11, &
alirrYiil mue2:)blnt) fill

Sxi» W jw- Mu,wAS3AbAle; w Bl HJTTRAT RAY

2-2MTMH2- TO THE DEPAHTMEfVT OF fMDA4.i81TjiAL

HHgi".?EESTLL )
wir 4 “wtl

Qi? »T'CZ:/\:T UtITVSHSTT/

o AWV TR g T
" fWH’“' O w PR WA VA BY W -V

fOB THE DEOPE-E Z:
U S5-¢ p"a UIC

b il LET e



MODELING THE SUPPLIER UNCERTAINTY WITH
PHASE-TYPE DISTRIBUTIONS IN INVENTORY
PROBLEMS

A THESIS
SUBMITTED TO THE DEPARTMENT OF INDUSTRIAL
ENGINEERING
AND THE INSTITUTE OF ENGINEERING AND SCIENCES
OF BILKENT UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF
MASTER OF SCIENCE

By
Ahmet Barig Balcioglu
September, 1996



TS
160
B25
1396

8.035242



1

[ certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quahtv a,s a thesis for the degree of Master of Science.

S

Assoc. ProtB\t)Jlku Gurle)(Prmmpal Advisor)

[ certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Blof. Halim %ﬁsoz/?

[ certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Assist. Prof. Refik Gillu

Approved for the Institute of Engineering and Sciences:

// Ldf/ﬂﬁ

Prof. Mehmet Bar@?/

Director of Institute of Engineering and Sciences




ABSTRACT

MODELING THE SUPPLIER UNCERTAINTY WITH
PHASE-TYPE DISTRIBUTIONS IN INVENTORY
PROBLEMS

Ahmet Barig Balcioglu
M.S. in Industrial Engineering
Supervisor: Assoc. Prof. Ulkii Giirler
September, 1996

This study considers a stochastic inventory model where the supply
availability is subject to random fluctuations. The periods in which the supplier
is available (ON) or unavailable (OFT') are modeled as a semi-Markov process.
During ON periods the (¢,r) policy is applied. During OFF periods, the
amount enough to bring the inventory position to ¢ 4+ r is ordered as soon
as the supplier becomes available again. The regenerative cycles are identified
by observing the inventory position and using the renewal reward theorem the
average cost per time objective function is derived. In our study, a K-stage
Phase-Type distribution for ON periods and a general distribution for OFF
periods are assumed. In our study, the problem is theoretically solved for K-
stage Phase-Type distributions; additionally numerical computations are made
for 2-stage Phase-Type distributions. For large ¢ values the structure of the

objective function is investigated.

Key words: Inventory Models, Phase-Type Distribution, Semi-Markov
Processes, Supplier Availability
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OZET

ENVANTER I?ROBLEMLERiNDE SUNUCUNUN
BELIRSIZLIGININ EVRE-TURU DAGLIMLARLA
MODELLENMESI

Ahmet Barig Balcioglu
Endustri Miuhendisligi Bolumu Yiksek Lisans
Tez Yoneticisi: Dog. Ulkil Giirler
Eylal, 1996

Bu ¢aligmada gesitli nedenlerden 6tirt arzin rassal dalgalanmalar gosterdigi
bir envanter modeli anlatilmaktadir. Sunucunun hizmet verdigi (ACIK) ve
veremedigi (KAPALI) stireler bir yari-Markov siire¢ olarak modellenmistir.
ACIK durumlarda (¢,r) politikasi uygulanmaktadir. IKKAPALI durumda ise
sunucu tekrar caligabilir duruma gelince, envanter pozisyonunun ¢ + r'yve
citkmas: icin yetecek miktarda ismarlama yapilir. Yeniden tekrarlanabilir
cevrimler, envanter pozisyonu gézlemlenerek belirlenir ve yenileme 6dil kurami
kullamlarak birim zaman ortalama maliyet iglevi tiretilir. Caligmamizda,
ACIK doénemler i¢in K- agamali Evre- Turi, KAPALI donemler i¢inse genel
bir dagilim varsayilmaktadir. Bu ¢aligmada, problem K-agamali Evre-Turt
dagilim igin kuramsal olarak ¢6zilmis, ayrica 2-agsamali Evre-Tirid dagilimlar
kullamilarak sayisal ¢oziimlemelere gidilmigtir. Buyik ¢ degerleri i¢in amag

iglevinin yapis1 da incelenmigtir.

Anahtar sozcikler. Envanter Modelleri, Evre-Turu dagilimlar, Yari-Markov

Stregleri, Arzin Kargilanabilirligi.
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Chapter 1

Introduction and Literature

Review

Inventory problems are as old as human history, but introduction of analytical
tools to study these problems has started since the beginning of this century.
The importance of studying inventory problems arises from the fact that, we
can not avoid carrying inventories due to several reasons, the main one being
that it is either physically or economically impossible to obtain and distribute
goods whenever demand occurs. If inventories are not kept then the customers
should wait until their orders are supplied which will result in low customer
satisfaction. Other than this, to cope with the effects of inflational or seasonal
fluctuations of demand and prices, manufacturers are forced to hold inventories.

Several other reasons may be listed similarly.
The basic questions that inventory managers are faced with are:
e How often should the inventory status be checked (i.e. what should be
the review interval)?
e When to replenish the inventory?

e How much to order for replenishment?



CHAPTER 1. INTRODUCTION AND LITERATURE REVIEW 2

These issues are handled by introducing mathematical models for inventory
processes. A good mathematical model should capture the main features of the
real problem, while avoiding analytical and numerical complexities. Inventory
systems differ in size and complexity, in the types and nature of the items
they carry, in the nature of information available to decision makers, in the
costs related with operating systems. Most of the inventory models aim to
minimize an objective function with respect to costs, although there may be
other objectives such as profit maximization etc. Basically four types of costs
relevant to an inventory problem:

(1) Replenishment Costs

This is the cost incurred each time a replenishment action is taken. It can be
considered in two parts: (i) the fixed amount, often called setup or ordering
cost, which must be paid to the source independent of order size, (ii) a
component that depends on the size of the replenishment.

(ii) Inventory Carrying Costs

Holding stocks include several costs such as: (i) the opportunity cost which is
the cost of capital tied up in inventory rather than having it invested elsewhere,
(ii) warehouse operation costs, (iii) insurance, (iv) taxes, (v) potential spoilage
or obselecence of goods. Usually these costs are accepted to be proportional
to the average inventory level, where, in fact some components may be related
to inventory level in a more complicated manner.

(iii) Stockout Costs

When stocks in hand are insufficient to meet customer demand, costs are
incurred as costs of back ordering and/or lost profit on sales other than loosing
the good will of the customer due to poor service.

(iv) System Control Costs

It includes the costs of acquiring the data necessary for the adopted decision
rules, the computational costs and costs of implementation. However in this

sequel this cost type is ignored.

Most of the research that has appeared in the literature implicitly assumes

that the goods are available from the supplier at any time an order is
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placed. Even in the models which include a (possibly random) lead-time, the
assumption is that the supplier will start production of the order and will

deliver the amount that has been required as soon as the lead-time ends.

This assumption may be approved only if the supplier is ’always’ available
to meet the demand requested. However in practice, supply of the product
may be disrupted due to several reasons as discussed below. Therefore, in this
study we consider a model where the supplier could also go through ON and

OFF times with random durations.

Following examples given by Giirler and Parlar [9] may illustrate the
ON/OFF structure of the suppliers: If the supplier has its own inventory
process, then we can say that the supplier is ON if ordered quantity ¢
is available in its inventory, and OFF otherwise. Or, as in a frequently
encountered example, supplier is considered as a production process which
is under statistical process control. The process may start production of items
out of specification limits beyond an acceptable proportion and inevitably the
process should be stopped before reaching the desired capability. In this case
the OFF times of the supplier will be the counterpart of the termination of
production while system is being inspected. Similar to this case, machine
breakdowns or some maintenance policies may also yield in disruptions in
production process and a need for studying supplier unavailability may arise.
Rare events such as strikes, embargoes or forced shutdowns of the plants are

other possible reasons for disruptions.

When such examples are considered, i.e., in cases when outside supplier
may not meet the supply at random times for random durations, the implicit
assumption of continuous supply availability would not be valid and new models

should be constructed to handle the disruptions of supply.
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1.1 Literature Review

There is a vast literature on modeling inventory problems. It is therefore not
attempted here to give an extensive survey of such studies. The interested
reader could refer to Lee and Nahmias [11], Porteus [23], Peterson and Silver
[22], Silver [27] and the references therein. Instead, we present below the main

studies where supplier unavailability is considered.

Silver [27] is recognized to be the first author who discussed the need of
studying supplier unavailability while constructing inventory models. In his
review paper, which is also important as it points out the ‘serious gaps existing
between the theory and practice in many organizations’, Silver says that while
considering the nature of the supply process, most of the literature ignores that
‘only a random portion (including 0, perhaps caused by a strike or poor quality
conditions) of the ordered material is received’. This is why he suggests finding
simple decision rules that must be valid under these circumstances. While
explaining the motivation for holding inventories, Nahmias [16] lists three
important uncertainties that play a major role as (i) uncertainty of external
demand, (ii) uncertainty of lead time and (iii) uncertainty of the supply. To
male the third one to be understood more clearly, Nahmias gives the OPEC
oil embargo of the late 70’s as an example when the electric utilities and the
airlines had to cope with curtailing operations due to fuel shortages. Other
important uncertainties are uncertainty of yield and uncertainty of capacity.
We suggest interested reader to read the review article of Yano and Lee [28]

on random production and procurement yields.

In order to represent disruptive events such that in our case it is the
supplier availability, alternating renewal process models are used. Meyer et
al [14] used this approach while analyzing a single stage production-storage
system of fixed capacity, with a constant known demand which is subject to
stochastic failure and repair processes. In this paper, after examining the
simple deterministic case corresponding to constant inter-failure and repair
times, the case with random inter-failure and repair times are considered.

Although a general solution of formulated recurrence equations have not been
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obtained, the exponential case is solved.

An article of Parlar and Berkin [20] which is more related with the present
study analyzes the supplier uncertainty problem for the classical deterministic
(EOQ) model, with a single supplier whose ON and OFF periods follow
exponential distribution. In the model presented, it is assumed that the
entire ordered amount will be available during the ON periods of the supplier.
But there is a positive probability that at any given time the supplier may
be unavailable (OFF) for a random duration. Applying concepts of renewal
theory, an objective function (average cost/time) is constructed to find the
optimal order quantities when orders are placed during the ON periods of
the supplier. Two special cases with (i) "memoryless” ON and OFF periods
and (ii) "memoryless” ON and deterministic OFF periods are discussed with

sensitivity analysis on the cost and non-cost parameters.

A critique to this previous paper comes from Berk and Arreola-Risa [3].
They point out that Parlar and Berkin [20] make an implicit assumption that
a stock out occurs during every OFF period while there is a finite probability
that at the end of a cycle there may be positive stock especially when the OFF
periods are much shorter than the ON periods. They also state that when the
total cost per cycle is derived as if the shortage cost is incurred per unit time
will not be valid when sales are lost. Keeping these in mind they develop the
‘correct’ model for the special case of memoryless ON and OFF periods and
investigate its characteristics and additionally they study the sensitivity of the

optimal order quantity to different values of the model parameters.

Karaesmen et al [7] extend the model of Parlar and Berkin [20] assuming
that supply availability periods and disruption durations of supplier are random
variables which need not to be independent. They provide two different
approaches to compute the expected cost per unit time while formulating the
general model. They evaluate the special cases when (i) the supply availability
periods and disruption periods are deterministic, (ii) the supply availability
periods and disruption periods are memoryless having a certain dependence

structure, (iii) the supply availability periods are memoryless and disruption
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periods depending on supply availability follow a two-point distribution. They
find out that the effect of correlation is case dependent for case (iii) and almost
"invisible” for case (ii). They observe that, as the length of the expected length
of disruption durations increases and the number of orders in a supply cycle
is one, the problem can be approximated by a single period problem which is

easier to solve.

In a recent paper, Parlar and Perry [21] extend the model of Parlar and
Berkin [20] and develop average cost objective function models for single,
two and multiple suppliers. In the case of two suppliers, in order to derive
explicit expressions for the transient probabilities of a four-state continuous-
time Markov chain representing the status of the system, spectral theory is
used. The probabilities found in this way are used in the computation of the
exact form of the average cost expression. For the multiple case, it is assumed
that all the suppliers are similar in availability characteristics and in a simple
model, they show that as the number of the suppliers increases, the model

reduces to the classical EOQ model.

Gupta [6] analyzes a continuous-review, order quantity/reorder point inven-
tory system with an unreliable supplier whose ON/OFF periods are distributed
exponentially. It is assumed that the unit demands are generated according
to a Poisson process and whenever shortages occur, they are lost. Moinzadeh
and Aggarwal [15] study an unreliable bottleneck production/inventory system
subject to random disruptions assuming that the demand and production rates
are constant. They propose an (s,.5) production policy and find expressions for
the operating characteristics of the system. They develop a procedure to find
the optimal values of policy parameters minimizing the expected total cost. In
addition they propose a heuristic procedure to find near optimal production

policies.

Gulli et al [8] analyze a periodic inventory model assuming that demand is
deterministic and dynamic where the ordered quantity can be either delivered
or cancelled if the supplier can not meet the order on time. Therefore

in a given period the supplier can be either available or unavailable with
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given probabilities which are nonstationary and independent from one period
to another. Their contribution with this study are (i) demonstrating the
optimality of an order-up-to policy, (ii) characterizing explicitly the optimal
order-up-to levels, and (iii) providing a newsboy-like formula to compute the

optimal order-up-to levels over the planning horizon.

In another study, Parlar [19] considers a continuous-review stochastic
inventory problem subject to suppler unavailability. It is assumed that the
demand and the lead-times are random variables. He assumes that the ON
period of the supplier has a k-stage Erlang distribution and the OFF period
is general. The supplier availability is modeled as a semi-Markov process.
When the supplier is ON, the (g,r) policy is used conveniently. But whenever
the supplier is OFF, the policy changes and an amount necessary to hit a
target value r 4 ¢ is ordered as soon as the supplier becomes available again
and this results in order quantity to be a random variable. Parlar constructs
the objective function (average cost/time) by first identifying the regenerative
cycles of the inventory position process. Employing "method of stages” causes
the problem to have a larger state space for the ON/OFF stochastic process.
However, the process is analyzed using Markovian techniques. The special case

when the order quantity ¢ is large is also considered.

Giirler and Parlar [9] enlarge the previous problem to the case of a duopoly
of two suppliers who may be ON and OFF independent of each other for
random durations. Each supplier’s availability is modeled as a semi-Markov
(alternating renewal) process. The durations of ON periods for the two
suppliers are assumed to be distributed as Erlang random variables while the
OFF periods of each supplier are general. The benefit of this approach comes
from the fact that any non-exponential random variable with coefficient of
variation less than one can be approximated by an Erlang random variable if the
choice of stage parameter of Erlang can be made in a proper way and as a result
the ON/OFF stochastic process becomes general under these assumptions.
The regenerative cycles of the inventory level process are identified and
applying renewal reward theorem the long-run average cost objective function

is obtained. Finite time transition functions for the semi-Markov process are
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computed numerically using a direct method of solving a system of integral
equations representing these functions. Then two particular case (i) a problem
in which the ON periods of both suppliers follow a 2-stage Erlang distribution
and OFF period of each supplier is exponentially distributed, and (ii) the
problem where the optimal order quantity ¢ may be ‘large’ are described. In
the latter case, it is shown that the objective function assumes a very simple
form to be used to analyze the optimality conditions. The paper ends with
discussion of alternative inventory policy for modeling the random supplier

availability problem.

The remainder of the thesis can be outlined as follows. In Chapter 2,
the main properties of Phase-type distributions are reviewed. Their closure
properties are stated and some special Phase-type distributions are examined.
Then the equivalence relations between some classes of these distributions
are presented. The second chapter ends with the methods of approximating
any general distribution with a Phase-type distribution. In Chapter 3, the
mathematical model of a continuous-review stochastic inventory problem with
deterministic demand and random lead-times where the single supplier is
subject to disruptions is constructed and the objective cost function is derived.
Chapter 4 includes the analytical solution of a special problem such that the ON
periods of the supplier is distributed with 2-stage Coxian distribution. Then
the model proposed in previous chapter is re-evaluated for large ¢ values. The
numerical results of special problems are displayed and discussed in Chapter
5. Chapter 6 gives the conclusion and possible future research areas with the

topic presented here.



Chapter 2

Phase-Type Distributions

In stochastic modeling, the assumption of exponential interarrival times with
Poisson arrivals is frequently used mostly for mathematical convenience due
to the lack-of memory property of the exponential distribution. For complex
models, exponential assumption is used to obtain tractable steady-state results
which avoid the cost of time-consuming simulations. However, for relatively

simple models, it is still desirable to obtain exact results under general

distributional assumptions.

Analytic approaches to models with general distributions rapidly become
complicated and intractable. An alternative approach is to consider probability
distributions and processes, which are computationally tractable while being
sufficiently versatile to reflect the essential qualitative features of the model.

The family of Phase-type distributions is an example of such alternatives.

The advantage of using Phase-type distributions is that their structures give
rise to a Markovian state description. Their potential for algorithmic analysis
is usually carried out using matrix algebra. The phase (or stage) concept was
first introduced by Erlang [5]. An Erlang distribution consists of a series of m
exponential distributions with common rate u. Therefore the random variable
associated with Erlang distribution is the sum of m independent exponential

random variables with rate p.
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A distribution even more general is the Coxian distribution. A Coxian
distribution with m stages, also termed as phases, is represented in Figure 2.1.
The Coxian distribution is more general than the Erlang distribution since it
allows non-identical rates and branching probabilities. This distribution may
be better understood by the following physical interpretation. Suppose that the
overall processing time of a task is decomposed into a set of m subtasks. The
processing time of subtask j is exponentially distributed with rate x;. Upon
completion of subtask j, either subtask j +1 is performed, with probability a;,
or the overall task is completed, with probability b; = 1 — a;. b,, = 1 explains
that at most m subtasks are performed. In the most general form of the Coxian
distribution, it is also possible to have a zero processing time with a non-zero
probability. This is achieved by adding a branching probability (ag, o) before
stage 1.

l-a, I-a, lag | I-a,

Figure 2.1: Coxian distribution with m phases

Cox [4] showed that any distribution having a rational Laplace-Stieltjes
Transform (LST) can be represented by a set of exponential phases. The
LST of any distribution function can be approximated arbitrarily closely by a
rational function (Newman and Reddy, [18]). Therefore, in principle, Coxian
distributions may represent any distribution either exactly or approximately.
The most general form of a distribution that are mixtures of exponential
distributions is the family of phase-type distributions. = A phase-type
distribution with m stages (or phases) is represented in Figure 2.2. The
following physical interpretation can be considered: Suppose that an overall
task is decomposed into a set of m exponential subtasks. (The processing time
of subtask j is exponentially distributed with rate x;.) The first subtask to be
processed is jth one with probability ¢o,;. Upon completion of subtask j, either

subtask k is performed, with probability ¢;k, or the overall task is completed,
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with probability c¢;o. The branching and transition probabilities satisfy,
Co,1 + ...+ Com = 1 and ¢ + ...+ Cjm + Cjo = 1

Again the possibility of having a zero processing time with non-zero probability
may be added. Note that a Coxian distribution is a special case of phase-type

distribution.

Figure 2.2: Phase-type distribution with m phases.

2.1 Definitions and Closure Properties

A phase-type distribution can be considered as the distribution of the time until
absorption in an absorbing Markov chain with the states {1,..., m+1} with m+1
being the single absorbing state. Note that since the feasibility and complexity
of numerical solutions of Markov processes are very much dependent on the
size of the state space, the number of stages of phase-type distributions should
be kept as small as possible for modeling purposes. Let () be the infinitesimal

generator of this Markov chain,

T T°
0 0

O
I
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where T is an m x m matrix with T}; > 0 for i#j and T; < 0 for i=1,...,m. In this
representation, m is said to be the order of the phase-type distribution. Then,
Te + T° = 0, where e is a column vector of ones and the initial probability
vector of Q is given by (a, am+1), With @ = [a, ..., @), satisfying ae + ami1=
1. Then T can be considered as the matrix of the rates of transition among
the phases and T is the vector of rates of transition from the transient states

[1,...,m] to the absorbing state m+1.

Definition: Let T be a square matrix. The matrix exp(Tx) is given by the

following Taylor series expansion:

& k &
exp(Tx) = 3 T"% =I+Tzx+...+ Tki‘k_' 4o
k=0 . :

for all x € R.

Lemma 2.2.2:(Neuts, [17], p.45) The distribution function of the time until
absorption in the state m+1, corresponding to the initial vector(q, am+1) is

given by,
F(x) =1 — aexp(Tx)e

for x> 0.

Lemma 2.2.1:(Neuts, [17], p.45) The states 1,...,m are transient if and only

if the matrix T is nonsingular.

Definition:(Neuts, [17],p.45) A probability distribution F(.) on [0,c0) is a
distribution of phase-type (PH-distribution) if and only if it is the distribution
of the time until absorption in a finite Markov process of the type defined in

(1). The pair (a,T) is called a representation of F(.).

The phase-type distribution presented in Figure 2.2 can be represented in
matrix notation and any PH-type distribution given in matrix notation can

be represented as shown in Figure 2.2. First we are going to find the matrix
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representation of the PH-type distribution presented in Figure 2.2: It is obvious
that @ = [co1, .-+, Co,m)- In the T matrix, Ty = —pu; for i =1,...,m while T =
cijp;i fori,j = 1,...,m and i# j. Then the following matrix of transitions among

phases is obtained:

— Ci2f41 Gty - Cimih
T = Ca1 42 —H2 Ca3fll2 . Comfd2
Cmilm Cm2fm Cm3fm - —Hm

With the same idea, T°, the vector of rates of transition from the
transient states [l,...,m] to the absorbing state is obtained as follows: T°
= [c1op1, C20442, cery Cmoftm]. Now assume that we have the T matrix of order
m, the T° vector, and the initial probability vector . What we aim is to
find the transition probabilities ¢i;j shown in Figure 2.2. We can directly

equate [co1, Coz, -+, Com) = & The transition probabilities among the transient

phases, ¢;; = ——% for i,j =1,...,m and i# j. The transition probabilities from
any transient state to the absorbing state, ¢;p = —-%‘? This brief discussion

shows the equivalence of the graphical and matrix representation of a phase-
type distribution. We now present some well-known properties of PH-type

distributions:
Some properties:

a. The distribution F(.) has a jump of hight a,+1 at x = 0, and its density
function F'(z) on (0,00) is given by F'(z) = aexp(Tx)T°

b. The Laplace-Stieltjes transform f(s) of F(.) is given by f(s) = am41 +
a(sl-T)~1T?, for Re s>0

c. The noncentral moments u; of F(.) are all finite and given by
ph = (-1)iil(aT '), for i> 0.

Suppose that upon absorption into the state m + 1, we instantaneously
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perform independent multinomial trials with probabilities oy, ..., m, @my1,
until one of the alternatives 1,...,m occurs. Restarting the process Q in the
corresponding state, we consider the time of next absorption and repeat the
same procedure there. By continuing this procedure indefinitely a new Markov
process is constructed such that (m+1)® state becomes an instantaneous state.

This new Markov process with states 1,...,m has an infinitesimal generator,

Q =T + ToA°
where T is an m x m matrix with identical columns T° and A° = (1 -
Cms1) " tdiag(ay, ..., am). Without loss of generality, we assume that a4 = 0.

The following definition is a characterization PH-type distributions in terms of

this modified process:

Definition:(INeuts, [17], p.48) The representation («,T) is called irreducible
if and only if the matrix Q" is irreducible. (From now on, we restrict our

attention to irreducible representation.)

2.1.1 Discrete Phase-Type Distributions

Discrete PH-distributions are defined by considering an (m + 1)-state Markov

chain P of the form,
T T°

0 1
where I - T is nonsingular. The probability distribution {pi} of PH-type is

P =

given by:

Po = Qmy1 Pk =T IT° for k > 1.
The corresponding probability generating is the following:
P(2) = amy1 + za(I — 2T)71T°
and the factorial moments are given by:

P*(1) = KlaT* Y1 - T)*¢
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2.1.2 Closure Properties

A number of operations on PH-distributions lead again to distributions of PH-
type. In each case, a representation for the new distribution is obtained. Before
stating the theorems, a notational convention will be presented. If T° is an
m-vector and f is an n-vector, the m x n matrix T°8 with elements T?3;, 1
<i:<m, 1< j < n,is denoted by T°B°. The following theorem states that
the convolution of two continuous (or discrete) phase-type distributions is also

a phase-type distribution.

Theorem 2.2.2:(Neuts, [17], p.51) If F(.) and G(.) are both continuous (or
both discrete) PH-distributions with representations (,T) and (3,5) of orders
m and n respectively, then their convolution F*G(.) is a PH-distribution with

representation (7,L) given by (in the continuous case):

7 = [, amt1f]
T Te°B°
o S

L=

Theorem?2.2.4:(Neuts, [17], p.53) A finite mixture of PH-distributions
is a PH-distribution. If (pi,...,pr) is the mixing density and Fj(.) has the
representation [a(7),T(J)], 1< 7 < k, then the mixture has the representation

a = [pma(l), p2a(2), ..., pre(k)], and
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Infinite mixtures of PH-distributions are generally not of phase-type. The
following theorem gives an important and useful exception, for which the

concept of the Kronecker product of matrices should be introduced.

Definition:(INeuts, [17], p.53) If L and M are rectangular matrices of
dimension k; x k2 and k; x k3, their Kronecker product L @ M is the matrix

of dimensions k1 k] x k&5, written in block-partitioned form as

LuA/.[ L]Ql"[ lezM

LkllM Lklgl\/[ coe . Lk;kgﬁ/[

Product property: If L, M, U and V are rectangular matrices such that the

ordinary matrix products LU and MV are defined, then (L MW U Q V) =
LUQMV

Theorem2.2.5:(Neuts, [17], p.53) Let {s,} be a discrete PH-density with
representation (3,.5) of order n, and F(.) a continuous PH-distribution with
representation (g, T') of order m, then the mixture Y 52,s,.F*(.), of the
successive convolutions of F(.), is of phase type with representations (v, L)

of order mn, given by

7= .@@ﬁ(l — ap1S)7!

L=TQRI+ (1 —any) T°A°Q( - ant1 +5)71S
Va1 = Bt + Amp1 (I — my18) 1 S°

L’ =T°Q(] — a1 S)71S°

The following theorem gives the corresponding result of the theorem2.2.5

when F(.) is a discrete PH-distribution.
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Theorem?2.2.6:(Neuts, [17], p.56) Let {s,} and {px} be discrete PH-
densities with representations of (B3,S) and (a,T) of orders n and m
respectively. 3%, s,.{px}(?) is of phase type with representation (v, L) of

order mn, given by,

7=a@® B — amy1S)™!
L = T®I+ (]. - O(m+1)TOAO®(I — Om41 + S)—IS

If X and Y are independent random variables with PH-distributions F(.)
and G(.), then the distributions F;(.) =F(.)G(.) and Fo(.)=1-[1 - F()][1 -
G(.)], corresponding to max(X,Y) and min (X,Y), are also of phase type. The

following theorem provides their phase-type representations:

Theorem2.2.9:(Neuts, [17], p.60): Let F(.) and G(.) have representations
(o, T) and (p3,5) of orders m and n respectively, then Fi(.) has the
representation (v, L) of order mn + m + n, given by v = [a ® 3, fnt12, tm410]

TRI+IQS I1QS° T°QRI
L= 0 T 0
0 0 S

and F(.) has the representation (¢ @ 3, T QI +1Q S|

2.2 Special PH-Type Distributions

2.2.1 Mixtures of Generalized Erlang (Coxian) Distri-
butions (MGE)

Graphical representation of a MGE distribution is shown in Figure 2.3.
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]-'a() l-al 1-?12 1-213 l-ak_l

Figure 2.3: Graphical representation of MGE distribution

Holding time in each phase is exponentially distributed with a rate y; in
phase :. Here, a; is the conditional probability that the process visits phase
i + 1 given that phase 7 is completed. This probability a, is usually taken to

be 1. MGE distribution has the following (¢, T') representation:

—H1 f1a1
—H2  H2a2

—H3  H3dg

Mr—1Ck—1

T° = [p(1 = ar), pa(1 — @), ..., |7 For k=2, when py # pa,

fx(z) = cipe™ + couoe™*, >0
where ¢; = [u1(1 — a;) — pa]/[p1 — p2],andc; = 1 — ¢; (See Appendix A for

calculations.)

A well-known special case of MGE is the Erlang-distribution with the
following graphical representation, for which the density corresponds to that

of a Gamma density with parameters k£ and x.
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i h i i
9%@ B ﬁ@_ﬁ
Figure 2.4: Graphical representation of the Erlang distribution

2.2.2 Hyperexponential Distribution

A hyperexponential random variable is a proper mixture of exponential random

variables with graphical representation shown in Figure 2.5.

Figure 2.5: Graphical representation of the hyperexponential distribution

The 7*! exponential random variable with rate y; is selected with probability
piy 1 <17 < k. For z > 0, its density function is given by the following function,

where the details can be found in the Appendix A:

k
fx(z) =) pipie™
i=1

Notice that the MGE distribution shown in Figure 2.3 can represent the

hyperexponential distribution by taking a; = 0 for all ¢ and a = [py, ..., p]-
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2.3 Equivalence Relations Between Some
Classes of PH-Type Distributions

Definition: Two distributions are said to be equivalent if the LST of their

density functions are identical.

2.3.1 Exponential and Arbitrary Phase-type Distribu-

tions

Proposition:(Altiok, [1]) A k-phase phase-type distribution is equivalent to an
exponential (obviously a single-phase type distribution) distribution with mean
~~1 provided that the transition rate from every phase to phase k+1 (absorbing
phase) is 4. No restriction is imposed on the structure of the phase-type

distribution.

Corollaryl:(Altiok, [1]) A k-phase MGE distribution is equivalent to an

exponential distribution with a mean 47! provided that the rate into state

k + 1 from any state is ~.

Corollary2:(Altiok, [1]) In a trivial case, a hyperexponential distribution is

1

equivalent to an exponential distribution with a mean 47", if all the phases

have the same mean y~!.

2.3.2 Hyperexponential and MGE Distributions

An MGE equivalent will be found of a given k-phase hyperexponential
random variable using the transform techniques. We assume that both

hyperexponential and the MGE distributions have the same number (k)
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of phases. First we are going to find an MGE equivalent to a given
hyperexponential distribution. For the MGE distribution, u; is the rate of
the ¢** exponential phase and a; gives the conditional probability that the
process visits phase ¢ + 1 given that phase ¢ is completed, i=1,....k. For the
hyperexponential distribution, :** exponential random variable having a rate
A; is chosen with probability p;, 1 < ¢ < k. In order to achieve a better
insight, before stating the conditions when the equivalent MGE can be found
for the given hyperexponential random variable, a mathematical procedure will

be shown.

Let the LST of hyperexponential density function be,

" _ Nh(s)
H = Dus)

where

k k

Nh(S) = Z/\,’pi H (S + /\])

i=1 j=1,7%1¢

and
k

Di(s) = [I(s +A)

=1

Let the LST of the MGE density function be,

* _ NC(S)
C*(s) = D.(s)
where .
k i~1 k
Ne(s) = (1 —a)ps [Taw Y (s+ 1)
=1 =1 j=i+1
and
0 k
[Taw =1, I] (s+4#)=1a =0
I=1 J=k+1
and .
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Our assumption which forces both distributions to have the same number of
phases enable us to equate the polynomials. As stated previously, in order that
two distributions are equivalent, their LST’s must be equal. One way to achieve
this is to equate denominators and numerators by matching the coefficients of
the corresponding terms. The fact that there is a one-to-one correspondence
in Dy(s) and D.(s) in terms involving s, n = 0, ..., k necessitates u; = \;. So
the denominators of the two LST’s become the same. Now the a;s in the MGE
distribution need to be identified. This can be done by equating the coeflicients

of the corresponding terms in the numerators of the two LSTs. Let,

k-1
Ni(s)=>_ c.s'
e

and

k=1
N(s) = Y s

1=0
Then, a;s will be found by solving the set of £ — 1 nonlinear equations;

g =q

Ck—1 = Gy (2)

For a given k-phase hyperexponential distribution with Ay > Ay > ... > A,
there always exists a unique equivalent MGE distributions with p; = A;, for
which a;, for 7 < k will be found solving the k — 1 nonlinear equations. Now
suppose a k-phase MGE distribution with g = (1, ..., ) and a = (ay, ..., ax-1)
is given and a hyperexponential equivalent is sought (with A; = u; for all 7).
The p;’s will be found from (2) coupled with the equation Y& pi = 1. This can
happen only if the ¢ (squared coefficient of variation) of the MGE distribution
is greater than or equal to 1 because ¢ of hyperexponential is always greater

than 1.0. This equivalent hyperexponential is unique.
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2.4 Moment Approximations

In this section, the issue of fitting MGE distributions using the method of
moments will be summarized. Since the LST of any distribution function
can be approximated arbitrarily closely by a rational function, in principle,
phase-type distributions may be used to approximate any general distribution.
(For convenience, ¢ will denote ¢ from now on.) It is known that under
certain regularity conditions, two distributions coincide if and only if all of their
moments coincide. Therefore, in a phase-type approximation, it is desirable
to equate as many moments of the phase-type distribution as possible with
those of a given general distribution. However, including large number of
moments makes the process of characterizing the approximation of phase-type
distribution difficult. Therefore usually the first three moments are used for
approximation purposes. But it must be noted that the use of the third moment

may not always result in an improvement over the use of two moments.

2.4.1 Three-moment approximations (¢ > 1)

Altiok [2] suggested a three-moment approximate representation of general
distributions. For practical purposes, distributions are distinguished by
dividing the range of the squared coefficient of variation into two: ¢ <1 and
¢ >1. According to the existing empirical results, it does not seem necessary
to include the third moment if ¢ < 1. Therefore, the main concern will be
the general distributions with ¢ > 1, and a set of expressions for their two-
phase approximation MGE representations will be developed. The LST of the
probability density function of a two stage MGE distribution (with ap = 1 and
a is used in place of a,) is given by;

spa(l —a) + paps
s+ s(p1 + p2) + prpe

L*(s) =

The first three moments can be found by taking successive derivatives

of L*(s), where the set of moments of the original distribution that will be
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approximated is denoted by (m;,m2,m3) and the three unknown parameters

of the two-stage MGE distribution that will be identified are (u1, 2, a).

1 a
my = — + — (3)
431 K2
which implies
a = Hz(mlﬂl - 1) (4)
Hi
2(1 —a)  [2apips — 2a(p + p2)?]
Mme = 2 - 2,,2 (3)
M1 Hik2
_6(1—a)  [12apipa(p + p2) — 6a(p + )’
ms = 3 3,3 (6)
K H1k2

Substituting the unknowns (p1, g2, @) into known moments (m,, mq, m2) from

the original distribution, we obtain

X Y
2m1(_,u1 + p2) —ma i = 2 and Gml(#l +ﬂ2)2 —6m1(,ul,u2) —6(#1 + p2) —

mapius =0

Rewriting the equations in terms of X and Y results in

_ (6m1 - 3m2/m1) -
= [(6m/my) — ] ()
= %1 + ;n::: (8)

Which implies

p = (X +VX? —4Y)/2 (9)

and
pe =X ~ g (10)

The positive root is taken as g so that py > g will hold for ¢ > 1. For
the resulting two-stage MGE distribution to be legitimate, 4y and y2 must be
positive and real, and a must be between 0 and 1. For ; and u; to be positive
and real, Y and X should satisfy ¥ > 0 and X? > 4Y. If Y is positive,
X is always positive, since mq,mz, m3 are positive numbers and the following

condition must hold:
3m} < 2myma (11)
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The squared coefficient of variation ¢ is ¢ = (ma/m?) — 1, which implies

3
ma/m3 > §(c+ 1) (12)

Now let us analyze the second necessary condition, namely X* > 4Y. From

(8), we have:
. 1 moY  miY?
Xi=—t—

mi mj

(13)

4m?
In order that this expression is greater or equal to 4Y the following inequality

should hold,
ml(c + 1)Y2

4

where g(Y) is convex in Y and its minimum is attained at

oY) = 5+ —B-9r 20, (14)

YT = (15)

By inserting (15) into (14) we derive

[(c+1)* =B -¢)]
He+1)2 20 (16)

m

For (16) to hold we arrive at the condition that ¢ >1. So, we have shown that

p1 and po are real and gy > pz > 0.

Now we are going to analyze possible values of a. Using (3) and (5), we can

write
_ (2 L 17)
'ul—(ml)(.?—a——aD) (
2 ! (18)
Ho = (a—l)(m)
where, D = \/1 +(2/a)(c—1).
For yi; > po the following inequality is obtained
o> 1D (19)

1+D
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In order that (19) should hold, & > 0 must be satisfied which is also a necessary
and sufficient condition for gy > p2. From (9) and (10) we know that u; > u,.
Hence a > 0 in (17) and g, is always positive if

2

T+ D (20)

a <

since ¢ > 0, D is always greater than 1.0 and therefore ¢« <1. Clearly,
(20) is a tighter bound than 1.0. As D is always greater than 1, (19) gives
a negative lower bound, therefore practically the lower bound for a is zero.
Hence, we reach the conclusion that the resulting unique two-stage phase-type

distribution is legitimate.

The discussion presented above states that (12) is necessary and sufficient
to approximate a distribution with known first three moments and with ¢ >
1.0. If (12) is not satisfied either a three-moment approximation is used at
the expense of adding more phases in the MGE distribution or one can choose

the nearest acceptable third moment to the original moment or a two-moment

approximation can be resorted.

2.4.2 Two moment approximation

The case with ¢ > 1
If first two moments are available, the two-phase MGE distribution can always

be found (Marie, [13]). Given that the mean is m; and the squared coefficient

of variation c is known, the parameters are found by the following formulae;

2

b = -
m

¢
M2 = my
a = 0.5¢

For a two-moment approximation, a hyperexponential distribution with two-

phases and a weighted mixing distribution for the branching probabilities in
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S
-

terms of phase rates y; and ps is also possible to be found as shown in Figure

2.6. In this case, the equations
prtp =

Bip2 =

3|3 |e
N —

have always a solution for ¢ > 1

My g +uy) @ 1
u2/(ufmj @ Ho

Figure 2.6: Weighted Hyperexponential distribution

The case with ¢ < 1

For the case ¢ < 1 Erlang distribution is proposed and used as an
approximation. (See eg. Sauer and Chandy, [26], Girler and Parlar, [9] ). The
number of stages, k, should satisfy 1/k < ¢ < 1/k —1. Once k is determined,

a Generalized Erlang distribution with a and p can be found by,

2kc+ k-2 —Vk*+4 —4c

bme = et Dk-1)
, = [+ (k=1

For 0.5< ¢ <1, ==, po = 2, and a = 2(1 - ), (Marie, [13]).



Chapter 3

The Model and Notations

In this chapter, we consider a continuous-review stochastic inventory problem
with constant demand and random lead times where the supply is subject to
random disruptions. It is assumed that the disruptions of the supplier follow
an ON/OFF sequence. When the supplier is ON, the (¢.r) policy of Hadley
and Whitin [10] is used, i.e., when IP hits the reorder point r, ¢ units are
ordered and the target value R = ¢ 4 r 1s reached. Here IP is the amount on
hand plus on order minus back orders. When the supplier becomes unavailable
(OFF), the policy changes so that one orders enough to bring IP to the target
level R as soon as the supplier becomes available again. As a consequence, the

order quantity becomes a random variable in the model.

The supplier ON/OFF status is modeled as a semi-Markov process and the
regenerative cycles are defined in the following way: Every time the IP reaches
R = r + q right after the completion of an OFF period, the regenerative cycle
starts. We split the regenerative cycles to a random number of sub-cycles which
start when the IP is raised to R during the ON period of the supplier. Let

N(q) be the number of such sub-cycles which are identical except the last one.

This model is similar to that of Parlar [19] where he assumes that ON
periods follow Erlang distribution and OFF periods are general. As an

extension of his work, we assume in this study that the ON period is distributed

28
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Shortage
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Figure 3.1: Regenerative Cycles of the Inventory Position

with k-stage phase-type distribution (Figure 3.2). This extension is motivated
by the approximating properties of Phase-type distributions as reviewed in
Chapter 2. The situation can be interpreted as follows: When the period is
ON and inventory drops to r, it can be at any stage 7, 7 = 1,...,k. Time
to stay in stage j is exponentially distributed with rate u;. Here coj is the
probability that jt® stage will be the initial stage of an ON period after an
OFF period. Upon departure from stage j, either the ON period continues
with stage i with probability ¢;; or the ON period finishes and an OFF period

starts with probability c;o. The branching probabilities satisfy,
co1+..+cox=1 and ¢i1+..+cx+cjo=1

The OFF period which is assumed to follow a general distribution is denoted

by O.
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D,

Figure 3.2: Phase-type distribution with k phases.

3.1 The Semi-Markov Processes and The

Objective Function

Let {¢(t), t > 0} be the semi-Markov process representing ON/OFF status of
the supplier such that ((t) = 0 corresponds to the OFF period and ((t) = j
indicates that the supplier is at the j*" stage of the ON period. Note that the
duration of stay in any state j, j = 1,...,k is exponential. We define Pj;(t) =

P{¢(t) =] ]¢(0) =1i},1,j=12,...k0 as the transition functions of the SMP.

Our aim now is to find the (g, 7) values which minimize the long run average
cost function. The representation in terms of a semi-Markov process allows us
to use the renewal reward theorem (Ross, [25]) which states that the long run
average cost function is the ratio of the expected cycle cost to expected cycle

length. We first consider below the cycle length.

3.1.1 Cycle Length

The Theorem of Parlar [19] below is useful in our case to find the expected
value of the cycle length therefore we present it together with its proof for the
sake of completeness. Let T, be the time required to complete the cycle if the
process is at state i,1 =1,...,k, and T; denote the expectation of T, and To be

the 'waiting time’ for the supplier to return to the ON state. For any vector
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V, let VT denote its transpose. We denote the constant demand rate with D.

Theorem 1. (Parlar, [19]) The T;, i = 1,....k, values are obtained from

the solution of the linear system,
(I-P)T=b (1)
where I is the identity matrix, and

P = [Pij(q/D)], i,j = ]., ...,k,
TT = [Ty,..., T4,
bT = [a/D + ToP1o(a/D), ...,a/D + ToPxo(q/D)].

Proof. Conditioning on the state found when the inventory reaches r after

¢/D time units and using the renewal argument, we obtain, for i =1,...,k
a/D+Ti if ¢(a/D) =i
Ti=q @/D+T; if{(a/D) =j,j =1k j#i (2)
q/D+To if ((q/D) =0

Taking expectations in 2, we have

T = i[q/D + Tj]Pi(a/D) + [a/D + To]Pio(q/D),i = 1,...,k (3)

j=1

Collecting terms containing the unknowns on the left-hand side gives for
i=1,....k,
k
Ti(1 — Pi(a/D)) — > TiPi(a/D) = q/D + ToPio(q/D), (4)
j=Lj#

Writing 4 using matrix notation, we obtain (I- P)T =b. O

Remark3.1. The results can easily be modified for the case when the

demand is random. In particular equation 4 would be replaced by,

k
Ti(1 — E[Pi(a/D)]) = >_ TiE[P;(a/D)] = E[q/D] + ToE[Pio(q/D)]

j=1i
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and the rest of the modification would be obvious. However to keep the

presentation simple we take the demand as constant.

Remark3.2. Note that in Parlar’s model, every time a regenerative cycle
starts, the process is in the first stage of the ON period. But in our case
the first stage the cycle starts is random. We therefore need the following
proposition.

Propositionl. Expected cycle length T(q) is,

T(q) = [CO,I, ....,Coyk](I - P)_lb

Proof. When Figure 3.2 is examined it is seen that a cycle may start with
any stage i, i =1,...,k with probability co;. Therefore the cycle length T(q)
is found by summing the products of the initial state probabilities with the

corresponding expected cycle lengths. O

3.1.2 Cycle Cost

A complete cycle consists of a random number of sub-cycles of length ¢/D

and a final one of a longer length due to the ’waiting’ time until the supplier

becomes ON again.

Let K be the ordering cost per order, h be the holding cost per unit per unit
time and b be the backorder cost per unit which are same for all sub-cycles.
Other than the ordering cost, the expected inventory (or average inventory)
carrying cost should be calculated. By definition, the net inventory is the on
hand inventory minus the backorders. Then the expected on hand inventory is
equal to the expected net inventory plus the expected number of backorders.
The cost incurred in the shorter sub-cycles is the cost of a cycle in the standard
Hadley/Whitin (gq,r) model, (i.e., a ’standard cycle’). While computing the
inventory holding cost, we will use the assumption made by Hadley and Whitin

that the expected number of backorders is negligible.
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Let &(q,r) be the cost of an arbitrary sub-cycle before the last one with
c(q,r)=E[&(q,r)]. Besides the ordering cost, the other components of this cost

are as follows:

i)Holding Cost:
Let L be the (possibly random) lead-time with a p.d.f of gi.(I) and Z be the
demand during L. By definition, safety stock Sz is the expected value of the
inventory level (IL, which is inventory on hand minus the backorders) just
before an order arrives, i.e, Sz = E[IL(Z,1)]
where IL(Z,r) =1 -Z =r - LD. Then

Sz = BlIL(Z,1) = [ “ (= 2)ky(z)dz =1 — ¢

0

where

k(z) = Sau(:/D) (5)
and ¢ = [;° zk,dz = E[Z] is the expected demand during L. The expected net
inventory immediately after the delivery of the ordered q units is ¢ + Sz. Then
at the start of these cycles, the net inventory will be q + Sz and at the end of
the cycle it will be just Sz. These will be also the expected values of the on
hand inventory as we assume that the expected number of back orders can be

neglected. We derive that the average inventory during a cycle is
1
54 + Sz

In order to find the total expected inventory during a cycle, we should multiply

the average inventory with the cycle length q/D, which gives
1
3q2/D + Szq/D.
Then, .
E[holding cost] = h[§q2/D + (r — ¢)q/D] (6)

ii) Backorder Cost:



CHAPTER 3. THE MODEL AND NOTATIONS 34

Actual number of back orders 7 (Z,r) during a standard cycle depends on
the reorder point r and the demand Z during the lead time L. That is,
nL(z,1) = I(z > r)(z — r) where I(z > 1) is the indicator function. Then, letting
Mu(r) = [°(z — r)k,(z)dz be the expected number of back orders during a

standard cycle, we have

E[back order cost] = b (r) (7)

Combining all the individual expected costs, i.e., ordering cost K, (6) and (7)

will give us the expected cost per standard cycle as,
1
o(q,r) = K +h[59"/D + (r — $)a/D] + b (r)

We now consider the cost of the last sub-cycle. Suppose C(q,r) is the cost of
the last sub-cycle in the model and let C(q,r) = E[C(q,r)]. Besides the ordering

cost, the other components of this cost are as follows:
iii) Holding cost:

Let v = To + L be the length of the total delay, i.e., the lead time and the
'waiting’ time for the supplier to return to the ON state after an order attempt
is made. Also let W be the demand during To. Then U = W + Z be the
combined demand during %. Then the safety stock Sy is the expected value of
the inventory level (IL) just before the order arrives when the supplier returns
to the ON state, i.e., Sy = E[IL(U,r)] =r - U.

If gy (7) is the p.d.f of the total delay random variable 1, then

Sy = /Ooo(r — wky(u)du =1 ¢,
where 1
ku(u) = 584(u/D) (8)

is the marginal density of the demand during the total delay ¢ and ¢ =
152 uky(u)du = E[U] is the expected demand during the total delay. It must be

noted that in the last sub-cycle the order quantity is a random variable since
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the actual amount ordered depends on the remaining time the supplier stays
in the OFF state. Then let us define Q(q) as the random order quantity so
that Q(q) =q+ DTO, since an additional DT units will be demanded while
waiting for the supplier to return to the ON state. Let

Q(a) = E[Q(q)] = q+ DTy
with To = E[To). If Ty(q) = q/D + To is the length of the last sub-cycle, then

Ti(q) = E[Ti(q)] = a/D + Ta

Therefore,

Efholding cost] = h[3Q()Ti(q) + (r — £)Tu() (9)

iv) Backorder cost:

Number of back orders ny(U,r) during the last sub-cycle depends on the
reorder point r, and the demand U during the total delay #,i.e, ny(u,r) =
I(u>r)(u—r1) where I(u>r) is the indicator function. Then, letting
ip(r) = [(u = r)ky(u)du is the expected number of back orders during the
last sub-cycle

E[back order cost] = bijy(r). (10)
Combining all the individual expected costs, i.e., ordering cost K, (9) and (10)

will give us the expected cost for the last sub-cycle as:

Clar) = K+ h5Q@)Ti(a) + (r — OTa(@)] + bi(r)

If we define N(q) as the total number of sub-cycles in a cycle then the random

cycle cost C(q,r) will be,

3 N(q)-1 ;
Clg,r) = > @&la,r) +C(q,r) (11)

i=1
where ¢(q,r), i =1,..., N(q) - 1, is the cycle cost of a sub-cycle before the last
one, C(q,r) is the cost of the last sub-cycle.
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3.1.3 Computation of E[N(q)]

Let N; be the number of sub-cycles required to complete the cycle if the process
is at state i and N; = E[Nj] be its expected value for i = 1,...,k. We again refer
to the following result of Parlar. The proof is skipped since it is similar to that

of Theorem 1.

Theorem 2. (Parlar, [19]) The values of N;, i=1,....k are obtained from

the solution of the system,

(I-P)N=e

where NT = [Ny,...,,Ni] and eT = [1,...,1].

Due to the same reason indicated in Remark3.2. we need the following

result.
Proposition2.Expected number of sub-cycles in a cycle N(q)=E[N(q)] is,

N(q) = [co,1s -y Cop](I— P) e

where cq; gives the probability of starting with state i to an ON period whose

distribution is Phase-type.

Proof. When Figure 3.2 is examined it is seen that a cycle may start with any
stage i, 1 =1,...,k with probability co;. Therefore the number of sub-cycles in
a cycle, N(q) is found summing the products of the initial state probabilities

with the corresponding expected number of cycles.O

Taking expectations of é(q,r) in 11 and noting that N(q) - 1 is a stopping

time for &(q,r), we can use Wald’s equation (Ross, [25]) and write
E[C(q,)] = C(q,r) = E[N(q) — 1]E[&i(q, 1)) + E[C(q, 7)]

= n(q)c(q,r) + C(q,1)
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as the expected cycle cost where n(q) = N(q) -1.

We can now construct the objective function K(q,r) as follows:

3.2 Integral Equations of The Transition
Probabilities

In order to find the expected cycle length, T(q) and expected number of sub-
cvclesin a cycle, N(d), we need to invert the (I - P) matrix where P = [P;;(q/D)],
i.j = 1,...,k. Therefore we need to identify P;;(t) of the SMP {((t), t > 0} where
Py(t) = P{C() = €(0) =1 ).

Let F; = 1 — et t > 0 be the cumulative distribution function of the time of

t

stay in state i having rate g; with the density dF;(t)/dt = f;(t) = uje™* and

let Fi=1-F;,i=1,.,k

Theorem3. The transition functions Pj(t) ¢ > 0 of the semi-Markov process

representing the supplier availability are the solutions of the following integral
equations:

k t t
Pii(t) = Fi(t) + Z Ci'm/o fi(X)Pm_i(t — X) + Ci’o/o fi(X)POi(t — XX13)

m=1,m#i

k t t
Pi(t) = D Ci,m/o fi(%)Pm;(t — %) +Ci.0/0 fi(x)Poj(t — x) (14)

m=1,m#i

Po(t) = 3 com [ 4G(Pus(t =0 (15

Proof. For the equation (13), we condition on the state visited at time x of

the first transition and add the probability that no transition occurs by time
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t, i.e., 1=F;(t). For equation (14), note that the probability of a transition out
of state i in the time interval (x, x + dx] is dFj(x). The conditional probability
of ending up in state j after t — x time units starting at m is Pyt — x).
The probability of passing from state i to m, ¢; , must be multiplied with this
integral (see Figure 3.2). The result is obtained by summing over the possible

values of m. For (15) a similar idea is used. O

3.2.1 Transient Solutions of Pjj(t) for special Phase-
type distributions

a) For 2-stage Phase-type distribution

There are three stages where 1,2 represent the ON states and 0 represents

the OFF state.
Resultl.The transition functions Py(t) ¢ > 0 of the semi-Markov process

representing the supplier availability when the ON period is distributed with

2-stage Phase-type distribution, are the solutions of the following integral

equations:

Pu(t) = 1-Fat)+en [ " dF1(x)Pas(t — %) + c10 / " dF1 (x)Poa(t — )
Pu(t) = 1-Foft) +on [ dFy(x)Paa(t ~ )+ o [ AP (x)Paalt — x)
Pult) = as ARy (0)Paa(t ~ %) + cuo | " dF1(x)Poa(t — x)
Pult) = on [ dF2(x)Pu(t — ) + e [ " dF3()Por(t — )
Palt) = o [ dG()Pu(t — %) + <oz | " dG(x)Pas (¢ — x)

Poz(t) = (o1 /Ot dG(X)Plg(t had X) + Co,2 /0" dG(X)Pzg(t — X)

b) For k-stage Erlang distribution
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Graphical representation of Erlang distribution is given in Figure 3.3. F; =
A(t) = 1—e ™, t > 0 is the cumulative distribution function of the time of
stay in state i with rate 4 and the density dF;(t)/dt = pe™**, i = 1,...,k.

cop =1, coj =0 forj =2,k

¢ii+1 = 1, while ¢;; = 0 for j# i+1

cko = 1, while ¢;0 = 0 for j = 1,....k-1.

i i i i
00

Figure 3.3: Graphical representation of the Erlang distribution

Result2. The transition functions Pj(t) ¢ > 0 of the semi-Markov process
representing the supplier availability when the ON period is distributed with

k-stage Erlang are the solutions of the following integral equations:
t
Pii(t.) = 1- A(t) +[) dA(X)Pi.,.l,i(t - X)
t
Py(t) = [ dAGOPuast—x)

Po(t) = [ dGGPy(t—x)

c) For k-stage Coxian distribution

Graphical representation of k-stage Coxian distribution is shown in Figure 3.4.
As a special case of phase-type distribution, the Coxian distribution has the
following properties:

co1 = 1, while ¢o; = 0 for j = 2,....,k

¢jj+1 = aj, while ¢j; = 0 for i # j+1, j=1,..k- 1

co=1—a;jF#k cwo=1

Result3. The transition functions Pj(t) ¢ > 0 of the semi-Markov process

representing the supplier availability when the ON period is distributed with
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k-stage Coxian distribution are the solutions of the following integral equations:
t t
Pa(t) = 1-Fi(t)+a /0 dF; (x)Pipi(t — x) + (1 — &) /0 dF;(x)Pos(t — x),
t t
Pij(t) = ai/o dFj(X)PH.Lj(t —x)+(1 - a.;)/o dFi(X)Porj(t —X) j#i
t
Py(t) = [ dG(x)Py(t—x)

i,j=1,.,k

@jl <: >a2 a3 Ay @
— (1, . o

l-a, l-a, l-ag | l-ay

Figure 3.4: Graphical representation of the Coxian distribution

In chapter 4, we are going to describe a detailed numerical example where we

compute the transition functions and optimize the inventory model.



Chapter 4
Analytical Results

In this chapter, we are going to describe in detail the analysis of a special

problem in which the ON periods are distributed with 2-stage Coxian

distribution.

4.1 Analysis of 2-stage Coxian distribution

There are 3 stages where 1,2 show the ON stages and 0 represents the OFF
period. Let Fj(t) = 1 — e t > 0 be the cumulative distribution function
of the time of stay in state i having rate y; with the density dF;(t)/dt =
fi(t)= we ™t 1= 1,..k The OFF period has a general distribution with the
cumulative distribution function G(t) and density function dG(t)/dt = g(t).

9@;®_

l-al

Figure 4.1: 2-Stage Coxian Distribution

41
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The transition functions Pj(t) ¢

> 0 of the semi-Markov process

representing the supplier availability when the ON period is distributed with

2-stage Coxian distribution are the solutions of the following integral equations:

Pr(t)
Paa(t)
P1a(t)
P (t)
Pou(t)

Po2(t)

= 1- Fl(t) + a1 ‘/Ot dFl(X)le(t - X) -+ (1 - &1)/(: dFl(X)Po,Q(t - X)

= 1-F(0)+ [ " dF,(x)Poa(t — x)

_ a /O " dF1 (5)Paa(t — x) + (1 — ax) / " dF1 (x)Poa(t — x)

I

/Ot sz(X)Po,l(t hand X)

_ /o " dG(x)P1y (b — %)

- /0 " dG(x)P1a(t — x)

By a simple change of variable, we can represent these integrals in an

equivalent form. For instance, we can write

Poa(t) = /0t dG(x)P12(t — x) = /0t g(t — u)Pi2(u)du

Writing the other integrals similarly we have these six integral equations

written in a matrix format as

where

and

finally,

H(t) =

P(t)= [ “H(t — u)P(u)du + v(t)

P(t) = [Po1, Poz, P11, P12, P21, P2

0 0 g(t) 0 0

0 0 0 g(t) 0

0 (I-a)fi(t) 0 0 afi(¥)

0 (l—a)fi(t) O 0 0
falt) 0 0 0 0

0 f2(?) 0 0 0

ay f1(t)
0
0

1)
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v(t) = [0,0, F1(t), 0,0, F2(t)]T

The integral equations in (1) are classified as "Volterra type of second kind’
(Linz, [12]). There are several numerical solution methods that can be used
to compute these integrals one of which is direct numerical integration. Direct
method of solving the integral equations is based on approximating an integral
using one of many classical formulae such as, trapezoidal rule, Simpson’s rule

and Bode’s rule (Press et al. [24]). For a scalar integral equation such as,
_ t
P(t) = F(t) + / £(t, w)P(u)du (3)
0
P(0) = F(0) = 1 for given F(t) and f(t,u)=f(t - u) with the unknown function
t> 0, the integral is approximated using the trapezoidal rule as,

[ it WP = AL[EA(t, u1)P(ur) + £(t, uz)P(u2)

4

1
+.oo + f(t, un—1)P(un—1) + 5f(t, ) P(un)]

where the interval of integration [0,t] is divided into n equal subintervals of
length At = t/n; u; <t,j>1;u = 0and u, = t. [The integration is over u,
0 < u < t; therefore for u > t, f(t,u) = 0.]

The integral equation in (3) can now be approximated by the sum
- 1
P(t) = F(t)+ At[gf(t, up)P(uy) + £(t, uz)P(uz)
1
+... + £(t, un—1)P(un-1) + 3f(t, Un)P(uy)]

If we return to the equation (3) and consider n sample values of P(t), such that
P(u;) = P;, i =1,...,n, equation (3) becomes a a system of n linear equations
in n unknowns P;, (Girler and Parlar, [9]) as,

P,=F

P,=F,+ At[%lepl + %fzzpz]

P; = Fi + At[3i Py 4+ fiPo 4+ o + £imiPicy + 36P] i=2,..,n

where F; = F(w), f5=1£(ti,v), j<i, w <t With this approach, the
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numerical solution of an integral equation can be reduced to solving a system
of n linear equations in n unknowns. Then we can express this linear system
as P = HP + ¥, with the solution, P = (I — H)~'¥, where P = [P1,Ps, ..., PoT

and v = [y, Fy, ..., Fo]T are nx1 column vectors and

0 0 0
3 3o 0

%fnl fn2 fn.n—l %fnn

is an nxn matrix.

In our case, as we have a system of integral equations in N (N = 6, for
2-stage Coxian distribution) unknowns, the problem becomes a little bit more
complicated but still the trapezoidal rule can be applied after dividing the
[0,t] interval into n subintervals of equal length. Since there are N unknown
functions each of which being sampled at n points, the resulting system now

has nN unknowns. So we obtain,
P=HP+%

where

A

P = [POI(u1)7 ceey POl(un)IPOZ(ul), vesy Pog(un)l...lpgz(ul), ceny ng(un)]
¥ =10,...,0]0,..., 0] F1 (1), oo, Fy(un) ... [ Fa(wq), ..., Fo(un)]

are nN dimensional column vectors and H is a suitably constructed sparse
nNxnN matrix whose non-zero sub-matrices are positioned in a manner similar

to the non-zero entries in (2). Then H will be a matrix of matrices as follows:

H, 626 H, 6z6 G61:6 H 6z6 H 6z6 H, 6z6
H, 6z6 H 6x6 H, 6z6 GG:L'G H 6x6 H, 6x6
Heee (1 —a1)Frese Hoos Heoos a1F1606  Heos
Hezs (1 —ai1)Fieo6 Hese Hers  Hewse  a1F1606
F 2,626 H 616 H 66 H 66 H 616 H 6.6
H 626 F 2,626 H 6x6 H 66 H 616 H 66
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where Hgyg is a 6 x 6 null matrix, and

0 0 000 O

Ceaus = At 3921 2922 00 0 O
6x6 —

1 1
59111 gn2 §gnn
and fori = 1,2

0 0

Fiows = At %fi,n %fi,zz
1,6x6 —

%fi,nl fi,n2 %fi,nn

where f;'jk = fi(tj, uk) y i=1,2, j,k—-—l,...,n.

Solving P would give us the numerically estimated solution of the transition
functions Pj; however, since both n and T(q) are not available in closed form,

it is not possible to analyze K(q,r) in (13) in Chapter 3.

Giirler and Parlar [9] developed a computer program to overcome a similar
problem with two suppliers where the ON periods are distributed with K-stage
Erlang. Therefore we adopted the program for our problem and reached out
the optimal values for this problem. Also we solved additional problems with

several 2-Stage Phase-Type Distributions. The analysis of the results will be

carried out in the next chapter.

4.2 Analysis of The Model for Large q

When the model is analyzed for asymptotically 'large’ values of ¢ (compared
with D), the transient probabilities can be replaced by the limiting values
P; = lim—ooP{¢(t) = j|¢(0) = i} in order to simplify the problem. If optimal
q is not likely to be large, this approach would provide a solution which is easy

to compute but probably poor in approximation.
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In order to have large ¢ values, order cost K should be large and/or
holding cost h should be small compared to the backorder cost b. When these
conditions hold, the time-dependent (transient) conditional probabilities can
be replaced by their constant limiting values. In order to find the limiting

probabilities, we are going to use the proposition made by Ross.

Let T;; denote the time between successive transitions into state i and
let i = E[Ty] and g; be the mean of the j** stage which is exponentially
distributed.

Proposition 4.8.1. (Ross [25], p. 131)
If the semi-Markov process is irreducible and Tj; has a non-lattice distribution

with finite mean, then

P; = limy—nP{C(t) = jI¢(0) = i}

exists and is independent of the initial state. Furthermore,

p =4
Hij

Now, we are going to compute these limiting values for Phase-type, Coxian and
Erlang Distributions. Note that a random variable Y will denote the durations

of absorbing states of all these distributions which is assumed to be a general

distributions with E[Y] as its expected value.

4.2.1 The Limiting Probabilities of Phase-Type Distri-

butions

Lemmal. For k-stage Phase-type distributions for j = 1,...,k,

Kk
mi =+ ) Ty

1=0,i#j
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Figure 4.2: k-Stage Phase-Type Distribution
where Tj; values are obtained from the solution of the systems
Tj = (I - Aj)7'B;

with T = [Toj,le, wery Tijs ...,Tkj] i#j i=0,..k

tp; «Q1; azy Ay
cio 0 ¢ Cik
A=
Ci
Cko Ck1 oo Chkik-1 0

B;r = [boj”ul, ceey Hiy ...] 1 #j i—:l,...,k

k
boj = E[Y]+ Y coipi

i=1,i5j

k k
) ajj = Z > coc

i=0,i%j 1=1,1#1,1#]
Proof. If we examine Figure 4.2 we can write,

p11 = p1+coTor +c12T2 + ... + 1 Tia

w5 = 4 + oLy + Ty + oo + 61 Timr + G Tiga s + -+ Ga T

47
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which is
k
wi=m+ D Ty
i=0,i%j

for j = 1,....k.

To; = coE[Y]+ cot{E[Y]+ p1 + c10Toj + ... + c1j-1Tj=15 + €141 Tj1

+ ...+ C1kaj} + ...

+ coj-1{E[Y]+ t5-1 + ¢j-10T05 + .- + ¢—1x Tk 5}

+  cojrt{E[Y] + ti41 + Gy1.0To5 + - + i1 x T}

+  cox{E[Y] + px + ckoTo; + - + ckx-1Tk-1,}

k k k
= Toy=E[Y]+ > copit+ . D cocuTy (5)

i=1,i im0, =117, 1%
boj ai

Ti = cimi + cio(p + Tog) + cin(p + Ty) + o + cij—1(si + Tiop )
+ cijer(pi + Tierg) + -+ cinls + Tiy)

K
= Ty=m+ D>, ciyTi; (6)
1=0,1%

j#£0,ij=1,..k0

1-a, l-a, l-ag | l-ay

Figure 4.3: k-Stage Coxian Distribution

Corollaryl. For k-stage Coxian distribution,

Bii = H5+aipien + o+ 32540 ak-1pk + Toj (7)

E[Y] + p1 + a1p2 + ... + a1ag...8j-24j-1 (s)
a1a2...35-1

E[Y] + Zini i 1) aw

j—1
H{:l aj

Toj -

i>1 (9)
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Proof. For k-stage Coxian Distribution, if we examine Figure 4.3 co; =1,
coi =0, i=2,...k and ¢jjiy1 =ai, cip=1—a; , ¢;;5=01#0,i4+ 1. Then (4)

turns into

ti = pi+ ¢io Toj + ¢ijw1 Tir,;
1—a; aj
Tir1; = 41+ cip1.0 Toj + cirnje2 Tigz;
1-aj+1 2j+1
Tey; = pc+(1—ar) Toy+ ar Toy
~—— A
0 1

Now let us apply (5) to find Ty

=Ty = &{E[Y] + +&£Toj +31;_2/sz}
1 1—a; ay

Applying (6) Ty = p2+ (1 — a2)Toj + a2 Ty

= T = E[Y]+p1+aips +... 4 ar..a5-045-

+{1 —ay + a; —ajaz... — a;...aj—1 } To;
N e’
0

From which the results follow. O

Corollary2. (Parlar [19]) For k-stage Erlang Distribution,

k
wi = E[Y]+)

i=1
p - M
;=
M5
Then if ¢ is large, we can replace the transition probabilities Pj;(q/D) by the

limiting probabilities which are independent of the decision variable ¢.

Theorem 5. (Parlar, [19]) For large q, the k x k fundamental matrix of P
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18

B+ P P, P
(I_P)_l _ _1_ P, Fo+ P .. P
0 . .
Pl Py Po + P

Proof. For large q, the (I — P) matrix turns into,

1-P -PB — Py

-P 1-P —P
(I‘—P) — 1 2 k

_Pl —.P'Z ].—Pk

Multiplying (I — P) by (I — P)~! gives the identity matrix I. O

Propositionl.N(q) = 1/Pg

Proof. N(q) = [co,l, ooy Cox](I = P)~te where

e=[1,.,1]T, a

multlplylno each row of (I — P)~! by e gives 1/Py then we have
ZC(),(]./PO = J./Po

W—’
1

Proposition2.T(q) = q/(DPo) + To

Proof.T(q) = [co,l,...,co,k](I — P)~'b where

b= [q/D + ToPo, .y q/D + ToPo]T and

multlplymg each row of (I — P)~! by b gives q/(DPy) + To then we have
T(q) = Zco i{a/(DPg) + To} = q/(DPy) + T, O

=1
N——
1

Then the objective cost function that we derived in Chapter 3 in 12 will be

n(q)e(q,r) + C(q, 1)
T(q)
E%;—IC(q, r) + C(q,r)
q/(DPg) 4 To

K(q,r)
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The structure of resultant objective cost function is identical to the structure
of the cost function presented by Parlar [19]. Therefore his convexity analysis
for the cost function will be the same for our case also under mild restrictions
with his following theorem.

Theorem 6. Parlar [19] For large ¢, the objective function K(q,r) is convex
over the region Q = { (r,¢)lr, <r < 00,0 < ¢ < oo} provided that k.(r) <0
for r > 1, and ky(r) <0 for r > r,.



Chapter 5

Numerical Results

In this chapter, we are going to display and discuss the numerical results of
some special problems. To solve these problems we have used a program (see
Appendix B) written in Microsoft QuickBasic v4.5 which was run with a clock

speed 50 MHz. The aims of this implementation can be listed as follows:

e Sensitivity analysis with respect to parameters of the distributions in

terms of cost and quantity.

e Consideration and comparison of cases of Phase-type distributions in

terms of their effects on optimal cost and ordering quantity values.

e Verification of the analytical results.

For these special problems we assume that the demand is deterministic at
arate D = 1 and all other assumptions of the EOQ model apply ([22], p.174).
We consider 8 different cost structures with respect to I, h and b. For each
case of Phase-type distribution used, we present the mean and variance of the
distribution of the ON period. This may enable us to better interpret the

numerical results. These numerical results are presented in Tables 5.1 to 5.14

and Figures 5.1 to 5.22.

52
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The computer program that we used is a revised form of that Girler and
Parlar [9] developed for the case of two independent suppliers whose ON periods
are distributed as Erlang. The interested reader may find more details about
the algorithm being used in their paper. The summary of the algorithm to
compute the optimal (g, r) values is as follows:

Step 1. Start with a high positive level, such as 10°, as the initial value of C*.
Step 2. Start with a feasible (g,r) point in the 2-dimensional region that is
known to contain the optimal (¢~, 7).

Step 3. Using ¢ value evaluate the transition functions using the method solving
the system of integral equations for Pj(q).

Step 4. Generate the P matrix mentioned in Theorem 1 and 2 of Chapter 3 and
compute the expected cycle length, T(q) as given by Proposition 1 in Chapter
3 and expected cycle cost by equation 12 in Chapter 3.

Step 5. Evaluate the expected C(g,r). If this new value of C is better than the

previous one, keep the corresponding (¢,7) (If the improvement is negligible,

stop.) Go to Step 3. Otherwise, go to Step 7.

Step 7. Generate a new feasible ¢ value in the following way: If ¢* is known
to be in the interval [qi, qs] and if ¢oa refers to the previous point, generate

the new point Grew With gnew = Gotd + (gn — @)(26 — 1) where 0 is a random

number between 0 and 1 and v is an odd integer. With similar computation

find a new feasible r value. After the new (q,r) value is generated in this way

go to Step 3.

5.1 2-Stage Phase-Type Distribution

5.1.1 Moments of ON and OFF periods

Let X be the random variable denoting the duration of the ON status
of the supplier which follows 2-Stage Phase-type distribution (or Coxian)
and Y be the random variable denoting that of OFF periods. For 14
problems designed, Y~Exp(u) where p=0.75. Therefore E[Y]=1/4=1.333 and
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The computer program that we used is a revised form of that Girler and
Parlar [9] developed for the case of two independent suppliers whose ON periods
are distributed as Erlang. The interested reader may find more details about
the algorithm being used in their paper. The summary of the algorithm to
compute the optimal (gq,r) values is as follows:

Step 1. Start with a high positive level, such as 10°, as the initial value of C*.
Step 2. Start with a feasible (¢,r) point in the 2-dimensional region that is
known to contain the optimal (¢~,7*).

Step 3. Using ¢ value evaluate the transition functions using the method solving
the system of integral equations for Pj(q).

Step 4. Generate the P matrix mentioned in Theorem 1 and 2 of Chapter 3 and
compute the expected cycle length, T(q) as given by Proposition 1 in Chapter
3 and expected cycle cost by equation 12 in Chapter 3.

Step 5. Evaluate the expected C(g,r). If this new value of C is better than the
previous one, keep the corresponding (¢, r) (If the improvement is negligible,
stop.) Go to Step 3. Otherwise, go to Step 7.

Step 7. Generate a new feasible ¢ value in the following way: If ¢* is known
to be in the interval [q;, ¢n] and if ¢.q refers to the previous point, generate
the new point ¢new With gnew = Gotd + (gn — @)(20 — 1) where 6 is a random
number between 0 and 1 and v is an odd integer. With similar computation

find a new feasible r value. After the new (g,r) value is generated in this way

go to Step 3.

5.1 2-Stage Phase-Type Distribution

5.1.1 Moments of ON and OFF periods

Let X be the random variable denoting the duration of the ON status
of the supplier which follows 2-Stage Phase-type distribution (or Coxian)
and Y be the random variable denoting that of OFF periods. For 14
problems designed, Y~Exp(u) where p=0.75. Therefore E[Y]=1/4=1.333 and
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Var[Y]=1/(p?)=1.778.

The noncentral moments E[X!] of X are given by
E[X] = (-1)'i{(aT "), for i> 0 (Neuts [17], p.46). Then,

—-/\1 012/\1 B 1
EXY = (-D).([eor.
(X' = (-1).([cot, cor] tde : )
. ‘"/\1 C12/\1 - 1
E[X? = (2).([cor, ¢
[X*] = (2).([cot, co1] ode — ) I)

So that we can find Var[X]=E[X?] — (E[X!])? where );, i=1,2 denotes the mean
of the i exponential stage of ON periods. Using this approach the mean

and variance of the ON periods are computed and are given under the tables

displaying the optimal results of each problem.

5.1.2 General Case

In this section we are going to display three problems for each of which optimal
¢, r and cost values for different cost values of K, h and b are computed. The
problems differ from each other with their initial branching probabilities (co,
and coz couples). Other than this c12=0.5, ¢10=0.5, c3;=0.5, c90=0.5, where
¢i; represents the transition probability from state i to state j and A\;=0.6,
A;=0.5 for ON states, x=0.75 for the OFF state in the SMP representing the
availability of the supplier will be the same for 3 cases. With this organization
we will be able to observe the possible effects of initial branching probabilities

on optimal ¢ and optimal cost values while we are investigating how these

optimal values change when K, h and b cost triplets change.

When the results of Table 5.1 are evaluated, it is seen that optimal cost
values are always greater that the corresponding EOQ costs for each case.
Only when K=400, h=300, b=500 and K=400, h=300, b=1000 we see that
optimal ¢ values are less than the optimal EOQ ¢ values. However, in EOQ
models reorder point is equal to 0. So we can conclude that for this stochastic

inventory problem, holding a safety stock may result in optimal ¢ values less
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K h b q r c* 4toq  Ckoo
O 6] &6 ® | (1) (3
200 100 500 | 2.00037 0.00012 243.96499 | 2.000 200.00
1000 | 2.53359 0.00136 291.86826
300 500 | 1.37249 0.01085 372.11108 | 1.154 346.41
1000 | 1.37090 0.00990 440.54296
100 100 500 | 2.89125 0.00296 324.89390 | 2.828 282.3
1000 | 3.31322 0.00008 361.29997
300 500 | 1.35694 0.02672 499.50160 | 1.632 489.89
1000 | 1.38103 0.00705 564.80055
Table 5.1: Sensitivity Analysis When co;=0.5, c02=0.5 E[ON]=3.6667,

Var[ON]=13.5183

than optimal EOQ ¢ values.

When we investigate the results displayed in Table 5.2, we are faced with

almost the same results of Table 5.2.

Similar explanation made for the results of Table 5.1 can be repeated for

the results of third case presented by Table 5.3.

Inspecting Figures 5.1 and 5.2 with Tables mentioned up to now brings in

the following observations:

e For all three cases the trend that the optimal costs follow seem to be the

same (Figure 5.1). The optimal cost curve of third case is below than

that of the first two cases. This may indicate that the initial branching

probabilities may have an impact on optimal costs.

e While keeping any two components of cost triplets K, h and b, an increase

in the other component yields in an increase in optimal inventory holding

cost.

o If we take the EOQ cost curve as a border we see that for the

ond 4th
2me, 47,

6% and St* cost triplets, the deviation of results from this border is more

than the deviation of the remaining cost triplets. This may be evaluated
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x *

q r

C*

1%
C’E)OQ

(3)

(4) (5)

(6)

(8)

100

500

1.97263 0.01351

243.89439

200.00

1000

2.52716 0.00056

290.82935

300

500

1.37486 0.00077

369.06055

346.41

1000

1.38167 0.01731

440.68112

400 100

500

2.90107 0.00007

323.54681

L
%
&
oo

1000

3.27863 0.00323

360.16058

300

500

1.41123 0.00042

494.22071

489.89

1000

1.40820 0.00222

562.26816

Table 5.2:
Var[ON]=13.5722

Sensitivity

Analysis When

K h

b

*

q* r

C*

dE0Q

Ckoq

(2

(3)

(4) (5)

(6)

(7)

(8)

200

500

2.74536 0.02214

223.35857

2.000

200.00

1000

2.76588 0.00063

257.96447

300

500

1.42143 0.00087

376.65771

1.154

346.41

1000

1.31054 0.01374

431.61638

400 100

500

2.95191 0.00267

286.34499

2.828

1000

3.29906 0.00176

318.29493

300

500

1.32240 0.00728

500.60396

1.632

1000

1.35140 0.00496

562.62438

Table 5.3:
Var[ON]=13.6252

001‘—“0.4, C02=0.6 E[ON]=36889,

Sensitivity Analysis When cg;=0.3, co2=0.7 E[ON]=3.7111,
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Ot
-1

as the effect of back ordering cost on optimal inventory costs.

o When Figure 5.2 is inspected it is found out that the optimal ordering
quantity ¢ reaches its peak value for the 6% cost triplet. This is the case
when K=400, b=1000 (their peak values), h=100 (its lowest value), so it

follows our expectation.

o Again Figure 5.2 shows that for 37¢, 4tk 7

b and 8t cost triplets. the
optimal ordering quantities are at their minimum. This is because the

holding cost is at its peak value.

2-STAGE PHASE-TYPE DISTRIBUTION
T T T T

600

Optimal Inventory Costs

L L 2
5 6 7 8

1 2 3 4
Triplets of Costs K,h,b

Figure 5.1: Comparison of Optimal Costs (1)

5.1.3 Special Case

In this section optimal ¢, r and cost values for different cost values of K, h and
I of 5 problems are going to be displayed such that x=0.75 for the OFF state
in the SMP representing the availability of the supplier will be the same for all
while A\; and/or A, for ON states will change. The structure of the SMP for
these cases is designed in such a way that the OFF period will start after the
first two ON periods are sequentially passed. With this organization we will be
able to see the possible effects of mean rates of ON periods on optimal cost and

¢ values. Except a few cases, optimal cost values are more than the respective
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2-STAGE PHASE-TYPE DISTRIBUTION

35

Optlimal Ordering Quantities

—_

—

4

5
Triplets of Costs K,h,b

Figure 5.2: Comparison of Optimal ¢s (1)

K h b q* r c* dEoo  Choq

U@ 06 @ 6 6 (1) (5

200 100 500 | 2.74651 0.00025 264.47348 | 2.000 200.00
1000 | 3.02116 0.56784 340.57748

300 500 | 1.44276 0.00124 388.49019 | 1.154 346.41
1000 | 1.56492 0.05780 539.46168

400 100 500 | 3.39686 0.00426 317.36452 | 2.828 282.8
1000 | 3.97894 0.26119 387.76730

300 500 | 1.44374 0.00480 480.66034 | 1.632 489.39
1000 | 1.98704 0.00102 619.07847

Table 5.4: Sensitivity Analysis When

Var[ON]=10.25

A=0.4, X;=0.5 E[ON]=4.5000,
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N h b q" r C dzoo  Choo
() () @) (4) (5) (6) (1) (3)

200 100 500 |2.71925 0.01299 264.43303 | 2.000 200.00
1000 | 2.99937 0.53275 340.4578Y

300 500 | 1.45900 0.00223 388.45973 | 1.154 346.41
1000 | 1.52000 0.06327 538.42052

400 100 300 | 3.36136 0.04343 318.30650 | 2.825  282.8
1000 | 3.92418 0.28314 387.72095

300 500 | 1.50316 0.00515 430.22213 | 1.632 489.39
1000 | 1.97780 0.00061 618.31015

Table 5.5:  Sensitivity Analysis When A;=0.5, X;=0.4 E[ON|}=4.5000.
Var[ON]=10.25

optimal EOQ costs. For the exceptions, as the difference is insignificant, we

concluded that there might have been some numerical mistakes which can be

ignored while discussing the results.

When all the Tables 5.4 to 5.8 and Figures 5.3 and 5.1 are evaluated.

following observations can be made:

e When Figure 5.3 is inspected, it is seen that, roughly all the cost curves

of 5 cases are similar. We can conclude that different A; and A, values

do not change the optimal cost values.

o If we take the EOQ cost curve as a border we see that for the ond 4th
6th and 8t cost triplets, the deviation of results from this border is more
than the deviation of the remaining cost triplets. This may be evaluated

as the effect of back ordering cost on optimal inventory costs.

e When Figure 5.4 is inspected it is found out that the optimal ordering
quantity ¢ reaches its peak value for the 6t* cost triplet. This is the case

when K=400, b=1000 (their peak values), h=100 (its lowest value), so it

follows our expectation.
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K h b q- r cx dEoo  Croo
() (2 3) (4) (5) (6) (7) (8)
200 100 500 | 2.74131 0.00003 250.88838 ; 2.000 200.00
1000 | 3.08870 0.54133 322.95861

300 500 | 1.85816 0.00172 390.98234 | 1.154 346.41
1000 | 1.82902 0.00039 514.28566

400 100 500 | 3.39182 0.00136 300.71605
1000 | 3.96922 0.26854 367.25358

300 500 | 1.83786 0.00749 465.30612 | 1.632 489.89
1000 | 2.00109 0.00443 588.30607

o
0]
Q]
(v3]
[\V]
(o]
[SV]
(V4]

Table 5.6: Sensitivity Analysis When A;=0.5, A;=0.5 E[ON]=4.0000,
Var[ON]=8

1%

K h b q” r* c* dgoq  CEoq
0 @ 6] @ 6 © | (8
200 100 500 | 2.83966 0.00343 238.66516 | 2.000 200.00
1000 { 3.121181 0.54005 306.99798

300 500 | 0.86901 0.00612 429.57120 | 1.154 346.41
1000 | 2.83990 0.00719 529.70598

400 100 500 | 3.37374 0.00084 285.77613 | 2.828 282.8
1000 | 3.97717 0.26780 348.79973

300 500 | 2.85591 0.00658 497.21678 | 1.632 489.89
1000 | 2.85098 0.00232 580.71838

Table 5.7: Sensitivity Analysis When A;=0.6, );=0.5 E[ON]=3.6667,
Var[ON]=6.7775
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K h b q- r cr 4Eoq  Ckog
() () ) (4) (5) (6) (7) (8)
200 100 500 | 2.83794 0.01640 238.86471 | 2.000 200.00
1000 | 3.13698 0.53696 307.07522
300 500 | 0.84344 0.00443 430.34898 | 1.154 346.41
1000 | 2.82941 0.02016 530.44496
400 100 500 | 3.42736 0.00006 285.76872 | 2.828 282.8
1000 | 3.99358 0.26593 348.82037
300 500 | 2.87332 0.00469 498.31354 | 1.632 489.89

1000 | 2.02288 0.03401 582.57175

Table
Var[ON

5.8: Sensitivity Analysis When
1=6.7

775

o
a
o

g

<3
o
o

o

o

o
T

n

(<]

o
T

EOQ COSTS

4
Triplets of Costs K,h,b

Figure 5.3: Comparison of Optimal Costs (2)
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M=0.5, A;=0.6 E[ON]=3.6667.
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Optimal Ordering Quantities

i
4

5
Triplets of Costs K,h,b

Figure 5.4: Comparison of Optimal ¢s (2)

K h b qQ" r c dgoq  CrmEeoQ

(1 (2)  (3) (4) (5) (6) (7) (3)

200 100 5300 | 2.60640 0.00858 294.86797 | 2.000 200.00
1000 | 2.70397 0.69546 380.43490

300 500 | 1.09924 0.02402 410.51730 | 1.154 346.41
1000 | 1.09889 0.29979 583.64075

400 100 500 | 3.33382 0.00010 355.70911 | 2.828  282.8
1000 | 3.82131 0.30919 435.91765

300 500 | 1.25640 0.00289 522.48926 | 1.632 489.89
1000 | 1.79761 0.00814 682.75575

Table 5.9: Sensitivity analysis when a; = 0.0 E[ON]=1.6667, Var[ON]=2.7777

5.2 2-Stage Coxian Distribution

In this section for all cases A\;=0.6 and A;=0.5 for ON states, u=0.75 for the
OFF state in the SMP representing the availability of the supplier but only a
which denotes the probability of transition to the next ON state right after the

first ON state will change. With this approach, we will be able to observe the

possible effects of changes in a;’s on optimal costs.

When Tables 5.9 to 5.14 and Figures 5.5 and 5.6 are inspected the following
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[N h b q- r’ (o dEoo  CEoo

(1y (2) (3) (4) (5) (6) (7) (3)

200 100 500 | 2.57949 0.00864 303.26127 | 2.000 200.00
1000 | 2.57040 0.75951 391.38859

300 500 | 1.03955 0.00537 415.92314 | 1.154 346.41
1000 | 1.03865 0.42244 592.71544

400 100 500 | 3.22057 0.00287 366.08145 | 2.828 2828
1000 | 3.76562 0.32601 449.71431

300 500 | 1.21618 0.00601 533.40165 | 1.632 4R9.89
1000 | 1.75041 0.03965 700.08646

63

Table 5.10: Sensitivity Analysis When a;= 0.1 E[ON]=1.8667, Var[ON]=3.5376

K h b q" " c 4toq  CEogq

0 @ 6] @ 0 61 () (5

200 100 500 |2.61102 0.00024 294.83332 | 2.000 200.00
1000 | 2.75418 0.67513  380.43160

300 500 |1.09789 0.00503 409.56417 | 1.154 346.41
1000 | 1.09985 0.38974 583. 09872

400 100 500 | 3.31321 0.00209 355.74443 | 2.828  232.8
1000 | 3.81420 0.31042  435.91661

300 500 | 1.24020 0.00008 522.32685 | 1.632 489.89
1000 | 1.84538 0.00152  682.52086

Table 5.11: Sensitivity Analysis When a;= 0.2 E[ON]=2.0667, Var[ON]=4.2176

K h b q" r cr 4toq  CEoog

U @ 0 & 0 ©__ (1)

200 100 500 | 2.60186 0.00163 286.67082 | 2.000 200.00
1000 | 2.79141 0.66130 369.71076

300 500 | 1.18281 0.00361 403.32932 | 1.154 346.41
1000 | 1.16869 0.31546 572.01900

400 100 500 |3.34861 0.00191 345.31467 | 2.828 282.8
1000 | 3.83991 0.30704 422.81796

300 500 | 1.29965 0.00245 511.07453 | 1.632 489.89
1000 | 1.87796 0.00000 665.421666

Table 5.12: Sensitivity Analysis When a;= 0.3 E[ON]=2.2667, Var[ON]|=4.8176
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N h b q r cr 4209 CEoq

(1) (2) ) (4) (5) (6) (7) (3)

200 100 500 | 2.70640 0.0013%7  261.07675 y 2.000 200.00
1000 | 2.97718  0.58887  340.20399

300 500 | 1.47741 0.00280  387.7750 | 1.154 346.41
1000 | 1.47820 0.10879 536.19191

400 100 500 | 3.39869 0.00058 317.08702 | 2.828  282.8
1000 | 3.88426 0.29348 387.66018

300 500 | 1.47827 0.00086 477.66348 | 1.632 489.89
1000 | 1.92845 0.017000 617.33572

G-

Table 5.13: Sensitivity Analysis When a;= 0.6 E[ON]=2.8667, Var[ON]=6.1376

K h h q” r* cr dtoqe  CEoq

0 @ O 0 66 10 6

200 100 500 |2.86001 0.00101 238.68121 | 2.000 200.00
1000 | 3.08924 0.54965 307.00102

300 500 | 0.86056 0.00018 429.05224 | 1.154 346.41
1000 | 2.84530 0.00178 529.55575

400 100 500 | 3.40458 0.00301 285.79782 | 2.828 282.8
1000 | 4.00676 0.24446 348.81030

300 500 | 2.84265 0.00105 495.45303 | 1.632 489.39
1000 | 2.84744 0.00604 580.91564

Table 5.14: Sensitivity Analysis When a;= 1.0 E[ON]=3.6667, Var[ON]=6.7775



C'HAPTER 5. NUMERICAL RESULTS 65

observations can be made:

¢ In Figure 5.5, roughly all the cost curves of 6 cases follow the same trend.

When the a; values increase the cost value drops.

o When Figures 5.1, 5.3 and 5.5 are compared, we see that the cost curves
have parallel tendencies. This observation can be repeated for optimal ¢

values when Figures 5.2, 5.4 and 5.6 are investigated altogether.

e When the back ordering cost gets higher, the total cost increases
dramatically. We can conclude that the cost function is sensitive to back

ordering cost in cases where supply is subject to disruptions.
(=] W

2-STAGE COXIAN DISTRIBUTION
T T T T

800

Optimal Inventory Costs

PN

[=3

o
T

300

200

Triplets of Costs K,h,b

Figure 5.5: Comparison of Optimal Costs (3)

5.3 Comparison of Several Phase-Type Dis-

tributions

This section comprises of 16 figures such that, in each figure, the points
on X-axis represent the Tables 5.1 to 5.14, while the Y-axis represents the
corresponding Cost Values (on Figures 5.7 to 5.14) and ¢ values (on Figures

5.15 to 5.22) for the Triplet of Costs K,h,b given under each graph.
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2-STAGE COXIAN DISTRIBUTION

Optimal Ordering Quanlities

Triplets of Costs K,h,b

Figure 5.6: Comparison of Optimal g¢s (3)

The following results can be seen:

Graphics in Figures 5.7 and 5.8; Figures 5.11 and 5.12 follow the same
patterns. This helps us to see the effect of increases in back ordering cost
on total costs.

Graphics in Figures 5.7 and 5.11; Figures 5.8 and 3.12 follow the same
pattern. This helps us to see the effect of increases in ordering cost on

total costs.

When Figures 5.7 to 5.14, we can see that generally optimal costs are
highest for cases with Coxian Distribution and lowest for cases with

general Phase-Type distributions.

When Figures 5.15 to 5.22, we can see that generally optimal ¢ values
are highest for cases with special Phase-Type Distribution and lowest for

cases with general Phase-Type distributions.

These last two observations lead us to the following conclusion: The
Phase-Type Distributions are so versatile that with different structures,
branching probabilities and rates, we can represent the same ON
periods but have different values. This shows that parameters of these

distributions have an impact on optimal cost and ¢ values.
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Figure 5.7: When K=200, h=100, b=500
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Figure 5.8: When K=200, h=100, b=1000
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Figure 5.9: When K=200, h=300, h=>500
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Chapter 6

Conclusion

In this research our basic motivation was to analyze a continuous-review
stochastic inventory problem with deterministic demand and random lead
times where the single supplier is subject to unusual circumstances such as
machine breakdowns, strikes, political upheavals. The supplier availability is
modeled as a semi-Markov process. It is assumed that the supplier availability
(ON) periods are distributed with k-stage phase-type distributions while
the OFF periods follow a general distribution. The nature of phase-type
distribution gives rise to transform the non-Markovian stochastic process of
supplier’s availability into a Markovian one. After the regenerative cycles are
identified, the expressions for the expected cycle cost and cycle length are
obtained and using the renewal reward theorem we become able to construct

the objective function of the long-run average cost per time.

Although our assumption on the distribution of ON periods is k-stage phase-
tvpe distribution, we also evaluate the cases for special phase-type distributions
such as k-stage Coxian and k-stage Erlang distribution. We discuss several
special cases where the problem is solved numerically. We also investigate the
problem for large ¢ values and while constructing the objective cost function for
this case, we compute the limiting values of the transition probabilities for k-
stage phase-type and k-stage Coxian distributions. We find out that whichever

ol these distributions rule the ON periods, the structure of the cost function

T
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is the same with what Parlar [19] found for the case when ON periods follow

k-stage Erlang distribution.

The reason that we use phase-type distributions is that in principle
any general distribution may be approximated by a phase-type distribution.
Additionally as their structures give rise to a Markovian state description they
become sufficiently versatile to reflect the essential qualitative features of the
mocdel. However for our numerical problems we assume that parameters of
the distributions are known in advance. As a possible future research topic,
a case with general ON and OFF distributions can be considered and these
distributions may be approximated with phase-type distributions. The results

of the approximation can then be compared with the real ones.

When numerical results are evaluated we see that the optimal cost and ¢

values are sensitive to type and parameters of the Phase-Type Distribution.

Theoretically, the research presented here can be extended for multiple
supplier cases. This enables us to see how the model is effected with increasing
number of suppliers. Another extension can be made to analyze the model
presented here for lost sales case which will be a trivial one as the only difference
will be in the expected cost expression including an extra term. The case with

random demand can be considered as a future research.



Appendix A

Some Computational Issues

[n this section, some computational aspects related to phase type distributions
will be illustrated via some standard examples.

1) MGE: k=2 p; # po

—K1 H1dy

T =
where a = (1, 0),

T° = [/-‘1(1 - al,/"?]Tv

and f(x)=a.exp(Tz)T°

In order to find exp(Tx); go through diagonalization,i.e.,
exp(Tx)=P~l.exp(Dz).P
So first find the eigenvectors of matrix T.

det| A =T | =0
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At —prar
A+

det =()

(/\ + ,“1)(/\ + )“'2) = 07 A= —Hi,
A = —uy are eigenvalues.

In order to find the eigenvectors,

0
0

Ay —pa
A+ o

T

T2

A= —p = —marey =0 and (g — py)z2 =0

let 2, =t.2,=0

X =t

0

If A = —py, then (u1 — p2)T1 — prayze = 0,

- . nayt
let 2, =¢t, 2, = P
prayt
X =¢| m—#e
1
L1y
= P=| M1 1 Pl = 0 1 =
1 0 ’ 1 —-taa ?
w1 —p2
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e~ mT pr1ay e~ HZ + _#ra ¢ ~H2Z
exp(Tx) = Pexp(Dx)P~! = #r—p #1142
e"#?-r
e—u.l;r __ka c—/.u.‘l: H1a1 — 2T _
flx) = (1,0) mod® T s il —a)
* —uox
e™H 2
o (1 —ay) — ug o nha
= e oz M )— 4 g Hit
Hi1 — f2 fHy — [
e —
Ct Cco

2) Hyperexponential distribution.

-\
-

_'/\m

a=(pryeerspm), T = [Myoees Am]T

-\z

-\

exp(Tx)=

—AmT
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Appendix B

Computer Program

P ks RR KRRk Rk kR kkkkkk MATN 1 E2E2_MM.BAS okokskoton s ook o ok ok s o sk ok ok ok ko ok ok ok

’ Programmer : Mahmut Parlar & Baris Balcioglu

'’ Date : 96/04/17
’ This program generalizes the computations for N = 3 states,
’ While the ON periods are 2-STAGE PHASE-TYPE DISTRIBUTION.

' OFF periods are memoryless.
' We solve the system of integral equations to get the transient

! probabilities. (cf. Jerri’s book.)

’ PARAMETERS AND FUNCTIONS IN THE PROBLEM:

» lam#() = Parameters of the stage of the ON Periods

’ mu# = Parameter of the OFF Period

’ ¢ij = Branching probabilities amoung the stages.

> NPrbs = Number of probabilities to compute which is 6.

! The number of states of the SMP is 3.
> NPts = Number of points in the integration interval

’ This is kept at 10 for all cases.

» P() = Transient probabilities
* PFit() = Exponential fit for transient probabilities
* PNum() = Numerical estimates for the transition probabilites
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» PLim()

> JStg

’ Nstg

» £()

-39

’ GBar()

’ Region$

’ RowGroup$
* HQ)

» AMATRIX()
* BVECTOR()
» XVECTOR()

Obtained after solving (I - H)X = B

= Limiting probabilities

= Maximum nbr. of stages in the Erlang ON r.v.

= Number of ON stages which is 2.

= Exponential density of Jth stage of the ON r.v.

= General density of the OFF r.v.

= Survival probability of of the OFF r.v.

= Regions of non-zero elements in H matrix

= Groups of rows for survival probabilities.
= Intermediate matrix / We have A = I - H

= The A matrix for the system solution (QPS)
= The B vector for the system solution (QPS)
= The solution vector (QPS)

REM $DYNAMIC

DEFINT I-N
DEFDBL A-H, 0-Z

DECLARE FUNCTION
DECLARE FUNCTION
DECLARE FUNCTION
DECLARE FUNCTION
DECLARE FUNCTION
DECLARE FUNCTION
DECLARE FUNCTION
DECLARE FUNCTION
DECLARE FUNCTION
DECLARE FUNCTION
DECLARE FUNCTION
DECLARE FUNCTION
DECLARE FUNCTION
DECLARE FUNCTION

aFit (K, L)

bFit (K, L)

bSurv (X,L,J)

£ (JStg, lam#(), ujPlusi, uj)
FBar (JStg, lam#(), uj)
From$ (I)

g (mu#, ujPlusi, uj)
GBar (mu#, uj)

H (I, D)

HSubf (JStg, I, AD]
HSubg (I, J)

PLim (I)

Region$ (I, J)
RowGroup$ (K, L)

DECLARE SUB GetData ()
DECLARE SUB GetCosts ()

DECLARE SUB Initialize ()

DECLARE SUB LINEAR1 (N, A(), B(), X(), IER)

vs
(8]
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COMMON SHARED NSup, NPts, NPrbs, DeltaT, JLow, JHigh
COMMON SHARED KOrder, hHolding, bBackorder, bBackorderTime

RANDOMIZE TIMER

Start = TIMER

’ Fix the number of points of integration as 10 (This won’t change!)

NPts = 10

DIM SHARED lam#(2), mu#, u(NPts), TopEQ(NPts + 1), BotEQ(NPts + 1)
DIM SHARED c01, ¢02, c12, c21, c10, ¢20
DIM SHARED TopNE(NPts + 1), BotNE(NPts + 1)

CALL GetData
CALL Initialize

’ NPrbs is 6
NPrbs = 6

DIM AMATRIX(NPrbs * NPts, NPrbs * NPts), IMinusP#(2, 2)

DIM BVECTOR(NPrbs * NPts), t(2), C(2)
DIM XVECTOR(NPrbs * NPts), TBar(2), CBar(2), SBar(2)

DIM SHARED PNum(2, 2, 10)
DIM PFit(2, 2)

START AMATRIX -

1 TO NPts * NPrbs
1 TO NPts * NPrbs

FOR I
FOR J

IF I = J THEN

AMATRIX(I, J) = 1 - H(I, J)
ELSE AMATRIX(I, J) = -H(I, J)
END IF
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NEXT J
NEXT I

) e —— START BVECTOR —-—-==-==—==—=—mm—mmmmmmmeoe

FOR I = i1 TO NPts * NPrbs
IF (1 <= I AND I <= 10) THEN

K=20
L=1

ELSEIF (11 <= I AND I <= 20) THEN
K=20
L =2

ELSEIF (21 <= I AND I <= 30) THEN
K=1
L=1

» PRINT K; L; "ROWGROUP"; ROWGROUP(K,L); BVECTOR(I)
ELSEIF (31 <= I AND I <= 40) THEN

K=1
L=2

ELSEIF (41 <= I AND I <= 50) THEN
K =2
L =1

ELSEIF (51 <= I AND I <= 60) THEN
K=2
L=2

> PRINT K; L; "ROWGROUP"; ROWGROUP(K,L); BVECTOR(I)
END IF

BVECTOR(I) = bSurv(K,L,I)

NEXT I

|
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CALL LINEAR1(NPrbs * NPts, AMATRIX(), BVECTOR(), XVECTOR(), IER)

Ve Test the SOLUTION VECTOR ---------=--- e

FOR I = 1 TO NPrbs * NPts
IF (1 <= I AND I <= 10) THEN
K=20
L=1

ELSEIF (11 <= I AND I <= 20) THEN

K=0
L =2

ELSEIF (21 <= I AND I <= 30) THEN
K=1
L =1

ELSEIF (31 <= I AND I <= 40) THEN
K=1
L =2

ELSEIF (41 <= I AND I <= 50) THEN
K=2
L=1

ELSEIF (51 <= I AND I <= 60) THEN
K=2
L=2

END IF
'PRINT USING "##.##### "; K; L; I; XVECTOR(I)

NEXT I

FOR I = 1 TO NPrbs * NPts
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NEXT I

aCoef
bCoef

il

IF From$(I) = "01" THEN

PNum(0, 1, I - 0) = XVECTOR(I)

ELSEIF From$(I)
PNum (0,

ELSEIF From$(I)
PNum(1,

ELSEIF From$(I)
PNum(1,

ELSEIF From$(I)
PNum(2,

ELSEIF From$(I)
PNum(2,

END IF

aFit(K, L)
bFit(K, L)

- "02'!
2, I-

- "11"
1, I -

= 'ty
2, 1~

= 1oqn
1, I -

= ll22"
2, I -

THEN
10) = XVECTOR(I)

THEN
20) = XVECTOR(I)

THEN
30) = XVECTOR(I)

THEN
40) = XVECTOR(I)

THEN
50) = XVECTOR(I)

86

Fitting coefficients a and b ——-

'PRINT K; L; PLim(L); "+'"; aCoef; '"*"; " EXP("; bCoef; "t)"
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NEXT L
NEXT K

0: rHi =

~

c

(o]
[}

CALL GetCosts

COMPUTER PROGRAM

qEOQ = SQR(2 * KOrder / hHolding)
CostEDQ = SQR(2 * KOrder * hHolding)

PRINT "qEOQ ="; qEOQ
qOpt = qEOQ: ’qOpt =
ropt = O: 'x0pt =

ECostOpt = 10 ~

10

FOR Iteration = 1 TO

": CostEODQ

1

, "CostEOQ

qLo + RND * (qHi - gLo)
rLo + RND * (rHi - rLo)

500

IF Iteration < 250 THEN

Power = 3

ELSE

87
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Power = §
END IF
)q__—_2
)r=

q = qOpt + (gHi - qLo) * (2 * RND - 1) “ Power
IF q < gqlLo OR ¢q > gHi THEN GOTO StartOver

r = rOpt + (xHi - rLo) * (2 * RND - 1) ~ Power

IF r < rLo OR r > rHi THEN GOTO StartOver

0 TO 2
1 TO 2

FOR K
FOR L

PFit(K, L) = PLim(L) + aFit(K, L) * EXP(bFit(K, L) * q)
"PRINT PFit(K,L)

NEXT L
NEXT K

PMatrix(1, 1) = PFit(1, 1)
PMatrix(1, 2) = PFit(1, 2)
PMatrix(2, 1) = PFit(2, 1)
PMatrix(2, 2) = PFit(2, 2)

'FOR K = 1 TO 3
'FOR I 1 TO 2

'FOR J 1 TO 2
'PRINT USING “##.###t "; I; J; PMatrix(I, J)

1l

n

"NEXT J
'NEXT I
'NEXT K
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et et t Vector -

' t vector refers to the B vector in the Parlar’s theorem

’ D (demand) is taken as unit demand.

> E[TO] = mu#t 7

PFit(1, 0) = 1 - (PFit(1, 1) + PFit(1, 2))
PFit(2, 0) = 1 - (PFit(2, 1) + PFit(2, 2))
t(1) = (q + mut * PFit(1, 0))

t(2) = (q + mu# * PFit(2, 0))
e e I - P Matrix ---
FORI =1 TO 2

FOR J =1 TO 2

IF I = J THEN
IMinusP#(I, J) = 1 - PMatrix(I, J)

ELSE
IMinusP#(I, J) = -PMatrix(I, J)
END IF

'PRINT USING it .ttt ", I; J; IMinusP#(I, J)

NEXT J
NEXT I

89

CALL LINEAR1(2, IMinusP#(), t(), TBar(), IER)

FOR I =1 TO 2
*PRINT "I, TBar "; I; TBar(I)
NEXT I
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T1 = (c01 * TBar(1)) + (c02 * TBar(2))
PRINT "T1 "; Ti

> LINEAR1 changes the original I - P Matrix. So, recreate it!

S e e I - P Matrix

FOR I =1 TO 2
FOR J 1 TO 2

IF I = J THEN
IMinusP#(I, J)
ELSE
IMinusP# (I, J)
END IF

1 - PMatrix(I, J)

-PMatrix(I, J)

"PRINT USING "##.#t#at *; I; J; IMinusP#(I, J)
NEXT J
NEXT I

90

Lt ittt e Vector —-—

CALL LINEAR1(2, IMinusP#(), e(), SBar(), IER)

FOR I =1 TO 2
'PRINT "I, SBar "; I; SBar(I)
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NEXT I

e oo — oo N(q) = E[sub-cycles]

N1 = (cO1 * SBar(1)) + (c02 * SBar(2))
>PRINT "N1 = "; N1

cqr = KOrder + hHolding * q =~ 2 / 2 + hHolding * ¢q * r

Bothmus = mu#
gammaBarTop = EXP(-Bothmus * r) * (hHolding * EXP(Bothmus * r)

* (Bothmus * r - 1) + bBackorder * Bothmus + hHolding)

‘gammaBarBot = Bothmus ~ 2

gammaBar = gammaBarTop / gammaBarBot

Cq = KOrder + hHolding * q ~ 2 / 2 + hHolding * q * r + gammaBar

Y e Ci = Elcost] ---—- -

c1 (N1 - 1) * cqr + Cq
"PRINT "C1 = "; Ci

ECost = C1 / T1
"PRINT "¢, r, ECost "; ¢; r; ECost

IF ECost > ECostOpt THEN GOTO StartOver

q
by

q0pt
rOpt
ECostOpt = ECost

PRINT USING 'iitst#. t#it# "; Iteration; qOpt; rOpt; ECostOpt
'PRINT "SumT ='"; SumT; "SumC ="; SumC

)
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StartOver:

NEXT Iteration

Finish = TIMER

PRINT "Time it took "; Finish - Start; "seconds"

Yok kR R OR KRk R ROk Rk fkokkkokkx END OF MAIN PROGRAM kst akskskokdokdkokok ootk sk ok dokokok ok ok

REM $STATIC

) mz===============zz=cz=====x== FUNCTION : aFit =s==sss=ssscccos==c==zss=s======

)

b

FUNCTION aFit (K, L)

IF K = L THEN
aFit = 1 - PLim(L)
ELSE

aFit -PLim(L)

END IF

END FUNCTION

) m=====mzmo=m=s=====zczzz=z====== FUNCTION : bFit =====s==s=c=ssssssscososoossccoos



APPENDIX 3. COMPUTER PROGRAM 93

’

)

FUNCTION bFit (K, L)

FOR I =1 TO (NPts + 1)
TopEQ(I) = 0

BotEQ(I)
TopNE(I)
BotNE(I)
NEXT I

0
0
0

1]

IF K = L THEN

FOR t% = 1 TO NPts

u(NPts) = 5

PNum(K, L, NPts) = PLim(L) + .001
Ratio = (PNum(K, L, t%) - PLim(L)) / (1 - PLim(L))
TopEQ(t% + 1) = TopEQ(t%) + u(t’A) * LOG(Ratio)
BotEQ(tY% + 1) = BotEQ(t%) + u(th) ~ 2
NEXT t%

bFit = TopEQ(NPts + 1) / BotEQ(NPts + 1)
ELSE

FOR t% = 1 TO NPts
u(NPts) = 6
PNum(K, L, NPts) = PLim(L) - .001
Ratio = (PLim(L) - PNum(K, L, t%)) / PLim(L)
TopNE(t% + 1) = TopNE(t%) + u(t%) * LOG(Ratio)
BotNE(tY% + 1) = BotNE(t%4) + u(t%) ~ 2
NEXT t%

bFit = TopNE(NPts + 1) / BotNE(NPts + 1)

END IF
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END FUNCTION

) z=====zz=zz=zs==scscscoo=ssss=== kFUNCTION @ bSurv s=s==s==zos=scos======s==z=oomc

'’ Note the way Gbar (., mu#(), ...) works. The mu# doesn’t get a number!

’

FUNCTION bSurv (K,L,J)

IF RowGroup$(K, L) = "3" THEN
bSurv = FBar(1, lam#(), u(J - 20))

ELSEIF RowGroup$(K, L) = "6" THEN
bSurv = FBar(2, lam#(), u(J - 50))

ELSE

1]
(=]

bSurv

END IF

END FUNCTION
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FUNCTION £ (JStg, lam#(), ujPlusi, uj)
f = lam#(JStg) * EXP(-lam#(JStg) * (ujPlusil - uj))

END FUNCTION

) z=z=============z=zz=zzz=====z FUNCTION @ FBar ==s======c===scs==so==oss========

’

i

FUNCTION FBar (JStg, lam#(), uj)
FBar = EXP(lam#(JStg) * uj)

END FUNCTION

) =m===============z=========== FUNCTION : From$ CoESSSSCSoSomssSsoSToSomSos==s

’ Check to see which of (I,J) is valid in ~P

)

)y

FUNCTION From$ (I)

IF 1 <= I AND I <= 10 THEN
From$ = "01"

ELSEIF 11 <= I AND I <= 20 THEN
From$ = 02"

ELSEIF 21 <= I AND I {= 30 THEN
From$ = "11"
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ELSEIF 31 <= I AND I <= 40 THEN
From$ = "12"

ELSEIF 41 <= I AND I <= 50 THEN
From$ = "21"

ELSEIF 51 <= I AND I <= 60 THEN
From$ = "22"

END IF

END FUNCTION

) mm=m===========z====cc============ FUNCTION : g SES==EsEssSossssSSssossso=szsoss

)

)

FUNCTION g (mu#, ujPlusi, uj)
g = mu#t * EXP(~-mu# * (ujPlusi - uj))

END FUNCTION

) zZzzz==sss=sszosss======c==c-=== FUNCTION : GBar =====s==s==s=s=sso=oooooooo=ssoss=c

»

’

FUNCTION GBar (mu#, uj)
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GBar = EXP(-mu# * uj)

END FUNCTION

)

SUB GetCosts

KOrder = 200: '[10]
hHolding = 100: ' [5]
bBackorder = 500: ' [250]

PRINT "K ="; KOrder, "h ="; hHolding, "b ="; bBackorder

'PRINT "qEOQ
'PRINT "CEOQ

END SUB

4 ::::::::::::::::::::;::::::: *SUB :

’ PARAMETERS

’

". SQR(2 * kOrder / hHolding)
": SQR(2 * KOrder * hHolding)

’ See the MAIN PROGRAM for definitions of the paremeters

y

2

SUB GetData

CLS

GetData ===ss=ssnnzasosszoznnas

97
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.6#
.5#

lam#t (1)
lam#t(2)

.75

1

mui

c01 = .3#
c02 =1 - ¢c01

ci2 = .55
cl0 =1 - cl2

c21 = .60
c20 = 1 - ¢21

PRINT "lami ="; lam#(1), "iamz =" lam#(2)
PRINT "mu ='"; mu#

PRINT "cO1 ="; cO1, "c02 ="; c02

PRINT "c12 ="; c12, '"c10 ="; c10

PRINT '"c21 ="; c¢21, '"c20 ="; c20

END SUB

'’ HSubg(Ith coord, Jth coord)
’ HSubf(Stage, Ith coord, Jth coord)

)

)

FUNCTION H (I, J)
SELECT CASE Region$(I, J)

CASE "13"
H = ¢01 * HSubg(I - 0, J - 20)
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CASE "15™
H = c02 *

CASE ''24"
H = c01 *

CASE "26"
H = c02 *

CASE "31"
H = cl10 *

CASE "35"

H= c12 * HSubf(1, I -

CASE 42"
H = cliO *

CASE "46"
H= cl12 *

CASE "51"
H = c20 *

CASE "53"
H = c21 *

CASE "62"
H = c20 *

CASE "64"
H = c21 %

CASE ELSE
H=20

HSubg(I - 0, J - 40)

HSubg(I - 10, J - 30)

HSubg(I - 10, J - 50)

HSubf(1, I

HSubf(1, I

HSubf(1, I

HSubf(2, I

HSubf(2, I

HSubf(2, I

HSubf(2, I

-0, J - 10)
20, J - 40)
30, 10)
30, 50)

40, 0)
40, 20)
50, 10)
50, 30)

99
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END SELECT

END FUNCTION

)

FUNCTION HSubf (JStg, I, J)

IF (2 <= I AND I <= NPts) AND (J = 1) THEN
HSubf = DeltaT * (1 / 2) * £(JStg, lam#(), u(I), u(J))

ELSEIF (I > J) AND (2 <= J AND J <= NPts - 1) THEN
HSubf = DeltaT * (1 / 1) * £(JStg, lam#(), u(I), u(J))

ELSEIF (2 <= I AND I <= NPts) AND (J = I) THEN
HSubf = DeltaT * (1 / 2) * £(JStg, lam#(), u(I), u(J))

ELSE
HSubf = 0

END IF

END FUNCTION

) z—zmz=o=o=nossszs=scs=========== FUNCTION : HSubg B e e L T

> Generates the submatrices for H matrices before the integral equation

’ solution.
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y

)

FUNCTION HSubg (I, J)

IF (2 <= I AND I <= NPts) AND (J = 1) THEN
HSubg = DeltaT * (1 / 2) % g(mu#, u(I), u(J))

ELSEIF (I > J) AND (2 <= J AND J <= NPts - 1) THEN
HSubg = DeltaT * (1 / 1) * g(mu#, u(I), u(J))

ELSEIF (2 <= I AND I <= NPts) AND (J = I) THEN
HSubg = DeltaT * (1 / 2) * g(mu#, u(I), u(J))

ELSE
HSubg = 0

END IF

END FUNCTION

) =z=========z=czczzz==z==z======== SUB : Initialize ================z=cz=zz=z=z====== -

' Computes DeltaT and the u(J) values

* NOTE : If tFinal is large (> 0.5) then we get inaccurate results. So, keep

> tFinal around .25

2

’ 4413 -+ 2t 33 3 3 3+ 4+ 2 &t - A At A - -

)

’

SUB Initialize

tInit = 0

.05
(tFinal - tInit) / (NPts - 1)

tFinal
DeltaT

FOR I = 1 TO NPts
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n(I) = tInit + (I - 1) * DeltaT
NEXT 1

END SUB

) zz==z==z=c=scc========cz===x= SJUBROUTINE : LINEAR] ==c=======s=c=s=z=z=oo=c=zc====

' QuickPack Scientific Subroutine

’
' Solution of a system of linear equations subroutine
’

>’ Sotves [ Al * { X} ={B } using LU decomposition

)

> Input
'’ N = number of equations
* A() = matrix of coefficients ( N rows by N columns )

» B() = right hand column vector ( N rows )

' Output

» X() = solution vector ( N rows )
' IER = error flag

’ 0 = no error

’ 1 = singular matrix or factorization not possible

SUB LINEAR1 (N, A(), B(), X(), IER) STATIC
DIM INDEX(N), SCALE(N)
IER = 0

FORI =1TON
ROWMAX = O#
FOR J =1 TO N
IF (ABS(A(I, J)) > ROWMAX) THEN ROWMAX = ABS(A(I, J))

NEXT J
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* check for singular matrix

IF (ROWMAX = O#) THEN

IER = 1
GOTO EXITSUB
ELSE
SCALE(I) = 1# / ROWMAX
END IF
X(I) = B(I)

NEXT I

FOR J = 1 TO N
IF (J > 1) THEN
FORI =1T0OJ -1
s = A(I, J)
IF (I > 1) THEN
FORK=1TOI -1
s = s - A(I, K) * ACK, J)
NEXT K
A(I, J) = s
END IF
NEXT I
END IF

PIVOTMAX = O#

FOR I =JTON
s = A(I, 1)
IF (J > 1) THEN
FORK=1T0J -1
s =s - AC(I, K) » A(K, J)
NEXT K
ACI, J)
END IF
PIVOT = SCALE(I) * ABS(s)
IF (PIVOT >= PIVOTMAX) THEN

n

i\
w

IMAX = 1T
PIVOTMAX = PIVOT
END IF

NEXT I
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IF (J <> IMAX) THEN
FORK =1 TON
TMP = A(IMAX, K)
A(IMAX, K) = A(J, K)
A(J, K) = TMP
NEXT K
SCALE(IMAX)
END IF

SCALE(J)

INDEX(J) = IMAX

IF (J <> N) THEN
’ check for singular matrix

IF (A(J, J) = O#) THEN

IER = 1
GOTO EXITSUB
END IF

TMP = 1# / A(J, J)
FORI =J+1TON
ACI, J) = ACI, J) * TMP
NEXT I
END IF
NEXT J

* check for singular matrix

IF (A(N, N) = O#) THEN

IER = 1

GOTO EXITSUB
END IF
I1 =0

FOR I =1 TO N

L = INDEX(I)
s = X(L)
X(L) = X(I)

IF (I1 <> 0) THEN
FOR J = I1 TOI - 1
s =35 - A(I, J) * X(J)

104
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NEXT J
ELSEIF (s <> O#) THEN
I1 =1
END IF
X(I) = s
NEXT I

N TO 1 STEP -1
X(I)
IF (I < N) THEN
FOR J=1I+1TON
s =s - AC(I, J) * X(J)
NEXT J
END IF
(1) = s / A(I, T)
NEXT I

FOR I

s

EXITSUB:
ERASE INDEX, SCALE

END SUB

FUNCTION PLim (I)
IF I = 1 THEN
Plimtop = lam#(1)
Plimbot = lam#(1) + (c10 + c12c20 )
% ( (mu# + (c02 * lam#(2))) / (1 - c02c20) ) + ci2 * lam#(2)
PLim = Plimtop / Plimbot
ELSE
Plimtop = lam#(2)
Plimbot = lam#(2) + (c20 + c21c10 )
# ( (mu#t + (cO1 * lam#(1))) / (1 - c01c10) ) + c21 * lam#(1)
PLim = Plimtop / Plimbot
END IF
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END FUNCTION

=zm=sz==z=z==c==== xFUNCTION :

Region$ S=osssosssso=sssoossSSx=s====

' Determine which blocks are valid for the AMATRIX

> I shows row # J shows column #

)

)

FUNCTION Region$ (I, J)

IF (1 <= I AND I <= 10) AND (21 <= J AND J <= 30) THEN

Region$ = "13"

ELSEIF (1 <= I AND I <= 10) AND (41 <= J AND J <= 50) THEN

ELSEIF

ELSEIF

ELSEIF

ELSEIF

ELSEIF

ELSEIF

ELSEIF

Region$ = "15"

(11 <= 1 AND T <=
Region$ = "24"

(11 <=1 AND I <=
Region$ = "26"

(21 <=1 AND I <=
Region$ = "31"

(21 <=1 AND I <=
n3gn

Region$

(31 <= 1 AND I <=
Region$ = "42"

(31 <= I AND I <=
1na@"

Region$

(41 <= 1 AND I <=

Region$ = "61"

20) AND

20) AND

30) AND

30) AND

40) AND

40) AND

50) AND

(31 <= J AND J <= 40) THEN
(561 <= J AND J <= 60) THEN
(1 <= J AND J <= 10) fﬂzn

(41 <= J AND J <= 50) THEN
(11 <= J AND J <= 20) THEN
(51 <= J AND J <= 60) THEN

(1 <= J AND J <= 10) THEN
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ELSEIF (41 <= I AND I <= 50) AND (21 <=

Region$ = "53"

ELSEIF (51 <= I AND I <= 60) AND (11 <=

Region$ = "62"

ELSEIF (51 <= I AND I <= 60) AND (31 <=

Region$ = "64"

ELSE
Region$ = 00"

END IF

END FUNCTION

---------------- *FUNCTION :

COMPUTER PROGRAM

RowGroup$

» Determine which rows are valid for the BVECTOR

107

J AND J <= 30) THEN

J AND J <= 20) THEN

J AND J <= 40) THEN

FUNCTION RowGroup$ (K, L)

IF K = 0 AND L = 1 THEN
RowGroup$ = "1"
JLow = 1
JHigh = 10

ELSEIF K = 0 AND L = 2 THEN
RowGroup$ = "2"
JLow = 11



APPENDIN B. COMPUTER PROGRAM 108

JHigh = 20

ELSEIF K = 1 AND L = 1 THEN
RowGroup$ = "3"
JLow = 21
JHigh = 30

ELSEIF K = 1 AND L = 2 THEN
RowGroup$ = "4"
JLow = 31
JHigh = 40

ELSEIF K = 2 AND L = 1 THEN
RowGroup$ = "5"
JLow = 41
JHigh = 50

ELSEIF K = 2 AND L = 2 THEN
RowGroup$ = "6"
JLow = 51
JHigh = 60

END IF

'PRINT I ; JLow; JHigh
END FUNCTION
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