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ABSTRACT

TWO-DIMENSIONAL FRACTIONAL FOURIER 
TRANSFORM AND ITS OPTICAL IMPLEMENTATION

Ayşegül Şahin
M.S. ill Electrical and Electronics Engineering 

Supervisor: Assoc. Prof. Dr. Haklım M. Ozaktaş
August 1996

The IVactional Fourier transform of order a is defined in a manner sucli that tlu' 
common Fourier transform is a special case with order a = 1. Tlie definition 
is easil}̂  extended to two dimensions just repeating the transibrm in x and 
y directions independently. The properties of the separable two dimensional 
fractional Fourier transform defined in this manner are derived and several oj)- 
tical implementations are given. However, this definition, ibr certain purposes, 
motivatcxi us to look for a new, non-separabhi definition. We ])resent sucli a 
d('iinition of the two dimensional fractional Fourier transform with its optical 
implementation. The usefulness of the new definition is justified with a noise 
filtering example.
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ÖZET

İKİ BOYUTLU KESİRLİ FOURIER DÖNÜŞÜMÜ VE 
OPTİK GERÇEKLEMESİ

Ayşegül Şahin
Elektrik ve Elektronik Mühendisliği Bölümü Yüksek Lisans 

Tez Yöneticisi: Doç. Dr. Haldun M. Özaktaş 
Ağustos 1996

Derecesi a olan kesirli Fourier dönüşümü, bilinen Fourier dönüşümü bu 
dönüşümün a = 1 için özel bir hali olacak şekilde tanımlamr. Bu tamın, iki 
boyutci dönüşüm x ve y yönlerinlerinde bağımsız olarcik tekrar edilerek genel
lenebilir. Çalışmamızdcı, bu şekilde tanımlanan iki boyutlu ayrıştırılabilir ke
sirli Fourier dönüşümünün özellikleri çıkartıldı ve birçok optik gerçeklemesi 
sunuldu. Fakat bu tanım belli amaçlar için bizi yeni, ayrıştırılcirnaz bir tanım 
aramaya teşvik etti, iki boyutlu kesirli Fourier dönüşümünün bu yeni tanımı 
optik gerçeklemesiyle birlikte sunuldu. Tanımın kullanılışlılığı bir gürültü iil- 
treleme örneğiyle doğrulandı.
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C hapter 1

Introduction

The frcictiorial Fourier trcirisform of order a is defined in a manner such that 
the common Fourier transform is a special case with order a — i. The one- 
dimensional frcictional Fourier transform of order a can be defined for 0 < |a| < 
2 as

/ 00
B,{x,x')f{x')dx' (1.1)

-00

r

g-z(7T0/4-r/)/2)
Ba{x^ x )  = ----  ̂ ■—— exp[z7r(a;'̂  cot (j) — 2xx' esc (/) + x '̂ cot (¡))] (1-2)

\ / l  s i l l ' l l

where (/) = aTr/2 arid ^  = sgn(sin(^). The kernel is defined separately for 
a = 0 and a = ±2 as Bo{x,x') = S{x — x') and B±2 ix,x') = S{x + .r'). 
'I’he deiinition can easily be extended outside the interval [-2,2] by noting that 
r'- '+^x)  = [4].

'riie Iractional Fourier transform was first discovered by mathematicians. 
In 1937, Condon introduced the concept of fractional Fourier transform in 
mathematics literature [1]. Later in 1961, Bargmann gave two definitions of 
fractional Fourier transform, one based on Herrnite polynomials and the other 
one as the integral transformation [2]. Nairiias reinvented the transform in 
1980 and solved several types of Schrödinger equation by using the fractional 
Fourier transform [3]. In 1987, McBride and Kerr extended the work of Namias



cuicl developed an operational calculus for the fractional Fourier transform [4].

Up to 1993, fractional Fourier transform was a purely mathematical trans- 
tbrm. However, in 1993, Ozaktas and Mendlovic introduced the concept of 
fractional Fourier transform in optics and used graded-index (GRIN) media as 
a basis for defining fractional Fourier transform. In retrospect, they saw that 
their definition was fully consistent with the former mathematical definition 
of fractional Fourier transform [5-7]. Lohmann gave another definition of the 
fractional Fourier transform through its effect on Wigner distribution function 
and suggested two optical systems consisting of thin lenses separated by free 
space to implement fractioiicd Fourier transform opticcdly [8]. The equivalence 
of grcided-index bcised definition and Wigner distribution based definition is 
also demonstrated in [9].

Fractional Fourier transform is widely used to exphiin optical phenomena. 
The process of propagation of light can be interpreted as a continuous frac
tional Fourier transformation. The common Fourier transform and imaging 
are special cases that occur when a = 1 and a = 2 respectively. There ex
ists a fractional Fourier transform relation between amplitude distributions of 
light on two spherical surfaces of given radii and separation. Thus, fractional 
Fourier transform is presented as a tool for analyzing optical systems composed 
of thin lenses and sections of free space [10]. The relation between Fraunhofer 
diffraction phenomena at far field and common Fourier transform is generalized 
to Fresnel diffraction and fractioiicil Fourier transform [11, 12]. Some optical 
transforms like Fourier transform, imaging systems and correlators, can be im
plemented by cascading fractional Fourier transform units [13-15]. Propagation 
in graded-index media and Gaussian beam propagation and spherical mirror 
resonators are iilso studied in terms of fractional Fourier transform [5-7,16,17]. 
Tlie parameters of the fractional Fourier transform can be determined in terms 
of ray optical parameters. The relation between fractional Fourier transform 
and ray optics provides a more intuitive way of understcinding the concept of 
fractional Fourier transform [18]. The success of frcvctioricd Fourier transform 
in explaining optical phenomena led to a genercdization from ’Fourier Optics’ 
to ’Fractional Fourier Optics’ [10].

Fraetional Fourier transform can be optically realized like the common



Fourier trcuisform [8,19-21]. Tims, it has many appliccitioiis in optical sig
nal processing [5-8,10-12,14,15,17,20-27]. Opticcil plicise retrieval problem is 
solved by the fractional Fourier transform approcich in [28-30] ¿irid a lens de
sign problem is given in [31].

The fractional Fourier deiinition is ¿ilso extended to two dimensions. The 
first generalization [8] assumed identiccil transform orders in both directions 
while the others [20, 21] used different transform orders in x and y directions.

Frcictional Fourier transform is closely related to Wigner distribution. Per
forming the frcictional Fourier trcinsform with order a corresponds to rotating 
the Wigner distribution by an ¿ingle (j) = aTr/2 [8, 32]. The rehitionship be
tween frcictioricil Fourier transform, Wigner distribution, ¿imbiguity function 
cind other time-frequency representcitions is also excimined [33-35].

The frcictioricil Fourier transform is a specicil quadrcitic-phcise system (lin- 
ecir Ccinonical trcinsform). Hence, like ¿ill the quadratic-phase systems, it can 
be ch¿ır¿ıcterized by a tr¿ınsform¿ıtion matrix. Use of tr¿ınsíbrm¿ıtion matrices 
nuikes the ¿iruilysis of systems e¿ısier, especi¿ılly when two or more dimensioiuil 
¿iiuilysis is considered [8,10,19,36-40]. The ^’¿ictional Fourier tr¿ınsform h¿ıs 
a continuous parameter a. As a incre¿ıses from 0 to 1, the function evolves 
smoothly from the original function to its common Fourier tr¿ınsform. Since 
a is a continuous parameter, there is a continuum of domains ¿ind the func
tion luis its corresponding representation in e¿ıch dom¿ıin, le¿ıding to ¿ilternative 
representations for the sigruil other than the convention¿ıl time ¿ind frequency 
doiruiin represeııt¿ıtions [32, 41, 42].

The discrete-time implementation of ^¿ictioiuil Fourier tr¿ınsform ¿ilso ex
ists. In [43], a last algorithm tluit calculates ^¿ictioiial Fourier tr¿ınsform in 
0 {N  log N) time is presented. Being a gener¿ıliz¿ıtioıı of common Fourier trans- 
Ibrm, ^¿ictional Fourier transform is expected to yield irnprovemeiits in sigiicil 
processing ¿ıpplic¿ıtions in which Fourier tr¿ııısform is widely used. Some of the 
¿ipplications ¿ire sp¿ıce-v¿ıri¿ınt filtering ¿ind sigiuil detection [32,44-47], time- 
or sp¿ıce-vari¿ınt multiplexing ¿ind data compression [32], correlation, matched 
filtering, ¿ind p¿ıttern recognition [13, 48], signal synthesis [35] ¿ind r¿ıd¿ır [46]. 
The theory of optimal Wiener filtering is gener¿ılized to ^¿ictioiuil Fourier do- 
rmiins ¿ind improvement is achieved. Since the tr¿ınsíorm can be inipleniented in



0 {N  log N)  time, the improvement is achieved with no additional cost [45, 46]. 
Alternative definitions of fractional Fourier trcinsforrn cind its genercilizations 
also exist [26,49-51].

The fractional Fourier transform has also cipplications in quantum op
tics [28, 42, 52, 53] cind statistical optics [54]. The recent work on fractional 
Fourier transform is collected in [22].

This study focuses on the two-dimensional Ircictional Fourier translbrin. In 
Chapter 2, the properties of two-dimensional fractional Fourier transform are 
given. While some properties like additivity, linearity follow from one dimen
sional case, some properties are specific to two dimensions. Some of these 
properties are derived and some of them are directly generalized from one- 
dimensional properties. However, two-dimensional fractioiicd Fourier transform 
fails to satisfy some of the desired properties. That is the reason why present 
a. new definition in Chapter 4. Besides fractional Fourier ticinsform, we men
tion quadratic ¡aliase systems, which will be the initial point of our study in 
Chcipter 3. In Chapter 3, we pi'opose various optical implementations lor two- 
dimensional fractioricil Fourier transform by using two different approaclies. 
'riie first ai:)proiich depends on the opticcil irrq^lementation of the quci.dra.tic- 
phase systems. Since fractional Fourier transform belongs to the family of 
quadratic-phase systems, once the optical implementations of quadratic-phase 
systems are found, the same systems can also be used as fractional Fourier 
transformers. The second approach is specific to frcictional Fourier transform. 
Several practical optical systems with different complexity are proposed. In 
Chapter 4, a new definition is suggested for two-dimensional fractional Fourier 
transform. The development of the definition is discussed in detail and its 
properties are derived. Chapter 5, consists of the optical implementation of 
the new fractional Fourier transform definition. The hist chapter provides an 
application of the new definition to a filtering problem. It is shown that the 
new definition is remarkably better than the former one in the separation of 
additive chirp noise under certain circumstances.

To summarize, we derive the properties of two-dimensional fractional 
Fourier transform and present many optical systems that realize this transform 
optically. We also suggest a new, non-separable definition for two-dimensional



fractioricil FoLirier trcinsforrn. Both the opticcil ciiid discrete-time irnplementa- 
tions of the new definition are given. The usefulness of our definition is justified 

using a noise filtering example.



C hapter 2

Tw o-dim ensional fractional 

Fourier transform

2.1 D efin ition  o f  tw o-d im en sion al fractional 

Fourier transform

'I'lie (leiinition of the two-dimensional fractional Fourier transform was previ
ously made by using the Scurie orders in both directions. But in [21], we defined 
the two-dimensional fractional Fourier transform with different ordcu's in the 
two dimensioiis. The kernel for this transform is nothing but the product of 
two one-dimensional kernels. The two-dimensional fractional Foui’ier transfonii 
with order along the x axis and ciy along the y axis is defined a.s

r / OO r r x j

/  (2 . 1)
-OO j  — OO

vvlK're

^ax ,ay { •>y ^ '> y ) «̂-.r ") y i y ·> y ) · ( 2.2)



Hence the two-dimensional kernel can be written as

x', y') = exp['i7r(.'c'^ COt (j):̂  -  2xx'  CSC (j)̂ . +  x'^ COt

X exp[iTr(y^ cot (j)y -  2yy' esc cl)y + y''  ̂cot c/>y)].
(2.3)

where

=
._ ,-г (т г ф ,г /4 -ф :,. /2 ) -і{жфуІ4-фуІ2)

v i s i n g  “ sineyi

and = а.г-7г/2, фу -  сіу-к/2, ф̂  ̂ = sgn(sin </>,,·), фу = sgn(sm фу).

(2.4)

As the above equcition suggests, the kernel Ba,,,̂ ay i« separable kernel. 
Throughout this study we will refer to this definition as the two-dimensional 
separable fractional Fourier transform. The kernel for two-dimensional trans
form can be obtained by multiplying two one-dirnensional frcictioiicil Fourier 
transform kernels and letting the orders chcinge independent from each other. 
Thus the kernel has two parameters and a.y. The definition may be simplified 
by using vector-matrix notation:

J^[/(r)](r) = f  exp[iTr(r^Ctr-2r^’Csr' + r'^C tr')]/(r')i/r ', (2..5)
J  — OO

wiiere

^Фг ^Фх^Фу "> Г =
Г г tX' у , Г =

1 T

î/'

Ct =
cot фх 0

, Cs =
0 cot фу

CSC (j)x 0

0 CSC (/).y

For the two-dimensional case, the kernel Ba,,,̂ ay separable function of x 
and y. It is also possible to use this definition ¿is the n-dirnensioncil sepcirable 
frcictioiicil Fourier trcinsform definition. The constcint vectors r,r', ¿ind
iTuitrices C t,C s should hcive the following genercilized expressions:

ТГ
А фу, — Аф,̂  ̂Аф̂^̂  . . .  Аф̂ ^̂ , г = Х[ . . . Xп , г' = .г·; . . . _

Ct =

cot ф̂ ^ 0

, =

CSC фх̂ 0

0 cot ф̂ „ _ 0 С8сф^„ _



2.2 P ro p erties  o f  tw o-d im en sion al fractional 

Fourier transform

1. Additivity
The two-dimerisioncil fractional Fourier trcinsform kernel is additive in 
the index; i.e.

/ 00 /*00
/  V/; x'\ y"· x \  y') dx" dy" (2.6)

- 0 0  */ — DO

~ Vax-\-a'.j.,ay+a’y{xiV 1 X' )■

This property may be rewritten cis

y)] = y)] (2.7)

cillowing us to add the orders of successive fractional Fourier trans
forms. Fi'cictional Fourier transfonns of different orders commute with 
Ccich other, thus their orders can be changed freely.
By substituting 2.2 in 2.6, the following equation is obtained

/ CO /· ''X'

/  Ba,,ay{Xy y, x", y'')Ba>̂ ,̂a-̂ (x", i f x ' , tj') dx" dy" (2.8)
-OO J  — o o

= r  r  Baxix,XnBayiy,yV^ad^",^')Ba'yiy' '.y')d^  (2.9)
J  — OO J  — oo

The proof follows directly by using the additivity property of the one
dimensional property [4] which is

/OO

-oo

2. hvverse Transform
The kernel of the inverse transform is given as

Bax,ayi' î VT^ BJ ) — B-ax,-ayiX·) Vi X t V )· (2. 11)

Letting (tx + a[. = «y + a'y = 0 in the cidditivity property and noting that 
transform of order a = 0 corresponds to the function itself, the residt 
follows.



3. Linearity
The fractional Fourier transform is linear. For arbitrary real constants
cik,

Y^a , f{x ,y )  Y^akr--'^y[f{x,y)].
k k

( 2. 12)

Since the frcictional Fourier trcinsibrrn is a linear integral transform, it 
satisfies the linecirity property.

4. Separability
If f (x ,y )  = .fix)f(y) then,

r ^ ^ ’̂ y[f{x,y)] = r ^ V (x ) ] r ^ n f i y ) ] · (2.13)

The two-dimensional frcictioncil Fourier trcinsform is sepcircible by defini
tion, hence the property is evident.

5. Unitarity
The two-dimensional kernel is unitary, i.e.

(·'*'·, 2/; y') = 2/'; ‘C, y) = i? -a ,-a ,0c', 2/'; ·'*'■, 2/)· (‘̂ -I^)

By using the kernel of the transform in 2.3 ¿iiid the kernel of the inverse 
transform in 2.11, the property can be verified.

6. Parseval relation
3'he Pcirseval relation for two-dimensional frcictional Fourier transform is

/ OO / *0 0  / ‘CO f O O

/  f(r')*g(r')dr'= /  /  {.F"'-">'[f](r')}*{^"-"^[g](r'))drT2.15)
-OO CO j  — OO j  — OO

where
r =

lT
:r' y'

A direct consequence of this equality is the energy-preserving property 
of fractional Fourier transform

/ OO r O O  ^  f O O  ¡ ‘ OO

/  |/(r')|^dr'= : /  /  |.F - ’‘'-[/](rO|^dr'.
-O O  J — O O  J  — OO J  — (>o

(2.16)

This property follows from the unitarity property of the fractional Fourier 
transform.



7. The effect of shift
The fractional Fourier transform of f{x  — s^, y — Sy) can be expressed in 
terms of the fractional Fourier transform of f (x ,y )  as

-  s)](r) = -  a) (2.17)

where
r =

iT
X ?/ s =

lT
S x  S y

- T - 1
a = .Ŝ. cos <̂,г· Sy COS (fly ·> b = !.i· sin </>x Sy sin (j)y

8. EJfect of multiplication by a complex exponential
If cl function f{x^y) is multiplied by an exponential then
the resulting fractional Fourier trcinsform becomes

27T

wher;e

T - ■
r = y "> m = 7Uy

c =
tT

ITLjj sin (j)x niy sin (j)y
1 'r

rU:, sin (j)y, Illy sin (¡)y

This property is ecisily derived by using the deiinition of frcictional Fourier 
transform.

9. Multiplication by powers of coordinate variables The fractional Fourier 
transform of x^^^y^f{x^y) for m^n > 0 is

= [;r cos (/>:, + ^ sin fx-§^Y' [y cos fy + f  sin fy y)].
(2.19)

When 771 = 0 or n = 0, the property reduces to the one-dirnensiona] 
transform’s property.

10



10. Derivative of f{x^y)
The dual of the multiplication property is the derivcitive property. The 
fractional Fourier transform of is

(2 20)

= [i2lTXf>in<i>r + + cos 1̂5,1̂ ]''^'···'·''(/(■'', y)]-

Property 9 cind 10 are general forms of the corresponding properties of 
one-dimensional transform, which will be recovered when rn = 0 or n — 0.

11. Scaling
The fractional Fourier transform is not scale-invaricuit like the connnon 
Fourier transform. However, the fractional Fourier trcinsform of a scaled 
function with orders a^ and a.y Ccin be represented in terms of the frac
tional Fourier transform of the original function but with different orders 
a[̂  and Oy. The fractional Fourier transform of f{k.j;X^kyy) Ccui be repre
sented in terms of the frcictional Fourier trcinsform of f{x^y) as

where

[/•(kr)](r) = C eXp[i7rr^'Pr]j^“-'·“'/ {/(r)}(Sr)

C =
i I I I ^  -^‘ky

k =
ky, 0
0 L ,

r =

P =

<¡6̂. · arctan(A; .̂ tan (j)̂ ;), 

(j)y - arctan(A:,  ̂tcin (j)y),

0
12. Rotation 

Let

A =

,T y

2a,oa;. =
7T

‘20(1)1
7T

S =
sill (¡>'(1- 

kx sin (¡)x
0

(2.2i)

cos 0 sin 0 

— sint/ cos<?

0

ky sin <{)y -

11



then /(A r) = f(cos0x + sin — sin + cos Oy) represents the ro
tated function with angle 0. For ^  </>y, we cannot represent the 
two-dimensional fractional Fourier transform of /(A r) in terms of the 
two-dimensional fractional Fourier transform of /(r) . But for (j)x =
For = (f)y

^ “[/(Ar)](r) = ^ “(r)(Ar) (2 .22)

which means that when the function is rotated by an angle 0, its fractioiml 
Fourier transform is also rotated by the same angle. But this is valid only 
when the transform orders are equcil in both directions.

13. Arbitrary affine transfor'rn
Let us try to genercilize the rotation property to general cifEne translbr- 
nicition by setting

a b
A =

d

In this case, it is not possible to represent .F“’’’“"[/(Ar)](r) in terms of 
a. scaled version of fractional Fourier transform of ,/(r) with a similar 
rehition to 2.22. It is disturbing that, the frcictioncd Fourier transibrm 
fails to satisfy this property. In Chapter 4, the same property will be 
discussed again, treating an alternative definition.

14. Wigner Distribution and fractional. Fourier transform
Let Wf(x.,y·, fiy) be the Wigner distribution of f (x,y) .  U gix, y) is 
the fractional Fourier transform of f(xyy),  then Wigner distribution of 
gix, y) is related to that of f{x,  y) through the following equation

H/,(r,s) = Wf (Ar -b Bs, Cr -f Ds),

w here

and

A -

T - T
r = X  y , s = d x  t h

cos f x 0
, B =

-  sin 0

0 cos (j)y 0 - s m f y  _

(2.23)

(2.24)

(2.25)
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sin (j)x 0 

0 sin (j)y
D

cos 0

0 cos (j)y
(2.26)

As the above equation suggests, the effect of fractional Fourier transform 
on the Wigner distribution is a counterclockwise rotation with angle (f)x 
in the X-/J.X plane cind (j)y in the y-ĵ iy phine. In the following section, this 
property will be discussed again as a special case.

15. Prvjection
The projection property of one-dirnensioiml kernel [32, 34] states tha.t the 
pro jection of the Wigner distribution function on nn axis making angle 
</) with the X cixis, is the absolute sqiuire of frcictional Fourier translbrm 
of the function with order = aTr/2). This effect Cci.n be represented 
in terms of the Radon transform as

n^[W ix , f i )]  = \ r V ( x ) (2.27)

where the Radon transform of a two-diinensioiicil function is its projection 
on cin cixis making angle (f) with the x axis. The separcibility of the two- 
dimensional kernel niciy be used to derive the corresponding propertj^ for 
two-dimensional case. If the Rcidon transform is cipplied successively to 
the Wigner distribution W{x^%j\ ¡.ty)̂  then the propert}^ becomes

n,^y[n^,AW{x,r,pi.,lXy)]] = |^ “-"-[/(.r,y)]p. (2.28)

Thus, the projection of the Wigner distribution W{x^y·, ¡-ly) of any
function f(x.,y) on the plane determined by the two lines, first making 
an angle </)x with the ;c axis cind second iruiking an angle <j)y with the 
y axis, is the cibsolute square of its two-dimensional fractional Fourier 
transform with orders a.,, and Uy.

16. Eiyenvalues and eigenfunctions
Two-dimensional Hermite-Gaussian functions are eigenfunctions of the 
two-dimensional fractional Fourier trcuisform, i.e.,

/ OO

5α,г.,α,_,(í̂ ·, y, x'y')'^nm{xx,y) dx' dy' = (.'C, J/) (2.29)
-OO

where the eigenfunctions ¿ire determined by 
21/2

2/) v/2”2™n! m!
H n { V ^ x ) H m iV ^ y )  exp[-7r(,r''̂  + ;i/̂ )j (2.30)
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with the corresponding eigenvalue

\nm = exp(-i7raa;?r/2)exp(-?;7ra,/m/2). (2.31)

By using the separability of the two-dimensional fractiouiil Fourier trans
form cuid the corresponding property in one-dimension [4, 33, 32], this 
property rmiy easily be derived. For = a.y = 1, the eigenvalues and 
(ugenfunctions corresponding to the common Fourier tra.nsform can bci 
recovered.

2.3 Q uadratic-phase sy stem s

Fractional Fourier trarisforrns, Fresnel translbriris, chirp inultiplication cind 
scaling operations are widely used in optics to aiicilyze systems composed of 
sections of free space and thin lenses. These linear integral transforms belong 
to the class of quadratic-phase systems. The one-dimensional qucidratic-phase 
system with parcirneters is defined as [55]

/ 00
h{x,x')f{x')dx',

-00

/i(.'c, a:') - exp[z7r(ct;c^ — 2[ixx' 7 ;̂ '·̂ )]. (2.32)

(Jua.dratic-phcise systems have 3 parameters whereas fractional Fourier trans
form has oidy one. Eqn. 2.32 reduces to the definition of fractional Fouritu· 
tra.nsform if the parameters a, /3 and 7 are chosen as

CV = 7 = cot (j) cUld fJ = CSC (j).

Any quadratic-phase system can be completely specified by its parameters 
a ,/! ,7 cis 2.32 suggests. However, cui alternative way of specifying quadratic- 
phase systems is using a transformation mcitrix. The trcuislbrmation matrix of 
such a system specified by the parameters cv, ¡3,7 is

T =
A  B a / f i  i / l i  '

C  D - f t  +  a - y l f t  a ! f t  _

(2.33)
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with AD — EC = 1. The transformation matrix approach is practiccil in the 
analysis of quadratic-phcise systems. First of all, if severed systems are cas
caded, the overcill system matrix can be found by multiplying the correspond
ing transformation mcitrices. Second, the transformation matrix corresponds 
to the rciy-matrix in optics [56]. Third, the effect of the system on the Wigner 
distribution of the input function Ccin be expressed in terms of this transfor
mation iTicitrix. This toi îc is extensively discussed in [36-40].

It is possible to generevlize one-diniensional quadratic-phase system to 
two dimensions. A straightforward generalization is to multiply two one- 
dimensional kernel and form the deiinition for two-dimensioncil quadratic-i)hase 
system. roo P O O

g{x,y)= f /  ■,y')dx'dy',J —oo J — oo

h{x, y, x', y') = e exp[iTr(a^x'^ -  2/3yxx' +

xe“"/''^y^exp[z7r(ayy^ -  2/3yyy' + 7„y' )̂]·
(2.34)

It, is also possible to completely specify this two-dimensional transibnn through 
its transformation matrix.

/1 . 0 B , 0 I x / P x 0 l / i i x 0

0 A , 0 B y 0 l y / f d y 0 W l h

c . 0 n . 0 P x  "b ^ x l x !  i ^ x 0 a x / f i x 0

0 C y 0 B y  _ 0 ~ / 3 y  +  O i y l y l P y 0 «.v /A v .

with -  5г·C',г· = 1 and AyDy -  ByCy = 1. By noting that

cx̂  = 7 .̂ - cot (j)̂  and fix = csc(?î . (2.35)

and

7y = cot 4>y and fty = csc(/)y, (2.36)

the translormation matrix for the two-dimensional fractional hourier translorm
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turn out to be

T =

cos 0 sin 0

0 cos (¡)y 0 sin (j)y

-  sin <j}̂ 0 cos (/>x 0

0 — sin (/)y 0 cos (j)y

(2.37)

After deriving the transformation matrix for the two-dimensional quadratic- 
[)hase systems, let us examine property f4 which describes the effect of frac
tional Fourier transform on the Wigner distribution of the input function. The 
inverse of the transformation matrix characterizes the effect of any quadratic- 
phcise system on the Wigner distribution of the input [57]. The Wigner distri
bution of the input function IV/ and the Wigner distribution of the output IT, 
are related to each other by the following relation

W,(u) = Wf(T-^u), (2.38)

where

u
iT

X IJ f.1̂. ¡.Ly (2.39)

We have already found the transformation matrix T of the system. When the 
inverse of the matrix is substituted in 2.38, the result in property 14 is verified.
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C hapter 3

O ptical im plem entation o f the  

tw o-dim ensional fractional

Fourier transform

In this chapter, Vcirious optical impleinentations of two-clirnensioiial fractional 
Kourier transform will be presented. Two approaches are used for this purpose. 
The iirst approach is based on the canonical type-1 and type-2 decoinpositions. 
The second approach chissifies the systems according to the number of lenses 
and then sliows the advantages and limitations of each system.

In Cdiapter 2, it was shown that the fractional Fourier transform is not scale- 
invariant. in some physical cipplications, it is necessary to introduce input and 
output scale parameters. It is possible to modify our deiinition by including 
th(' scale parameters and also the additional phase factors that may occur a,t 
the output,

f ^ a , , -  /1,/,.,,. exp[i?ra:V®]exp[i7r(^cot(j)  ̂ -  ^ c o t <;&»..)]
f 2 o / V * 7

X exp[i7r(^ cot </;„ -  ^  esc(j),, + V  cot (py)].

In this definition, s i  stands for the input scale parameter and s-2 stands for the
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output scale parameters. In the previous chapter, we derived the transibrma- 
tion matrix for the fractional Fourier transform. But allowing phase factors p.̂ ., 
■py and scaling factors S| cind ,S'2, the trcinsformation matrix of the fractional 
l*'ourier trcuisforrn can be modified as

where

T =
A B 

C D

A =
ff cos (f>̂

0 cos (j)y

(3.2)

(3.3)

B =
SiS2Sin^ .̂ 0

0 if 152 sin y
(3.4)

C =
\-[p,, cos -  sinA· I S2

COS (j)y -  sill (¡)y\
(3.5)

D =
^  sin <j>x{px + cot <j)x)S'2

0 ft MPy + ^̂y) .
(3.6)

In our opticcd set-ups, we will try to control as many parameters as we can. 
Here is a list of pariuneters that we would like to control:
Order parameters and a,y: The main objective of designing optical set- 
u]:)s is to control the orders of the fractional Fourier trcuislbrm. Control on tlie 
order parameters is our primary interest.
Scale parameters, and 52: It is desirable to specify both the input and 
output scale pariimeters to provide practical set-ups.
Additional phase factors p x  and p y  : In our designs, we try to obtain 
p,,. = py=0 in order to remove the additional phase factors at the output plane 
and observe the frcictioricd Fourier transform on a flat surface.

Before going through the opticcil systems in detail, the characterization of 
optical components will be given.
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3.1 C haracterization  o f op tica l com p on en ts

In Chapter 2, the concept of trciiisformation matrix is introduced. Here I^oth 
the kernels and the transformation matrices of the optical components will be 
given. The transformation kernel for a free-space propagation of lengtli d is 
expressed as

hf(x, y, ,'c', y') = Kf  exp iir {x -  x ' f  (2/ -  y ' f
\d Xd (3.7)

and its corresponding transibrmation matrix is

T/(<0 =

Similarly, the kernel for a cylindrical lens with fociil length along tlu; x 
direction is

h^-iix, y, y') = Kxi ¿(3' -  x') exp(-i7r.'rVA./k·) Q
with its transibrmation matrix

1 0 Xd 0

0 1 0 Xd

0 0 1 0

0 0 0 1

IS

with its transformation matrix

1 0 0 0

0 1 0 0

f t  0 1 0

0 0 0 1

s w ith Focal length , a.long th

vi ^{y - y') exp (—zVyV A /,)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 1
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Wlien we consider an anarnorphic lens with local length in the x direc
tion, Jy in the y direction and f„j in the xy direction, the kernel is

h’xyi{x,y,x\y') = KxyiS{x-x ' ,y -y ' )  exp |^ -z7t 

with the translbrination matrix

T̂ xyl(fy) =
- 1
A/x-
-1

2\h:y

0

_
A,/; xfy xfxy

2Xfxy

0 0 

0 0 

1 0

fh Ü 1

(;5.i;{)

(3.14)

3.2 O ptical im p lem en ta tion  using canon ical 

d ecom p osition s

VVe will begin our discussion with the Ccinonical type-1 and type-2 systerns [58] 
which can be used to irnplernent one-dirnensional quadratic-phase systems. 
Then the canoniccil systems will be generalized to two dimensions. Since frac
tional Fourier transform belongs to the family of quadratic-phase systems, once 
the optical implémentations of quadratic-phase systems are found, tlie results 
ma.y be specialized to fractional Fourier transform.

3.2.1 Optical implementation of one-dimensional 

quadratic-phase systems

It is possible to use type-1 and type-2 realizations to implement any quadratic- 
phase system with desired parameters cv, ^ and 7 optically.

TYPE-1:
Both the optical system in 3.1 and the quadratic-phase system have three 

|)arameters. In order to determine the system parameters the relation between
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input
f

output

R .
in out

Figure 3.1: Type-1 system that realizes one-dimeiisional quadratic-phase sys
tem

the light distribution Pin(x) ¿d the input and light distribution at the output 
be found. Assuming propagation from left to right, pi(:r) (the 

light distribution just before the lens) is rehited to f{x) by a Fresnel integral:

P l { x ) =
ex.p(i2rdi/X)

yJlXd
i ----  f  expliirix — x'y/Xdi]pm{x') dx' (3.15)
I J  — oo

The light distribution at the right of the lens is

1H{ x ) =  Pi (■̂ ■,?/) exp
-nrx
K f

A
(3.16)

Propagation in the .second section of free space results in another convolution, 
'riie light distribution at the output is

P o u t ( ' l ' )
exp{i2 'Kd2 lX)

y/iXd'i /OO

exp[i7r(.T — x"Y! Xd2 \p2 {x'') dx” (3.17)
-OO

WIkmi the terms are rearranged and the integral on x” is carried out, th<i 
resulting relation becomes

exp[i7r(/l.T  ̂-  2Bxx' + Cx‘̂)]p\n{x') dx',
-OO

(3.18)

wher;e
_  exp(z2Tr(di + d2 )/X)

A =

\JiX{di -b d'2) 

f - c h
X{d\i -h 1̂2/  — d\d2 )
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B

c  =

■/·
^{d\j + — d\d,2 )

f - d 2

H d ij  + <¿2/  ~ i îi/2)
If we wish 3.18 to represent a quadratic-phase system with parameters o:,/? 
and 7 , the following necessary and sufficient conditions should be satisfied:

A /  - ex 10^
A(c/i/ + clzj — di(l2 )

A (di/-bd2/ - d i d 2) ^
(3.20)

/  -  d2 ___
HdiJ + (I2J — diclz) (3.21)

B =

c  =

It is possible to define the system parameters uniquely by solving the above 
equations. The equations for di,d2 and /  in terms of cv,/? and 7 are

p - a  j ^ -  7 Pd\ = d2 = f (3.22)
' HP'^ ~  ̂ MP'  ̂~ ici) ’ ’ HP^ —

By using this set-up, it is possible to implement one-dirnensioticd fractional 
Fourier transform of the desired order. The scale parameters 6’i cuid S2 ma.y 
be specified by the designer and the tidditional phcise factors cind Py mcry be 
made equal to zero. Letting a = cot p/s^, 7 = cot <j)/sl and P = esc (¡ijS1S2 ·, one 
recovers Lohrnann’s type-1 system tlmt performs fractioiicd Fourier transform. 
In this case, the system parameters are

d, = (siS2 -  S'j cos p) , _  (SiS2 -  slcOS(j))
2̂ — ------ ^ , ./ (3.23)

Xsmp ’ “ Xsinp ’ ■' A.sin</>
Since tlie additional phase factors are set to zero, they do not appea.r in the 
e(|nations. However, if one wishes to set and Py to a value other tlicin zero, 
it is aga.in possible by setting a — p^cotp/sl  and substituting it in Eqn. 3.22.

TY PE-2:
Instead of one lens and two sections of free space, we have two lenses sepai'ated 

l)y a single section of free space. For this system, the parameters d, /1 a.nd /2 
are given by the following eqiuitions:

1 , 1 
'' = w  ~ M f i - i Y h

1
X { P - a y

(3.24)
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input outpu t

Figure 3 .2 : T ype -2  system  th a t realizes one-dim ensional 
tern

atic-plm se sys-

If a = cot(j)fsl^ 7 = cot(/)/sl and ¡3 = csc(j)jsis<2, is substituted in these 
equations the expressions for fractional Fourier transform can be found. The 
designer can cigciin specify the scale pcirarneters ¿irid there is no additional phase 
Factor at the output. The system parameters ¿ire

d = S\S2 sin (j) 
A ’ / l  =

s\s2 sin (j)
.Si -  6'2 COS ^

./2
.Si^2 sm (j)

(3 .2 5 )
6'2 — 1̂ cos (j)

liqucitions 3 .2 2  ¿irid 3 .24  give the expressions lor the system  pcircimeters of type- 
1 cind type -2  system s. But for some Vcilues of cv,/3  ¿ind 7, the lengths of free 
spcice sections iruiy tu rn  out to be negative. But in our opticcil system s, we 
m ust require th a t the lengths of free spcice sections be positive. However, this 
constrain t will restric t the rcinge qucidrcitic-plmse system s tluit Crin be recilized 
with the suggested set-ups. In section 3 .2 .3 , we will solve this problem by 
designing cin optical set-up th a t simulcites ¿iiuimorphic free spcice. This system  
is designed in such ¿1 Wciy th a t its effect is equivcilent to propcigcition in free sp¿ıce 
witli different (¿ind possibly negative) distcinces ¿ilong the two dimensions.

3.2.2 Optical implementation of two-dimensional 

quadratic-phase systems

in order to find an optical realization of the two-diiriensional fractional Fourier 
translbrni, a two-dimensional aimlysis is needed. Hence, we will have to deal
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with two-dimensioricil kernels or 4 x 4  rricitrices. But the Ibllowing theorem 
allows us to analyze rnulti-dimensional systems as many one-dimensional sys
tems, which makes the analysis remarkably easier.

T heorem  3.1 Let

/ 00
h{v,Y')J{r')dr\

-00

when
r =

- T - 1
Xi . . . XJM r' = x\

lT

If the kernel /¿(r, r') is separable  ̂ i.e.

/i(r, r') = hi(xi,x[) Ivzix-i·, x'2) ■ ■ ■ x 'n)·, (3.26)

then the response in the x-i direction is the result of the one-dimensional trans
form

/ 00
hi{xi,x\) f{x'y,.. .x'j^)dx[ for i = 1 to N. (3.27)

-00

Moreover if the function is also separable i.e.

f ir )  = f lix i,x [ )  f 2 {x2 , x'2 ) ■ ■ ■ I n IxM, x'n)i (•̂ •28)

the overall response of the system is

gir) = g\{xi)g2 {x2) ■ ■ ·gN(xN) (3.29)

where
/ 00

hiixux'i) fiix'i)dx'· for ?: = 1 to At. (3.30)
-00

Proof: If 3.28 iind 3.26 is substituted in 3.26, then we have
/•oo /*00

(]{y) = / · · · /  · · · }N{' '̂]^)dxY . . .  dxĵ j
J — oo J — fyo

Rearranging terms will give us the desired result.

'riiis simple theorem has a nice interpretation in optics which nudves the 
aiicdysis of the multi-dimensional systems easier. For example, in order to

24



input

d i  V ilx 2̂ x
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output

Figure 3.3: Type-1 system that realizes two-dimensional qucidratic-phase sys
tems

design an optical set-up that recilizes imaging in x direction and Fourier trans- 
Idrrn in y direction, one can design two one-dimensional systems that realize 
the given transformations. When these two systems are put together, the over
all ellect of the system is imaging in x direction and Fourier transformation in 
y direction. SirnilcU'ly if we can find a system that realizes fractional Fourier 
transform with order in x direction cind cuiother system which realizes frac- 
tioiud Fourier trcinsform with order a.y in y direction, then these two optical 
set-ups will together implement two-dimensional fractioiicil Fourier transform. 
So the problem of designing a two-dimensional fractional Fourier transformer 
reduces to the problem of designing two one-dirnensioiicil fractional Fourier 
transformers.

T Y PE -1 :
According to Theorem 1, x and y directions can be considered independent of 
each other. Hence if two optical set-ups realizing one-dimensional qiuulratic- 
phase systems are put together, one can implement the desired two-dimensional 
fractioiicil Fourier transform. The suggested optical system can be found in 
Fig. 3.3.

Parameters of type-1  system:

dJ,r
l̂ x -  O x

H M  -  ’
d'2a,· fix -  lx

MM -  7.r«x·)'
fx = MM -  7.f«.x·) ’

(3.31)
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Figure 3.4: Type-2 system that realizes two-dimensional qucvdratic-phase sys
tems

di u  —
I3y OLy do:„ — l^y ly

fy =
fij (3.32)

HP'y -  lyf'hiY K R j- iy f 'h iY  K iY j-iy(-hY
'I’lie piirameters of the optical system are given in equations 3.31 cuid 3.32. 
Even though the cinalysis is carried out by using the independence of x  and y 
directions, the total length of the optical system is fixed. Thus di^ + d-zx = <4 = 
d \ y  +  d - i y  =  d y  should alwciys be satisfied. The other constraint to be satisfied 
is the positivity of the lengths of the free spiice sections, dix, d\y, d-zx and dzy 
sliould always be positive. These two constraints restrict the set of quadratic- 
pliase systems that can be implemented. The solution to this prolrlem is to try 
to simulate anarnorphic sections of free spcice which provides us a propagation 
of dx in X  direction and dy in y  direction where dx and dy rmiy take negative 
values. The simulation of anamorphic free space will be given after typc-2 
system is aucdyzed. Besides different propagcduon distances, our free space 
should also simulate propcigation with negative distances.

TY PE-2:
4'wo typo>2 systems Ccui idso perform the desired two-dimensioiml quadratic- 

lase system.

Parameters of type-2 system: 

1 .. 1
dx — f i x  =

K f i x  -  l x )  ''
J'2x= X(Px -  c Y x )  ’

^^y~Xfiy^ Yy
1

MPy -  7;/)
1 J'̂ y A(/3j/ cYy)

(3.33)

(3.34)
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The opticcil set-up in Fig. 3.4 with pcirarneters given in the cibove equations 
iinplement two-dimensional quadratic-phase systems. In this optical set-up the 
constraint becomes — dy = d which is even more restrictive. <4- and dy can 
again be negative. In order to overcome these difficulties, we will try to 
a,n optical set-up which simulates anamorphic sections of free space.

3.2.3 Simulation of anamorphic sections of free space

While designing optical set-ups that implement one-dimensional qinidratic- 
phase systems, we treat the lengths of free spcice sections as free parameters. 
But some quadratic-phase systems specified by parameters cv, 7 ,/?, may re
quire the use of free space sections with negative length. This problem is 
again encountered in the opticcil set-ups realizing two-dimensional quadratic- 
phase systems. Besides, the two-dimensional optical systems require diflerent 
propagation distances in x cind y directions, in order to implement all pos
sible one-dimensional and two-dimensional quadratic-phase systems, we will 
design an optical system simulating the desired hee space suitable for our pur
poses. The optical system in Fig. 3.5 which is composed of a Fourier block, an 
anamorphic lens and an inverse Fourier l l̂ock simulates two-dimensioruil fro;e 
space with propagation distances (4 in x direction and dy in y direction. We 
will call the optical system in Fig. 3.5 as ‘anamorphic free space’. When the 
analysis of the system in Fig. 3.5 is made the rehition between the input light 
distribution fixi'ij) and output light distribution g{x,y) is given as

/ 00 /*oo
/ exp[i7r(r£; -  x 'f lM .^  + [y -  y') IXdy]f{x', y') dx' i/;i/(3.35)

-00 J — '-X)
where

i4 =
A44-’

/ -

where s is the scale of the Fburier and inverse Fouriei· blocks. and fy can take 
any real value including negative ones. Thus it is possible to obtain any combi
nation of (4 and dy by using the optical set-up in Fig. 3.5. The anamorphic lens 
which is used to control c4 and dy, iruiy be composed of two orthogonally situ
ated cylindrical thin lenses with different focal lengths. The Fourier block and
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Figure 3.5: Optical system that simulates anarnorphic tree space propagation

inverse Fourier block are 2-f systems with a spherical lens between two sections 
of tree space. Thus, a section of free sj)ace uses 2 cylindrical and 2 spheri- 
ca.l lenses. The system in Fig. 3.5, simulates two-dimensional anamorphic free 
space. The same configuration is again a valid realization lor one-dimensional 
case. When oidy one lens is used with one-dimensional Fourier and inverse 
Fourier blocks, it is possible to simulate propagation with negative distances. 
When the free space sections in the type-f and type-2 systems are rephiced by 
tlie optical set-up in Fig. 3.5, optical implementation of all separable quadratic- 
phase systems can be recdized.

3.2.4 Optical implementation of two-dimensional frac

tional Fourier transform

In the previous section, we proposed two optical systems that realize any 
two-dimensional quadratic-phase system. It was discussed earlier that two- 
dimensional fractional Fourier transform is indeed a special quadratic-phase 
system with parameters

= cot (j)x/sl, 7a.· = cot (j)x/s‘l, = CaC(j):,./siS2 ,

■md
a.y =  cot (j)y! s\, 7j/=  cot(?i>y/sx, fiy -  CSC (j)y/s 1^2.

When these parameters are substituted in 2.34, the definition of two- 
dimensional fractional Fourier transform is obtained. Since fractional Fourier
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r''igure 3.6: Type-1 optical system realizing two-dimensional fractional Fourier 
transform

trunsibrm l)elongs to the family of quadratic-phase systems, the optical set
ups suggested for the quadratic-phase systems are again valid realizations for 
fractioiicd Fourier transform.

TYPE -1
'ITie optical system in Fig. 3.6, realizes two-dimensiomil frcictional Fourier 

translbrm with desired orders a^, ay, desired scale pariuneters a' i,S2. There is 
no additional phase factors at the output. The system has 2 cylindrical lenses 
arid 2 sections of anaiTiorphic free space. Since a section of anamorphic free 
space consists of 2 cylindrical and 2 spherical lenses, the total number of lenses 
is 6 cylindrical and 4 spherical lenses. The system parameters are easily Ibund 
from 3.31 and 3.32 as

l x

diy =

(Sx6’2 -  A“? COS

A sin (j):,.
, (si5'2 -  Ŝ COSt/.,,.) 

( h x  -  \ · 1 ’A sin (p.jj (3.37)

(¿>1̂ 2 — -sf COS (j)y)
A sin (¡)y ’

, {siS2 -  sjcosiliy)
— \ · 1 ’ A sin (py (3.38)

,. •̂ 1̂ 2 f ___Jx \ · / ? A sin (/)a: ■  ̂ A sin (̂ y
(•y.-yV)
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input f„ f

\f\f

l x ly

C o n t r o l l a b l e  

F r e e  S p a c e

f; £

\fV

output

d . dX y

Figure 3.7: Type-2 opticcil system recvlizing two-dimensional fractional Fourier 
l.ranslbrm

TYPE -2

The analysis of the typc-2 system is similar to type-1 system. If the free 
space sections in the type-2 system are repliiced by sections of anarnorphic 
free spcice, the two-dimensional fractional Fourier transform with the desired 
orders and scale parcimeters can be implemented. In this set-up, we have to 
use 6 cylindriccil cind 2 si^herical lenses. The system parameters are

h x  —
s'fs'j sin bx 

A(s, -  cos ’ ,/■2a.·
Si si sin </>,,.

A(s2 -  Si cos(/)^y (3..40)

' I y
s\s2 sin (j>y 

A ( .S i -  S2 COS (l)y) ’
./ '̂ y —

.Si.Ŝ  sin (j)y 
A ( s 2 -  .Si COS (/)y)

(3.41)

cL = S1S2

A CSC <l)x ’
, .S1S2
 ̂.V \ A 'A CSC (py

(3.42)

Both type-1 and type-2 systems can implement all combinations of orders when 
the free space sections are replaced by sections of anamorphic free space. We 
have no additioiuil pluise factors at the output. Also the scale parameters can 
be specified by the designer. Thus, by using type-1 and 1-2 ems, al
combinations of orders cLj; and ay C cin  be implemented with full control on scale 
parameters 6‘i,S2 and phase fcictors Px^Py.
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3.3 o th e r  op tica l im p lem en ta tion s o f  tw o- 

d im en sion a l fractional Fourier transform

In the previous section, we presented a method of implementing the fra.ctiona.1 
Fourier transform optically. All combinations of ax and Uy can be implemented 
with the proposed set-ups. However, both systems use 6 cylindrical lenses. 
In this section, we will consider simpler opticcd system having fewer lenses 
and try to see the limitations of these systems. We will not try to exhaust all 
possibilities, but offer several systems which we believe may be useful. Since the 
problem is solved in x and y directions independently, one lens is not adequate 
to control both directions. So the simplest set-up that we will consider has two 
cylindrical lenses.

3.3.1 Two-lens systems

input output

4x ‘2x

'^ly

Figure d.8: Optical set-up with 2 cylindrical lenses cuid .3 sections of free space

1. Specified by the designer: (j)x,(j)y^si,S2 ,Px,Py·
Design parameters: fx, fydu·, diy, d'2x, d2y.
Uncontrollable outcomes: None.
The optical set-up in 3.3.1 has 6 design pariimeters and we cilso Wcuit 
to specify 6 parameters. It is possible to solve the design parameters in 
terms of the desired parameters determined by the designer. However, 
in order to have realizable set-up, the following constraints should be
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satisfied;

• Total length of the system should be the same in both directions;
d\x + d.2x = diy + d'iy.

• The lengths of all free spcice sections should be positive; dy  ̂ > 
0,dii/ > 0,f/2a; > 0 and d2y > 0.
These constraints are too restrictive and the range of orders a..,,, and 
(ly that can be implemented is very small. Thus we have to re
duce the number of parameters that we want to control, 'f'liis is 
considered next.

2. Specified by the designer: </)x, (¡)y,sy,S2 .
Design parameters: fx, fy,dyx, dyy, d2x, d2y.
Uncontrollable outcomes: Px,Py.
In this design, both the orders and the scale parameters can be specified. 
For given (j)x and (j)y,si and ¿>2, the design parameters are

dyx — d\y — (/1 —
Sl(sin(/>y -  Sin</>a.·) 
A (cos (j)y -  COS (j)x) ’

(3.43)

d·2 x diy — <¿2 —
syS2 s m j f i x  -  (j)y)

A (cos f i y  -  COS (j)x) ’
(3.44)

f . =
sfs2 smifix -  (j)y)

A(6-1 -  S2 cos (f>x)(cos (j)y -  cos (/)x) ’
(3.45)

J y -
■ i l s 2 s h f i f i x  -  f i y )

A(6-1 — S 2 cos 4 > y ) { c O S  (f)y —  cos (j>x) ’

and the phase factors occuring at the output plane turn out to be

_  [¿i2(cos (¡)y -  cos (f)x) 4- 6'i(l -  c o s j f i y  -  (?!>.г·))]
sisjUmifix -  (j)y)

(3.46)

(3.47)

_  [.S2(cos <l)y -  cos 4x) + sy{cosifi)y -  <f)x) ~ 1)] 
~ syslsmifix -  fiy)

(3.48)

In this optical set-up, dy and (/2 should always be positive. But for some 
values of (jix.fiy^sy and S2 , dy and ¿2 may turn out to be negative. In
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Figure 3.9: A:No flip, BiFlip of x axis, CiFIip of y axis, D: Flip of both axes

such cases we would have to deal with virtual objects and/or iniciges. 
This would require the use of additioiuil lenses. To cwoid this, we must 
require that di cind ¿ 2  be positive. This will then restrict the rcinge of 
a.ĵ  and ciŷ  that can be realized. This range can be iricixirnized by cil- 
lowing the X  or y  axes to be flipped. For instance, if the given values 
of dijj^d2x^diy^d2y makes Si negative for (j)x = 60 and (/)y = 30, we flip 
one of the axes. This transform is equivalent to the fractional Fourier 
transform with (j)̂  = 60 and (/)y = 210 followed by a flip of the y axis or 
(/)̂ . = 240 and (j)y = 30 followed by a flip of the x axis. (This is because a 
transform of order 2 corresponds to a flip of the coordinate axis.)In order 
to implement some orders, both axes should be flipped. Fig. 3.9 shows 
the necessary flip (s) required to recilize different combinations of orders. 
This system allows us to specify the orders and scale parameters. How
ever, the phase lactors are arbitrary and out of our control. We should 
examine four-lens systems to control orders, scale parameters and 
factors at the same time.

3.3.2 Four-lens systems

We continue our discussion with the set-up in figure 3.10. The transforma
tion matrix Ti of the system is found through multiplying the translormation 
matrices.

(3.49)
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input yi

d 2

AÂ

W

2 output

P'igure 3.10: Optical set-up with 4 cylindrical lenses and 2 sections of free space

1. Specified by the designer: (j>x.(j>y.,sî S2 .,Px = Py = 0.
Design parameters: di, i/2, , fy i , fx2 , Jy2 ■
Uncontrollable outcomes: None.
In this configuration, we use the optical set-ui? in 3.10. In our previous 
design with 2 lenses, we managed to design an optical set-up that imple
ments two-dimensional fractional Fourier transform with desired orders 
and scale parameters. However, additional phase factors at the output 
plane turned out to be arbitrary. If two cylindrical lenses are added to 
the output plane two-lens system, it is possible to remove the additional 
phase factor at the output. In this optical set-up d i,(/2, ,/a,i and /,;2 have 
the same expressions with the former two-lens system. Thus Fig. 3.9 is 
again valid and shows the necessary flips.

sAsin<;6y -  sin̂ >̂ .)
dix' — diy cl\ — A (cos фу — cos фх) ’

SiS2 аиффх -  фу)
A(cos фу -  созфх)'

-1з2 Бт{фх -  фу)
и  =

/у1 ~

Л-2 =

A(si — S2 cos Л ) (cos фу — cos фх) ’

______ ¿î 2 sin(^· ~ фу)______
A(si — S2 cos фу){соз фу — cos фх) ’

___________ Sjsl зт{фх -  фу)___________
A[s2(cos Фу -  cos фх) + Si(l -  cos(^ -  фх))] ’

(3.50)

(3.51)

(3.52)

(3.53)

(3.54)
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input N\ yi
l\i\

output

yv W

d , d 2

l''igure 3.11: Optical set-up with 4 cylindriccil lenses and 3 sections of free space

sin(</j>̂ . -  (f>y)
Jy'i — (3..5.5)

A [ s 2( c o s  <])y -  COS (j)^) -f- s i ( c o s ( < ^ y  -  -  1)] ■

This opticcil set-up imiDleinents two-dirnensioiicil fractional Fourier trans
form with the desired orders, scale parcimeters and pluise factors.

2. Specified by the designer: Si, .S2, di, ¿2»<¿3.
Design parameters: fxi, fyi, fx2 , fy2 ·
Uncontrollable outcomes: Px,Py.
For pi’cictical purposes, one may want to use a fixed system in which 
the lengths of all free space sections are fixed. For excunple, in [19], 
two-dimensional fractional Fourier transform is implemented by using 
cylindriccil lenses with dynamically cidjustable focal lengths in a fixed 
system. Both the location of lenses and the totcil length of the system is 
fixed. The only design parameters are the focal lengtlis of lenses whicli 
can Ije changed dynamically.
Here we add one more section of free space to the system in 3.10 and 
obtain the set-up in Fig. 3.11. This fixed system has no control on plm.se 
factors while the orders cind scale parameters can be specified by the 
designer. The parameters are

SiS2d2 sin (j)x:/X — (6’2/ii 1 )dl(¿2 COS (j)x
f x l  =  

./ y 1 ~

1 x2 =

(¿>2 / Si){di -f (/2) cos (px — .siS2 sin <f>x/A -)- ds

SiS2d2 sin ( j ) y l\  — {S2 ls])did2 COS (j)y 

{ S 2 l i i l ) { d l  -|- (¿2) cos (f)y — S 1 S 2  sin ( ¡ ) y l \  - f  <¿3 ’

^2^3
{S2ISi )di cos fix -  S1S2 sin (f>x/A -b i/2 -b 3̂ ’

(3..56)

(3..57)

(3..58)

3 .5



input yi k l yAA icsfySAA

W w vv

Figure 3.12: Optical system with 6 lenses ciiicl 3 sections of free space 

and

fy
(1-2 (k

(-s-i/ Si)di cos (/)y -  6'1,S2 sin 4>y/  ̂ +  ( k  + d:i ’ 
ancl the additional phase factors turn out to be

P,,. = -  cos (j)^ +

p  =  -  cos (/)y H------ r-
o . O ir i

•S2 1 di di d2

Si sin (/)̂
i

J xl J x2 .1x2

^2 I di di d2

6'1 sin (j)y 1
fyl fy2 •fy2

+ V
did·2

'x2

(3.59)

(3.60)

(3.61)

This optical set-up Ccin realize all combiiicitions of â · aiid however with 
additioiicil uncontrollable phase factors observed cit the output plane.

3.3.3 Six-Lens systems

Specified by the designer: <;/>.£, sj, s-25 di, (/2, = py — 0.
Design parameters: f^ i , fy i , ,/k-2, fy2 - 
Uncontrollable outcomes: None.
The iriodified type-1 and type-2 systems use 6 cylindriciil lenses. However, the 
lengths of the free space sections are not fixed. For prcictical purposes like we 
mentioned before, one may want to use a fixed system. In order to have control 
on all the parameters, a 6-lens system is required. The design that we made 
using the four-lens fixed system, has two uncontrollable outcomes, p,̂ . and p„. If
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I,w cylindrical lenses are added to the output plane, full control on pciranieters 
is achieved.
The system piirarneters f x i , f y i , f 2:v and Jy2 are the same with the 4-lens fixed 
system. The focal lengths of the additional lenses cire

1
Jx3 — 

Jy3 —

\Px'

1
\py ■

(3.62)

(3.63)

Thus, the fixed optical system in Fig. 3.12 Ccui be used to implement desired 
fra.ctional Fourier transform.
In the previous part, we proposed several optical set-ups. The following theo
rem may be useful in creiiting new set-ups by using our previous systems.

T heorem  3.2 The reverse of any fractional Fourier transformer composed of 
thin lenses and sections of free space is also a fractional Fourier transformer.

Proof:
The output (j of the system fractional Fourier transform of f/i.e.

S Y S T E M
f g

G

IN V E R S E

g *
S Y S T E M fl:

g = G if )  =  F 'V )·

and from reciprocity, if g* is the inpxit to the reverse system, the out}
t.e.

r  = K i r ) .

If Eqn. 3.64 substituted in Eqn. 3.6-5 we get,

K ig*) =  iF - G jy

(3.64)

■i s r ,

(3.65)

(3.66)
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The same relation can be written for f  as

K ( f )  =

It is known that = (F ““/)*. So

K { f )  =  ( . / ^ ' 7 )  =  f j

(3.67)

(3.68

For example let us consider the four-lens optical set-iq) thiit realizes fractional 
Fourier transform. This system and its reverse can be seen in Fig. 3.13. Ac
cording to Theorem 3.2, the reverse of the fractional Fourier trcuisformer is 
again a fractional Pburier transformer.

i n p u t

in p u t
f  f*x2

n

\ x l  f  y l

d 2
(a )

ixl fyl

<x2 i

n

v 2  o u t p u t

o u t p u t

(b)
P'igure 3.13: (a). The fractional Pburier transformer; (b) Its reverse which is 
also ¿1 fractional Pburier transformer
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C hapter 4

A new, non-separable definition  

for tw o-dim ensional fractional

Fourier transform

4.1 M otiva tion

Many properties for the Fourier transform genercilize to two dimensions, Imt 
new |:)roperties exist in two dimensions like the following alline pro|rerty. 'ritc' 
alii lie th(iorem sta.tes that [59]:
If f ( x ,y )  has two-dimensional Fourier transform F(x,y), then f{ax  -f by,cx -\- 
dy) has two-dimensional Fourier Transform

, f / e x - c y  -b xF a y "
CXc,y) = ^ ¡ ' (4.1)

where A = ad — be. Since Fourier transform is a special case of fractional 
Fourier transform we look lor a similar property for two-dimensional fi a.ctioua.l 
l''ourier transform. However, the two-dimensional fractional Fourier transl'orm 
does not have the affine property as property f3 suggests. If /''(;r,;(y) is the
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l,wo-dimensional fractioruxl Fourier transform of f (x ,y )  with the orders and 
ciy, then G{x,y) which is the two-dimensional fractional Fourier trcuisform of 
f{ax  -h by, cx -|- dy) Ccinnot be represented in terms of a scaled version of Fix, y) 
with a similar relation to 4 .f. To see this, let us define the new coordinates as:

X ax + by y' = cx + dy.

ft is ecisy to find x cincl y in terms of x' cuid y':

1
= —{dx' -  by')

(4.2)

(4.3)

where A = ad — be. If x and y cire substituted in Eqn. 2.1 and compared with 
the definition of two-dimensional fractional Fourier transform, it can be easily 
seen that two-dimensional fractiomil Fourier transform of f ia x  by,cx + dy) 
cannot l)e represented in terms of the scaled version of two-dimensional frac
tional Fourier transform of f (x ,y ) .  This is because, the frcictional Fourier 
transform of f{ax  -f- by, cx dy) has cross terms, while our separable definition 
hcis none. It is even i^ossible to say that any separable two-dimensional kernel 
fails to satisfy the affine property. The insufficiency of separable definition in 
satisfying the affine property is one of our motivations to look for a new, non- 
sepai'cible definition.
Our sepcirable definition has two order parameters a^ and a.y. The directions 

y (ay)

(a)
-X (a,)

x’(ax)

X

Figure 4.1: The transform orders and directions for (a) separable transform, 
(b) non-separcdDle transform

along which the function is to be fractional Fourier transformed are fixed to tlui 
traditioiicd x and y axes. Fig. 4.1.a shows the directions cincl the corresponding 
orders for the two-dimensioned separable fractional Fourier transform. Since 
the two-dirnensioricd fractional Fourier transform is a stredghtforward gener
alization from one-dimensional case, one cannot change the directions along 
which the orders are specified. However, we would like to specify both tlie
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directions x \  if and the orders and of the two-dimensional transform 
as Cell! be seen in 4.1.b. This is another rnotivcition for us to look for a new 
definition for two-dimensioiicil fractional Fourier transform.

4.2  D efin ition

Here we present our new, non-separable definition for two-dimensional fiac- 
tiomd Fourier transform. We define the non-separable fractional Fourier trans
form in such a manner that it corresponds to fractional Fourier transformation 
along arbitrciry x' and y' directions with orders Uxi and iiyi. It is equivalent to 
rotation of X and у cixes followed by the separable definition. First, x a.xis is 
rotated by an angle Oy and у axis is rotated by an ¿uigle O-i- Thus, x axis is 
mapped to x' which makes an angle ву with the x axis and у axis is mapped 
to y' which makes an angle 02 with the у cixis. This is equivalent to mapping 
f{x , y) to f{cos0yx sin 6*1?/, — sin + сои0 2 у)· Then the two-dimensional 
separable fractional Fourier transform with orders a-xi and ciyi is applied to 
f{x ',y ')  = ficosOyX -)- singly, — s i n + cos022/)· The resulting transforma
tion is the new, non-separable two-dimensional fractional Fourier transform. 
The new definition has 4 parameters: a' ,̂a'y^0y and 02· 0i the angle between

Figure 4.2: The parameters of the new definition

the standard x axis cuid x', a'̂  is the order specified along x' direction, 02 in
dicates the angle between the standard y axis and y' and a'y is the order along 
tins direction as can be seen in Fig. 4.2. The non-sepiirable fractional Fourier 
transform as defined above is given with the following equation

/ •oo

-oo
(4.4)
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where

with

= ^<h exp[z7r(r^ Ar + 2r-^Br" + r"^ Cr")]

^Фх! ̂ Фу! 5  ̂-
1 т г -л

,г· у , r "  = _ . г · "  у "

A =
cot фх! 0 

0 cot фу!

lT

(4.5)

В =
cos O2 CSC ф,  ̂
COs(<?i —O2 )

sin 0i CSC c/ĵ ,/ 

C O s((?i-(?2)
s i n  0'2 CSC Ф^^/ c o s  6̂ 1 C S C 0 ^̂ /

cos(é?i —O2) >s(0i - 02) _

c  =

-  á s iw f e  “ * A- s S g i i n  « ·  + 5 ^ $ I 5 I  “ · «V

Here it is irnportcint to note that x' and y' determine the directions along 
which we specify the orders while, x" and y" are dummy variables of the inte
gration having no relation with them.
From now on we will call our new definition as non-separable fractional Fourier 
transform and use to represent it, while the sep¿irable definition is rep
resented by ,
The new definition reduces to the separable definition for 0\ = O2 = ^ which 
corresponds to fr¿xctioricil Fourier trcinsformation along x and у axes.
This definition with 4 parameters is specified by its non-sepcircible kernel. We 
constructed the definition in such a way that it corresponds to fractional Fourier 
transformation ¿dong ¿irbitr¿iry x' ¿md ?y' directions. The next thing to do is 
to show that this definition satisfies the ¿iffine property. Tlie iollowing theo
rem states that, when ¿in ¿iffine transform is ¿ipplied to the function, its non- 
sep¿ir¿ible fr¿iction¿il Fourier transform c¿in be represented in terms of the sc¿iled 
version of the non-sep¿ir¿ible fr¿iction¿il Fourier tr¿insform of the origiruil func
tion .

T heorem  4.1 Fractional Fourier transform of f  (ax + by^cx + dy) with or
ders üx^ay according to the new definition can be represented in terms of the
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fractional Fourier transform of f { x , y )  according to the new definition.

y) = y)]{a\x +  hi'ij, Cix +  diy)  (4.6)

with

k =  expfC'̂ .̂a;'̂  +  C,j,,yŷ  +  C,¡,ı̂ ,̂ц̂ xy],

D01O2cot ^
(a cos 01 + h sin 02)'̂  — (c cos 0i + d sin 02)̂ ) ’

</\y = 4>y -1 D0\ Oo
(d cos 02 +  c sin 0i — (6 cos 02 + c sin 0\)'^)

01 = cos ^
\

(a cos 01 + 6 sin 02y[{dcos 02 + csin 0i)'^ —  (6 cos 02 + a sin

0<> = cos ^
\

(dcOsî 2 + Csini)x)̂ [(aCOS 6̂1 + bsin<?2)̂  — (ccosî x -f dsinî 2)·̂ ]
D0102

Cli = CSC (j>x[{d cos 02 +  c sin 01) cos 01 +  (h cos 02 + a sin 02 ) sin <̂2] 
CSC COs(̂ l — 2̂)

6 , =
CSC < t > y [ { c cos 0 \ +  d sin 0 2 )  cos 0 1  + (a cos 0 \ - \ - h sin 6̂2) sin 0 2 ]

CSC 4>x> C O s(/?i —  02)

Cl =
CSC .̂i-[(dcOS <?2 + csin 6̂1) sin — (6cOSi?2 + a sin ¿̂1) cos <̂2]

CSC f y i  COs(<^i — 02)

di =
cscfy[{acos0 i + 6sin^2) cos 6̂2 ~ (ccosi^i + dsin ¿>2) sin î i] 

CSC C O s(d i  — 6̂2)
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where we employ the intermediate variables as

cot (acostal + 6sin^2)'̂  — {ccosOi + í/siné>2) )̂ — Do¡02]
C\i>. [((a cos Oi + bsin 0 2 )'̂  — (ccos 0 i + d sin 6 2 Y — cot'·̂  <j>xD,Ö1Ö2J

cot < j)y [ { {d cos 62 + csin 
[(((/cos O2 + csin 0 iY  — (6cos 02 + a sin

0 iY  -  (¿cost/2 + csin//i)·^) -  DqiOo]
....... "  ' '■ 0 l ) '^ )  -  </>y 0 0 , 0 2 ]  ’

cot + c¡di cot (¡)[!/’

and

\^o^02 = [{acosOi + bsm 0 2 y(dcos O2 + — (6cosé^2 + asmO\)^(ccos 0 i + í/sin¿^2)]·

It is important to note that a'̂  and Oy used in this theorem and a t̂ and üy/ used, 
in the dejiriition of the non-separable fractional Fourier transform are different.
Proof:
The proof of this property follows directly from the definition of non-separable 
fractional Fourier transform.

The new definition scxtisfies the properties tlmt we expected it to satisfy. But 
one might suggest a more general definition with a greater number of parame
ters. VVe now show that such a definition is not necessary. We know that the 
new definition corresponds to two-dimensional fractional Fourier transform of 
f{cosO\x + sin/?i;(/, — sin/?2·'̂̂’ + cosé̂ 2Í/)· bet us propose another definition by 
applying the separcible definition to f{ax  -f 6y, cx + dy) where a, 6, c and d are 
arbitrary. It is evident that this definition which has 6 parameters is more 
general than our non-sepcirable definition. However, the next tlieorem states 
that such a definition is redundant since the fractioiicil Fourier transform of 
f{ax  H- cx + dy) for any a, 6, c, d Ccin be represented as scaled version of our 
new definition.

T heorem  4.2 Fractional Fourier transform ofJ{ax-\-by.^cx-\-dy) with orders 
a.,;, (ly according to the separable definition can be represented as a scaled version 
of the non-separable fractional Fourier transform of f{x., y).
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'with

A = {ad -  6c), = X  exp[6V ,̂a;2 + 0 ,! ,^  + a;?/],

9 'x — cot -1 {â d'  ̂ — b' ĉ̂ )
A^(a^ — c )̂

(ji'y = (j)y cot '■ {a' ĉP — b'̂ (P)
-  6'̂ ) _

01 — cos - 1
a2(J2 _  ¿2)

\ j  { d h P  -  b ' ^ c ^ y
62 = cos-1 d‘̂{a'  ̂— c2)

\| («2(/2 _  /,2,,2) ’

«1 =
CSC (j)x{dcos 0\ +  6sin O2) 

A CSC < /v  C O s(^ i — (?2) ’
61 CSC ĵ (̂c cos + a sin ÍÍ2)

A CSC (j)xi cos(i?i — 02 ) ’

C| =
C S C ( f ) x { d s \ n O i  —  6 c O s t ^ 2 )  

A CSC < j ) y i  cos (01 — 02)
01 = CSC (j)y{a cos 02 — csin 0i) 

A CSC (/>y cos (01 — 02) ’

are

cot (j)x[A‘̂{d̂  — c^) — {aPdP —
[A'‘(a2 — c’2) — cot^ <j)x{d̂ d?‘ — b'̂ ĉ )'̂ ] ’

C. =
cot (f)y[A!̂ {d? — b̂ ) — {d^d  ̂ — b̂ c?)'̂ ] 
[A4(02 _  b^) -  COt2 <l)y{a'̂ d̂  -  62c2)2] ’

= «1̂ 1 cot (/>(, + Cl 01 cot (j)y.

Proof:
This theorem, can easily be proved by using the definitions of separable and non- 
separable two-dimensional fractional Fourier transform through straightforward 
yet lengthy algebraic manipulations.
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Theorem 4.2 states that the separable fractional Fourier transform of an̂  ̂
afhne-transforrned function f{ax  + by^cx + dy) can be represented as a seeded 
version of the non-separable fractional Fourier transform of the original func
tion. This result indicates that a definition with more parameters will be re
dundant. An analogy with the common Fourier transform might be useful. We 
know that when the function is scaled, its Fourier transform can be represented 
as a scaled version of the Fourier transform of the origiiicd function. Thus, it 
is redundant to define a transform called the seeded Fourier trcinsform. Just 
like this example, a definition for two-dimensional fractional Fourier transibrrn 
with more than 4 parameters, will be redundant.

4 .3  P ro p er tie s  o f  th e  non -sep arab le  fraction a l

Fourier transform

Theorem 4.3 The kernel of the inverse transform is

r") = / l - 0r exp[-?;7r(r' '̂Ar + 2r'̂ ’Br" + r"^Cr")] (4.7)

where

A =

r =
iT

.r y x" y"

cos^ O'l A  , I sin'·  ̂ A , s in O i cosg-j A i s i i t f e c o s g i  A
COs2 (Ö i - Î» 2 )  ^  COs2((?i - 0 2 )  COs2((? i - Ö 2 )  ^  c o s 2 ( 0 i - 0 2 )  "  "

- cot  ̂ 0,  ̂ Oi cot <!>,:>COŜ[0\ - 02) COŜ{0i - 02) COŜ(0\ - 02)  ̂ cos-((?i- 6/2) ’

B =
cos O2 CSC C S C

c o s (0 i—Ö2 ) c o s {0 \ —0 —2)
sin  O2 CSC (j>y/ C O S ^ l C S C ( j ) y /

cos((?i—Ö2) c o s {0 i —0—2)

c =

Notice that the kernel of the inverse tr 

\J->̂ 0u-0 2  ^

cot fxi 0

0 cot (j)yi

ransforrn (i<r>iiv(>B.nt to
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Proof:
PVe know that the fractional Fourier transform according to the new definition 
can be decomposed into an affine transform followed by the separable definition. 
Thus it is legitimate to write

+  shi0 iy , - shi02X  +  cos ¿>22/)]· (4.8)

By using the kernel of the inverse separable fractional Fourier transform given 
in 2 . 1 1

/(cos OiX + sin Oiy, — sin O2X + cos 0 2 y) =

= fToo r.Zo exp[-?:7r(.T  ̂cot (j)̂ i - 2xx" CSC <j)̂> + x"'  ̂cot /,,·')] (4-9)

X exp[—¿7r(?/̂  cot (j)yi — 2yy" esc /y  + cot f  yi)] dx" dy"

f(x^y) can be obtained in terms g{x^ij) by using a coordinate trails formation. 
Thus, the kernel of the inverse transform is found as given in .{.1

Theorem 4.4 The non-separable definition is unitary, i.e.,

(4.10)

Proof:
By using the kernel of the non-separable transform in 4-4 1̂̂  inverse in 4.7,
the proof foHows.

Theorem 4.5 Let Wf{x,y·, pa;, Py) be the Wigner distribution of f{x ,y ) .  If 
g{x,y) is the non-separable fractional Fourier transform of f i x ,  y) with param
eters a,„i,ayi,0i and O2 , then Wigner distribution of g{x,y) is related to that of 
f{x ,y )  through the following equation

W;,{r, p) = lT/(Ar + Bs, Cr + Ds), (4.11)

and

r = x y s =
lT

f i x  f i y

A =
cos f x i  COS 0 i cos (j)yi sin 0 i 

— cos (fxi sin O2 cos (j)yi cos O2

(4.12)

(4.13)
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B
sin COS 0\ — sin <J)yi sin 0¡

sin (f>xi sin 02 — sin (j)yi cos O2
(4.14)

D

3·' ''■i
COS[0\ — 0'2 )

T y  X
cos(f?i — O2 )

sin (j)^j sin 0\ sin cos 0 \
cos((?i — O2 ) cos(f?i — O2 )

cos (/).,./ cos O2 cos (j)yl sin O2

c o s { 0 \  — O2 ) COs(6^1 — O2  )
cos 0 .,./ sin 0 \ cos fpyt cos 0 i

(4.15)

COs((?i— (?2 ) c o s ( 0 \ — 0 2 )

(4.16)

Proof:
This theorem is derived by using the general expressions for the transformation 
■matrices derived by Bastiaans [37]. The proof is straightforward yet requires 
■many ■matrix manipulations.

It is importcint to note that, for 0 \ — O2 — 0, the above theorem reduces to the 
Property 14 of Chapter 2 which charcicterizes the effect of separable defiiiitioii 
on Wigner distribution.

4.4 D iscre te -tim e  im p lem en ta tio n  o f  th e  n ew  

d efin ition

Due to the oscillatory nature of the fractional Fourier trcmsibrrn, its discrete- 
time implementation is very hard by simple integration techniques. However, 
in [43], a fast cdgorithrn for the fractional Fourier transform is presented. While 
direct computation would require O(N^) multiplications, this fast algorithm 
computes the transform in 0{N  log N) time.

In order to use the non-separable definition for practical purposes, a fast 
discrete-time implementation is needed. By definition, it is composed of a.n
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affine transformation followed by the separable definition. In image process
ing several algorithms exist for affine transformation [60]. In order to imple
ment the non-separable fractional Fourier trcinsform of f (x ,  y), with parameters 
0 y,0 2 ·, cixi and Uyi, first /(cos Oyx -|- sin 0iy, — sin O2X + cos 0 2 y) is computed. In 
the computation of ¿vffine transform, bilinear interpolation method which was 
previously implemented is used [61]. Then the fast algorithm in [43], that 
computes the two-dimensional separable fractional Fourier transform, is ap
plied to the affine-transformed function. The resulting transformation is the 
non-sepcirablc fractional Fourier transform. So we obtained a way of imple
menting our new definition in 0 (N  log N) time.
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C hapter 5

O ptical im plem entation  o f the  

non-separable definition

III the previous clicipter, a non-separable version of fractional Fourier transfomi 
is suggested. We are no longer restricted to define the orders along the tradi
tional X and у directions. It is possible to specify the orders along arbitrary 
directions. Indeed the non-sepcirable transformation is composed of an afline 
transformation followed by the separable transform. The non-separable deii- 
nition has cross terms in its kernel. But the kernels of free sp¿ice propagation 
and thin lenses have no cross terms ¿is we c¿in see in 3.7, 3.10 ¿iiid 3.12. Let us 
first modify the kernel of free sp¿ice prop¿ig¿ition ¿ind ¿issunie tluit it is possible 
to hcwe diiferent propagcition distcinces in x and у ¿iiid also ¿issume that we 
have a cross term. Then our new kernel becomes

h {x ,y ,x \y ')  = exp (гтг j x - х ' У '  I ( y - y ‘ Y  I ( x - x ' ) ( y - y ' )
Лс/,г· Xdxy (5.1)

VVe now cissume tluit such sections of free space exist and call them as anarnor- 
ptiic and cross-termed sections of free space. In section 5.2 we will show tliat 
simulation of sections of free space with a kernel of the form is 5.1 is possible 
l)y using an optical set-up composed of thin lenses and sections of free space. 
Similarly the kernel for an anamorphic lens with focal length along tlie x
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direction, fy cilong the y direction and f^y along the xy direction is

h^yi{x,y,x',y') = /C-yi 8 { x - x \ y - i j ' )  exp ( - ¿ tt 7- + ^  +
xy

. (5.2)
^ j x  ^.ly

It was further discussed that it is possible to construct an ancunorphic lens 
with two cylindrical lenses located perpendicular to ecich other. When two 
cylindrical lenses cire located with an cirbitrary angle, we obtain the desired 
lens with the kernel in 5.2.

5.1 O p tica l se t-u p s th a t rea lize  n on -sep arab le  

fraction a l Fourier transform

input
i \ l \  ^  ^  -

W

y?. outputi\l\

Anamorphic and Cross-termed 
Free Space W

, d y , d^y

Figure 5.1: Optical set-up that realizes the non-separable fractional Fourier 
transforrn

The system in 5.1 is composed of 4 cylindrical lenses and 1 section of anamor
phic and cross-termed free space. It is similar to the system in 3.7 which realizcis 
two-dimensioncil fractional Fourier transform except for the cross terms of the 
lenses and free sp¿ice sections. The arudysis of the system is easy by just us
ing the kernels defined in Eqn. 5.1 and 5.2. It is possible to implement the 
non-separable fractional Fourier transform with the desired orders, directions, 
input scale parameters and phase factors with the optical set-up in 5.1.

1. Specified by the designer :(j)x̂ (i>ŷ 0i,02<,Si, ,̂Suj,Px — Py = 0·
Design parameters xk,dy, d^y, fxyi, fx2 , fy 2 ,fxy2 ·
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In this case, one can implement all different combinations of (j)̂ , (¡)y,0 i , 0 2 . 
The output scale parameters must be chosen in a Wciy to scitisfy the 
following ecjuation

S 2x — S i x  s i n  01  CSC (j)x

S2y Sly sin O2 CSC 4>y ’

and the distances and local lengths of lenses are
SixS2x COs{6 i -  0 2 )

--

el'll —

2A cos 02 CSC <px ’

SiyS2y COs(6>i -  ¿>2)
2A cos 01 CSC (f)y ’

(5.3)

(5.4)

(5.5)

d'xy
SixS2y COs(6)i -  02) _  SiyS2a..COs(6>i -  dj)

2A sin 02 CSC (f)y 2A sin 0i esc (f)x ’ (.5.6)

f 2  cos O2 CSC (j)̂ COS^ 02 COS (¡>x +  silF 02 cot (j)y
A / x i SixS2xCOs{0i -  02) six C O s2 ( i l i  -  0 2 )

1 2  cos 0 i CSC (f)y COS^ 01 cos (j)y +  sin'* 01 cot (j)x
^lyl SiyS2yCOs{0 i -  0 2 ) sjy COŜ { 0 1  -  0 2 )

, (5.7)

(5.8)

1 2 cos 02  CSC (j)x cot (j)x
AA-2 SlxS2x COs(6>i -  02) 4x

I 2 cos 01 CSC 4>y cot (¡)y
SlyS2yCOs{0 i -  02) 4y

(5.9)

(5.10)

2. Specified brj the designer :(j)x,(f>y,0 i , 0 2 ,S2x,S2y,Px = Py = 0.
Design pnvo,meters .dx  ̂dŷ  dxŷ  fxi^ fx2 i Jxyit }x2 i fy2 ·) fxy2 t Six·, Siy.
By using the same optical system it is possible to implement the non- 
separable fractional Fourier transform with the desired orders, directions, 
output scale pcirameters and phase factors. In this case the equation 
defining the input scale parameters is

-Sla,· - S 2xS'm0 2 CSC(l)y
Sly S2y sin 01 CSC (j)x

The other system parameters are the same with the former case.

(5.11)
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input ^fvfy xy
A A

Fourier

Block V V

Inverse Fourier 

Block

output

Figure 5.2: Optical set-up that simuhites anainorphic free space with cross 
terms

5.2 S im u la tion  o f  anam orphic and cross- 

term ed  section s o f  free space

The problem of designing the aiicimorphic and cross-termed sections of free 
space still exists. In clmpter 3, we presented a wa.y of simulating cmamorphic 
free space with the desired cind dy. The anamorphic lens in Fig. 3.5 is 
composed of two cylindrical lenses loccited perpendicular to each other. If they 
are located with ¿in arbitrciry angle, it becomes possible to simuhite anamorphic 
and cross-termed free space with parameters dy ¿ind d^y by using the same 
optical system. The kernel of the optical system in Fig. 5.2 is

h{x ,y ,x \y ')  =exp('¿7r , (y-v'? ,I \,J ~rXcl,, \ i i l l
(x-x')iy-y')

whore

dr ■'(/5 -  u . ) dy —
x y

A i : ^ y - .U y )

(.5.12)

(A.13)

s H j x f y  -  f l y ) (5.14)

where s is the scale of the Fourier and inverse Fourier blocks. Hence by con
trolling the focal lengths of the cinarnorphic lens, it is possible to control the 
paranieters of the anainorphic free space with cross terms.
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It is cliso possible to try to find dilFerent optical realizations for this defini
tion. But since the kernel is non-separable, simpler set-ups turned out to be 
insufficient. 6-lens set-ups may be analyzed, but since the set-up in Phg. b. 2  

with 6 cylindrical lenses is useful for our purposes, there is no need to discuss 
these systems here.
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C hapter 6

A n application of th e  new  

definition: F iltering in 

fractional Fourier dom ains

In (Jhcipter 4, non-separable definition is presented for two-diniensiona.l frac
tional Fourier transforin. This definition has four parameters where a.,,, and Oy 
define the orders and Oy and O2 specify the directions aJong which the function 
is to he fractioiicd Fourier transformed. This non-separcible definition (niables 
us to define fjoth the orders and the directions of the fractional Fourier trans
form. Hence, we are no longer restricted to the traditional x and y axes. Sinccí 
we have come up with a more general cuid comiirehensive definition, we ex- 
|)ect to have improvements in problems where the separal:)le fractional Fourier 
trcUisform is being used.

The concept of filtering in fractional Fourier domains has been introduced 
to the problem of estimating images in the presence of space-varying noise [47]. 
'I'lie expressions for the optimal filter function in the fractional domains are 
derived in a manner analogous to the chissical Wiener filtering problem. Here 
we modify the geneml formulation of optimal filtering in tlie fractional Fourier



domains derived in [47].
Consider the following signal observation model:

o = 77(f) + n, (6.1)

where 77(·) is a linecvr system that degrades the input sigrnil f, and n is an 
additive noise term. Our problem is to filter the observed signal o to minimize 
the effect of noise. The error criteria to be minimized is the mean square 
error. It is assumed that the correlation functions of the input and noise 
processes are known : R f(x ,y;x ',  y') = E[f{x,rj)f(x',y')], B.nix,y, x',y') = 
E[nix,y)n(x',i/)].
The filters that we consider satisfy the following equation:

= g - K 7 / ( · )

corresponding to multiplication with a function g(·, ·) in the fractional Fourier 
domain. The estimate satisfies

i d  ^ g - X A ’ío).

and the me¿in sqiuire error is

trj =  E  [|f -  f  P] .

Since the non-separable fractioncil Fourier transform is unitary, this MSE is 
equal to the error in the transform domain. It can be shown by modifying the 
solution in [47] that the optimal filter function that minimizes the MSE (see 
Appendix) is

RjaXai-^^y^XEj)(Jopti l̂ y) (6 .2)
Roa,oJx,y,X,y)

In this equation /„ cuid o„ are the non-separable fractional Fourier trans
forms of f{x^y)  and o{x,y) with parcuneters ax,ay,0 i and O2 respectively.

?/; a;', ?/') and 7?o„,o„(â , 2 / ; ;!/0 correlation functions in the

md

,.,ay) defined as

,oS^,y\x',y') = E[fa{x-,y)0 a{x\y')] (6.3)

.Oa(x,y,x',y') = E[Oaix,y)Oa(x'.,rj')] (6.4)
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These correhition functions can easily be Ccilculated from the correlation func
tions in the spatial domain. The optimal choice of a^, Qy, 0i and O2 are those 
which result in the minimum MSE.

'I'his derivation is a direct generalization from the formulation of optimal 
filtering in fractional Fourier domains derived in [47]. The modified derivation 
can be found in the Appendix, which makes use of the non-separable two- 
dimensional fractional Fourier transform.

Let us consider an example of noise separation problem. For purposes of 
illustration, we will choose the noise to be a deterministic function with well 
defined time-frequency characteristics;

n[i(x,y) = і̂.4*>(г/'+7.з)2

So tlmt the distorted image is 

f ( x ,y )  -b

(6.5)

(6.6)

where the constant A takes different values to cidjust signal-to-noise ratio (SNR) 
to the desired value. The original ¿uid distorted imiiges C cu i be seen in Fig. 
6.1.a, 6.1.b and 6.3.b.

The two chirps which constitute the noise are not oriented along the x and 
y directions, but along cirbitrary x' and y' directions. In our example, x' makes 
cui angle of 15° with the x axis and y' makes an angle of .30° with the y axis. 
We will consider two cases with SNR=1 and SNR=0.1. For an n x rri image 
SNR is defined as

^  1 1  \ f{xAj)\^ dx dy 
I  I \n ( xAj Wdxdy '

(6.7)

We will compare the use of our non-separable definition with the separable 
definition previously used by Kutay for the same ¡зі'оЬІет [47].

The method used by Kutay [47] tries to minimize the MSE by optimizing 
over cill possible combinations of Ox and üy. The optimum orders iire a..,, = 0.35 
and ciy = —0.4. Remember that the separable definition is a special case of the 
non-separable definition with Ѳі = Ѳ2 = 0. The restored images for SNR=1 
and SNR=0.1 can be seen in Figure 6.2.a cuid 6.4.a respectively.
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(a) (b)

Figure 6.1: (a) Original image; (b) Noisy image with SNR=1.

Figure 6.2: (a) Image filtered by the separable definition; (b) Image fíltered by 
the non-separable definition, for SNR=1.

When we use the filtering method proposed in this thesis, we optimize over 
θι , 0 2  besides ίΐχ and Uy. The optimum parameters are found cis = 0..35, dj = 
1-5° and (ly — —0.4, Θ2 = 30°. Figure 6.2.b and 6.4.b show the restored images 
for SNR=1 and SNR=0.1 respectively. Due to computatioiicil constraints, we 
restricted our search to a local minimum only.

The improvement when SNR=0.1 is immediately visible when Fig. 6.4.a 
and 6.4.b are compared. In this case the non-separable definition gives an MSE 
of 0.020 where the separable definition results in an MSE of 0.101. Thus, MSE 
is reduced by a fcictor of 5. When SNR=1, the visible improvement is less 
evident, but nevertheless MSE has been decreased from 0.029 to 0.0084 and 
MSE is reduced by a factor of 3. For both cases, we achieved a renuirkable
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reduction in the MSE when the non-separable definition is used. The MSE 
values given here are all normalized by the energy of the origiiuil inicige.

(a) (b)

Figure 6.3: (ci) Original image; (b) Noisy innige with SNR=0.1.

Figure 6.4: (a) Image filtered by the separable definition; (b) Image filtered by 
the non-separable definition, for SNR=0.1.

Fig. 6.5 and 6.6 show minimum normalized MSE’s for different 0\ and O2 

pairs for SNR=1. The corresponding MSE values in Fig. 6.5 and Fig. 6.6 are 
obtained. Fig. 6.5 shows normalized MSE as a function of (?x, when O2 is fixed 
to 30°. The minimum value of the normalized MSE is attained for 0i = 15°. 
In Fig. 6.6 normcilized MSE is plotted as a function of 0 2  ̂ when 0\ is fixed to 
15°. The normalized MSE is minimum for 02 = 30°. The local minimum for 
the MSE is obtained at 0i — 15° and 02 = 30°.
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MSE as a (unction ol thelal

10 15 20 25
lliolal

Figure 6.5: Normalized MSE cis a function of 0i for SNR=1.

MSE as a (unction oi theta2

15 20 25 30 35 40 45
t(iela2

Figure 6.6: Normalized MSE as a function of 62 for SNR=1.

We expect fractional Fourier domain filtering in two dimensions to find 
greatest application in optical systems. This is because the types of noise for 
which fractional Fourier domain filtering achieves greatest benefits are often 
encountered in optical systems. For example, line defects on the lenses produce 
a chirp-like noise. Since the angle between the scratches are arbitrary, using 
non-separable fractional Fourier transform will result in greater improvements 
compared with the separable fractional Fourier transform and common Fourier 
transform. This filtering scheme may also find applications in optical systems 
to remove twin images in holography.
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Appendix

The observation model is of the form

o = ( f ) + n, (6.8)

where 'H{·) is a linear system that degrades the input signed f, cuid n is an 
a.dditive noise term. It is assumed that the correlation functions of the input 
and noise processes are known. Our problem is to iilter the observed sigricil o 
to ndnimize the effect of noise. Our estimate satisfies the equeition:

'l\he estimate is given by

• y, x'\ rf)9 {x'\ y") J J y"· x \  y') o(x\ y')dx' cly' dx" dy"

and the error is

al = E  [ | | f - f |

where i?[·] denotes the expectation opercitor and || · || denotes the norm:

= /  /  \f{x,y)\'^dxdy.

Since the two-dimensional fractional Fourier transformation is unitary, this 
MSE is equal to the error in the transform domain:

at = E y .pita-11 2
1 ^ 0 ^ 0 2  ~  ^ 9 u 02 II

'I'he problem is to find the multiplicative filter g  in the ath donicun that min
imizes the MSE in the above ecpiation. We define the cost function J to be 
e(|ual to the MSE:

J = al = E J J ( f i x ,  y) -  f { x ,  y ) ) { f i x ,  y) -  f { x ,  y)Tdx dy .

J  varies with the choice of the multiplicative filter g{x,y) since f{x-,y) varies. 
Thus, the functional J  is to be minimized with respect to g{·). We substitute 
fy(.) =  .</o(·) + «¿</o(·) in the expression of the estimate /(·). In this equation.
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tv is a complex sccilar parameter, g{·) is the optimum filter, and 8 go{·) is an 
arbitrary perturbation term. Since tv is a complex constant, we can express 
it as tv = «,.£ +  iocim- Now /(·) cind J  vary with tv for each fixed 8 go(·). The 
optimum value of J  will be obtained from the following conditions [62]:

dJ{a)
dcYre

.=0 = 0
dJ(a)

8 ^ ^  i n i .

Q=o — 0

By using the conditions above, the optimal fdter function that minimizes 
the error can be shown to satisfy the following equation:

Ë {oT j:ruw ii) 0

which is nothing but the well-known orthogonality condition. The above equa
tion states that the best linear mean-square estimate orthog-
omd projection of the signal onto the space of observations.

The optimum filter function goptl··, ·) can be solved from the above equation 
l)y using the definition of 2/)· The optimum filter function is found to
be

9 opt{x,y) RfaiOa{x,y,X,y)
Roa,oSx,y\Xiy)'

For simplicity, we use fa and as the non-separable frciction¿il Fourier trans- 
ibrrns of f (x,  ¡j) and o(.t , y) with parameters ciŷ  0 i and O2 . y\ u')
and '>y') the correlation functions in the trcinsform domain
(a.,;, ciy)  defined ¿is

¿ind

Rîa,oS^^y^^\y ' )  = E[fa{x,y)Oa{x\y' )\

Roa,Oa{x^y\^\y') =  E[Oa{x,y)o„{x\y')].

These correhition functions can easily be calculated from the correhition 
functions in the spatial domain:

RjaiOaix8y]x^y) =
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and

Roa,oS^,y\X,y) =
= I  1 1 J  B;-;^ (x ,y;x \y ' ) {B;-; .^}- \x ,y ;x ' \y" )RUx\y'- ,x ' \yyR/

In order to find the domain in which the MSE is smallest, we substitute the 
optimum filter function into the MSEl exj^ression:

(T,..,0 = E J j [faix, y) -  fa,oR-> y)] [faix, 2/) “  /a,o(^, 2/)]* dx dy

= J [RfaJaix^ 2/; a:, y) -  2Re{g*Jx,y)Rf^^^oa{x, ij; x, 2/))

+ \9o(x, yWRoa,oa{x^ 2/; -c, 2/)] dx dy.

The optimum values of and a.y are those tlmt minimizes the MSE. These 
vcvlues Ccin be found by simply calculating the MSE for different values of a^ 
and Uy and choosing the values that minimizes the MSE or by using multivari- 
cite optimization techniques possibly involving simulated annealing or genetic 
algorithms.
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C hapter 7

C onclusion

Tlie fractional Fourier transform is generalized to two dimensions by apply
ing the one-diniensiomd definition in x and y directions separately. Since the 
transform defined in this manner is separable, its properties are similar to 
that, of one-dimensional transform. Several j^roperties of the separable two- 
dimensional fractional Fourier trcinsform are derived or collected. (Some of 
these properties were already known or are trivicil generalizations of their one- 
dimensioiicd counterparts.)

Separable two-dimensional friictional Fourier transform can be optically im- 
|)lemented by using optical systems composed of thin lenses and sections of free 
space. We presented several optical systems by taking two different approaches, 
'f'he first approach is based on the optical implementation of quadrcitic-phase 
systems and the results are specified to fractional Fourier transform by using 
the fact that fractional Fourier trcinsform is a special quadratic-phase system. 
Thoi second approach is specific to fractional Fourier transform. Beginning 
from the simplest set-up with two cylindrical lenses, rnciny optical systems are 
examined.

'I'lie separable definition fails to satisfy the affine property wfiicfi the com
mon Fourier transform satisfies. When an arbitrary affine trcinsformation is 
applied to the function, its two-dimensional fractional Fourier transform can
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not be represented as a scaled version of the fractional Fourier transform of the 
originell function. We also wanted to specify the direction of trcinsformation, 
which will enable us to take the two-dimensional fractioricil Fourier trcinslbrni 
of a function along two arbitrary directions with the specified orders. But the 
separable two-dimensional fractional Fourier transform is ¿ilways defined along 
traditional x and y axes and has no control on the directions along which the 
orders are defined. These two reasons motivated us to search tor a new and 
more comprehensive definition for two-dimensional transform. We presented 
a new, non-separable definition which corresponds to fractional Fourier trans- 
ibrmation along arbitrary directions and showed that this definition satisfies 
the affine property. The discrete-time and opticcil implementations of non- 
sepcirable definition are given and its properties are derived.

The last pcirt of the study is devoted to an application which justifies the 
usefulness of our new definition. Chirp noise is cidded to the irricige and the 
filtering scheme is implemented by using both definitions. The non-separable 
definition enabled a significant reduction of the MSE compared to the separable 
one.
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