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ABSTRACT

MODELING THE SUPPLIER UNCERTAINTY WITH 
PHASE-TYPE DISTRIBUTIONS IN INVENTORY

PROBLEMS

Ahmet Barış Balcioglii 
M.S. in Industrial Engineering 

Supervisor: Assoc. Prof. Ülkü Gürler 
September, 1996

This study considers a stochastic inventory nnodel where the supply 
availability is subject to random fluctuations. The periods in which the supplier 
is available (ON) or unavailable (OFF) are modeled as a semi-Markov process. 
During ON periods the {q,r) policy is applied. During OFF periods, the 
amount enough to bring the inventory position to q + r is ordered as soon 
as the supplier becomes available again. The regenerative cycles are identifled 
by observing the inventory position and using the renewal reward theorem the 
average cost per time objective function is derived. In our study, a K-stage 
Phase-Type distribution for ON periods and a general distribution for OFF 
periods are assumed. In our study, the problem is theoretically solved for K- 
stage Phase-Type distributions; additionally numerical computations are made 
for 2-stage Phase-Type distributions. For large q values the structure of the 
objective function is investigated.

Key words: Inventory Models, Phase-Type Distribution, Semi-Markov 
Processes, Supplier Availability
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ÖZET

ENVANTER PROBLEMLERİNDE SUNUCUNUN 
BELİRSİZLİĞİNİN EVRE-TÜRÜ DAĞLIMLARLA

MODELLENMESİ

Ahmet Barış Balcıoğlıı
Endüstri Mühendisliği Bölümü Yüksek Lisans 

Tez Yöneticisi: Doç. Ülkü Gürler 
Eylül, 1996

Bu çalışmada çeşitli nedenlerden ötürü arzın rassal dalgalanmalar gösterdiği 
l)ir envanter modeli anlatılmaktadır. Sunucunun hizmet verdiği (AÇIK) ve 
veremediği (KAPALI) süreler bir yarı-Markov süreç olarak modellenmiştir. 
AÇIK durumlarda {q,r) politikası uygulanmaktadır. KAPALI durumda ise 
sunucu tekrar çalışabilir duruma gelince, envanter pozisyonunun q + r'ye 
çıkması için yetecek miktarda ısmarlama yapılır. Yeniden tekrarlanabilir 
çevrimler, envanter pozisyonu gözlemlenerek belirlenir ve yenileme ödül kuramı 
kullanılarak birim zaman ortalama maliyet işlevi türetilir. Çalışmamızda, 
AÇIK dönemler için K- aşamalı Evre- Türü, KAPALI dönemler içinse genel 
bir dağılım varsayılmaktadır. Bu çalışmada, problem K-aşamalı Evre-Türü 
dağılım için kuramsal olarak çözülmüş, ayrıca 2-aşamalı Evre-Türü dağılımlar 
kullanılarak sayısal çözümlemelere gidilmiştir. Büyük q değerleri için amaç 
işlevinin yapısı da incelenmiştir.

Anahtar sözcükler. Envanter Modelleri, Evre-Türü dağılımlar, Yarı-Markov 
Süreçleri, Arzın Karşılanabilirliği.
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Chapter 1

Introduction and Literature 
Review

Inventory problems are as old as human history, but introduction of analytical 
tools to study these problems has started since the beginning of this century. 
The importance of studying inventory problems arises from the fact that, we 
can not avoid carrying inventories due to several reasons, the main one being 
that it is either physically or economically impossible to obtain and distribute 
goods whenever demand occurs. If inventories are not kept then the customers 
should wait until their orders are supplied which will result in low customer 
satisfaction. Other than this, to cope with the effects of inflational or seasonal 
fluctuations of demand and prices, manufacturers are forced to hold inventories. 
Several other reasons may be listed similarly.

The basic questions that inventory managers are faced with are:

• How often should the inventory status be checked (i.e. what should be 
the review interval)?

• When to replenish the inventory?

• How much to order for replenishment?

1



These issues are handled by introducing mathematical models for inventory 
processes. A good mathematical model should capture the main features of the 
real problem, while avoiding analytical and numerical complexities. Inventory 
systems differ in size and complexity, in the types and nature of the items 
they carry, in the nature of information available to decision makers, in the 
costs related with operating systems. Most of the inventory models aim to 
minimize an objective function with respect to costs, although there may be 
other objectives such as profit maximization etc. Basically four types of costs 
relevant to an inventory problem:
(i) R eplenishm ent Costs
This is the cost incurred each time a replenishment action is taken. It can be 
considered in two parts: (i) the fixed amount, often called setup or ordering 
cost, which must be paid to the source independent of order size, (ii) a 
component that depends on the size of the replenishment.
(ii) Inventory Carrying Costs
Holding stocks include several costs such as: (i) the opportunity cost which is 
the cost of capital tied up in inventory rather than having it invested elsewhere,
(ii) warehouse operation costs, (iii) insurance, (iv) taxes, (v) potential spoilage 
or obselecence of goods. Usually these costs are accepted to be proportional 
to the average inventory level, where, in fact some components may be related 
to inventory level in a more complicated manner.

(iii) Stockout Costs
When stocks in hand are insufficient to meet customer demand, costs are 
incurred as costs of back ordering and/or lost profit on sales other than loosing 
the good will of the customer due to poor service.
(iv) System  Control Costs
It includes the costs of acquiring the data necessary for the adopted decision 
rules, the computational costs and costs of implementation. However in this 

sequel this cost type is ignored.

CHAPTER 1. INTRODUCTION AND LITERATURE REVIEW 2

Most of the research that has appeared in the literature implicitly assumes 
that the goods are available from the supplier at any time an order is
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placed. Even in the models which include a (possibly random) lead-time, the 
assumption is that the supplier will start production of the order and will 
deliver the amount that has been required as soon as the lead-time ends.

This assumption may be approved only if the supplier is ’always’ available 
to meet the demand requested. However in practice, supply of the product 
may be disrupted due to several reasons as discussed below. Therefore, in this 
study we consider a model where the supplier could also go through ON and 
OFF times with random durations.

Following examples given by Gürler and Parlar [9] may illustrate the 
ON/OFF structure of the suppliers: If the supplier has its own inventory 
process, then we can say that the supplier is ON if ordered quantity q 
is available in its inventory, and OFF otherwise. Or, as in a frequently 
encountered example, supplier is considered as a production process which 
is under statistical process control. The process may start production of items 
out of specification limits beyond an acceptable proportion and inevitably the 
process should be stopped before reaching the desired capability. In this case 
the OFF times of the supplier will be the counterpart of the termination of 
production while system is being inspected. Similar to this case, machine 
breakdowns or some maintenance policies may also yield in disruptions in 
production process and a need for studying supplier unavailability may arise. 
Rare events such as strikes, embargoes or forced shutdowns of the plants are 
other possible reasons for disruptions.

When such examples are considered, i.e., in cases when outside supplier 
may not meet the supply at random times for random durations, the implicit 
assumption of continuous supply availability would not be valid and new models 
should be constructed to handle the disruptions of supply.
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1.1 Literature Review

There is a vast literature on modeling inventory problems. It is therefore not 
attempted here to give an extensive survey of such studies. The interested 
reader could refer to Lee and Nahmias [11], Porteus [23], Peterson and Silver 
[22], Silver [27] and the references therein. Instead, we present below the main 
studies where supplier unavailability is considered.

Silver [27] is recognized to be the first author who discussed the need of 
studying supplier unavailability while constructing inventory models. In his 
review paper, which is also important as it points out the ‘serious gaps existing 
between the theory and practice in many organizations’. Silver says that while 
considering the nature of the supply process, most of the literature ignores that 
’only a random portion (including 0, perhaps caused by a strike or poor quality 
conditions) of the ordered material is received’. This is why he suggests finding 
simple decision rules that must be valid under these circumstances. While 
explaining the motivation for holding inventories, Nahmias [16] lists three 
important uncertainties that play a major role as (i) uncertainty of external 
demand, (ii) uncertainty of lead time and (hi) uncertainty of the supply. To 
make the third one to be understood more clearly, Nahmias gives the OPEC 
oil embargo of the late 70’s as an example when the electric utilities and the 
airlines had to cope with curtailing operations due to fuel shortages. Other 
important uncertainties are uncertainty of yield and uncertainty of capacity. 
We suggest interested reader to read the review article of Yano and Lee [28] 
on random production and procurement yields.

In order to represent disruptive events such that in our case it is the 
supplier availability, alternating renewal process models are used. Meyer et 
al [14] used this approach while analyzing a single stage production-storage 
system of fixed capacity, with a constant known demand which is subject to 
stochastic failure and repair processes. In this paper, after examining the 
simple deterministic case corresponding to constant inter-failure and repair 
times, the case with random inter-failure and repair times are considered. 
Although a general solution of formulated recurrence equations have not been
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obtained, the exponential case is solved.

An article of Parlar and Berkin [20] which is more related with the present 
study analyzes the supplier uncertainty problem for the classical deterministic 
(EOQ) model, with a single supplier whose ON and OFF periods follow 
exponential distribution. In the model presented, it is assumed that the 
entire ordered amount will be available during the ON periods of the supplier. 
But there is a positive probability that at any given time the supplier may 
be unavailable (OFF) for a random duration. Applying concepts of renewal 
theory, an objective function (average cost/time) is constructed to find the 
optimal order quantities when orders are placed during the ON periods of 
the supplier. Two special cases with (i) ’’memoryless” ON and OFF periods 
and (ii) ’’memoryless” ON and deterministic OFF periods are discussed with 
sensitivity analysis on the cost and non-cost parameters.

A critique to this previous paper comes from Berk and Arreola-Risa [3]. 
They point out that Parlar and Berkin [20] make an implicit assumption that 
a stock out occurs during every OFF period while there is a finite probability 
that at the end of a cycle there may be positive stock especially when the OFF 
periods are much shorter than the ON periods. They also state that when the 
total cost per cycle is derived as if the shortage cost is incurred per unit time 
will not be valid when sales are lost. Keeping these in mind they develop the 
‘correct’ model for the special case of memoryless ON and OFF periods and 
investigate its characteristics and additionally they study the sensitivity of the 
optimal order quantity to different values of the model parameters.

Karaesmen et al [7] extend the model of Parlar and Berkin [20] assuming 
that supply availability periods and disruption durations of supplier are random 
variables which need not to be independent. They provide two different 
approaches to compute the expected cost per unit time while formulating the 
general model. They evaluate the special cases when (i) the supply availability 
periods and disruption periods are deterministic, (ii) the supply availability 
periods and disruption periods are memoryless having a certain dependence 
structure, (iii) the supply availability periods are memoryless and disruption
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periods depending on supply availability follow a two-point distribution. They 
find out that the effect of correlation is case dependent for case (iii) and almost 
’’invisible” for case (ii). They observe that, as the length of the expected length 
of disruption durations increases and the number of orders in a supply cycle 
is one, the problem can be approximated by a single period problem which is 
easier to solve.

In a recent paper. Parlar and Perry [21] extend the model of Parlar and 
Berkin [20] and develop average cost objective function models for single, 
two and multiple suppliers. In the case of two suppliers, in order to derive 
explicit expressions for the transient probabilities of a four-state continuous­
time Markov chain representing the status of the system, spectral theory is 
used. The probabilities found in this way ax'e used in the computation of the 
exact form of the average cost expression. For the multiple case, it is assumed 
that all the suppliers are similar in availability characteristics and in a simple 
model, they show that as the number of the suppliers increases, the model 
reduces to the classical EOQ model.

Gupta [6] analyzes a continuous-review, order quantity/reorder point inven­
tory system with an unreliable supplier whose ON/OFF periods are distributed 
exponentially. It is assumed that the unit demands are generated according 
to a Poisson process and whenever shortages occur, they are lost. Moinzadeh 
and Aggarwal [15] study an unreliable bottleneck production/inventory system 
subject to random disruptions assuming that the demand and production rates 
are constant. They propose an (s, S) production policy and find expressions for 
the operating characteristics of the system. They develop a procedure to find 
the optimal values of policy parameters minimizing the expected total cost. In 
addition they propose a heuristic procedure to find near optimal production 
policies.

Güllü et al [8] analyze a periodic inventory model assuming that demand is 
deterministic and dynamic where the ordered quantity can be either delivered 
or cancelled if the supplier can not meet the order on time. Therefore 
in a given period the supplier can be either available or unavailable with
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given probabilities which are nonstationary and independent from one period 
to another. Their contribution with this study are (i) demonstrating the 
optimality of an order-up-to policy, (ii) characterizing explicitly the optimal 
order-up-to levels, and (iii) providing a newsboy-like formula to compute the 
optimal order-up-to levels over the planning horizon.

In another study. Parlar [19] considers a continuous-review stochastic 
inventory problem subject to suppler unavailability. It is assumed that the 
demand and the lead-times are random variables. He assumes that the ON 
period of the supplier has a k-stage Erlang distribution and the OFF period 
is general. The supplier availability is modeled as a semi-Markov process. 
When the supplier is ON, the {q, r) policy is used conveniently. But whenever 
the supplier is OFF, the policy changes and an amount necessary to hit a 
tai'get value r  -f ç is ordered as soon as the supplier becomes available again 
and this results in order quantity to be a random variable. Parlar constructs 
the objective function (average cost/time) by first identifying the regenerative 
cycles of the inventory position process. Employing ’’method of stages” causes 
the problem to have a larger state space for the ON/OFF stochastic process. 
However, the process is analyzed using Markovian techniques. The special case 
when the order quantity q is large is also considered.

Gürler and Parlar [9] enlarge the previous problem to the case of a duopoly 
of two suppliers who may be ON and OFF independent of each other for 
random durations. Each supplier’s availability is modeled as a semi-Markov 
(alternating renewal) process. The durations of ON periods for the two 
suppliers are assumed to be distributed as Erlang random variables while the 
OFF periods of each supplier are general. The benefit of this approach comes 
from the fact that any non-exponential random variable with coefficient of 
variation less than one can be approximated by an Erlang random variable if the 
choice of stage parameter of Erlang can be made in a proper way and as a result 
the ON/OFF stochastic process becomes general under these assumptions. 
The regenerative cycles of the inventory level process are identified and 

applying renewal reward theorem the long-run average cost objective function 
is obtained. Finite time transition functions for the semi-Markov process are
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computed numerically using a direct method of solving a system of integral 
equations representing these functions. Then two particular case (i) a problem 
in which the ON periods of both suppliers follow a 2-stage Erlang distribution 
and OFF period of each supplier is exponentially distributed, and (ii) the 
problem where the optimal order quantity q may be ‘large’ are described. In 
the latter case, it is shown that the objective function assumes a very simple 
form to be used to analyze the optimality conditions. The paper ends with 
discussion of alternative inventory policy for modeling the random supplier 
availability problem.

The remainder of the thesis can be outlined as follows. In Chapter 2, 
the main properties of Phase-type distributions are reviewed. Their closure 
properties are stated and some special Phase-type distributions are examined. 
Then the equivalence relations between some classes of these distributions 
are presented. The second chapter ends with the methods of approximating 
any general distribution with a Phase-type distribution. In Chapter .3, the 
mathematical model of a continuous-review stochastic inventory problem with 
deterministic demand and random lead-times where the single supplier is 
subject to disruptions is constructed and the objective cost function is derived. 
Chapter 4 includes the analytical solution of a special problem such that the ON 
periods of the supplier is distributed with 2-stage Coxian distribution. Then 
the model proposed in previous chapter is re-evaluated for large q values. The 
numerical results of special problems are displayed and discussed in Chapter 
5. Chapter 6 gives the conclusion and possible future research areas with the 
topic presented here.



Chapter 2

Phase-Type Distributions

In stochastic modeling, the assumption of exponential interarrival times with 
Poisson arrivals is frequently used mostly for mathematical convenience due 
to the lack-of memory property of the exponential distribution. For complex 
models, exponential assumption is used to obtain tractable steady-state results 
which avoid the cost of time-consuming simulations. However, for relatively 
simple models, it is still desirable to obtain exact results under general 
distributional assumptions.

Analytic approaches to models with general distributions rapidly become 
complicated and intractable. An alternative approach is to consider probability 
distributions and processes, which are computationally tractable while being 
sufficiently versatile to reflect the essential qualitative features of the model. 
The family of Phase-type distributions is an example of such alternatives.

The advantage of using Phase-type distributions is that their structures give 
rise to a Markovian state description. Their potential for algorithmic analysis 
is usually carried out using matrix algebra. The phase (or stage) concept was 
first introduced by Erlang [5]. An Erlang distribution consists of a series of m  
exponential distributions with common rate fx. Therefore the random variable 
associated with Erlang distribution is the sum of m independent exponential 
random variables with rate fi.

9
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A distribution even more general is the Coxian distribution. A Coxian 
distribution with m stages, also termed as phases, is represented in Figure 2.1. 
The Coxian distribution is more general than the Erlang distribution since it 
allows non-identical rates and branching probabilities. This distribution may 
be better understood by the following physical interpretation. Suppose that the 
overall processing time of a task is decomposed into a set of m subtasks. The 
processing time of subtask j  is exponentially distributed with rate pj. Upon 
completion of subtask j ,  either subtask  ̂-f 1 is performed, with probability aj, 
or the overall task is completed, with probability bj = 1 — aj. bm = I explains 
that at most m  subtasks are performed. In the most general form of the Co.xian 
distribution, it is also possible to have a zero processing time with a non-zero 
probability. This is achieved by adding a branching probability (ao, bo) before 
stage 1.

Cox [4] showed that any distribution having a rational Laplace-Stieltjes 
Transform (LST) can be represented by a set of exponential phases. The 
LST of any distribution function can be approximated arbitrarily closely by a 
rational function (Newman and Reddy, [18]). Therefore, in principle, Coxian 
distributions may represent any distribution either exactly or approximately. 
The most general form of a distribution that are mixtures of exponential 
distributions is the family of phase-type distributions. A phase-type 
distribution with m  stages (or phases) is represented in Figure 2.2. The 
following physical interpretation can be considered: Suppose that an overall 
task is decomposed into a set of m  exponential subtasks. (The processing time 
of subtask j  is exponentially distributed with rate pj.) The first subtask to be 
processed is j t h  one with probability Cqj. Upon completion of subtask j ,  either 

subtask к is performed, with probability Cj k̂, or the overall task is completed.
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with probability cyo- The branching and transition probabilities satisfy,

Co,l +  ... +  Co,m =  1 3,nd Cj-д +  ... + =  1

Again the possibility of having a zero processing time with non-zero probability 
may be added. Note that a Coxian distribution is a special case of phase-type 
distribution.

Figure 2.2: Phase-type distribution with m phases.

2.1 Definitions and Closure Properties

A phase-type distribution can be considered as the distribution of the time until 
absorption in an absorbing Markov chain with the states {1,..., m-|-l} with m-|-l 
being the single absorbing state. Note that since the feasibility and complexity 
of numerical solutions of Markov processes are very much dependent on the 
size of the state space, the number of stages of phase-type distributions should 
be kept as small as possible for modeling purposes. Let Q be the infinitesimal 
generator of this Markov chain.

Q =
rp po

0 0 (1)
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where T is an m x m matrix with Tij > 0 for î ĵ and T,·,· < 0 for i= l,...,m . In this 
representation, m is said to be the order of the phase-type distribution. Then, 
Te -I- T° =  0, where e is a column vector of ones and the initial probability 
vector of Q is given by (a, 0!m+i), with a  =  [a i , ..., a,„], satisfying oe -f- 0:^+1 = 
1. Then T can be considered as the matrix of the rates of transition among 
the phases and T° is the vector of rates of transition from the transient states 

to the absorbing state

D efinition: Let T be a square matrix. The matrix exp(Tx) is given by the 
following Taylor series expansion:

exp(Tx) =  5:
fc=0

A
/  + T;r + . . . T'=— -h

for all X 6 R.

L em m a 2 .2 .2 :(N eu ts, [17], p.45) The distribution function of the time until 
absorption in the state m-|-l, corresponding to the initial vectorfa, ccm-̂ -i) is 
given by,

F(x) = 1 — aexp(Tx)e

for x> 0.

L em m a 2 .2 .1 :(N eu ts, [17], p.45) The states l,...,m  are transient if and only 
if the matrix T is nonsingular.

D efin ition :(N eu ts, [17],p.45) A probability distribution F(.) on [0,co) is a 
distribution of phase-type (PH-distribution) if and only if it is the distribution 
of the time until absorption in a finite Markov process of the type defined in 
(1). The pair («,T) is called a representation of F(.).

The phase-type distribution presented in Figure 2.2 can be represented in 
matrix notation and any PH-type distribution given in matrix notation can 
be represented as shown in Figure 2.2. First we are going to find the matrix
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representation of the PH-type distribution presented in Figure 2.2: It is obvious 
that a  =  [co,i, ...,co,m]· In the T matrix, T,·,· =  —fii for i while Tij =
Cij/ii for i,j =  and j. Then the following matrix of transitions among
phases is obtained:

Cl2jUl ClS/J-l

T  = C21/U2 - / i 2 C23fJ'2 • 2̂mf̂ 2

^ml l̂ m • l̂ m

With the same idea, T°, the vector of rates of transition from the 
transient states [l,...,m] to the absorbing state is obtained as follows: T° 
=  [cio/Wi, C2o/̂ 2i ···) Crno/im]· Now assume that we have the T matrix of order 
m, the T° vector, and the initial probability vector a. What we aim is to 
find the transition probabilities Cij shown in Figure 2.2. We can directly 
equate [cqi, co2, ···) cqtu] = QL- The transition probabilities among the transient 
phases, Cij — for i,j = l,...,m  and iŷ  j. The transition probabilities from 
any transient state to the absorbing state, Cjo = —jl·· This brief discussion 
shows the ecjuivalence of the graphical and matrix representation of a phase- 
type distribution. We now present some well-known properties of PH-type 
distributions:

Som e p ro p erties :

a. The distribution F(.) has a jump of hight ocm+i at x =  0, and its density 
function F'(x)  on (0,oo) is given by F'{x) = aexp(Tx)T°

b. The Laplace-Stieltjes transform f(s) of F(.) is given by f(s) =  OLm+i +  
a(sI-T)~^T°, for Re s>0

c. The noncentral moments of F(.) are all finite and given by 

¡jl\ =  (-l) 'i!(aT “*e), for i> 0.

Suppose that upon absorption into the state m -b 1 , we instantaneously
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perform independent multinomial trials with probabilities a i , 0;^, ^m+i, 
until one of the alternatives occurs. Restarting the process Q in the
corresponding state, we consider the time of next absorption and repeat the 
same procedure there. By continuing this procedure indefinitely a new Markov 
process is constructed such that (m + 1 )®* state becomes an instantaneous state. 
This new Markov process with states l,...,m has an infinitesimal generator,

Q* = T +

where T° is an m x m matrix with identical columns T° and A° = (1 — 
Q,„+i)~^diag(ai,..., am)· Without loss of generality, we assume that «„,4.1 =  0. 
The following definition is a characterization PH-type distributions in terms of 
this modified process:

D efin ition :(N eu ts, [17], p.48) The representation (cv,T) is called irreducible 
if and only if the matrix Q* is irreducible. (From now on, we restrict our 
attention to irreducible representation.)

2.1.1 Discrete Phase-Type Distributions

Discrete PH-distributions are defined by considering an (m + l)-state Markov 
chain P of the form,

'jpo

0 1
where I - T is nonsingular. The probability distribution of PH-type is 
given by:

P =

po =  a^+i Pk = aT '“' ^T° for k > 1. 

The corresponding probability generating is the following:

P{z) = am+i + za{I -  zTy^T^’ 

and the factorial moments are given by:

P^(l) = k \g T ^ - \ l  - T ) - ’̂ e
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2.1.2 Closure Properties

A number of operations on PH-distributions lead again to distributions of PH- 
type. In each case, a representation for the new distribution is obtained. Before 
stating the theorems, a notational convention will be presented. If T° is an 
?n-vector and (I is an n-vector, the m x n matrix T °^  with elements T°/3j, 1 

< i < m, 1 < j  < n, is denoted by T°B°. The following theorem states that 
the convolution of two continuous (or discrete) phase-type distributions is also 
a phase-type distribution.

T h eo rem  2 .2 .2 :(N eu ts, [17], p.51) If F(.) and G(.) are both continuous (or 
both discrete) PH-distributions with representations (a,T) and (^,S) of orders 
m and n respectively, then their convolution F*G(.) is a PH-distribution with 
representation (7 ,L) given by (in the continuous case):

7 =  [«,

L =
T T°B° 
0  S

T h eo re m 2 .2 .4:(N eu ts, [17], p.53) A finite mixture of PH-distributions 
is a PH-distribution. If (pi,...,pfc) is the mixing density and Fj{.) has the 
representation [a ( i) ,r ( j) ] , 1 < j  < k, then the mixture has the representation 

QL= \p\QLil),P2QL{2 ),...,PkQL{k)], and

T =

T{1) 0
0 T(2)

0 0

0
0

. . T{k)
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Infinite mixtures of PH-distributions are generally not of phase-type. The 
following theorem gives an important and useful exception, for which the 
concept of the Kronecker product of matrices should be introduced.

D efin ition :(N eu ts, [17], p.53) If L and M are rectangular matrices of 

dimension ki x ¿2 and k[ x k'2 , their Kronecker product L ^ M  is the matrix 
of dimensions k\k[ x ^2^2» written in block-partitioned form as

L \\M  L-ioM

LkiiM  Lki2M

Lik,M

Lkik2M

Product property: If L, M, U and V are I'ectangular matrices such that the 
ordinary matrix products LU and MV are defined, then M){U (8> =

LU (g) M V

T heo rem 2 .2 .5 :(N eu ts , [17], p.53) Let {s^} be a discrete PH-density with 
representation {/dyS) of order n, and F(.) a continuous PH-distribution with 
representation (a, T) of order m, then the mixture J2'^oSy.F''{.), of the 
successive convolutions of F(.), is of phase type with representations (7 , L) 

of order mn, given by

7 =  oc(S>§{I —
L = T (g) /  -b (1 -  am+i) T°A° 0 (7  -  + S)~^S
7nzn4-l — Pn+1 “b ^m-fl‘5') S

The following theorem gives the corresponding result of the theorem2.2.5 
when F(.) is a discrete PH-distribution.
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T h e o re m 2 .2 .6:(N eu ts, [17], p.56) Let {¿t,} and {pt} be discrete PH- 
densities with representations of {§_,S) and {a,T)  of orders n and m  
respectively. is of phase t}'̂ pe with representation (x,L)  of
order mn, given by,

7 = a ® § (I  -  α„г+l‘5')"̂
I  =  T 0  /  +  (1 -  am+i)T°A° <g)(J -  +  S)~^S

If X and Y are independent random variables with PH-distributions F(.) 
and G(.), then the distributions Fi(.) =F(.)G(.) and F2(.)= 1 - [1 - F(.)][l - 
G(.)j, corresponding to max(X,Y) and min (X,Y), are also of phase type. The 
following theorem provides their phase-type representations:

T lieo rem 2 .2 .9 :(N eu ts, [17], p.60): Let F(.) and G(.) have representations 
(a, T) and {§jS) of orders m  and n respectively, then Fi(.) has the 
representation (7 , L) of order mn + m + n, given by 7 =  [a (g) /5„+ia, am+i^

L =
T (g)/ +  /(8 )5  I ® S °  T ° ^ I

0 T O
0 0 5

and F2(.) has the representation T(g) /  +  7(g)5]

2.2 Special PH-Type Distributions

2.2.1 Mixtures of Generalized Erlang (Coxian) Distri­
butions (MGE)

Graphical representation of a MGE distribution is shown in Figure 2.3.
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Figure 2.3: Graphical representation of MGE distribution

Holding time in each phase is exponentially distributed with a rate /j,i in 
phase i. Here, Oj- is the conditional probability that the process visits phase 
i +  1 given that phase i is completed. This probability Co is usually taken to 
be 1 . MGE distribution has the following (a, T) representation:

-f.il fiiai
-fl2 ft2a2

—fiZ fl3<̂3
T  =

flk-lttk-l

-¡J'k

, a  =  (1 , 0, . . . ,0)

T° =  [fii{l -  ai),fi2{l -  d2),...,fik]'^. For k=2, when fii /¿2,

fx{x) = CiUiC + C2^ 2e x > 0

where Ci =  [fii(l — Oi) -  — fi2],o.'ndc2 =  1 — ci (See Appendix A for
calculations.)

A well-known special case of MGE is the Erlang-distribution with the 
following graphical representation, for which the density corresponds to that 
of a Gamma density with parameters k and fi.
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Figure 2.4: Graphical representation of the Erlang distribution 

2.2.2 Hyper exponential Distribution

A hyperexponential random variable is a proper mixture of exponential random 
variables with graphical representation shown in Figure 2.5.

Figure 2.5: Graphical representation of the hyperexponential distribution

The exponential random variable with rate fXi is selected with probability 
Pii 1 ^  For a; > 0, its density function is given by the following function,
where the details can be found in the Appendix A:

i=l

Notice that the MGE distribution shown in Figure 2.3 can represent the 
hyperexponential distribution by taking aj =  0 for all i and a = [pi, ...,pi·].
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2.3 Equivalence Relations Between Some 

Classes of PH-Type Distributions

Definition: Two distributions are said to be equivalent if the LST of their 
density functions are identical.

2.3.1 Exponential and Arbitrary Phase-type Distribu­
tions

Proposition: (Altiok, [1]) A k-phase phase-type distribution is equivalent to an 
exponential (obviously a single-phase type distribution) distribution with mean
, - i provided that the transition rate from every phase to phase k-|-l (absorbing 

phase) is 7 . No restriction is imposed on the structure of the phase-type 
distribution.

Corollary 1 :(Altiok, [1]) A k-phase MGE distribution is equivalent to an 
exponential distribution with a mean 7 “  ̂ provided that the rate into state 

k -t- 1 from any state is 7 .

ISCorollary2:(Altiok, [1]) In a trivial case, a hyperexponential distribution i 
equivalent to an exponential distribution with a mean 7 ” ,̂ if all the phases 
have the same mean 7 “ .̂

2.3.2 Hyperexponential and MGE Distributions

An MGE equivalent will be found of a given k-phase hyperexponential 
random variable using the transform techniques. We assume that both 
hyperexponential and the MGE distributions have the same number (k)



C H A P TER  2. P H A SE-TY P E DISTRIBUTIONS 21

of phases. First we are going to find an MGE equivalent to a given 
hyperexponential distribution. For the MGE distribution, //,· is the rate of 
the exponential phase and aj gives the conditional probability that the 
process visits phase i + 1 given that phase i is completed, i= l,...,k . For the 
hyperexponential distribution, exponential random variable having a rate 
Xi is chosen with probability p,·, 1 < i < k. In order to achieve a better 
insight, before stating the conditions when the equivalent MGE can be found 
for the given hyperexponential random variable, a mathematical procedure will 
be shown.

Let the LST of hyperexponential density function be.

H'-is) = Nkis)
Dh{s )

where

Nh{s) = E \ . p¡ n  (» + -'>)
1=1

cUld

Dfi{s) — n(«5 + A¿) 
¿=1

Let the LST of the MGE density function be.

C*{s) = Ncjs)
Dc{s)

where
k ¿“1 k

^c{s)  = -  ai)fXi n  aif î I ]  (̂  + Pj)
1=1 1=1 j=i+l

and 0 k
]][ aim =  1 ) n  (5 +  Pj) = 1 , Oit =  0
1=1 j=k+l

and

Dc{s) — + f î)
1=1
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Our assumption which forces both distributions to have the same number of 
phases enable us to equate the polynomials. As stated previously, in order that 
two distributions are equivalent, their LST’s must be equal. One way to achieve 
this is to equate denominators and numerators by matching the coefficients of 
the corresponding terms. The fact that there is a one-to-one correspondence 
in Dh(s) and Dc{s) in terms involving s",n  =  0,...,^' necessitates fii — Xi. So 
the denominators of the two LST’s become the same. Now the a,s in the MGE 
distribution need to be identified. This can be done by equating the coefficients 
of the corresponding terms in the numerators of the two LSTs. Let,

A;—1
Nh{s) = Y ^ a J

1=0

and

N,(s) = Y,c'i.3‘
1=0

Then, a,s will be found by solving the set of A: — 1 nonlinear equations;

Cl =  Cl

Cfc-l — Ck-1 (2)

For a given k-phase hyperexponential distribution with Ai > A2 > ... > Â ,, 
there always exists a unique equivalent MGE distributions with m = A,·, for 
which a,·, ioT i < k will be found solving the A: — 1 nonlinear equations. Now 
suppose a k-phase MGE distribution with fj, = and a =  (a i , ..., Ck-i)
is given and a hyperexponential equivalent is sought (with Xi =  fXi for all i). 
The Pi’s will be found from (2) coupled with the equation J2i=i P t=  1· This can 
happen only if the ¿1 (squared coefficient of variation) of the MGE distribution 
is greater than or equal to 1 because cl of hyperexponential is always greater 
than 1.0. This equivalent hyperexponential is unique.
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2.4 Moment Approximations

In this section, the issue of fitting MGE distributions using the method of 
moments will be summarized. Since the LST of any distribution function 
can be approximated arbitrarily closely by a rational function, in principle, 
phase-type distributions may be used to approximate any general distribution. 
(For convenience, c will denote cl from now on.) It is known that under 
certain regularity conditions, two distributions coincide if and only if all of their 
moments coincide. Therefore, in a phase-type approximation, it is desirable 
to equate as many moments of the phase-type distribution as possible with 
those of a given general distribution. However, including large number of 
moments makes the process of characterizing the approximation of phase-type 
distribution difficult. Therefore usually the first three moments are used for 
approximation purposes. But it must be noted that the use of the third moment 
may not always result in an improvement over the use of two moments.

2.4.1 Three-moment approximations (c > 1)

Altiok [2] suggested a three-moment approximate representation of general 
distributions. For practical purposes, distributions are distinguished by 
dividing the range of the squared coefficient of variation into two: c < 1  and 
c >1. According to the existing empirical results, it does not seem necessary 
to include the third moment if c < 1 . Therefore, the main concern will be 
the general distributions with c > 1 , and a set of expressions for their two- 
phase approximation MGE representations will be developed. The LST of the 
probability density function of a two stage MGE distribution (with oq =  1 and 
a is used in place of a-i) is given by;

s/ii(l -  a)
L-{s) =

+ H2)+

The first three moments can be found by taking successive derivatives 
of T*(s), where the set of moments of the original distribution that will be
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approximated is denoted by (mi, m2, m3) and the three unknown parameters 
of the two-stage MGE distribution that will be identified are (yui,/Z2,a).

1 a
mi = -----1-----

fll fJ'2

which implies

a = -  1)
Ail

m 2 =
2(1 -  a) [2aniH2 ~  2a(jUi + /¿2)'̂ ]

Ail /il/i2

m3 6(1 -  a) [1 2 aiJ.i/j,2ipi +  /̂ 2) -  6a(^i -|- /¿2)̂ ]
Ai? AiiAii

(3)

(4)

(5)

(6)

Substituting the unknowns (/Ui,/U2,a) into known moments (m i,m2,m 2) from 
the original distribution, we obtain

X  Y

2?ni(/¡7 + 1 2̂) -  ”i2 A i^  =  2 and 6mi(;tii -(-¿«2)̂  -  6mi(/i 1^ 2) -  6(̂ 11 +/«2) -  

m3Ai?Ai2 =  0

Rewriting the equations in terms of X and Y results in

r  = (6mi — 3m2/mi) 
[(6m^/4mi) -  m3]

x = ^  + ^mi 2mi
Which implies

and

fi, = {X + V X ^  -  4Y)/2 

H2= X  -  IJ-I

(7)

(8)

(9)

(10)

The positive root is taken as fxi so that fii > 1x2 will hold for c > 1. For 
the resulting two-stage MGE distribution to be legitimate, ^1 and /22 must be 
positive and real, and a must be between 0 and 1. For /j.i and fi2 to be positive 
and real, Y  and X  should satisfy Y > 0 and X~̂  > 4F. If Y is positive, 
X is always positive, since m i,m2, m3 are positive numbers and the following 

condition must hold:
3m2 < 2m im 3 (1 1 )
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The squared coefficient of variation c is c =  {m2/ml)  — 1 , which implies

m zlm \  > | ( c +  1 )̂ ( 12)

Now let us analyze the second necessary condition, namely X~ > AY. From 
(8), we have:

1 m.AY m^Y^
(13)

2 _  1 ru2Y mlY^A — —T i----------h
ml ml 4ml

In order that this expression is greater or equal to 4Y the following inequality 
should hold,

1 m i( c + l ) F 2
i ( n  = - T  +ml 4

-  (3 -  c)Y > 0,

where g(Y) is convex in Y and its minimum is attained at

(6 - 2c) 
m f(c+  1 )'̂

By inserting (15) into (14) we derive

(14)

(15)

[ ( c + l ) ^ - ( 3 - c ) ^ ]
ml{c+  1)2

> 0 (16)

For (16) to hold we arrive at the condition that c > 1 . So, we have shown that 

fix and fj,2 are real and fix > fi2 > 0.
Now we are going to analyze possible values of a. Using (3) and (5), we can 

write
9 1

r) (17)
2 1 

=  ( — )(;'rui 2 — a — aD'

(IS)

where, D =  ^ 1̂ +  (2/a)(c — 1 ).

For nx > [J.2 the following inequality is obtained

1 - D
a >

l + D
(19)
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In order that (19) should hold, a > 0 must be satisfied which is also a necessary 
and sufficient condition for fXi > H2- From (9) and (10) we know that > ¡j.2· 
Hence a > 0 i n ( 1 7 )  and ii\ is always positive if

a <
I P D (20)

Since a > 0, is always greater than 1.0 and therefore a < 1 . Clearly, 
(20) is a tighter bound than 1.0. As D is always greater than 1 , (19) gives 
a negative lower bound, therefore practically the lower bound for a is zero. 
Hence, we reach the conclusion that the resulting unique two-stage phase-type 
distribution is legitimate.

The discussion presented above states that (12) is necessary and sufficient 
to approximate a distribution with known first three moments and with c > 
1.0. If (12) is not satisfied either a three-moment approximation is used at 
the e.xpense of adding more phases in the MGE distribution or one can choose 
the nearest acceptable third moment to the original moment or a two-moment 
approximation can be resorted.

2.4.2 Two moment approximation

The case with c > 1
If first two moments are available, the two-phase MGE distribution can always 
be found (Marie, [13]). Given that the mean is m\ and the squared coefficient

2
Ail = —

mi
c

Ai2 — —
mi

a = 0.5c

For a two-moment approximation, a hyperexponential distribution with two- 
phases and a weighted mixing distribution for the branching probabilities in
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terms of phase rates ni and is also possible to be found as shown in Figure 
2.6. In this case, the equations

+ /̂ 1 — —mi
2

fJ'llJ'2 = —m2

have always a solution for c > 1

Il2

Figure 2.6: Weighted Hyperexponential distribution 

The case with c < 1

For the case c < 1 Erlang distribution is proposed and used as an
approximation. (See eg. Sauer and Chandy, [26], Gürler and Parlar, [9] ). The 
number of stages, k, should satisfy 1 / A : < c < l / A : - 1 . Once k is determined, 
a Generalized Erlang distribution with a and ^ can be found by.

1 — a =

H =

2Â;c +  ^ -  2 -  + 4 -  4c
2( c + l ) ( i - l )

[1 + (/u — l)a]
mi

For 0.5< = = ¿ 7, and a = 2(1 -  c), (Marie, [13]).m\



Chapter 3

The Model and Notations

In this chapter, we consider a continuous-review stochastic inventory problem 
with constant demand and random lead times where the supply is subject to 
random disruptions. It is assumed that the disruptions of the supplier follow 
an ON/OFF sequence. When the supplier is ON, the (g,r) policy of Hadley 
and Whitin [10] is used, i.e., when IP hits the reorder point r, q units are 
ordered and the target value R = q + r is reached. Here IP is the amount on 
hand plus on order minus back orders. When the supplier becomes unavailable 
(OFF), the policy changes so that one orders enough to bring IP to the target 

level R  as soon as the supplier becomes available again. As a consequence, the 
order c^uantity becomes a random variable in the model.

The supplier ON/OFF status is modeled as a semi-Markov process and the 
regenerative cycles are defined in the following way: Every time the IP reaches 
R = r + q right after the completion of an OFF period, the regenerative cycle 
starts. We split the regenerative cycles to a random number of sub-cycles which 
start when the IP is raised to R  during the ON period of the supplier. Let 
N(q) be the number of such sub-cycles which are identical except the last one.

This model is similar to that of Parlar [19] where he assumes that ON 
periods follow Erlang distribution and OFF periods are general. As an 
extension of his work, we assume in this study that the ON period is distributed

28
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Figure 3.1: Regenerative Cycles of the Inventory Position

with k-stage phase-type distribution (Figure 3.2). This extension is motivated 
by the approximating properties of Phase-type distributions as reviewed in 
Chapter 2. The situation can be interpreted as follows; When the period is 
ON and inventory drops to r, it can be at any stage j ,  j  = Time
to stay in stage j  is exponentially distributed with rate /ij. Here co,j is the 
probability that stage will be the initial stage of an ON period after an 
OFF period. Upon departure from stage j, either the ON period continues 
with stage i with probability cj,i or the ON period finishes and an OFF period 
starts with probability Cj,o· The branching probabilities satisfy,

co,i +  ··· + Co,к = 1 3,nd Cj,i +  ... -f Cj,k -b Cj,o =  1

The OFF period which is assumed to follow a general distribution is denoted 

by 0 .
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Figure 3.2: Phase-type distribution with k phases.

3.1 The Semi-Markov Processes and The 

Objective Function

Let {C(t)> t > 0} be the semi-Markov process representing ON/OFF status of 
the supplier such that ^(t) = 0 corresponds to the OFF period and C(t) =  j  
indicates that the supplier is at the stage of the ON period. Note that the
duration of stay in any state j ,  j  =  is exponential. We define Pij(t) =
P{(^(t) =  j I C(0) =  i }, i,j = l,2,...,k,0 as the transition functions of the SMP.

Our aim now is to find the {q, r) values which minimize the long run average 
cost function. The representation in terms of a semi-Markov process allows us 
to use the renewal reward theorem (Ross, [25]) which states that the long run 
average cost function is the ratio of the expected cycle cost to expected cycle 
length. We first consider below the cycle length.

3.1.1 Cycle Length

The Theorem of Parlar [19] below is useful in our case to find the expected 
value of the cycle length therefore we present it together with its proof for the 
sake of completeness. Let T, be the time required to complete the cycle if the 
process is at state i, i =l,...,k , and Ti denote the expectation of Ti and To be 
the ’waiting tim e’ for the supplier to return to the ON state. For any vector
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V, let denote its transpose. We denote the constant demand rate with D.

T h eo rem  1 . (P arla r, [19]) The Tj, i =  Iv 'k ?  values are obtained from 
the solution of the linear system,

( I - P ) T  =  b

where I is the identity matrix, and

P = [Pij(q/D)j, i,j = l,...,k,

= [Ti,...,Tk],

b ^  =  [ q / D  +  T o P i o ( q / D ) , . . . , q / D  +  T o P k o ( q / D ) j .

(1)

P roof. Conditioning on the state found when the inventory reaches r after 
q / D  time units and using the renewal argument, we obtain, for i = l,...,k

i  q / D  +  T i  i f  C ( q / D )  =  i

t i  = |q/D + Tj ifC(q/D) =j , j  = j i (2)

[ q/D + to if C(q/D) = 0

Taking expectations in 2, we have

T i =  ¿ [ q / D  +  T j ] P i i ( q / D )  +  [ q / D  +  T o ] P i o ( q / D ) ,  i =  1 ........k ( 3 )

j=l
Collecting terms containing the unknowns on the left-hand side gives for 

i= l,...,k ,

T i ( l  -  P i i ( q / D ) )  -  ^  T j P i j ( q / D )  =  q / D  +  T o P i o ( q / D ) ,  ( 4 )

Writing 4 using matrix notation, we obtain (I - P ) T  = b. □

R e m a rk s . 1. The results can easily be modified for the case when the 
demand is random. In particular equation 4 would be replaced by,

T ,(l-E [P „(q /D )])- ¿  TiE[P,j(q/D)l = E[q/D] + ToE[Pi„(q/D)j
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and the rest of the modification would be obvious. However to keep the 
presentation simple we take the demand as constant.

R e m a rk s .2 . Note that in Parlar’s model, every time a regenerative cycle 
starts, the process is in the first stage of the ON period. But in our case 
the first stage the cycle starts is random. We therefore need the following 
proposition.
P ro p o s itio n ! . Expected cycle length T(q) is,

T(q) = [co,i,....,Co.k](I-P)-^b

Proof. When Figure 3.2 is examined it is seen that a cycle may start with 
any stage i, i = l,...,k  with probability co,j. Therefore the cycle length T(q) 
is found by summing the products of the initial state probabilities with the 
corresponding expected cycle lengths. □

3.1.2 Cycle Cost

A complete cycle consists of a random number of sub-cycles of length q/D 
and a final one of a longer length due to the ’waiting’ time until the supplier 

becomes ON again.

Let K be the ordering cost per order, h be the holding cost per unit per unit 
time and b be the backorder cost per unit which are same for all sub-cycles. 
Other than the ordering cost, the expected inventory (or average inventory) 
carrying cost should be calculated. By definition, the net inventory is the on 
hand inventory minus the backorders. Then the expected on hand inventory is 
equal to the expected net inventory plus the expected number of backorders. 
The cost incurred in the shorter sub-cycles is the cost of a cycle in the standard 
Hadley/Whitin {q,r) model, (i.e., a ’standard cycle’). While computing the 
inventory holding cost, we will use the assumption made by Hadley and Whitin 
that the expected number of backorders is negligible.
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Let c(q,r) be the cost of an arbitrary sub-cycle before the last one with 
c(q,r)=E[c(q,r)]. Besides the ordering cost, the other components of this cost 
are as follows:

i)Holding Cost:
Let L be the (possibly random) lead-time with a p.d.f of gL(0 Z be the 
demand during L. By definition, safety stock Sz is the expected value of the 
inventory level (IL, which is inventory on hand minus the backorders) just 
before an order arrives, i.e, Sz = E[IL(Z, r)] 
where IL(Z,r) =  r - Z =  r - LD. Then

roo
Sz = E[IL(Z, r)] =  /  (r -  z)kz(z)dz = r — 4>

Jo

where

kz(z) =  ^ g U z / D ) (5)

and <j) = zkjdz =  E[Z] is the expected demand during L. The expected net 
inventory immediately after the delivery of the ordered q units is q -|- Sz· Then 
at the start of these cycles, the net inventory will be q -b Sz and at the end of 
the cycle it will be just Sz- These will be also the expected values of the on 
hand inventory as we assume that the expected number of back orders can be 
neglected. We derive that the average inventory during a cycle is

9<1 +  Sz

In order to find the total expected inventory during a cycle, we should multiply 
the average inventory with the cycle length q/D, which gives

1

Then,

^qVD -b Szq/D.

.1
E[holding cost] =  h[-q^/D -b (r — (^)q/Dj

L· (6)

ii) Backorder Cost:
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Actual number oi back orders ?7L(Z,r) during a standard cycle depends on 
the reorder point r and the demand Z during the lead time L. That is, 

/;l (z, r) =  I(z > r)(z -  r) where I(z > r) is the indicator function. Then, letting 
^L(r) =  /,.°°(z — r)kz(z)dz be the expected number of back orders during a 
standard cycle, we have

E[back order cost] =  b/7L(r) (7)

Combining all the individual expected costs, i.e., ordering cost K, (6) and (7) 
will give us the expected cost per standard cycle as,

c(q, r) =  K + h[iqV D  + (r -  <A)q/D] + b^L(r)

We now consider the cost of the last sub-cycle. Suppose C(q,r) is the cost of 
the last sub-cycle in the model and let C(q,r) =  E[C(q,r)j. Besides the ordering 
cost, the other components of this cost are as follows:

iii) Holding cost:

Let ?/̂  =  To -|- L be the length of the total delay, i.e., the lead time and the 
’waiting’ time for the supplier to return to the ON state after an order attempt 
is made. Also let W be the demand during Tq. Then U = W -f- Z be the 
combined demand during V*· Then the safety stock Su is the expected value of 
the inventory level (IL) just before the order arrives when the supplier returns 
to the ON state, i.e., Su =  E[IL(U,r)j =  r - U.
If g>(T) is the p.d.f of the total delay random variable V’, then

where

roo
Su = / (r -  u)ku(u)du = r -  (f, 

Jo

ku(u) =  ^gv-(u/D) (8)

is the marginal density of the demand during the total delay V’ and (  =  
uku(u)du =  E[U] is the expected demand during the total delay. It must be 

noted that in the last sub-cycle the order quantity is a random variable since
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the actual amount ordered depends on the remaining time the supplier stays 
in the OFF state. Then let us define Q(q) as the random order quantity so 
that Q(q) = q + DTo, since an additional DTo units will be demanded while 
waiting for the supplier to return to the ON state. Let

Q ( q )  =  E [ Q ( q ) ]  =  q  +  D T o

with To = E[To]. If Ti(q) = q/D + To is the length of the last sub-cycle, then

Ti(q) = E[f,(q)] =  q/D + To

Therefore,
.1

E[holding cost] = h[-Q(q)Ti(q) + (r -  OTi(q)] (9)

iv) Backorder cost:

Number of back orders 7/^(U,r) during the last sub-cycle depends on the 
reorder point r, and the demand U during the total delay Tp,i.e, 7]^{u,r) = 
I(u > — r) where I(u > r) is the indicator function. Then, letting

= /i^(u — r)ku(u)du is the expected number of back orders during the 

last sub-cycle
E[back order cost] =  hfj^{T). (10)

Combining all the individual expected costs, i.e., ordering cost K, (9) and (10) 

will give us the expected cost for the last sub-cycle as:

C(q, r) =  K + h[iQ(q)Ti(q) + (r -  OTl(q)] +  h7j^{v)

If we define N(q) as the total number of sub-cycles in a cycle then the random 

cycle cost C(q,r) will be.
N(q)-1

C{q,r:)= S  Ci(q,r)+ C(q,r) (11)
i=l

where Cj(q,r), i =1,···? N(q) - 1, is the cycle cost of a sub-cycle before the last 
one, C(q,r) is the cost of the last sub-cycle.
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3.1.3 Computation of E[N(q)]

Let Ni be the number of sub-cycles required to complete the cycle if the process 
is at state i and Nj =  E[Nj] be its expected value for i =  VVe again refer
to the following result of Parlar. The proof is skipped since it is similar to that 
of Theorem 1 .

T heo rem  2 . (P a rla r , [19]) The values of Nj, i= l,...,k  are obtained from 
the solution of the system,

( I - P ) N  = e

where =  [Ni,...,Nyt] and e"̂  =

Due to the same reason indicated in Remarks.2. we need the following 
result.
P ro p o s itio n 2 .Expected number of sub-cycles in a cycle N(q)=E[N(q)j is,

N ( q )  =  [co.i, ····, co,k](I -  P ) “ ^e

where co,i gives the probability of starting with state i to an ON period whose 
distribution is Phase-type.

P roof. When Figure 3.2 is examined it is seen that a cycle may start with any 
stage i, i = l,...,k  with probability co,i. Therefore the number of sub-cycles in 
a cycle, N(q) is found summing the products of the initial state probabilities 
with the corresponding expected number of cycles. □

Taking e.xpectations of C(q,r) in 11 and noting that N(q) - 1 is a stopping 
time for Ci(q,r), we can use Wald’s equation (Ross, [25]) and write

E[C(q,r)l = C(q,r) = E[N(q) -  l]E[c,(q.r)] + E[C(q,r)J

= n(q)c(q>r) + C(q,r)
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as the expected cycle cost where n(q) = N(q) -1 .
VVe can now construct the objective function /C(q, r) as follows:

E[C(q,r)] _  n(q)c(q,r) +  C(q,r)/C(q,r) =
E[T(q)] T(q)

(12)

3.2 Integral Equations of The Transition 

Probabilities

In order to find the expected cycle length, T(q) and expected number of sub­
cycles in a cycle, N(q), we need to invert the (I - P) matrix where P = [Pjj(q/D)], 
i,j =  Therefore we need to identify Pij(t) of the SMP {C(t), t > 0} where

Pij(t) =  P { C ( t )= j  IC(0) =  i}·
Let Fi =  1 — e” ·̂'·, t > 0 be the cumulative distribution function of the time of 
stay in state i having rate fj.\ with the density dFi(t)/dt =  fj(t) =  and

let Fi =  1 — Fj, i =

T h eo rem s. The transition functions Pij(t) f > 0 of the semi-Markov process 
representing the supplier availability are the solutions of the following integral 

ec|uations:

Pii(t) =  Fi(t) -f ^  Ci,m i  fi(x)Pmi(t -  x) + q,o i  fi(x)Poi(t -  xXl3)

Pij(t) =  Ci,m /  fi(x)Pmj(t -  X) +  Ci,o /  fi(x)Poj(t -  X) (14)

Poj(t) =  dG(x)Pn.j(t -  x) (15)

P roof. For the equation (13), we condition on the state visited at time x of 
the first transition and add the probability that no transition occurs by time
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t, i.e., 1 —Fi(t). For equation (14), note that the probability of a transition out 
of state i in the time interval (x, x +  dx] is dFi(x). The conditional probability 
of ending up in state j after t — x time units starting at m is Pmj(t — ^)· 
The probability of passing from state i to m, Ci,m must be multiplied with this 
integral (see Figure 3.2). The result is obtained by summing over the possible 
values of m. For (15) a similar idea is used. □

3 .2 .1  Transient Solutions of Pij(t) for special Phase- 
type distributions

a) For 2-stage Phase-type distribution

There are three stages where 1,2 represent the ON states and 0 represents 

the OFF state.
R e su ltl.T h e  transition functions Pij(t) t > 0 of the semi-Markov process 
representing the supplier availability when the ON period is distributed with 
2-stage Phase-type distribution, are the solutions of the following integral 

ec[uations:

P ii(t) =  1 - F i ( t )  +  ci2j^ dFi(x)P2i ( t - x )  + c io^  dFi (x)Poi ( t -x )

P22(t) =  1 -  F2(t) +  C21 ^  dF2(x)Pi2(t ~  x) + C20 ^  dF2(x)Po2(t -  x)

P i2(t) =  Ci2 f  dFi(x)P22(t ~ >i) +  cio /  dFi(x)Po2(t ~  x)
Jo  -'0

P2i(t) =  C21 dF2(x)Pii(t -  x) +  C20 /  dF2(x)Poi(t -  x)
Jo  ''0

Poi(f) =  Jo  ~ ^  dG(x)P2l(t — x)

Po2(t) =  ^0 1 ^  dG(x)Pl2(t — x) +  Co,2 ^  dO(x)P22(t — x)

b) For k-stage Erlang distribution
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Graphical representation of Erlang distribution is given in Figure 3.3. Fi = 
A(t) =  1 — t > 0 is the cumulative distribution function of the time of 
stay in state i with rate fi and the density dF;(t)/dt =  i =  l,...,k.
co,i =  1 , co,j =  0 for j = 2,...,k.
Ci,i+i =  1, while Cjj =  0 for i+1 
Ck,o =  1, while Cj,o =  0 for j =  l,...,k-l.

Figure 3.3: Graphical representation of the Erlang distribution

R e su lt2 . The transition functions Pij(t) t > 0 of the semi-Markov process 
representing the supplier availability when the ON period is distributed with 
k-stage Erlang are the solutions of the following integral ecjuations:

Pii(t) = 1 -  A(t) + f  dA(x)Pi+i,i(t -  x)

Pij(t) =  /  dA(x)Pi+ij(t -  x)
Jo

Poj(t) =  /  dG(x)Pij(t -  x)

c) For k-stage Coxian distribution

Graphical representation of k-stage Coxian distribution is shown in Figure 3.4.
As a special case of phase-type distribution, the Coxian distribution has the
following properties:
coi =  1 , while coj =  0 for j =  2,...,k
Cjj+i =  aj, while cj,i = 0 for i 7̂  j-t-1 , j= l,...,k  - 1

Cjo = 1 -  aj j 7̂  k, Cko = 1
R esu lts. The transition functions Pjj(t) i > 0 of the semi-Markov process 
representing the supplier availability when the ON period is distributed with
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k-stage Coxian distribution are the solutions of the following integral equations:

P i i ( t )  = l - F i ( t )  +  ai /  dFi(x)Pi+i,i(t 
Jo

P i j ( t )  = ai [  dFi(x)Pi+ij(t -  x) + (1  -
Jo

P o j ( t )  = [  d G (x)P i j ( t -x )  
Jo

1 , j =  1,··· ,k.

Figure 3.4; Graphical representation of the Coxian distribution

In chapter 4, we are going to describe a detailed numerical example where we 
compute the transition functions and optimize the inventory model.



Chapter 4

Analytical Results

In this chapter, we are going to describe in detail the analysis of a special 
problem in which the ON periods are distributed with 2-stage Coxian 

distribution.

4.1 Analysis of 2-stage Coxian distribution

There are 3 stages where 1,2 show the ON stages and 0 represents the OFF 
period. Let Fj(t) = 1 — e“ *̂‘, t > 0 be the cumulative distribution function 
of the time of stay in state i having rate fii with the density dFi(t)/dt = 
fi(t)= /iiie"^'‘, i =  l,...,k. The OFF period has a general distribution with the 
cumulative distribution function G(t) and density function dG (t)/dt = g(t).

I- a,

Figure 4.1: 2-Stage Coxian Distribution

41
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The transition functions Pjj(t) t > 0 of the semi-Markov process
representing the supplier availability when the ON period is distributed with 
2-stage Coxian distribution are the solutions of the following integral equations:

Pii(t) = 1 -  Fi(t) + ai dFi(x)P2i(t -  x) + (1 -  ai) dFi(x)Po,2(t -  x)

P22(t) =  1 - F 2 ( t ) + / '  dF2(x)Po,2(t-x)%J 0

P i2(t) =  ai ^  dFi(x)P22(t -  x) + (1 -  a i ) ^  dFi(x)Po,2(t -  x)

P 2i(t) =  ^  dF2(x)Po,i(t -  x)

Poi(t) = /  clG(x)Pii(t-x)

Po2(t) =  /  dG(x)Pi2(t -  x)

By a simple change of variable, we can represent these integrals in an 

ec|uivalent form. For instance, we can write

Po2(t) =  ^  dG(x)Pi2(t -  x) = ^  g(t -  u)Pi2(u)du

Writing the other integrals similarly we have these six integral equations 

written in a matrix format as

where

and

P(t) =  j^‘ H( t -u )P (u )du  +  v(t)

P(t) =  [Poi) Po2 i Pll; Pl2 ) P2:, P22]'

(1)

H(t) =

0 0 9 { t) 0 0 0

0 0 0 9 ( t ) 0 0

0 (1 — a i ) / i ( i ) 0 0 a i f i ( t ) 0

0 (1 - 0 0 0

M t ) 0 0 0 0 0

0 / 2(0 0 0 0 0

(2)

finally.
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v(t) =  [0, 0, F i ( t ) , 0, 0, F2(t)]T

The integral equations in (1 ) are classified as ’Volterra type of second kind’ 
(Linz, [12]). There are several numerical solution methods that can be used 
to compute these integrals one of which is direct numerical integration. Direct 
method of solving the integral equations is based on approximating an integral 
using one of many classical formulae such as, trapezoidal rule, Simpson’s rule 
and Bode’s rule (Press et al. [24]). For a scalar integral equation such as.

P(t) =  F(t) + [  f(t,u)P(u)du 
Jo (3)

P(0) =  F(0) =  1 for given F(t) and f(t,u)=f(t - u) with the unknown function 
P(t), t>  0, the integral is approximated using the trapezoidal rule as,

f(t ,u)P(u)du = At[^f(t,Ui)P(ui) +f( t ,U2)P(ll2)

+ ... +f(t,Un-l)P(Un-l) + ^f(t,Un)P(Un)]

where the interval of integration [0,t] is divided into n equal subintervals of 
length At =  t/n ; Uj < t, j > 1 ; ui =  0 and u„ = t. [The integration is over u, 
0 < u < t; therefore for u > t, f(t,u) =  0.]
The integral equation in (3) can now be approximated by the sum

P(t) =  F(t) +  At[if( t ,Ui)P(ui)+f( t ,U2)P(u2 )

+ ... + f(t, Un-i)P(Un-i) + |f ( t ,  Un)P(Un)]

If we return to the equation (3) and consider n sample values of P(t), such that 
P(ui) =  P,·, i = l,...,n , equation (3) becomes a a system of n linear equations 
in n unknowns P j ,  (Gürler and Parlar, [9]) as.

P i  = F i

P '2 =  F2 +  A t[ |f2lP l +  | f 22P2]
Pi = Fj + A t [ | f i i P i  + fi2P 2 + ··· +  f i , i - l P i - l  +  | f i iP i ]  i =  2 ,  . . . ,  n

where F i = F ( u i ) ,  fij = f(L,u j) ,  j < i, uj < tj. With this approach, the
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numerical solution of an integral equation can be reduced to solving a system 
of n linear equations in n unknowns. Then we can express this linear system 
as P =  HP + V, with the solution, P = (I — H)“^v, where P = [Pi, P2, P J ^  
and V = [Fi, F2 , are nxl column vectors and

H = At

0 0 0 0

5 / 2 1 2 /2 2 0 0

2 /nl fn2 /*72,71—1 I f2 J nn
is an nxn matrix.

In our case, as we have a system of integral equations in N (N =  6, for 
2-stage Coxian distribution) unknowns, the problem becomes a little bit more 
complicated but still the trapezoidal rule can be applied after dividing the 
[0,t] interval into n subintervals of ecjual length. Since there are N unknown 
functions each of which being sampled at n points, the resulting system now 
has nN unknowns. So we obtain.

P = HP + v

where

P =  [Poi(ui), ..., Poi(Un)|Po2(ui), ..., Po2(Un)|...|P22(ui), ..., P 22(Un)]

V = [0, ...,0 |0,...,0 |F i(ui),...,F i(un)|...|F2(ui), . . . ,F2(un)]

are nN dimensional column vectors and H is a suitably constructed sparse 
nNxnN matrix whose non-zero sub-matrices are positioned in a manner similar 
to the non-zero entries in (2). Then H will be a matrix of matrices as follows:

H(ix6 HqxQ G&xQ HqxQ HqxQ HqxQ
HqxQ Hex6 HqxQ Gex6 6̂x6 Hex6
H&x6 (1 <2i)FijSx6 Hex6 HqxQ H&x6
HqxQ (1 — ai)Fi,6x6 HsxQ HqxQ HqxQ
E2,6x6 HqxQ Hexs HqxQ HqxQ HqxQ
HexQ F2,6x6 HqxQ HqxQ Hex6 HqxQ
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where Hexe is a 6 x 6 null matrix, and

Gex6 =  At

and for i =  1,2

Fi,6x6 — At

where fjjk =  , i= l ,2, j,k=l,...,n.

0 0 0 0 0 0

\g2i \92-z 0 0 0 0

hni 9n2 29 Tin

0 0 0 0 0 0

\fi,22 0 0 0 0

2/¿,nl fi,n2 if·2J t,nn

,k=l,.. .,n.

Solving P would give us the numerically estimated solution of the transition 
functions Pij however, since both n and T(q) are not available in closed form, 
it is not possible to analyze K(q,r) in (13) in Chapter 3.

Gürler and Parlar [9] developed a computer program to overcome a similar 
problem with two suppliers where the ON periods are distributed with K-stage 
Erlang. Therefore we adopted the program for our problem and reached out 
the optimal values for this problem. Also we solved additional problems with 
several 2-Stage Phase-Type Distributions. The analysis of the results will be 
carried out in the next chapter.

4.2 Analysis of The Model for Large q

When the model is analyzed for asymptotically ’large’ values of q (compared 
with D), the transient probabilities can be replaced by the limiting values 

Pj =  limt_^ooP{C(f) =  j|C(0) =  i} ill order to simplify the problem. If optimal 
q is not likely to be large, this approach would provide a solution which is easy 
to compute but probably poor in approximation.
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In order to have large q values, order cost K should be large and/or 
holding cost h should be small compared to the backorder cost b. When these 
conditions hold, the time-dependent (transient) conditional probabilities can 
be replaced by their constant limiting values. In order to find the limiting 
probabilities, we are going to use the proposition made by Ross.

Let Tii denote the time between successive transitions into state i and 
let ¡.la = E[Tii] and ¡j,j be the mean of the stage which is exponentially 
distributed.
P ro p o sitio n  4.8.1. (Ross [25], p. 131)
If the semi-Markov process is irreducible and Tj, has a non-lattice distribution 

with finite mean, then

Pj=limt^ooP{C(t)=j|C(0) = i}

e.xists and is independent of the initial state. Furthermore,

Now, we are going to compute these limiting values for Phase-type, Coxian and 
Erlang Distributions. Note that a random variable Y will denote the durations 
of absorbing states of all these distributions which is assumed to be a general 

distributions with E[Y] as its expected value.

4.2.1 The Limiting Probabilities of Phase-Type Distri­
butions

L em m al. For k-stage Phase-type distributions for j =  l,...,k,

k
~ d" ij

i=0,Í5¿j
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Figure 4.2: k-Stage Phase-Type Distribution 

where Ty values are obtained from the solution of the systems

with T j = [ T o j , T i j , T i j , T k j ]  i ^  j i=0,...,k 

Aj =

Cloj Clij a-2j Q>kj
Cio 0 C12 C\k

Cil ...

CkO Ckl ... Ck,k-1 0
[boj,/il,... ,/ î, ·· ·] i 7̂  j

boj =  E[Y] -b coiytii

k k
3-ij =  'Y^ ColCli

i=0,i^j l=l,l5iii,l^j

P roof. If we examine Figure 4.2 we can write,

Pii =  pi A CioToi + C12T21 + ... +  CikTki

Pji = Pi+  CjoToj +  CjiT ij +  ...  + C j j _ iT j _ i  j  +  C j j + iT j + i j  +  . . .  +  Cj,kTkj ( 4 )
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which is k
~ H A ^  ĵiTij 

i=0,i5ij

for j =

Toj =  CojE[Y] +  c o i { E [ Y ]  +  /.ii +  CioToj +  ...  +  +  c i j + i T j + i j

+ ... + cikTkj} + ...

+ co,j-i{E[Y] + Ah-i + Cj-i,oToj + ... + Cj_i_kTkj}

+ co,j+i{E[Y] + /ij+i + Cj+i,oToj + ... + Cĵ -i,kTk,j}...

+ co,k{EfY] +  /¿k + Ck.oToj + ... +  Ck,k-iTk-i,j}
k k k

=»Toj = E;[F]+ E  co./i. + ^  E  ô/Q,Tij (.5)
2 =  1 , i= 0 ,i:j^ j 1 =  1,1:^1 J :^ j  

--  ̂ ------------ ------

boj

Tij = Cij/tii + Cio(/ii + Toj) + Cii(̂ i + Tij) + ... + + Tj_ij)

+ Cij+i(/ij + Tj+ij) + ... + Cj,k(/ii + Tkj)

Tij — Ci.iTij

i,j 7̂  0, i,j = l,...,k  □

(6)

C orollary  1. For k-stage Coxian distribution,

+ ··· +  ajaj+i...ak-i^k +  Toj
E[Y] A ¡J.\ + ai^2 + ··· + aia2...aj_2/ij-i

ioj — --------------------------------------------------ai a2... aj _ 1

„ E[Y]+ a :; ft na, ft,. , ,

(7)

(8)

(9)
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Proof. For k-stage Coxian Distribution, if we examine Figure 4.3 cq,i =  1 , 
co,i -- 0, i=2,...,k and Ci,i+i =  ai, Ci,o = 1 — aj , q j = 0 i 0,i +  1. Then (4) 
turns into

l-aj aj
=  Ab+1 +  5i+i'0 '̂^oj +

1-aj + i aj + i

TkJ =  A'k +  (1 — «k) Toj +  ^^To,j
0 1

Now let us apply (5) to find Toj

Toj =  cq,i { E [Y ]  + Hi c i,o  Toj +  Ci,2 T 2 j}

1 l-ai
Applying (6) T 2j =  A‘2 + (1 ~ 3'2)Toj +  a2Taj

ai

Toj — E[Y] + ^1 +  a i^2 + ··· + ai..cij_2/tij_i

+  {1 ~Qi +  Qi —aia2... — ax...aj_i}Toj

From which the results lollow. □

C oro lla ry 2 . (P a rla r  [19]) For k-stage Erlang Distribution,

m  = e (yi +  E mi
i=l

Pj =
/̂ jj

Then if q is large, we can replace the transition probabilities P j j ( q /D )  by the 
limiting probabilities which are independent of the decision variable q.

T heorem  5 . (P a rla r, [19]) For large q, the k x k fundamental matrix of P
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IS

AO

Po A Pi P2 Pk
Pi Pq +  P2 ··

Pi P2 .... Po

matrix turns into,

l - P i - P 2 -Pk
-P i I - P 2 ... -Pk

-P i - P 2 ... 1 - P k

( I - P )  =

Multiplying (I — P) by (I — P)  ̂ gives the identity matrix I. □

P roposition!.N (q) = 1/Po
Proof. N(q) = [co,i, ...,co,k](I -  P)"^e where
e = [1 ,...,!]^, and
multiplying each row of (I — P)“  ̂ by e gives 1/Po then we have

k
N(q) =  E ^o ,,(l/P o ) = l/Po □

1

P ro p o s itio n 2 .T(q) = q/(DPo) + To 
Proof.T(q) =  [co,i,...,co,k](I- P)"^b where 

b =  [q/D +  ToPo, ··., q/D + ToPo]'^ and
multiplying each row of (I — P)“  ̂ by b gives q/(DPo) +  To then we have 

k
T(q) =  X]<^o,t{q/(DPo) + To} = q/(DPo) + To n 

¡=1

Then the objective cost function that we derived in Chapter -3 in 12 will be

^(q)c(q,i·) + C(q,r)/C(q,r) =
T(q)

£ ^ c ( q ,  r) +  C(q, r) 
q/(DPo) +  To
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The structure of resultant objective cost function is identical to the structure 
of the cost function presented by Parlar [19]. Therefore his convexity analysis 
for the cost function will be the same for our case also under mild restrictions 
with his following theorem.
T heorem  6. P a r la r  [19] For large q, the objective function /C(q, r) is convex 
over the region =  { (r, < r <  oo,0 < q < oo} provided that k. (̂r) < 0

for r > I’o and ku(r) < 0 for r > ro.



Chapter 5

Numerical Results

In this chapter, we are going to display and discuss the numerical results of 
some special problems. To solve these problems we have used a program (see 
.Appendix B) written in Microsoft QuickBasic v4.5 which was run with a clock 
speed 50 MHz. The aims of this implementation can be listed as follows:

• Sensitivity analysis with respect to parameters of the distributions in 
terms of cost and quantity. •

• Consideration and comparison of cases of Phase-type distributions in 
terms of their effects on optimal cost and ordering quantity values.

• Verification of the analytical results.

For these special problems we assume that the demand is deterministic at 
a rate D =  1 and all other assumptions of the EOQ model apply ([22], p.l74). 
We consider 8 different cost structures with respect to K, h and b. For each 
case of Phase-type distribution used, we present the mean and variance of the 
distribution of the ON period. This may enable us to better interpret the 
numerical results. These numerical results are presented in Tables 5.1 to 5.14 
and Figures 5.1 to 5.22.

52
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The computer program that we used is a revised form of that Gürler and 
Parlar [9] developed for the case of two independent suppliers whose ON periods 
are distributed as Erlang. The interested reader may find more details about 
the algorithm being used in their paper. The summary of the algorithm to 
compute the optimal {q, r) values is as follows;
Step 1 . Start with a high positive level, such as 10®, as the initial value of C*. 
Step 2 . Start with a feasible (q,r) point in the 2-dimensional region that is 
known to contain the optimal {q*,r*).
Step 3. Using q value evaluate the transition functions using the method solving 
the system of integral equations for Pij(q).
Step 4. Generate the P matrix mentioned in Theorem 1 and 2 of Chapter 3 and 
compute the expected cycle length, T(q) as given by Proposition 1 in Chapter 
3 and expected cycle cost by equation 12 in Chapter 3.
Step 5. Evaluate the expected C(q, r). If this new value of C is better than the 
previous one, keep the corresponding (q,r) (If the improvement is negligible, 
stop.) Go to Step 3. Otherwise, go to Step 7.
Step 7. Generate a new feasible q value in the following way: If g* is known 
to be in the interval [qi,qh] and if qou refers to the previous point, genercite 
the new point g„ew with qnew = qoid + {qh ~  qi){'20 -  l y  where 0 is a random 
number between 0 and 1 and v is an odd integer. With similar computation 
find a new feasible r value. After the new (g, r) value is generated in this way 

go to Step 3.

5.1 2-Stage Phase-Type Distribution

5.1.1 Moments of ON and OFF periods

Let X be the random variable denoting the duration of the ON status 
of the supplier which follows 2-Stage Phase-type distribution (or Coxian) 
and Y be the random variable denoting that of OFF periods. For 14 

problems designed, Y~Exp(//) where /¿=0.75. Therefore E[Y]=l//i=1.333 and
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5.1.1 Moments of ON and OFF periods

Let X be the random variable denoting the duration of the ON status 
of the supplier which follows 2-Stage Phase-type distribution (or Coxian) 
and Y be the random variable denoting that of OFF periods. For 14 

problems designed, Y~Exp(//) where /¿=0.75. Therefore E[Y]=l//i=1.333 and
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Var [ Y] = 1 /  (/[i ’̂ )= 1 .778.

The noncentral moments E[X‘] of X are given by 
E[X‘] =  (-l)'i!(aT -'e ;

E[Xi] =  (-i).([coi,Coi]
—Ai C12A1

-1
1

C21X2 —A2 1

E[X^] =  (2).([cox,coi]
- A i C12A1

-2
1

C21A2 —A2 1

)

)

of the i··*' exponential stage of ON periods. Using this approach the mean 
and variance of the ON periods are computed and are given under the tables 
displaying the optimal results of each problem.

5.1.2 General Case

III this section we are going to display three problems for each of which optimal 
q, r and cost values for different cost values of K, h and b are computed. The 
problems differ from each other with their initial branching probabilities (coi 
and co2 couples). Other than this Ci2=0.5, Cio=0.5, C2i=0.5, C2o=0.5, where 
Cij represents the transition probability from state i to state j and Ai=0.6, 
A2= 0.5 for ON states, /<=0.75 for the OFF state in the SMP representing the 
availability of the supplier will be the same for 3 cases. With this organization 
we will be able to observe the possible effects of initial branching probabilities 
on optimal q and optimal cost values while we are investigating how these 
optimal values change when K, h and b cost triplets change.

When the results of Table 5.1 are evaluated, it is seen that optimal cost 
values are always greater that the corresponding EOQ costs for each case. 
Only when K=400, h=300, b=500 and K=400, h=300, b=1000 we see that 
optimal q values are less than the optimal EOQ q values. However, in EOQ 
models reorder point is equal to 0. So we can conclude that for this stochastic 
inventory problem, holding a safety stock may result in optimal q values less
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K h b q’ r* C* Oecq '̂ EOO
(1) (2) (3) (4) (5) (6) (7) (S)
200 100 500 2.00037 0.00012 243.96499 2.000 200.00

1000 2.53359 0.00136 291.86826
300 500 1.37249 0.01085 372.11108 1.154 346.41

1000 1.37090 0.00990 440.54296
400 100 500 2.89125 0.00296 324.89390 2.828 282.8

1000 3.31322 0.00008 361.29997
300 500 1.35694 0.02672 499.50160 1.632 489.89

1000 1.38103 0.00705 564.80055

5.1: Sensitivity Analysis When Coi—0.5, Cq2=0.5 E[ON]=3.
Var[ON]=13.51S3

than optimal EOQ q values.

When we investigate the results displayed in Table 5.2, we are faced with 

almost the same results of Table 5.2.

.Similar explanation made for the results of Table 5.1 can be repeated for 

the results of third case presented by Table 5.3.

Inspecting Figures 5.1 and 5.2 with Tables mentioned up to now brings in 

the following observations:

• For all three cases the trend that the optimal costs follow seem to be the 
same (Figure 5.1). The optimal cost curve of third case is below than 
that of the first two cases. This may indicate that the initial branching 
probabilities may have an impact on optimal costs.

• While keeping any two components of cost triplets K, h and b, an increase 
in the other component yields in an increase in optimal inventory holding 

cost.

• If we take the EOQ cost curve as a border we see that for the 2"*̂ , 4*̂ ,
and cost triplets, the deviation of results from this border is more 

than the deviation of the remaining cost triplets. This may be evaluated
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K h b q* r* <7· qEOQ ^EOQ
(1) (2) (3) (4) (5) (6) ( ') (8)
200 100 500 1.97263 0.01.351 243.89439 2.000 200.00

1000 2..52716 0.000.56 290.829.35
300 500 1.37486 0.00077 369.06055 1.1.54 346.41

1000 1.38167 0.01731 440.68112
400 100 500 2.90107 0.00007 323.54681 2.828 282.8

1000 3.27863 0.00323 360.16058
300 500 1.41123 0.00042 494.22071 1.632 489.89

1000 1.40820 0.00222 .562.26816

5.2: Sensitivity Analysis When Coi=0.4, Co2=0.6 E[ON]=3.Table 
Var[ON]=13.5722

K h b q* r* C* q^oQ ^EOQ
(1) (2) (3) (4) (5) (6) (7) (8)
200 100 .500 2.74536 0.02214 223.35857 2.000 200.00

1000 2.76588 0.00063 257.96447
300 500 1.42143 0.00087 376.65771 1.1.54 .346.41

1000 1.31054 0.01374 431.61638
400 100 500 2.95191 0.00267 286.34499 2.828 282.8

1000 3.29906 0.00176 318.29493
300 500 1.32240 0.00728 500.60.396 1.632 489.89

1000 1.35140 0.00496 562.62438

5.3: Sensitivity Analysis When Coi^O-3, Co2=0.7 E[ON]=3.Table 
Var[ON]=13.6252
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as the effect of back ordei'ing cost on optimal inventory costs.

• When Figure 5.2 is inspected it is found out that the optimal ordering- 
quantity q reaches its peak value for the cost triplet. This is the case 
when K=400, b=1000 (their peak values), h=100 (its lowest value), so it 
follows our expectation.

• Again Figure 5.2 shows that for 3'"'̂ , and cost triplets, the
optimal ordering quantities are at their minimum. This is because the 
holding cost is at its peak value.

2-STAGE PHASE-TYPE DISTRIBUTION

Figure 5.1: Comparison of Optimal Costs (1)

5.1.3 Special Case

In this section optimal q, r and cost values for different cost values of K, h and 

b of 5 problems are going to be displayed such that fi=0.7b for the OFF .state 
in the SMP representing the availability of the supplier will be the same for all 
while Ai and/or A2 for ON states will change. The structure of the SMP for 
these cases is designed in such a way that the OFF period will start after the 
first two ON periods are sequentially passed. With this organization we will be 
able to see the possible effects of mean rates of ON periods on optimal cost and 
q values. Except a few cases, optimal cost values are more than the respective
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2-STAGE PHASE-TYPE DISTRIBUTION

Figure 5.2: Comparison of Optimal (1)

K h b q* r’" c* Oedo ^EOO
(1) (2) (3) (4) (5) (6) (7) (8)
200 100 500 2.74651 0.00025 264.47348 2.000 200.00

1000 3.02116 0.56784 .340.57748
300 500 1.44276 0.00124 388.49019 1.154 346.41

1000 1.56492 0.05780 539.46168
400 100 500 3.39686 0.00426 317.36452 2.828 282.8

1000 3.97894 0.26119 387.76730
300 500 1.44374 0.00480 480.66034 1.632 489.89

1000 1.98704 0.00102 619.07847

5.4: Sensitivity Analysis When Ai=0.4, A2=0.5 E[ON]=4.Table 
Var[ON]=10.25
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K h b q” r" c- Oecq
(i) (2) (3) (3) (6) (7) (S)
200 100 500 2.71925 0.01299 264.43303 2.000 200.00

1000 2.99937 0.58275 340.45789
300 .500 1.4.5900 0.00223 388.45973 1 .1.54 346.41

1000 1..52000 0.06827 538.42052
400 100 500 3.36186 0.04843 318.30650 2.828 282.8

1000 3.92418 0.28314 387.72095
300 500 1.50316 0.00515 480.22213 1.632 489.89

1000 1.97780 0.00061 618.31015

Table 5.5: Sensitivity Analysis When Ai=0.5, A-2=0.4 E[ON]=4.5000. 
Var[()N] = 10.25

optimal EOQ costs. For the exceptions, as the difference is insignificant, we 
concluded that there might have been some numerical mistakes which can be 
ignored while disciLssing the results.

When all the Tcibles 5.4 to 5.8 and Figures 5.-3 and 5.4 are evaluated, 

following observations can be made:

• When Figure 5.3 is inspected, it is seen that, roughly all the cost curves 
of 5 cases are similar. We can conclude that different Ai and A2 values 

do not change the optimal cost values.

• If we take the EOQ cost curve as a border we see that for the 2”^̂, 4'^, 
6*''· and cost triplets, the deviation of results from this border is more 
than the deviation of the remaining cost triplets. This may be evaluated 

as the effect of back ordering cost on optimal inventory costs.

• When Figure 5.4 is inspected it is found out that the optimal ordering 
quantity q reaches its peak value for the cost triplet. This is the case 
when K=400, b=1000 (their peak values), h=100 (its lowest value), .so it 

follows our expectation.
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K h b q ' r’ C* Secq ^EDO
(1) (2) (3) (4) (3) (6) (7) (S)
200 100 500 2.74131 0.00003 250.88858 2.000 200.00

1000 3.08870 0.54133 322.95861
300 500 1.85816 0.00172 390.982.34 1 .1.54 346.41

1000 1.82902 0.00039 514.28566
400 100 •500 3.39182 0.00136 300.71605 2.828 282.8

1000 3.96922 0.26854 367.25358
300 500 1.83786 0.00749 465..30612 1.632 489.89

1000 2.00109 0.00443 588.30607

5.6: Sensitivity Analysis When Ai=0.5, A2=0.5 E[ON]=4.Tcable
Var[ON]=S

K h b q* r* c* qEOQ '̂EOQ
(1) (2) (3) (4) (3) (6) (7) (S)
200 100 500 2.83966 0.00343 238.66516 2.000 200.00

1000 3.121181 0..54005 306.99798
300 500 0.86901 0.00612 429.57120 1 .1.54 346.41

1000 2.83990 0.00719 529.70.598
400 100 500 3.37374 0.00084 285.77613 2.828 282.8

1000 3.97717 0.26780 .348.79973
300 500 2.8.5591 0.006.58 497.21678 1.6.32 489.89

1000 2.85098 0.00232 .580.718.38

Table 5.7: Sensitivity Analysis When 
Var[ON] =6.7775

A i=0.6 , A2=0.5 E[0N ]=3.6667,
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K h 1) q ' r* C* qloo
^  *
'̂ EOO

(1) (2) (3) (4) (5) (6) (7) (8)
200 100 500 2.83794 0.01640 238.86471 2.000 200.00

1000 3.13698 0.53696 307.07522
300 500 0.84344 0.00443 430.34898 1.154 346.41

1000 2.82941 0.02016 530.44496
400 100 500 3.42736 0.00006 285.76872 2.828 282.8

1000 3.993.58 0.26593 348.82037
300 500 2.87332 0.00469 498.313.54 1.632 489.89

1000 2.02288 0.03401 .582..57175

5.8: Sensitivity■ Analysis When Ai=0.5, A2=0.6 E[ON]=3.Table 
Var[ON]=6.7775

Figure 5.3: Comparison of Optimal Costs (2)
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Figure 5.4: Comparison of Optimal qs (2)

K h b q* r* Oecq ^mEOQ
(1) (2) (3) (4) (5) (6) (7) (8)
200 100 500 2.60640 0.008.58 294.86797 2.000 200.00

1000 2.70397 0.69.546 380.4.3490
300 .500 1.09924 0.02402 410.51730 1.1.54 346.41

1000 1.09889 0.29979 .583.64075
400 100 500 3.33.382 0.00010 3.55.70911 2.828 282.8

1000 3.82131 0.30919 435.91765
300 •500 1.2.5640 0.00289 522.48926 1.632 489.89

1000 1.79761 0.00814 682.7.5575

Table 5.9: Sensitivity analysis when ai =  0.0 E[ON]=1.6667, Var[ON]=2.7777

5.2 2-Stage Coxian Distribution

In this section for all cases Ai=0.6 and A2=0.5 for ON states, /¿=0.75 for the 
OFF state in the SMP representing the availability of the supplier but only ai 
which denotes the probability of transition to the next ON state right after the 
first ON state will change. With this approach, we will be able to observe the 

possible effects of changes in aCs on optimal costs.

When Tables 5.9 to 5.14 and Figures 5.5 and 5.6 are inspected the following
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K h b q* r"" C’ SsOQ
/-lx
'̂ -'EOO

(1) (2) (3) (4) (-5) (6) (7) (S)
200 100 500 2.57949 0.00864 303.26127 2.000 200.00

1000 2.57040 0.75951 391.38859
300 500 1.03955 0.00537 415.92314 1.T54 346.41

1000 1.0.3865 0.42244 592.71.544
■100 100 500 3.22057 0.00287 366.08145 2.828 282.8

1000 3.76562 0.32601 449.71431
300 500 1.21618 0.00601 533.40165 1.632 489.89

1000 1.7.5041 0.03965 700.08646

Table 5.10: Sensitivity Analysis When a i=  0.1 E[ON]=1.8667, Var[ON]=3.5376

K h b q· r’ qilOQ *̂ EOQ
(1) (2) (3) (4) (5) (6) (T) (8)
200 100 500 2.61102 0.00024 294.8.3332 2.000 200.00

1000 2.7.5418 0.67513 380.43160
300 500 1.09789 0.00508 409.56417 1.1.54 346.41

1000 1.09985 0.38974 .583. 09872
400 100 500 3.31321 0.00209 355.74443 2.828 282.8

1000 3.81420 0.31042 4.35.91661
300 500 1.24020 0.00008 522.32685 1.632 489.89

1000 1.84.5.38 0.001.52 682.52086

Table 5.11: Sensitivity Analysis When a i=  0.2 E[ON]=2.0667, Var[ON]=4.2176

K h b q* r* c* qloQ CeOQ
(1) (2) (3) (4) (5) (6) (7) (8)
200 100 500 2.60186 0.00163 286.67082 2.000 200.00

1000 2.79141 0.66130 369.71076
300 500 1.18281 0.00.361 403..32932 1.1.54 346.41

1000 1.16869 0.31.546 572.01900
400 100 500 3.34861 0.00191 .345.31467 2.828 282.8

1000 3.83991 0.30704 422.81796
300 500 1.29965 0.00245 511.07453 1.632 489.89

1000 1.87796 0.00000 665.421666

Table 5.12: Sensitivity Analysis When a i=  0.3 E[ON]=2.2667, Var[ON]=4.8176
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K h b q* r"“ C* qEOQ ^EOQ
(1) (•2) (3) (4) (5) (6) (T) (S)
200 100 500 2.70640 0.00137 261.07675 2.000 200.00

1000 2.97718 0.58887 340.20399
300 500 1.47741 0.00280 387.7750 1.154 •346.41

1000 1.47820 0.10879 536.19191
400 100 500 3.39869 0.00058 317.08702 2.828 282.8

1000 3.88426 0.29348 387.66018
300 500 1.47827 0.00086 477.66348 1.632 489.89

1000 1.92845 0.017000 617..33572

Table 5.13: Sensitivity Analysis When ai=  0.6 E[ON]=2.8667, Var[ON]=6.1376

K h b q* r* c* qEOQ Ceoq

(1) (2) (3) (4) (5) (6) (7) (8)
200 100 500 2.86001 0.00101 238.68121 2.000 200.00

1000 3.08924 0.54965 307.00102
300 500 0.86056 0.00018 429.05224 1.1.54 346.41

1000 2.84530 0.00178 •529.55575
400 100 500 3.40458 0.00301 285.79782 2.828 282.8

1000 4.00676 0.24446 348.810.30
300 500 2.84265 0.00105 495.45303 1.632 489.89

1000 2.84744 0.00604 •580.91564

Table 5.14: Sensitivity Analysis When a i=  1.0 E[ON]=3.6667, Var[ON]=6.77 10
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observations can l̂ e made:

• In Figure 5.5, roughly all the cost curves of 6 cases follow the same trend. 
When the ai values increase the cost value drops.

• When Figures 5.1, 5.3 and 5.5 are compared, we see that the cost curves 
have parcillel tendencies. This observation can be repeated for optimal q 
values when Figures 5.2, 5.4 and 5.6 are investigated altogether.

• When the back ordering cost gets higher, the total cost increases 
dramatically. We can conclude that the cost function is sensitive to back 
ordering cost in cases where supply is subject to disruptions.

2-STAGE COXIAN DISTRIBUTION

Figure 5.5: Comparison of Optimal Costs (3)

5.3 Comparison of Several Phase-Type Dis­
tributions

This section comprises of 16 figures such that, in each figure, the points 
on X-axis represent the Tables 5.1 to 5.14, while the Y-axis represents the 
corresponding Cost Values (on Figures 5.7 to 5.14) and q values (on Figures

5.15 to 5.22) for the Triplet of Costs K,h,b given under each graph.
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2-STAGE COXIAN DISTRIBUTION

Figure 5.6; Comparison of Optimal qs (3) 

The following results can be seen:

• Graphics in Figures 5.7 and 5.S; Figures 5.11 and 5.12 follow the same 
patterns. This helps us to see the effect of increases in back ordering cost 
on total costs.

• Clraphics in Figures 5.7 and 5.11; Figures 5.8 and 5.12 follow the same 
pattern. This helps us to see the effect of increases in ordering cost on 
total costs.

• When Figures 5.7 to 5.14, we can see that generally optimal costs are 
highest for cases with Coxian Distribution and lowest for cases with 
general Phase-Type distributions.

• When Figures 5.15 to 5.22, we can see that generally optimal q values 
are highest for cases with special Phase-Type Distribution and lowest for 
cases with general Phase-Type distributions.

• These last two observations lead us to the following conclusion: The 
Phase-Tyi:>e Distributions are so versatile that with different structures, 
branching probabilities and rates, we can represent the same ON 
periods but have different values. This shows that parameters of these 
distributions have an impact on optimal cost and q values.
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Figure 5.7: When K=200, h=100, b=500

Figure 5.8: When K=200, h=100, b=1000
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Figure 5.9: When K=200, h=300, b=500

Figure 5.10: When K=200, h=.300, b=1000
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Figure 5.11: When K=400, li=100, b=500

Figure 5.12: When K=400, h=100, b=1000
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Figure 5.13: When K=400, h=300, b=500

Figure 5.14: When K=400, h=.300, b=1000
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Figure 5.15: When K=200, h=100, b=500

Figure 5.16: When K=200, h=100, b=1000
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Figure 5.17: When K=200, h=300, b=500

Figure 5.18: When K=200, h=300, b=1000



CH A PTER  0 .  NUM ERICAL R ESU LTS 73

Figure 5.19: When K=400, h=100, b=500

Figure 5.20: When K=400, h=100, b=1000
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Figure 5.21: When K=400, li=.300, b=oOO

Figure 5.22: When K=400, h=.300, b=1000



Chapter 6

Conclusion

In this research our basic motivation was to analyze a continuous-review 
stochastic inventory problem with deterministic demand and random lead 
times where the single supplier is subject to unusual circumstairces such as 
machine breakdowns, strikes, political upheavals. The supplier availability is 
modeled as a semi-Markov process. It is assumed that the supplier availability 
(ON) periods are distributed with k-stage phase-type distributions while 
the OFF periods follow a general distribution. The nature of phase-type 
distrilDution gives rise to transform the non-Markovian stochastic process of 

supplier’s availability into a Markovian one. After the regenerative cycles are 
identified, the expressions for the expected cycle cost and cycle length are 
obtained and using the renewal reward theorem we become able to construct 
the objective function of the long-run average cost per time.

Although our assumption on the distribution of ON periods is k-stage phase- 
type distribution, we also evaluate the cases for special phase-type distributions 
such as k-stage Coxian and k-stage Erlang distribution. We discuss several 
special cases where the problem is solved numerically. We also investigate the 
problem for large q values and while constructing the objective cost function for 
this case, we compute the limiting values of the transition probabilities for li­
stage phase-type and k-stage Coxian distributions. We find out that whichever 
of these distributions rule the ON periods, the structure of the cost function

iO
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is the same with what Parlar [19] found for the case when ON periods follow 
k-stage Erlang distribution.

The reason that we use phase-t}'^pe distributions is that in principle 
any general distribution may be approximated by a phase-type distribution. 
Additionally as their structures give rise to a Markovian state description they 
become sufficiently versatile to reflect the essential qualitative features of the 
model. However for our numerical problems we assume that parameters of 
the distributions are known in advance. As a possible future research topic, 
a case with general ON and OFF distributions can be considered and these 
distributions may be approximated with phase-type distributions. The results 
of the approximation can then be compared with the real ones.

When numerical results are evaluated we see that the optimal cost and q 
values are sensitive to type and parameters of the Phase-Type Distribution.

Theoretically, the research presented here can be extended for multiple 
supplier cases. This eiicxbles us to see how the model is effected with increasing 
number of suppliers. Another extension Ccin be made to analyze the model 
presented here for lost sales case which will be a trivial one as the only difference 
will be in the expected cost expression including an extra term. The case with 
random demand can be considered as a future research.



Appendix A

Some Computational Issues

In this section, some computational aspects related to phase type distributions 
will be illustrated via some standard examples.
1) МОЕ.· k=2 ¡.i\ ф- fj,2

T =

where о =  (1,0),

-/¿1

-/i2

and f(x)=o.exp(T.r)T°

In order to find exp(Tx); go through diagonalization,i.e., 

exp(T x)=P“ he.Tp(i)x).P

So first find the eigenvectors of matrix T.

det XI - T  =  0

77
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det
A + yUi —/il«l 

A + /¿2
=0

(A + /¿1)(A +  ¡.i-i) — 0, A — —/¿1,

A = —/i'2 are eigenvalues.

In order to find the eigenvectors,

A + /¿1
A + /¿2

.X'l 0

a-'2 0

If A = -/¿ 1  ^  -/iia i.i -2 = 0 and (/i-2 -  /ii).T2 =  0 

let ;ri =  t . x -2 - 0

A' =  t

If A = —/¿2, then (fii -  =  0,

let.r2 =  i,.Ti =  i ^

A' =  t

=> P  =

1

1
, p - ^  =

0 1
, p  =

- P 2
Ml-M2

1 0 1 Ml ai  
Ml-M2 - y - i
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exp(Tx) =  Pexp(Dx)P  ̂ =
, - H l X  _ _ A £ l .£ l_ g - / i l^  I M l° l

/(.iO = (PO)
,-^¿107 AM txi . ^ - I L \ X  I _AiLi£l_g-A/2*r

— //2 Âl “Â2Ail- m2
,-Ai2̂

^ i( l  -  fli)

p2

= ¡.Lit - a i )  - / i 2  , .. //g»!
/il -  /i-2

+/i2 6 2̂-
/¿1 -  /¿2

2) Hyperexponential distribution.

T =

—Ai
—Ao

-A,

Q — (Pl 7 ·*·? Pm)? ^  — [Ai ,...,At;

,-Xix

exp(Tx) =
— \2^e '

3 — XmX
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/.,·(·*■) =  cv.e.Tp(r;r).T'"=

Pie

P2e-Ao X)

P,nt— Xm.'T

= Γ:L· ıP^ie-^‘C x > 0
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Computer Program

> MAIN I E2E2_MM . BAS ♦*♦***♦**♦**♦*♦**♦ + :♦:♦**♦♦*

 ̂ Programmer : Mahmut Parlar & Baris Balcioglu 
 ̂ Date : 96/04/17
 ̂ This program generalizes the computations for N = 3 states,
 ̂ While the GN periods are 2-STAGE PHASE-TYPE DISTRIBUTION.
 ̂ OFF periods are memoryless.
 ̂ We solve the system of integral equations to get the transient 
’ probabilities, (cf. Jerries book.)

 ̂ PARAMETERS AND FUNCTIONS IN THE PROBLEM:

 ̂ lam#() = Parameters of the stage of the ON Periods
 ̂ mu# = Parameter of the OFF Period
 ̂ cij = Branching probabilities amoung the stages.
 ̂ NPrbs = Number of probabilities to compute which is 6.
 ̂ The number of states of the SMP is 3.
 ̂ NPts = Number of points in the integration interval
 ̂ This is kept at 10 for all cases.
 ̂ P() = Trainsient probabilities
 ̂ PFitO = Exponential fit for trcinsient probabilities
 ̂ PNumO = Numerical estimates for the transition probabilités

81



A PPEN D IX  B. COMPUTER PROGRAM 82

’ Obtained after solving (I - H)X = B
’ PLimO = Limiting probabilities
’ JStg = Maximum nbr. of stages in the Erlang ON r.v.
’ Nstg = Number of ON stages which is 2.
’ f() = Exponential density of Jth stage of the ON r.v.
’ gO = General density of the OFF r.v.
’ GBarO = Survival probability of of the OFF r.v.
’ Region$ = Regions of non-zero elements in H matrix
’ RowGroup$ = Groups of rows for survival probabilities.
’ H() = Intermediate matrix / We have A = I - H
' AMATRIXO = The A matrix for the system solution (QPS)
’ BVECTORO = The B vector for the system solution (QPS)
' XVECTORO = The solution vector (QPS)

REM $DYNAMIC

DEFINT I-N 
DEFDBL A-H, 0-Z

DECLARE FUNCTION aFit (K, L)
DECLARE FUNCTION bFit (K, L)
DECLARE FUNCTION bSurv (K,L,J)
DECLARE FUNCTION f (JStg, lam#(), ujPlusl, uj) 
DECLARE FUNCTION FBar (JStg, lam#(), uj) 
DECLARE FUNCTION From$ (I)
DECLARE FUNCTION g (mu#, ujPlusl, uj)
DECLARE FUNCTION GBar (mu#, uj)
DECLARE FUNCTION H (I, J)
DECLARE FUNCTION HSubf (JStg, I, J)
DECLARE FUNCTION HSubg (I, J)
DECLARE FUNCTION PLim (I)
DECLARE FUNCTION Region$ (I, J)
DECLARE FUNCTION RowGroup$ (K, L)

DECLARE SUB GetData ()
DECLARE SUB GetCosts ()
DECLARE SUB Initialize ()
DECLARE SUB LINEARl (N, A(), B(), X(), lER)
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COMMON SHARED NSup, NPts, NPrbs, Delta!, JLow, JHigh 
COMMON SHARED KOrder, hHolding, bBackorder, bBackorderTime

RANDOMIZE TIMER

Start = TIMER

' Fix the number of points of integration as 10 (This won^t change!) 
NPts = 10

These parameters are used across the modules

DIM SHARED lam#(2), mu#, u(NPts), TopEQ(NPts + 1), BotEQ(NPts + 1) 
DIM SHARED cOl, c02, cl2, c21, clO, c20 
DIM SHARED TopNE(NPts + 1), BotNE(NPts + 1)

CALL GetData 
CALL Initialize

 ̂ NPrbs is 6 
NPrbs = 6

DIM AMATRIX(NPrbs * NPts, NPrbs * NPts), IMinusP#(2, 2)
DIM BVECTOR(NPrbs * NPts), t(2), C(2)
DIM XVECTOR(NPrbs * NPts), TBar(2), CBar(2), SBar(2)

DIM SHARED PNum(2, 2, 10)
DIM PFit(2, 2)

START AMATRIX

FOR I = 1 TO NPts * NPrbs 
FOR J = 1 TO NPts * NPrbs

IF I = J THEN
AMATRIXCI, J) = 1 - H(I, J) 
ELSE AMATRIXd, J) = -H(I, J) 
END IF
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NEXT J 
NEXT I

FOR I = 1 TO NPts * NPrbs 
IF (1 <= I AND I <= 10) THEN 

K = 0 
L = 1

START BVECTOR

ELSEIF (11 <= I AND I <= 20) THEN 
K = 0 
L = 2

ELSEIF (21 <= I AND I <= 30) THEN 
K = 1 
L = 1
> PRINT K; L; "ROWGROUP"; ROWGROUP(K,L); BVECTOR(I) 

ELSEIF (31 <= I AND I <= 40) THEN 
K = 1 
L = 2

ELSEIF (41 <= I AND I <= 50) THEN 
K = 2 
L = 1

ELSEIF (51 <= I AND I <= 60) THEN 
K = 2 
L = 2
' PRINT K; L; "ROWGROUP"; ROWGROUP(K,L); BVECTOR(I)

END IF

BVECTOR(I) = bSurv(K,L,I)

NEXT I

Do the inversion using QuickPAK Scientific and get XVECTOR
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CALL LINEARKNPrbs * NPts, AMATRIXO, BVECT0R(), XVECTOR(), lER)

Test the SOLUTION VECTOR

FOR I = 1 TO NPrbs * NPts
IF (1 <= I AND I <= 10) THEN 

K = 0 
L = 1

ELSEIF (11 <= I AND I <= 20) THEN 
K = 0 
L = 2

ELSEIF (21 <= I AND I <= 30) THEN 
K = 1 
L = 1

ELSEIF (31 <= I AND I <= 40) THEN 
K = 1 
L = 2

ELSEIF (41 <= I AND I <= 50) THEN 
K = 2 
L = 1

ELSEIF (51 <= I AND I <= 60) THEN 
K = 2 
L = 2

END IF
^PRINT USING "##.##### ”; K; L; I; XVECTOR(I)
NEXT I

Numerical approximation for probabilities (Keep in MAIN)

FOR I = 1 TO NPrbs * NPts
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IF From$(I) = "01" THEN
PNuin(0, 1, I - 0) = XVECTOR(I)

ELSEIF Fromiid) = "02" THEN
PNuin(0, 2, I - 10) = XVECTOR(I)

ELSEIF From$(I) = "11" THEN
PNumd, 1, I - 20) = XVECTOR(I)

ELSEIF From$(I) = "12" THEN
PNumd, 2, I - 30) = XVECTOR(I)

ELSEIF From$(I) = "21" THEN
PNum(2, 1, I - 40) = XVECTOR(I)

ELSEIF From$(I) = "22" THEN
PNum(2, 2, I - 50) = XVECTOR(I)

END IF

NEXT I

FOR K = 0 TO 2 
FOR L = 1 TO 2

Fitting coefficients a and b

aCoef = aFit(K, L) 
bCoef = bFit(K, L)
’PRINT K; L; PLim(L); "+"; aCoef; " EXP("; bCoef; "t)"



A rP EN D IX  II COMPUTER PROGRAM 87

NEXT L 
NEXT K

’ II 
' II

:== S t a r t  O p t i m i z a t i o n  ==== =-=

I I 
I I

C r e a t e  t h e  f i t t e d  c u r v e s  f o r  g i v e n  ( q , r )

qLo = 0; qlli = 10 
rLo = 0: rHi = 10

CALL GetCosts

qEOQ = SC)R(2 * KOrder / liHolding)
CostEOQ = SQR(2 * KOrder * liHolding)

PRINT "qEOq ="; qEOQ, "CostEOQ = CostEOQ

qOpt = qEOQ: ’qOpt = qLo + RND * (qHi - qLo) 
rOpt = 0: ’rOpt = rLo + RND ♦ (rHi - rLo)

ECostOpt = 10 ' 10 

FOR Iteration = 1 TO 500

IF I t e r a t i o n  < 250 THEN 
Power = 3 
ELSE
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Power = 5
END IF

= 2 
>r = 1

q = qOpt + (qlli - qLo) * (2 * RND - 1) " Power 
IF q < qLo OR q > qHi THEN GOTO StartOver

r = rOpt + (rHi - rLo) ♦ (2 * RND - 1) Power 
IF r < rLo OR r > rHi THEN GOTO StartOver

FOR K = 0 TO 2 
FOR L = 1 TO 2

PFit(K, L) = PLim(L) + aFit(K, L) * EXP(bFit(K, L) ♦ q) 
'PRINT PFit(K,L)

NEXT L 
NEXT K

Generate the P and I - P Matrices

PMatrixd, 1) = PFitd, 1)
PMatrixd, 2) = PFitd, 2)

PMatrix(2, 1) = PFit(2, 1)
PMatrix(2, 2) = PFit(2, 2)

'FOR K = 1 TO 3 
'FOR I = 1 TO 2 
'FOR J = 1 TO 2
'PRINT USING "##.#### "; I; J; PMatrixd, J) 
'NEXT J 
'NEXT I 
'NEXT K
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t Vector --------------
' t vector refers to the B vector in the Parlar's theorem 
' D (demand) is taken as unit demand.
’ E[T0] = mu# ?

PFitd, 0) = 1 - (PFitd, 1) + PFitd, 2))

PFit(2, 0) = 1 - (PFit(2, 1) + PFit(2, 2))

td) = (q + mu# * PFit(l, 0)) 
t(2) = (q t mu# * PFit(2, 0))

I - P Matrix

FOR I = 1 TO 2 
FOR J = 1 TO 2

IF I = J THEN
IMinusP#(I, J) = 1 - PMatrixd, J)
ELSE
IMiniisP#(I, J) = -PMatrixd, J)
END IF

'PRINT USING ·'##.#### I; J; IMinusP#(I, J) 
NEXT J 
NEXT I

CALL LINEARK2, IMinusP#(), t(), TBar(), lER) 

FOR I = 1 TO 2
'PRINT ”1, TBar I; TBar(I)
NEXT I

T1 = E[time]
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T1 = (cOl ♦ TBar(D) + (c02 * TBar(2)) 
^PRINT ”T1 T1

 ̂ LINEARl changes the original I - P Matrix. So, recreate it!

I - P Matrix

FOR I = 1 TO 2 
FOR J = 1 TO 2

IF I = J THEN 
IMiniisP/̂ (I, J) 
ELSE
IMiniisP#(I, J) 
END IF

1 - PMatrixd, J) 

-PMatrix(I, J)

’PRINT USING "##.#### "; I; J; IMinusP#(I, J) 
NEXT J 
NEXT I

e Vector

e(l) = 1 
e(2) = 1

CALL LINEAR1(2, IMinusP#(), e(), SBar(), lER)

FOR I = 1 TO 2
’PRINT "I, SBar I; SBar(I)
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NEXT I

W(q) = E[sub-cycles]

N1 = (cOl * SBar(D) + (c02 ♦ SBar(2)) 
’PRINT "N1 = N1

cqr = KOrder + hHolding * q ' 2 / 2 + hHolding ♦ q * r 
Bothmus = mu#
garamaBarTop = EXP(-Bothmus + r) ♦ (hHolding * EXP(Bothmus * r)
+ (Bothmus * r - 1) + bBackorder * Bothmus + hHolding)
gammaBarBot = Bothmus * 2
gammaBar = gammaBarTop / gammaBarBot

Cq = KOrder + hHolding * q " 2 / 2 + hHolding * q * r + gammaBar

Cl = E[cost]

Cl = (N1 - 1) * cqr + Cq 
’PRINT "Cl = Cl

ECost = Cl / T1
’PRINT "q, r, ECost q; r; ECost

IF ECost > ECostOpt THEN GOTO StartOver

qOpt = q 
rOpt = r 
ECostOpt = ECost

PRINT USING "####.##### "l Iteration; qOpt; rOpt; ECostOpt 
’PRINT "SumT ="; SumT; "SumC ="; SumC
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StartOver:
NEXT Iteration

Finish = TIMER
PRINT ’’Time it took Finish - Start; "seconds"

I I

End Optimization

+ + + + + END OF MAIN PROGRAM + + +

REM $STATIC

FUNCTION : aFit

FUNCTION aFit (K, L)

IF K = L THEN
aFit = 1 - PLim(L)

ELSE
aFit = -PLim(L)

END IF

END FUNCTION

FUNCTION : bFit
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FUNCTION bFit (K, L)

FOR I = 1 TO (NPts + 1) 
TopEO(I) = 0 
BotEq(I) = 0 
TopNE(I) = 0 
BotNE(I) = 0 
NEXT I

IF K = L THEN

FOR t*/, = 1 TO NPts 
u(NPts) = 5
PNum(K, L, NPts) = PLim(L) + .001 

Ratio = (PNum(K, L, t'/,) - PLim(L)) / (1 - PLim(L)) 
TopEQ(t'/. + 1) = TopEq(t*/,) + u(t*/,) * LOG(Ratio)
BotEqCt*/, + 1) = BotEq(t'/.) + u(t*/.)  ̂2
NEXT t’/.

bFit = TopEq(NPts + 1) / BotEq(NPts + 1)

ELSE

FOR t’/, = 1 TO NPts 
u(NPts) = 5
PNum(K, L, NPts) = PLim(L) - .001 

Ratio = (PLim(L) - PNum(K, L,' f/.)) / PLim(L) 
TopNE(t·/. + 1) = TopNE(t*/.) + u(t’/.) * LOG(Ratio)
BotNE(t*/. + 1) = BotNE(t'/.) + u(t·/.) * 2
NEXT t7,

bFit = TopNE(NPts + 1) / BotNE(NPts + 1)

END IF
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END FUNCTION

===== ^FUNCTION : bSurv ===================

Note the way Gbar (., mu#(), ...) works. The mu# doesn^t get a number!

FUNCTION bSurv (K,L,J)

IF RowGroup$(K, L) = ''3" THEN 
bSurv = FBard, lam#(), u(J - 20))

ELSEIF RowGroup$(K, L) = "6" THEN 
bSurv = FBar(2, lam#(), u(J - 50))

ELSE
bSurv = 0 

END IF

END FUNCTION

FUNCTION : f
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FUWCTION f (JStg, lam#(), ujPlusl, uj)

f = lam#(JStg) ♦ EXP(-lam#(JStg) * (ujPlusl - uj))

END FUNCTION

FUNCTION : FBar

FUNCTION FBar (JStg, lam#(), uj)

FBar = EXP(lam#(JStg) * uj)

END FUNCTION

=========================== ^FUNCTION : From$

Check to see which of (I,J) is valid in *P

FUNCTION From$ (I)

IF 1 <= I AND I <= 10 THEN 
From$ = "01"

ELSEIF 11 <= I AND I <= 20 THEN 
From$ = "02"

ELSEIF 21 <= I AND I <= 30 THEN 
From$ = "11"
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ELSEIF 31 <= I AMD I <= 40 THEN 
From$ = "12"

ELSEIF 41 <= I AND I <= 50 THEN 
Frora$ = "21"

ELSEIF 51 <= I AND I <= 60 THEN 
From$ = "22"

END IF

END FUNCTION

FUNCTION g (mu#, ujPlusl, uj)

g = mu# * EXP(-mu# * (ujPIusl - uj))

END FUNCTION

FUNCTION : GBar

FUNCTION GBar (mu#, uj)
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GBar = EXP(-mu# * uj)

END FUNCTION

SUB : GetCosts

SUB GetCosts

KOrder = 200: [̂10]
hHolding = 100: »[5]
bBackorder = 500: ^[250]

PRINT "K ="; KOrder, "h =”; hHolding, "b =”; bBackorder

’PRINT "qEOq = SQR(2 * KOrder / hHolding)
’PRINT "CEOQ = SQR(2 * KOrder ♦ hHolding)

END SUB

*SUB : GetData

PARAMETERS

’ See the MAIN PROGRAM for definitions of the paremeters

SUB GetData

CLS



A rri'.N D IX  B. COMPUTER PROGRAM 98

lam#(l) = .6# 
lam#(2) = .5#

mu# = .75

cOl = .3#
c02 = 1 - cOl

cl2 = .55
clO = 1 - cl2

c21 = .60
c20 = 1 - c21

PRINT "laml =" lam#(l), "lara2 =
PRINT "mu mu#
PRINT ”c01 =”; cOl, ”c02 ="; c02
PRINT ”cl2 =”; cl2, "clO ="; clO
PRINT ”c21 c21, "c20 ="; c20

END SUB

♦FUNCTION : H

HSubgdth coord, Jth coord)
HSubf(Stage, Ith coord, Jth coord)

FUNCTION II (I, J)

SELECT CASE Region$(I, J)

CASE "13"
H = cOl ♦ HSubgCl - 0, J - 20)
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CASE "15"
H = c02 + HSubgCl - 0, J - 40)

CASE "24"
H = cOl + HSiibgd - 10, J - 30)

CASE "26"
H = c02 * HSubgd - 10, J - 50)

CASE "31"
H = clO + HSubfd, I - 0, J - 10) 

CASE "35"
H = cl2 * HSublCl, 1-20, J - 40)

CASE "42"
H = clO * HSubi(l, 1-30, J - 10) 

CASE "46"
H = cl2 + HSubfd, 1-30, J - 50)

CASE "51"
H = c20 + HSubf(2, 1-40, J - 0) 

CASE "53"
H = c21 ♦ HSubf(2, I - 40, J - 20) 

CASE "62"
H = c20 ♦ HSubf(2, 1-50, J - 10) 

CASE "64"
H = c21 ♦ HSubf(2, 1-50, J - 30)

CASE ELSE 
H = 0
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END SELECT

END FUNCTION

FUNCTION : HSubf

FUNCTION HSubf (JStg, I, J)

IF (2 <= I AND I <= NPts) AND (J = 1) THEN
HSubf = DeltaT * (1 / 2) * f(JStg, lam#(), u(I), u(J))

ELSEIF (I > J) AND (2 <= J AND J <= NPts - 1) THEN
HSubf = DeltaT * (1 / 1) * f(JStg, lam#(), u(I), u(J))

ELSEIF (2 <= I AND I <= NPts) AND (J = I) THEN 
HSubf = DeltaT ♦ (1 / 2) ♦ f(JStg, lara#(), u(l), u(J))

ELSE
HSubf = 0 

END IF

END FUNCTION

FUNCTION : HSubg

 ̂ Generates the submatrices for H matrices before the integral equation 
* solution.
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FUNCTION HSubg (I, J)

IF (2 <= I AND I <= NPts) AND (J = 1) THEN
HSubg = DeltaT ♦ (1 / 2) * g(mu#, u(l), u(J))

ELSEIF (I > J) AND (2  <= J AND J <= NPts - 1) THEN
HSubg = DeltaT + (1 / 1) * g(mu#, u(I), u(J))

ELSEIF (2 <= I AND I <= NPts) AND (J = I) THEN 
HSubg = DeltaT + (1 / 2) * g(mu#, u(I), u(J))

ELSE
HSubg = 0 

END IF

END FUNCTION

SUB : Initialize

’ Computes DeltaT and the u(J) values 
)

’ NOTE : If tFinal is large (> 0.5) then we get inaccurate results. So, keep 
 ̂ tFinal around .25

SUB Initialize

tinit = 0 
tFinal = .05
DeltaT = (tFinal - tinit) / (NPts - 1)

FOR I = 1 TO NPts
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u(I) = tinit + (I - 1) ♦ Delta! 
NEXT I

END SUB

SUBROUTINE : LINEARl

' QiiickPack Scientific Subroutine 
>

' Solution of a system of linear equations subroutine 
)

 ̂ Solves [ A ]  * { X } = { B }  using LU decomposition 
)

* Input
 ̂ N = number of equations
* A() = matrix of coefficients ( N rows by N columns )
 ̂ B() = right hand column vector ( N rows )

)

' Output
 ̂ X() = solution vector ( N rows )
' lER = error flag
 ̂ 0 = no error
 ̂ 1 = singular matrix or factorization not possible

SUB LINEARl (N, A(), B(), X(), lER) STATIC

DIM INDEX(N), SCALE(N)

lER = 0

FOR I = 1 TO N 
ROWMAX = on 

FOR J = 1 TO N
IF (ABS(A(I, J)) > ROWMAX) THEN ROWMAX = ABS(A(I, J)) 

NEXT J
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’ check for singular matrix 
IF (ROWMAX = 0#) THEN 

1ER = 1 
GOTO EXITSUB 

ELSE
SCALE(I) = 1# / ROWMAX 

END IF 
X(I) = B(I)

NEXT I

FOR J = 1 TO N
IF (J > 1) THEN

FOR I = 1 TO J - 1 
s = A(I, J)
IF (I > 1) THEN

FOR К = 1 TO I - 1
s = s - A(I, K) * A(K, J) 

NEXT К 
A(I, J) = s 

END IF 
NEXT I 

END IF

PIVOTMAX = 0#

FOR I = J TO N 
s = A(I, J)
IF (J > 1) THEN

FOR К = 1 TO J - 1
s = s - A(I, K) * A(K, J) 

NEXT К 
A(I, J) = s 

END IF
PIVOT = SCALE(I) * ABS(s)
IF (PIVOT >= PIVOTMAX) THEN 

IMAX = I
PIVOTMAX = PIVOT 

END IF 
NEXT I
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IF (J <> IMAX) THEN 
FOR K = 1 TO N

TMP = A(IMAX, K)
A(IMAX, K) = A(J, K) 
A(J, K) = TMP 

NEXT K
SCALE(IMAX) = SCALE(J)

END IF

INDEX(J) = IMAX

IF (J <> N) THEN
’ check for singular matrix 
IF (A(J, J) = 0#) THEN 

lER = 1 
GOTO EXITSUB 

END IF
TMP = 1# / A(J, J)
FOR I = J + 1 TO N

A(I, J) = A(I, J) ♦ TMP 
NEXT I 

END IF 
NEXT J

’ check for singular matrix

IF (A(N, N) = on) THEN 
lER = 1 
GOTO EXITSUB 

END IF

II = 0

FOR I = 1 TO N 
L = INDEX(I) 
s = X(L)
X(L) = X(I)
IF (II <> 0) THEN

FOR J = II TO I - 1
s = s - A(I, J) * X(J)
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NEXT J
ELSEIF (s о  о#) THEN 

Il = I 
END IF 
X(I) = s 

NEXT I

FÜR I = N TO 1 STEP -1 
s = X(I)
IF (I < N) THEN

FOR J = I + 1 TO N
s = s - A(I, J) * X(J) 

NEXT J 
END IF
X(I) = s / A(I, I)

NEXT I

EXITSUB:
ERASE INDEX, SCALE

END SUB

FUNCTION PLim (I)
IF I = 1 THEN 
P l i m top = l a m # ( l )

P l i m b o t  = lam#(l) + (clO + cl2c20 )
♦ ( (mu# + (c02 + lam#(2))) / (1 - c02c20) ) + cl2 * lam#(2)
PLim = Plimtop / Plimbot
ELSE
P l i m t o p  = lara#(2)
Plimbot = lam#(2) + (c20 + c21cl0 )
Ψ ( (mu# + (cOl * lam#(l))) / (1 ~ cOlclO) ) + c21 * lam#(l) 

PLim = Plimtop / Plimbot 
END IF
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END FUNCTION

========================== ^function : Region$ ==

Determine which blocks are valid for the AMATRIX

I shows row it J shows column it

FUNCTION Region$ (I, J)

IF (1 <= I AND I <= 10) AND (21 <= J AND J <= 30) THEN 
Region$ = "13"

ELSEIF (1 <= I AND I <= 10) AND (41 <= J AND J <= 50) THEN 
Region$ = "15"

ELSEIF (11 <= I AND I <= 20) AND (31 <= J AND J <= 40) THEN 
Region$ = "24"

ELSEIF (11 <= I AND I <= 20) AND (51 <= J AND J <= 60) THEN 
Region$ = "26"

ELSEIF (21 <= I AND I <= 30) AND (1 <= J AND J <= 10) THEN 
Region$ = "31"

ELSEIF (21 <= I AND I <= 30) AND (41 <= J AND J <= 50) THEN 
Region$ = "35"

ELSEIF (31 <= I AND I <= 40) AND (11 <= J AND J <= 20) THEN 
Region$ = "42"

ELSEIF (31 <= I AND I <= 40) AND (51 <= J AND J <= 60) THEN 
Region$ = "46"

ELSEIF (41 <= I AND I <= 50) AND (1 <= J AND J <= 10) THEN 
Region$ = "51"
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ELSEIF (41 <= I AND I <= SO) AND (21 <= J AND J <= 30) THEN 
Region$ = "53"

ELSEIF (51 <= I AND I <= 60) AND (11 <= J AND J <= 20) THEN 
Region$ = "62"

ELSEIF (51 <= I AND I <= 60) AND (31 <= J AND J <= 40) THEN 
Regioii$ = "64"

ELSE
Region$ = "00"

END IF

END FUNCTION

♦FUNCTION : RowGroup$

Determine which rows are valid for the BVECTOR

FUNCTION RowGroup$ (K, L)

IF K = 0 AND L = 1 THEN 
RowGroup$ = "1" 
JLow = 1 
JHigh = 10

ELSEIF K = 0 AND L = 2 THEN 
RowGroup$ = "2"
JLow = 11
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JHigh = 20

ELSEIF К = 1 AND L = 1 THEN 
RowGroup$ = "3"
JLow = 21 
JHigh = 30

ELSEIF К = 1 AND L = 2 THEN 
RowGroup$ = "4"
JLow = 31 
JHigh = 40

ELSEIF К = 2 AND L = 1 THEN 
RowGroiTp$ = "5"
JLow = 41 
JHigh = 50

ELSEIF К = 2 AND L = 2 THEN 
RowGroup$ = "6"
JLow = 51 
JHigh = 60

END IF

’PRINT I ; JLow; JHigh 
END FUNCTION
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