neck atoms and examined their symmetries and coordination numbers 
during the abrui^t force variations. We also investigated the effect of temperature, 
initial size (neck dicirneter) and shape of the nanowire, with length increments 
used in simulation (A/). We used both embedded atom (EA)'''’~’'' and 2-body pair 
potentials,'*^ and carried out simulations based on molecular dynamics method.'*·^

3.2  M olecu lar D yn am ics S im u lation

3.2.1 Investigated  Param eters

In our simulations, we definine an interatomic potential which is responsible lor 
tlie atomic motion and cohesion. The interatomic potentials are described by 
empirical potential functions. Here we used 2-body pair potential (PP) as well 

as embedded atom model.
Concerning the PP, we used empirical many body potential energy lunction 
constructed in terms of pair potentiaP*^ interaction and it was applied to (Ju bulk
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110.76608 A 2 — -46.164783
Ai = 2.09045946 A2 = 1.49853083
ai = 0.394142248 CÍ2 = 0.20722507

D21 = 0.436092895 D22 = 0.245082238

Table 3.1: Constants used to define Pair Potential.

matcricil cind it Wci,s shown that this potential gives fee as the most stable strueture 
lor bulk Cu, as well as physieal quantities were eomparable with experimental 
ones. However, the only handi-eap of this potential is that it prediets a positive 
rehixation of interhiyer distanee at the surfaee. The potentied has the Ibrm

^  — D2l(j>2l + D22<I>22

where (j)2k{f’) = Akt~^'^ (3.1)

with values of A's, A's, a's and D's presented in table 3.1, and the energy is in 
eV and distance in A.
The other potential we used is obtained from the embedded atom model which 

is a rmuiy particle potential. In fact such potential types have been introduced 
with the work done by M.S. Daw et In this formcilism, one writes the total

energy of the system as

Et — Y^Fi{ph^i) ^  (j)ij{Rij) (3.2)

wlier<

• piî i is the host electron density at atom i due to the rernciining atoms of tlic
system defined by: pĥ i = P'jiF) is the electron density
contributed by atom j  at distance R.

• Flip) is the energy needed to embed citom i into the bexckground electron 

density p.

• (j)ij is short range (doubly screened) core-core pair repulsion between atom 
i and atom j  separated by distance Rij
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in the paper by S. M. Foiles et al., the equation for the total energy parameters 
are empirically determined lor the case where p may diverge from p̂ q (charge 
density of the bulk sample). They take the core potential as

Za {R)Zb {R)
4’ a b { D )  =

R
where Z{R) = Zo{l + ßR^)t -aR

(3.3)

(3.4)

and for Cu they take Zo = 11, a  = 1.7227, /3 — 0.1609 and p - 2.. The atomic 
electron density was computed from Hatree-Fock wave functions by

p°-{R) =  rispsiR) +  11dPd{R) (3.5)

cuid for Cu Us = 1 and nd = 10.
Once the electron densities p'j{R) and core interaction </>(72) cire both known, we 
Ccin determine F{p) uniquely because the total energy of the homogeneous f e e  

solid computed with E.A potential has to fit the simple universed function' '̂^

E{a) -  -Esubii- + ö*)e (3.6)

where 7?,,„6 is the absolute value of the sublimation energy at 0 temperature and 
pressure; and a* measure the deviation from the equilibrium lattice constant. 
Therefore, getting piR) and F{p) numerically (which was supplied by M. S. 
Daw), we can generate our i^otential and use it for our simulations.

Having discussed the potential parameters used in our simuhitions, we next 
present the different structures we have investigated. The nanowires we studied 
have two ends which are connected by a neck, and have quasi circular crossection. 
'I'lie description of the structure are summarized in Figure 3.1. Last three layers 
at both ends {Ni,N2,N 3 and N4,N 5,N q) are fixed. The position of the atoms in 
these layers are translated along the stretch direction only by the increment A/, 
otherwise they are fixed during the MD-steps. These fixed three hiyers at eacli 
end are assumed to be connected to the external agent which applies the tensile 
stress. Atoms in the following three layers adjacent to the fixed ones (Mi, M2, M3 

and M4, Mr,, Me) and those of the neck (?rl, ?г2, ?r3, n4, ??,5 and n6[if it exists]) 
are fully relaxed. We considered the ”wide-neck” (WN)  and ”thin-neck” (TN)
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PP
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PP
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Figure 3.1: Description of different structures used in the simulation.

structures. The nanowire indicated W N l  is formed from Cu(lOO) atomic layers; 
the intercitomic intercictions are treated by the EA model. The wire itself is 
represented by a periodically repeating system in the x-y plane. The ,6-axis is 
taken to be pcirallel to the axis of the nanowire. The intej-atomic interactions in 
the nanowire W N2^ in the thin nanowires T NI  and TN2  are treated l)y pair- 
potentials. We have also investigated a nanowire having Cu(l l l )  orientcition 
surface with EAM in WN3  ¿it T  = 300/i. Hciving seen that both potenticils, 
embedded atom potential ¿ind pair potentiell reveciled the seirne generell features, 
we used peiir-potenticils (which is relatively faster) to explore Veirious effects.
Tlie pulling (stretch) is reeilized by displacing the fixed Iciyers (Â ’s) from one end 
by A/ or from both ends (for TN2  only). Subsequently, the atoms of the wires 

(yV/’s eind rPs) eire relaxed to find their new positions.

3.2.2 M olecular D ynam ics M ethod

In our MI) sirnulcitions, we were pulling top fixed atoms (A^l, N 2 and N-i) by 
a. distcuice A/ = 0.1 A and then relaxing ail the atoms at the neck, M's and

n's. The relaxing phenomenon is proceeded by solving Newton’s equation of
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motion for every atom after finding out its interaction potential with the rest 
of the system either with PP or EA. Here we used cut-off radius (Re) lOA for 
PP and 4..5A for EA. These Rc values were chosen by convergence tests. During 
the relaxation process, we took very short time steps At  ~  Di/lOO ~  10“ '̂̂ .s to 
integrate Newton’s equation. In such a short time interval, we can assume that 
the force exerted on every atom is constant and we get

VUtf) =  Vk(L) + ^ ^ { t f - L )rn

+ Vk(ti){tf — ti) + n(<·')
2m (tf ti) (3.7)

where the subscript k denotes the k̂''· atom in the system, tf cUid ti denote 
the final and initial times respectively, with At = tf — ti, is the integration 
time step; / '’(/¿) is the force exerted on the citom at the initial time; and A’, V 
correspond to the position and velocity of the atom at the corresponding times, 
respectively. In these simulations, we are neglecting all scattering phenomena in 
the system; to avoid divergence of kinetic energy of moving atoms, we resccile 
it to 3NkBT/2  every two steps. Here N  is the number of moving atoms, kjj is 
Boltzmann constcint and T is the temperature. We integrate Newton’s equation 
( 3.7) over large number of time steps until convergence is reached. Convergence 
criteria is tested by removing the rescaling process and checking that the kinetic 
energy is roughly constant after many steps (~ 1000); this suggests that the 
a.torns have been trapped at a local minimum and we are reiidy for the next step 
for pulling. The appropriate time step for integration At  and the toted number of 
integration steps can only be investigated through tests, because it may change 
from one system to another. In table 3.2 we present the corresponding parameters

WIRE At ^  of steps civer aging
WNl 0.1x101*̂ 6· 25000 8333
WN2 0.9x101^ 6000 2000
WN3 0.5x101^ 7000 2333
TN 0.9x101^ 8000 2000

Table 3.2: Description of different parcimeters used for systems relaxation.
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Figure 3.2: Interaction force between the toj) three layers (N1, N2  cind N3)  cuicl 
the l ost of the system.

used for relaxation.
In order to ccilculate any physical quantity (such as force exerted on some atoms), 
we hcive to use civeraging procedure during our computation. Here, we note that 
our time scale is very short compared to the experimental time scale. For this 
reason, we take an average value over a large number of time steps (~  1/3 of the 
relcixing time interval) occurring towards the end of relaxation while measuring 
physical quantities. In table 3.2 we give the corresiDonding numbers for averaging.

3.3 R esu lts  and D iscu ssio n

3.3.1 N anow ire W N l

We examine first the elongation and various physical events during the stretch 
of the nanowire, W N l  a,t T -  300A". Simuhitions are performed by using EA 
potential. In Figure 3.2, we illustrate the variation of ( The interaction force 
of the top 3 fixed layers Wl, N2 and N3 with the rest of the system) as a function
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Figure 3.3: Side view of the neck atoms at some specific stretch increments mAi.

of stretch mA/ (?n, being an integer multiples of increment). Figure 3.3, shows 
the side view of atomic structure at the neck at some specific stretch increments. 
The /'l(m) curve shown in Figure 3.2 displays interesting features tlmt are worth
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to be mentioned and discussed. The magnitude of the average force increases 
“smoothly” with increasing rn between two consecutive jumps, but it decreases at 
ecich jump. The graphical representation indicates that a jump occurs whenever 
approximately 18 increments of stretch are made. This value (which is ~  1.8/1) 
corresponds to the interlayer spacing of c = a/2 == 1.81. Stated differently, the 
tensile force makes a sudden jump  whenever the length I of the nanowire is 
elongated by approximately an interlayer distance. The jump of I‘\{m) starts as 
tlie citomic structure of the neck becomes irregular, and hxsts until a new layer 
with relatively smaller crossection is generated. We now examine various physiccil 
phenomena in detail.
As we cire i^ulling the top 3 layers and relaxing the neck atoms, the layer structure 
becomes stable and it can be very well distinguished up to rn ~  18 (We could 
observe only migration of few atoms from the neck to form horn like structure 
with 8 atoms at the center). After this point, at m = 19 (the last increment before 
the jump in Fzirn)), the layer structure is destroyed and becomes amorphous (as 
shown for m = 20 in Figure 3.3). The layer structure is recovered after a lew 
increments, at rn = 24 with the creation of a new layer. At the end of this 
trcuisformation, the crossection of the neck is reduced from 8 citorns to 5 atoms, 
whereas the crossections of neck layers adjacent to the end layers (?7,1 and n5) arc 
not altered. The focal reduction of the crossection due to stretching causes |f'l| 
to reduce, and hence the outer layer spacings between M3 cuid n l (and similar 
spacing at the other end) to decrease.
The layer structure of the neck is conserved in further stretch until rn = 33. 
Beyond thcit point, each increment of stretch by A/ causes one atom Irorn the 
central layer to migrate and stay in the interlayer spacing which alreiidy became 
wide open due to pulling from m = 25 to m = 33. This Wciy a new ’’layer” with 2 
atoms is formed at rn - 35 as shown in Figure 3.3. Owing to the repulsive force 
induced between layers, IF'̂ I decreases abruptly. Moreover, the crossection of 
the connective neck is further reduced with central layers including 5,2,3 atoms, 
respectively. In the steps from m — 35 to m = 38, we note a transient event 
which is relevant for transport properties: One of the two atoms in the neck layer
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crea.ted cit m =  35, jumps back to the layer it emerges (Figure 3.3) at m = 37. 
During the following increment, the single atom neck is strength by the inclusion 
of one atom from another layer so that the necking becomes uniform by the hiyers 
including 4,2,4 atom at the central part of the neck. Due to this exchange of one 
atom, the conductance is expected to get a dip, which in fact has been observed. 
The two-atom neck is very stable and it continues until the break, at rn = 52. 
Towards the end of the pulling, starting from m = 44, two atoms rotcxte in the 
x — y and become slightly inclined in the z-direction {m = 49). Such a fluctuation 
in configui'cition, is expected to give rise to changes in the conductance just before 
the break. To understand this process better, we will come back to this point 
while we are studying lateral configuration. Finally we note tlnit the narrowest 
crossection of the neck prior to the break is having two atoms.
These results point to the fact that the structural transformations followed by 
the abrupt change of \F\\ result in necking; an additioncd layer is formed and 
the narrowest crossection decreases usually by more thcin one atom. In addition 
to these abrupt changes, we find another mechanism in necking which gives rise 
to relatively smaller changes in crossection (by one atom) and it corresponds to 
atoms migTcition from the neck towards M3 and M4.
Having discussed the structural transformations within atomic layers, which 
are apparently non-planar and exhibit smooth distribution along the z axis, 
we investigate structural changes in the lateral phine. In our study, we have 
found that up to m = 12, the Cu(lOO) structure in the neck was having very 
small and random deformation (the displacements of atoms cire less than 10% 
and no preferable dii’ection is detected, especially those atoms without surface 
interaction) is detected as shown in Figure 3.4. However, surface atoms of the 
neck were having a slight tendency to iriove towards the center of the neck, this 
is due to the minimization of surface energy. Beyond this stretch point, the 
neck atoms start to build up a structure which deviates from A-B sequence of 
Cu(lOO) cuid this deformation starts earlier at the neck center (n2,«3 ’'"i)
777, = 15. In fact, this discrepancy includes two aspects, the interatomic separation 
distcuice has slightly increased (domiruint mainly for the central layer) and the 2D
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Figure 3.4: Lateral atomic structure in the neck cit different stretch increments 
defined by the corresponding m Vcilues. In panel (a), we show the top 4 hiyers 
(M 3,72I , '/¿2 and ?r3) and in panel (6) we show bottom layers starting from 71̂ 4 
until ?r4.
In (a) we denote M3,7гl,7г2 and 7?.3 by plus sign, circle  ̂diamond and down triangle^ 
respectively. In {h) we follow the same sequence for the bottom neck layers starting 
from 7V/4 until 7гЗ.

square unit cell trcinsforms to a hexagonal one; ¿is shown in Figure 3.4. Following 
these changes, at 772 = 18 ¿ill the neck ¿itorns luive been ¿vffected by elongation 
of the neck, and they undergo the structur¿ıl transformation which Inis occurred 
previously ¿it 772 = 15 for central neck atoms. After the jump in the force |Fl|, 
which corresponds to the birth of a new layer  ̂at rn ~  24, Cu(lOO) layer structure 
luis been recovered at the end layers of the neck (771,772 ¿ind 775, 77g), while atoms at 
the central part of the neck ¿irid at the surface still deviate from the origiiml bulk 
structure ¿IS shown in Figure 3.4. This mismatch with the Cu(lOO) structure 
at the center of the neck is due to the additional one hiyer (number of hiyers 
produced is odd) introduced, ¿ind as a result it becomes impossible to follow A-B 
sequence of the Cu(lOO) and match this t}q3e of hiyer structure with the bulk

^we would enumercite the neck hiyers by n i, 772...77g
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Figure 3.5: Latercil structure at m = 33 and m = 35. It is obvious how the lateral 
structure is destroyed before the jump in Fz{m) (at m = 33) and recovered after 
a new layer is formed (m = 35). Now the number of layers introduced is two.
Tlie layer structure presentation is the same as in the previous Figure and only for 
rn = .‘]5 we use square symbol to denote the new layer at neck center.

layers (M3 and M4). Therefore, at m = 24, eventhough the 2D scpiare unit cell 
is likely to be recovered at the central part of the neck, atoms move laterally to 
withstand this mismatch. We note that this deformation occurs rnaiidy iit the 
center of the neck, because here, bulk influence is minimum.
Upon further stretch, layer structure, which is less stable compared to 
configuration before the force jump, has been lost again at rn = 33 and then 
immediately recovered at m = 35, also with the recovery of the original Cu(lOO) 
secjuence as shown in Figure 3.5. The new layer structure is asymmetric as 
mentioned above, and with further migration of atoms, a more stable structure 
is built at rn = 38. In this configuration we are having only two atoms at the 
central neck layer and they are not enough to define layer structure. In fact we 
have noticed while all the other neck atoms keep the Cu(lOO) structure, these 
ones undergo some lateral displacement that may be worth for investigation. In 
Figure 3.6, we show the lateral positions of only the central layers of the neck (n3.
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Figure 3.6: Lateral structure of neck central region to observe the bundle 
formation before the break of the neck.
We present layers n5, n4 and n3 by plus sign, circle and dianmond, respectively.

'/7.4 and ?7.5), from the m = 43 up to m = 51 (just before structure break). Here we 
note that except at point m = 50, the structure is tending to form tiuo bundles. 
Sta.tcd diflerently, the two atoms in layer /74(represented by circle in Figure 3.6) 
tend to cdign themselves with atoms in the layers above and below them(?73 and 
/75). The bundles form (atom alignment) is improving as a function of pulling. 
In fact this type of lateral motion may help us to understand the positive slope 
observed experimentally just before the break of neck (Figures 1.5 and 1.6). As 
we are pulling neck atoms at the smallest contact area align themselves to form 
a VD chain structure which result in maximum conductivity.
'Fhe oidy handi-cap of this explanation is what we are observing at step m = 50, 
and in this configuration structure deviates from the bundle form. We think that 
tins can be due to thermal fluctuations and this problem can ordy be resolved l̂ y 
taking a large number of averaging after relaxation of the system is reached.
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Figure 3.7: Interciction force between the top three lciyers(A71,7V2 cind Â 3) cind 
the rest of the the system for W N 2 .

3.3.2 N anowire W N 2

We will examine the simulation on the previous structure with PP while keeping 
all other conditions (A/ = O.lA, T = 300/’i); this corresponds to W N 2 

simulations. The force, Fz{rn) versus stretch plot is shown in Figure 3.7. This 
curve exhibits some fluctuations and abrupt jumps at m = 11, rn = 30 and 
m. = 49, corresponding to increments of length close to the interlayer spcicing 
of Cu(lOO) structure (except for the first jump). We note that these results 
are qualitcitively the same as those obtained in Figure 3.2 using EA potenticd. 
As a result we would expect similar citomic transformations in the structure. 
Investigation of the nanowire show that the abrupt jumps in the Fz(rn) curve yield 
to an additional layer at the neck with smaller crossection. This phenomenon 
is illustrated in Figure 3.8, in which we Ccin see how the structure becomes
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Figure 3.8: Side view of the neck atoms at some specific stretch increments rnAl 
for WN2.

amorphous and is recovered with an additional layer at the neck. In the new 
configui’cition, the crossection of neck center is decreased. However, the structural 
changes in W N2 are not exactly as those for W N 1 . For example, cit the starting of 
the simulation in WN2, one neck layer has disappeared. This is due to the larger 
interlayer separation distance favored by the PP near the surface, as mentioned 
previously. The missing of this layer has altered the lateral layer structure which 
deviates from Cu(lOO) structure. After recovering this layer, at rn — 11, the 
lateral structure has also been recovered and it became stable (the registry of the 
lateral structure is kept up to m = 23). Another important difference relative to 
W N1 , is occurring towards break of the neck. In W N2 system, only one atom
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exits at the neck before the brecik. Of course, this suggests that the crossection 
of the neck is smaller than in W N 1 cind ¿is a result the conductivity for the hist 
platOfiu (just before break) would be smellier by a lactor ~  50%. 'riiis Cein be the 
recison why in some exi^eriments we see a conductivity of ~  Go while in others 

2Go in the hist phiteau.
Next we concentrcite on the structure just before the breeik of the neck. At 
stretch increment rn = 48, one atom enters into the center of the neck and we 
get centred layers configurcition n3,nA ¿ind ri5 with 6,1 ¿met 3 atoms, respectively. 
This configuration is very stable and it continues until the neck is broken, ¿it 
ni ~  59. During this stretching sequence, neck atoms in layers ?rl,'u2, n3, nfi ¿ind 
77.7 ¿ire in registry with the Cu(lOO) structure. However, ¿itoms ¿it the centriil 
region of the neck, ?74 and n5 perform some lateral fluctuations due to minute 
bulk effects and the sm¿ıll number of phimir atoms which c¿ınnot define hiyer 
structure. In Figure .3.9, we show atomic i^ositions in the hiyers n'3,n4 ¿ind ri5 lor 
various stretch increments before the neck breaks. At the beginning of stretch 
increments, from m = 50 to m = 55, the centrril ¿itom ( represented by a circle 
in the Figure), tends to have a hallow site configuration. Within further stretch, 
st¿ırting from m  = 56, this ¿itom ch¿ınges its configur¿ıtion to the top site ¿ind 
a bundle structure is formed ¿it the center of the neck. Unlike minowire W N 1 , 
where the two central ¿itorris migrrite from the neck center to the bulk ; the oiui 
¿itom configuration in this structure seems to be quite st¿ıble. The atom keeps its 
position even ¿ifter the neck is broken. Therefore it seems that Cu atom between 
two shibs with sepiiration distcince ¿ıpproxim¿ıtely eqiuil to interhiyer sp¿ıcing, 
prefers the hallow site and it is quite stable. Within further pull (or incre¿ıse of 
sep¿ır¿ıtion dist¿ınce of the slabs), the binding energy incre¿ıses ¿ind at a cert¿ıin 
separation distance, the top site become InvorTible (with lower energy). In ['¿ict 
some c¿ılcul¿ıtions were performed previously on Al(OOl) slab ¿ind tip (only one 
¿itom ¿it ¿ipex) with self-consistent-field calcuhitions (SCF).^° The results showed 
that for a sepiiration dist¿ınce between the slab ¿ind tip (~  interhiyer sp¿ıcing), the 
hallow site is f¿ıvor¿ıble ¿ind stable. However, ¿is the separ¿ıtion distcince incre¿ıses, 
the binding energy ¿ilso increases and after ¿i pull ~  0.5% the top site becomes
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Figure 3.9: Lateral structure of neck central region towards the break of the neck 
We present layers -«3, n4 and n3 by plus sign, circle and diamnond, respectively.

favorable. Eventhough, these SCF calculations were made on a different material, 
we think that it can explain well the configuration that is occurring in our system 
before the neck breaks.

3.3.3 Nanow ires T N

We hcive shown previously that qiuditative features in the atomic fracture is the 
same for EA and PP. Therefore, in order to investigate other parameters, we 
liave decided to use PP which requires shorter computer time. We have initially 
investigated the structure effect. We have made our MD simulations on nanowire
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7'yVl (which is much smaller than the previous ones) at 3007i". The gcnerciJ 
features, were the same cis those of wire W N2. Initially, the wire was relaxed to 
give 4 Iciyers at the neck. The first two jumps in the force curve correspond to 
the amorphisity in the system followed by the formation of a new layer at the 
neck center with smaller crossection. The third juinjD was related to the break 
of the neck. The configuration of the central region of the neck before it breaks 
wcis composed by 4 layers having atoms 7,1,2 cuid 7. This configuration was very 
stable, it has survived for 10 stretches. Firicilly we note that there were only two 
layers introduced at the neck; this is due to the small number of atoms at the 
crossection of the neck.

We have also investigated the effect of stretch increment on the nanowire 
TN2. In order to decrease simulation time, we luive decided to stretch our 
sample from both sides by increments A/. We hcive investigated three different 
increments A/ — 0.05A (which corresponds to stretch of 0.1 A from one side), 
0.1 A and O.löA. The force curve for the first two vcilues of A/ (O.OöA and 0.1 A) 
gave nearly the same results. The jump in the curve was corresponding to tlie 
formation of a new hiyer cifter a stretch length ~  1.9A, and the neck has broken 
aftei· stretch of ~  3.6A (Total length in both directions) for both stretching 
increments. However, for the last increment length scale. A/ = 0.15, no jump 
in tlie curve was observed and no layer was produced. The force curve was 
varying smoothly in a parabolic shape until the nanowire breaks at early stage 
from the neck center. From these results, we understand that there exists a 
limit for the stretch increment Al  ~  0.1 A from both ends. This corresponds 
to th(î maximum tensile force (or max speed of withdrawing a tip from sample) 
above which neck breaks before showing any layer structure variation. In all our 
previous simulations, we were using an increment Al = O.lA from only one edge. 
This suggests that our results, the ccilculations we draw there form are reliable.

Finally we have investigated the elfect of temperature on small systems while 
pulling them. Therefore we have made simuhitions at IK  for structure T N 2 with 
stretching length of Al = O.lA. We have allowed this structure to relax for a 
longer time (24000 steps) because of its small kinetic energy. In Figure 3.10, we
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Figure 3.10: Force versus stretch increment niAl for nanowire l 'N 2 , with 
stretching length increment A/ = 0.1 A from both ends and Temperature 300/\ 
(a), and IK  (b).

show the force versus stretch for TN2  nanowire at T = 3007i and 'T = I K . d'he 
first striking phenomenon is that thermal fluctuations have diminished completely 
in the plot obtained at T — IK. The step structure in this curve is much 
sharper than the one corresponding to T — 300A". We also note that subsequent 
jumps in the force curve occur at a large stretch interval for 1/i calculations 
them that at 300/’i. This has induced a stronger attractive force. While we 
are investigating the atomic structure of these systems we have noticed that at 
7' = lA", structure stays amorphous nearly all the way before inducing the first 
layer. This discrepcincy can be explained by the fact that at low T, the kinetic 
energy is smcdl enough that citoms are trapped easily in local minima energies. 
'Therefore, larger stretching distance is required in order to separate atoms from
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Figure 3.11: Force versus Stretch increment niAl for nanowire W N3 at 
7’ = .300 /1.

each other and increase the force of attraction between them so thcit they can 
move from one local minimum to another.

3.3.4 N anowires T̂ Â 3

Finally we Inwe investigated nanowire W N3 . This correspond to a “wide-neck” 
C u (lll)  structure. This neck may show interesting features because it is known 
to be more stable compared with Cu(lOO) structure. We made our simulation for 
kFÂ 3 at temperature T = 300K. We present our force plot IA(m.) (lor ITyV3) 
in Figure 3.10. Investigation of this plot, shows that the fluctuations in tlie force 
is minimized compared to the graphs for W N l  and W N2 structures. In this 
curve, we can recognize 4 jumps corresponding to rn = 18, ni = 36, rn = 43
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and m  ~  58 which correspond to the neck break. We note that the first two 
jumps correspond to subsequent stretches of the order of interlayer spacing in 
(Ju(lOO) ~  1.8Л, but not in C u (lll)~  2 .1A, while the third one corresponds to 
a stretch ~  О.бЛ. From our previous analysis we conclude that it is very difficult 
to have any new layer formed during the third jump. After investigation of the 
side view, we understand that the first two jumps correspond to to formation of 
a new layer with smaller crossection ( with 6 and 3 atoms ) after amorphisity hiis 
occurred. However, the structure of the central region of the neck seems to be 
very unstable after the 2’“  ̂ layer is introduced. From ??i = 37 up to rn 41, the 
layer structure in the central four' layers has smeared out and we had to wait 
up to m · 42 in Oder to recover the structure with the same number of hvyers as 
in 777. =: 36. Therefore, the third jrmip is just a sign of recovering hiyer structure 
with neck layers having atoms 5,3,3 and 7. This configuration also seems to be 
unstable, because there was a bouncing between the configuration with 3 atoms 
at the central layer and the one with only two atoms as a function of stretch until 
■ni = 53. After this point, the neck central region became curiorphous and the 
neck was broken after few steps.
From the above discussion, we conclude that after stretch of ~  3.6Л, layer 
structure is not well defined at the central region. On the other hand, it is 
very stcible at the 2 layers adjacent to M  structure. This would suggest that the 
reason for the amorphisity in the central region is the diminishing of any bulk 
property which Ccin keep the structure stable as a function of stretch. However, 
one may raise the point that we have already stretched the structure W N I lor 

5.5A cuid we have not seen this property. In fact, eventhough this point 
seems quite reasonable, we should emphasize that the original neck length lor 
IT A3 nanowire is 6 C u (lll) layers. In the nanowire, W N l ,  we were using 
only 5 layers of Cu(lOO). This would yield to an increcise of ~  3.7/1 in the 
W A3 nanowire neck length which would result in a less bulk effect at the neck 
central region, and this is the reason for the amorphisity in the system. After 
this analysis, we have investigated the lateral structure in the layers once they 
occur. During the stretching process, the lateral atomic positions in every layer
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formed cl hexagonal shape or a portion of it. This Wcis the original configuration 
given. Even the intercitornic separation distcince has increcised slightly whenever 
atoms feel surface effect. In fact this hexagonal shape has already been observed 
in Cu(lOO) structure when the interlayer separation distance has increfised. To 
understcuid this process better, we have made two different simulations. The first 
one containing 5(Ju atoms and the second one having 7Cu atoms; and they were 
constrained to move on a plane. After convergence was reached, the 5(Ju atom 
system has formed a portion of a hexagon while the 7 atom shape was a conijalete 
one. The intercifornic sepai’cition distance was in the range of the nearest neighbor 
distance in Cu bulk material. It Wcis in the range of ~  2.4 — 2.9A. This result 
shows that tlnit C u (lll) layer structure is the stable one. However, investigation 
of the Iciyer positioning with respect to each other has shown that A — B — C 
sequence is very fragile in the presence of surface effects. We have noticed that 
initial relaxation of the system was enough to destroy the closed pcicked form. In 
tact the hallow site configuration was the most preferable one, but it was made 
in a complete disorder. Due to this disorder in the layer positioning sequence, 
we expect some also variation in the interlayer distance ( We expect it less than 
the original one since this configuration is similar to Cu(lOO)one). This would of 
course lead to a new layer induction even at early stage.
Now we would compare the early results obtained for nanowire W N 1 and these 
ones. We conclude that the layer structure in C u (lll) is much more stal)le. 
However, due to surface effects, the layer sequence in these structures is very 
fragile and it seems that sequences obtained in Cu(lOO) are much more stable. 
However we note that the transition process for decreasing the contact area is 
rcuidom. This change can be even up to three atoms. It is also worth to note 
that, atom migration can also be important in decreasing the contact area but it 
has a minor effect on physical quantities because it occurs at wide crossections 
and it corresponds to atoms at the surface.
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Self-C onsistent-F ield  
P seudopotentia l C alculations

'I'lie electronic and atomic processes in nanowires hcwe l)een treated in the 
]rrevions chapters )>y using certain models and approximate methods. To confirm 
tlic results obtciined from these studies and to examine certain fea.tures we need 
to ca.rry out ab - initio calculations. For excunple, to better understand the 
conduction in an infinite atomic chain, we performed structure optimization by 
using total energy minimization, and carried out electronic structure as well as 
charge density calculations on various atomic chains formed from certain metal 
and semiconductor atoms. The ab - initio potential V{r) was cilso of interest, to 
fit the potential in equation 2.23. To investigate the variation of this potential 
and compare with the infinite wall cylindrical potential, we cilso ccdcuhited V{r) 
in atomic neck self-consistently. We also calculated the yield strength of atomic 
chain to understand the origin behind the obsreved yield strength.'"·''* 'rhe 
results of all these ab - initio calculations are combined to construct our theory 
on the electronic and atomic processes in nanowires.

We performed self consistent-field (SCF) pseudopotential calculations in the 
momentum space within local density approximation. We used nonlocal, norm 
conserving pseudopotenticil given by Bachelet et. al.}^ The exchange-correlation 
|)otential is expressed by Wigner form, in many calculations, the atomic
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Figure 4.1: Band structure for an optimized one dimensional chain of AI (a), 
and Na(b) along A:,, with and ky set to zero. The horizontal lines show tlu' 
corresponding Fermi levels.

stnictnre is optimized to have minimum total energy. In the calculations tin; self- 
consistency iterations are continued until rnecin-squcire difference between two 
consecutive iterations is smaller than By. In the band energy and charge 
density calculations the A;—sampling is selected to yield convergent results. For 
A1 and Na. we used the kinetic energy cut-off |A: + < 1 .hliy.
VVe computed first the total energy of the bulk A1 and Na, to calculate the energies 
relative to the bulk values. We carried out calculations on the infinite A1 and Na 
atomic chciins with and without Pierls distortion, A1 and Na. neck having single 
atom, bulk and iicinowire Young modulus.
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ky = 0 and kz = 0-2. (a) for the second and the third band due to degeneracy, 
while (b) for the first band. Here the plot is along x — z plane at y - 0, and tlie 
line with X =  5 corresponds to the chain.

In Figure 4.1, the electronic band structure of the A1 and Na chains are shown. 
'I'he binding energy of the Al-chain relative to A1 bulk is 0.172ii?//atom. From 
this result we understand that the Al-chain yields positive binding energy (or 
cohesion) which is slightly smaller than the bulk cohesion. The binding in Al- 
chain occurs by the cr—bond between 3p^-|-3s orbitals aligned along the chain axis. 
The ‘Ipx cuid ‘ipy orbitals attribute to the cohesion by relatively weaker 7r-bonds. 
The widths of the ‘ispa  and 3p7r-bands are ~  QARy and ~  0.2Ry, respectively. 
The 3y97T-band is degeneixite and crosses the Fermi level. In Figure 4.2 we show 
the results for charge density distribution for state k^ — k,, - 0. and k. = 0.2
and on the x -  z plane with ?/ = 0. The first contour plot (a), correspond to the
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state with n = 2 as well as the state with n = 3. This is due to the degenerac,y 
in the 3p7T-bands. In (b), we show the plots for n — 1. Analysis of these graphs 
indicates that the probability of the density of stiite with n = 1 is by a factor of 
3 less than the one corresponding to state n = 2 and n = 3. Moreover, this state 
is nearly localized in the region intermediate between the two atoms whereas the 
others are extended along the cliciin direction. Due to these properties of states 
n = 2 and n — 3; we conclude that in ID A1 systems, 2 clumnels open for current 
carrying states and the conductivity would be ~  2 x 2e^//i whenever a small 
potential difference is a23plied between the ends.
We have also investigated Pierls distortion along the 2; — axis for Al structures 
and they have resulted in a much more stable structure tlmn the ID chain. 
However its binding energy was still less than the bulk Al cohesive energy as 
it is expected. We have investigated band structure along this system and its 
clia.rge density distribution. The results were qualitatively the same as for the 
ca,se of ID chciin. In fact, such a result is not sur]:)rising beccUise such a. distortion 
does not destroy the symmetry for ‘ipx and -ipy in the system and as a result the 
3p7T-bonding is still degenerevte.
'I'he Na-chain has only one band which crosses the Fermi level and it is half- 
filled. This band is mainly due to the bonding contribution of Na 3s orbitals. 
After investigciting charge density distribution of this state on the x — z plane 
we found thcit it is a conducting state in the ,ir — direction. Therefore, this band 
contributes to one quantum conductance to the conduction along the chain. From 
these results we conclude that electronic properties of atoms at the contact play 
crucial roles in the conductance calculations. If these two problems were treated 
within free electron model they would apparently lead to the same result. In 
these tre£i.tments only the potential V{r) is taken into consideration which was 
appcirently the siiine for both of them. This potential contour plot was also 
investigated and it can be approximated well with an infinite wall cylindrical 

potential.
Following this study which hci.s shown the importance of electronic structure, 

we were motivcited to study some electronic characteristics of neck structures



CHAPTER 4. SCF PSEUDOPOTENTIAL CALCULATIONS 70

0.50

0.45 • · t i
t ·

* .

S t S S s i f S t * * 5 î : : !
o>
â>
£Z

0.40

t t * t  :
t ·

0.35

* :  .  .

• · · .  • · t  ·

0.30
0.00 0.10

k ///a^ 7
0.20

Figure 4.3: Energy band structure for Al neck along the while = ky = 0. 
'I'he Ijands arc drawn from n = 39 until n = 49.

using SCF calculations. We have initially simulated one Al atom between two 
slabs. In this model we are representing the slabs by three layers of Al(lOO) 
surfaces. Each layer is composed of 9 atoms and the system is periodic in 'ID. 
We are in fact aware that this periodicity ma.y include some artificial effect on 
the wcive function solution. We are now still at the first steps tor investigating 
this problem and we are increasing the dimensions for consistent results. After 
reaching convergence, we calculated the band structure cxlong k  ̂ direction wliile 
A,. = ky = 0.. These results are shown in Figure 4.3. In this figure there 
are many states that are crossing the Fermi level. At a first glance, one may 
think that our system is resulting in many conducting states and would lead 
a higher conductivity compared to Al-chain. Investigation of the probability
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l'’igure 4.4: Probability density distribution of the 41*̂  band and corres 
to k·. = 0.05 state.

ng

density distribution of these states on the x — z plane Ims shown that there is 
only one conducting state. The probability density for this sta.te is shown in 
Pigurc! 4.4. From these results, we recognize tlmt the structure transformation 
lea.ds to a different type of bonding and this ma.y affect the result lor conductivity 
calculcition.

Finally, we wanted to investigate the yield strength in the ID iicinowires and 
compare it to the experimental value. In order to do this, we obtained the 
total energy of the system cis a function of displacement of A1 atoms from their 
equilibrium distcince. This showed that for a small displacement ~  0.5/1, it is 
easy to make a parabolic fit, from which we deduced the spring constant of the 
ID chain. Now we can calcuhite the Young’s rnodelus defined by

stress LyA (4.1)
strain AL j L

Now treating the force as the spring constant multiplied by the stretch increment, 
we found Young’s modelus cis 263.336’Pa which is a value of four  orders of 
magnitude larger compared to the average value lor bulk Al. This shows tliat the
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nock structure is very stable and resists any stretch before it breaks.
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C onclusion

In this work we investigate electronic and atomic properties of nanowires 
a.ncl atomic chciins to understand electronic transport cind fracture yielding 
mechcinisms. Our aim is to develop a theory which resolve the dispute on the 
“(|uantization” of conductance in connective necks. We have based our study on 
experimental results taken by STM and MCB.J. In these w o r k s , c o n d u c t a n c e  
Cl is measured as a function of separation between two samples forming a neck. 
These results have revealed a step structure shape in G versus s cuves, Imving step 
heights usually at multiples of CJo — 2e'^jh. However, the G versus stretch curve 
were not fully reproducible. Sometimes, they have small slopes (positive; lor the' 
last plateau and negative at the intermediate stages). Moreover, we have noticed 
that at some circumstances dipping phenomenon occurs before formation of a 
new plateau (with smaller conductance). In view of those experimental results, 
it is concluded thcit the conductcuice is cpiantized in n a n o w i r e s . . I t  was also 
thought that treating these necks with free electron model in the ballistic regime 
would fully explciin these results. In fact this type of approach is a. generalization 
of conductance quantization phenomenon observed in 2DEG. In this type of 
analysis, every energy eigenstate which dips below the Fermi level opens a new 
channel giving conductance ~  2e^¡h. We have applied this type of Ibrmalism by 
solving Shrodinger equcition in all space (treating the samples at the left hand side 
and right hand side with jelliurn approximation). After finding the wave function.
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wc have calculated the current passing through the constriction if a very small 
chemical potential difference A/J, is applied between the left and right electrodes. 
Tlien we have calculated the conductance as a function of crossection of the 
constriction. These calculations were carried out by cipproximating the potentials 
with circular symmetry, which comprise both infinite cylindrical potential well 
a.nd pcU’cibolic potential. Some qualitative features were obtained while comparing 
these results with experimental ones; at least the step structure has appeared. 
However, all other experimental features were absent. Therefore, we generalized 
our method to a much more realistic potential and we nicide simulation of pushing 
a tip into a jelliurn slab. The results were cdso featuring ordy few aspect of 
the experimented data and steps were not very sharp when G versus .s curve 
was plotted. This hcis made us convinced that treciting the problem within 
the free electron model does not include all aspects of the experiments, cuid 
probably investigating the idea that relates the variation of conductcuice to atomic 
rea.rrangernent may lead to better results.

To investigate the atomic rearrangement, we have simulated different neck 
structures with Molecular Dynamics method for different parameters, such as size 
temperature, stretch speed etc. The general results obtained were qiuilitatively 
the same; and in the following part we present the most interesting aspects 
obtained and relate them to experimental results.

• As a function of pulling, the neck conserve its atomic structure for a long 
time. Once the length of the stretch becomes cipproximately equal to the 
interlayer spacing a new layer with smaller crossection is induced at the 
center of the neck. This change occurs at a very short time scale and it is 
followed by a similar sequence until the next layer is lorrned.

• Every change in crossection corresponds to an abrupt jump in the attractive 
force between the top fixed layers and the rest of the system (tips and 
sample). This is in agreement with recent experiments which measure the 
variation of conductance and force simultaneously.

• The theoretical results together with the recent experimental results
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show that the change in conductance measurement is due to atomic 
rearrangement; as the new layer with smaller crossection is ibrrned, the 
conductivity drops to a lower plateau.

• The chcuige in the contact area is not constant, therefore the step height in 
the conductivity may change and it is dependent partly on the conditions 
of the experiment and partly chaotic.

• After a new layer is formed, we have noticed that number of atoms contained 
in this layer mciy increase. This may result in variation of G in the same 
plateau.

• Atoms which are occurring cit the neck surface migrate; this would also 
cliange the conductivity slightly and may result in a negative slope in the 
plateau of conductivity.

• Our simulation showed that in the last configuration, we may ha.ve one or 
tiuo or even three atoms before the neck breaks. Therefore it is becoming 
very difficnlt to talk about any universcdity for these problems.

• In our simulation a bundle form appears just before the neck breaks. 'I'his 
bundle slicipe is improving as a function of neck stretch and this would 
result in a positive slope for the last plateau of conductivity.

In addition to this work, we have also nicide some ah - initio calculations to 
investigate the electronic and atomic structure of nanowires and atomic chain. 
These have shown that in small scale structures where the energy of states become 
discrete, electronic structure play a crucial role in conductivity calculations. For 
example Na ID chain contributes to a conductivity ~  ‘le^jh  while that of Al 
contributes ~  4e^//i. Furthermore, the atomic structure at the neck and its 
crossection to the rest of the electrodes are crucial in the reseting of electronic 
structure cuid transport properties. This implies that a realistic solution of 
the problem has to consider the full atomic structure together with the true 
connection to the reservoirs.
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Firicilly, we cilso predicted that an atom chain has a Young modulus much larger 
tJian the ):)ulk value. Therefore, we believe tlmt ci good understanding of the 
problem requires treating all three phenomena, namely, free electron model, 
atomic and electronic structure, simultaneously.
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