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ABSTRACT

TWO-DIMENSIONAL FRACTIONAL FOURIER
TRANSFORM AND ITS OPTICAL IMPLEMENTATION

Aysegul Sahin
M.S. in Electrical and Electronics Engincering
Supervisor: Assoc. Prof. Dr. Haldun M. Ozaktas

August 1996

The fractional Fourier transform of order « is delined in a manner such that the
common Fourier transform is a special case with order « = 1. I'he definition
1s casily extended to two dimensions by just repeating the transform in @ and
y directions independently. The properties of the separable two dimensional
[ractional Fourier transform defined in this manner are derived and several op-
tical implementations are given. However, this definition, for certain purposes,
motivated us to look for a new, non-separable definition. We present such a
definition of the two dimensional fractional Fourier transform with its optical
implementation. The usefulness of the new delinition is justified with a noise

filtering example.
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OZET

IKI BOYUTLU KESIRLI FOURIER DONUSUMU VE
OPTIK GERCEKLEMESI

Aysegiil Sahin
Elektrik ve Elektronik Miuhendisligi Boltimi Yiiksek Lisans
Tez Yoneticisi: Dog. Dr. Haldun M. (")za,ktasg'
Agustos 1996

Derecesi a olan kesirli Fourier dontstumt, bilinen Fourier déntsumi bu
dontgimiin @ = 1 i¢in 6zel bir hali olacak gekilde tanimlamr. Bu tanim, iki
boyuta donligim « ve y yonlerinlerinde bagimsiz olarak tekrar edilerek genel-
lenebilir. Qaligmamizda, bu sekilde tanimlanan iki boyutlu ayrigtiritlabilir ke-
sivli Fourier dontigumiinin ozellikleri ¢ikartildi ve birgok optik gerceklemesi
sunuldu. Fakat bu tamm belli amaglar i¢in bizi yeni, ayrigtirilamaz bir tanim
aramaya tegvik etti. Iki boyutlu kesirli Fourier doniigiimiiniin bu yeni tanmm
optlik ger¢eklemesiyle birlikte sunuldu. Tammin kullanihigiligr biv garalta fil-

treleme érnegiyle dogrulands.
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Chapter 1

Introduction

The fractional Fourier transform of order a is defined in a manner such that
the common Fourier transform is a special case with order « = 1. The one-
dimensional fractional Fourier transform of order « can be defined for 0 < |a| <

2 as

Felf(2)](z) = - Bo(z,2") f(z")da"  (1.1)

-0

6—i(7r<,/3/4—r,b/2) ' \ ‘
Bu(z,2") = ——I—W explim(a®cot ¢ — 2za’ csc ¢ + 2" cot )] (1.2)
sin

where ¢ = am/2 and ¢ = sgn(sing). The kernel is defined separately for
a = 0 and a = £2 as Bo(z,2') = 6(z — 2’) and Bygy(z,2) = §(x + 2).
I'he definition can easily be extended outside the interval [-2,2] by noting that

f'"l.'/""!"(.’l,’) — f”('l/') [4]

The fractional Fourier transform was first discovered by mathemadticians.
In 1937, Condon introduced the concept of fractional Fourier transform in
mathematics literature [1]. Later in 1961, Bargmann gave two definitions of
[ractional Fourier transform, one based on Hermite polynomials and the other
onc as the integral transformation [2]. Namias reinvented the transform in
1980 and solved several types of Schrodinger equation by using the [ractional

Fourier transform [3]. In 1987, McBride and Kerr extended the work of Natias



and developed an operational calculus for the fractional Fourier transform [4].

Up to 1993, fractional Fourier transform was a purely mathematical trans-
form. However, in 1993, Ozaktas and Mendlovic introduced the concept of
fractional Fourier transform in optics and used graded-index (GRIN) media as
a basis [or defining fractional Fourier transform. In retrospect, they saw that
their deflinition was fully consistent with the former mathematical definition
of fractional Fourier transform [5-7]. Lohmann gave another definition of the
fractional Fourier transform through its effect on Wigner distribution function
and suggested two optical systems consisting of thin lenses separated by free
space to implement fractional Fourier transform optically [8]. The equivalence
ol graded-index based definition and Wigner distribution based definition is

also demonstrated in [9].

Fractional Fourier transform is widely used to explain optical phenomena.
The process of propagation of light can be interpreted as a continuous frac-
tional Iourier transformation. The common Fourier transform and imaging
are special cases that occur when ¢ = 1 and a = 2 respectively. There ex-
ists a fractional Fourier transform relation between amplitude distributions of
light on two spherical surfaces of given radii and separation. Thus, fractional
['ourier transform is presented as a tool for analyzing optical systems composed
of thin lenses and sections of free space [10]. The relation between Fraunhofer
diffraction phenomena at far field and common Fourier transform is generalized
to [resnel diffraction and fractional Fourier transform [11, 12]. Some optical
transforms like Fourier transform, imaging systems and correlators, can be im-
plemented by cascading fractional Fourier transform units [13-15]. Propagation
in graded-index media and Gaussian beam propagation and spherical mirror
resonators are also studied in terms of fractional Fourier transform [5-7,16,17].
T'he parameters of the fractional Fourier transform can be determined in terms
ol ray optical parameters. The relation between fractional Fourier transform
and ray optics provides a more intuitive way of understanding the concept of
[ractional Fourier transform [18]. The success of fractional Fourier transform
in explaining optical phenomena led to a generalization from ’Lourier Optics’

to "Iractional Fourier Optics’ [10].

['ractional Fourier transform can be optically realized like the common



Fourier transform [8,19-21]. Thus, it has many applications in optical sig-
nal processing [5-8,10-12,14,15,17,20-27]. Optical phase retrieval problem is
solved by the fractional Fourier transform approach in [28-30] and a lens de-

sign problem is given in [31].

The fractional Fourier definition is also extended to two dimensions. The
first generalization [8] assumed identical transform orders in both directions

while the others [20, 21] used different transform orders in @ and y dircctions.

Iractional Iourier transform is closely related to Wigner distribution. Per-
forming the fractional Fourier transform with order @ corresponds to rotating
the Wigner distribution by an angle ¢ = an/2 [8, 32]. The relationship bhe-
tween fractional lourier transform, Wigner distribution, ambiguity function

and other time-frequency representations is also examined [33-35].

The fractional Fourier transform is a special quadratic-phasc system (lin-
ear canonical transform). Hence, like all the quadratic-phase systems, it can
be characterized by a transformation matrix. Use of transformation matrices
malkes the analysis of systems easier, especially when two or more dimensional
analysis is considered [8,10,19,36-40]. The fractional Fourier transform has
a continuous parameter ¢. As a increases {rom 0 to 1, the function evolves
smoothly from the original function to its common Fourier transform. Since
« is a continuous parameter, there is a continuum of domains and the func-
tion has its corresponding representation in each domain, leading to alternative
representations for the signal other than the conventional time and frequency

domain representations [32, 41, 42].

The discrete-time implementation of fractional Fourier transform also ex-
ists. In [43], a [ast algorithm that calculates fractional Fourier transform in
O(N log N) time is presented. Being a generalization of common Fourier trans-
form, [ractional Fourier transform is expected to yield improvements in signal
processing applications in which Fourier transform is widely used. Some of the
applications are space-variant filtering and signal detection [32,44-47], time-
or space-variant multiplexing and data compression [32], correlation, matched
filtering, and pattern recognition [13, 48], signal synthesis [35] and radar [46].
The theory of optimal Wiener filtering is generalized to fractional Fourier do-

mains and improvement is achieved. Since the transform can be implemented in



O(N log N) time, the improvement is achieved with no additional cost [45, 46].
Alternative definitions of fractional Fourier transform and its generalizations
also exist [26,49-51].

The fractional Fourier transform has also applications in quantum op-
tics [28, 42, 52, 53] and statistical optics [54]. The recent work on fractional

Fourier transform is collected in [22].

This study focuses on the two-dimensional fractional Fourier transform. In
Chapter 2, the properties of two-dimensional fractional Fourier transform are
given. While some properties like additivity, linearity follow from one dimen-
sional case, some properties are specific to two dimensions. Some of these
properties are derived and some of them are directly generalized from one-
dimensional properties. However, two-dimensional [ractional Fourier transform
fails to satisfy some of the desired properties. That is the reason why present
a new definition in Chapter 4. Besides fractional Fourier transform, we men-
tion quadratic phase systems, which will be the initial point of our study in
Chapter 3. In Chapter 3, we propose various optical implementations for two-
dimensional fractional Fourier transform by using two different approaches.
The Arst approach depends on the optical implementation of the quadratic-
phase systems. Since fractional Fourier transform belongs to the family of
quadratic-phase systems, once the optical implementations of quadratic-phase
systems are found, the same systems can also be used as fractional I'ourier
transformers. The second approach is specific to [ractional Fourier transform.
Several practical optical systems with different complexity are proposed. In
Chapter 4, a new definition is suggested for two-dimensional [ractional I'ourier
transform. The development of the definition is discussed in detail and its
properties are derived. Chapter 5, consists ol the optical implementation of
the new [ractional Fourier transform definition. The last chapter provides an
application of the new definition to a filtering problem. It is shown that the
new definition is remarkably better than the former one in the separation of

additive chirp noise under certain circumstances.

To summarize, we derive the properties of two-dimensional fractional
Fourier transform and present many optical systems that realize this transform

optically. We also suggest a new, non-separable definition for two-dimensional

4



[ractional Fourier transform. Both the optical and discrete-time implementa-
tions of the new definition are given. The usefulness of our definition is justified

by using a noise filtering example.



Chapter 2

Two-dimensional fractional

Fourier transform

2.1 Definition of two-dimensional fractional

Fourier transform

The definition ol the two-dimensional [ractional Fourier transform was previ-
ously made by using the same orders in both directions. But in [21], we defined
the two-dimensional fractional Fourier transform with dilferent orders in the
two dimensions. The kernel for this transform is nothing but the product of
two one-dimensional kernels. The two-dimensional fractional lFourier transform

with order a, along the x axis and a, along the y axis is delined as
o Gl / ! o ! ! / !
Frewlf(x,y))(w,y) = / / Boo, (g3 2'y") [l y") da’ dy', (2.1
—o0 J—00

where

N
|8
~

Baya, (2, y; 2’ y') = B, (2, :L")b’(,,y(y,y’). (2.



Hence the two-dimensional kernel can be written as

By, (z,y52',y") = Ay, explim(z® cot ¢y — 22" csc ¢y + 2" cot ¢,.)]

(2.3)
x Ay, explim(y®cot ¢, — 2yy’ csc ¢, + y% cot ¢,)].
where
o= i(mda/4—bx/2) e—i(mby/4=y/2)
A’/’.—v - ; /L/)y = - (2.4)
| sin ¢ | | sin ¢y

and ¢, = aym/[2, ¢y = ay7/2, by = sgn(sin @), g/)Ay = sgn(sin ¢,,).

As the above equation suggests, the kernel B, ., is a separable kernel.
Throughout this study we will refer to this definition as the two-dimensional
separable fractional Fourier transform. The kernel for two-dimensional trans-
form can be obtained by multiplying two one-dimensional fractional Fourier
transform kernels and letting the orders change independent from ecach other.
Thus the kernel has two parameters a, and «¢,. The definition may be simplified

by using vector-matrix notation:

F[f(x))(r) = - Ay explim(rTCr — 26T Cor’ + P'T Cor))] f(x)dr!,  (2.5)

o
where
" o
!
A'f’l‘ = A’/’xA‘/’w r= [ Ty ] ’ r= [ @' yl ?
cot ¢, 0 CSC Py 0
t = » Cb = .
0 cot ¢, 0 csC Py |
For the two-dimensional case, the kernel By, ., is a separable function of x

and y. It is also possible to use this definition as the n-dimensional separable
fractional Fourier transform definition. The constant Ay, vectors rr’, and

maftrices Cyg, Cyg should have the following generalized expressions:

T I
App = Ay, Apy, - Aps r= [ Ty ... Ty } , r'= [ af .ol ] )
cot ¢y, 0 CsC Py, 0
Ct = ) CS =
0 COt qb-"«'n O CsC (vb-'L'n



2.2 Properties of two-dimensional fractional

L.

N

Fourier transform

Additivily
The two-dimensional fractional Fourier transform kernel is additive in

the index; i.e.
> >0 1 " 11 1 ! ! 1" 1
/ B, (z 52"y )Bu_,’,_.,a;’(:v el y') da dy (2.6)
—00 =0
_ e ape il ol
= Ba,:,;+c1,{r,a,,+(tﬂj(‘b,7 Y )
This property may be rewritten as
[PV 1! oo .
Frem[Fo o)) = Fr et (e, y) (27)

allowing us to add the orders of successive fractional lourier trans-
forms. Fractional Fourier transforms of different orders commute with
each other, thus their orders can be changed freely.

By substituting 2.2 in 2.6, the lollowing equation is obtained

X OO0
A A A A I S A N ;
/ / Bayay (2,952, 9") Barar (27, y"5 2", y') da” dy (2.8)
—00 J =0

= B, (x,2"YBg (y,y") Ba (2", 2")Ba (y",y") d2" dy" (2.9
=\ S Y At Y Y
-0 —00

The proof follows directly by using the additivity property of the one-

dimensional property [4] which is

“ B

J =00

(2,2") By (2", &")da" = Baygar (@, 2). (2.10)

Qa\

. Inverse Transform

The kernel of the inverse transform is given as

B!, (e, y52,y") = Bogyma, (v, 9527, y). (2.11)

Qqryly V.
Letting . + af, = a, + ), = 0 in the additivity property and noting that
transform of order ¢ = 0 corresponds to the function itself, the result

follows.



3.

4.

<t

6.

Linearity
The fractional Fourier transform is linear. Tor arbitrary real constants

Ak,
. _}:a; ay y )
> af(z,y) Zaxf‘“’“ Fz,y)l. (2.12)
k
Since the fractional Fourier transform is a lincar integral transform, it
satisfies the linearity property.

Separability

It f(z,y) = f(x)/(y) then,
Foens [ f(w,y)] = Fo(f)| Ff ()] (2.13)

The two-dimensional fractional Fourier transform is separable by defini-

tion, hence the property is evident.

Unitarity
The two-dimensional kernel is unitary, i.e.

B:My(x,?;:v’,y) Bafm (2", y"s2,y) = Boay —a, (2,95 2,9).  (2.14)

By using the kernel of the transform in 2.3 and the kernel of the inverse

transform in 2.11, the property can be verified.

Parseval relation
The Parseval relation for two-dimensional fractional I[Fourier transform is

[ ey = [T [T ey Fe g )

.
/

A divect consequence of this equality is the energy-preserving property

where

of fractional Fourier transform

/ / r) P’ ‘/ /_M | Feees [ f](x")|*dr’. (2.16)

This property follows from the unitarity property of the fractional Fourier

transform,



9.

The effect of shift
The [ractional Fourier transform of f(z — s,,y — s,) can be expressed in

terms of the fractional Fourier transform of f(z,y) as

Foeos[f(r —s))(r) = e 2P O s Fosas [ f(p)](p —a)  (2.17)

where
T T
I‘I[:z:y], S:[sx sy],

T T
a= [ 55 CO8 Py 8y COS Py J , b= [ Su SN @y 8y 810 P, J

Effect of multiplication by a complex exponential
If a function f(z,y) is multiplied by an exponential ¢?2™(meetmyy)  {hen

the resulting fractional Fourier transform becomes
g
o Ty - Tp_ 1 i . 1 _
f’(l-g;,(ty[eﬂ?rln lf(r)] — emr[m (x ,M_(,)]f'al,ay [f(r)](r _ é_a) (2.18)
. . -
where
T T
r= [:L y] , M= [mw m.y] )

T T
c= [ My SN Gy My SIN Py ] , d= [ My SINL Py My SIN Py } )
This property is easily derived by using the definition of fractional Fourier

transform.
Multiplication by powers of coordinate variables The fractional Fourier
transform of 2™y f(z,y) for m,n > 0 is

Fova[gmyn f(z,y)] (2.19)

=[x cos ¢, + Lsin (/)x%]m [y cos ¢, + £ sin ¢, %]"’f"“"""” [f(2,y)]-

When m = 0 or n = 0, the property reduces to the one-dimensional

transform’s property.

10



11.

|

9

L.

10. Derivative of f(x,y)

The dual of the multiplication property is the derivative property. The

RURSTPICSIRIE TS v\ SO U S S LA L SV
fractional Fourier transform of a'—"-:EWf(‘E’ y) is

Foeos[ 2 2 ()

= [i27x sin ¢y + cos ¢y 2] [i2my sin ¢, + cos ¢, %]“f"""’a'” [f(x,y)].

—
O]
o
—~
=

pa—

Property 9 and 10 are general forms of the corresponding properties of

one-dimensional transform, which will be recovered when m = 0 orn = 0.

Scaling

The fractional Fourier transform is not scale-invariant like the common
Fourier transform. However, the [ractional Fourier transform of a scaled
function with orders a, and a, can be represented in terms of the frac-
tional Fourier transform of the original function but with different orders
a’, and a;. The fractional Fourier transform of f(k,x, kyy) can be repre-

sented in terms of the fractional Fourier transform ol f(z,y) as

Fref(kr))(r) = Cexplim™PrlF o {[(1)}(Sr)  (220)

where

C —— A(/).'l.'/l’/)y

o Y
lkakyM,/,;rA,/)zJ
k. 0
k= y = [ Ty ] ,
0 &,
. 2 ) / 2“:/){"
¢! = arctan(kZ tan ¢,.), a, = =,
! 2 . 2ay
¢, = arctan(k, tan ¢, ), d)= = v
ot . —FazLl 0 i ;
P = co dh k% +cot? da S — P (/QJI
) o bl ’ B sin ¢!
0 cot ¢ym 0 m
Rotation
Let
cos 0 sin 0
A= ,

—sind cosf

11



then f(Ar) = f(cosfz + sinfy,—sinbz + cosOy) represents the ro-
tated function with angle 0. For ¢, # ¢,, we cannot represent the
two-dimensional fractional Iourier transform of f(Ar) in terms of the
two-dimensional fractional Fourier transform of f(r). But for ¢, = ¢,

For ¢, = ¢,
Fef(Ar)](r) = F*(x)(Ar) (2.22)

which means that when the function is rotated by an angle 6, its {ractional
IFourier transform is also rotated by the same angle. But this is valid only

when the transform orders are equal in both directions.

Arbitrary affine lransform
Let us try to generalize the rotation property to general affine transfor-
mation by setting

a b
A=

¢ d
In this case, it is not possible to represent Fo=“v[f(Ar)](r) in terms of
a scaled version of fractional Fourier transform of f(r) with a similar
relation to 2.22. It is disturbing that, the fractional Fourier transform
fails to satisfy this property. In Chapter 4, the same property will he

discussed again, treating an alternative definition.

Wigner Distribution and fractional Fourier transform
Let Wy(x,y; ey ty) be the Wigner distribution of f(z,y). If g(x,y) is
the fractional Fourier transform of f(z,y), then Wigner distribution of

g(x,y) is related to thal of f(x,y) through the following equation

Wy(r,s) = W;(Ar + Bs, Cr + Ds), (2.23)
where
T L |
r= [zv y } » 8= [ fw iy ] (2.24)
and
P kO IO s DR PP
0 cosgy 0 —sin ¢,

12



16.

sSin @y, 0 COS @y 0
C= ¢ , D= ¢ . (2.26)

0 sing, 0  cosg,
As the above equation suggests, the effect of fractional Fourier transform
on the Wigner distribution is a counterclockwise rotation with angle ¢,
in the a-u, plane and ¢, in the y-u, plane. In the following section, this

property will be discussed again as a special case.

Projection

The projection property of one-dimensional kernel [32, 34] states that the
projection of the Wigner distribution function on an axis making angle
¢ with the z axis, is the absolute square of fractional Fourier transform
ol the function with order a(¢ = an/2). This effect can be represented

in terms of the Radon transform as
Ro[W (2, )] = |F[f(2)]]%, (2.27)

where the Radon transform of a two-dimensional function 1s its projection
on an axis making angle ¢ with the @ axis. The separability of the two-
dimensional kernel may be used to derive the corresponding property for
two-dimensional case. If the Radon transform is applied successively to

the Wigner distribution W (z,y; pus, pty), then the property becomes
Ry, [R(/,J,[‘/V(:L', Y5 My ,u,y)]] = |F= f(x, y)”z (2.28)

Thus, the projection of the Wigner distribution W{(x,y; pa, pty) of any
function f(z,y) on the plane determined by the two lines, first making
an angle ¢, with the x axis and second making an angle ¢, with the
y axis, is the absolute square of its two-dimensional fractional Fourier

transform with orders a, and a,.

[igenvalues and eigenfunctions
Two-dimensional Hermite-Gaussian functions are eigenfunctions of the

two-dimensional fractional Fourier transform, i.c.,
< 1! / ! ! Y v
/ Bay o, (@, 932 ) Wnm (z2, y') da’ dy' = A Wom (2, Y) (2.29)
—_—00
where the eigenfunctions are determined by

21/ : : 2 2
' " -2 ome)H.. oxpl—m (2 ' 2.3
Vom(z,y) \/mlin(\/ ra)H, (V2ry) exp[—n(2® + y~)] (2.30)

13



with the corresponding eigenvalue
Aam = exp(—imazn/2) exp(—ira,m/2). (2.31)

By using the separability of the two-dimensional fractional Fourier trans-
form and the corresponding property in one-dimension [4, 33, 32], this
property may easily be derived. Ior «, = a, = 1, the cigenvalues and
eigenfunctions corresponding to the common Fourier transform can be

recovered.

2.3 Quadratic-phase systems

['ractional Fourier transforms, Fresnel transforms, chirp multiplication and
scaling operations are widely used in optics to analyze systems composed of
sections of free space and thin lenses. These linear integral transforms belong
to the class of quadratic-phase systems. The one-dimensional quadratic-phase
system with parameters «, 3, is defined as [55]

g(z) = /oo h(z,2") f(2")da',

—0

h(z, ') = %™ explin(az? — 2Bz’ + y2')). (2.32)

Quadratic-phase systems have 3 parameters whereas fractional I'ourier trans-
form has only one. Eqn. 2.32 reduces to the definition of fractional Iourier
transform if the parameters v, f and « are chosen as
a=y=cot¢ and [ =csco.

Any quadratic-phase system can be completely specified by its parameters
o, 3,7 as 2.32 suggests. However, an alternative way of specilying quadratic-
phase systems is using a transformation matrix. The transformation matrix of
such a system specified by the parameters «, 3,7 is

A B alp L/p

C D] | -B+av/B o/B

14



with AD — BC = 1. The transformation matrix approach is practical in the
analysis of quadratic-phase systems. First ol all, if several systems are cas-
caded, the overall system matrix can be found by multiplying the correspond-
ing transformation matrices. Second, the translormation matrix corresponds
to the ray-matrix in optics [56). Third, the effect of the system on the Wigner
distribution of the input function can be expressed in terms of this transfor-

mation matrix. This topic is extensively discussed in [36-40].

It is possible to generalize one-dimensional quadratic-phase system to
two dimensions. A straightforward generalization is to multiply two one-
dimensional kernel and form the definition for two-dimensional quadratic-phase

system.

g(:v,y)=/_ /_ h(z,y; 2’y y') 2!,y )da'dy’,

Mz, y;2',y") = e 1B explir(a.z? — 2B,aa’ + yua')]

(2.34)
><e""r/"‘/)’;/2 explim(c,y® — 28,3y’ + 1y")].

It is also possible to completely specify this two-dimensional transform through
its transformation matrix.

Ay 0 B, 0 Vor B 0 L/ By 0
r=| 0 A 0 By | _ 0 Yo/ By 0 L/B,
Co 0 D, 0 —Be + Ve /By 0 ap/Be 0
0 ¢, 0 Dy J | 0 =By + ay1y/ By 0 oy/By |

with A, D, — B,.C, =1 and A,D, — B,C, = 1. By noting that

ay =7 =cot ¢, and B =csco, (2.35)
and

a, =y, =cot¢, and B, =cscey, (2.36)

the transformation matrix for the two-dimensional fractional Fourier transform




turn out to be

-
COS @y 0 sin ¢, 0

0 Cos @y 0 sin ¢,
— sin ¢, 0 COS by 0

H
Il
—_—
5\7
e
=J
S—

0 — sin ¢, 0 cos ¢y, ]

After deriving the transformation matrix for the two-dimensional quadratic-
phase systems, let us examine property 14 which describes the effect of frac-
tional Fourier transform on the Wigner distribution of the input function. T'he
inverse ol the transformation matrix characterizes the effect of any quadratic-
phase system on the Wigner distribution of the input [57]. The Wigner distri-
bution of the input function Wy and the Wigner distribution of the output W;

are related to each other by the following relation
Wy(u) = Wy (T '), (2.38)
where

T

U= |2 y [y [y (2.39)

We have already found the transformation matrix T of the system. When the

inverse of the matrix is substituted in 2.38, the result in property 14 is verified.
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Chapter 3

Optical implementation of the
two-dimensional fractional

Fourier transform

In this chapter, various optical implementations of two-dimensional [ractional
Fourier transform will be presented. T'wo approaches are used for this purpose.
The first approach is based on the canonical type-1 and type-2 decompositions.
The second approach classifies the systems according to the number of lenses

and then shows the advantages and limitations of each system.

In Chapter 2, it was shown that the [ractional Fourier transform is not scale-
imvariant. In some physical applications, it is necessary to introduce input and
output scale parameters. It is possible to modify our definition by including
the scale parameters and also the additional phase factors that may occur at

the output,

Buiy (B, 430, y") = Ay, explina?p,] CX])[i?T(% cot ¢y, — ff:) cse ¢y + ‘%_, cot (/),.,,)]( )
i 2 < 1 . .
$159

, 2, RN 204" i ot 22t o
X Ay, expliry®py] exp[mr(_;% cot ¢y — L csc gy + el cot ¢y,)].

In this definition, s; stands for the input scale parameter and s, stands for the

17



output scale parameters. In the previous chapter, we derived the transforma-
tion matrix for the fractional Fourier transform. But allowing phase factors p,.,
Py and scaling factors s; and s, the transformation matrix of the fractional

I'ourier transform can be modified as

A B
r= (3.2)
C D
where
22 cos b, 0
A. = 51 (;5)
0 2 cos Py
$182 810 ¢y 0
b= h (3.4)
0 S182 810 ¢y
; l- [pa: Ccos 9’57, — sin (,‘/)J'] 0
C = 5182 (';rj)
0 ;Tls,—,[])y oS ¢, — sin ¢,
o sin ¢l (/)7, + cot (f)J’ 0
D= 52 ‘ ) (;())
0 %J; sin %(PU 4 cot (j)y)

[n our optical set-ups, we will try to control as many parameters as we cau.
Here is a list of parameters that we would like to control:

Order parameters a, and «,: The main objective of designing optical set-
ups is to control the orders of the fractional Fourier transform. Control on the
order parameters is our primary interest.

Scale parameters, s; and s;: It is desirable to specify both the input and
output scale parameters to provide practical set-ups.

Additional phase factors p, and p, : In our designs, we try to obtain
P = py=0 in order to remove the additional phase factors at the output planc

and observe the fractional Fourier transform on a flat surface.

Before going through the optical systems in detail, the characterization of

optical components will be given.

18



3.1 Characterization of optical components

In Chapter 2, the concept of transformation matrix is introduced. [Here both
the kernels and the transformation matrices of the optical components will be
given. The transformation kernel for a free-space propagation of length o is

cxpressed as

o )2 0r — a1)2
hy(z,y,2',y") = Ky exp <i7r [(L )\J ) + (v /\j) }) , (3.7)
and its corresponding transformation matrix is
(10 Ad 0
01 0 XM ‘
T;(d) = : (3.8)
00 1 0
00 0 1]

Similarly, the kernel for a cylindrical lens with focal length [, along the «

direction is

hat(@,y, 2 y") = Ku 6(2 — ') exp(—ima®/ A [f,) (3.9)
with its transformation matrix
1 0 0 0
i 0 1 0 0 .
T'Ll(/L) = . ' N (3 IO)
YR 010
i 0 0 0 1 |

and the kernel for a cylindrical lens with focal length f, along the y direction

1S
hyl($7 Y, :Ula yl) = ["yl 5(3/ - y') ()Xl’)(—'lj’ﬂ'yz/)\fy) (; |1 )
with its transformation matrix
1 0 00
i 0 1 00
Ty(/fy) = (3.12)
0 0 10
—1
[0 5, 0 1]




When we consider an anamorphic lens with focal length f, in the @ direc-

tion, f, in the y direction and f;, in the 2y direction, the kernel is

‘ x? y? Ty
hi (2, y, 2", y") = Ky 6(x—2', y—y') exp (—m [ -+ — + — 3.13
’ ) = e 8 ) YA YARDY RS

with the transformation matrix

-
1 0 0 0
, 0 I 00
Toyp(fy) = L . (3.14)
e 2Mfap 0
-1 -1
Pyl

3.2 Optical implementation using canonical

decompositions

We will begin our discussion with the canonical type-1 and type-2 systems [58]
which can be used to implement one-dimensional quadratic-phase systems.
Then the canonical systems will be generalized to two dimensions. Since [rac-
tional Fourier transform belongs to the family of quadratic-phase systems, once
the optical implementations of quadratic-phase systems are found, the results

may be specialized to [ractional Fourier transform.

3.2.1 Optical implementation of one-dimensional

quadratic-phase systems

[t is possible to use type-1 and type-2 rcalizations to implement any quadratic-

phase system with desired parameters ¢, f and v optically.

TYPE-1:
Both the optical system in 3.1 and the quadratic-phase system have three

parameters. [n order to determine the system parameters the relation between
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d, d,

[figure 3.1: Type-1 system that realizes one-dimensional quadratic-phase sys-

tem

the light distribution pi,(z) at the input and light distribution at the output
pout (@) should be found. Assuming propagation from left to right, p,(2) (the

light distribution just before the lens) is related to f(a) by a Fresnel integral:

_ exp(i2rdi/}) /00 explim(z — )%/ Ady|pin(2’) da’ (3.15)

nO=TRE

The light distribution at the right of the lens is

— gyl
2)2(rc)=pl(w,y)exr)[ T/%J (3.16)

Propagation in the second section of {ree space results in another convolution.
The light distribution at the output is

exp(i2rda/A) [

Pout(w) = \/;\7; S

When the terms are rearranged and the integral on 2” is carried out, the

explim(z — )2/ Ady]pa(2”) da” (3.17)

resulting relation becomes
o : 2 2 N,
Pour() = K/ explir(Az® — 2Baa’ + Ca®)pin(2) d2’, (3.18)
—00

where

exp(e2m(d; + da)/N)

K=
\/iA(dl + d2)

f —d,
(dif 4 dof — dydy)

A:/\
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/.'
B = .
MdyJ + dof — didy)
f—dy
Ady f + dof = dydy)

[f we wish 3.18 to represent a quadratic-phase system with parameters o, /3

C =

and 7, the following necessary and sufficient conditions should be satished:

f—d ’
A= _ 51
Mdy f + dof — dydy) « (3.19)

f
(dif + dof — dydy)

_B=A =/ (3.20)

_ f—dy
B Mdif + dof — dydy)

[t is possible to define the system parameters uniquely by solving the above

C = (3.21)

equations. The equations for dy,d; and f in terms of «,  and 7 are

_ p-a _ B-4 . B o
hEXE e TN T —e PP

By using this set-up, it is possible to implement one-dimensional fractional
Fourier transform of the desired order. The scale parameters s; and sy may
be specified by the designer and the additional phase factors p, and p, may be
made equal to zero. Letting o = cot ¢/s5, v = cot ¢/s? and 8 = csc ¢/ 319, one
recovers Lohmann’s type-1 system that performs fractional Fourier transform.
In this case, the system parameters are

(5182 — 87 cos g/))’ dy = ($189 —'.sg cos qﬁ)’ F = 51.32 ' (3.23)

Asin ¢ Asin ¢ ' Asin ¢

Since the additional phase factors are set to zero, they do not appear in the

(11 =

equations. However, if one wishes to set p, and p, to a value other than zero,

it is again possible by setting o = p, cot ¢/s5 and substituting it in Eqn. 3.22.

TYPE-2:
Instead of onc lens and two sections of [ree space, we have two lenses separated
by a single section of free space. For this system, the parameters d, [, and f;

are given by the following equations:
L 1 . 1

YA =727

M- TN (3.20)

d=
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I'igure 3.2: Type-2 system that realizes one-dimensional quadratic-phase sys-

tem

If o« = cotd/s3, v = cot¢/s? and B = cscd/s1sy is substituted in these
cquations the expressions for fractional Fourier transform can be found. The
designer can again specify the scale parameters and there is no additional phase

factor at the output. The system parameters are

$18 8in @ . $183sin ¢
d= —-/\ 5 jl =

s28y 810 ¢ ,
—, 2=

, —_—
§1 — S COS @ 89 — 5 COS P

Ilquations 3.22 and 3.24 give the expressions for the system parameters of type-
[ and type-2 systems. But for some values of «, 3 and v, the lengths of free
space sections may turn out to be negative. But in our optical systems, we
must require that the lengths of free space sections be positive. However, this
constraint will restrict the range quadratic-phase systems that can be realized
with the suggested set-ups. In section 3.2.3, we will solve this problem by
designing an optical set-up that simulates anamorphic free space. This system
is designed in such a way that its effect is equivalent to propagation in free space

with different (and possibly negative) distances along the two dimensions.

3.2.2 Optical implementation of two-dimensional

quadratic-phase systems

In order to find an optical realization of the two-dimensional [ractional Fourier

transform, a two-dimensional analysis is needed. Ience, we will have to deal



with two-dimensional kernels or 4 x 4 matrices. But the following theorem
allows us to analyze multi-dimensional systems as many one-dimensional sys-

tems, which makes the analysis remarkably easier.

Theorem 3.1 Let

where
T P
— ,_
r—[l‘l iZ?N:' ’ r_[l'/l C(J?le

If the kernel h(r,r’) is separable, i.e.
h(e,x') = hy(zy,27) ho(wz, 23) ... An(an, aly), (3.26)

then the response in the x; direction is the resull of the one-dimensional trans-

form
Ead o
gilw, 2,2l aly) = / hi(zi, b)) f(a),...aN)dzi for i =1 to N. (3.27)
—00
Moreover if the function is also separable i.e.
(1) = filen,at) falwn b - frolaw ), (3.28)

the overall response of the system is

g(r) = gi(z1) ga(w2) ... gn(N) (3.29)
where
gi(z;) = / hi(z;, xh) fi(zh) da! for i=1 to N. (3.30)

Proof: If 3.28 and 3.26 is substituted in 3.26, then we have
et > !/ ! g ! ’ / ! !
g(r) = / . / hi(zy,2y) - hn(an,ay) filz]) . fe(ay)de) . daely
-0 -0
Rearranging terms will give us the desired result.

This simple theorem has a nice interpretation in optics which makes the

analysis of the multi-dimensional systems easier. I'or example, in order to
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IFigure 3.3: Type-1 system that realizes two-dimensional quadratic-phase sys-
: . q I Y

tems

design an optical set-up that realizes imaging in @ direction and Fourier trans-
form in y direction, one can design two one-dimensional systems that realize
the given transformations. When these two systems are put together, the over-
all effect of the system is imaging in 2 direction and Fourier transformation in
y direction. Similarly if we can find a system that realizes fractional Fourier
transform with order a, in @ direction and another system which realizes {rac-
tional Fourier transform with order a, in y direction, then these two optical
set-ups will together implement two-dimensional fractional Fourier transform.
So the problem of designing a two-dimensional fractional Fourier transformer
reduces to the problem of designing two one-dimensional fractional Fourier

Lran sformers.

TYPE-1:
According to Theorem 1, z and y directions can be considered independent of
cach other. Hence if two optical set-ups realizing one-dimensional quadratic-
phase systems are put together, one can implement the desired two-dimensional
fractional Fourier transform. The suggested optical system can be found in

Fig. 3.3.

Parameters of type-1 system:

ﬁa: — Uy

B — Y x
( , /z Ve ; —/j__ (3.31)
/\([jf - 74710'/4'3)

N =) T N - o)

(ll x = d2:v =



fle]y gxgy

input output

d

[Figure 3.4: Type-2 system that realizes two-dimensional quadratic-phase sys-

tems
(/1' — ﬂ'!/ - (’Y?I d2( — ﬁy _ ’7'1/ /‘ — /j'!l (3 ‘ic))
! /\(ﬁj - 7yay)’ A 3 - 71/“;1/), ! /\(ﬁg — Yyy) ‘

The parameters of the optical system are given in equations 3.31 and 3.32.
iven though the analysis i1s carried out by using the independence of x and y
divections, the total length of the optical system is fixed. Thus dy, +dy, = d,. =
diy + day = dy should always be satisfied. The other constraint to be satisfied
is the positivity of the lengths of the free space sections. dy,,dy, ds, and dy,
should always be positive. These two constraints restrict the set ol quadratic-
phase systems that can be implemented. The solution to this problem is to try
to simulate anamorphic sections of free space which provides us a propagation
of d, in @ direction and dy in y direction where d, and d, may take negative
values. The simulation of anamorphic free space will be given alter type-2
system is analyzed. Besides different propagation distances, our free space

should also simulate propagation with negative distances.

TYPE-2:
Two type-2 systems can also perform the desired two-dimensional quadratic-

phase system.

Parameters of type-2 system:
1 1 1

= = ————— e ————, 3.33

d, VR Jiz NG =)’ Jos A — o) (3.33)
1 1 |

- S — Ly = ——————, 3.34

dy /\/jy’ Juw /\(ﬂy - ')’y)’ Ty )‘(/jy - O'y) ( )



The optical set-up in Fig. 3.4 with parameters given in the above equations
implement two-dimensional quadratic-phase systems. In this optical set-up the
constraint becomes d, = d, = d which is even more restrictive. d, and d, can
again be negative. In order to overcome these difficulties, we will try to design

an optical set-up which simulates anamorphic sections of free space.

3.2.3 Simulation of anamorphic sections of free space

While designing optical set-ups that implement one-dimensional quadratic-
phase systems, we treat the lengths of free space sections as [ree parameters.
But some quadratic-phase systems specified by paramecters o, v, 8, may re-
quire the use of free space sections with negative length. This problem is
again encountered in the optical set-ups realizing two-dimensional quadratic-
phase systems. Besides, the fwo-dimensional optical systems require different
propagation distances in ¢ and y directions. In ovder to implement all pos-
sible one-dimensional and two-dimensional quadratic-phase systems, we will
design an optical system simulating the desired free space suitable for our pur-
poses. The optical system in Iig. 3.5 which is composed of a FFourier block, an
anamorphic lens and an inverse Fourier block simulates two-dimensional free
space with propagation distances d, in @ direction and d, i y direction. We
will call the optical system in Iig. 3.5 as ‘anamorphic {ree space’. When the
analysis of the system in Fig. 3.5 is made the relation between the input light

distribution f(z,y) and output light distribution g(z,y) is given as
- 0 100 . « < .
gla,y)=C / / explim(z — &')2/Ady + (y — y') 2 /M) f (2!, y") da’ dy(3.35)

where

4 1

$
dy

S _ S
oAz,

X

dy (3.36)
where s is the scale of the Fourier and inverse Fourier blocks. f, and f, can take
any real value including negative ones. Thus it is possible to obtain any combi-
nation of d, and d, by using the optical set-up in Fig. 3.5. The anamorphic lens
which is used to control d, and dy, may be composed of two orthogonally situ-

ated cylindrical thin lenses with different focal lengths. The Fourier block and



& 4

input output

f(X,y) g(XaY)

Fourier Inverse Fourier

Block Block

[igure 3.5: Optical system that simulates anamorphic [ree space propagation

inverse Fourier block are 2-f systems with a spherical lens between two sections
of free space. Thus, a section of free space uses 2 cylindrical and 2 spheri-
cal lenses. The system in Fig. 3.5, simulates two-dimensional anamorphic free
space. The same configuration is again a valid realization for one-dimensional
case. When only one lens is used with one-dimensional Fourier and inverse
Fourier blocks, it is possible to simulate propagation with negative distances.
When the free space sections in the type-1 and type-2 systems are replaced by
the optical set-up in Fig. 3.5, optical implementation of all separable quadratic-

phase systems can be realized.

3.2.4 Optical implementation of two-dimensional frac-

tional Fourier transform

[n the previous section, we proposed two optical systems that realize any
two-dimensional quadratic-phase system. It was discussed earlier that two-
dimensional fractional Fourier transform is indeed a special quadratic-phase

system with parameters
) 2 — ~end ,2 — ap -
v, = cot ¢y /85, Yr = cOt ¢, /57, B = csc /3139,

and
2 — eyt .2 — cae b e
«, = cot ¢, /s3, v, = cot B, /sy, By = cscp,/s159.
When these parameters are substituted in 2.34, the definition of two-

dimensional fractional Fourier transform is obtained. Since fractional Fourier
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[figure 3.6: Type-1 optical system realizing two-dimensional [ractional Fourier
transform

transform belongs to the family of quadratic-phase systems, the optical set-
ups suggested for the quadratic-phase systems are again valid realizations for

fractional Fourier transform.

TYPE-1
The optical system in PFig. 3.6, realizes two-dimensional fractional Fourier
transform with desired orders a,, a,, desired scale parameters s, s3. There is
no additional phase factors at the output. The system has 2 cylindrical lenses
and 2 sections ol anamorphic free space. Since a section of anamorphic free
space consists of 2 cylindrical and 2 spherical lenses, the total number of lenses
is 6 cylindrical and 4 spherical lenses. The system parameters are casily found

from 3.31 and 3.32 as

dy = (5189 — 8% cos ¢y) A — (s182 — 9 cos @) (3.37)

Asin ¢, ’

(5189 — 87 cos ¢y)

Asin ¢, ’

(182 — 87 cos §y)

[y = ly, = , 3.38

iy Asin ¢y “2v \sin b, (338)
8182 . 5189 o .

= ———— ) = ———. 3.39

J2 Asin ¢y Iy Asin ¢, (3:39)
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Figure 3.7: Type-2 optical system realizing two-dimensional [ractional Fourier
transform

TYPE-2

The analysis of the type-2 system is similar to type-1 system. If the free
space sections in the type-2 system are replaced by sections of anamorphic
free space, the two-dimensional fractional Fourier transform with the desirved
orders and scale parameters can be implemented. In this set-up, we have to

use 6 cylindrical and 2 spherical lenses. The system parameters are

525y 8in @, 5185 sin ¢,

A(s) — $2cos @)’

Jiz = Jou = (3.40)

A(‘SZ — 851 COS (/):1;) ’

2 b 2
X 5789 s1n @, _ $185 8l ¢, )
./Vly = - ‘/2;1/ = Y (5’”)

~ A(sy —sgco89,)’ — AM(sg — s1cos )’

S189

S132
dy —.
A CSC ¢y

= — d, =
Y odesc oy v

Both type-1 and type-2 systems can implement all combinations of orders when
the free space sections are replaced by sections of anamorphic free space. We
have no additional phase factors at the output. Also the scale parameters can
be specified by the designer. Thus, by using type-1 and type-2 systems, all
combinations of orders «, and a, can be implemented with full control on scale

parameters sy, s, and phase factors p,, py.
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3.3 Other optical implementations of two-

dimensional fractional Fourier transform

In the previous section, we presented a method of implementing the fractional
Fourier transform optically. All combinations of a,. and «, can be implemented
with the proposed set-ups. However, both systems use 6 cylindrical lenses.
In this section, we will consider simpler optical system having fewer lenses
and try to see the limitations of these systems. We will not try to exhaust all
possibilities, but offer several systems which we believe may be uscful. Since the
problem is solved in  and y directions independently, one lens is not adequate
to control both directions. So the simplest set-up that we will consider has two

cylindrical lenses.

3.3.1 Two-lens systems

f f

input Y output

dfx d2x
d1

M d2y

['igure 3.8: Optical set-up with 2 cylindrical lenses and 3 sections ol [ree space

I. Specified by the designer:  ¢u,py, $1, 52, Doy Py-
Design paramelers: fo, fydiy, diy, doy, day,.
Uncontrollable outcomes: None.
The optical set-up in 3.3.1 has 6 design parameters and we also want
to specily 6 paramcters. It is possible to solve the design parameters in
terms of the desired parameters determined by the designer. IHowever,

in order to have realizable set-up, the [ollowing constraints should be
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satisfied:

o Total length of the system should be the same in both directions;
(l“; + ([25,3 = dly + dzy.

e The lengths of all free space sections should be positive; dy, >
O,dly Z 0,(123; Z 0 and dzy Z 0.
These constraints are too restrictive and the range of orders «, and
a, that can be implemented is very small. Thus we have to re-
duce the number of parameters that we want to control. This is

considered next.

2. Specified by the designer: ¢y, ¢y, $1, S2.
Design parameters: fe, fy, dig, diy, dos, day.
Uncontrollable outcomes: pg, py.
In this design, both the orders and the scale parameters can be specified.

For given ¢, and ¢y, s; and sy, the design parameters are

s3(sin ¢, — sin ¢,) (3.43)
A(cos ¢, — cos @)’ o

dla; = dly = dl =

s1828in( gy — Py) o
A(cos ¢y — cos ¢y)’ (3.44)

(121; = dzy = dz =

3%82 Sil’l(¢x - ¢y) (; 45)
A(s1 — 82 cos ¢, )(cos ¢, — cos ¢;)’ o

/ v =

S%Sz Si11(¢w - d)!/) (3 /16)

Iy = A(81 — 83 cos ¢y )(cos ¢, — cos @)’

and the phase factors occuring at the output plane turn out to be

 [sa(cos @y — cos ¢y) + s1(L — cos(¢y — ¢u))] o
P = 315% Sil’l(d):v - QSy) ’ (317)

_ [s2(cos ¢y — cos $) + si(cos(dy — ¢u) — )] (3.48)
Pu = s13sin(¢s — y) | 8

In this optical set-up, d; and dy should always be positive. But for some

values of ¢y, by, and sz, di and dy may turn out to be negative. In
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[Figure 3.9: A:No flip, B:IFlip of x axis, C:Flip of y axis, D: Flip of both axes

such cases we would have to deal with virtual objects and/or images.
This would require the use of additional lenses. To avoid this, we must
require that ¢y and dy be positive. This will then restrict the range of
a; and ay, that can be realized. This range can be maximized by al-
lowing the z or y axes to be flipped. For instance, if the given values
of dyy,das, d1y, d2y makes s; negative for ¢, = 60 and ¢, = 30, we flip
one of the axes. This transform is equivalent to the fractional Fourier
transform with ¢, = 60 and ¢, = 210 followed by a flip of the y axis or
¢ = 240 and ¢, = 30 followed by a flip of the x axis. (This is because a
transform of order 2 corresponds to a flip of the coordinate axis.)In order
to implement some orders, both axes should be flipped. I'ig. 3.9 shows
the necessary flip (s) required to realize different combinations of orders.
This system allows us to specify the orders and scale parameters. How-
cver, the phase factors are arbitrary and out of our control. We should
examine four-lens systems to control orders, scale parameters and phase

factors at the same time.
3.3.2 Four-lens systems
We continue our discussion with the set-up in figure 3.10. The transforma-

tion matrix T, of the system is found through multiplying the transformation

matrices.

TI = Tyl(fyZ) T’Ll(/LZ) Tf(dZ) Tyl(/yl) T’Ll(/ll) Tf(dl )7 (;/19)
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input ﬁ(l fyl f;cg %2 output

d, d2
Figure 3.10: Optical set-up with 4 cylindrical lenses and 2 sections of [ree space

Specified by the designer: ¢q.¢y, s1,52,pe = py = 0.

Design paramelers: dy,dy, fur, fy1s fo2, fy2-

Uncontrollable outcomes: None.

In this configuration, we use the optical set-up in 3.10. In our previous
design with 2 lenses, we managed to design an optical set-up that imple-
ments two-dimensional fractional Fourier transform with desired orders
and scale parameters. However, additional phase factors at the output
plane turned out to be arbitrary. If two cylindrical lenses are added to
the output plane two-lens system, it is possible to remove the additional
phase factor at the output. In this optical set-up d,dy, f.1 and f,, have
the same expressions with the former two-lens system. Thus Fig. 3.9 is
again valid and shows the necessary flips.

s2(sin ¢y, — sin ) (3.50
A(cos ¢y, — cos ¢,.)’ 3:50)

dla: = dly = d] =

$182510( Py — By)

oy = o, = d. 3.51
dyy = day 2/\(cosq5,,—cosg/h) (3.51)
0
. 3132 Slll( wr T d)y) 0o
= 3.52
far A(s1 — $3.c08 ¢)(cos B, — cos ¢;)’ (3.52)
2o e
. $1S2 sin( ¢, — ¢y) 2R
- - 3.53
Jn A(81 — 82 cos ¢, )(cos ¢, — cos ¢,)’ (3.53)
8189 5111(9{’1 ¢J) (3 54)

Jo2 = A[sa(cos ¢, — cos d,) + si(1 — cos(¢, — ¢u))]
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input fxl f yl fx? fy2 output

d, d2 d,

[igure 3.11: Optical set-up with 4 cylindrical lenses and 3 sections of free space

fp = s183sin(dy — @) (3.55)
Yo = - . )
Y A[s2(cos ¢y, — cos ¢y) + si(cos(d, — ¢.) — 1)]

This optical set-up implements two-dimensional fractional Fourier trans-

form with the desired orders, scale parameters and phase factors.

2. Specified by the designer: ¢, ¢y, 51, 52, dy, da, d3.
Design parameters: fu1, fy1, fo2, fy2
Uncontrollable outcomes: py,p,.
For practical purposes, one may want to use a fixed system in which
the lengths of all free space sections are fixed. [For example, in [19],
two-dimensional fractional Fourier transform is implemented by using
cylindrical lenses with dynamically adjustable focal lengths in a fixed
system. Both the location of lenses and the total length of the system is
fixed. The only design parameters are the focal lengths of lenses which
can be changed dynamically.
[Tere we add one more section of [ree space to the system in 3.10 and
obtain the set-up in Fig. 3.11. This fixed system has no control on phase
factors while the orders and scale parameters can be specified by the

designer. The parameters are

[ = $182daysin @ /A — (82/81)d d2 cos ¢y (3.56)

Jet (s2/51)(dy + d2) cos ¢, — s1825In G /A + dy” o

[o= s182dasin @y, /X — (s3/s1)ddy cos ¢, (3.57)

Jub (s2/51)(dy + dg) cos ¢, — s1sa8in g, /A + dy’ .
dgd;;

Joz = (82/81)d1 cO8 ¢y — $1828I /A + dy + dy’



j;l fyl fx% fy2 f;3 fy3 output

input

d, d, d,
[Figure 3.12: Optical system with 6 lenses and 3 sections of [ree space

LG

and

f _ ([2(13 359
27 (sy/81)dy cos gy — sysysindy /N + dy + dy’ (3.59)

and the additional phase factors turn out to be

39 [ dy dy dy dydy } )
2):1; = — COS ¢'l} + _— 1 _——_- = = — + a—— y 3-60
sysing, | fu fer Jeoo forfa (3.60)
S [ d, d, d, dids }
py = —cosdy+—2 1oL GG, b g6
v v 81 81n ¢y L jyl fy’z ./;1/2 .f}/l./!/'l ( )

This optical set-up can realize all combinations of «, and «,, however with
T e

additional uncontrollable phase factors observed at the output plane.

3.3.3 Six-Lens systems

Specified by the designer: ¢u, by, S, $2,d1, dy, d3, pe = py = 0.

Design parameters: fer, fy1, fe2s fo2-

Uncontrollable outcomes: None.

Ihe modified type-1 and type-2 systems use 6 cylindrical lenses. However, the
lengths of the [ree space sections are not fixed. For practical purposes like we
mentioned before, one may want to use a fixed system. In order to have coutrol
on all the parameters, a 6-lens system is required. The design that we made

using the four-lens fixed system, has two uncontrollable outcomes, p,. and p,. 1f
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tw cylindrical lenses are added to the output plane, full control on parameters
is achieved.
The system parameters fp1, fy1, for and fyo are the same with the 4-lens fixed

system. The focal lengths of the additional lenses are

. 1

oy = —— 3.62
./.’L-3 Al)z’ (; () )
Jy3 = L (3.63)
y3 = /\py . 3.0

Thus, the fixed optical system in I'ig. 3.12 can be used to implement desired
[ractional Fourier transform.
In the previous part, we proposed several optical set-ups. The following theo-

rem may be uselul in creating new set-ups by using our previous systems.

Theorem 3.2 The reverse of any fractional Fourier transformer composed of

thin lenses and sections of free space is also a fractional Fourier lransformer.

Proof:

The output g of the system fractional Fourier transform of [ i.e.

——— SYSTEM

f g
G
INVERSE
gt SYSTEM pr
K
g=G(f) = F(f). (3.64)

and from reciprocity, if g* is the input to the reverse system, the outpul is [~,

i.c.
F=K(g"). (3.65)
If Eqn. 3.064 ts substituted in Eqn. 3.65 we gel,

K(g") = (F"g)" (3.66)
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The same relation can be written for [ as
[‘,(_f) — (171—(!.‘/.'*)*
Il is known that ['*(f*) = (F~*f)*. So

K(f)y=(I"f)=y

(3.67)

(3.68)

For example let us consider the four-lens optical set-up that realizes fractional

Fourier transform. This system and its reverse can be seen in Fig. 3.13. Ac-

cording to Theorem 3.2, the reverse of the fractional Fourier transformer is
3

again a fractional Fourier transformer.

input f 1 fyl fx 2 output
d, dz
(a)
input f’Jz fy2 fX] fyl output
d, d,
(b)

IFigure 3.13: (a). The [ractional Fourier transformer; (b) Its reverse which is

2.

also a [ractional Fourier transformer



Chapter 4

A new, non-separable definition
for two-dimensional fractional

Fourier transform

4.1 Motivation

Many properties [or the Fourier transform generalize to two dimensions, but
new properties exist in two dimensions like the following alline property. The
alline theorem states that [59]:

[f f(x,y) has two-dimensional Fourier transform ['(x,y), then f(ax + by, ce +

dy) has two-dimensional Fourier Transform

, I fex—cy —br+ay
G(:v,y)=~A-l'< A 3 A ) (4.1)

where A = ad — be. Since Fourier transform is a special case of fractional
FFourier transform we look [or a similar property for two-dimensional [ractional
IF'ourier transform. However, the two-dimensional fractional Fourier transform

does not have the afline property as property 13 suggests. If ["(x,y) is the
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two-dimensional fractional Fourier transform of f(z,y) with the orders a, and
ay, then G(z,y) which is the two-dimensional fractional Fourier transform of
flaz+by, cx+dy) cannot be represented in terms of a scaled version of (2, y)

with a similar relation to 4.1. To sec this, let us define the new coordinates as:

o
N—

' = ax + by y' = cx +dy. (4.

[t is easy to find @ and y in terms of 2" and y”:
x = i((lac' — by y = i(—C'L" + ay’) (4.3)

where A = ad — be. If © and y are substituted in Eqn. 2.1 and compared with

the definition ol two-dimensional fractional Fourier translorm, it can be easily
scen that two-dimensional fractional Fourier transform of f(az + by, cx + dy)
cannot be represented in terms of the scaled version of two-dimensional frac-
tional Fourier transform of f(z,y). This is because, the fractional Fourier
transform of f(ax 4+ by, ce + dy) has cross terms, while our separable definition
has none. It is even possible to say that any separable two-dimensional kernel
[ails to satisfy the alline property. The insufliciency of separable definition in
satisfying the affine property is one of our motivations to look for a new, non-
separable definition.

Our separable definition has two order parameters a, and a,. The directions

y (a) y ,
y (ay.)

x> (&)

x (a,) >~ X

(a) (b)

[igure 4.1: The transform orders and divcctions for (a) separable transform,
(b) non-separable transform

along which the function is to be fractional Fourier transformed are fixed to the
traditional  and y axes. Fig. 4.1.a shows the directions and the corresponding
orders for the two-dimensional separable fractional IFourier transform. Since
the two-dimensional [ractional Fourier transform is a straightforward gener-
alization from one-dimensional case, one cannot change the directions along

which the orders are specified. However, we would like to specily both the
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directions ', y" and the orders a, and «a; of the two-dimensional transform
as can be seen in 4.1.b. This is another motivation for us to look for a new

definition for two-dimensional [ractional Fourier transform.

4.2 Definition

Here we present our new, non-separable definition for two-dimensional frac-
tional Fourier transform. We define the non-separable fractional Fourier trans-
form in such a manner that it corresponds to fractional FFourier transformation
along arbitrary 2’ and y’ directions with orders a, and a,. It is equivalent to
rotation of z and y axes followed by the separable definition. First, x axis is
rotated by an angle 0, and y axis is rotated by an angle §,. Thus, z axis is
mapped to @’ which makes an angle 6, with the @ axis and y axis is mapped
to v which makes an angle 6, with the y axis. This is equivalent to mapping
f(z,y) to f(cosbiz + sinbyy, —sin bz + cosbyy). Then the two-dimensional
separable fractional Fourier transform with orders a, and a, is applied to
f(a',y') = f(cos b,z + sin by, —sinbpa + cosOzy). The resulting transforma-
tion is the new, non-separable two-dimensional fractional Fourier transform.
The new definition has 4 parameters: a,,a;, 0y and ,. 0y is the angle between

y .
y @)

0, x> (&)

el X

Figure 4.2: The parameters of the new definition

the standard 2 axis and z’, @/, is the order specified along ' direction, 0, in-
dicates the angle between the standard y axis and y’ and aj, is the order along
this direction as can be seen in Fig. 4.2. The non-separable fractional Fourier

transform as defined above is given with the following equation

Forn,” {f(r)} = / Byrond (v, x") f(x") dr” (1.4)



where
B;J"‘;'(}:”' (r,r") = Agy explin(rTAr 4+ 2r"Br” 4 ¢ Cr")] (4.5)
with

T T
A'f’l' = A'ﬁm’A“l’y” r= [ vy ] ’ v = [ @ yu } ’

cot ¢y 0

0 cot py

__coslpcschs sin 01 csce s

B = cos(0; —02) cos(0;—0-)
_ sin 02 csc s _cos 01 csc, ’

cos(0; —02) cos(f; —02)

co é‘i}—'l’izm cot ¢ + CTS}ELOZTO—ZK) cot ¢y —i—‘;zg(%f)— cot ¢y + %ﬁj cot P,
—singuesty cot gy 4 SnBSh cot gy S0 cot gy b I cot gy
s2 (01 — 05 cos? (01 —02) Y cos?(0; —0,) y cos2(0; —0)

Here it is important to note that 2’ and y" determine the directions along
which we specify the orders while, " and y” are dummy variables of the inte-
gration having no relation with them.

I'rom now on we will c/all/ our new definition as non-separable fractional Fourier
transform and use .7-_(71‘0‘:” to represent it, while the separable definition is rep-
resented by Fesv,

The new definition reduces to the separable definition for 0, = 0, = 0 which
corresponds to fractional Fourier transformation along = and y axes.

This deflinition with 4 parameters is specified by its non-separable kernel. We
constructed the definition in such a way that it corresponds to fractional Fourier
transformation along arbitrary ' and y’ directions. The next thing to do is
to show that this definition satisfies the alline property. The following theo-
rem states that, when an affine transform is applied to the function, its non-
separable fractional Fourier transform can be represented in terms of the scaled
version of the non-separable fractional Fourier transform of the original func-

tion.

Theorem 4.1 Fractional Fourier transform of f(az + by,cx + dy) with or-

ders ag,a, according lo the new definilion can be represented in lerms of the
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[fractional Fourier transform of f(x,y) according to the new definition.
17'0";";53”[j'(cz:v + by, ca + dy)|(z,y) = /cF(;z"O(ZIJ [f(z,y)](a@ + biy, cix + dyy) (4.6)
with
k = exp[Cya® + Cp,y* + Cpp py 2y),

- Do, o
{' — - . 1: 1 1V2
bu = $uco [(a cos bt + bsin6,)% — (ccos 0y + dsin 02)2)}

_ Dy, 0
r_ . cot 1 102
¢” by cO {(dcos 02 + csinby)? — (beos 0y + esin 01)2)] ’

9

0 1 \Ir(a cos 0 + bsin0,)2[(d cos 03 + csin b1)? — (bcos by + asin b)?]
| = cos
1)0102

k)

) - Jd cos Oy + csin by )?[(acos 6y + bsinbdy)? — (ccos Oy + dsin 6,)?]
y = COS ’
Do, 6,

csc ¢z[(d cos Oy + csinby) cos 0y + (bcos O, + asinby) sin 0;)

CcSC ¢y cos(0; — 0)

ap = y

_cscdy[(ccos Oy + dsin ;) cos 0y + (acosl) + bsin0y) sin O]
eS¢ Pgr cos(0) — 05) ’

- osc bo[(d cos 0z + csinby)sinfy — (bcos 0z + asinby) cos 0,]
‘= esc ¢y cos(0; — 05) ’

csc ¢y [(acos by + bsinb;) cos Oy — (ccos Oy + dsindy)sin 0]
csc @y cos(0y — 0;)

(l[ = 3
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where we employ the intermediate variables as

cot ¢5[((acos by + bsin0;)* — (ccos O + dsin 0;)?) — Dy,p,]

Cp, = . , . —
P = [((acos 0, + bsin 02)2 — (ccos 0y + dsin 05)2 — cot? b:Dg,0,]
o cot ¢y [((dcos by + ¢sin 01)? — (beos Oy + ¢sin 0,)?) — Dy, p,]
P [((d cos Oy + csin 0y)% — (beos 0, + a sin01)?) — cot? ¢, Dy, 0,]’
C,/,(L_,% = ayb; cot ¢, + ¢1d; cot g/)'y,
and

Dy, g, = [(acos0; + bsiny)*(d cos O, + csin 0,)° — (beos Oy + asin0;)*(ccos 0; + dsin0y)].

[t is tmportant to note that a, and a; used in this theorem and ay and a, used
in the definition of the non-separable fractional Fourier transform are different.
Proof:

The proof of this property follows directly from the definition of non-separable

Sfractional Fourier transform.

The new definition satisfies the properties that we expected it to satisly. But
one might suggest a more general definition with a greater number of parame-
ters. We now show that such a definition is not necessary. We know that the
new definition corresponds to two-dimensional fractional Fourier transform of
f(cos Oy + sin Oy, —sin Oz + cosOay). Let us propose another definition by
applying the separable definition to f(ax + by, cx + dy) where «, b, ¢ and d are
arbitrary. It is evident that this definition which has 6 parameters is more
general than our non-separable definition. [However, the next theorem states
that such a definition is redundant since the [ractional Fourier transform of
[lax + by, cx + dy) lor any «a, b, ¢,d can be represented as scaled version of our

new definition.

Theorem 4.2 Fractional Fourier transform of [(ax + by, cx + dy) wilh orders
(s, @y according to the separable definition can be vepresented as a scaled version
of the non-separable fractional Fourier transform of f(x,y).

'l
@ ,0

Fyrl ol (az + by, cx + dy))(w,y) = kFyra [ (2, )] @ + by, v + diy)

4.4



with

1 . ’
A = (ad — be), k= X exp[Cya® + Cy,y* + Co, Y],

2 12 _ bz 2
(/)/1 = (/)w COt_l [(a(—c)_:l ,

2,72 _ 2.2
A(a? ~ ) ¢, = ¢y cot™ [H_‘))} ,

A2dZ — 1?)

] a1 _
91 = COSs m, ()2 = COSs !
T by (d cos Oy + bsin 0y) b= ¢ Py(ccos by + asinby)
] A csc ¢y cos(0; — 0) "7 Acsc G cos(0y — 0,)
o 8¢ ¢ (dsin 0 — bcos ;) g o= & ¢y(acosby — csin b))
l A csc gy cos(0y — 0,) YT Acsc gy cos(0 — 0y)

where the intermediate variables are

o - cot d[Aa® — ¢?) — (a®d? — b2c?)?)
P T [A1(a? = ) — cot? gy (a2d? — b2c2)?)

cot ¢y [AN(d? — b?) — (a’d® — b*c?)?]
[A4((12 - bz) — cot? gf)y((ﬂd’z — b2c2)2]’

C'/’ v

Cypppy, = mrbi cot d, + erdy cot 6,

Proof:

This theorem can easily be proved by using the definitions of separable and non-
separable two-dimensional fractional Fourier transform through straightforward
yet lengthy algebraic manipulations.



Theorem 4.2 states that the separable fractional Fourier transform of any
affine-transformed function f(az 4 by, caz + dy) can be represented as a scaled
version of the non-separable fractional Iourier transform of the original [unc-
tion. This result indicates that a definition with more parameters will be re-
dundant. An analogy with the common Fourier transform might be useful. We
know that when the function is scaled, its Fourier transform can be represented
as a scaled version of the Fouriter transform of the original function. Thus, it
is redundant to define a transform called the scaled Fourier transform. Just
like this example, a definition for two-dimensional fractional Fourier transform

with more than 4 parameters, will be redundant.

4.3 Properties of the non-separable fractional

Fourier transform

Theorem 4.3 The kernel of the inverse transform is

{By¥o?} N (r,x") = A_gp exp[—in(rTAr + 26"Br” + 1" Cr")]  (4.7)

01,02
where
T T
"
Ay =Ay, Ay, T= [ Ty ] T [ z" oy ] ’
cos® Oy et sin® 02 ) __sinlj cosly .. .1 sinfocosl) . .4 2
A = cos? (0; —02) cot ¢”"/ + cos?(0; —62) cot (f)yl cos? (01 —07) cot d)"” + cos2 (0 —02) cot Py
- . B .9
__sinf cosly ., 4 sin fp cos 0] . gosz [ ot sin” 0 ot ..
cos? (01 —02) cot ¢"3I + cos? () —03) cot Q/)y/ cos? (01 =0,) cot d)?/l + cos® (8 ~02) cot (/b:l.’
coslz csc s sin by cscehr
B =  cos(01=02) cos(0y—0-2)
- sin 02 csc byt cos{y csc byt !
- (:03(01 —02) _COS(()] —0—2)
cot P 0
0 cot @y

aurya,

. . @, ry—1 - ) . )
Notice that the kernel of the inverse transform {By*, " } L ys not equivalent Lo

(B350, )
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Proof:
We know that the fractional Fourier transform according to the new definition
can be decomposed into an affine transform followed by the separable definilion.
Thus it is legilimate to write
ol gyl g, . . .
Folo," (@, y)] = Fr"'[f(cos Oz + sin 1y, — sin Oy + cos Opy)].  (4.8)

By using the kernel of the inverse separable fractional Fourier lransform given
in 2.11

f(cos Oy + sin by, — sinOyx + cosbyy) =

= [7_[2 exp[—im(a?cot ¢ — 2xa” csc dur + " cot Py)] (4.9)

x exp[—im(yZcot ¢, — 2yy” csc ¢y + y"? cot ¢y )] da dy”

flx,y) can be oblained in terms g(x,y) by using a coordinate transformalion.

Thus, the kernel of the inverse transform is found as given in 4.7

Theorem 4.4 The non-separable definition is unitary, t.ec.,
* ot N — 1 NN .
Ba.m/,ay/,oh(}z (fl/,y,l 7?/ ) - B(lm/,a-y/,ol,og(:l’ ’y ’51'7!/)' (4""0)

Proof:
By using the kernel of the non-separable transform in 4.4 and ils inverse in 4.7,

the proof follows.

Theorem 4.5 Let Wi(z,y; s, iby) be the Wigner distribution of f(x,y). If
g(x,y) is the non-separable fractional Fourier transform of f(x,y) with param-
clers agr, a0y and 0, then Wigner distribution of g(x,y) is relaled to that of

[(xyy) through the following equation

W,(r, ) = Ws(Ar + Bs,Cr + Ds), (4.11)

T T ‘
r = [ Ty ] y S = [ fla [y :I , (412)

and
COS gr cos ) cos ¢y sin b,
A= v ! , (4.13)

— €08 ¢y 8in by oS Py cos Oy
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—8in ¢y cos @) — sin ¢, sin 6,

B = , (4.14)
SIN g sinfy  — sin ¢, cos O3
sing_scoslr  sing, ,sinfd
cos(f; =0, cos(0y =0, 1
C=| hh) clhi-h) ) (1.15)
__singy sing;  sin 1 cos 0y
cos(f, —0) cos(Oh—0s)
cosg,scoslfy  cosp,ssinly
D= cos(f1—02) cos(fy —02) (’l l())
__cosrsinly  Cos ¢y cos b J :
cos(0—02) cos(f1—62)

Proof:
This theorem s derived by using the general expressions for the transformation
malrices derived by Basticans [37]. The proof is straightforward yet requires

many matriz manipulations.

It is important to note that, for 8; = 0, = 0, the above theorem reduces to the
Property 14 of Chapter 2 which characterizes the effect of separable definition

on Wigner distribution.

4.4 Discrete-time implementation of the new

definition

Due to the oscillatory nature of the fractional Fourier transform, its discrete-
time implementation is very hard by simple integration techniques. However,
in [43], a fast algorithm for the fractional Fourier transform is presented. While
direct computation would require O(N*) multiplications, this fast algorithm

computes the transform in O(N log N) time.

In order to use the non-separable definition for practical purposes, a fast

discrete-time implementation is needed. By definition, it is composed of an
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alline transformation followed by the separable definition. In image process-
ing several algorithms exist for affine transformation [60]. In order to imple-
ment the non-separable fractional Fourier transform of f(z,y), with parameters
01,02,y and ay, first f(cos Oyx + sin b1y, — sin 0@ 4 cos Oyy) is computed. In
the computation of afline transform, bilinear interpolation method which was
previously implemented is used [61]. Then the fast algorithm in [43], that
computes the two-dimensional separable fractional Fourier transform, is ap-
plied to the alline-transformed function. The resulting transformation is the
non-separable [ractional Fourier transform. So we obtained a way of imple-

menting our new definition in O(N log N) time.
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Chapter 5

Optical implementation of the

non-separable definition

In the previous chapter, a non-separable version of fractional Fourier transform
is suggested. We are no longer restricted to define the orders along the tradi-
tional @ and y directions. It is possible to specify the orders along arbitrary
directions. Indeed the non-separable transformation is composed of an affine
transformation followed by the separable transform. The non-separable defi-
nition has cross terms in its kernel. But the kernels of free space propagation
and thin lenses have no cross terms as we can see in 3.7, 3.10 and 3.12. Let us
first modily the kernel of free space propagation and assume that it is possible
to have dilferent propagation distances in z and y and also assume that we

have a cross term. Then our new kernel becomes

/I.(:I,',y,.’l:,, 3//) = exp ('L"iT [('L;;l’)-’ + (1/;5//)'-’ + (w—;f\'()iiz—z/')}) . (5. l)

Y

We now assume that such sections of free space exist and call them as anamor-
phic and cross-termed sections of free space. In section 5.2 we will show that
simulation of sections of {ree space with a kernel of the [orm is 5.1 is possible
by using aun optical set-up composed ol thin lenses and sections of free space.

Similarly the kernel for an anamorphic lens with focal length f, along the @



direction, f, along the y direction and f,, along the zy direction is

2 22
hoyi(z,y, 2", 9y") = Koy 6(z =2,y —y') exp [ —ix ll + L vy . (5.2
Y ? ) Y ( -/ J ) ] A_/_L /\‘/y + /\.f:l;y ( ) )

[t was further discussed that it is possible to construct an anamorphic lens

with two cylindrical lenses located perpendicular to each other. When two
cylindrical lenses are located with an arbitrary angle, we obtain the desired

lens with the kernel in 5.2,

5.1 Optical set-ups that realize non-separable

fractional Fourier transform

input f;(1 ’fyl ’t;(yl ﬁ(Z ’fyZ ’ﬁ(y” output

]

Anamorphic and Cross-termed

Free Space

d.d,.d,

I'igure 5.1: Optical set-up that realizes the non-separable [ractional Fourier
transform

The system in 5.1 is composed of 4 cylindrical lenses and 1 section of anamor-
phic and cross-termed [ree space. It is similar to the system in 3.7 which realizes
two-dimensional fractional Fourier transform except for the cross terms of the
lenses and [ree space sections. The analysis of the system is easy by just us-
ing the kernels defined in Eqn. 5.1 and 5.2. It is possible to implement the
non-separable fractional Fourier transform with the desired orders, directions,

input scale parameters and phase factors with the optical set-up in 5.1.

L. Specified by the designer :¢., ¢y, 01,03, 814, S14, 0. = py, = 0.

Design parameters :dy, dy, doy, for, fo2, foyts fo2, fy2s foye-



[n this case, one can implement all different combinations of @, ¢,, 01, 0.
The output scale parameters must be chosen in a way to satisfy the
following equation

S2z _ —S1z5In0) csc Py (

= - ,
S2y 81y 51n 05 csc ¢,

(a3 4
-
—

and the distances and focal lengths of lenses are

815824 cOs(0; — .
d”-' = 1(94 i ( : 2)7 (r) Z’)
2 cos 0y csc ¢y,
S1yS2y cOs(8) — 0
d, = 2L (6, = 0a) (5.5)
2 cos b csc ¢y,
p S1282y €08(0; — 02)  s1y89, cos(0; — 0y) (5.6)
ey = - = - 5.
i 2Xsin 0 csc ¢, 2Asin 6y csc ¢,
1 2 cos 03 csc ¢, cos? 0 cos ¢, + sin® 0, cot ¢, (5.7)
- = — - p .
Aot S1z82zcos(0p — 0y) s2,cos?(0; — 0,) ’
1 2cos b csc ¢, cos® 0 cos ¢, + sin? 0 cot ¢, (5.8)
- = - : - .
Afyr S1y82y cos(0; — 0;) st, cos?(0; — 65) ’
1 2 cos 0, csc ¢y, cot ¢, v
_ b _ cobds (5.9)
Afee S12824cos(0; — 0;) 85, '
1 2 cos 0, csc cot ¢,
— = Lesedy 2"5”. (5.10)
Afyz  S1ySaycos(0; — 0) 83y

Specified by the designer :¢y, ¢y, 01,02, Sou, Say, Px = py = 0.

DGSig7L pa'l‘a,metm‘s da,a dy7 da:ya fa:l > fw?v fa:yl » .fa:Za fy2a ./:vy% S1zy S1y-

By using the same optical system it is possible to implement the non-
separable fractional Fourier transform with the desired orders, directions,
output scale parameters and phase factors. In this case the equation
defining the input scale parameters is

S1y Soy 8in Oy csc @, '

S1z _ S sin 03 csc ¢, (5.11)

The other system parameters are the same with the former case.
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IMigure 5.2 Optical set-up that simulates anamorphic free space with cross

terms

5.2 Simulation of anamorphic and cross-

termed sections of free space

The problem of designing the anamorphic and cross-termed sections of free
space still exists. In chapter 3, we presented a way of simulating anamorphic
[ree space with the desired d, and d,. The anamorphic lens in Fig. 3.5 is
composed of two cylindrical lenses located perpendicular to each other. If they
are located with an arbitrary angle, it becomes possible to simulate anamorphic
and cross-termed [ree space with parameters d,, d, and d,, by using the same

optical system. The kernel of the optical system in Fig. 5.2 is

. z—a')? y—y')? -z (y—y' v
h(z,y,a',y") =exp (mr [L,\dl) + ("/\(‘i’y) + ¢ \()Ifi Y )D (5.12)
where
54 2 - L /1 54 2 - .'1; .'1
dn: = (—Lzy—i—J)a dy = “(l—;/ﬁ_/_/)', (P‘)J})
)‘ fL Ty /\ f!/. vy
Sl = ) _
= N

where s is the scale ol the Fourier and inverse Fourier blocks. Hence by con-
trolling the focal lengths of the anamorphic lens, it is possible to control the

parameters ol the anamorphic free space with cross terms.



It is also possible to try to find different optical realizations for this defini-
tion. But since the kernel is non-separable, simpler set-ups turned out to he
insuflicient. 6-lens set-ups may be analyzed, but since the set-up in Fig. 5.2
with 6 cylindrical lenses is uselul for our purposes, there is no need to discuss

these systems here.



Chapter 6

An application of the new
definition: Filtering in

fractional Fourier domains

[u Chapter 4, a non-separable definition is presented for two-dimensional frac-
tional Fourier transform. This definition has four parameters where «, and «,
define the orders and 0, and 0, specily the directions along which the [unction
is to be [ractional Fourier transformed. This non-separable definition cnables
us to deline both the orders and the directions of the fractional Fourier trans-
[orm. Llence, we are no longer restricted to the traditional @ and y axes. Since
we have come up with a more gencral and comprehensive definition, we ex-
pect to have improvements in problems where the separable fractional Fourier

transform is being used.

The concept of filtering in fractional Fourier domains has been introduced
to the problem of estimating images in the presence of space-varying noise [17].
The expressions for the optimal filter function in the fractional domains are
derived in a manner analogous to the classical Wiener filtering problem. llere

we modily the general formulation of optimal filtering in the fractional Fourier

[\
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domains derived in [47].
Counsider the following signal observation model:

o="H({)+ n, (6.1)

where H(-) is a linear system that degrades the input signal f, and n is an
additive noise term. Our problem is to filter the observed signal o to minimize
the effect of noise. The error criteria to be minimized is the mean square
error. It is assumed that the correlation functions of the input and noise
processes are known : Re(z,y;2'y") = E[f(z,y)f(2',y")], Rz, y;2",y") =
En(z,y)n(z,y")].

The filters that we consider satisfy the following equation:

Frnw 160)} = 8. F55 ()

corresponding to multiplication with a function ¢(-,-) in the fractional Fourier
domain. The estimate satisfies

az,Qy (Y Qa,0y

fol,oz {f} = g-Fu'0, (0),
and the mean square error is
o = E[If - 7]

Since the non-separable fractional Fourier transform is unitary, this MSE is
equal to the error in the transform domain. It can be shown by modifying the
solution in [47] that the optimal filter function that minimizes the MSE (see
Appendix) is

Rfu,Oa(."LUZ‘/;@y) (() _))
Rogoa(,y52,y) '

gopt(ma '!/) =

In this equation f, and o, are the non-separable fractional Fourier trans-
forms ol f(z,y) and o(z,y) with parameters ag,a,,0, and 0, respectively.
Ry oo(zyy; 2, y') and Ro,oq(2,y52',y") are the correlation functions in the

transform domain (a,,a,) defined as
Rifoou(2,y32"y') = Elfa(,y)0a(2’,y")] (6.3)
and

Ro(uou(wﬂ s '!//) = E[Oa(_m,y)oa((c', ?/I)] (_6'4)



These correlation functions can easily be calculated from the correlation func-
tions in the spatial domain. The optimal choice of a,, a,, 0; and 0, are those

which result in the minimum MSE.

T'his derivation is a direct generalization from the formulation of optimal
[iltering in fractional Fourier domains derived in [47]. The modified derivation
can be found in the Appendix, which makes use of the non-separable two-

dimensional fractional Fourier transform.

Let us consider an example of noise separation problem. For purposes of
illustration, we will choose the noise to be a deterministic function with well
defined time-[requency characteristics:

2 o 2 47 ! )2 3
71($,J) — el.bur(m 7.3) + 61.117r(y +7.3) (()5)
So that the distorted image is
. Y] Ar ' 2 .
f(.’l,‘,? ) n A[el.Gm(x 7.3) 4+ el.lnr(y +7.3) ] (()())
where the constant A takes different values to adjust signal-to-noise ratio (SNR)
to the desired value. The original and distorted images can be seen in Fig.

6.1.a, 6.1.b and 6.3.b.

The two chirps which constitute the noise are not oriented along the @ and

y directions, but along arbitrary @’ and y’ directions. In our example, 2’ makes
an angle of 15° with the ¢ axis and y’ makes an angle of 30° with the y axis.
We will consider two cases with SNR=1 and SNR=0.1. Ior an n x m image
SNR is defined as
S (2, y)? da dy :

. ; i (6.7)
[ [ ln(z,y)Pde dy

We will compare the use of our non-separable definition with the separable

SNR =

definition previously used by Kutay for the same problem [47].

The method used by Kutay [47] tries to minimize the MSE by optimizing
over all possible combinations of a, and a,. The optimum orders are a, = 0.35
and a, = —0.4. Remember that the separable definition is a special case of the
non-separable definition with ; = 0; = 0. The restored images for SNR=1

and SNR=0.1 can be seen in Figure 6.2.a and 6.4.a respectively.



(@) (b)

Figure 6.1: (a) Original image; (b) Noisy image with SNR=1.

Figure 6.2: (a) Image filtered by the separable definition; (b) Image filtered by
the non-separable definition, for SNR=1.

When we use the filtering method proposed in this thesis, we optimize over
01,02 besides iix and Uy. The optimum parameters are found ds = 0.35, dj =
15° and (ly ——0.4, @ = 30°. Figure 6.2.b and 6.4.b show the restored images
for SNR=1 and SNR=0.1 respectively. Due to computatioiicil constraints, we
restricted our search to a local minimum only.

The improvement when SNR=0.1 is immediately visible when Fig. 6.4.a
and 6.4.b are compared. In this case the non-separable definition gives an MSE
of 0.020 where the separable definition results in an MSE of 0.101. Thus, MSE
is reduced by a fcictor of 5. When SNR=1, the visible improvement is less
evident, but nevertheless MSE has been decreased from 0.029 to 0.0084 and
MSE is reduced by a factor of 3. For both cases, we achieved a renuirkable
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reduction in the MSE when the non-separable definition is used. The MSE
values given here are all normalized by the energy of the origiiuil inicige.

(a) (b)

Figure 6.3: (ci) Original image; (b) Noisy innige with SNR=0.1.

Figure 6.4: (a) Image filtered by the separable definition; (b) Image filtered by
the non-separable definition, for SNR=0.1.

Fig. 6.5 and 6.6 show minimum normalized MSE’s for different O\ and QC
pairs for SNR=1. The corresponding MSE values in Fig. 6.5 and Fig. 6.6 are
obtained. Fig. 6.5 shows normalized MSE as a function of (% when Q is fixed
to 30°. The minimum value of the normalized MSE is attained for Oi = 15°.
In Fig. 6.6 normcilized MSE is plotted as a function of 02" when 0\ is fixed to
15°. The normalized MSE is minimum for o2 = 30°. The local minimum for

the MSE is obtained at 0i —15° and o2 = 30°.
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Figure 6.5: Normalized MSE as a function of 8; for SNR=1.
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Figure 6.6: Normalized MSE as a function of §; for SNR=1.

We expect [ractional Fourier domain filtering in two dimensions to find
greatest application in optical systems. This is because the types of noise for
which fractional Fourier domain filtering achieves greatest benefits are often
encountered in optical systems. For example, line defects on the lenses produce
a chirp-like noise. Since the angle between the scratches are arbitrary, using
non-separable fractional Fourier transform will result in greater improvements
compared with the separable fractional Fourier transform and common Fourier
transform. This filtering scheme may also find applications in optical systems

to remove twin images in holography.
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Appendix
The observation model is of the form
o=H(f)+ n, (6.8)

where H(-) is a linear system that degrades the input signal f, and n is an
additive noise term. It is assumed that the correlation functions of the input
and noise processes are known. Our problem is to filter the observed signal o

to minimize the effect of noise. Our estimate satisfies the equation:
Fori U (@,9)} = glz,9).F55 [o(w, y)].

The estimate is given by

flw,y) =

JIBE 0, Y g 2y g2, y") [ f Bylo? (27 y" ', y') o(a! y')da! dy’ da”” dy”
and the error is

or = E [If - £}
where I7]] denotes the expectation operator and || - || denotes the norm:
6l = [ [ 15(@,p)Pdz dy.

Since the two-dimensional fractional Fourier transformation is unitary, this

MSE is equal to the error in the transform domain:
1
2 _ Qx,ay fla,dy 2
Te = E [“folﬂ'z — 16,,0, ” ]

The problem is to find the multiplicative filter g in the ath domain that min-
imizes the MSE in the above equation. We define the cost function J to be
equal to the MSIa:

J=o?= B[] [((e,0) = ) (F(e9) = Fwy))dody].
J varies with the choice of the multiplicative filter g(z,y) since f'(_:u, y) varies.

Ihus, the functional J is to be minimized with respect to g(-). We substitute

9() = ¢o(+) + @bg,(-) in the expression of the estimate F(). In this equation,
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« is a complex scalar parameter, g(-) is the optimum filter, and 8¢,(-) is an
arbitrary perturbation term. Since ¢ is a complex constant, we can express
it as o = ape + t0y. Now f(-) and J vary with « for each fixed ég,(-). The

optimum value of J will be obtained from the following conditions [62]:

By using the conditions above, the optimal filter function that minimizes

the error can be shown to satisfy the following equation:
Uy, Qy alya’l oy Ay
[(/01,02 ( ’J) /01,02/. )) {001 0')J l’ J)} 0

which is nothing but the well-known orthogonality condition. The above equa-
tion states that the best linear mean-square estimate fo“ (x,y) is an orthog-

az,0y

onal projection of the signal fy*) Y(x,y) onto the space of observations.

The optimum filter function g,,¢(+, ) can be solved from the above equation
by using the definition of /511},?( x,y). The optimum filter function is found to
be
‘[ileyozt(:U? Y5 Ty 1 )

Rozhoa (_LL‘,'I 7Ty '!/)

gc)pt(way) =

For simplicity, we use f, and o, as the non-separable fractional Fourier trans-
forms of f(z,y) and o(z,y) with parameters a,, ay, 0; and 0,. Ry, .. (2, y;2,y')
and R, ..(¢,y;2',y") are the correlation functions in the transform domain

(Gy, ay) defined as
Ry ooz, 952", y") = Elfu(z,y)0a(z’, y')]
and

Rouoa(@, 432", y") = Elog(z,y)ou(a’,y")].

These correlation functions can easily be calculated from the correlation
functions in the spatial domain:
/{f(l,yo(l. T J, T y)
ax, Gpyayy—=1/ 1 N S N N AT IN A A A B
= ////BOL’“OOJ a,y; 8y W By o} (2, y; 2" y" ) Ry o2,y 2 y")da" dy' da” dy
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and
f’(lyUu T Il/”z’ y)
—////B:}“’(Z’ z,y; 2,y 1 Bo ol Y (=, 552", 4" ) Ro o2,y 2, y" ) da! dy' da”" dy”

In order to find the domain in which the MSE is smallest, we substitute the
optimum filter function into the MSE expression:
Oco = L [/ /[fa(w» 3/) - fa,o(x> y)][fa(:c, 3/) - fa,o(:L', 3/)]* dz dy
= [(Bp (e, y52,y) = 2Re(93(2,0) Rpon (2,53 2,1))

+190(2,Y)|* Rog 0a (2, 93 ¢, y)] da dy.
The optimum values of a, and a, are those that minimizes the MSE. These
values can be found by simply calculating the MSE for different values of «,
and «, and choosing the values that minimizes the MSE or by using multivari-

ate optimization techniques possibly involving simulated annealing or genetic

algorithms.

63



Chapter 7

Conclusion

The fractional Fourier transform is generalized to two dimensions by apply-
ing the one-dimensional definition in @ and y directions separately. Since the
transform defined in this manner is separable, its properties are similar to
that ol one-dimensional transform. Several properties of the separable two-
dimensional fractional Fourier transform are derived or collected. (Some of
these properties were already known or are trivial generalizations of their one-

dimensional counterparts.)

Separable two-dimensional fractional Fourier transform can be optically im-
plemented by using optical systems composed of thin lenses and sections of {ree
space. We presented several optical systems by taking two different approaches.
The first approach is based on the optical implementation of quadratic-phase
systems and the results are specified to fractional Fourier transform by using
the fact that [ractional Fourier transform is a special quadratic-phase system.
The second approach is specific to fractional Fourier transform. Begiuning
from the simplest set-up with two cylindrical lenses, many optical systems are

examined.

The separable definition fails to satisfy the affine property which the com-
mon Fourier transform satisfies. When an arbitrary affine transformation is

applied to the function, its two-dimensional fractional Fourier transform can
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not be represented as a scaled version of the fractional Fourier transform of the
original function. We also wanted to specily the direction of transformation,
which will enable us to take the two-dimensional fractional Fourier transform
of a function along two arbitrary directions with the specified orders. But the
separable two-dimensional fractional Fourier transform is always defined along
traditional ¢ and y axes and has no control on the directions along which the
orders are defined. These two reasons motivated us to search for a new and
more comprehensive definition for two-dimensional transform. We presented
a new, non-separable definition which corresponds to fractional Fourier trans-
formation along arbitrary directions and showed that this definition satisfies
the affine property. The discrete-time and optical implementations of non-

separable definition are given and its properties are derived.

The last part of the study is devoted to an application which justifies the
usefulness of our new definition. Chirp noise is added to the image and the
liltering scheme is implemented by using both definitions. The non-separable
definition enabled a significant reduction of the MSE compared to the separable

one.
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