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Abstract

ELECTRONIC AND ATOMIC PROCESSES IN NANOWIRES

Hatem Mehrez

M. S. in Physics
Supervisor: Prof. S. Ciraci

September 1996

The variation of conductance of a nanowire which is pulled between two metal
electrodes has been the subject of dispute. Recent experimental set-ups using
a combination of STM and AFM show that changes in conductivity are closely
related with modification of atomic structure. In this thesis electron transport
in the nanoindentation and in the connective neck are studied and features
of measured conductance are analyzed. Molecular Dynamics simulations of
nanowires under tensile stress are carried out to reveal the mechanical properties
in nanowires in the course of stretching. A novel type of plastic deformation,
which leads to the formation of bundles with “giant” yield strength is found.
An extensive analysis on how abrupt changes in the conductance and the last.
plateau before the break are related with “quantization phenomena” and atomic
structure rearrangements in the neck. By using ab-initio self-consistent field
pseudopotential calculations we also investigated electron properties of nanowires

and atomic chains and predicted the large yield strength observed in the center

of connective neck.
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conductance, nanowire, atomic structure, electron transport,
nanoindentation, molecular dynamics, mechanical properties,

bundles, self-consistent field, yield strength.
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NANOTELLERDE ELEKTRON VE ATOM SURECLERI

Hatem Mehrez
Fizik Yuksek Lisans
Tez Yoneticisi: Prof. S. Ciraci
Eylil 1996

Iki elektrot arasinda gekilerek elde edilen nanotelde elektrik iletkenliginin degisimi
bilimsel bir tartigmaya yol agmigti. STM ve AFM kombinasyonunu kullanan
yeni deneysel dizenekler iletkenligin degisiminin atomsal yapinin degisimine
bagh oldugunu gosterdi. Bu tez caligmasinda STM ucu tarafindan yapilan
nanometre biyikligindeki batirmada ve baglayici boyunda, elektron tagimimi
konusu kuramsal olarak aragtirilip, él¢iilmis olan iletkenlik degerleri analiz edildi:
Stinme esnasinda nanotelin mekanik 6zelliklerini ortaya c¢ikarmak icin gerilim
altinda Molekiiler Dinamik benzegimleri yapildi. Cok biliyik yigilma kuvvetine
sahip atomsal lif yapisina yol acan yeni bir plastik gekil degigimi bulundu.
[letkenlikte ani degisimlerin ve kopmadan 6nce son platonun kuvantum olayina
ve atomsal yapi degismesine nasil bagl oldugunun genig bir aciklamas: yapildi.
Kendi icinde tutarli potansiyelimsi yontemi kullanarak nanotellerin ve atom

zincirlerinin elektriksel ve atomsal ozellikleri ve baglayici boyunun merkezinde

yigilma kuvveti hasaplandi

1



Anahtar

Sozciikler:
lletkenlik, nanotel, atomsal yapi, elektron tasinimi, nano

batirma, molekiiler dinamik, mekanik 6zellikler, lifler, kendi

icinde tutarli, yigilma kuvveti.
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Chapter 1

Introduction

1.1 Problem development

Material systems of reduced size or dimensionality are of great interest, because
they often do exhibit properties that are very different from those of the bulk
material; among these , we state localization phenomena in low dimensional
systems,! mechanical properties characterized by a reduced propensity for the
creation and propagation of dislocations in small metallic samples? and quantized
conductance in point contacts which will be the focus of this study.

The first step for the discovery of conductance quantization is due to
the seminal Scanning Tunneling Microscopy (STM) works of Gimzewski and
his collaborators,> who have investigated tip-sample separation distance in
a controlled manner over an extended range and they could observe clearly
transition from the tunneling regime to the point contact. In Figure [.1 we
show the results obtained by Gimzewski el al. for the current [ versus distance
between the tip and surface. In Figure 1.1-a, the jump from the tunneling regime
to the Quantum Point Contact (@ PC') is represented by arrow at C and in Figure
1.1 - b, where current versus pushing and retraction is drawn, plateau structure
is revealed.

Independently from this work, some experimental set-ups were developed

in order to study this process in two dimensional electron gas (2DEG). The



CHAPTER 1. INTRODUCTION 2

L0C CURRENT (nd)
o
N
S)
IS
o
o
(=}

0 I 1 1 1
0 2.0 4.0 4.0 2.0 0

Forward »
DISTANCE (A) < Backward

FFigure 1.1: Tunneling current versus distance z for a clean iridium tip and
polycrystalline Ag surface: (a) approach (V; = 20mV), (b) approach and
retraction (V; = —2mV).[Ref.3]

pioneering works have been reached by van Wees et al.' as well as Wharam
et al.,’ who were able to see quantum conductance phenomenon with an
error less than 5%. That has been a break-through in the field of ballistic
transport in mesoscopic physics. The experimental set-up which introduced
the quantization of conductance in 2DE( is shown in Figure 1.2. In this
system, point contacts are made on high-mobility molecular-beam-epitaxy-grown
(faAs/AlGaAs heterostructure. The 2DEG, which is formed at the interfacce
between GaAds and AlGaAs slabs has mobility ~ 100m2V~1s~! and density
~ 103 /m? so that the Fermi wave length ~ 100A.

On the top of the heterostructure, a metal gate is made with an opening ~
few Ar (Fermi wave length) and much smaller than [.(mean free electron path).
The point contacts are defined by applying a negative voltage V, to the gate.
For small V;, the 2DEG (formed at the interface between GaAs and AlGiaAs)
which is underneath the gate is depleted and the conduction is taking place at

the contact only with width w ~ opening of the gates; by further decreasing of
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[igure 1.2: Schematic Diagram of 2DEG Quantum Point Contact, (a) lateral
crossection view and (b) top view.

V,, the depletion layer increases and the width of the point contacts is reduced
gradually until it is pinched off completely. Therefore, with this novel device, we
can vary the width of the QPC for a given device configuration by changing V,
only.

With this device, two terminal resistance of several point contacts as a function of
gate voltage was measured™® and in Figure 1.3 we show the experimental results
of van Wees et al.? after contact resistances are subtracted. It is clear from the
graph that the conductance of the QPC as a function of V, changes in the form
of a stair-case with steps of 2e%/h within a precision of few percent.

These experimental results have brought a new insight to the physics of
()PC which was known as early as the mid 60’s; Sharvin® has calculated the
conductance of a point contact using Drude approximation and found it to depend
on the Fermi energy of the system and its geometry through the relation

2¢2 A
Gs = —
h A bal

(L.1)

where A is the contact area for 3D point contacts and slit opening for 2D.
IEventhough the results in Figure 1.3 are in agreement with the Sharvin’s

approximation for conductivity; i.e, G ~ w, the jumps in the conductivity

are not consistent with the constant slope for the Gy versus w curve of

Sharvin’s conductivity. In fact this main difference in conductivity between the
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Figure 1.3: Conductivity v.s Gate voltage for 2DEG which shows clearly the
conductivity quantization.Ref[4]

experimental results and the G is due to dimensional effects. In Sharvin’s study
(and early approaches), point contacts scale length L, < Ap, and as a result,
quantization effect due to the constriction width w is smeared out mainly due to
the tunneling phenomenon; therefore in early studies quantization effect was not
taken into consideration. However, with these new experimental results, a more
detailed solution need to be carried out to show the quantum size effects, and
this was cleared up®® in terms of the subband formation which was explained
earlier.”

In order to understand this phenomenon better, we consider the following
simple derivation. At the interface between the two slabs GaAs and AlGaAs,
the 2DEG is constrained to a certain well along the (z,y) direction due to the
depletion generated by the negative gate voltage, but it is free to move along the
channel (z) direction. Therefore we can represent the potential confinement by

(1.2)

Viz,y,z) = _
oo otherwise

{0 for0<z<Lyand 0 <y <L,

T'he solution to this problem is quite simple and we can separate the wave function

to lateral part (in the z and y direction) and longitudinal one (in the z direction),
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and we will get energy eigenvalue
n2E?

2m

E=E,,+ (1.3)

where &, is the propagation vector along the z-axis.
On the (z,y) plane, we have approximated our potential as a quantum well with
an infinite wall barrier and this would yield the vanishing of the wave function
at the boundaries giving rise to only some possible eigenfunctions to the problem
with eigenenergy spectrum
B ngm
Buy = Bragy = gl + (00 (e # 0 and my £0) (14

where n, and n, are quantum numbers describing eigenfunction solution and L,

ym

and L, are the width of the channel and accumulation layer respectively as shown
in Iigure 1.2.
We note here that L, < L, therefore many eigenstates corresponding to different
n,. values and n, = 1 would have a lower energy eigenvalue compared to the state
with n, = 2; as a consequence, we can disregard the y dependence ol the solution
by assuming that only n, = 1 are the filled states of the system, so the energy of
the system is
= E(”” ) R
2m - L, 2m

2 . .
where the constant energy A°/(n,m/L,)*/2m is taken to be zero by changing the

(1.5)

reference of energy spectrum.
Connecting the channel to two reservoirs with Fermi energy Er at 2 = +00 and
keeping it at constant and small chemical potential difference Ay, we can find
the conductance of this @ PC through the relation G = I/V. In order to find the
current I, we will use the relation

I =evpD(Ep)Ap (1.6)
where vp is the Fermi velocity, D(Er) the density of states at Fermi level and
Ay is the chemical potential. For the multiple subbands case, we will have

= eZv,Lx(EF)DM(EF)A,u ([7)

Ng
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where n, is the subband index. Assuming no subband interaction occurring in

such a system, the generalization of the one band system gives

V2m

D(E) = TEr (with spin degeneracy and positive k) (1.8)
WLz
. 2 1
v(L) = EE? (1.9)

We note here that we have taken only electrons in the energy range E) and
Er + Ap (only these ones contribute to the effective current) and with positive
%, in the calculation of D(E) because the ones with negative &, do not enter the
channel and they do not yield any current contribution to the system. Thercfore
2e
I:ZG)(EF—EM)—]L—AN (1.10)
N
272 . , . . .
where Ep—FE,, = 7;—:; is the longitudinal energy of the electrons in n, band which
has to be positive to be a current carrying state. Since 32, O(Lp —FE,,) =N =
total number of bands with energy I below L so

2e

I=—AuN (L.L1)
h
Thus ! 20 A 9 eV 0.2
elAu 2ee 2e .
I = — = — — = —— = 2
¢ |74 h V N h 'V N h N (1.12)

Obviously we can understand better the staircase structure shown in Figure
1.3.  As the gate voltage is increased, the depletion layer decreases allowing
more states dipping below the Fermi energy and every state would contribute
to 1 “quantum conductance” (2¢%/h). Therefore, we can explain every step in
conductivity graph of Figure 1.3 by dipping one more state below the Iermi
level.

Eventhough this theoretical derivations made us understand better the
experimental results, further investigations of the approximations need to be
carried out to understand the applicability of the theory and this would include

tests on the following parameters
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e The potential profile, which is assumed to be a perfect quantum well

ignoring any variations which may occur due to surface roughness.

o Contacts occur at the z = oo and this would prohibit any tunneling or

reflections at the boundary edges of the channel.

e Band mixing is ignored and this is true only at 7" = 0K and at perfectly

srmooth surface.

The effect of the confining potentials has been the object of detailed

calculations.® ' In these calculations, it was shown that for long constriction
(L, > Ap), the conductance is directly proportional to integer number of
propagating modes or conductance channels and increases with increasing width
of constriction in steps of 2¢?/h when a new channel opens up. Even in the case of
constriction length L, ~ Ap, the conductance still show staircase structure with
oscillatory behavior.'® However in the case of very short constrictions (L. < )
where tunneling becomes important in such systems and the stair-case form is
smeared out, and we approach G, curve as L, — 0.
Based on these theoretical studies, we can conclude that, the potential profile
or surface roughness itself does not change the general feature of the ¢ curve
since any potential profile which yields quasi bound states give rise to such
jumps in the conductivity whenever a new bound state dips below the Ifermi
energy. However the length of the channel plays an important role in these
calculations, since shorter constrictions cause more reflections of the eigenstates
at the boundaries of the channel and these would introduce oscillations on the
plateaus'® of conductivity and, for L, < Ap, tunneling phenomenon becomes
pronounced and stair-case structure starts to disappear reaching Sharvin curve
for L, ~ 0.

Temperature dependence on conductivity in many subband system was
studied throughly by M. Biittiker et al.'®and they found a generalization of
Landauer’s formula® at finite 7. Another approach was used by Tekman and
Ciraci,> who have used the variation of D(FE) at finite 7' in equation 1.7,

while calculating the current I, and they found that for very thin constrictions
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(L. ~ 2)Ar) where the energy difference between energy eigenvalues are quite large
compared to the case of wide openings, temperature effects are quite small up to
T = 5K and they just diminish oscillations occurring at the plateaus. However,
for the case of large openings (L, ~ 10Ar), the inter subband mixing becomes
very important and the stair-case structure disappears for 7' > 0.6/K. Within
these theoretical calculations, based on free electron model and an approximate
potential profile confinement, it is generally accepted that this model explains well
the 2DEG experimental results, except for the resonance structure superposed
on the plateaus which is due to reflections from the ends of the channel and was
not detected experimentally.

Coming back to the work done by Gimzewski and Méller® in which tunneling
current exhibits a jump and saturates as the tip is brought closer to the sample at
a certain tip-sample separation distance. I[ we use the results of this experiment
and plot G versus tip displacement, a plateau would show up. Analysis has shown
that the discontinuous jump is due to the adhesion of the tip to the sample, which
happens when the tip-sample system is unstable at certain separation. In this
case the tip elongates towards the sample and forms a mechanical contact in
the form of a neck as shown schematically by Gimzewski et al..®* They have
estimated the contact radius to be ~ Ap. Therefore, length in such systems is of
the order of Ar, and the observed transport beyond the discontinuity in Figure
1.3 has to be associated with ballistic quantum transport. As a result it would be
possible to generalize the theory applied to the 2DEG to this system. Garcial
was the first one who pointed out that the point contact in STM is related
to ballistic transport of electrons through QPC. Following these predictions,
Lang'® has simulated the point contact experiment by two jellium electrodes, one
of them having an adsorbed Na atom on it and thus representing a single atom
tip. He found that the conductance saturates at a value of 2¢*/h and forms a
plateau, where the value of n depends strongly on the identity of the material
and it is only 0.4 for Na. Different approach was used by Ferrer et al.'? who
have studied contact resistance of STM at a very small separation using tight-

binding Hamiltonian and Keldysh (non-equilibrium) Green’s function formalism
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and they have found that the conductivity saturates at close contact ~ 2.54
to a value ~ 2¢*/h. In parallel with these two different approaches, Ciraci and
Tekman?®® have studied the transition from tunneling regime to point contact in
STM within Self-consistent-field (SCI) pseudopotential method and they found
that the variation of G' as a function of tip-sample separation is sample and
tip specific. Moreover, they have explained the observed jumps of G by the
irregular enlargement of the contact area. Nevertheless, we can state that the
step structure can also be revealed in 3D QPC, which seems to be explained by
using ballistic theory. In treating the experimental results of Gimzewski et al.,?
we should note that the diameter of the neck is ~ Ap; as it is already concluded
in the theoretical studies,’® that we can not really expect sharp quantization in

such experiments.

1.2 Experiments on Long Quantum Wires

Recently, by pulling the tip after nanoindentation?!~2* or by using a mechanically
controllable break junction system (MCBJ)?* 7 long metal wires with diameters
in the range of a few Ap have been produced. As the crossection of the wire is
reduced by stretching it continuously, the two-terminal conductance ¢ has been
measured. In Figure 1.4 we show the schematic description of a MCBJ taken
from reference 25. Referring back to this figure, the sample in the shape of a metal
filament is glued on a substrate (bending beam), then by bending the substrate
in high vacuum, the filament is broken. The electrodes, which are thus freshly
exposed, are brought back into contact. The bending which is controlling the
scparation distance between the ends of the wire is controlled by tuning the piezo
voltage V, allowing fine adjustment of the separation between the electrodes. In
the STM experiment, the tip is pushed into the surface beyond the separation
distance at which the jump to @ PC occurs and then it is slowly retracted yielding
to a long neck formation®* of~ 40A.

lsventhough the experimental set-up of the STM and MCBJ are different, the

principle of neck formation is the same: stretching a material with a small contact
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area of ~ 10A and measuring its two terminal conductance G. In fact these
experiments have been done on a variety of materials and here we will show some
experimental results and make some comments on them.

In Jigure 1.5, we show some experimental results obtained from Cu, Al, Na
and Au. The conductivity in the first three plots were measured by MCB.J while
that of gold was measured with STM set up. From these plots, we can recognize
some interesting features occurring in the conductivity measurements which are
absent in Figure 1.3 showing the quantization in 2DEG. The most important

differences include
e STM and MCBJ give the same general graph features for the conductivity.

e Results for Na (in Figure 1.5-¢) show clearly that these experiments are
quite irreproducible apart from the last plateau which survives for a longer

time interval compared to the other ones.

—1— PIFEZO

EPOXY ADHESIVE
— NoOTCHED MM FILAMENT

COUNTER SUPPORT

BENDING BEAM

[ligure 1.4: Schematic diagram for mechanically controllable break junction.

Ref.[25]
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Figure 1.5: Conductivity in metal neck structures. (a), (b) and (c¢) are measured
with MCBJ set up for Cu, Al and Na respectively at 1.3K as a function of
V,(piezo voltage). (d) is Au conductivity measurement with STM set up as a
function of time before the neck breaking.Ref[25,22,26]

o For (¢ > 5G, (G, = 2¢*/h) plateau structure starts to smear out and we
are in fact very close to Sharvin case.
o Plateaus may have jumps of ~ G, or ~ 2G,.

e For Al and Au (Figure 1.5-b,d), we can see some dipping phenomena in
the conductivity measurement at the beginning of every lower plateau.
o [lor the Al wire, we can also observe a small increase in the conductivity

before the neck is broken.
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Figure 1.6: The conductance of a Pt junction at 1.3/ as a function of V,, for two
successive scans. In the first scan the transition was approached from the contact
side whereas in the second scan the transition was approached from the tunnel

side.Ref][24]

Eventhough, metals are the best materials to be described by [ree electron model
and as a result our generalization of quantization phenomenon would work best in
such a system, we can see from the previous remarks that 3D Q) PC features differs
from those of 2DEG. As a result simple generalization of the previous theory
would most probably fail. In fact investigating other types of materials, such as
transition metals (Pt) or semi-metals (Sh), shows well that this “quantization”
phenomenon is quite fragile and it is too much material dependent. In Figure 1.6,
we show the graph for Pt conductivity which exhibits the formation of plateaus,
but quite different from the ones shown previously. In this Figure, we also note
that

o The last plateau corresponds to a conductivity of 2G,.

o The slope of the last plateau becomes much more pronounced relative to

that of Al.
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Iigure 1.7: Three examples of conductance of a Sb contact at 1.3K as a function
of V,, with V, increasing. The three curves are recorded for three different V,
sweeps. Curve (a) shows the behavior for a large decreasing contact size. In
the mechanical contact regime shown in curve (¢) as well as in curve (b), the
conductance is less than the quantum unit.Ref[27]

o Hysteresis effect becomes much more important for this structure.

Concerning the results of semimetals, where we have taken Sb as an example,
we show the variation of conductance in Figure 1.7. Here we can observe the
following important feature
e “Quantization” phenomenon becomes nearly impossible to explain the
plateaus which still occur but they exhibit jumps with a small fraction
of 2¢2/h.
Within these new experimental results, it has become quite difficult to explain this
“random” plateau formation with a simple generalization of the theory applied
to 2DEG. Hence, for the last three years the problem has been revisited with

the hope of resolving this quantization phenomenon.
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1.3 Theories

It has been suggested that these plateaus occurring in the conductance in the
() PC regime are due to discontinuous change of atomic structure,"*#2 and cvery
atom at the narrowest part of the neck opens a channel when one of its states e,
is in common with the Fermi level. Even if ¢, is above the Ep, ballistic transport
may still occur because the state is broadened and becomes a resonance® centered
al
e=c¢,+ A (L.13)
with FWHM I', and has density
— 2 p21-1 .
palc) = Afm[(e — ¢o — A)* + T[] (1.14)

The distribution p,(€) may have a partial overlap with the Fermi level and hence
the conductance over this resonance may be smaller than ,. Therefore, the
total conductivity of the neck would be the sum of individual atom contributions
which are at the neck. On the other hand, still there are some who believe that
this sharp step structure indicates the unique transversal quantization along the
3D constriction,?22%3! and they assume that the energy states vary adiabatically
so that the channel mixing due to finite bias, temperature and saddle point
potential is marginal. The height of each step is equal to n-multiple of &G, where
n being the degeneracy of the corresponding state below Lr. In addition to this,
marginal differences from “quantum” conduction could be well explained through
scattering phenomenon due to potential variations at the neck. Until today, both
views are still a matter of dispute between different groups®? and the quantization
of conductance in atomic wires is not completely resolved.

[n order to understand better the quantization phenomenon, we have decided
to make a study on the atomic and electronic properties of these nanostructures.
[Mirstly, we will treat our system with free electron model in the ballistic regime.
[u the next chapter, we will show our conductance calculation for different
neck profiles in order to grasp the effect ol quantization phenomenon in small

systems. Following this, we will make a detailed atomic structure analysis for
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neck samples while pulling. Because in small systems such as atomic scale
wires, the mechanisms of deformation and hence propensity for the creation
and propagation of dislocations is reduced.? The structural changes occurring
in such systems are quite different from the bulk material and for this reason we
have made simulations with Molecular Dynamics**(MDS) on small structures
to understand structural deformation in them and attempted to investigate
the control parameters including: pulling rate, temperature, crystal structure
and interaction potential type. This study will be presented in chapter 3. In
chapter 4 we will introduce Self-Consistent-I'ield (SCF) calculations for different
neck samples and infinite wires in order to understand the physical difference
between the finite and infinite size nanostructures. Iinally in the concluding
section we address to the questions we raised while analyzing experimental results

on the 3D QPC with the hope of providing better understanding.



Chapter 2

Ballistic transport through 3D
QPC

2.1 Theory and general formalism

We have seen in Chapter 1 that in the 2 DEG, quantization phenomenon of
20D QPC is due to the quast — 1D nature of the system, and there were many
theoretical studies devoted to explain this phenomenon. Now we would generalize
the formalism'® which has been applied by Tekman and Ciraci.

In this approach we will divide the space into three parts: 1) the left most and
2) right most parts are two semiinfinite jellium electrodes, so the Shrodinger
cquation in this portion of space would simply give a free plane wave particle
solution.  3) the central part of the constriction which is characterized by a
laterally confining potential, and as a result, the solution of the Shrédinger
equation in this region are subband wave functions arising from the quantization
of the transverse momentum. The separation of space into jellium electrodes and

constriction can be represented by using profile confinement V (2, y, =) defined by
V(z,y,2) = [nlz) + Ve(2,y,2)]0(2)0(d — 2) (2.1)

where 0 is the step function and d is the constriction length; here the potential

is taken zero in the left most (z < 0) and right most (z > d) regions, while

16
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at the constriction (0 < z < d), the potential has two parts, the longitudinal
part ¢, (z) (which contains the variation of minimum value of potential along
the constriction) and the confining part V.(z,y,z) (which gives rise to subband
structure). For a general constriction, it may not be obvious and may even not
be unique to decompose the potential V(z,y, z) to this type of confining model,
however, in nearly free electron approximation,!®3* the 3D potential of contact

is obtained from SCI® calculations and is parameterized
V(a,y,z;d) = ¢m(z;d) + a(z; d)(2* + ¢?) (2.2)

here x and y are transversal coordinates and z is the longitudinal coordinate from
lelt electrode towards the right electrode along the axis of contact; while d is the
constriction length.
The hamiltonian for the QPC is written as

H=- w V2 +V(z,y,2) (2.3)

2m*

where m* is the effective mass¥ of the electron propagating through the
constriction and it is assumed to be isotropic. Therefore Shrodinger equation

would have the form

I K,
_2’”%* a_zrz + ¢m(2) - %—;v” + ‘/C(,C’ Y, Z) d)n,E(:Ea? ,Z) = .fb’l/)”,]_:;(.’v, Y, ;)
(2.4)
where Vﬁ = 9%/02% + 9%/0y?, the term n corresponds to the subband wave

function induced due to the confining potential V.(z,y,z) and the energy is
assumed to be continuous due to the propagation along the z axis. We note here,
that the solutions of Shrédinger equation are two-fold degenerate; il 4, (2, v, =)
is a solution of equation 2.4 with left current currying state, then %,L’E(:z:, y,z) is
also a solution and corresponds to the state which carries current in the opposite

direction.

1n our calculations, we would use effective mass theory which treats the eflfect of the atoms
potential as renormalization of the free electron propagation energy. Our approximation is
justified because our system size contains a large number of atomic cells and the external
potential is slowly varying over atomic scale length.
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'I'he solution of the equation 2.4 is not always possible, because generally the
partial differential equation is not separable. Then we have to deal with solutions
only for very special potential confinements in section 2.2 and approximate
solutions for a general confinement is applied in section 2.3. However, for the time
being we would suppose the subband wave functions v, p(z,y, z) and %L’E(:v, Y, z)

are well known in the constriction and will find the conductance for such a system.

Assuming that the subband wave functions in the constriction are known, the
general solution of the Shrodinger equation in all space is found by matching
these solutions with the plane wave nature of the wave functions at the jellium
clectrodes (z < 0 and z > d). To this end the following conditions have to be

satisfied

o Continuity of the wave function and its derivative at the left boundary of

the constriction (z = 0).

e Continuity of the wave function and its derivative at the right boundary of

the constriction (z = d).
e Boundary condition at z = £oo which define incoming and outgoing waves.

Let us consider an incident plane wave from the left hand side of the constriction
with wave vector K; = (/;%,Eyo,/;zo), /;zo is in the longitudinal direction. /::',.L,,_’
and /;yo are in the lateral direction, and its energy F = h2|[;'1;|2/ 2m*. Since in
this problem, we are assuming that the characteristic length of the constriction
is smaller than the electron mean free path i.e the contact is ballistic; therefore
plane waves at the left most and right most sides and at the constriction have

the same energy [ and we will write the wave functions as

Ve (e,y,2) = cik“”eik”yeikwx-{-/dkxdlﬁye—ik"(k"”k”)’"’eik“”“‘cik’i”A,;l(k,v,/Cy) (z <
= Z {?/)n,E(.'L',’l ’Z)G)n,f\",' + E?L,E(‘,L" Y, ’Z)An,f\"',‘} (0 <z < d) (2

n

= / d/cxdk'yeikl(kx’ky)zeikl"”eik”]ﬁ’ﬁi(_k',;, ky) (z>d)

0)

5)
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where the first term of equation 2.5 corresponds to an incident plane wave and
its reflection at the left boundary of the constriction and this corresponds to the
solution of the Shrodinger equation at the lelt most portion of space. The second
term of our equation corresponds to the solution at the constriction and it is a
combination of all the subband wave functions (left and right current carrying
states). Finally the last term which corresponds to the solution at the right most
portion of space and it represents transmission through the constriction at z = .

-

Since the energy F in this system is conserved so k2(k,, ky) = 2m*E/h? — k2 — Zj
and while taking the square root of this quantity, the imaginary part of k. ( /:,:‘,U, l_:y)
is taken to be positive so that the function decays as = — +oo in order to get
physical solutions. Unknowns in the equation 2.5 should be determined from the
boundary conditions at z = 0 and z = d; continuity of the wave functions gives
for z =10

lIJK."(;L-,y,O) = elemet 4 /(lk$‘lkz/elka'$elkyyAE;(k:z:,]"71/)
= Z {7/)71,,E($7y,0)@nvf{". + 'l/)ﬂ,E(:‘U’y’O)An,]—\;,‘} (2'6)
n
and for z = d we get
\Illgi(:c,g/,d) = > {T/Jn,E(.’L',? ,d)O, . + 7?11,13‘(1’:73/,‘1)A,L,1?i}
n
_ AL iks(kaky)d ikex ikyy 3 (1 1 ‘
= /dkwdkye (ka ky)d gikoz i J‘I/BEi(kx,./(,y) (2.7)
Along the 2 and y direction the wavefunction continuity is guaranteed, since all
subband wavefunction solutions in the constriction would satisfy this condition.
This continuity of the wave function in the z and y direction guarantees the
y Y g
continuity of its derivative. However in the z direction we calculate the wave
function derivative in order to match it at z = 0 and z = d and this would give
. . thyoy tky,x . thypa thy
Ew,si(x,? y2) im0 = tho,ete¥e o — [ dkydkyik, (ks ky)e™ e J"/l,;i(k:,,., ky)
0
= Z '(9—7?/)71'3(?6,?,2)

n 4

z=0@n’]{‘i + %n,E(‘(C’ Y, ’:’/) 3=UA7L,]\1{} (28)

this for z = 0 and for z = d we get

9] 0 —
(T)jlpl'\&i(.‘v,yaz)lzzd = Z{EQAI,E(:E,? ,Z)';,-:d@”’[\?i +ll/)7L,E(.:E’y’z)l-’:=d-A,,,,[§"-}
~ 7 ~
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— /dkmdkylk:(kl, lity)(iik“'(kr’ky)deika’meikyyBE- (/{:_,L,, /iry) (2.9)

Having expressed the boundary conditions for such a system, the coeflicients
A (kuy ky), Bg(ksyky), O, g and A 1 have to be determined as a function of
the incident wave vector K; and this is done by solving equations 2.6, 2.7, 2.8 and
2.9 simultancously, and W (2,y, z) will be determined in all space. Eventhough
those coellicients can be determined cxactly, the solution is not simple. We need
to take the Fourier Transform (IF'T) of these equations in order to get rid of the
@ and y dependence in the final expression so that the manipulation of these
equations will be easier; to do this we will define the 2D FT of a [unction f(x,y)

as
. L irna —igey o
F(4z,qy) = g/ dedye™" T e™ f(x, y) (2.10)

ale @)

taking the FT of equation 2.6 and 2.7 we get

2 [8(gs — kw,)8(0y — ky,) + Ag, (02, 0))] =
Z {Hn,E(qw, Qy» O)On,lf’,- + ﬁn,E((]:va Qy» ())A,,,J(’,-}

2met1om By (g, qy) =

£

Z {Hn,E(_qua Qy, d)(}”,ﬁi + ﬁn,]i'((lwa Qy» d)An,]\*i (2.1 l~)
n

where 11 and II are used to denote the FT of the subband wave function of ¢ and

tp. Now taking the I'T of equations 2.8 and 2.9 we get

2m [Z’kzoé.((]:v — kz,)0(qy — ky,) = tk.(qe, (/y)A]\’i(,(lma(ly)] =
Z {H{n,E(q”‘f’ Qys 0)071,13.‘ + ﬁ;,E(ql" Qy» O)An,ﬁ,}

211k, (qz, (./y)eikZ(qm,qy)dBl(‘ (qu (Iy) =

i

— o
Z {H;I,E(qﬂr'? Qys d)on,]\“,; + Hn,E((]:vv Gy» ‘[)A,,,,K’,- (2.12)

n
where II" and II’ are used to denote the subband wave [unction derivatives of ¢’
and 1 along the z—direction. From the previous two equations, elimination of

the reflection coefficient Ag (g, qy) gives

27"[2'13%}6((11' - kwo)‘s(_(]y = k?/o) =
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Z {[kz(qa:a Gy )Un £( e, 1y, 0) — iu{n,E(qu Gy 0)]01,,,1\”,-
+[kz(q.ra (Iy)ﬁn.,E((]wa Gy, 0) - il-[;z,,E((l:va Qys 0)]A1 K 2.13)

and the elimination of transmission coefficient B (¢, qy) gives

Z {[/“(‘lm @), 5(gz, ¢y, d) + iH:z,E(qxa Qy» d)]on,lii

+[l” ((IM y)Hn E(qw(lﬁd) + ZH” L‘((ln(ll/ad ]An I } = (2. M)

Equation 2.13 and 2.14 have to be solved simultaneously to obtain the coefficients
()n, 7, and An! i where Ki is the incident plane wave vector. [Here we note that
equation 2.13 stands for the transmission of incident plane wave into the subband
states at the entrance of constriction (z = 0), and equation 2.14 corresponds to
the reflection of subband at the end of constriction (z = d). Therefore once the
solution of Shrodinger equation (equation 2.4) in the constriction is determined
and the subband wave functions are known, the problem reduces to calculation
ol multiple reflections from the edges of the constriction. It is then a simple
algebraic problem.

Assuming that these coefficients are determined, and W ¢.(2,y,2) is calculated
throughout the constriction, we will determine the current passing across the
constriction in order to find out the conductivity. In order to calculate the current,
it is clear that calculating [, through any z contact crossing the z—axis at z = z,
would yield the same result, since the current inside the system is conserved. To
do this we choose (z < 2, < d), so that the final current expression consists of
subband wave functions. The current passing through the @ PC is related to the
occupation of subbands as in the Landauer formula.®!¢

The current due to incident waves 1, and 15 with energy £ can be writlen using

the expectation value of the current operator

[
(\n 1
S

(elilthp) = / dzdy ['s/)ZL(:v, )by, y) — P (2,92, :1/)} 1 (:

2em*

Tilere we note that we are using the sign * in order to denote the effective mass if it is a
guperscript of the character m, and a complex conjugate for any other variable.
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In our system we should take into account all contributions from all incoming

states W= . Hence,
13

‘ i3 RIR
J(EY =¢ — (P~ z L1/ z =, AAYSYER 216
/( ) 26/ (27!') ( I\ (T Y, )]I 1\ ('I: Y, )>I 6( D * L)O(/vzo) ( l())

Where J(E) corresponds to the electric current due to the states with energy 4.
Here we have introduced the factor e in order to convert the probability current
into the electrical current. The prefactor 2 takes care of spin degeneracy and
1/(27)? is the density of states in the 3D K —space, é function selects the states
which have energy £ and the step function © selects electrons with positive /T-),
so that only electrons entering the channel are taken into account. In order to
evaluate J () we will initially calculate (W |j|W¥z.) at an arbitrary point z = z,

in the constriction.

T I
<l1}[(',' ']|\D]Z'i>]z=z,) = - d’L'd’l

2tm*
—x ! —
Z {[II/):L,E|Z=Z:) (9:1,1\?.' + 1/)7L,E|2=20A:L,[\’;‘] [7/)' I 2=Zu(9m,1\?,‘ + ll/)""':Elz:s"A”"J\-:i]
myn
—[’l/):j], |7=’00n Ioé + lﬁn le =2, I\T'i][l/)m E|~-—~o m [\, ’—1/7,,”,]_;;|3=20Am,]\7’i]}

(2.17)

In this equation, for clarity we have dropped the (z,y, z) factor which is in the

front of the subband wave functions; further manipulation of this equation yields

(W 310 Yo, = o [ vy S S {07, ¥l

""—’ HL ]\,
m,n
)
*
+An ]\ ” ]—']7—7’0 7/)7”,13 2=30Am,l\' n ]\,77/ nE "=7ol m, [ |5=20Am.,1\-’:‘
* X g - - ;) O
+An,]\fti7pn,E 2=z, l/)m,]_v 'z:zo 6771,1\"5} (__“ lb)

IPinally we obtain
. e 1 dk, dk,,
ﬂm:__f oo @y,
mh 21 Ji2 +k2, <K% ko,

Z Im {Gz,lf; [/ d"l’.dyq/):,L‘"="ol IIL,]JI"::?”]()NL,,\?,'

m,n
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+A:;,]\’i [/ d((’dy [J:,,E |Z=z"$"”wElz:zo]Am,l{’i
+0O7 ﬁ,[/ dxdyip}, ; J*I s 2=s, ] A

+A n, s [/ dCdy[wnl_/"’_’ 7/)771 L’2=”)] m l\,} (219)

.
m,K;

v oe—

Here we have introduced a new variable K% = E 2m*/h?, and the § corresponds
to the 2D integration in the k—space such that &2 +4k2 < K} with the constraint
k2 +k? + k2 = K} has to be satisfied while evaluating the previous integration.
Now we will assume that our constriction is connected to two jellium electrodes
at z = *oo and the electro-chemical potentials of these two reservoirs are kept
constant so that there is an infinitesimal difference Ap = p, — up > 0 between
the electro-chemical potential of the left hand side and the right hand side of the
reservoirs. In this circuit current would flow from the left reservoir to the right
one and vice versa and in experiment we would measure only the effective one.
To measure the current due to one electrode, we should integrate J(F) lactored
by D(FE), which is the electron occupancy with energy F, over all the energy
range. In our calculation we will take D(F) = [frp(E) which is the Fermi-Dirac
distribution at T = 0K so that it corresponds to step function; therefore the

current flowing through the circuit is

[ = [ e / J(E)dE
0
Iz
= ’ J(E)AE = (pp — pr)d (kr) (where (pg, — pr) — 0)
1,
= AuJ(Ep)=cVIJ(Ep) (ur = Ep, Fermi energy)(2.20)
The conductance is ;
= — = Ha 9.9
G= v =eJ(FEy) (2.21)

By determining J(E) from equation 2.19, we obtain directly the conductance in
the constriction after multiplying by e. In the next section, we will solve this
problem for a uniform constriction, followed by an approximate solution for a

more general potential type in section 2.4.
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2.2 Cylindrical Infinite Well Confinement

2.2.1 Formalism

[n this section we will assume that the conflining potential is independent from z.
As a result ¢,,(z) = 0 and V. (2,y,z) = V.(x,y). Furthermore we assume that this
potential is only radial. We first treal the infinite wall cylindrical confinement
potential in this section. Then we consider parabolic one. Eventhough these
profiles oversimplify the real potential, we believe that some insight of the problem

could still be grasped. Our potential confinement would have the form

V(F) = 8(2)0(d — z)V(p) (2.22)
0
where V(p) = { pew (2.23)
oo otherwise

Where 0, ¢ and z describe cylindrical coordinate system. This describes an
infinite cylindrical wall potential with uniform crossection, in the regions 0 <
+ < d and 0 otherwise. Due to p dependence of the potential, we will write

Shrodinger equation 2.4 in cylindrical coordinate system and it becomes

o W oo , , 5.
{[_Zn—*g‘?z] + [—%VH + Vc(/))] 7/)1:,,]5(/)a Qb, Z) = 'l'/l(/)n,]_f;‘(/)a @, Z) (-)'-2/1)
where , ) .
. 10 0 + [ o?
=, Oppap p? 0p?
in cylindrical coordinate system; this equation is separable and we can write

(2.25)

bn,5(p, $,2) = " Pu(p, ¢) (2.26)

where the lateral wave function satisfies the differential equation

h?

[—%Vﬁ + Ve(p)]®ulp, ¢) = a®ulp, ¢) (2.27)

with subband energy ¢, and propagation vector along the z—axis v, satislying
2m* o
Tn = (E - 6n) (ZZ(‘))

h 3
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where the root with positive imaginary value is taken.

Since the potential in equation 2.27, has ouly p dependence, we can separate
our cquation into radial and rotational parts and we can make the following
transformation: ®,(p,¢) — Pulp,d) = Rulp)e’® where the radial part £,

sabisfies

+—} -Rnl(/)) = ('-vn,l]znl(/)) (.229)

ld d hA
Qmpd/)pd/) 2mp?

with boundary condition Ru(w) = 0

Manipulating this equation with transformation p = au we get the following form

d d o
——Uu— - : ’ = IR
{uduudu + (u / )} R () 0 (2.30)
2ma?
where /i—z(:'”l = 1

L (W
and R, <—> = 0
a
This represents Bessel’s equation of the first kind and its solution Ji(u) is straight
forward , however, the vanishing of the function at the boundary yields to only
some possible eigenstate solutions
4 o -
fulp) = Audi(uu) (2.31)
2
h 5

and €nl —
2mw? "

Hence the lateral wave functions have the form
®,( = Audi () e 9.3
nl{ P, d)) = Andi Unla e (2.32)

where [ is the order of the Bessel function and wu,; its n* zero, while the term

A corresponds to the normalization constant solved through the equation

w 27
/0 /)d/)/o dd)q)nl(/)v (f))@:/l’(/)’ ¢) = 671‘71‘/6”/ (2;;)

By solving this equation to find A, we get the final form of the lateral wave

function as

) ([) ¢) _ 1 Jl (un,l %) cil’f’ (.) 34)
ni\Fy = \/7?’1.0 J[-H ('U:n[) .
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Irom equation 2.28 the longitudinal wave vector have the form

2
= kpy/— < Unl ) 1
! \/ krw +

o (92
thus Tnl _ [ — (u7zl/~7r) 5 9k
- \‘ (_ll)/)\1:')2 (Z.J'))

Il =

In the previous section we have shown how the solution of such a system fis
manipulated by taking the I'T in the z and y directions, so now we will calculate

this in cylindrical coordinate system using

o 1 —iRP g .
F(E) = %/6 PF(p)dp (2.36)
and
, L jw 2= e cos( 0 AN
q)nl(’(‘:aorc) = 9 / / [)d[)d(/)(im’) cos(= H)/411[’][ <unl”‘~> (le{/)
27 Jo Jo w
— Liei“’nil L J 2.
T Fut (=) i) (2:37)
Ul

We note here that in this section we are using £ = (&, 0,) instead of (qu,q,) as
the [T basis. We will write again equations 2.13 and 2.14 which now have much
simpler form

27['2/”706(;‘: - EO) = Z {[/"7("‘1) + 7711]@11,1,1'; + [kz(/{') - 7nl]An1,;§i} (I)nl("_i?) (-238)

nl

and
> {[k‘g(ﬁ) — Yaie™0,, o + [ka(x) + ’Ynl]@—m’d]An,z,E} ¢u(R) =0 (239)
nl
In order to solve such a system we will multiply every equation ( 2.38 and 2.39 )
by ®%,,(F) and integrate over all & values, while using the orthogonality relation

of the lateral wave functions and thus its F'T. The resulting equations are

271-7:2/‘:2,)@;;’[/(%0) = Z [Z {[{n’l’;nl + 7nlé.nn’6ll’} 671,1 + ? {[{n’l’;nl - ')/nlé»n.-n’éill’} An.l]
nl
(2.40)
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and

. , . ; 1 . , . . s
Z [Z {[‘”/l';“l - 771'167171/611'} e G)nl + {‘[‘n’l’;nl + 77Llénn’6ll’} ¢ W“'l([Aﬂ.l] =0
nl
(2.41)
Here 6,,,, is the Kronecker delta, and the matrix element K,/pr.,,; 1s delined through
the relation
- — * - —\ — . ;
K n'llinl = /Clﬁén’l’,7bl(’c)k:2(,/"“.)(I)n’l’,nl(ﬁ) (.2’1.2)
Now we can rewrite equations 2.40 and 2.41 in a matrix form so that we can drop
off our summation terms and we would obtain

omidk, BH(7,) = i(K + [)O +i(K — D)A (2.43)

and

(I = T)eT0 + (K + Dem ™A = 0 (2.44)
Here © and A correspond to the column vectors of the coellicients of the subband
wave [unctions with right and left going probability currents, respectively. @ is
the row vector of the transverse I'T of the lateral wave functions. I' is a diagonal
matrix of propagation constant vectors corresponding to every eigen state, and
K is the longitudinal momentum matrix.
Now equations 2.43 and 2.44 correspond to the boundary conditions al z =0
and z = d respectively and they can be easily solved to find out the subband

coellicients

A = MK+ )‘l(fi’— )e”:“‘(i) (2.45)

o x % z x ~  .z,]2 -1 % 2
O = 27r{1—[(K-i—l")*l(](—l“)e“d}} 2%, (K +D)71o1(R,) (2.46)

In order to find current J(EFR) we refer back to equations 2.18 and 2.19 and we

would get

(D)j|0) = — m,'z,{iéff@_wf*mmf

h 2 s L . T .
= : {[(“)TPR@—ATI‘I{A}-}-Q[@TF[A]} (2.-’17)
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where I'r and I'y are the real and imaginary matrices of the matrix I', respectively.
From these results, equation 2.19 would give us much simpler form by replacing
the cartesian coordinate system with cylindrical one and by using the fact that
equations are independent of 6. Thus
2¢ 1 [Kr kde [ 43 < 2432 & NI
) = 2 oo [T SO0 — ATTRA] + 23m[61T alp (s
(Lr) =5 5= ), R (%) [OTr RA] + (O] A] (2.48)

To further simplify we introduce the following matrices

M= 2 [f—%eif‘d%ef‘l]_l (K + 1) (2.49)
A = eldEeildf] (2.50)
Fo= (K+D)" Y- K) (2.51)
As a result, the conductance becomes
=2 e [ O ) (el Tt - K P10 (s) + 200l A0

(2.52)
In this equation only k,, and ® are function of k. Since k,(x) is real for [k] < K}

one gets, by using equation 2.42,

[\
W33
[
R

X Kp . .
ReK = 27r/0 " kdr® (k) (1) (k) (2.5

Finally the conductance formula reduces to the form

9¢2 *txr 2 stxr % sty ox . /
7= i tr { [H PRII = A TrA 4 28m(1I FIA)} Re [A’J} (2.54)

In this equation there are 3 terms contributing to the conductivity; the first and
the second term correspond to right and left going waves in the constriction,
respectively. Resonance effect may appear in the system due to their relative
phase difference. The third term, corresponds to evanescent states in the
constriction.’® For finite length constrictions, where tunneling phenomenon
becomes important, this last term becomes important since it yields deviations

[rom sharp steps structure.

T Assuming perfect conductivity in the constriction; ie, as d — o0, such states

( with e > Er } do not contribute to conductivity
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Before introducing our results, we would like to bring the following issue to
the reader attention: Since we are measuring conductivity for a ballistic system
(no scattering is occurring), shouldn’t we get G — co?

In fact this question has been addressed previously, while calculating the
conductivity of 2DEG QPC. Imry®® has showed that the finite resistance
obtained in such formulae was the contact resistance and did not correspond
to the constriction resistance which has to be zero. This type of resistance
measurement is known as two probe measurement and it has been thought that
the resistance of a perfect conductor vanishes for four-probe measurement, where
one uses different probes for the current and voltage measurements which are very
weakly coupled to the device. In experimental set up, however, the lithographic
shape of the current and voltage probes are the same in the {wo-probe as well as
the four-probe measurements. For this reason it becomes impossible to assume
weak coupling for the voltage probes. In fact Biittiker®®3” has considered the
coherent device consisting of the probes in addition to the loops or wire and
calculated the scattering matrix for this device, where all probes are assumed
to be connected to reservoirs at equilibrium. He has found that the resistance
vanishes only for very weak coupling( four-probe measurement) which does not
correspond to the experimental conditions. As a result we have used two-probe

measurement to calculate the conductivity in our theoretical study.

2.2.2 Results

[n equation 2.54 we have obtained the final result of the conductivity for a
perfectly cylindrical potential, by the integration over all the incident wave vectors
in equation 2.52. The result is expressed only in terms of matrices. However,
here we would like to mention an important difference between our results and
experiments in which conductivity is measured. In the latter, G is measured as
a function of V, (piezo voltage) or the neck length, whereas in the former, it is
calculated as a function of the electron density (or equivalently Az) and the arca

of the constriction A. Here we note that this main difference in conductivity
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measurement is due to the fact that in the theoretical studies, energy bands
below the Fermi level (which defines our contact area) are the criteria for the
conductivity; however, experimentally, it is not possible to measure the contact
arca at the constriction. On the other hand, there were attempts to estimate the
confining potential profile (which would give the contact area) as a function of
pulling using simulations with molecular dynamics,®® but these profiles are not
universal because they are obtained by empirical potential, and depend on initial
structure configuration and stretch speed . It is, therefore, difficult to find out
the correct potential profile confinement. Nevertheless, our SCI' calculations as
well as others’,!3! have shown that parabolic potential confinement works well
for one atom contact and infinite wall cylindrical potential parameterization is
good for many atom point contact and this has motivated us to use them.

As shown in the previous section, we have to calculate the propagation
matrix [' given by Thinr = Ynibnnéll’ and we should evaluate numerically the
longitudinal matrix K given in equation 2.42 with the wave functions described
by equation 2.37. An important point that is worth mentioning is that the off-
diagonal elements of K ave very small compared to the diagonal elements. For
the infinite wall confinement, they deviate from zero and they become appreciable
only when the energy of the subband dips below the Fermi level. Thus ' and
I\ can be represented by finite dimensions, since in our calculations, we are
interested at most upto the 5** energy subband. As a result, contributions [rom
higher energy subbands would be small and we have noticed that 12x12 matrices
give results with convergence less than 2%, and in all our calculations we have
used 20 subbands to get better convergence.

Initially, we will investigate the case of a semiinfinite constriction. In such
a system contributions from the left going and evanescent states should be

eliminated and, hence equation 2.54 becomes
2¢?

=i {4([1?’ + F) YR + ) Re i’)} (
1

o
[\ |
[\ 4
~—

[n Figure 2.1, we show the results for a perfect semiinfinite constriction, in

which approximate quantization of conductance is apparent. This point is quite



CHAPTER 2. BALLISTIC TRANSPORT THROUGH 3D QPC 31

8.0

6.0 |

2

Conductivity [2e /r]
N
o

N
o

0.0 : : :
0.0 1.0 2.0 3.0 4.0

Contact Area [ ()]

Figure 2.1: Conductance vs contact area due to transmission into semiinfinite
uniform constriction with cylindrical potential confinement

understandable, since K, = Yo, so that the trace in equation 2.55 approaches to
N,. Now if we consider incidence from the constriction, the reflection amplitudes
are given by equation 2.51. Here one can directly use conventional Landauer’s
formula® in the channel and we get
2¢?

- {N,, - u-[”**%-]}

where the first term is just the number of occupied subbands N, in the

Gp = (2.56)

constriction and gives the incident waves. The second term is the contribution
of the reflected waves. Here we note that G = G, as a result of time-reversal
symmetry.

Alter examining the the semiinfinite constriction case, we will focus on the
(initc length channels, here we will solve equation 2.54 completely to find the
conductivity. The results of our calculations for finite length constriction are

illustrated in Figure 2.2.
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[igure 2.2: Conductance versus contact area due to transmission into a finite
length uniform constriction with cylindrical potential confinement. The length
ol the constriction d is in units of Ar.The graphs have been shifted for clarity.

The zero-length Q PC was studied earlier.® Comparing the result obtained by
using this formalism with Sharvin’s calculations,® we observe a great resemblance
between them. The sharp quantum steps have disappeared and there is a lincar
relation between the conductivity and the contact area as predicted previously by
Sharvin. The washing of the quantum steps is not surprising, since as d — 0 the
probability of tunneling becomes appreciable and this phenomenon dominates the
conductivity. However, we can see in I'igure 2.2 some deviations [rom Sharvin’s
calculations; it is obvious that the “straight line” does not pass through the
origin and it exhibits some weak oscillations. The shift of the “straight line”
towards a larger contact area (A) value can be understood in terms of Heisenberg
uncertainty relation. ApAp, > h, therefore as Ap — 0 the transverse momentun
Ap, — +oo. Since the largest possible transverse momentum is hkp, it pky <1

(or A[A%] < 0.08) transport is suppressed to yield zero conductance as one notices
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in our graph. The weak oscillations, on the other hand, may be thought as being
the precursors to quantized conductance. For ¢, > LF the transport is via
tunneling and the conductance increases exponentially; when this subband dips
in the Fermi level, the nature of transport changes to ballistic transport, and the
maximum conductance for the subband is limited by the quantum of conductance
(m2¢?/h where m is the degeneracy of the state). Therelore the conductance due
to this single subband saturates leading to the formation of weak shoulder like
features as it is shown in our graph.

As the length of the constriction increases, tunneling contribution decreases
and step structure of the conductivity starts to appear. The aforementioned
weak oscillations superposed on the classical Sharvin conductance, evolve to form
quantized plateaus for d > Ap/2. This quantization phenomenon gets better
with increasing d and they occur at multiples of 2e*/h with a step jump of one
or two quantum steps corresponding to the degeneracy of the wave function in
the cylindrical coordinate system. It should be noted that these quantized steps
do not represent the real experimental results represented in Iligures 1.5, 1.6
and 1.7. In the experiments the plateaus are sharp and they do not display the
same degeneracy, while in the theoretical calculations the conductance displays
oscillations below the quantized values which increase for larger constriction
lengths (d) and subbands with smaller energy eigenstates. These oscillations are
due to resonances caused by the interface of right and left going wavelunctions in
the constriction. To analyze these resonances, we examine equation 2.50. The
matrix exp[il'd] consists of pure phases for occupied subbands and varying the
contact arca (A) (i.e varying f‘), these phases change as well, and this yield an
interface between the first and second term in the brackets in equation 2.54.
After understanding the origin of these resonances, we won’t study this further.
The subject of resonance was taken into consideration throughly in previous
studies.2!? Next we will generalize our formalism to a much more complicated

potential profile in order to represent the experimental confinement bhetter.
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2.3 Parabolic Potential Confinement

We have also solved our problem for a parabolic potential type. We have taken
the potential form as
| .
' 2002 2 o mm
Vie,y,z) = 5w (z*+y*) (2.57)

This would give a separable solution in the form of ¢(2)¢(y), where ¢ is Hermite
polynomial. The Fourier transform of these functions would also yield to Hermite
polynomials. But unfortunately, the K matrix is not as simple as in the previous
case (cylindrical infinite well confinement). Therefore, we have followed the
same procedure described in the previous section, but evaluated our quantities
numerically. Here we note that we have defined our length scale w, = (/hi/mw
while calculating the contact area. We show our results in Figure 2.3. In
our plot, the step structure is resolved with a jump step of order 1¢/,, 2G,

and 3¢C,. This is due to the degeneracy for 2D parabolic potential. We note
6.0

Conductance [2e'/4]
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0.0
0.0
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Contact Area [,/ ' . _
[igure 2.3: Conductance G versus crossection A ol the wire, using parabolic
potential form. Continuous and dotted lines are for Al = Ay and Al = A /2,

respectively
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that the step structure is not well resolved as in the case for the infinite well
confinement. For d = Ap/2, only the first step is resolved. For ¢ > (,, the
plot resembles the Sharvin’s conductance. This is due to tunneling phenomenon
which becomes pronounced for finite well potential. For d = Ap, oscillations
start to appear on the plateau of conductance. Comparison of these results with
the infinite well confinement, shows that the latter gives much better results
: : . . . .
compared with experiments. Therefore, while generalizing our method to a more

realistic potential, we will consider only infinite cylindrical wall.

2.4 Nonuniform constriction

2.4.1 Transfer Matrix Method

[iventhough in the previous section we could grasp the causes of quantization
for conductivity, we could not get features that match with the experimental
results. Therefore, we have to generalize our formalism to a much more realistic
confinement, which includes the geometrical effects playing crucial roles in the
quantization of conductance. In order to obtain conductance versus A curve for
a realistic potential, we use the transfer matrix method. The underlying idea
[or the transfer matrix method is to divide the space into a number of small
scgments. Using the usual boundary matching technique (applied previously) at
the interfaces between segments, the approximate solution is obtained for this
piecewise constant potential profile. Increasing the number of segments until
the convergence of the solution is obtained, the deviation between the exact and
approximate solutions can be made negligibly small.

I'ollowing the same reasoning, in our problem, we divide the nonuniform
constriction into a large number of segments. In every segment ¢,,(z) and
Vi(x,y, z) are assumed to be constant, ¢, (z;) and Vo(2,y, 2;) at the it scgment.
Thus, the solution for the subband wave function in this segment is the same as
that of a uniform constriction with confining potential V,(z,y, z;) and the zero of

cnergy is shifted by ¢,,(2;). Now we will divide the constriction into N segments
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and we would call our end points z, (at 2=0) and zy (at z=d); the subband wave

functions in the interval z;_1 < z < z; 1s

U (2,y,2) = > {(—)Ll)c””’(") —#-1) Affl)e_”“’(z‘)(z—z"“)}T/J,Ll(:u,y,zi) (2.58)

nl
where the lateral wave function (2, y, z;) in the i** segment is defined by the
equation
h? ,
V” + V ( Z J7~1) + (bm("’l) 7/)7L1(a' Y,z ) = enl(zi)'lbnl(:caya :L) (-259)

o

with subband energy e,i(z;) and constant propagation vector

2m* ; _
Toi(z) = |/ S 1B = eai(2)] = ] (2.60)

which is a function of segment index. Next, we have to find out the transfer
matrix along the constriction. This is done by matching the wave function and
its derivative at the interfaces between the segments. To do this, we consider
the interface at z = z; (0 < 7 < N) and we write our equation in intervals
zig <z < z;and z; < z < zi4q In the same form as equation 2.58 to get

. N DAL D oA G
Wi (o) = L {08ean 4 aferhian] yl)

nl

= 2 {eL™ + Al uity (2.61)

nl

and its derivative along the z axis gives

oYz (a ;
—k(d—_)-|2=7. = Zz7nl {O( W’(" Az Aill)e_wfﬂ) } /)nl
nl
= i el — Al byt (2.62)
nl

. : i
where Az; = z,— 2z, is the 7*" segment length and @D,(L,) corresponds to (2, y, ;).
T'he previous two equations yield to

S {olemias 4 A a3 {0 + Al (263)

nl nl
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and
ENGIN § —iA : : 1) 1)
S int) {@fenitan — aldemmilah pl) = Y inli B+ - AL} it
nl nl
(2.64)
Multiplying equations 2.63 and 2.64 by 7/)”, and integrating over all x and y
we get
ofje M85 4 Al e o = =2 {6 G+ Aty } Syt (2.65)
n'l!
and
- (¢ (%) i(i)A.i () - A: 8 +1 (i+1) i,
II‘A/-I(LLI) {@nl ¢ MeSH — A Wnl ’ } I/)'/Lll - 22711’1’ {O(l’l’ - 71L’l’ } SYnlj;’ll’
nfl!
(2.66)
where SM T denotes the overlap of the lateral wave functions in segments « and

: + 1 defined by
St = [ dadyli(e, y, 2wl v, zi0) (2.67)

We note that the lateral wave functions form an orthogonal complete set in every
segment. However, because of the change in the contact area, they do not have
such a property in different segments. Now we will write equations 2.65 and
2.66 in a matrix [orm to get

= (1) ~ g z(%) ':/y+l ~ g ~ g

JE B L -T A G = g [@(z+1) n A(z+1)]

=09 o L) B 2 (1) 71 wddi+l  (141) .

18500 _mTAAD = P g7 Q) — AFD] (2,68)

Therefore, the transfer matrix for the i interface is

e
) z (i) it 2 (1) 2+l L (G41) =) ~ il c ()7 it
Z 1" Az {‘51 _ I\ ‘Sv IW eLI Az ‘S' + 1‘ :S l
(2.69)
which connects the solution in the 7** segment to that in the (i + 1)"* segment as
Qi+1)

AG+1)

~i,i+1
—_ Is

(:) . (2.70)
AG) '

F10) 2ii+l ()7 wiil 2 (i41) =00 bl ()7 whitl s
=il Az {.S’ +I § T SR ST L

(i+1)

(L+l)}
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Having found the transfer matrix which connects every two adjacent matrices,

we can relate the constants in the first and the last segments through the relation

(;)(1) ~1,N (:)(N)
. =T . (2.71)
AW AN)
where
SN V=1
ro=1]JI7T (2.72)
=1

Now we will make use ol the continuity of the wave function and its derivative
at z = 0 and z = d; this is the same as a uniform constriction connected to a
jellium reservoirs. Referring to equations 2.43 and 2.44 we get

(0)

(©0) 0) .

om2k, 017, = (K + 1 )00 + (£~ Fao (2.73)
and
(Iz((N) B f‘(N))eiI:“(N)AzN(Z)(N) N ([:{(N) N l:’(N))e‘“i(N)AzNA(N) ’ (2.74)
and also,
50 = 7 em 70 Rw) (2.75)
A0 = 7 e 4 i Am (2.76)

Here ®*(R,) is the Fourier transform of the wave function in the first segment.
Now we can solve the previous equations simultaneously to obtain the wave
[unction in the N** segment. Therefore using equation 2.16 we calculate the
conductivity in the constriction with varying crossection. In fact the solution
of the conductivity is of the same foi}n as 2.54, however, we need to make the
following transformations Tp;— T 52 1) and K — K , while IT & A will have
the following form

. L(LN) = (LN) 2™
i = 2 [Tn +7,, e’

. S(LN) 2 (LN) (M) Ny aY) Loy s\t
— (7‘21 T T AzN)J (1{ +1 )(2.77)

=(N
il )

Azy ;(N)ei Azy



CHAPTER 2. BALLISTIC TRANSPORT THROUGH 3D QPC 39

and
x =(N) ~(NY &N x
A= ezl" AzN,,:( )61,1 AleI : (278)

where
<(M s (M) D\ TH (z(M) (M)
FM) (A +1 ) (I‘ K ) (withM = 0,N)  (2.79)

Before investigating our results we note that using cylindrical potential the
e il e o . .
overlap matrix 57 of lateral wave function would have a simpler form

compared with the general case and we get

it ) ;
St = " pdpdp

Mol T

/min{-w,',wi.,.l} 2 ] i']{ (UMZIJ)—;'> e—il(/) 1 1 ']l’ (“n’l’#)
0 o VT w; Jipr(un) VT wirr  Jpgr(un)

2 1 we< P\ p
= by / Ji <Un —) J < n! —) d 2.8
" w01 Ji41 () Ji1(wnn) Jo l lwi LY lwi pep (2.80)

where we would use the definition we = min{w;, w;y,} and ws = maz{w;, w4}

and
/) — p . " 9 Q
Ji | Umi =Jilucs where m = n,n'. (2.81)

We,>

Thus

- 2 1 we 0
041 - / )
’57[1.;,-7';/1/ = b / Jlue— )i us L pdp
w01 i1 (Unt) Jig1 (wnn) Jo We ws

2
2 1 w U< Us W
. Z < :
= by . — / Ji(p) i = <0 udu
w1 Jip1(Unt) Jig1 (1) \ uc 0 Ue W

rg v,
s L ’(u> w> “)

4

(2.82)

1 i f (e we )
w> ue  Jipr{us) ue we )2 of (u> w> 7 1
1-[ 22

us ws

- wg g1 (u<) 11 orania
(S”'Uim (otherwise)

2.4.2 Nanoindentation

In our model the nanoindentation is represented by a jellium substrate and
jellium STM tip which has a cone angle 2 and height 4)p. We calculate the
conductance of nanoindentation as the tip is pushed continuously towards the

metal substrate. Here it is assumed that A increases continuously as in the
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continuum approximation to the matter, in which the excess material due to
the tip indenting the surface is implemented to the cylindrical neck growing at
the contact. As a result the length d of the neck at the contact increases with
increasing s, the distance indented in the material. In reality, d may be even
relatively smaller since A is expected to be larger near the surface. We have
presented the results of our calculation for G(A) and G(s) in Figure 2.4. Note
that due to the tunneling neither the jumps are steep nor the plateaus are flat
in the (¢ versus s curve. The important question to be addressed now is whether
the steep jumps in experiment correspond to the quantization of & or not . Of
course, for A ~ M4 and d ~ Ap the electron energies in the contact are quantized
with wide level spacings. The structure of (¢ curves is only the manifestation
ol this phenomenon, but does not indicate the quantization of G itsell. How
sharp are the steps and how close are their heights to the multiples of &, can
be taken as a criteria for the perfectness of the ”quantization” and also as the
signature for the formation of individual channels. Here we should emphasize
the fact that the model used in Figure 2.4 is too idealistic. The actual contact
shall be relatively shorter (d < Ap) and nonuniform, and shall include severe
structural disorder. The quantization of electronic states do not lead to the step
structure of . Tunneling becomes important for short d and the current carrying
states are back-scattered from atomic disorders. As a result, the step structure is
smeared out and plateaus disappear. lor strong disorder (elastic mean free path
l. < 1), the channel openings are delayed and the step structure is shadowed by
the universal conductance fluctuations.?® At the end, the sharp step structure
is sinoother and is even faded away, but the noticeable jumps ol (¢(s) curves in
the range of G, occur when A experiences sudden and large increase. In the
experimental studies G is plotted with respect to s, since one cannot measure
A precisely in the course of indentation. In reality, the dependence of A on s,
i.e A(s), is not a continuous function,® but changes only at certain values of s.
Between two consecutive abrupt changes of A, (¢ would exhibit minor variation
except changes due to the relaxation of atomic structure. Consequently, the ¢/

versus s plots as presented in experimental papers generally reveal sudden and
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Figure 2.4: Conductance G versus cross section (a), and ¢ versus displacement
or push s (b) calculated for nanoindentation described in the inset. Dash-dotted,
dotted and continuous lines correspond to 2« = 120°; 90° and 60°, respectively.
('one angle 2o ~ 60° corresponds to a STM tip in the (111) orientation. Dashed
line is the schematic description of the variation of Gi(s) upon the discontinuous
change of the cross section while pushing. In (a), G(A) curves are up-shifted for

clarity.
much steeper jumps when A experiences abrupt changes; and this is represented
by a schematic description of the variation of G(s) upon the discontinuous change

of the cross section while pushing.
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['igure 2.5: Resonant tunneling effect in the neck inducing spikes on the plateaus.
(a) The surface profiles R(z), of the neck used in the calculations. (b) G versus
cross section A, calculated for surface profiles in (a). For A, the narrowest cross
section is taken; and the the solid line is up-shifted by 4G, for clarity in (b).

2.4.3 Resonant Tunneling

We have seen that in ballistic transport, whenever a subband energy ¢, is helow
[2),, it contributes to conductivity with ~ 1G, or ~ 2G, depending on the
degeneracy of the subband. Now, we would think of widening the constriction at
the center (z = d/2), therefore we would form a cavity (effective potential of which
resembles to a quantum well) along the channel. Thus the constriction acts like a

quantum well between two potential barriers for certain QPC configurations.



CHAPTLER 2. BALLISTIC TRANSPORT THROUGH 3D QPC 43

Such a structure leads to the formation of eigenstates at the center of the
constriction which are bound to the cavity. In fact our molecular dynamics
simulations and previous ones®® indicate that connective neck can be widened
locally in the course of stretch. While the form and size of the local widening is
modified in the course of the yield, a bound state may become aligned with Ep
temporarily. This way the necessary conditions are realized for resonant tunneling
to occur as in the double barrier reason ant structure (DBRT). As a result, a
peak is formed on the plateau of the (/(s) curve before the threshold of a new
fall. Since we do not know the actual variation of the local widening (it is too
much experimental condition dependent), we illustrate the resonant tunneling
effect by varying the diameter of the whole neck keeping the form (or surface
profile) invariant in Figure 2.5-a. The calculated & vs A curves are shown in
IPigure 2.5-b. From these graphs, we note that the structure which corresponds
to dot-dash curve merge to a plateau because it gives rise to several acdjacent
resonance structure; while that due to the continuous line representation (top
curve in conductivity) is well resolved. On the other hand, the bottom curve,
also reveals some resonance structure but it is hidden because 1t is occurring

adjacent to the plateau.



Chapter 3

Yielding and Fracture

Mechanics of Nanowires

3.1 Motivation

In the previous chapter, we have studied throughly ballistic transport in small
structure; and we have seen that direct generalization of the energy quantization
phenomenon in 2DEG to the 3D Q.P.C. may explain some structural features of
the conductivity such as the stair case feature with multiples of 2¢%/h. However it
fails for most of the other behaviors such as dips, subquantum steps, positive and
negative slopes on the plateaus. We believe that the discrete nature of the wire
is essential for various features observed experimentally. Therefore, a through
analysis of the atomic structure as a function of stretch is necessary. lu fact, recent
experiments? ™1 providing simultaneous measurements of force and conductance
variations have shown that the observed jumps in conductance are counected
with the sudden jumps in measured force. This phenomenon was predicted much
carlier by Ciraci and Tekman,'® who proposed that the sudden changes of i over
the smooth Sharvin’s conductance originate from the discontinuous variation of
the contact area.

The narrowest diameter of the nanowire prior to the break is only a few angstrom

or ~ A, where discontinuous (discrete) nature of the metal dominates over its

4.4
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continuum description. l'or example, in this length scale, the level spacings
ol electrons (0.1 — leV) become easily resolved even at room temperature,
and any change of atomic structure may lead to detectable changes in the
related properties. It becomes now clear that the yielding mechanisms of the
nanowires are quite different from those of macrowires displaying bulk properties.
The unusual plastic deformation of a connective neck under tensile stress and
resulting discontinuous force variations were first predicted by Landman ¢t «l.."
Subsequently, the mechanical properties of nanowire during pulling attracted
interest.3%4

Various electronic processes, which resulted from elastic and plastic defor-
mations of a nanowire are not fully understood yet and deserve {urther study.
Therefore we have investigated yielding and fracture mechanisms of nanowire
which is pulled by an external agent. To understand the origin of these
mechanisms and abrupt force variations, we also performed an extensive analysis
ol atomic structure in the course of pulling. In particular, we followed the motion
of the neck atoms and examined their symmetries and coordination numbers
during the abrupt force variations. We also investigated the effect of temperature,
initial size (neck diameter) and shape of the nanowire, with length increments
A5-47

used in simulation (Al). We used both embedded atom (EA) and 2-body pair

potentials,®® and carried out simulations based on molecular dynamics method.”

3.2 Molecular Dynamics Simulation

3.2.1 Investigated Parameters

In our simulations, we definine an interatomic potential which is responsible for
the atomic motion and cohesion. The interatomic potentials are described by
empirical potential functions. Here we used 2-body pair potential (PP) as well
as embedded atom model.

(foncerning the PP, we used empirical many body potential energy [unction

constructed in terms of pair potential?® interaction and it was applied to Cu bulk
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A= 110.76608 Ay =  -46.164783
A= 2.09045946 A, = 1.49853083
op = 0.394142248 oy = 0.20722507
Dy = 0.436092895 Dj; = 0.245082238

Table 3.1: Constants used to define Pair Potential.

matcrial and it was shown that this potential gives fcc as the most stable structure
for bulk Cu, as well as physical quantities were comparable with experimental
ones. However, the only handi-cap of this potential is that it predicts a positive

relaxation of interlayer distance at the surface. The potential has the form

® = D¢ + Do

where ¢qp(r) = Ape ek (3.1)

with values of A’s, M's, o's and D’s presented in table 3.1, and the energy is in
¢V and distance in A.

The other potential we used is obtained from the embedded atom model which
is a many particle potential. In fact such potential types have been introduced
with the work done by M.S. Daw et al..*® In this formalism, one writes the total
energy of the system as

By =3 Flpni) +1/2 3 éii(Rij) (3.2)
d 3 (i#1)
where
e pj; is the host electron density at atom ¢ due to the remaining atoms of the
system defined by: pni = T, pH(Ri;) with p?(R) is the electron density
contributed by atom j at distance R.
o ["(p) is the energy needed to embed atom : into the background electron
density p.
e ¢;; is short range (doubly screened) core-core pair repulsion between atom

¢ and atom j separated by distance R;;
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In the paper by S. M. Foiles et al.,"® the equation for the total energy parameters
arc empirically determined for the case where p may diverge from p,, (charge

density of the bulk sample). They take the core potential as

basth) = AR (3.3)
where Z(R) = Z,(1+ fR*)e >R (3.4)

and for Cu they take Z, = 11, oo = 1.7227, = 0.1609 and p = 2.. The atomic

electron density was computed from Hatree-Fock wave functions by
p*(R) = nsps(R) 4+ ngpa( R) (3.5)

and for Cu ng, = 1 and ng = 10.
Once the electron densities p§(R) and core interaction ¢(R) are both known, we
can determine F'(p) uniquely because the total energy of the homogeneous fcc

solid computed with E.A potential has to fit the simple universal function®
E(a) = —Eyu(1 + a™)e™ (3.6)

where I, is the absolute value of the sublimation energy at 0 temperature and
pressure; and «* measure the deviation from the equilibrium lattice constant.
Therefore, getting p(R) and F(p) numerically (which was supplied by M. S.
Daw), we can generate our potential and use it for our simulations.

Having discussed the potential parameters used in our simulations, we next
present the different structures we have investigated. The nanowires we studied
have two ends which are connected by a neck, and have quasi circular crossection.
The description of the structure are summarized in Iigure 3.1. Last three layers
at both ends (Ny, N2, N3 and Ny, N5, Ng) are fixed. The position of the atoms in
these layers are translated along the stretch direction only by the increment A/,
otherwise they are fixed during the MD-steps. These fixed three layers at cach
end are assumed to be connected to the external agent which applies the tensile
stress. Atoms in the following three layers adjacent to the fixed ones (M, My, M;
and My, Ms, Ms) and those of the neck (nl,n2,n3,n4,n5 and n6[if it exists])

are [ully relaxed. We considered the "wide-neck” (W N) and ”thin-neck” (T'N)
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N1
N2 ¢ | NI N2 N3 | M1 M2 M3| nl n2 n3 |Layer
N3 PA 2 . Poten|
11:44% .......... 4N\1 N4 N5 N6 | M4 M5 M6 | n4 n5 n6 Struc.
M3 .. 145 144 145 | 144 145 144 | 13 12 13
nl.... WN1 | 145 144 145 | 144 145 145| 12 13 Cu(100y EA
n2.....

3 wN2 | 145144 145 144 145 144 13 12 13 PP
T 145 144 145 | 144 145 144| 12 13 Cul(100
ns..... WN3| 143143143 143 143 13| 12 12 13
ne..... 143 143 143 | 143 143 143| 12 12 13 | Cu(1ll)} EA

M4 ..........
Ms T TNI | 41 40 41 | 40 41 40 [ 5 4 5 | 00l pp
M6 ooonnnnn. 41 40 41 | 40 41 40 | 4 5
N 41 40 41 | 40 25 12 | 5 4 5
TN2
1132 41 40 41 | 12 25 40 [ 4 5 Cu(100y PP

[Figure 3.1: Description of different structures used in the simulation.

structures. The nanowire indicated W N1 is formed from Cu(100) atomic layers;
the interatomic interactions are treated by the EA model. The wire itsell is
represented by a periodically repeating system in the @-y plane. The z-axis is
taken to be parallel to the axis of the nanowire. The interatomic interactions in
the nanowire W N2, in the thin nanowires T'N1 and T'N2 are treated by pair-
potentials. We have also investigated a nanowire having Cu(111) orientation
surlace with EAM in WN3 at T = 300K. Having seen that both potentials,
embedded atom potential and pair potential revealed the same general features,
we used pair-potentials (which is relatively faster) to explore various effects.

The pulling (stretch) is realized by displacing the fixed layers (N’s) from one end
by Al or from both ends (for TN2 only). Subsequently, the atoms ol the wires

(M’s and n’s) are relaxed to find their new positions.

3.2.2 Molecular Dynamics Method
In our MD simulations, we were pulling top fixed atoms (N1, N2 and N3) by
a distance Al = 0.14 and then relaxing all the atoms at the neck, M’s and

n's. The relaxing phenomenon is proceeded by solving Newton’s cquation of
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motion for every atom after finding out its interaction potential with the rest
of the system either with PP or EA. Here we used cut-off radius ( R,) 10A for
PP and 4.5A for EA. These R. values were chosen by convergence tests. During
the relaxation process, we took very short time steps At ~ D,/100 ~ 1075 to
integrate Newton’s equation. In such a short time interval, we can assume that

the force exerted on every atom is constant and we get

Vil = i)+ 280, gy
N v , oy Fe(d) 2 :
Xi(ty) = Xp(li) + Vilts)(ty — t:) + - (t; — 1) (3.7)

where the subscript k denotes the A atom in the system. ¢; and #; denote
the final and initial times respectively, with At = t; — (;, is the integration
time step; F'(¢;) is the force exerted on the atom at the initial time; and X,V
correspond to the position and velocity of the atom at the corresponding times,
respectively. In these simulations, we are neglecting all scattering phenomena in
the system; to avoid divergence of kinetic energy of moving atoms, we rescale
it to 3NkgT/2 every two steps. Here N is the number of moving atoms, kg is
Boltzmann constant and T is the temperature. We integrate Newton’s equation
( 3.7) over large number of time steps until convergence is reached. Convergence
criteria is tested by removing the rescaling process and checking that the kinetic
energy is roughly constant after many steps (~ 1000); this suggests that the
atoms have been trapped at a local minimum and we are ready for the next step
for pulling. The appropriate time step for integration At and the total number of
integration steps can only be investigated through tests, because it may change

from one system to another. Intable 3.2 we present the corresponding parameters

WIRE At # of steps  averaging
WNI  0.1x10%°s 25000 8333
WN2  0.9x10%5s 6000 2000
WN3  0.5x10%s 7000 2333
TN  0.9x10%s 8000 2000

Table 3.2: Description of different parameters used for systems relaxation.
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Force [nN]

-6.0

0.0 10.0 40.0 50.0 60.0

20‘.0 3(;.0

Stretch step [m]
Iigure 3.2: Interaction force between the top three layers (N1, N2 and N3) and
the rest of the system.

used for relaxation.

In order to calculate any physical quantity (such as force exerted on some atoms),
we have to use averaging procedure during our computation. Here, we note that
our time scale is very short compared to the experimental time scale. For this
reason, we take an average value over a large number of time steps (~ 1/3 of the
relaxing time interval) occurring towards the end of relaxation while measuring

physical quantities. In table 3.2 we give the corresponding numbers for averaging.

3.3 Results and Discussion

3.3.1 Nanowire WN1

We examine first the elongation and various physical events during the stretch
of the nanowire, WN1 at T = 300K. Simulations are performed by using IEA
potential. In Figure 3.2, we illustrate the variation of I, ( The interaction force

of the top 3 fixed layers N1, N2 and N3 with the rest of the system) as a function
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[Figure 3.3: Side view of the neck atoms at some specific stretch increments mAl.

of stretch mAl (m, being an integer multiples of increment). Figure 3.3, shows
the side view of atomic structure at the neck at some specific stretch increments.

The I,(m) curve shown in Figure 3.2 displays interesting features that are worth
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to be mentioned and discussed. The magnitude of the average force increases
“smoothly” with increasing m between two consecutive jumps, but it decreases at
each jump. The graphical representation indicates that a jump occurs whenever
approximately 18 increments of stretch are made. This value (which is ~ 1.8A4)
corresponds to the interlayer spacing of ¢ = a/2 = 1.81. Stated differently, the
tensile force makes a sudden jump whenever the length [ of the nanowire is
elongated by approximately an interlayer distance. The jump of I;(m) starts as
the atomic structure of the neck becomes irregular, and lasts until a new layer
with relatively smaller crossection is generated. We now examine various physical
phenomena in detail.

As we are pulling the top 3 layers and relaxing the neck atoms, the layer structure
becomes stable and it can be very well distinguished up to m ~ 18 (We could
observe only migration of few atoms from the neck to form horn like structure
with 8 atoms at the center). After this point, at m = 19 (the last increment before
the jump in F,(m)), the layer structure is destroyed and becomes amorphous (as
shown for m = 20 in Figure 3.3). The layer structure is recovered after a few
increments, at m = 24 with the creation of a new layer. At the end ol this
transformation, the crossection of the neck is reduced from 8 atoms to 5 atoms,
whereas the crossections of neck layers adjacent to the end layers (nl and n5) are
not altered. The local reduction of the crossection due to stretching causes |I%|
to reduce, and hence the outer layer spacings between M3 and nl (and similar
spacing at the other end) to decrease.

The layer structure of the neck is conserved in further stretch until m = 33.
Beyond that point, each increment of stretch by Al causes one atom from the
central layer to migrate and stay in the interlayer spacing which already became
wide open due to pulling from m = 25 to m = 33. This way a new "layer” with 2
atoms is formed at m = 35 as shown in Figure 3.3. Owing to the repulsive force
induced between layers, |F,| decreases abruptly. Moreover, the crossection of
the connective neck is further reduced with central layers including 5,2,3 atoms,
respectively. In the steps from m = 35 to m = 38, we note a transient event

which is relevant for transport properties: One of the two atoms in the neck layer
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created at m = 35, jumps back to the layer it emerges (Figure 3.3) at m = 37.
During the following increment, the single atom neck is strength by the inclusion
of one atom from another layer so that the necking becomes uniform by the layers
including 4,2,4 atom at the central part of the neck. Due to this exchange of one
atom, the conductance is expected to get a dip, which in fact has been observed.
The two-atom neck is very stable and it continues until the break, at m = 52.
Towards the end of the pulling, starting from m = 44, two atoms rotate in the
@ —y and become slightly inclined in the z-direction (m = 49). Such a fluctuation
in configuration, is expected to give rise to changes in the conductance just before
the break. To understand this process better, we will come back to this point
while we are studying lateral configuration. Finally we note that the narrowest
crossection of the neck prior to the break is having two atoms.

These results point to the fact that the structural transformations followed by
the abrupt change of |F;| result in necking; an additional layer is formed and
the narrowest crossection decreases usually by more than one atom. In addition
to these abrupt changes, we find another mechanism in necking which gives rise
to relatively smaller changes in crossection (by one atom) and it corresponds to
atoms migration from the neck towards M3 and M4.

[[aving discussed the structural transformations within atomic layers, which
are apparently non-planar and exhibit smooth distribution along the z axis,
we investigate structural changes in the lateral plane. In our study, we have
found that up to m = 12, the Cu(100) structure in the neck was having very
small and random delormation (the displacements of atoms are less than 10%
and no preferable direction is detected, especially those atoms without surface
interaction) is detected as shown in Figure 3.4. However, surface atoms of the
neck were having a slight tendency to move towards the center of the neck, this
is due to the minimization of surface energy. Beyond this stretch point, the
neck atoms start to build up a structure which deviates from A-B sequence of
Cu(100) and this deformation starts earlier at the neck center (ny, ns and ny) at
m = 15. In fact, this discrepancy includes two aspects, the interatomic separation

distance has slightly increased (dominant mainly for the central layer) and the 2D
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FFigure 3.4: Lateral atomic structure in the neck at different stretch increments
defined by the corresponding m values. In panel (a), we show the top 4 layers
(M3,n1,n2 and n3) and in panel (b) we show bottom layers starting from M4
until n4.

In (¢) we denote M3,nl1,n2 and n3 by plus sign, circle, diamond and down iriangle,
respectively. In (b) we follow the same sequence for the bottom neck layers starting
from M4 until n3.

square unit cell transtorms to a hexagonal one; as shown in Figure 3.4. lollowing
these changes, at . = 18 all the neck atoms have been affected by elongation
ol the neck, and they undergo the structural transformation which has occurred
previously at m = 15 for central neck atoms. After the jump in the lorce |I7,],
which corresponds to the birth of a new layer T at m = 24, Cu(100) layer structure
has been recovered at the end layers of the neck (ny, ny and ns, ng), while atoms at
the central part of the neck and at the surface still deviate from the original bulk
structure as shown in Figure 3.4. This mismatch with the Cu(100) structure
at the center of the neck is due to the additional one layer (number of layers
produced is odd) introduced, and as a result it becomes impossible to follow A-B

sequence of the Cu(100) and match this type of layer structure with the bulk

fwe would enumerate the neck layers by ny, na...ns
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[Figure 3.5: Lateral structure at m = 33 and m = 35. It is obvious how the lateral
structure is destroyed before the jump in F,(m) (at m = 33) and recovered alter
a new layer is formed (m = 35). Now the number of layers introduced is (wo.
The layer structure presentation is the same as in the previous Figure and only for
m = 35 we use square symbol to denote the new layer at neck center.

layers (M3 and M4). Therefore, at m = 24, eventhough the 2D square unit cell
15 likely to be recovered at the central part of the neck, atoms move laterally to
withstand this mismatch. We note that this deformation occurs mainly at the
center of the neck, because here, bulk influence is minimum.

Upon further stretch, layer structure, which is less stable compared to
configuration before the force jump, has been lost again at m = 33 and then
immediately recovered at m = 35, also with the recovery of the original Cu(100)
sequence as shown in Figure 3.5. The new layer structure is asyminetric as
mentioned above, and with further migration of atoms, a more stable structure
is built at m = 38. In this configuration we are having only two atoms at the
central neck layer and they are not enough to define layer structure. In fact we
have noticed while all the other neck atoms keep the Cu(100) structure, these
ones undergo some lateral displacement that may be worth for investigation. In

Figure 3.6, we show the lateral positions of only the central layers of the neck (n3,
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[igure 3.6: Lateral structure of neck central region to observe the bundle
[ormation before the break of the neck.
We present layers n5, nd and n3 by plus sign, circle and dianmond, respectively.

nd and nb), from the m = 43 up to m = 51 (just before structure break). Here we
note that except at point m = 50, the structure is tending to form two bundles.
Stated differently, the two atoms in layer nd(represented by circle in Figure 3.6)
tend to align themselves with atoms in the layers above and below them(n3 and
n5). The bundles form (atom alignment) is improving as a function of pulling.
[n fact this type of lateral motion may help us to understand the positive slope
observed experimentally just before the break of neck (Figures 1.5 and 1.6). As
we are pulling neck atoms at the smallest contact area align themselves to form
a 1D chain structure which result in maximum conductivity.

The only handi-cap of this explanation is what we are observing at step m = 50,
and in this configuration structure deviates from the bundle form. We think that
this can be due to thermal fluctuations and this problem can only be resolved by

taking a large number of averaging after relaxation of the system is reached.
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[igure 3.7: Interaction force between the top three layers(N1, N2 and N3) and

the rest of the the system for WN2.

3.3.2 Nanowire WN2

We will examine the simulation on the previous structure with PP while keeping
all other conditions (Al = 0.1A, T = 300K); this corresponds to WN2
simulations. The force, F,(m) versus stretch plot is shown in Figure 3.7. This
curve exhibits some fluctuations and abrupt jumps at m = 11, m = 30 and
m = 49, corresponding to increments of length close to the interlayer spacing
of Cu(100) structure (except for the first jump). We note that these results
are qualitatively the same as those obtained in [igure 3.2 using EA potential.
As a result we would expect similar atomic transformations in the structure.
[nvestigation of the nanowire show that the abrupt jumps in the I, (m) curve yield
to an additional layer at the neck with smaller crossection. This phenomenon

is illustrated in Iigure 3.8, in which we can see how the structure becomes
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[igure 3.8: Side view of the neck atoms at some specific stretch increments mAl

for W N2.

amorphous and is recovered with an additional layer at the neck. In the new
configuration, the crossection of neck center is decreased. However, the structural
changes in W N2 are not exactly as those for WN1. For example, at the starting of
the simulation in W N2, one neck layer has disappeared. This is due to the larger
interlayer separation distance favored by the PP near the surface, as mentioned
previously. The missing of this layer has altered the lateral layer structure which
deviates from Cu(100) structure. After recovering this layer, at m = 11, the
lateral structure has also been recovered and it became stable (the registry of the
lateral structure is kept up to m = 23). Another important difference relative to

W N1 , is occurring towards break of the neck. In WN2 system, only one atom
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exits at the neck before the break. Of course, this suggests that the crossection
ol the neck is smaller than in WN1 and as a result the conductivity for the last
plateau (just before break) would be smaller by a factor ~ 50%. This can be the
reason why in some experiments we see a conductivity of ~ (, while in others
~ 207, in the last plateau.

Next we concentrate on the structure just before the break of the neck. At
stretch increment m = 48, one atom enters into the center of the neck and we
get, central layers configuration n3,n4 and n5 with 6,1 and 3 atoms, respectively.
This configuration is very stable and it continues until the neck is broken, at
m ~ 59. During this stretching sequence, neck atoms in layers nl,n2,n3,n6 and
nT are in registry with the Cu(100) structure. However, atoms at the central
region of the neck, nd and n5 perform some lateral fluctuations due to minute
bulk effects and the small number of planar atoms which cannot define layer
structure. In Figure 3.9, we show atomic positions in the layers n3,n4 and n5 for
various stretch increments before the neck breaks. At the beginning of stretch
increments, from m = 50 to m = 55, the central atom ( represented by a circle
in the Figure), tends to have a hallow site configuration. Within further stretch,
starting from m = 56, this atom changes its configuration to the top site and
a bundle structure is formed at the center of the neck. Unlike nanowire W NI,
where the two central atoms migrate from the neck center to the bulk ; the one
atom configuration in this structure seems to be quite stable. The atom keeps its
position even after the neck is broken. Therefore it seems that Cu atom hetween
two slabs with separation distance approximately equal to interlayer spacing,
prefers the hallow site and it is quite stable. Within further pull (or increase of
separation distance of the slabs), the binding energy increases and at a certain
separation distance, the top site become favorable (with lower energy). In fact
some calculations were performed previously on Al(001) slab and tip (only one
atom at apex) with self-consistent-field calculations (SCI').*® The results showed
that for a separation distance between the slab and tip (~ interlayer spacing), the
hallow site is favorable and stable. However, as the separation distance increases,

the binding energy also increases and after a pull ~ 0.54 the top site becomes
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[figure 3.9: Lateral structure of neck central region towards the break of the neck

We present layers n3, nd and n5 by plus sign, circle and dianmond, respectively.

favorable. Eventhough, these SCI' calculations were made on a different material,

we think that it can explain well the configuration that is occurring in our system

helore the neck breaks.

3.3.3 Nanowires T'N

We have shown previously that qualitative features in the atomic [racture is the

same for EA and PP. Therefore, in order to investigate other parameters, we

have decided to use PP which requires shorter computer time. We have initially

investigated the structure effect. We have made our MD simulations on nanowire
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T'N1 (which is much smaller than the previous ones) at 300K. The general
features, were the same as those of wire W N2. Initially, the wire was relaxed to
give 4 layers at the neck. The first two jumps in the force curve correspond to
the amorphisity in the system followed by the formation of a new layer at the
neck center with smaller crossection. The third jump was related to the break
ol the neck. The configuration of the central region of the neck before it breaks
was composed by 4 layers having atoms 7,1,2 and 7. This configuration was very
stable, it has survived for 10 stretches. Finally we note that there were only two
layers introduced at the neck; this is due to the small number of atoms at the
crossection of the neck.

We have also investigated the effect of stretch increment on the nanowire
T'N2. In order to decrease simulation time, we have decided to stretch our
sample from both sides by increments Al. We have investigated three different
increments Al = 0.05A (which corresponds to stretch of 0.1A4 from one side),
0.1A and 0.15A. The force curve for the first two values of Al (0.05A and 0.1A)
gave nearly the same results. The jump in the curve was corresponding to the
[ormation of a new layer alter a stretch length ~ 1.94, and the neck has broken
after stretch of ~ 3.64 (Total length in both directions) for both stretching
increments. However, for the last increment length scale, Al = 0.15, no jump
in the curve was observed and no layer was produced. The force curve was
varying smoothly in a parabolic shape until the nanowire breaks at early stage
[rom the neck center. From these results, we understand that there exists a
limit for the stretch increment Al ~ 0.1A4 [rom both ends. This corresponds
to the maximum tensile force (or max speed of withdrawing a tip from sample)
above which neck breaks before showing any layer structure variation. In all our
previous simulations, we were using an increment Al = 0.1A from only one edge.
This suggests that our results, the calculations we draw there form are reliable.

Iinally we have investigated the effect of temperature on small systems while
pulling them. Therefore we have made simulations at 1K for structure T'N2 with
stretching length of Al = 0.1A. We have allowed this structure to relax for a

longer time (24000 steps) because of its small kinetic energy. In IFigure 3.10, we
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Figure 3.10: Force versus stretch increment mA[l for nanowire T'N2, with
stretching length increment Al = 0.1A4 from both ends and Temperature 300K
(a), and 1K (b).

show the force versus stretch for T'N2 nanowire at 1" = 300/ and 7' = LK. 'The
first striking phenomenon is that thermal fluctuations have diminished completely
in the plot obtained at 7" = 1K. The step structure in this curve is much
sharper than the one corresponding to 7' = 300/. We also note that subsequent
jumps in the force curve occur at a large stretch interval for 1K calculations
than that at 300K. This has induced a stronger attractive force. While we
are investigating the atomic structure of these systems we have noticed that at
' = 1K, structure stays amorphous nearly all the way before inducing the first
layer. This discrepancy can be explained by the fact that at low 7', the kinetic
energy is small enough that atoms are trapped easily in local minima energies.

Therefore, larger stretching distance is required in order to separate atoms from
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Figure 3.11:  Force versus Stretch increment mAl for nanowire WN3 at

T = 300 K.

each other and increase the force of attraction between them so that they can

move [rom one local minimum to another.

3.3.4 Nanowires WN3

['inally we have investigated nanowire W N3 . This correspond to a “wide-neck”
Cu(111) structure. This neck may show interesting features because it is known
to be more stable compared with Cu(100) structure. We made our simulation for
W N3 at temperature 7' = 300K. We present our force plot [I;(m) (for WN3)
in Figure 3.10. Investigation of this plot, shows that the fluctuations in the force
is minimized compared to the graphs for WN1 and WN2 structures. In this

curve, we can recognize 4 jumps corresponding to m = 18, m = 36, m = 43
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and m ~ 58 which correspond to the neck break. We note that the first two
jumps correspond to subsequent stretches of the order of interlayer spacing in
Cu(100) ~ 1.8A4, but not in Cu(111)~ 2.1A, while the third one corresponds to
a stretch ~ 0.6A. From our previous analysis we conclude that it is very diflicult
to have any new layer formed during the third jump. After investigation of the
side view, we understand that the first two jumps correspond to to formation of
a new layer with smaller crossection ( with 6 and 3 atoms ) alter amorphisity has
occurred. However, the structure of the central region of the neck seems to be
very unstable after the 2"¢ layer is introduced. From m = 37 up to m = 41, the
layer structure in the central four layers has smeared out and we had to wait
up to m = 42 in oder to recover the structure with the same number of layers as
in m = 36. Therefore, the third jump is just a sign of recovering layer structure
with neck layers having atoms 5,3,3 and 7. This configuration also seems to be
unstable, because there was a bouncing between the configuration with 3 atoms
at the central layer and the one with only two atoms as a function of stretch until
m = b3. After this point, the neck central region became amorphous and the
neck was hroken after few steps.

Irom the above discussion, we conclude that after stretch of ~ 3.6A4, layer
structure 1s not well defined at the central region. On the other hand, it is
very stable at the 2 layers adjacent to M structure. This would suggest that the
reason for the amorphisity in the central region is the diminishing of any bulk
property which can keep the structure stable as a function of stretch. However,
one may raise the point that we have already stretched the structure WNU for
~ 5.54 and we have not seen this property. In fact, eventhough this point
seems quite reasonable, we should emphasize that the original neck length for
W N3 nanowire is 6 Cu(l11) layers. In the nanowire, WNI1, we were using
only 5 layers of Cu(100). This would yield to an increase of ~ 3.7A in the
W N3 nanowire neck length which would result in a less bulk effect at the neck
central region, and this is the reason for the amorphisity in the system. After
this analysis, we have investigated the lateral structure in the layers once they

occur. During the stretching process, the lateral atomic positions in every layer
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formed a hexagonal shape or a portion of it. This was the original configuration
given. [ven the interatomic separation distance has increased slightly whenever
atoms feel surface effect. In fact this hexagonal shape has alrcady been observed
in Cu(100) structure when the interlayer separation distance has increased. o
understand this process better, we have made two different simulations. The first
one containing HCu atoms and the second one having 7Cu atoms; and they were
constrained to move on a plane. After convergence was reached, the 5Cu atom
system has formed a portion of a hexagon while the 7 atom shape was a complete
one. The interatomic separation distance was in the range of the nearest neighbor
distance in Cu bulk material. It was in the range of ~ 2.4 — 2.94. This result
shows that that Cu(111) layer structure is the stable one. However, investigation
of the layer positioning with respect to each other has shown that A — B — C
sequence is very fragile in the presence of surface effects. We have noticed that
initial relaxation of the system was enough to destroy the closed packed form. In
fact the hallow site configuration was the most preferable one, but it was made
in a complete disorder. Due to this disorder in the layer positioning sequence,
we expect some also variation in the interlayer distance ( We expect it less than
the original one since this configuration is similar to Cu(100)one). This would of
course lead to a new layer induction even at early stage.

Now we would compare the early results obtained for nanowire W N1 and these
ones. We conclude that the layer structure in Cu(111) is much more stable.
[Towever, due to surface effects, the layer sequence in these structures is very
fragile and it seems that sequences obtained in Cu(100) are much more stable.
However we note that the transition process for decreasing the contact area is
random. This change can be even up to three atoms. It is also worth to note
that, atom migration can also be important in decreasing the contact area but it
lias a minor effect on physical quantities because it occurs at wide crossections

and it corresponds to atoms at the surface.



Chapter 4

Self-Consistent-Field

Pseudopotential Calculations

The electronic and atomic processes in nanowires have been treated in the
previous chapters by using certain models and approximate methods. To confirm
the results obtained [rom these studies and to examine certain [catures we need
to carry out ab - initio calculations. For example, to better understand the
conduction in an infinite atomic chain, we performed structure optimization by
using total energy minimization, and carried out electronic structure as well as
charge density calculations on various atomic chains formed from certain metal
and semiconductor atoms. The ab - initio potential V(7) was also of interest, to
fit the potential in equation 2.23. To investigate the variation of this potential
and compare with the infinite wall cylindrical potential, we also calculated V()
in atomic neck self-consistently. We also calculated the yield strength ol atomic
chain to understand the origin behind the obsreved yield strength.''™" ‘The
results of all these ab - initio calculations are combined to construct our theory
on the electronic and atomic processes in nanowires.

We performed sell consistent-field (SCF) pseudopotential calculations in the
momentum space within local density approximation. We used nonlocal, norm
conserving pseudopotential given by Bachelet et. al..’* The exchange-correlation

potential is expressed by Wigner form. In many calculations, the atomic
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Iigure 4.1: Band structure for an optimized one dimensional chain ol Al(a),
and Na(b) along &, with k, and &, sct to zero. The horizontal lines show the

corresponding Fermi levels.

structure is optimized to have minimum total energy. In the calculations the sell-

consistency iterations are continued until mean-square diffcrence hetween two

consecutive iterations is smaller than 1077 Ry. In the band energy and charge

density calculations the k—sampling is selected to yield convergent results. lor

Al and Na we used the kinetic energy cut-off ]/j + C-r;lz < T.5Ry.

We computed first the total energy of the bulk Al and Na, to calculate the energies

relative to the bulk values. We carried out calculations on the infinite Al and Na

atomic chains with and without Pierls distortion, Al and Na neck having single

atom, bulk and nanowire Young modulus.
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In Figure 4.1, the electronic band structure of the Al and Na chains are shown.
The binding energy of the Al-chain relative to Al bulk is 0.172Ry/atom. I'rom
this result we understand that the Al-chain yields positive binding energy (or
cohesion) which is slightly smaller than the bulk cohesion. The binding in Al-
chain occurs by the c—~bond between 3p,+3s orbitals aligned along the chain axis.
The 3p, and 3p, orbitals attribute to the cohesion by relatively weaker m—bonds.
The widths of the 3spo and 3pr-bands are ~ 0.4Ry and ~ 0.2Ry, respectively.
The 3pr—band is degenerate and crosses the Fermi level. In Figure 4.2 we show
the results for charge density distribution for state k, = k, = 0. and k, = 0.2

and on the z — z plane with y = 0. The first contour plot (a), correspond to the
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state with n = 2 as well as the state with n = 3. This is due to the degenecracy
in the 3pr-bands. In (b), we show the plots for n = 1. Analysis of these graphs
indicates that the probability of the density of state with n = 1 is by a factor of
3 less than the one corresponding to state n = 2 and n = 3. Moreover, this state
is nearly localized in the region intermediate between the two atoms whereas the
others are extended along the chain direction. Due to these properties ol states
n =2 and n = 3; we conclude that in 1D Al systems, 2 channels open for current
carrying states and the conductivity would be ~ 2 x 2¢*/h whenever a small
potential difference is applied between the ends.
We have also investigated Pierls distortion along the z — azis for Al structures
and they have resulted in a much more stable structure than the 1D chain.
However its binding energy was still less than the bulk Al cohesive energy as
it is expected. We have investigated band structure along this system and its
charge density distribution. The results were qualitatively the same as for the
case of 1D chain. In fact, such a result is not surprising because such a distortion
does not destroy the symmetry for 3p, and 3p, in the systemn and as a result the
3pm-bonding is still degenerate.
The Na-chain has only one band which crosses the Fermi level and it is hall-
filled. This band is mainly due to the bonding contribution of Na 3s orbitals.
After investigating charge density distribution of this state on the @ — = plance
we found that it is a conducting state in the z — direction. Therefore, this band
contributes to one quantum conductance to the conduction along the chain. From
these results we conclude that electronic properties of atoms at the contact play
crucial roles in the conductance calculations. If these two problems were treated
within free electron model they would apparently lead to the same result. In
these treatments only the potential V() is taken into consideration which was
apparently the same for both of them. This potential contour plot was also
investigated and it can be approximated well with an infinite wall cylindrical
polential.

Following this study which has shown the importance of electronic structure,

we were motivated to study some electronic characteristics of neck structures



CHAPTER 4. SCI" PSEUDOPOTENTIAL CALCULATIONS 70

0.50 T T
0.45-"'53. i
s o, "'..
.. L J ...
L 2
° [ 4 ...
= ¢ o * .. ...::g.".
& ".:.':"!"".".."...
el ®
& 0.40 | . .-: ]
5 . :
[ = e
L L 3..
. ® o o .
[ ] L J
“888:3... ... ® ©
e 3 s
et .Q.. .....
0.35 ® .:.:.:.oo._
.
° e o
[ ]
0.30 L :
0.00 0.10 0.20
Kk /1/a,]

IMigure 4.3: Energy band structure for Al neck along the k. while k, = &k, = 0.
The bands are drawn from n = 39 until n = 49.

using SCI' calculations. We have initially simulated one Al atom between two
slabs. In this model we are representing the slabs by three layers of AI(100)
surfaces. Fach layer is composed of 9 atoms and the system is periodic in 3D.
We are in fact aware that this periodicity may include some artificial effect on
the wave function solution. We are now still at the first steps for investigating
this problem and we are increasing the dimensions for consistent results. After
reaching convergence, we calculated the band structure along k. divection while
ke = k, = 0.. These results are shown in Figure 4.3. In this figure there
are many states that are crossing the Fermi level. At a first glance, one may
think that our system is resulting in many conducting states and would lead

a higher conductivity compared to Al-chain. Investigation of the probability
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density distribution of these states on the  — z plane has shown that there is
only one conducting state. The probability density for this state is shown in
[igure 4.4. From these results, we recognize that the structure transformation
feads to a different type of bonding and this may affect the result for conductivity
calculation.

['inally, we wanted to investigate the yield strength in the 1D nanowires and
compare it to the experimental value. In order to do this, we obtained the
total energy of the system as a function of displacement of Al atoms from their
equilibrium distance. This showed that for a small displacement ~ 0.5A, it is
casy to make a parabolic fit, from which we deduced the spring constant ol the
LD chain. Now we can calculate the Young’s modelus defined by

v = stress  ['/A

" strain - AL/L (4.1)

Now treating the force as the spring constant multiplied by the stretch increment,
we found Young’s modelus as 263.33G;Pa which is a value of four orders ol

magnitude larger compared to the average value for bulle Al. This shows that the
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neck structure is very stable and resists any stretch before it breaks.



Chapter 5
Conclusion

[n this work we investigate electronic and atomic properties of nanowires
and atomic chains to understand electronic transport and fracture yielding
mechanisms. Our aim is to develop a theory which resolve the dispute on the
“quantization” of conductance in connective necks. We have based our study on
experimental results taken by STM and MCBJ. In these works,*"?" conductance
(i is measured as a function of separation between two samples forming a neck.
These results have revealed a step structure shape in (¢ versus s cuves, having step
heights usually at multiples of G, = 2e*/h. However, the (¢ versus stretch curve
were not fully reproducible. Sometimes, they have small slopes (positive for the
last plateau and negative at the intermediate stages). Morcover, we have noticed
that at some circumstances dipping phenomenon occurs before formation of a
new plateau (with smaller conductance). In view of those experimental results,
it is concluded that the conductance is quantized in nanowires..!™?® It was also
thought that treating these necks with free electron model in the ballistic regime
would fully explain these results. In fact this type of approach is a generalization
of conductance quantization phenomenon observed in 2DECG. In this type of
analysis, every energy eigenstate which dips below the Fermi level opens a new
channel giving conductance ~ 2e%/h. We have applied this type of formalism by
solving Shrodinger equation in all space (treating the samples at the left hand side

and right hand side with jellium approximation). After finding the wave [unction,
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we have calculated the current passing through the constriction if a very small
chemical potential difference Ay 1s applied between the left and right electrodes.
T'hen we have calculated the conductance as a [unction of crossection ol the
constriction. These calculations were carried out by approximating the potentials
with circular symmetry, which comprise both infinite cylindrical potential well
and parabolic potential. Some qualitative features were obtained while comparing
these results with experimental ones; at least the step structure has appcared.
However, all other experimental features were absent. Therefore, we generalized
our method to a much more realistic potential and we made simulation of pushing
a tip into a jellium slab. The results were also featuring only few aspect of
the experimental data and steps were not very sharp when ' versus s curve
was plotted. This has made us convinced that treating the problem within
the free electron model does not include all aspects of the experiments, and
probably investigating the idea that relates the variation of conductance to atomic
rearrangement may lead to better results.

To investigate the atomic rearrangement, we have simulated different neck
structures with Molecular Dynamics method for different parameters, such as size
temperature, stretch speed etc. The general results obtained were qualitatively
the same; and in the [ollowing part we present the most interesting aspects

obtained and relate them to experimental results.

e As a function of pulling, the neck conserve its atomic structure for a long
time. Once the length of the stretch becomes approximately equal to the
interlayer spacing a new layer with smaller crossection is induced at the
center of the neck. This change occurs at a very short time scale and it is

followed by a similar sequence until the next layer is formed.

e Every change in crossection corresponds to an abrupt jump in the attractive
force between the top fixed layers and the rest of the system (tips and
sample). This is in agreement with recent experiments which measure the

variation of conductance and force simultaneously.* "

o The theoretical results together with the recent experimental results
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show that the change in conductance measurement is due to atomic
rcarrangement; as the new layer with smaller crossection is [ormed, the

conductivity drops to a lower plateau.

o The change in the contact area is not constant, therefore the step height in
the conductivity may change and it is dependent partly on the conditions

of the experiment and partly chaotic.

o After a new layer is formed, we have noticed that number of atoms contained
in this layer may increase. This may result in variation of (¢ in the same

plateau.

e Atoms which are occurring at the neck surface migrate; this would also
change the conductivity slightly and may result in a negative slope in the

plateau of conductivity.

e Our simulation showed that in the last configuration, we may have one or
two or even three atoms before the neck breaks. Therefore it is becoming

very difficult to talk about any universality for these problems.

e In our simulation a bundle form appears just belore the neck breaks. This
bundle shape is improving as a function of neck stretch and this would

result in a positive slope for the last plateau of conductivity.

In addition to this work, we have also made some ab - nutio calculations to
investigate the electronic and atomic structure of nanowires and atomic chain.
These have shown that in small scale structures where the energy of states become
discrete, electronic structure play a crucial role in conductivity calculations. For
example Na 1D chain contributes to a conductivity ~ 2¢*/h while that of Al
contributes ~ 4e/h. Turthermore, the atomic structure at the neck and its
crossection to the rest of the electrodes are crucial in the reseting of electronic
structure and transport properties. This implies that a realistic solution of
the problem has to consider the full atomic structure together with the true

connection to the reservoirs.
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I'inally, we also predicted that an atom chain has a Young modulus much larger
than the bulk value. Therefore, we believe that a good understanding ol the
problem requires treating all three phenomena, namely, [ree electron model,

atomic and electronic structure, simultaneously.
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