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ABSTRACT

A RHYTHM ANALYSIS METHOD FOR EXERCISE 
ELECTROCARDIOGRAMS

B. Kerem Çağlar
M.S. in Electrical and Electronics Engineering 

Supervisor: Prof. Dr. Hayrettin Köymen 
September 1996

Exercise electrocardiography (the exercise ECG test or the stress EGG test) 
is one of the most popular and the most important non-invasive diagnostic tests 
in the field of cardiovascular disease. Arrhythmia analysis is an important part 
of the exercise ECG. A new approach to arrhythmia analysis is proposed in 
this thesis. 12 lead ECG signal is first reduced into three orthogonal channels 
which contain all the power of ECG. The orthogonalization process, an online 
Singular Value Decomposition (SVD) algorithm, maintains that these channels 
are free from both baseline wander and EMG noise. The third output channel 
has very low power with respect to first two. Making use of the orthogonality 
of these new channels. Total Power Signal (TPS) is calculated by summing 
the squares of orthogonalized channels. Employing the first two channels in 
TPS yields 92-99% of ECG power contained in all channels. Any arrhythmic 
behaviour during exercise test effects the TPS. In order to obtain the fiducial 
points of QRS complex first derivative of TPS is calculated. The method 
is compared with an algorithm proposed previously. The method and the 
algorithm are tested on 22 complete stress ECG test each with a duration 
between 9.5 to 26.5 minutes.

Keywords : Exercise ECG test, Singular Value Decomposition (SVD), QRS 
Detection, Arrhythmia Analysis.
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ÖZET

EFORLU ELEKTROKARDIOGRAiVI İÇİN BİR RİTİM
ANALİZ METODU

B. Kerem Çağlar
Elektrik ve Elektronik Mühendisliği Bölümü Yüksek Lisans 

Tez Yöneticisi: Prof. Dr. Hayrettin Köymen
Eylül 1996

Eforlu elektrokardiografi (eforlu EKG testi), kalp damar hastalıkları 
alanındaki vücudun dışından tanı koyulmasını sağlayan en güncel ve önemli 
testlerden biridir. Aritmi analizi eforlu EKG testinin en önemli kısmıdır. Bu 
tezde, aritmi analizine yeni bir yaklaşım öne sürüldü. İlk önce 12 kanal EKG 
sinyali, birbirine dik 3 altuzaya indirgenir. Bu işaretler tüm EKG gücünü 
içerirler. Dik uzaylara ayrıştırma işlemi eşzamanli Tekil Değer Ayrıştırma 
(SVD) algoritması ile gerçekleştirilir. Bu işlem sonunda elde edilen işaretler 
EMG gürültüsü ve referans potansiyelinde kayma içermezler. Üçüncü çıkış 
kanalı diğer ikisine göre daha az güce sahiptir. Bu yeni oluşturulan kanalların 
dikliği kullanılarak Toplam Güç işareti (TGI), dik kanalların kareleri topla
narak hesaplanır. Sadece ilk iki kanalı kullanarak elde edilen TGI, bütün 
EKG kanallarının gücünün %92 ila %99 unu içerir. Eforlu EKG testi sırasında 
oluşan herhangi bir aritmi TGİ’ni etkiler. QRS kompleksinin önemli nok
talarını bulabilmek için TGI’nin birince türevi alınır. Bu metod daha önce 
önerilmiş algoritmalardan birisiyle karşılaştırıldı. Her iki yöntem, herbirinin 
süreleri 9,5 ile 26,5 dakika arasında değişen 22 adet eforlu EKG testi verisi ile 
denendi.

Anahtar Kelimeler : Egzersizli EKG testi, Tekil Değer Ayrışhnlması 
(SVD), QRS bulma. Aritmi Analizi.
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Chapter 1

Introduction

Ever since Einthoven introduced electrocardiography as a new method to di
agnose heart disease [1], its use and importance has expanded. The electro
cardiogram (ECG) is a non-invasive technique. It is inexpensive, simple.

Fisch mentioned [2] that the ECG

1. still serves as an independent marker of myocardial infarction

2. reflects anatomic, metabolic alterations

3. demonstrates a variety of complex electrophysiologic concepts through 
deductive reasoning

4. is a stimulus for a laboratory conflrmation of postulated mechanisms and 
concepts

5. is vital for proper diagnosis and therapy

6. is without peer for the diagnosis of arrhythmia.

Although the sixth item involves the diagnosis of arrhythmia, most of the 
arrhythmia types can not be seen on rest electrocardiogram due to short span 
of time. Instead Holter [3] or exercise ECG methods are used in diagnosis 
of arrhythmia. The first paper regarding the exercise test was published by 
Master [4] in 1929.

The exercise ECG test (stress ECG test) is another important and non- 
invasive diagnostic tests in clinical evaluation of patients with suspected or
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known cardiovascular disease. The exercise ECG test is also a very useful tool 
as a screening procedure for healthy individuals who are considered to be at 
possible risk of heart disease.

The exercise ECG test is performed by a motor driven treadmill in most 
medical institutions in the United states of America. However, in European 
countries, the treadmill exercise ECG test is less popular. Instead a bicycle 
ergometer is commonly used. At present, various multistage exercise protocols 
have been developed by different investigators for the exercise ECG test using 
either a motor driven treadmill or an electrically braked bicycle ergometer [5].

The exercise ECG test requires 15 to 30 minutes record with at least 2 
channels. On the other hand one channel is recorded throughout 24 hour in 
Holter test. In all of the conventional methods of arrhythmia analysis tools at 
most two channel information is used. In the method proposed in this thesis, 
12 lead ECG information is composed into two orthogonal channels. This 
method implemented is applied to 22 patients’ data. The data

• is obtained using a 12 bit D/A converter
• have sampling rate of 500 samples/second
• is recorded through 8 channels
• have lengths between 9.5 to 26.5 minutes.

In Chapter 2 general elecrophysiology of the heart is described. Chapter 
3 presents, compares and comments about two methods for reconstruction 
of a lost ECG channel. The general concepts about arrhythmia and QRS 
detection, some QRS detection algorithms in the literature are explained in 
Chapter 4. The method proposed in this thesis is described in Chapter 5. The 
algorithm suggested in [6] is implemented for comparison purpose. Results 
and comparisons of the two algorithms are provided in Chapter 6. Finally, 
conclusions are given in Chapter 7.



Chapter 2

The Elecrophysiology of The 

Heart

Heart is a unique organ which produces it’s own electrical stimulation. The 
major elements of the electrical structure of the heart are the working muscle of 
the atria and ventricles, the specialized conduction tissue, and the pacemaker 
cells [7]. The general anatomical structure is shown in Fig. 2.1

Figure 2.1: Special conductive regions and pacemaker ( SA node) of the heart.

The pacemaker cells, found at the SA node are self-excitatory. That is, 
instead of maintaining constant resting potential, a regular succession of action 
potential, elicited when an adequate stimulating current is passed thorough a 
cell, originates. These action potentials lead to a series of heart beats.

Action potentials initiated from SA node, excites the neighboring cells. A 
cell to cell excitation takes place in the atria. When this excitation reaches 
to AV node, specialized conduction cells take the impulse to ventricles. Since 
there is non-conducting tissue between atria and ventricles. The conduction 
cells conduct the excitation slowly. Hence a latency is introduced between

3



atrial and ventricular excitation [7].

R

Figure 2.2; A normal electrocardiogram

As the cardiac impulse passes through heart at every cardiac cycle, elec
trical currents spread into the tissues surrounding the heart, and a projection 
of these currents appear on the surface of the body. This phenomenon can be 
used as a diagnostic tool for examining some of the functions of the heart by 
placing electrodes on the surface of the body. Then electrical potentials gener
ated by these currents can be recorded which is known as the electrocardiogram. 
A normal electrocardiogram is shown in Fig. 2.2.

2.1 Heart Vector (Dipole)

At any instant of time during activation of the heart, the source is distributed 
to all the surface of the heart. This activity can be approximately represented 
as a vector quantity. A simple model have been developed to represent this 
activity. In this model the heart consists of an electric dipole located in the 
thorax. It can be represented by its dipole moment. This is a vector directed 
from negative charge to the positive charge. In elecrophysiology, this dipole 
moment is known as heart vector (dipole), and is represented by H, as shown 
in Fig. 2.3 [8]. The heart dipole is expected to vary both in magnitude and 
in direction in a smooth manner. The heart vector is related to volume dipole 
moment density, Jj, of the heart by

or

H  =  J  JidV

= I  j id v ,  Hy = I  j ;d v , H , = I  Ji dV

(2.1)

(2.2)



Figure 2.3: A sketch of the dipole field of the heart

where H  is the heart vector ( a function of time), and Ji =  J 'a x  +  Jj)ay +  J'a.z 
More details are given in [7] and [8].

2.2 Lead Vector

The voltage measured between two body surface electrodes depends on the 
lead location, heart location, heart vector and torso volume inhomogeneities. 
For a particular heart vector location and lead position a unit magnitude heart 
vector can be written as

H — ĥ jUx T hy3 .y T h ^ ^ Z ' 

The lead voltage Vi is given by

Vi — h x lx  T hjl*

(2.3)

(2.4)

where li represents lead voltage formed by component of H, if it had unit 
length x ,y , or z components. Eqn.( 2.4) can be written as a dot product; that 
is

Vi =  H  · 1. (2.5)

This expression demonstrates the lead voltage dependence on the heart vector 
and lead vector which reflects the geometry and conductivity [7].



2.3 Standard Leads

The standard leads, first introduced by Einthoven [8] and [1], were placed at 
wrists and ankles. Placement of electrodes on extremities is not very critical 
since extremities are isopotential. The right leg is grounded for noise cancela
tion purposes (Fig. 2.4 (a)). Then the three lead voltages are

Vi =  ^LA — ^ñ.4 (2.6)

Vll = ^LL — (2.7)

VlII =  ^LL — ^LA (2.8)

A typical lead voltage waveform is in Fig. 2.2. The P-wave is caused by 
electrical potentials generated as the atria depolarize prior to contraction. The 
QRS complex is caused by potentials generated when the ventricles depolarize 
prior to contraction. Therefore both P and QRS complex are depolarization 
waves.

The T wave is caused by potentials generated as the ventricles recover from 
the state of depolarization. This process occurs in ventricular muscle 0.25 to 
0.35 second after depolarization, and this wave is known as a repolarization 
wave. There is another repolarization wave caused by electrical potentials as 
the atria repolarized. But this occurs in 0.15 to 0.25 second after the P wave. 
However, this occurs at the same time that the QRS wave is being formed. 
Therefore, the atrial repolarization wave, known as the atrial T wave, is usually 
totally obscured by the much larger QRS wave. For this reason, an atrial T 
wave is rarely observed in the electrocardiogram [9].

By means of Kirchoff’s law the net potential drop around a closed loop is 
zero, then

i^LA ~ ^R a ) + i^RA — ^L l) + i^LL ~ ^L a ) = 0. (2-9)

Using Equations (2.6)-(2.8), Eqn.(2.9) can be written as

+ Vjij = Vji (2.10)

so that only two limb lead voltages are independent. According to Eqn.(2.5) 
the lead voltages are found by projecting the heart vector on the perspective 
lead vector. This is illustrated in Fig. 2.4 (b).

Additional electrocardiographic data are obtained from leads placed on the 
chest (precardium) (Fig. 2.5 (a)). Each precordial lead is measured against the 
Wilson central terminal (CT) as a reference. The CT is formed at the junction



LEAD I

Figure 2.4: (a) Placement of electrodes for standard leads, (b) The Einthoven 
triangle. Employment of heart vector and lead vectors to find lead voltages.

of three 5K resistors the other end of each being connected to a different limb 
lead as illustrated in Fig. 2.5 (b). Assuming the use of a very high input 
impedance potential measuring system, $ c r  gives

^CT =
'i’ÄA + ^LA +  ^LL

(2.11)

(a)

Figure 2.5: (a) Positions of the precordial leads on the chest wall (b) Connec
tion of electrodes to the body to obtain Wilson’s central terminal.

In addition to standard leads and precordial leads, there are three more 
leads called augmented leads, aVR, aVL, and aVF. These leads are for diag
nostic purposes. Augmented leads are calculated, employing standard leads as



follows:

qV R

aVL

&VF

D1 + D2

D 1 - D 3
2

D2 + D3

(2. 12)

(2.13)

(2.14)

Typical shapes of every lead is in Fig. 2.6. The augmented leads and D3 
are not measured. They are calculated using D1 and D2.

(a) (c)

(1)

Figure 2.6: Typical ECG waveforms of (a) D1 (b) D2 (c) D3 (d) aVR (e) aVL 
(f) aVF (g) VI (h) V2 (i) V3 (j) V4 (k) V5 (1) V6



Chapter 3

R econstruction of A Lost ECG  

Channel

A patient under stress test, walks or runs on a treadmill. This test takes a 
period of between 10 to 30 minutes. During the test, some channels may be 
lost due to non-conducting electrodes. A method based on least squares was 
suggested by Mortara to recover the signal in channels [10]. The least squares 
method minimizes mean squared- error between the original signal and the 
estimated signal. That is

M S E = < { x - y f >  (3.1)

where x and y are the vectors with entries original and reconstructed channels 
respectively. The operator <> shows mean. The vector y can be calculated 
as

y(z) =  Cx(i) (3.2)

where C is the coefficient matrix involving the coefficients for reconstructing 
all channels individually. For simplicity let us derive the formulation for one 
channel reconstruction and obtain a coefficient vector, Cj. This vector is used 
to form the whole C matrix. If Xj is the lost channel let us denote xy as the 
vector with the remaining seven channels as its entries:

X j =
iT

Xi Xj —\ Xi (3.3)

The mean-squared error is < {xj 
minimizes this equation is

c jx ,y

Cj = < x j x j  >   ̂ X j X j .

>. Coefficient vector Cy which

(3.4)



Using 3.4 whole C matrix can be formed performing the following multiplica
tion. Diagonal entries of C matrix must be fixed to zero.

- I  - 1
< Xl,Xl >< Xi,X2> . . .< Xi,Xs >

< X2,Xl >< X2,X2 > . . .< X-2,Xs >

<  X S , X l  > <  Xs, X2 >  . . ■< X8, x& >

0 < Xi,X2 > . . .< Xi,X^ >

<X2,Xi > 0 . . .<X2,X&>

< Xs,Xl >< Xs,X2 > ■ ■ ■ 0

In this method C matrix is calculated once and used within all data re
laying on the assumption that EGG pattern does not change in time. But in 
exercise EGG shape of QRS complexes may change in time. Also frequency 
of QRS pulses varies in time due to changing performance of patient. As a 
result least squares is not an appropriate method for reconstruction of a lost 
channel in exercise EGG. In order to investigate possible improvements in the 
reconstruction of the lost channel or channels, an adaptive approach is used. 
The output of the adaptive filter is compared with the output of least squares.

3.1 LM S-Newton Algorithm

Before going into the details of LMS-Newton algorithm, a short review about 
adaptive filtering will be given.

3.1.1 Adaptive Filtering

A nonrecursive adaptive filter is fundamental to adaptive signal processing. 
A diagram of the general form of the nonrecursive adaptive filter is shown in 
Fig. 3.1.

The main purpose of the adaptive filtering is minimization of a cost function 
of error, €. This error is the difference between a desired signal, dk, and output 
of adaptive filter, yk- The coefficients, w, varies adaptively.

efc =  dk -  Vk = d k -  X j W  =  dk -  W ^ X , 

The most common cost function is the mean-square.

4  = 4  + w ^ X k X l w  -  2 d k X lw

10
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Figure 3.1: General form of the nonrecursive adaptive filter.

e {4] = e i4\ + wf£[XtXf|w - 2£;|4xaw (3.7)

The mean-square-error function can be more compantly expressed as fol
lows. Let R  be defined as R  =  E[X.j^X.^] and similarly P  as P  =  £'[di,X)3], then 
mean-square error in Eqn.(3.7), which is designated by can be re-expressed 
as

M S E  =  e =  E[el] = E[dl] -b W ^R W  -  2P^W (3.8)

The mean-square error is a quadratic function of the components of the 
weight vector when desired response and input vector are stationary stochas
tic variables. A concave quadratic function has always a minimum. Many 
adaptive processes employ gradient search techniques to seek the minimum. 
Gradient of designated as, V((^) can be obtained by differentiating expression 
in Eqn.(3.8)

AV
d W

=  2RW  -  2P (3.9)

To obtain the minimum mean-square error (MMSE), a W  is calculated setting 
gradient to zero, leading to

W *R"^P (3.10)

where W* is the optimal value of W .

3.1.2 Gradient Search by N ew ton’s M ethod

A recursive method can be established to search the minimum of the mean 
square cost function. Multiplying both sides of Eqn.(3.9) by j R “  ̂ and substi
tuting into Eqn.(3.10), we get

) (3.11)

11
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Changing this result into an adaptive form

W ,+i =  Wfc -  /rR -V ,- (3.12)

Using a noisy gradient estimate V, in place of V and ej. as an estimate for 
(Eqn.(3.6))

Vt = -2ekXk (3.13)

Substituting Eqn.(3.13) into Eqn.(3.12) the adaptive LMS-Newton Algorithm’s 
coefficient adaptation can be found as

W,.+i = W , +  2/rR-i£,Xfc (3.14)

Since real R   ̂ is not known an estimate, R  for that is used. An update for 
that is as follows [11]:

r»-l - 1 /f>-l X
-  Oi---------;----- ----------- )

1 -  O'  ̂  ̂ 1 -  Q! +  ax^’RfciiXt

where and a are constants between zero and one. But for convergence
1

0 < H <

(3.15)

^max

where Xmax is the maximum eigenvalue of the input correlation matrix, R.

3.1.3 Results

All channels are reconstructed using the remaining seven leads for 22 exercise 
ECG data. Also, the effect of two and three lost channels is examined. All 
the remaining six and five leads the combinations are employed. Effect of 
increasing lost channels is observed.

When the number of lost channels is increased, error between original and 
reconstructed signals are increased. This phenomenon can be observed in 
Fig. 3.2. In Fig. 3.2 (a) seven channel reconstruction of V6 is shown. Percent
age error between original and reconstructed signal is 3.6%. In Fig. 3.2 (b) 
plot of reconstructed signal using six channels (Dl, VI, V2, V3, V4, V5). The 
percentage error is 7.4%. In Fig. 3.2 (c) sketch of original signal and recon
structed signal using 5 leads (Dl, V2, V3, V4, V5) of V6 is shown. It has a 
percentage error of 9.3%.

The correlation coefficients between every pair of channels differs. The 
observations on data from 22 patients show that, D2 is less correlated to other

12



(c)
Figure 3.2: Original and reconstructed signals of V6 using (a) 7 leads (b) 6 
leads (c) 5 leads.

channels, since there is no other lead with the same direction. Since it involves 
a big amount of energy of EGG, when it is lost it can not be reconstructed 
properly. Also different results are obtained for different configurations of input 
channels. In Fig. 3.3, two reconstructed signals for V6 employing different 
combinations of input channels.

In Table 3.1, percentage errors between original signals and reconstructed 
signals obtained using one record can be seen. Different results are recorded 
when six and five leads combinations are used.

3.1.4 Problems with this M ethod

There are some problems with this method.

• Since the aim is to reconstruct the lost channel, the adaptive filter is less 
instrumental, because the desired signal is also the lost channel. The 
coefficients obtained just before loss of the channel may be stored. Then 
these coefficients are employed to reconstruct the lost channel.
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(a) (b)

Figure 3.3: Original and reconstructed signals of V6 using leads with combi
nations (a) D2, VI, V2, V3, V4 (b) Dl, D2, VI, V2, V3

#  of i/p  channels 7 6 5

Ghannel % Error
min

% Error
max 

% Error
min

% Error
max 

% Error
Dl 9.4 9.5 23.2 10.8 24.8
D2 16.6 13.9 21.8 17.4 33.9
VI 11.9 11.5 30.6 15.0 30.6
V2 2.6 2.6 6.1 3.0 20.6
V3 2.4 2.4 3.5 2.6 22.4
V4 2.4 2.5 5.6 2.8 12.3
V5 4.1 3.3 7.8 3.2 10.55
V6 3.6 3.5 7.4 3.9 11.4

Table 3.1: Table of percentage errors between original and reconstructed sig
nals.

• High correlation between EGG channels makes the input correlation ma
trix ill conditioned. This causes error between original and estimated 
signals. Instead of using original EGG signals for reconstruction, or- 
thogonalized EGG signals are used [12]. This process also reduces the 
dimension of signal space.
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Chapter 4

Arrhythm ia

4.1 W hat is Arrhythmia ?

Cardiac Arrhythmia are associated with electrical instability and, hence, with 
abnormal mechanical activity of the heart. They can and do interfere with the 
normal circulation of oxygenated blood around the body. Some arrhythmia 
can halt this flow and can be fatal. In many cases, arrhythmia can be treated 
with drugs or electric shock to control and or to stop them. Detection of 
arrhythmia is one of critical problems in cardiac electrophysiology.

A cardiac cycle normally originates in the sinus node which is high in the 
right atrium. If a depolarization wave originates in a site other than the sinus 
node, an arrhythmia results. There are several mechanisms that can be re
sponsible for arrhythmia. In clinical practice, arrhythmia are often subdivided 
according to their site of origin. When it is known that the source of the ar
rhythmia lies in the atria and not in the sinus node (Fig. 4.1), the arrhythmia 
is called atrial. The QRS shape of an atrial complex is usually similar to that 
of the sinus complex except that it appears prematurely and has a differently 
shaped P-wave. If the source of an arrhythmia is in the atria or close to the 
A-V node, the resulting arrhythmia is called supraventricular (atrial arrhyth
mia are a subgroup of supraventricular arrhythmia). If the source is in the 
ventricles, it is called ventricular. Ventricular complexes tend to have broader 
QRS complexes than sinus complexes because of asynchronous activation of 
the bundle branches.
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Figure 4.1: Special conductive regions and pacemaker ( SA node) of the heart.

There are variety of terms used to describe an abnormal ventricular com
plex. The most common are: ventricular ectopic complex (VEC), ventricular 
ectopic beat (VEB), premature ventricular complex (PVC), ventricular pre
mature beat (VPB), and ventricular premature deflection (VPD). Although 
the terms may appear to distinguish different types of ventricular complexes, 
they are generally used synonymously.

4.2 QRS Detection

QRS detection ( Fig 4.2) is the first analysis stage in which pattern recognition 
is important. The QRS detector is the most important part of an arrhythmia 
monitor, since the accuracy of the whole system depends on it.

ECG
SIGNAL

Figure 4.2: The QRS Detector module

The QRS detector can be divided into two parts: an initial analysis stage 
that detects the presence of a QRS and a subsequent stage that performs 
a timing marker or fiducial point for detected QRS complexes. The search 
process for QRS complexes requires that candidate waveforms meet two or 
more criteria.

The most general QRS criterion is that the waveform has a certain mini
mum amplitude, the purpose of which is to eliminate to a first approximation 
the false detection of P-waves, T-waves, and low-to-medium level noise. This 
amplitude threshold may be fixed or may vary depending on the height of the 
previously detected complexes. After a candidate waveform has passed the
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Figure 4.3: Commonly used Fiducial Markers

amplitude criterion, it must then meet certain criteria regarding shape. These 
shape criteria pertain specifically to the characteristics of the slopes that com
prise the waveform. Once a candidate waveform has qualified for being a QRS 
complex, the timing of the event must be established. This information, which 
must be reliable, is passed to subsequent analysis stages for use in the com
putation of beat characteristics, RR intervals, prematurity, QRS width, etc. 
Some of the commonly used fiducial markers are illustrated in Fig. 4.3.

4.3 Some Commonly Used QRS Detection  

Algorithm Types

In this section, some of the QRS detection schemes will be described. A large 
number of QRS detection algorithms are explained in the literature [6,13-20]. 
All of these schemes employs one original EGG lead signal information. Their 
performances are compared in [21].

Algorithm 1

This algorithm was derived by Moriet and Mahoudeaux [15]. In this scheme 
an amplitude threshold is calculated as a fraction of largest positive valued 
element of original signal x. Then first derivative y is calculated at each point 
of X such that

y{n) = x(n  +  1) — x{n — 1)
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A QRS candidate occurs when three consecutive points in the first derivative 
array exceed a positive slope threshold are are followed within the next 100 ms 
by two consecutive points which exceed the negative threshold. All data points 
in the ECG between the onset and offset must meet or exceed the amplitude 
threshold.

Algorithm 2

This algorithm is first developed by Fraden and Neuman [16]. A threshold 
is calculated as a fraction of the peak value of the ECG signal x. Then the 
raw data is rectified, yo =  l̂ l̂, the rectified signal is passed through a low level 
clipper such that

yi(^) =
?/o(n) if Vain) > amplitude threshold

0 if yi){n) < amplitude threshold 

The first derivative is calculated at each point of the clipped, rectified array:

2/2(n) =  y\{n +  1) -  2/1 (n -  1)

A QRS candidate occurs when a point in y-iiji) exceeds a fixed constant thresh
old.

Algorithm 3

This algorithm was developed by Menard [17]. The first derivative is calcu
lated for each point of the ECG, using the formula

y{n) =  -2 x (n  -  2) -  x{n -  1) +  x{n +  1) + 2x{n + 2)

The slope threshold is calculated as a fraction of the maximum slope for the 
first derivative array. The first derivative array is searched for points which 
exceed the slope threshold. The first point above the threshold is taken as an 
onset of a QRS candidate.
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This algorithm was first suggested by Baida [18]. The absolute value of the 
first and second derivative are calculated from the ECG:

7/o(n) =  \x{n +  1) -  x{n -  1)1

y\{n) = \x(n + 2) -  2x{n) + x{n -  2)\

These two arrays are scaled and then summed;

2/2(n) =  1.3yo{n) +  l.lj/i(n)|

This array is scanned until a threshold is met or exceeded. Once this occurs, 
the next eight points are compared with respect to the threshold. If six or more 
of these points meet or exceed the threshold, the criteria for identification of 
a QRS candidate is met.

Algorithm 5

This algorithm is taken from Ahlstrom and Tompkins [6]. The rectified first 
derivative is calculated from the ECG:

^o(n) =  |a:(n +  1) -  x{n -  1)|

This signal is then smoothed:

yi{n) =  [yo(n -  1) +  2yo{n) +  yo{n + l)]/4

The rectified second derivative is calculated:

|/2(n) =  \x{n +  2) -  2x{n) + x{n -  2)1

The rectified, smoothed first derivative is added to the rectified second deriva
tive, yz = yi + y2- The maximum value of this array is determined and scaled 
to serve as primary and secondary thresholds, yz is scanned until a point ex
ceeds the primary threshold. In order to be classified as a QRS candidate, the 
next six consecutive points must all meet or exceed the secondary threshold.

Algorithm 6

Algorithm  4

This algorithm was developed by Engelse and Zeelenberg [19]. The ECG is 
passed through a differentiator with a 62.5 Hz notch filter.

yo{n) -  x(n) -  x{n -  4)
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This data is then passed through a low-pass filter.

y\{n) = yo(n) +  Ayo{n -  1) +  6yo{n - 2 )  + Ayo{n -  3) +  yo(n -  4)

Two thresholds are used, equal in magnitude but opposite in polarity. The 
output of the low-pass filter is scanned until a point with amplitude greater 
than the positive threshold is reached. This point is the onset of a 160 ms 
search region. Let yi{i) > threshold If no other threshold crossings occur 
within the 160 ms search region starting from onset, the occurrence is classified 
as baseline shift. Otherwise, the following three conditions are tested:

Condition 1: If y\{i + j)  < —threshold 0 < j  < 160ms

Condition 2: If y\{i + j)  < —threshold 0 < j  < 160ms

and

yi{i + k) > threshold j  < k < 160ms

Condition 3: If yi(i + j)  < —threshold 0 < j  < 160ms

and

yi(i + k) > threshold j  < k < 160ms 

and

yi{i + 1) < —threshold k < I < 160ms

If any of the above conditions apply, the occurrence is classified as a QRS 
candidate.

Algorithm 7

This algorithm is taken from Okada [20]. The first stage smoothes the ECG 
using a three-point moving average filter:

yo{n) = [x{n -  1) +  2x(n) + x{n -\-1)1/4

The output of the moving point averaging filter is passed through a low-pass 
filter/

i n+m

The difference between the input and output of the low-pass filter is squared, 
y-2 =  (t/o — yiY- The squared diffe.rence is filtered:

n+m

y3{n)=y2{n){
k =n— m
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A fourth array is formed using the following formula:

yz{n) if [yo(n) -  yo{n -  m)][i/o(n) -  yQ{n +  m)] > 0
2/4 (n) =

0 otherwise

The maximum value of this array is determined and scaled to form the thresh
old. A QRS candidate occurs when a point in 2/4 exceeds the threshold.

Algorithm 8

This algorithm is suggested by Pan and Tompkins [13]. First ECG signal is 
passed through a band-pass filter composed of cascaded low-pass and high pass 
filters for noise rejection.

2/o(n) =  2yo{n -  1) -  yo{n -  2) -t- x{n) -  2x{n -  6) -b x{n -  12) (LPF)

yi{n) = 2/o(n) +  322/o(n -  16) -  2/o(n -  32) -  y,{n -  1) (HPF)

The band-pass filtered signal is differentiated employing a five-point derivative 
with th e difference equation

2/2( )̂ =  g [~2/i(^ — 2 ) — 2y i ( n  — 1) -b 2y i { n  -b 1) -b 2/1(7̂  +  2 )]

After differentiation, the signal is squared, 2/3 =  [У2]̂ · Then moving window 
integration is applied to the squared signal,

2/4(71) =  [̂2/3(71 -  N + . l )  +  y ^ { n  -  A  -b 2) + . . .  +  2/3(77)]

Two thresholds are calculated, one from the integrated signal, 2/4, the other 
from filtered signal, 2/2· To be identified as a QRS complex, a peak must be 
recognized as such a complex in both the integration and band-pass filtered 
waveforms.

Algorithm 9

This algorithm is proposed by Akazawa [14]. First a digital filtering is executed

1 Wf
2/0(77) ^  h{\k\)x{n + k)

Second, moving average is applied

2/1 (77) =  E  12/0(77 + A:)]
^yyj + i 
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Then a logarithmic transformation is exploited to this filtered and averaged 
signal.

y^in) = int[M \og[l +  2/1 (n)}]

Decision of the threshold for 2/2 (n) is a key to detection of QRS. A time varying 
threshold T{n) is decides as follows. First histogram for the amplitude of 2/2, 
denoted by D(n, k) is given by

Wh

1 if 2/2(n + 2) =  A; 

0 otherwise

Second, the distribution function, H(n,p), is obtained by integrating the his
togram. When H{n,p) is equal to a time varying constant Kff, the value p 
is taken as the threshold T(n). 2/2 and T(n) are waveforms intersecting at 
onset and offset points of QRS complexes and T waves. To distinguish QRS 
complexes from T waves following criterion is employed

D(n, k)

where

u{n, i, k)
f 1

= {
0

offset
s =  E  {2/2(0

i=onset
T(i)) > St

4.4 Arrhythmia Detection and Classification

As described in the previous section arrhythmia analysis module is a subse
quent section of the QRS detector. They are designed to detect only some 
of the more obvious abnormal rhythms such as ventricular salvos, bigeminy, 
trigeminy, tachycardias, and bradicardias. Arrhythmia detection and classi
fication can be accomplished using RR intervals and QRS durations. QRS 
duration is not needed in detection of some arrhythmia. For example, R on 
T beats, APB, Paroxismal bradycardia, etc. In detection of these type of ar
rhythmia, RR intervals of three or more consecutive beats are used. In general, 
every RR interval is compared with an average RR interval. Hence irregular 
rhythms are detected.

On the other hand, in addition to RR interval QRS duration must be 
employed in detection of some of other arrhythmia types. For example, PVC’s 
and couplets. Similar to detection of irregular rhythms, duration of every QRS 
complex is compared with an average QRS duration.

22



Chapter 5

M ethod

In this chapter, a method for detecting and analyzing the arrhythmia will be 
proposed. The block diagram of the stages involved are depicted in Fig. 5.1. A 
first stage process is orthogonalization of 8 lead data. The aim is to decrease 
the number of channels. The second step is calculating the power signal. The 
purpose is to obtain a single signal representing all the ECG signal. In order 
to find the onset and offset points, a third stage, differentiation introduced. 
The last part of the QRS detection algorithm is the search stage. An analysis 
phase is added to obtain a full package of arrhythmia analysis tool. Every step 
will be discussed individually in this chapter.

Figure 5.1: Block diagram of the method proposed.

5.1 Orthogonalization of ECG Signal using 

SVD

This is the first stage of the algorithm. 8 lead ECG signal is reduced into three 
orthogonal channels using singular value decomposition. The orthogonaliza
tion process maintains that the first three channels are free from noise. Noise

23



is accumulated to the other channels. Two major noise sources exist in ECG. 
One of them is muscles around the electrodes. Noise sourced from muscles is 
called EMG noise. Frequency range of EMG noise is a bit larger than ECG 
and overlaps with it. Effect of SVD to an ECG with EMG noise is shown in 
Fig. 5.2. D1 and D2 are highly corrupted with EMG noise. First two channels 
of output of SVD does not involve EMG noise so much. Another noise source 
is the respiration of patient. This is a low frequency noise ( below 0.5 Hz) and 
is called baseline wander. Input and output of SVD when ECG is corrupted 
with baseline wander can be seen in Fig. 5.3. D1 involves baseline wander. 
After processing employing SVD, noise is accumulated in channel 4 and first 
two channels are noise free. Also sometimes one or more ECG channels may be 
lost due to non-conducting electrodes. When this kind of a situation occured, 
the method used the remaining ECG channels to form the SVD outputs.

(a) (b)

Figure 5.2: (a) ECG leads with EMG noise (b) output of SVD.

2

(a)

CH7
CH0

(b)

Figure 5.3: (a) ECG leads with baseline wander (b) output of SVD.

24



5.1.1 SVD

Let A G rank(A) = r. Then there exist orthogonal matrices U  G
T^mxm and V  G such that

A =  U S V ^ (5.1)

where

S  =

and S =  diag{a\,

S 0

0 0

., cTr) with cTi > . . .  > (Tr > 0 and 

U^U -  Ixn, V ^ v  = In

Proof: See [22].

The numbers a \ , . . . ,a r  together with (Jr+i =  0, ...,cr,i =  0 are called 
singular values of A. Eqn.(5.1) can also be written as sum of a r rank 1 
matrices.

r

A =  ^(T,UiV?’ (5.2)
»■=1

The columns of U, Uj, are called the left singular vectors of A while the columns 
of V, Vi are called right singular vectors of A. The rank 1 matrices in Eqn.(5.4) 
and singular vectors are unique if all singular values are distinct [23].

5.1.2 Some Useful Properties of SVD

Each left singular vector, Ui represents a filter in space such as

UjA = aivi

Also output signal of this filter reaches a maximal rms value for Uj is 
orthogonal to all previous left singular vectors:

Vx G j  — l , . . . , i  — l

<  IIA^uill =  a. (5.3)
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Another important property of the SVD is its relation to the eigenvalue 
decomposition of the nonnegative definite symmetric matrix AA^, given by

AA^ = (5.4)

5.1.3 Online Algorithm

Measurement signals can be written as a linear combination of source signals, 
plus noise [23]

m (t) =  T s(t) +  n(t) (5.5)

where m (t) is measurement vector, T is transfer vector, s(t) is the source 
signals and n(t) is noise vector. For time invariant case Eqn.(5.5) can be 
written as

M  =  TS +  N  (5.6)

For p electrode signal, r source signals and q samples, M, N  G S G
and T  G Then M M ^ is given by Eqn.(5.4). Assuming noise signals are
time orthogonal to each other and p then

=  alrlp

Then using Eqn.(5.6) and Eqn.(5.7)

2rr'^ , _2MM' = T S |T  +

(5.7)

(5.8)

where =  SS^. If transfer matrix, T is diagonalized employing a diagonal- 
ization method, mainly Given’s Rotation Method [24] then

0  = Q?T (5.9)

Therefore Eqn.(5.8) becomes

MM^ = QTesieQT^^ + <T.5,ip 
=  Q(D +  (7^Ip)Q’·

(5.10)

(5.11)

in which

D =
0S§© 0

0 0
(5.12)
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and Q is an orthonormal p x p matrix constructed by adding an orthonormal 
set of vectors spanning the orthonormal complement of the column space of 
Qt · If the SVD of M is written as

M = U i U 2
E l 0

0 S 2

Vi^

V 2 '
(5.13)

with U i E l Since the columns of U i span the same invariant
subspace of M M ^ as the columns of Qx, U iU i^  =  Qt Qt ^. Moreover if the 
first r  eigenvalues of M M ^ are disjoint, the first r  left singular vectors of M  
are equal to the unit vectors in the direction of the respective transfer vectors. 
Therefore, Uj represents a filter in space for which output signal contains a 
contribution proportional to the ¿th source signal, corrupted by noise. So 
source vector can be estimated by

S =  U i M = 0 S  +  u J n (5.14)

An online method was suggested to solve the problem in Eqn.(5.14) in [23]. 
Since exact U  is not known, it is estimated. The algorithm is;

a) U o:= 1, Co = 0.

b) for i =  1 to g

1. s(t,·) =

2. Bi =  a^C i.i +  s{U )s{tif

3. C, =  Qi^BiQi

4. Ui =  Ui_iQi

where O' is a forgetting factor and

Ci = UfMiMi^Ui

5.2 Calculation of Total Power Signal

As described in the previous section, 12 lead ECG signal is reduced into three 
orthogonal channels. The energy content of third channel changes from patient 
to patient. It has either very low power with respect to other two or only noise.
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Figure 5.4: Plots of power calculated employing two and three SVD channels 
intwo different morphologies with (a) 7.9% (b) 0.5% percentage error between 
them.

Making use of the orthogonality of these new channels, Total Power Signal 
(TPS) is calculated by summing the squares of first two channels (Fig. 5.6 (c)).

Employment of these channels in TPS yields approximately 92% to 99% 
of ECG power contained in all channels (Table 5.1). Power waveforms for 
patients 696 and 705 are plotted in Fig. 5.4. This patient are chosen because 
of error for 696 is maximum and 705 is minimum. In the worst case (Fig. 5.4 
(a)), although error between two power signals is 8%, shape of signal is not 
effected. Hence employing two channels instead of three channels is a good 
approximation.

Also shape of the TPS is an important point in the detection of QRS 
complexes. There are two main types of TPS’s (Fig. 5.5). These types are 
classified from the data of 22 patients. Most of the TPS’s are similar to skecth 
in Fig. 5.5 (a). There is a main lobe in TPS. This type of a signal is very 
appropriate for detection of onset and offset points. Some of the TPS’s are in 
the form as in Fig. 5.5 (b). There are two main lobes in TPS. This must be 
considered in detection algorithm.

(a) (b)

Figure 5.5: Typical TPS types
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Patient #
Energy of TPS 
(2 Channels) 

xlE· -t- 9

Energy of TPS 
(3 Channels) 

x if ; +  9

Percentage
Error

410 0.5294 0.5503 3.8
411 1.1081 1.1152 0.6
412 1.2455 1.2528 0.6
692 0.3154 0.3190 1.1
695 0.5797 0.5865 1.1
696 0.1846 0.2006 7.9
697 4.3901 4.4304 0.9
698 0.4615 0.4711 2.0
705 1.4003 1.4074 0.5
708 0.6551 0.6756 3.0
710 0.4670 0.4847 3.6
714 0.5983 0.6066 1.4
719 1.0862 1.0928 0.6
720 0.9307 0.9647 3.5
721 0.3874 0.3981 2.7
722 0.7557 0.7752 2.5
726 0.4296 0.4520 5.0
728 0.6210 0.6263 0.8
729 0.1902 0.1931 1.4
730 0.3607 0.3777 4.5
731 0.5734 0.5780 0.8
733 1.3341 1.4170 5.8

Table 5.1: Energies calculated employing 2 and 3 channels, and percentage 
error for all patients.

5.3 DifFerentiation

QRS complex contains higher frequency components than the other waves in 
ECG. Hence the signal is differentiated to provide the QRS complex slope in
formation. Absolute value of two-point derivative with the difference equation

y{n) =  \x{n +  1) — x{n — 1)1

is exploited.

The detection of onset and offset of QRS complex is easier using the output 
of differentiator Fig. 5.6 (d) than the input of the differentiator Fig. 5.6 (c). 
The plots of derivatives of typical TPS signals in Fig. 5.5 are given in Fig. 5.7.
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Figure 5.6: Strip chart of one QRS complex showing (a) First channel of SVD 
output (b) second channel of SVD output (c) TPS employing the first two 
channels (d) absolute value of derivative of TPS.

r--------------

(a) (b)

Figure 5.7: Derivatives of typical TPS’s plotted in Fig. 5.5.

5.4 Search for a QRS

This is the core stage of the algorithm. Three thresholds are calculated to 
classify a beat as a QRS candidate. Also, there are some variable quantities 
like average QRS width, average RR interval. A detailed diagram in Fig. 5.8 
shows the sub-modules of this part.

Initialization

Initial values of thresholds must be set appropriately. Three thresholds are 
used in the detection of QRS complexes. Decision of all thresholds are made
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Figure 5.8: Sub-blocks of search algorithm.

in the interval of first 2 seconds based on the assumption, sufficient information 
is involved in this interval. First step is scanning the both output of SVD and 
absolute value of derivative signal to find the maximum values of each. Two 
thresholds are calculated employing the maximum value of derivative signal. 
One of them is one tenth of the maximum value. This is for the purpose of 
detecting onset. The other is negative of one twentieth of the maximum value. 
This is for the offset detection.These two thresholds are called slope thresholds. 
Last threshold is one tenth of the maximum value of output signal of SVD. 
This threshold is used in decision of R-wave and called signal threshold.

Although the thresholds are calculated for every patient, average QRS 
width and average RR interval are set initially to fixed values. Choice of 
these values are based on limitations of human heart. In exercise test, target 
for the heart rate is 220-age beats/minute. Since heart rate can not reach to 
very high values with increasing age. 220-age beats/minute means maximum 
270 ms for an RR interval. So 240 ms for average RR interval is a good starting 
point. In similar way, initial value for average QRS width is chosen as 100 ms.

Searching for an onset

Derivative signal is searched until five consecutive points meet or exceed the 
slope threshold. In addition, duration between previous onset and current 
onset must be higher than 240 ms. If these conditions apply, the occurrence is 
classified as an onset of a QRS complex.

Searching for an oflfset

If an onset is detected, a backward scan is done on derivative signal, starting 
from onset-f-160ms. Similar to onset search, if seven consecutive points meet 
or exceed the half of the negative slope threshold this point is marked as QRS 
offset.
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Searching for R peak

If onset and offset points are marked, a scan between onset and offset points 
on output of SVD signal is performed. When a peak, whose value is between 
signal threshold and ten times of signal threshold, this occurrence is marked 
as R point. If one of the searches fails, the algorithm restarts scanning from 
onset+lOms.

While this search, maximum values for SVD output and derivative signals 
are recorded to update the thresholds as will be described later.

Updates

If previous three steps apply, current QRS width and RR interval are calculated 

QRS,„¿(;¡/, =

f l f l / ’nteT'iin/ ^ c u r r e n t  Rpreu/oiii

The thresholds and average values are updated using nine tap median filters. 
The aim of the median filter instead of employing classical averaging is to get 
rid of large deflections. For example, QRS complexes having big amplitudes 
and large durations often occur in an ECG of a patient who has PVC. If normal 
averaging was used, this may cause errors in classification of arrhythmia.

5.5 Arrhythmia Analysis

As described in Sec. 4.4, QRS complexes are classified based on their durations 
and RR intervals. In [6], a scheme of RR interval versus QRS duration was 
suggested as in Fig. 5.9.

When a QRS is detected, it must decided which region, in the scheme in 
Fig. 5.9, it falls . During stress test RR intervals change. Because the effort of 
patient changes. Vertical boundaries in the above plot are set depending on an 
average RR interval. This average RR interval is obtained employing a 9-tap 
median filter. Values for nine most-recent beats are employed as input to this 
median filter. Update of the average RR interval is done at every detection 
of QRS complex. So, graph in Fig. 5.9 floats horizontally. In a similar way,
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Figure 5.9: Plot of RR intervals versus QRS duration.

average QRS duration is also updated. But QRS duration does not change 
during so much if the patient has no arrhythmia. Then, QRS duration versus 
RR interval plot does not move so much in the vertical direction. In order to 
get rid of the effect of high deflection in average QRS duration another 9-tap 
median filter is used with nine most recent QRS durations as input. QRS 
duration is updated after every detection of QRS complex, too.

The boundary of normal region is determined by approximately a 14 per
cent RR interval deviation and a 20 percent QRS duration deviation from the 
midpoint, determined by average QRS duration and RR intervals, of the nor
mal box. After decision of region, classification of arrhythmia is performed. 
Due to their long RR interval, dropped heats fall to the Region 6. Since a 
compensated PVC, which is premature and wide, yields a point in Region 3 
followed by a point in Region 5. An uncompensated PVC  produces a point 
in Region 3 followed by a point in Normal Region. An extra beat which oc
curs between two normal beats without upsetting the ongoing normal rhythm 
defines an interpolated PVC  with a point in Region 3 followed by a point in 
Region 1 or 2 and a subsequent point in the normal region. Two consecutive 
points in Region 3 followed by a point in either Region 5 or the normal region 
is the pattern for a couplet ( Two consecutive PVC’s). A point in Region 1 
followed by a point in Region 5,6, or the normal region is the result for an R- 
on- T  beat due to its short RR interval. A premature beat (Region 2) followed 
by a partially compensatory pause (Region 5) is the evidence of an APB. The 
characteristic of paroxysmal bradycardia is at least three consecutive point in 
Region 5 due to the slow heart rate, while paroxysmal tachycardia gives sev
eral consecutive points in Region 1,2, or 3 due to short RR interval. Wide
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Arrhythmia
Type

First
Beat

Second
Beat

Third
Beat

R on T Beats 1
5
6
7

Compensated PVC 3 5
Uncompensated PVC 3 7
Interpolated PVC 3 1 7

2
Couplet 3 3 5

7
APB 2 5

7
Paroxismal Bradycardia 5 5 5

Paroxismal Tachycardia
1 1 1
2 2 2
3 3

Dropped Beat 6
Fusion Beat 4
Escape Beat 5

Table 5.2: Beat sequences for decision of some arrhythmias. Region 7 is used 
for Normal Region.

QRS durations are the pattern for fusion beats (Region 4), while escape heats 
produce points in Region 5 due to their delayed QRS complexes. All of these 
arrhythmia classification rules are summarized in Table 5.2.
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Chapter 6

R esults

The performance of the method proposed in this thesis has been evaluated by 
comparing it with the method suggested by Ahlstrom [6]. This algorithm has 
a good noise immunity [21]. In original version of the algorithm, the thresholds 
are not updated adaptively. The performance of the original algorithm was 
erratic in the exercise EGG. Then the thresholds was updated adaptively. The 
comparison performed in two ways. The first is comparing the number of 
detected QRS complexes, false positives and false negatives. Fig. 6.1 shows 
the four possible outcomes of a detector decision.

EVENT

ABSENT PRESENT

OHH
00l-Huw
Q

zwoo
<

2WoosOh

CORRECT
REJECTION

FALSE
NEGATIVE

(MISS)

FALSE
POSITIVE

CORRECT
DECISION

(HIT)

Figure 6.1: Performance matrix.

Here the two detector outputs (present and absent) are conditioned by the 
presence or absence of an ('vent at the input. Thus the four possible outcomes 
are:

• C o rrec t R ejection: The detector found no event when indeed none 
was present.
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• False Positive: The detector found an event when none was present.
• False N egative: The detector missed an event.
• C orrec t D etection: The detector found an event when one was present.

The second comparison method is paired i-test. The paired t-test is used to 
test the null hypothesis that the population mean of the paired differences of 
the two samples is zero. For the two-sample unpaired t test, the null hypothesis 
is that the two population means are equal, and the t test involves finding the 
probability, p value, of observing a t statistic at least as extreme as the one 
calculated from the data, assuming the null hypothesis is true. The p value 
is the probability of observing a test statistic at least as extreme as the value 
actually observed, assuming that the null hypothesis is true. This probability 
is then compared to the pre-selected significance level of the test. If the p value 
is smaller than the significance level, the null hypothesis is rejected, and the 
test result is termed significant. The significance level (also known as the 
alpha-level) of a statistical test is the pre-selected probability of (incorrectly) 
rejecting the null hypothesis when it is in fact true. Usually a small value such 
as 0.05 is chosen. If the p value calculated for a statistical is smaller then the 
significance level, the null hypothesis is rejected [25] [26].

Fig. 6.2, Fig. 6.3, and Fig. 6.4 depict onset and offset points for a QRS 
complexes, chosen from every patient’s data. The fiducial points are obtained 
using our method. Three orthogonal ECG signals whose axes are nearly or
thogonal, with the TPS are plotted in the figures. In the figures detected offset 
points are shown with x and y respectively.

(a) (b) (c) (d)

Figure 6.2: The plots for patient (a) 410 (b) 411 (c) 412 (d) 692.
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(a)

(e)

(i)

(b)

(f)

0)

(c)

(g)

(k )

( d )

(b)

(1)

Figure 6.3: The plots for patient (a) 695 (b) 696 (c) 697 (d) 698 (e) 705 (f) 
708 (g) 710 (h) 714 (i) 719 (j) 720 (k) 721 (1) 722.
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(a) (b) (c) (d )

(e) (f)
Figure 6.4: The plots for patient (a) 726 (b) 728 (c) 729 (d) 730 (e) 731 (f) 
733.

6.1 Comparison with the number of detected  

QRS complexes

One method of comparison of QRS detection algorithms is comparing the 
number of false positives and false negatives. Although the algorithm in [6] 
is not a gold standard, the performance of the algorithm is appropriate for 
our purposes [21]. In Table 6.1 the number of detected QRS complexes, false 
positives and false negatives for both methods are given.

As can be seen in the table, the method detects less number of false positives 
than the Ahlstrom algorithm in most of the patients. On the other hand, the
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The Method Ahlstrom Algorithm

Patient
#

#  of QRS 
complexes

#  of QRS 
complexes 
detected

# o f
false
+ve’s

# o f
false
-ve’s

#  of QRS 
complexes 
detected

# o f
false
+ves

# o f
false
-ves

410 1814 1814 0 0 1827 13 0
411 1822 1821 0 1821 1 0
412 2628 2625 2627
692 1442 1440 1444
695 1907 1908 1914
696 1093 1093 1112
697 1352 1352 1363 11
698 1588 1588 1602
705 2420 2420 2424
708 1459 1463 11 1459
710 1687 1686 1693
714 1807 1801 1816
719 2536 2536 2543
720 1971 1971 1973
721
722

1269 1269 1282
2312 2308 2316

13

726
728

2419 2374
2070 2070

48
0

1574
2074

42 887

729 1659 1647 15 1656
730 1686 1685 1 1719 35
731 1677 1677 1679
733 1022 1022 1029

Table 6.1: Numbers of detected QRS complexes, and false positives and false 
negatives obtained using the method and the Ahlstrom algorithm.

Ahlstrom algorithm has introduced slightly less number of false negatives for 
some of the data. Sometimes SVD can not eliminate noise in any channel. 
This causes false negatives. The performance on false negatives can further be 
improved by different definition and choice of detection criteria. On the other 
hand, the record of patient 726 has high noise level in all channels and while 
the Alhstrom algorithm can detect 63% of QRS complexes, the method gives 
a performance of 98% for this data. If noise elimination capability would be 
improved as a future work better performance may be obtained.
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Figure 6.5: Histogram of diflFerence between QRS complex duration pairs ob
tained employing both methods.

6.2 Comparison with Paired t-test

The method and the Ahlstrom algorithm are compared employing paired t- 
test. QRS complex durations and RR intervals are compared. For this purpose 
outputs of two methods are synchronized that is, QRS duration and RR inter
val values which occurs at the same time are considered to be a pair. In both 
tests the significance level is chosen as 0.05 as usual.

Detection of onset and offset points of QRS complex is very sensitive to 
noise . For some of records a few samples of difference occured between outputs 
of two methods. So instead of testing the mean difference is zero, it is tested to 
be a constant, //. In order to decide the value of this constant, the histogram of 
the difference is plotted. The value of ¡j, is chosen where the samples are dense. 
For example, the histogram for the record of patient 411 is in Fig. 6.5. The 
value of ¡x is chosen as 6 from the figure. For patients 697, 708, 710, and 721, 
li is chosen similarly . For the others fx is taken as 0. The p values for QRS 
complex duration pairs are in Table 6.2. As can be seen all off the p values 
are greater than significance level. So the hypothesis can not be rejected. 
In fact the p value is not sufficient to prove that the mean difference of two 
pairs of data are similar. In addition, standard deviation of each data may 
give an information. For example standard deviation of records 697 and 708 
obtained using the method is greater than standard deviation obtained using 
the algorithm. In these data, the method detected QRS complexes properly 
but mark different places as onset of offset points. This caused wider QRS 
complexes than expected.

40



pat. 410 411 412 692 695 696 697 698 705 708 710
P 0.41 0.28 0.29 0.79 0.53 0.21 0.36 0.68 0.98 0.68 0.54
pat 714 719 720 721 722 726 728 729 730 731 733
P 0.85 0.23 0.63 0.29 0.18 0.57 0.44 0.29 0.55 0.51 0.74

Table 6.2: The p values for QRS duration pairs.

pat. 410 411 412 692 695 696 697 698 705 708 710
P 0.89 0.97 0.92 0.82 0.90 0.76 0.76 0.57 0.85 0.89 0.92
pat 714 719 720 721 722 726 728 729 730 731 733
P 0.97 0.68 0.94 0.47 0.96 0.71 0.86 0.92 0.40 0.98 0.89

Table 6.3: The p values for RR interval pairs.

Similar to comparison of QRS complex pairs, RR interval pairs are com
pared too. The p values obtained are in Table 6.3. Because of the noise im
munity of R point, both methods gave the same results as seen. Also standard 
deviation of RR interval values are the same for both methods.
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Chapter 7

Conclusions

In this work, a new method for QRS detection is proposed. The method was 
tested on 22 full stress ECG record. In the method, a single channel represent
ing all ECG signal is utilized. In conventional methods, one ECG channel is 
used in detection algorithms. To test the method, a QRS detection algorithm 
proposed in literature was implemented. The outputs of both methods are 
compared in two ways.

One of the comparison methods is comparing the number of false positive 
and false negatives. The number of false positives introduced by the method 
proposed in this thesis is less than the number of false positives introduced 
by the Ahlstrom algorithm. Number of false negatives of the two method are 
comparable. The method sometimes can not separate the noise from signal 
appropriately for a few records. The performance is affected from the noise 
appeared in TPS. Hence false positive or negative detections are introduced. 
As a future work, noise elimination capability of the method may be improved.

Other comparison method is paired i-test. QRS complex duration and RR 
interval pairs are compared. Mean difference between QRS complex duration 
pairs is not zero for a few data. They are accumulated around a non-zero value. 
This is caused by noise in TPS. This caused wrong detection of QRS onset 
or offset points in spite of true detection of QRS complex. Mean difference of 
QRS duration pairs in most of the records is zero based on the test. Similarly, 
comparison of RR interval pairs gave satisfactory results. The data set was 
chosen to be clean as far as possible. That is there is no lost channel. If the 
channel which the conventional method employs, is lost, the performance of
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it drasticly decreases. On the other hand, a situation like this does not effect 
our method. Since it can continue the process using the remaining channels.

It is very important to investigate the effect of orthogonalization process 
on arrhythmia classification. Since one of the main purpose of the orthogonal
ization in this method is obtaining a signal free from EMG noise and baseline 
wander. It is better to test the method on a noisy data set. Also a vali
dated data must be used to test the performance of detecting and naming the 
arrhythmia properly. MIT/BIH or AHA arrhythmia databases are this kind 
of data sets. When one of these databases is available, the performance of 
arrhythmia classification can be tested and improved.

Nowadays, all of the EGG devices are built on PC based machines. The 
method is developed on UNIX machines but can easily be implemented for 
PC’s. Also the method is appropriate to run as online.
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