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ABSTRACT

A SIMULATION PROGRAM FOR EFFICIENT ANALYSIS
OF LINEAR CIRCUITS

Mustata Sungur
M.S. in Electrical and Electronics Engineering
Supervisor: Prof. Dr. Abdullah Atalar
September 1996

A circuit simulation program using generalized asymptotic waveform evalua-
tion technique is introduced. The program analyzes circuits with lumped and
distributed components. It computes the moments at a few frequency points
and extracts the coeflicients of an approximating rational by employing one
of the two different methods. One of the examined methods is proposed to
compare the accuracy of results and the execution times with conventional
simnulators and several examples are demonstrated, indicating that our simula-

tor provides a speed improvement without a significant loss of accuracy.

Keywords : Circuit Simulation, Asymptotic Waveform Evaluation, Multi point
Padé Approximation, AC Analysis, MAWE, Spice, Computer Aided Design,
JAD
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OZET

LINEER DEVRELERIN VERIMLI ANALIZI ICIN BIR
BENZETIM PROGRAMI

Mustafa Sungur
Elektrik ve Elektronik Muhendisligi Béliimu Yiiksek Lisans
Tez Yoneticisi: Prof. Dr. Abdullah Atalar
Eylil 1996

Genellegtirilmis asimtotik dalgagekli hesaplamasi teknigini kullanan bir devre
benzetim programi sunulmugtur. Program, dagilmig ve ortak parametreli de-
vrelerin analizini yapar. Bu program, devrenin momentlerini birkag frekans
noktasinda hesaplar ve kesirli yaklagim fonksiyorunun katsayilarii anlatilan
iki metottan birisini kullanarak ortaya cikarir. Denenen metotlardan biri,
sonucglarin dogrulugu ve ¢aligma zamam bakimindan bilinen benzetim pro-
gramlar ile karsilagtirmak icin énerilmig ve bizim benzetim programumzin
dogrulugundan birgsey kaybetmeden, zamanda lyilestirme yaptigi gosteren

hazi ornekler verilmigtir.

Anahtar Kelimeler : Devre Benzetimi, Asimtotik Dalgagekli Hesaplama, Cok
noktal Padé Yaklagimi, AC Analiz, MAWLE, Spice, Bilgisayar Destekli Tasarim,
CAD
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Chapter 1

INTRODUCTION

Accurate simulation of VLSI circuits is an expensive task for the large circuit
sizes of today. With the advances in integrated circuit technology, the physical
circuit sizes are reduced and the operating speeds are increased. Shrinking
device sizes and increasing operating speeds require [aster circuit simulation
programs which do not trade execution time for accuracy. Spice-like programns
with high accuracy are needed for intensive verification and design ol VLSI
circuits, but for reducing execution times, new circuit solving algorithms were
introduced. While Spice-like simulators predict the behavior of the circuit at
a large number of discrete points both in frequency and time domain analysis,
most of the new simulators employ faster algorithms to solve the circuit matrix
al lower number of points. The drawback of these algorithms is the loss of
accuracy, and the effort is to reduce the execution time without losing much

accuracy.

Asymptotic Waveform Evaluation (AWE) technique[l], is used in some new
simulators in order to reduce the execution time of the simulation. Instead of
solving the circuit at many discretized points, AWE seeks to capture the be-
havior by approximating the dominant poles of the circuit with a lower order
model. The reduced order model is matched to the moments of the linear
circuit, which are obtained from the Taylor series expansion of the circuit re-

sponse around s = 0. Since the information carried by the moments is accurate



at low frequency region, the AWE technique will be efficient in extracting the
low frequency poles of the circuit. At relatively higher [requencies the AW
technique becomes ineflicient and several methods are proposed to improve
AWLE’s accuracy. AWE is extended to handle distributed elements [2, 3] in
order to analyze circuits that cannot be modeled by only lumped components.
Also, Laurent series expansion (s = oo) is added to improve the accuracy of
transient analysis in the vicinity of ¢ = 0 [4]. The stability of approximations

is improved by manipulating the moment matching techniques [5].

Recently, the Complex I'requency Hopping technique is introduced in order
to find all of the dominant poles of the circuit in a frequency range of interest [6].
The PVL algorithm, Padé Approximation via Lanczos Process, is introduced

to provide high numerical stability to the Padé Approximants [7].

In the recent past, a multi point Padé Approximation was proposed [8]
for analysis of interconnect networks with transmission lines not only in low
frequencies but also in high frequency regions. Apart from the moments at
s = 0 (DC), this method uses shifted moments as well. This property provides
the necessary information about all frequency range. This approach requires
the solution of the circuit matrix at several frequency points determined by the

complex frequency hopping technique.

[n this study, we introduce a simulation program for multi point Padé
approximation of linear circuits. We compute the frequency shifted moments
at several expansion points and match those to a lower order approximating
rational by using two methods. The program is implemented in C++ language
running on UNIX and uses the moment matching algorithms given in [8]. The
theoretical background of the work and the methods are introduced in the
next 3 chapters. The methods introduced are compared with Spice simulators
in respect to their accuracy and execution times. Beginning from Section V,
we present the simulations and computational results on several examples to

demonstrate the efficiency of the proposed simulator.



Chapter 2

ASYMPTOTIC WAVEFORM
EVALUATION

2.1 Linear Circuits and AWE

The asymptotic waveform evaluation is an approximation technique used for
representing the behavior of a linear circuit. The approximation is achieved
by extracting some s-domain properties of the circuit and matching them to a
reduced (gqth) order model of the original response. In this section, we briefly
outline the basic properties of AWE. If we consider state equations for a linear

circuit,

x = Ax + bu
‘ (2.1)
y=clx+ Du
where the entries stand for;
x : n—dimensional column vector (state vector)



n X n state matrix

b n—dimensional vector coupling input to states
y 1 output variable
c n—dimensional vector of states

D : scalar for expressing the effect of input on output

D can be neglected for simplicity. The zero state impulse response of the linear

circuit is defined as [9]
H(s) =cT(sI— A)™'b, (2.2)

which can be expanded into Taylor series around s = 0:

H(s) = —cTA"'b—cTA?bs—..- —cTA~'bs—--
= Y2, —cTAi"lbs/ (2.3)

= Z;X):o mjsj

where
m; =—cTA™"'b, fori=12>0. (2.4)

2.2 Computation of moments

[t can be shown that the m;’s are the moments of A(¢) and they can be com-

puted using the following recursion:

Xp = ~A"b
. = —ly.
m; = CTXj

Above, x; denotes the ith moment of the individual state variables. To start
the recursion, we need to compute xg. This is realized by replacing the input

source by a constant value of 1, the capacitors by current sources of value zero



and the inductors by voltage sources of value zero. This corresponds to u = 1
and x = 0in 2.1. The capacitor voltages and inductor currents, state variables,
are found to be A~!'b. The value of the output is my. Whel} computing higher
order moments m;,;, we use the preceding moments m;. The input is set
zero, a capacitor which is the ith state variable is replaced by a current source
of value C'zj;, and an inductor by an voltage source of value Lxj;. This is
equivalent to setting u = 0 and x = x;. The new moments are the voltages
across the independent current sources replaced for capacitors. and currents
across the independent voltage sources replaced for inductors. New moments
are computed according to x = A~'x;. Computationally, finding xg¢ costs to
an LU factorization and forward backward substitutions, while addition of each

moment costs forward and backward substitutions only.

2.3 Order Reduction

In a linear system modeled in Laplace dormain, we have the following equation,
T(s)x(s) =w (2.5)

where T(s) is the modified nodal analysis (MNA)[10] matrix of the circuit,
with x and w the unknowns and excitation vectors, respectively. If the circuit
contains lumped components only, i.e., T = T +sT2. the elements of the sys-
tern matrix T are polynomials. With an output that is a linear combination of
the unknowns vector H(s) = ¢Tx(s), the impulse response becomes a rational:

_ Zaisi
T by

[t is the objective of AWE to approximate the response of the high order

network function with a lower order model. The approximation function is

H(s)

I?(S) . b0+ blS + e + bq—l‘sq—l
- P+ays+ -+ ags?

and H(b) has similar characteristics to H(s). Since, the aim is to find f{(.s), we
have to find 2¢ coeflicients of the approximating function. These coefficients



are obtained by matching the 2¢ moments to ]:](s) and this yields the following

set of linear equations for a;’s. [1]

Mo

my

| Mg—1

™M

Mg

my

The b; are computed [rom

bo
by

bo-1

Mg

My

MmMag—2 ]

Uy

Ag—1

a)

my,

Mgl

the following set of equations:

™Mo

Mot + M 1

MoGg_1 + Mydg_g + -+ Mg

Mag—1 |

The poles are found using the root finding algorithms from the denominator.

The residues can be found from the poles and the moments with a scheme

given in [1].
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Chapter 3

MULTI POINT PADE
APPROXIMATION

This chapter introduces both multi point moment generation and multi point
moment matching techniques. The evaluated moments are used by two meth-
ods in order to perform the approximation. In the last section we review the

Complex Frequency Hopping (CFH) technique for completeness.

3.1 Frequency Shifted Moments

The system response of a linear circuit in Eq. 2.5 is x(s) = T-1(s)w and can

be written in Taylor series form around s = 5.
'X) .
o . i
.L(.b) = Z-Lki(b - Sk)
1=0

where

-4y
Xki = ——————3"[ i'”’—s"w



In these equations, rx; stands for the ith frequency shifted moments at s = s,.

The first moment set is simply the solution at that point
\ -1
- xko = T7 (sk)w

The higher order moments can be computed recursively as

:

xip = T s>

r=1

T (s )Xk(i-r)

(3.1)

r!

where T) stands for the rth derivative of the T matrix with respect to s
and evaluated at s = s;. If the circuit has lumped components only, then
TT = 0 for r > 1. Otherwise. the derivatives can be found using some methods
proposed in literature [2, 11]. The frequency shifted moments of the output

are obtained from the moment vectors xy; using the linear equation
R T . o B .)
mEg =¢C X ¢=0,1,...,n—1 (3.2)
where n; is the number of moments at s = s,. So, we obtain
2
H(s) = mgo + mpi(s — sk) + me2(s — sk)” + -+

The moments at s = 0 (sp) is denoted by mg;, while my, and m_y; represent
the moments at s = sk(sx) and s = s;(s-x) , respectively. If the total number

of moments is NV, we have

n
i nk:7l0+227lk;iw-
k=1

k=-n

where n is the number of expansion points in upper half plane.

3.2 Multi point Moment Matching

Similar to AWE methods, we are trying to find the ¢th order rational

Ty botbystoetbey st
H(’) = 1+aist—+ags?

= muo + mir(s — sk) + mez(s — sk)* + 0+ Mpgn, 1) (s = s5)™ 7!
k=-n,...,0,...,n
(3.3)



where 2¢ = N (N must be even) moments obtained at n + 1 expansion points.

In the following sections we describe two methods for calculation of the

coefficients b; and «; directly from the moments.

3.2.1 Method I

For cach expansion point s = s, we have the [ollowing equation:

bo + ()1.5’ + - -|- ()p-Sp

— 9y o) ang—1 ¢
: =g+ MpS + .o+ Mg S (3.4
L4 as+ -+ a 81 (ng—1) )

Here § = s — s;.

‘
.,

[f we rewrite the left-hand-side of (3.4) we obtain

q l .

&i = Zal ) Si'_la 1= 07 11 sy, 00 = J7 (55>
1= \!

A

b,,-:Zbl 7, sty e=0,1,...,p
=i ’

There are ny constraints for choosing p + ¢ + 1 unknowns. This gives the

equation b = Ba, where

l)() d() mio
~ bl N &l Mg mMEo
b = a= B =
[)n,;‘,—l Any—1 i Mi(ng—1) Mk(ng—2) Mo i

We form the Cp and Cq matrices and the My matrix.

Mk: Cpl sz Cp3 _BCqZ —chs

C,, matrix can be defined as :




Cn = Cnl \ an l Cr13 ]
F 1 2 3 n—1 n ]
Sk Sk Sk St Sk

n—1\ n—ng n n—ng+t
<ﬂk-1)‘>k (”k—1>bk
(3.6)
The solution of the equation
-
bo
by
Mo
b My
p -
My = (3.7)
a
as | Mk(n,-1) |
Gq

will give the unknown coefficients.

If there are more than one expansion point, the equations will be solved

simultaneously. That is, an NV x N matrix

10



( Mo bo my
M1 ms
M_1 bp m_
= (3.8)
a
My my
[ Mo [ { @ | | Men

where mg is the moment vector at s = 0 and My is the corresponding My
matrix. Notice that, my = m_y and My = M_y are the conjugate moment

vectors and matrices, respectively.
In AWE methods, usually [¢ — 1/q] Padé Approximation is used [1, 8, 2].

This corresponds to taking simply p = ¢ — 1 in the formulas above, we used

this order in all of our simulations performed by method .

This method can be extended for the solution of the system in the least

squares sense.

3.2.2 Method II

A faster but less accurate solution method based on the rational Hermite inter-
polation [12] will be described in this section. We are looking for polynomials

p(z) = Titobiz!
¢(z) = Tz’
where p/q irreducible and satisfies

f) = ()" () for [=0,...,n— L withi=0,...,j

]
fOs0) = (2) (@) for (= 0,... 4 — 1
(3.9)

11



where fO) is the Ith derivative of f. Here, 2;’s are the interpolation points,

and there are n; interpolation conditions at w;.
The problem is reformulated as stated in the following lines:
Y = To for [=0,...,n9—1

yd(,‘)_l_l = Z; for {= 0, e Ny — 1

with  d(2)=no+ny + ...+ 01,4 (z>1)

Cij = 0 for 1>y
Cij = flyi .-,y for 2<y
where

Slvigrsenys]=Flyiyeyj—i]

— for v #y,

(=9 (s .
ﬁ?_l for Y=y =...=y;

Tyis -y yil =

are the divided differences.

We will also define

with

Then we have the Newton Series [13]

f(z) = TZycubi(x)
p(x) = XitybiBi(x)
g(e) = TigaiBi(x)

such that

(fg=p)(x)= Y, d;Bi(x) (3.10)

>m4ntl
Here d;( divided differences) are 0 for 7 = 0,1,...,m 4+ n. This problem is

called Newton-Padé Approximation problem ol order (in,n) for {.

Proceeding as in [12] yields the following system ol equations.

12



Cooltp = bo

Corto + 1101 = by

(3.11)

Com@o + Cim@yl + ... + Cunty, = bm

and

Co,m+1G0 + .+ Coym41 Uy = 0
(3.12)

CO,m+na0 + e + Cn,m+nan = 0
Solving the system of equations (3.12), gives the ¢; (¢ = 1,...,n) with a choice
of ap = 1. Then substituting the ¢; into system of equations (3.11) b; (¢ =
0,...,m) can be found. Note that these «;’s and b;’s are different [rom the

ones in (3.4}, since they are the coefficients of Newton series.

3.3 Complex Frequency Hopping

Another method for increasing AWE’s accuracy with multi point expansions
is the Complex Frequency Hopping (CFH)[6]. Different from our method, the
CFIH technique performs single expansions on several points and combines them
into an accurate set of poles and residues. This algorithm first perforims single
point expansions at s = 0 and 8 = jwpae , the lowest and highest [requencies
of interest. The poles are computed separately and a common pole is searched.
If any pole is matched in both expansions, this pole is marked as accurate.
Otherwise, another expansion point found using a binary search algorithm[14].
The scarch continues until every two successive expansions have at least one
common pole. The algorithm given below summarizes the technique and it is

illustrated in IFig. 3.1.

e Step 1: Poles from each expansion point obtained as mentioned in [14].

e Step 2: Residues are computed as in the AWE technique [1].

13



ACCURATE
POLES
INACCURATE S-PLANE
POLEK
O
EXPANSION
POINTS
COMMON
POLE @-
RADIYS of
ACQURACY

Figure 3.1: Pole selection algorithm in CI'H

o Step 3: If the same poles are detected in two different expansions, they

are marked as accurate.

e Step 4: The distance between an expansion point and its farthest accu-
rate pole defines the radius of accuracy(Rye.). All poles within this R,

are marked as accurate.

e Step 5: Poles that are not marked and corresponding residues are said

to be inaccurate and rejected.



Chapter 4

MOMENT GENERATION

In previous chapter, we introduced two methods for multi point moment match-
ing. Now, we will introduce the evaluation of the moments for linear circuits.
This chapter begins with matrix formulation of the circuit and it proceeds with

computation of moments from that matrix.

4.1 Linear Circuit Formulation

Consider a linear network =, which contains linear lumped components, and
arbitrary linear subnetworks. The subnetworks may contain distributed ele-
ments. The Modified Nodal Analysis (MNA) matrix equations of the network

T can be written as:

N,
W%Z(t) + Hz(t) + Z Dy Iy = bu(t) (1.1)
k=1
where
z(t) : node voltage vector appended by

independent voltage source current

15



u(t)

and linear inductor current
matrix for energy storage

lumped components

matrix for non energy storing

lumped components

vector for independent sources

selector matrix that maps iy,

the currents entering subnetworks

to node space

input function

and for the subnetworks, we have

Aka + Bka =90

fork=1....\,

(4.2)

Vi and Iy are terminal voltages and currents of the kth subnetwork. Writing

the Laplace transform of the equations we obtain:

[ sW+H D; D Dns
AD] B; 0O 0
A,DI 0 B 0

AnDE, 0 O Bng

o4

| Ing(s) ]

0

J

We call the MNA matrix T(s), vector of unknowns x(s), and the excitation

vector w and form the circuit equation as (2.3).

16



4.2 Evaluation of Moments

As mentioned in chapter 3, the moments of circuits with both lamped and
distributed components are computed according to Eq. 3.1. That is, we need
to take the derivatives of the circuit matrix 7" in order to evaluate the moments.

The first derivative of T at s = 3¢ is given as

[ w 0 0 o |
A'M(so)DT Bl(sg) 0 0
T = | AM(se)D] 0 BY(so) 0 (4.4)
| AQ)(so)DE, O 0 BR!(s0) |
and the higher order derivatives are

[ 0 0 0 o |

AP (so)DT B{’(sq) 0 0
T®=| AY(s0)D] 0  BY(so) 0 rz2
| AQ(s0)DE, O 0 BR.(s0) |

If the circuit has lumped components only, T{) = 0 for r > 2. The Ay and
By are the entries associated with transmission line moments. The moments
of the transmission lines are found by using the eigenvalue moment methods
or matrix exponential method. The details of the subject can be found in
literature [2, 11, 3]. In our simulations we considered lossless transmission lines

only. We will illustrate the evaluation of moments for lossless transmission lines

in an example.

4.2.1 Example

Assume a lossless transmission line with the parameters D, Zy, v, where D is the
length. Zy is the characteristic impedance and v, is the phase velocity (Fig. 4.1).

17



These parameters can be calculated from the unit electrical characteristics

(L,C") it the frequency and the type of the line is determined. The terminal

R Vin D Z0 Vp Vout

I()U[
LOSSLESS TRANSMISSION LINE

[Figure 4.1: [lustrative example for moment generation

voltages of the line are related by

Vin 5 [in('s
A (s) +B ?) =
‘/;,“,/,(3) -[ou.l,('s)
where
A [ Bi(se)
i Eg(So)/Z@ 0
B _ Z()Ez(S()) 0
L El(_SO) [
and
Ei(s) = cosh(sD/v,)
Ez(s) = —sinh(sD/v,)

The derivatives at s = sg are obtained as

;v(7') .
Ao | P (so) 0
| E(s0)/ 20 0

[, »
B(’): Z()Eg)(b()) 0
| E{7(s0) 0

18



where

- _p.r —%D r 390
B (s0) = £ [(32)e ™ +(2)e %]

[f we form the T matrix for this topology

VR« ~1/R, 0 1| o ol e | [o]
~I/Re /R, 0 0| 1 0] V. 0
0 0 IR 0| 0 1||Vu| |0
1 0 o o o ol|l n| |1
0 E, =1 0| ZEs 0| I 0
0 E/Zy 0 0| E || Lu| |0]

and the derivatives for r > | are

-

o E 00 ZoE 0
0 E{/Zy 0 0 E{Y 0 ]

Since there are no energy storage passive elements in the circuit, the W matrix
in Eq. 4.4 is set to zero. If we choose normalized values for the components
(R=1,Zy=0.5 and D/v, = 1) we estimate the exact response as,

0.5
cosh(s) + [.25sinh(s)

‘/out(s) =

The response of AWE at 11th and 25th orders are depicted in Fig. 4.2 with
the exact response. Since the exact response of such an circuit topology is
periodic, it is impossible to approximate it by a rational. However, in most of
the practical circuits, there are both energy storage elements and transmission

lines and these circuits have dominant poles that enables us to approximate
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their impulse responses with rationals. AWLE methods are useful to analyze
linear circuits when the dominant poles that are written in rational powers of

s, exemplifies the entire response.

0.52 T

— exact
0.5 -—-- 25.th order
- — 11.th order

0.48f

Vout

0.44r

0.42f

0.4

0.38
Freguency

Figure 4.2: Output of the one transmission line circuit
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Chapter 5

COMPUTATIONAL
CONCEPTS

This section discusses the design of the simulator in view of practical and
numerical concepts. 1%irst, we explain the properties of the simulator and
proceed with the numerical results.

L[] *
5.1 Algorithm of the simulator

The simulator we designed performs the following tasks in order:

Parsing the input file

FForming the circuit matrix

o Calculation of frequency shifted moments according to the recursive

scheme given in ( 3.1) and [2].

Repetition of last step for each expansion point



¢ Matching moments to an aproximating rational and extracting the coef-
ficients
The input parser inputs files very similar to Spice input format [13]. The
format of the input circuit file and the configuration file (.config) that deter-
mines the expansion points are explained in Appendix. The circuit matrix
is determined by the information arranged by the input parser. Several sub-
routines are used to perform the analysis as expressed in options card. A
commercial matrix solver and the LU-solver implemented before are employec
as external subroutines. The program produces a display output and an output

file. The contents of the output is formated according to the options card as

mentioned in Appendix.

5.1.1 Selection of the expansion points

Since we are employing a form of Padé Approrimation and searching for ap-
proximating rational, only the dominant poles are crucial in our design. In time
and frequency analyses, the poles closer to jw axis are important, therefore we
choose expansion points on jw axis. Once, we set our frequency range of inter-
est, we can apply complex frequency hopping technique (CFH) as mentioned
in chapter 3. The frequency range of interest is generally between DC' and a
maximum frequency (= GCHz in interconnect circuits ). The CFH technique
gives the expansion points and the corresponding number of moments. We use
this information in our method and obtain the Multi point Padé Approximation

function.

5.1.2 Extracting the coefficients

In the first method the coefficients of the approximating function are obtained
from a system of matrix equations(3.8). Each My and my element has its
complex conjugate row in matrix equations. Therefore this N x N complex
matrix system is equivalent to an N x N real system of equations and can be

solved using the ordinary elimination algorithms such as LU [13].

S
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In the second method, we form the divided difference table according to the
n;’s and s;’s. The coefficients of the denominator are solved from the complex
equa'tions (3.12). This complex system is at ¢ x ¢ order, and could be solved
using a complex matrix solver. The coefficients of the nominator are obtained

by only forward and backward substitutions (Eq. 3.11).

5.2 Numerical issues

In our study, e are primarily interested in AC analysis and pole-zero extrac-
tion of interconnect circuits. Different from the conventional simulators, the
program we propose solves the circuit matrix, only a few times. Since the
LU factorization of the circuit matrix is known from the solution of the first
moment vector, higher order moments are obtained by one forward and one
backward substitution only. If the number of the expansion points is n + 1, we
have a total of n + 1 LU factorizations of the circuit matrix. Obtaining the
moments of the circuit at DC + n points include n + 1 LU and 3%, n; FBS’s

where n; is the number of moments at :th expansion point.

Our method is proposed to solve complex circuits and the orders of approx-
imations are generally large (~ 30-50) compared to the typical approximations
employed by AWE technique(~ 4-12)[1, 2. 4]. Since the orders of matrix sizes
and the orders of approximations are high in interconnect AC analysis, we need
larger memory area, higher accuracy and consume more cpu time, compared
to a typical AWE transient analysis problem. Because of the very large and
very small numbers appearing in matrices, the method becomes ill-conditioned.
The calculation of many moments (~ 10) at one expansion point results in
very small numbers as successive moments, since each consecutive moment is
smaller than the previous one by an order of ~ 10° in typical networks. Also,
the powers of expansion points appearing in Eq. (3.6), yields very big numbers.

As the circuit expands, the ill-conditioned behavior of the matrix in Eq. 3.8
increases. The reason for that is the deviation between the first and the last
moments obtained from an expansion point. We can overcome this problem by
setting a limit value for the ratio of last and first moments of expansion point
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Sk.
) i :
hi= o 1=0, 0k
For si; smaller than a reasonable limit, the moments my; for i > j are not
calculated. If j is less than what CFH requires, further action is necessary. To
preserve the same accuracy. the number of expansion points must be increased

beyond what results from CFH technique.

Also, frequency scaling should be applied to the energy storing elements in

the circuit to increase accuracy as well as employing high precision arithmetic

as explained in the next subsection.

5.2.1 Using high precision arithmetic

The most obvious method to overcome accuracy problems is to use a higher
precision arithmetic. Although we use double precision arithmetic in all op-
erations, we have accuracy problems in larger circuits, such as interconnects
cascaded three times or more. A higher precision of arithmetic may be used
instead of double precision, but then we have to consider the dramatically in-
creased CPU time. This work was done for AWE transient analysis in [14] and

accurate results were obtained.

5.2.2 Stability

Another observation about the method is the stability of approximated poles.
Similar to the AWE technique, Multi point Padé Approrimation technique may
result in spurious right hand side poles as well. This is because of the nature of
Padé Approrimations. The typical way to overcome this problem is to discard
unstable poles and solve for the remaining system of equations. However, in
most of the unstable cases, the effect of the unstable pole is negligible in total

approximation.



Chapter 6

EXAMPLES

Several examples are presented here to demonstrate the performance of the
method. Since our primary concern is AC analysis, and this requires higher or-
ders of approximations than transient analysis, the circuits demonstrated here
are at considerable sizes. In run-time estimations, a SUN-SPARC20 machine
on UNIX is used and the averages of several run-times are considered. The

accuracy of the clock used is 16 msec.

6.1 Example 1

The first example is a well known interconnect circuil given in several relerences
8] [2]. As scen from Fig 6.1, the circuit has 29 lumped components, 7 lossless

transmission lines and 21 nodes. Our frequency of interest is 0 — 6G/Hz. By

applying CFH technique to this circuit, we found the order of approximation
PP ) l

as 35. The expansion points and moment numbers are in Table 6.1. The AC

response of the circuit computed according to the moment table. Scaling was

taken as 1 x 10 for frequency dependent components.

The AC response H(s) of the circuit and the time comparisons are shown

in I%ig. 6.2 and Table 6.2, respectively. As seen from the figure, the multi poinl
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Figure 6.1: Example 1: Interconnect model with 7 transmission lines

Expansion point | Moments
s=0 10
s =2r1.25 x 10%) 10
s =272.50 x 10 10
s =2r5.00 x 10%) 10

Table 6.1: Expansion points and the moment numbers for interconnect network
in Ex. 1

Padé approrimation via Method] (MAWE) and HSpice responses match each
other exactly, while Method2 has significant error at the end of frequency range.
We can see from Table 6.2 that MAWE and Method2 spent much less time to
get the same results as HSpice and Spice3. The high speed of Method?2 resulted
in loss of accuracy that makes it inefficient to use in AC analysis, while MAWE
(Methodl) has a moderate time reduction without any loss of accuracy. When
we calculate AC response at 6000 points in the frequency range 0 —6G H =, the
proposed MAWE computed nearly 11 times faster than HSpice and nearly 7
times faster than Spice3. In a 600 point AC analysis, HSpice and Spice3 run
times are closer to that of MAWE, but still MAWE has 3 or 4 times better



—— HSpice
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Frequency (GHz) x10°

Figure 6.2: OQutput waveform for the interconnect network in Ex. 1

scores.

Simulator Real Analysis Time(sec)

6000 points | 600 points
MAWE 1.1 0.9
METHOD?2 0.6 0.5
HSPICE 11.9 3.7
SPICE3 7.8 2.4

Table 6.2: Timing results for the interconnect network in Ex. 1 (I/O times

excluded)

If we investigate the run time distribution diagram of the MAWE intercon-
nect analysis (Fig. 6.3), we notice a remarkable time consumption for solving
the coeflicients according to Eq. 3.8. The slow behavior of the matrix solver
used causes a speed disadvantage. The matrix system in (3.8) is large and
nearly ill-conditioned in this example because of the high approximation or-
der. In order to solve this bad-mannered system, we employed a matrix solver
in the available LAPACK library that resulted in loss of time. The LU process
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shared insignificant time among all processes. This is due to the special LU
solver implemented before by the Bilkent University CAD group for solving

the circuit matrix. .

Interconnect circuit time dist-tution

Eval. of AC points

Solving coetticients

Caic. of Moments

L 6000 points
- 600 points
0 1cs 21C 315 420

msec

Figure 6.3: Run time distribution of MAWE for Example 1

6.2 Example 2

Second example consists of two cascaded blocks, where the previous circuit is
taken as a block (Fig. 6.4). Obviously, the circuit has twice more elements and
nodes, i.e., 42 nodes, 14 lossless transmission lines and 33 lumped components.

We applied frequency scaling as in the first example.

Figure 6.4: Example 2: Cascaded interconnects with 14 transmission lines

Again, our frequency range is the same (0 — 6GHz). The expansion points

and the number of moments for this circuit are given in Table 6.3. Since this



circuit is more complex and more stiff than the other one, we need to spread
the expansion points to 8 points. The order of approximation increased as well,

l.e.. we now compute a total of 78 moments. ,

Expansion point Momeunts
s=0 10
s =2r1.00 x 10%) 5
s =272.00 x 10%; 14
s =2r2.50 x 109 3
s =273.00 x 10°%) 5
s =274.00 x 10%) 5
s =275.00 x 10%) 5
s =275.50 x 10%) 2
s =276.00 x 10%) 5

Table 6.3: Expansion points and the moment numbers for Example 2

The AC responses of cascaded interconnects computed by MAWE and
Method2 are compared with HSpice in Fig. 6.5. There is a slight difference
between MAWE and Hspice (exact) responses. while Method2 has noticeable
error. The slight error of MAWE is acceptable since the absolute error never

exceeds 3.5 x 107 (Fig. 6.6).

The time comparison is given in Table 6.2. Method2 scored the best time
again, but, the accuracy of Method?2 is not sufficient enough to verify the AC
analysis. MAWE has still significant speed advantage over HSpice and Spice3.
This time, the speed up over HSpice is 14 times and over Spice3 is 7 times in
6000 point analysis. We have similar results as examplel in 600 point analysis.
MAWE scored faster than both Spice simulators in this analysis as well.

We were expecting MAWE to become faster as the circuit enlarges. How-
ever, as in this example, when the circuit size is doubled, the speed gain over
Spice simulators do not have a noticeable change. After the investigation of
the distribution in Fig. 6.7, we notice long time bars for solving coefficients ac-
cording to Eq. 3.8 and moment update according to Eq. 3.1. In this example,
matrix solver consumed the longest time as well, because of the high approxi-

mation order and many expansion points used. Again, this results in large and
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Figure 6.5: AC Response of MAWE in cascaded interconnect circuit in Ex. 2
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Figure 6.6: Absolute error of MAWE response for Example 2
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Simulator Real Analysis Time(sec)
6000 points 600 points

MAWE 16 10
METHOD?2 11 10
HSPICE 21.9 4.9
SPICE3 11.0 4.2

Table 6.4: Timing results for cascaded interconnects in Ex 2 (1/O times ex-
cluded)

Cascaded interconnect circuit time distnbution

0 130
msec

Figure 6.7: Run time distribution of MAVVE for E.xample 2

ill-conditioned moment matrix systems that takes a long time to solve.

6.3 Example 3

Our example is a lowpass filter with five transmission lines (Fig. 6.8) which was
also investigated in [8]. The filter has 2 capacitors, 2 resistors and an inductor
beside 5 lossless transmission lines. The expansion points and moment numbers
for the filter is given in Table 6.5. The order of the approximation is 47, hence

a total of 94 moments are calculated.

In Fig. 6.9, the output response of the lowpass filter is given. Methocl2 could
not solve this ill-conditioned system. The responses of MAVVE and Hspice are
indistinguishable. The frequency region of interest is 0 —50GHz. The time
comparisons between MAWE and Spice simulators and the run-time distribu-
tion of MAWE is given in Table 6.6 and Fig. 6.10, respectively. M.AWE reduced
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Figure 6.3: Example 3: Lowpass filter with 3 transmission lines

Expansion point | Morments |
s=10 10
s =2mw12.5 x 10%) 10
s =2m25.0 x 10% 10
s =2n37.5 x 10% 10
s = 2750.0 x 10%; 10

Table 6.5: Expansion points and moment numbers for the filter example

analysis 4 times against Hspice and 3 times against Spice3 in 6000 point anal-
ysis. The speed recovery of MAWE against Spice simulators reduced in 600
point analysis.

The run-time distribution of MAWE in lowpass filter analvsis is similar to
the two preceding examples. Again, the matrix solver takes the longest time

among all processes. Since there are 94 moments calculated, the matrix system
in 3.8 has an order of 94 x 94. This takes 1000 msecs to solve the coefficients

Simulator || Real Analysis Time(sec)

6000 points | 600 points
MAWE 1.9 1.4
HSPICE 7.5 3.4
SPICE3 5.2 1.4

Table 6.6: Timing results for the filter in Ex. 3 (I/O times excluded)
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Vout(dB)

Frequency GHz)

Figure 6.9: Lowpass filter output response

Time distribution for lowpass filter
T T

Eval. of AC points

Solving coefficients

Calc. of Moments

w 5000 points
. . - 500 points
0 250 500 750 1000
msec

Figure 6.10: Distribution bars for the lowpass filter analysis by MAWE

in both 6000 and 600 point analyzes.

6.4 Example 4

Next, we will consider two rlc circuits in the same topology with 10 cells and 100
cells as given in Fig. 6.11. The circuits have 10 rlc elements with 21 nodes and

100 rlc elements with 201 nodes, respectively. The frequency range of interest
in the first circuit is 0 — 3G Hz, while 0 — 2GH = in the second one. Scaling

was applied to element values as 1 x 10°. The moment numbers and expansion
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Figure 6.11: Topology of the rlc circuits in Ex. 4

Expansion point | Moments Expansion point | Moments

s=10 12 s =10 16

s = 272.50 x 107 7 s =2r1.00 x 109 10

s = 215.00 x 10%; 7 s = 2m2.00 x 10%; 10
(a) (b)

Table 6.7: Expansion points and moment numbers for (a) 21 and (b) 201 node

rlc circuits

points are given in Table 6.7. It can be seen that, 28th order approximation
is needed to find the response of 201 node circuit, while only 20th order is

sufficient for 21 node circuit.

The output responses of two circuits are given in Fig. 6.12. We can see
that, the exact response of HSpice is matched by MAWE for both circuits,
while Method2 has significant loss of accuracy in both circuits. The time
comparisons for both rlc circuits are given in Table 6.8. The time results of

Method2 are excluded, since it has inaccurate responses compared to other
sirmulators.

In RLC20, MAWE’s run time improvement against HSpice is in the order
of 30, while in RLC200 the improvement is higher. This indicates that MAWE

has better scores in a large analysis such contains 5000 points or more. This
is valid for not only rlc circuits, but also interconnect circuits with distributed

components.
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Figure 6.12: AC Responses of the rlc circuits with 21 and 201 nodes

Real Analysis Time(sec)
Simulator RLC20 RLC200
5000 pts | 500 pts | 5000 pts | 500pts
MAWE 0.4 0.25 2.6 2.5
HSPICE 12.5 5.4 89 12.9
SPICE3 204 1.1 19 2.4

Table 6.8: Timing results for the rlc networks in Ex. 4 excluding I/O times
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Time distnbution for RLC20 circunt Time distbution for ALC200 circuit

Eval. of AC points Eval. of AC pomnts

Solving coefficients Solving coetficients
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Figure 6.13: Run-time distributions of MAWE for (a)RLC?20 (b)RLC200 in
Ex. 4

When we look at time distributions of MAWE in Fig. 6.13, a major dif-
ference appears in two diagrams. The addition of the moment update process
is dominant in 100 cell circuit (Fig 6.13a), while the addition of matrix solver
dominates in 10 cell circuit (Fig 6.13b). In contrast to previous circuits and
RLC20 circuit, the moment update takes longer time than the process of solv-
ing coefficients in RLC200 circuit. This is because of the large circuit matrix
which is used in Eq. 3.1. This is due to the nearly 10 times larger circuit ma-
trix compared to RLC20 circuit. This larger matrix which is used in recursive
Eq. 3.1 causes many more multiplications than the multiplications needed for
smaller size rlc network. Notice that, the data retrieving operations in moment

update process consumes time as much as multiplication operations.

6.5 Discussion of the results

The examples introduced before demonstrated the accuracy and efficiency of
two methods. It is observed that MAWE (Multi point via Methodl) is faster
than Spice like simulators in AC analysis of distributed networks especially
in large analysis (more than 5000 points) without any significant loss of ac-
curacy. The reduction in time against HSpice is approximately on the order
of 10 in large analysis, and 5 in small analysis. Although, Method?2 is faster
than MAWE and Spice simulators, it has quite large deviations from the exact
response and failed to analyze circuits successively at this size. From this point

of view, we propose MAWE to compete with conventional simulators.
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Figure 6.14: Time shares of all processes in a small and a large analysis

\A£ also observed that the recovery of MAVVE in analysis time obtained
nearly without any accuracy loss. The responses of MAVVE and Spice simu-
lators are indistinguishable in the e.xamples e.xcept a few points and the error

never exceeds acceptable limits.

When we look at the time distribution diagrams of MAWE, we notice two
different situations occured. If the circuit is larger compared to the approx-
imation order, there appears a large circuit matrix, and the moment update
process dominates in total time. The large circuit matrix involved in Eq. -31, is
used in many multiplication and data retrieving operations. The sum of multi-
plications at one expansion point is 0{n] xn”). where W is the size of the circuit
rnatri.x T and n; is the number of moments at that expansion point. Otherwise,
higher approximation order compared to circuit size results in dominant time

for matrix solver.

In the Fig. 6.14, the weights of all processes are given for a moderate MAWE
analysis. The 1/O process is the dominant time consumer in a large analysis.
The moment update process and matrix solving process follows in order de-
pending on the situations mentioned above. In a small analysis, these two
processes have more importance than I/O process as expected. Evaluation of
points costs nearly as much as LU process in the large analysis, but, obviously
LU becomes expensive in the small analysis. .\s the circuits expand, the addi-
tion of LU on total time will increase; however, this will not cause dramatical
changes in total execution time, since LU is performed once at each expansion

point.
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Chapter 7

CONCLUSION

We have introduced a program with two methods for verifying the AC re-
sponse of linear circuits, using multi point moment matching techniques. Since
Method?2 gave ineflicient results, MAWE (multi point Padé Approximation via
Methodl) is proposed to compete with Spice-like simulators.

Instead of calculating the frequency response at a large number of dis-
cretized points — like conventional simulators do — our program extracts the
coefficients of an s-domain approximating rational of the impulse response. The
proposed program can handle rlc circuits as well as the circuits with lossless
transmission lines with no topological constraints, such as inductor loops, etc.
The verification of the pole-zero analysis can also be done by the proposed pro-
gram. The execution time of MAWE compared to Spice-like simulators is 8-10
times better. This improvement can be multipled by using a better matrix
solver. The performance of the simulator increases as the matrix solver’s ex-
ecution time decreases. Hence, MAWE will have a better run-time advantage

against Spice-like simulators by means of an LU solver faster than the one we

used.

The effectiveness of the program for large sized circuits can be extended

by increasing the number of expansion points and distributing the required

number of moments to these points.

38



This program can also handle multi-conductor transmission line circuits
by using an approach presented in [2]. Finally, our simulator can perform
transient analysis of larger networks easily because of the nature of transient
analysis which requires lower order of approximation (4-8). The recovery of

the execution time in transient analysis will be similar to AC analysis as well.
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APPENDIX A

I/0 FORMAT OF THE
PROGRAM

A.1 Configuration File (.config)

The example .config file that defines the expansion points and corresponding

moment numbers is given. The order of approximation is 46 and for example

the number of moments at s = 0+ j3.0 x 10? is 3.

46

00 14

0 1.5e9 10
0 3.0e9 8
0 4.5e9 12
0 6.0e9 9

10



A.2  Circuit Input File (inlin.sp)

****x¥x Example interconnect network
rest 1 2 75

lindl 2 3 10e-9

cap0 3 0 le-12

res2 3 4 25

lind2 4 5 6e-9

capl 5 0 le-12

trll1 5 0 6 0 C=100e-12 L=60e-9 D=.03
cap2 6 0 .5e-12

res3 6 0 50

res4 6 7 25

1ind3 7 8 5e-9

cap3 8 0 1le-12

vin 1 0 1

.ac 1le7 6e9 1le7

.options useawe scaling=1e9 lapack
.print v(8)

.end

Transmission line : nodel node2 node3 noded C=value(F') L=value(H) D=length(m)

Resistor : rxxx nodel node2 value()

("apacitor : cxxx nodel node2 value (F)
Inductor : Ixxx nodel node2 value (H)
Voltage Input : vxxx nodel node2 value (1)

A.2.1 Options Card

.options :
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printmb  : Prints T and T7 at each moment computation
showiterno : Prints iteration number
useawe : Employs AWE and multi point
subroutines to verify the analysis
poles : Prints poles and residues of the circuit
lapack : Employs commercial Lapack package matrix solver

instead of another solver implemented before

method2 : Employs Method?2 to verify the analysis
moments : Prints moments at each expansion point
post : Prints every step to output file

scaling : Inputs scaling value i,e, scaling= 1e9
list : Prints every step to display

A.2.2 Other Cards

.print : Defines output parameter to be printed, i.e,
print v(node number)

.tran : Determines the transient analysis, i.e,
tran time-step stoptime

.ac : Determines the ac (frequency) analysis, i.e.,
ac startfreq stopfreq stepfreq

.dc : Determines the dc analysis, i.e.,

dc startvolt stopvolt stepvolt



A.3 Output of the program

The output of the program for the input and .config files above iy given next.
The output consists of an output file and display output. The output file stores
the number of discrete frequencies and the corresponding voltages in absolute
values in a neat format which could be easily loaded by graphics tools (Matlab.

Mathematica....). The display output is as follows:

data file is interconnect/Awefiles/inl.out

scaling

Parsing Time=0 sec.

MNA matrix forming time for (0,0)=0 sec.

LU time=0 sec.

First FBS time=0 sec.

Other moments (13) evaluation time=0.016666 sec.
MNA matrix forming time for (0,1.5)=0 sec.

LU time=0 sec.

First FBS time=0 sec.

Other moments (9) evaluation time=0 sec.

MNA matrix forming time for (0,3)=0.016666 sec.
LU time=0 sec.

First FBS time=0 sec.

Other moments (7) evaluation time=0 sec.

MNA matrix forming time for (0,4.5)=0 sec.

LU time=0 sec.

First FBS time=0 sec.

Other moments (11) evaluation time=0.016666 sec.
MNA matrix forming time for (0,6)=0 sec.

LU time=0 sec.

First FBS time=0 sec.

Other moments (8) evaluation time=0 sec.
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Lapack matrix solving time =0.799968 sec.

**kxxrcond = 3.1096e-59

numerator of order 45

(0.333333,0) (-0.148894,-0.133465) (0.0813455,0.0139253)
(-0.00395075,0.00700985) (-0.000353988,-0.000384566)
..... (-3.93383e-40,7.23369e-41) (1.71645e-41,6.20467e-42)

denominator of order 46

(1,0) (-0.0821817,-0.400394) (0.140346,-0.104168)

(0.056108,0.0125836) (0.00711239,0.00681182)

(0.00147754,0.00166321) ..... (-1.50432e-37,1.54943e-37)

(-4.3418e-39,2.25196e-39) (-2.74136e-40,3.49853e-40)

Evaluation time for given frequency range =0.116662 sec.
Evaluation time without io =0.033332 sec.

Total time=1.23328 sec.
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