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ABSTRACT

A SIMULATION PROGRAM FOR EFFICIENT ANALYSIS
OF LINEAR CIRCUITS

Mustafa Sungur
M.S. in Electrical ¿ind Electronics Engineering 

Supervisor: Prof. Dr. Abdullah Atalar 
September 1996

A circuit simulation program using generalized asymptotic waveform evalua­
tion technique is introduced. The program analyzes circuits with lumped a.nd 
distributed components. It computes the moments ci.t a few Irecjuency points 
and extracts the coefficients of an approximating rational by employing one 
of t,he two different methods. One of the examined methods is proposed to 
compare the accuracy of results and the execution times with conventional 
simulators and sevei’cil examples are demonstrated, indicating that our sirnulcv 
tor provides a. speed improvement without a significant loss of accura.cy.

Keywords : Circuit Simulation, Asymptotic Waveform Evahuition, Multi point 
Fade Approximation, AC Analysis, MAWE, Spice, Computer Aided Design, 
CAD
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ÖZET

LİNEER DEVRELERİN VERİMLİ ANALİZİ İÇİN BİR 
BENZETİM PROGRAMI

Mustafa Sungur
Elektrik ve Elektronik Mühendisliği Bölümü Yüksek Lisans 

Tez Yöneticisi: Prof. Dr. Abdullah Atalar 
Eylül 1996

Genelleştirilmiş asimtotik clalgaşekli hesaplaması tekniğini kullanan bir devre 
benzetim programı sunulmuştur. Program, dağılmış ve ortak parametreli de­
vrelerin analizini yapar. Bu program, devrenin momentlerini birkaç frekans 
noktasında hesaplar ve kesirli yaklaşım fonksiyoriunun katsayılarını anlatılan 
iki metottan birisini kullanarak ortaya çıkarır. Denenen metotlardan biri, 
sonuçların doğruluğu ve çalışma zamanı l^akımmdan bilinen benzetim pi’o- 
gramları ile karşıhıştırmak için önerilmiş ve bizim benzetim programımızın 
doğruluğundan birşey kaybetmeden, zamanda iyileştirme yaptığını gösteren 
bazı örnekler verilmiştir.

AnaJıtar Kelimeler : Devre Benzetimi, Asimtotik Dalgaşekli Hesaplama, Çok 
noktalı Pade Yaklaşımı, AC Analiz, MAWE, Spice, Bilgisayar Destekli 'J aşarim, 
CAD
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Chapter 1

INTRO DUCTIO N

Accurate simulation of VLSI circuits is an expensive task for the large circuit 
sizes of today. With the advances in integrcited circuit technology, the physical 
circuit sizes are reduced and the operating speeds are increased. Shrinking 
device sizes and increasing operating speeds require faster circuit simulation 
programs which do not trade execution time for accuracy. Spice-like programs 
with high ciccuracy are needed for intensive verification and design of VLSI 
circuits, but for reducing execution times, new circuit solving cilgorithrns w(ire 
introduced. While Spice-like simulators predict the behiivior of the circuit at 
a large; number of discrete points both in frequency and time domain analysis, 
most of the new simulators employ faster algorithms to solve the circuit matrix 
at lower number of points. The drawback of these algorithms is the loss of 
accuracy, and the effort is to reduce the execution time without losing much 
a.ccuracy.

Asymptotic Waveform Eveduation (AWE) technique)!], is used in some new 
simulators in order to reduce the execution time of the simulation. Instead of 
solving the circuit at many discretized points, AWE seeks to capture the be­
havior by cvpproximating the dominant poles of the circuit with a lower order 
model. The reduced order model is matched to the moments of the linear 
circuit, which are obtained from the Taylor series expansion of the circuit re­
sponse around s = 0. Since the information carried by the moments is accurate



at low frequency region, the AWE technique will be efficient in extrcicting the 
low frequency poles of the circuit. At relatively higher frequencies the AWE 
technique becomes inefficient and several methods are proposed to improve 
a w e ’s accuracy. AWE is extended to handle distributed elements [2, 3] in 
order to analyze circuits that cannot be modeled by only lumped components. 
Also, Laurent series expansion (s = oo) is added to improve the ciccuracy of 
transient analysis in the vicinity of /; = 0 [4]. The stability of approximations 
is improved by manipulating the moment matching techniques [5].

Recently, the Complex Frequency Hopping technique is introduced in order 
to find all of the dominant poles of the circuit in a Irequency range of interest [6]. 
The PVL algorithm, Piide Approximation via Lanczos Process, is introduced 
to provide high numerical stability to the Pade Approxirnants [7].

In the x’ecent past, a multi point Pade Approximation was proposed [8] 
lor analysis of interconnect networks with transmission lines not only in low 
frequencies but also in high frequency regions. Apart from the moments cit 
s = 0 (DC), this method uses shifted moments cis well. This proi^erty provides 
the necessciry information about all frequency range. This approach requires 
the solution of the circuit matrix at several frequency points determined by the 
complex frequency hopping technique.

In this study, we introduce a simulation program for multi point Pade 
approximation of linear circuits. We compute the frequency shifted moments 
at several expansion points and match those to a lower order approximating 
ratiomil by using two methods. The program is implemented in C++ language 
running on UNIX and uses the moment matching algorithms given in [8]. The 
theoreticcil background of the work and the methods are introduced in the 
next 3 chapters. The methods introduced are conq^ared with Spice simulators 
in respect to their accuracy and execution times. Beginning from Section V, 
we present the simulations and computational results on severed examples to 
demonstrate the efficiency of the proposed simulator.



Chapter 2

ASYM PTOTIC WAVEFORM  

EVALUATION

2.1 Linear Circuits and AWE

The asymptotic waveform evaluation is an approximation technique used for 
representing the behavior of a linear circuit. The approximation is achieved 
by extracting some s-domain properties of the circuit and matching them to a 
reduced (^th) order model of the original response. In this section, we briefly 
outline the basic properties of AWE. If we consider state equations for a linear 
circuit,

X = Ax + bu

y =  X + Du
(2. 1)

where the entries stand for;

X : n—dimensional column vector (state vector)



A ; n X n  state matrix

b n—dimensional vector coupling input to states

!/ : output variable

c n —dimensional vector of states 

D : scalar for expressing the effect of input on output

D can be neglected for simplicity. The zero state impulse response of the linear 
circuit is defined as [9]

//(s) = A )"‘b, (2.2)

which can be expanded into Taylor series around .s = 0:

H{s) — —c^A “*b — c^A “'^bs — · · · — c"^A“-'~‘bs — · · ·

= (2.3)

w;here
rrij =  —c"*· A ‘ b̂, for f = 1 > 0. (2. 1)

2.2 Com putation of moments

It can be shown that the m,’s are the moments of h{t) and they can be com­
puted using the following recursion:

Xo = -A -* b

Xj = A -ixj_i

nij =

.Above, xj denotes the fth moment of the individual state variables. To start 
the recursion, we need to compute xq. This is realized by replacing the input 
source by a constant value of 1, the capacitors by current sources of value zero



and the inductors by voltage sources of value zero. This corresponds to u = 1 
and X = 0 in 2.1. The capacitor voltages and inductor currents, state variables, 
are tound to be A ^b. The value ot the output is ttiq. When computing higher 
order moments we use the preceding moments nij. The input is set
zero, a capacitor which is the ¿th state variable is replaced by a current source 
of value Cxjt, and an inductor by an voltage source of value Lxji. This is 
equivalent to .setting u = 0 and x = xj. The new moments are the voltages 
across the independent current sources replaced for capacitors, and currents 
across the independent voltage sources replaced for inductors. New' moments 
are computed according to x = A~‘xj. Computationally, finding xq costs to 
an LU factorization and forward backward substitutions, while addition of each 
moment costs forward and backward substitutions only.

2.3 Order R eduction

In a linear system modeled in Laplace domain, we have the following equation.

T(s)x(s) = w (2.5)

where T(s) is the modified nodal analysis (MN.A.)[10] niatri.x of the circuit, 
with X and w the unknowns and excitation vectors, respectively. If the circuit 
contains tumped components only, i.e., T = T i + sT 2 . the elements of the sys­
tem matrix T are polynomials. With an output that is a linear combination of 
the unknowns vector H(s) = c"^x(s), the impulse response becomes a rational:

His) = HajS'
E

It is the objective of AWE to approximate the response of the high order 
network function with a lower order model. The approximation function is

H{s) =
bo b\s ‘ ‘ ^

1 -f* "h · · * “h ciqŜ

and H{s) has similar characteristics to H{s). Since, the aim is to find H{s), we 
have to find 2q coefficients of the approximating function. These coefficients



cu-e obtained by matching the 2q moments to H(s) cuid this yields the following 
set of linear equations for Oi’s. [1]

rilo mi Tllq-i

mi m 2 . .. rn,,

Ciq

(^q-i

TIL·,

rn7+1

l T i q  — \ n i q  l l ' i 2q — 2 ^^^2q — i

The bj are computed from the following set of equations:

bo = rno

bi - rnocii + nil

(2 .6 )

(2.7)

bq — l moCLq-l + miUq-2 + ■ · ■ + Itiq-l

'I’he poles are found using the root finding cilgorithms from the denominator. 
The residues can be found from the poles and the moments with a scheme 
given in [1].



Chapter 3

MULTI PO INT FADE  

APPROXIM ATION

This chapter introduces both multi point moment generation and multi point 
moment matching techniques. The evaluated moments are used by two meth­
ods in order to perform the approximation. In the last section we review the 
Complex Frequency Hopping (CFH) technique for completeness.

3.1 Frequency Shifted M oments

The svstem response of a linear circuit in Eq. 2.5 is x(s) = T ^(s)w and can 
be written in Tavlor series form around s =

•T(¿») — ' k̂)
i=0

where

Xki =
S  =  S k  ,

i\
-w.



In these equations, Xki stands for the ¿th frequency shifted moments at .s = Sk- 
The first moment set is simply the solution at that point

XkO = T"^(sk)w

The higher order moments can be computed recursively as

(3.1)
r=l

where T< stands for the rth derivative of the T matrix with respect to 
and evaluated at s = s^. If the circuit has lumped components only, then 

= 0 for r > 1. Otherwise, the derivatives can be found using some methods 
proposed in literature [2, 11]. The frequency shifted moments of the output 
are obtained from the moment vectors x^i using the linear equation

TTik, = c^Xki i = 0 ,1 ,. . . ,  n*; -  1 (3.2)

where n*, is the number of moments at s = Sk- So, we obtain

H(s) = iriko + mki{s -  Sk) + rnki{s -  Sk)  ̂ -̂---

The moments at s = 0 (sq) is denoted by mo,, while niki and m^ki represent 
the moments at s = Sk{sk) and s = s^(s_yt) , respectively. If the total number 
of moments is N  ̂ we have

n n
rik -  no + rik -  N

k=—n k={

where n is the number of expansion points in upper half plane.

3.2 M ulti point M oment M atching

Similar to AWE methods, we are trying to find the ^th order rational

A/ _ bp 5-|---- |-6q-i _
' / —\-CLqŜ

=  rUko +  m k i { s  -  Sk) +  mk2{s -  Sk)^ + ------h

k = —n ,.. .  ,0 , . . .  ,n
(3.3)



where 2q = N  {N must be even) moments obtciined at n + 1 expansion points.

in the following sections we describe two methods for calculation of the 
coefficients bi and ai directly from the moments.

3.2·! M ethod I

For each expansion point s — we have the Ibllowing equation: 

bo bis bpŜ^
1 +  +  · · · +  

Here s = s — Sk·

—  'fT lk O  +  +  . . . + — I

If we rewrite the left-hand-side of (3.4) we obtain

a; = ^  at Q  i = 0 ,1 ,. . . ,  q, uo =

k  = ^  j  ¿ = 0 ,1 ,. . . ,  p

(3.4)

(3.5)

There are Uk constraints for choosing p -\- q + I unknowns, 'riiis gives the 
ecjuation b = Ba, where

h cto rnko

b = k a =
a\

B =
rnki mk.0

rriko

W(? form the Cp and Cq matrices and the matrix.

Mk = Cpi : Cp2 : Cp3 — BCq2 — BCqs

Cn matrix can he defined as :



Cn = Cnl 

1 Sk

C „ 2 Cn3

, n —[
•T-

0 -
fn.— l \
1 1 )--f^

1 (l)-'^k

The solution of the equation

Mk

(
n— I \ n- rik

bo
bi
•

n ik o

b. n ik l

Cli •

0̂2 rtlk (n j^ -l)

Clq

( n\ ri— I

n-Uki-i

(3.6)

(3.7)

will give the unknown coefficients.

If there are more than one expansion point, the equations will be solved 
simultaneously. That is, a.n N x N  matrix

10



Mo bo mo

M l m i

M _i bp m_i

• ai

M„ m,!

M_n . . m_„

{■■IS)

where mo is the moment vector at 5 = 0 and Mo is the corresponding 
matrix. Notice that, = m_k and MĴ  = M_k are the conjugate moment 
vectors and matrices, respectively.

In .\WE methods, usually [q — i j q ]  Fade .Approximation is used [1, 8, 2].

This corresponds to taking simply p =  ̂— 1 in the formulas above, we used 
this order in all of our simulations performed by method 1.

This method can be extended for the solution of the system in the least 
squares sense.

3.2.2 M ethod II

A faster but less accurate solution method ba,sed on the rational Hermite inter­
polation [12] will be described in this section. We are looking for polynomials

p{x) = 'ZT=ohx' 

q(x) = Er=o«i^‘

where pfq irreducible and satisfies

for / = 0 , . . . ,  n, — 1 with f = 0,. 

for / = 0 , . . . ,  nj+i — 1
(3.9)

11



where is the /th deriviitive of / .  Here, .r,’s are the interpolation points, 
and tliere are П{ interpolation conditions at Xi.

The problem is reformulated as stated in the following lines:

yi

yd(i)+l

X o

Xi

for / = 0 , . . . ,  По — i

for / = 0 , . . . ,  rii — 1

with d{i) - rio + Hi + . . .  +

Ci:i = 0 for i > j

Cij ./'bb- ··,%] for г < j

where

/fo+l.···,·/.,]■
./'bo •••hl/i] = ^ Vj-Vi

U-i)'·

are the divided differences. 
We will also define

with
(=1

Boix) = 1

Then we have the Newton Series [13]

/(.г·) = EtoCoiBdx)  

Р(.г·) = UUbiBi ix)  

q i x )  =  Е 1 оС1г В , ( х )

such that
( Л - Р ) П ) =  E

г >771 + 71+1

(* > I )

for yi Ф yj

for yi = yi+i = ... = y.i

Here di{ divided differences) are 0 for i = 0, + n. This
called Newton-Pade Approximation problem of order (m,n) for f

Ih-oceeding cis in [12] yields the following system of equations.

(3.10)

nil IS

12



CqoCIo — ¿0 

<̂01̂ 0 -V — hi
(3.11)

ai id

*̂0771^^0 “f" ^1771^^1 H“ · · . “f" ^‘m n ^h i  — h^

(-0 ,m- ̂ _iao +  . . . +  Cn,771+1 — 0

(3.12)

*̂0,771 + 71̂ 0̂ “1“ · · · 4“ /̂1,777 + 71̂*̂77,   ^

Solving the system of equations (3.12), gives the cti (z = 1 ,. . . ,  n) with a choice 
of ao = 1. Then substituting the ai into system of equcitions (3.11) hi (i = 
0 ,...,'m ) can be found. Note tluit these a^’s and ¿¿’s are different from the 
ones in (3.4), since they ¿ire the coefficients of Newton series.

3.3 Com plex Frequency Hopping

Another method for increa.sing AWE’s accuracy with multi point expansions 
is the Complex Frequency Hopping (CFH)[6]. Different from our method, the 
(JFH technique performs single expansions on several points cuid combines them 
into an accurate set of jioles and residues. This algorithm first performs single 
point expansions at s = 0 and s = jujmax , the lowest and highest frequencies 
of interest. The poles are coiriputed separately and a common pole is searched. 
If any pole is matched in both expansions, this pole is marked a.s accurate. 
Otherwise, another expansion point found using a. binary search algorithm[14]. 
The search continues until every two successive expansions have a.t least one 
common pole. The algorithm given below summarizes the technique and it is 
illustrated in Fig. 3.1.

• Step 1: Poles from each expansion point obtained as mentioned in [14].

• Step 2: Residues are computed as in the AWE technique [1].

13



Figure 3.1: Pole selection algoritlim in CFH

• Step 3: If the same poles are detected in two different expansions, they 
are marked as accurate.

• Step 4 : The distance between an expansion point and its farthest accu­
rate pole defines the radius of accurcicy(/4cc)· All poles within this liacc 
are marked as accurate. •

• Step 5: Poles that are not marked and corresponding residues are said 
to be inaccurate and rejected.

14



Chapter 4

M OM ENT GENERATION

In previous chapter, we introduced two methods for multi point moment match­
ing. Now, we will introduce the evaluation of the moments for linear circuits. 
This chapter begins with matrix formulation of the circuit and it proceeds with 
computation of moments from that matrix.

4.1 Linear Circuit Formulation

Consider a linear network tt, which contains linear lumped components, and 
arbitrary linear subnetworks. The subnetworks may contain distributed ele­
ments. The Modified Nodal Analysis (MNA) matrix equations of the network 
7T can be written as:

Ns
W -z ( t )  + Hz(t) + ^  Dklk -  huit) ( - U )

where

z(t) : node voltage vector appended by 

independent voltage source current

15



and linear inductor current 

W  matrix for energy storage

lumped components 

H matrix for non energy storing

lumped components 

b vector for independent sources

Dk selector matrix that maps ¿i·,

the currents entering subnetworks 

to node space 

u{t) : input function

and for the subnetworks, we have

AkVfc + Bklk = 0 for A: = 1 ... (4.2)

Vk and Ik are terminal voltages and currents of the Â:th subnetwork. Writing 
the Laplace transform of the equations we obtain:

D ns

0

0 l 2(s) = 0 i ‘{s) (4..3)

B ns

VVe call the MNA matrix T(s), vector of unknowns x(s), and the excitation 
vector w and form the circuit equation as (2.-5).

sW  + H D i Ü2

A iD Î Bi 0

A2D I 0 B2

ANs^ N s 0 0

Z(s) b

Ii(s) 0

l2(s) = 0

. Ins(s) _ 0

16



4.2 Evaluation of M om ents

As mentioned in chapter 3, the moments of circuits with both lumped and 
distributed components are computed according to Eq. 3.1. That is, we need 
to take the derivatives of the circuit matri.x: T in order to evaluate the moments. 
The first derivative of T at s = .sq is given as

'J'(l) —

w 0 0 0
A<y(so)DT Bi'’(so) 0 0
Â ^̂ (so)Dj 0 B<̂ >(so) 0 (T4)

Ans(so)D^^ 0 0 BtJ>o) _
and the higher order derivatives are

0

T<r) _

A i^ (so )D i

A<’-)(so)D

0 0 0

b 'i'>(so) 0 0
0 Bi‘‘>(so) 0

0 0 Dir) j

r >  2

ANg(so)Djf^

If the circuit has lumped components only, = 0 for r > 2. The Ak and 
Bk are the entries associated with transmission line moments. The moments 
of the transmission lines are found by using the eigenvalue moment methods 
or matrix exponential method. The details of the subject can be found in 
literature [2, 11, 3]. In our simulations we considered lossless transmission lines 
only. VVe will illustrate the evaluation of moments for lossless transmission lines 
in an example.

4.2.1 Exam ple

■Assume a lossless transmission line with the parameters D, Zq, Vp where D is the 
length. Zq is the characteristic impedance and Vp is the phase velocity (Fig. 4.1).
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These parameters can be calculated from the unit electriccil characteristics 
{L,C) if the frequency and the type of the line is determined. The terminal

Figure 4.1: Illustrative example lor moment genercition 

voltages of the line are related by

Vinis)

Voutis)
+ B

louti^)
=  0

where

A =

B

Eiiso)  -  

E 2{ so) / Z o 0 

ZoEAso)  0 

T’i(so) 1

and
Ei{ s )  =  cosli(sD/vp)  

E 2 {s ) =  —sin h{sD/vp)  

The derivatives at s = sq are obtained cis

E [ ' ' \ so) 0
A( )̂ =  

B(’·) =

Ei^'\so)IZo 0 

ZoE!2''Hso) 0 

e [''\.so) 0
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where

E^i so)  = i

(̂ re +(gre»p
 ̂ Vv '  ̂ I'v '

If we form the T  matrix for this topology

l/Z^i - I / Ry 0 1 0 0

l/i?i 0 0 1 0

0 0 l/i?2 0 0 1

1 0 0 0 0 0

0 Ey -1 0 ZqE-i 0

0 E2I Zq 0 0 Ex 1

ei

v;„

h

în

lout

and the derivatives for r > 1 are

■

0 0

'J '(r) _

0 0 0 0

• 0 E f V Z o 0 0 0

0

0

0

1

0

0

Since there are no energy storage passive elements in the circuit, the W  matrix 
in Ec[. 4.4 is set to zero. If we choose normalized values for the components 
{R = 1, Zo = 0.5 and Djup = 1) we estimate the exact response as,

K)ui('S) —
0.5

cosh(s) + \..2osinh{s)

The response of AWE at 11th and 25th orders are depicted in Fig. 4.2 with 
the exact response. Since the exact response of such an circuit topology is 
periodic, it is impossible to approximate it by a rational. However, in most of 
the practical circuits, there are both energy storage elements and transmission 
lines and these circuits have dominant poles that enables us to approximate
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their impulse responses with rationals. AWE methods are useful to cuialyze 
linear circuits when the dominant poles that are written in rationed powers of
s, exemplifies the entire response.

Figure 4.2: Output of the one transmission line circuit
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Chapter 5

COM PUTATIONAL

CONCEPTS

This section discusses the design of the siinulator in view of practical and 
nunierical concepts. First, we explain the properties of the siniula.tor a.nd 
pi'oceed with the nuinerical results.

5.1 A lgorithm  of the sim ulator

The simulator we designed performs the following tasks in order;

• Parsing the input file

• Forming the circuit matrix

• Calculation of frequency slufted moments a.ccording to the recui'sive 
scheme given in ( 3.1) and [2].

• Repetition of last step for each expansion point
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• Matching moments to an aproxirnating rational and extracting the coef­
ficients

I
The input parser inputs files very similar to Spice input format [15]. The 

format of the input circuit file and the configuration file (.config) that deter­
mines the expansion points are explained in .\ppendix. The circuit matrix 
is determined by the information arranged by the input parser. Several sub­
routines are used to perform the analysis as expressed in options card. A 
commercial malri.x solver and the LlJ-solver implemented before are employed 
as external subroutines. The program produces a display output and an output 
file. The contents of the output is formated according to the options card as 
mentioned in Appendix.

5.1.1 S election  o f the expansion points

Since we are employing a form of Fade Approximation and searching for ap­
proximating rational, only the dominant poles are crucial in our design. In time 
and frecjuency analyses, the poles closer to joj a.xis are important, therefore vve 
choose expansion points on juj axis. Once, we set our freciuency range of inter­
est, we can apply complex frequency hopping technique (CFH) as mentioned 
in chapter 3. The frequency range of interest is generally between DC and a 
maximum frequency (~  GHz in interconnect circuits ). The CFH technique 
gives the expansion points and the corresponding number of moments. VVe use 
this information in our method and obtain the Multi point Fade Approximation 
function.

5.1.2 E xtracting  the coefficients

In the first method the coefficients of the approximating function are obtained 
from a system of matrix equations(3.8). Each and nrik element has its 
complex conjugate row in matrix equations. Therefore this N x N  complex 
matrix system is equivalent to an x N  real system of equations and can be 
solved using the ordinary elimination algorithms such as LU [13].
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In the second method, we form the divided difference table according to the 
n,’s and s,· s. The coefficients of the denominator are solved from the complex 
equations (3.12). This complex system is at x  ̂ order, and could be solved 
using a complex matrix solver. The coefficients of the nominator are obtained 
by only forward and backward substitutions (Eq. 3.11).

5.2 N um erical issues

In our study, we are primarily interested in .-\C analysis and pole-zero extrac­
tion of interconnect circuits. Different from the conventional simulators, the 
program we propose solves the circuit matrix, only a few times. Since the 
LU factorization of the circuit matrix is known from the solution of the first 
moment vector, higher order moments are obtained by one forward and one 
backward substitution only. If the number of the expansion points is n -f 1, we 
have a total of n -)- 1 LU factorizations of the circuit matrix. Obtaining the 
moments of the circuit at DC + n points include n -|- 1 LU and FBS’s
where n,· is the number of moments at fth expansion point.

Our method is proposed to solve complex circuits and the orders of approx­
imations are generally large (~  30-50) compared to the typical approximations 
employed by AWE technique(~ 4-12)[l, 2. 4]. Since the orders of matrix sizes 
and the orders of approximations are high in interconnect AC analysis, we need 
larger memory area, higher accuracy and consume more cpu time, compared 
to a typical AWE transient analysis problem. Because of the very large and 
very small numbers appearing in matrices, the method becomes ill-conditioned. 
The calculation of many moments (~ 10) at one expansion point results in 
very small numbers as successive moments, since each consecutive moment is 
smaller than the previous one by an order of ~  10̂  in typical networks. .Also, 
the powers of expansion points appearing in Eq. (3.6), yields very big numbers.

As the circuit expands, the ill-conditioned behavior of the matrix in Eq. 3.8 
increases. The reason for that is the deviation between the first and the last 
moments obtained from an expansion point. We can overcome this problem by 
setting a limit value for the ratio of last and first moments of expansion point
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Sk.
— k̂x i = 0, . . . ,  Tik^ i

For ckj smaller than a reasonable limit, the moments rui-, for i > j  are not 
calculated. If j/’ is less than what CFH requires, further action is necessary. To 
preserve the same accuracy, the number of e.Kpansion points must be increased 
beyond what results from CFH technique.

-Also, frequency scaling should be applied to the energy storing elements in 
the circuit to increase accuracy as well as employing high precision arithmetic 
as explained in the next subsection.

5.2.1 Using high precision arithm etic

The most obvious method to overcome accuracy problems is to use a higher 
precision arithmetic. Although we use double precision arithmetic in all op­
erations, we have accuracy problems in larger circuits, such as interconnects 
cascaded three times or more. A higher precision of arithmetic may be used 
instead of double precision, but then we have to consider the dramatically in­
creased CPU time. This work was done for AWE transient analysis in [14] and 
accurate results were obtained.

5.2.2 Stability

Another observation about the method is the stability of approximated poles. 
Similar to the AWE technique. Multi point Fade Approximation technique may 
result in spurious right hand side poles as well. This is because of the nature of 
Fade Approximations. The typical way to overcome this problem is to discard 
unstable poles and solve for the remaining system of equations. However, in 
most of the unstable cases, the effect of the unstable pole is negligible in total 
approximation.
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Chapter 6

EXAM PLES

Severed examples are presented here to demonstrcite the periormance oi the 
methocl. Since our prirmiry concern is AC analysis, and this requires higher or­
ders of approximcitions than transient analysis, the circuits demonstrated here 
are at considerable sizes. In run-time estimations, a SUN-SPARC20 machine 
on UNIX is used and the averages of several run-times are considered. The 
accuracy of the clock used is 16 msec.

6.1 Exam ple 1

The first example is a well known interconnect circuit given in several relerences 
[8] [2]. As seen from Fig 6.1, the circuit has 29 lumped components, 7 lossless 
transmission lines and 21 nodes. Our frequency oi interest is 0 — 6G /7^. By 
applying CFH technique to this circuit, we found the order of approximation 
as 35. The expansion points and moment numbers are in Table 6.1. The AC 
response of the circuit computed according to the moment table. Scaling was 
taken as 1 x 10'̂  for frequency dependent components.

The AC response Ii{s) of the circuit cuid the time comparisons are shown 
in IGg. 6.2 and lable 6.2, respectively. As seen from the figure, the imdh point
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Figure 6.1: Example 1: Interconnect model with 7 transmission lines

Expansion point Moments
s = 0 10
s = '2nl:2b X lO’̂ J 10
s = 27t2.50 X lO^j 10
■s = 27t.5.00 X 10 ĵ 10

Table 6.1: Expansion points and the moment numbers for interconnect network 
in Ex. 1

Fade approximation via Methodl (MAWE) and HSpice responses match each 
other exactly, while Method2 has significant error at the end of frecpiency range. 
We can see from Table 6.2 that MAWE and Method2 spent much less time to 
get the same results as HSpice and Spice3. The high speed of Method2 resulted 
in loss of accuracy that makes it inefficient to use in AC analysis, while MAWE 
(Methodl) has a moderate time reduction without any loss of accuracy. When 
we calculate AC response at 6000 points in the frequency range 0 — 6GHz,  the 
proposed MAWE computed nearly 11 times faster than HSpice and nearly 7 
times faster than Spice3. In a 600 point .AC analysis, HSpice and Spice3 run 
times are closer to that of MAWE, but still MAWE has 3 or 4 times better
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Figure 6.2; Output waveform for the interconnect network in Ex. 1

scores.

Simulator Real Analysis Time(sec)
6000 points 600 points

MAVVE 1.1 0.9
METH0D2 0.6 O.o
HSPICE 11.9 3.7
SPICE3 7.8 2.4

Table 6.2: Timing results for the interconnect network in Ex. 1 (I/O times 
excluded)

If we investigate the run time distribution diagram of the M.AWE intercon­
nect analysis (Fig. 6..3), we notice a remarkable time consumption for solving 
the coefficients according to Eq. -3.8. The slow behavior of the matrix solver 
used causes a speed disadvantage. The matrix system in (3.8) is large and 
nearly ill-conditioned in this example because of the high approximation or­
der. In order to solve this bad-mannered system, we employed a matrix solver 
in the available LAPACK library that resulted in loss of time. The LU process

27



shared insignificant time among all processes. This is due to the special LU 
solver implemented before by the Bilkent University C.\D group for solving 
the circuit matrix.

Interconnect circuit time disr.tjution

420

Figure 6.3: Run time distribution of MAWE for Example 1

6.2 Exam ple 2

Second example consists of two cascaded blocks, where the previous circuit is 
taken as a block (Fig. 6.4). Obviously, the circuit has twice more elements and 
nodes, i.e., 42 nodes, 14 lossless transmission lines and oS lumped components. 
We applied freciuency scaling as in the first example.

Figure 6.4: Example 2: Cascaded interconnects with 14 transmission lines

■Again, our frequency range is the same (0 — 6GHz).  The expansion points 
and the number of moments for this circuit are given in Table 6.3. Since this
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circuit is more complex and more stiff than the other one, we need to spread 
the expansion points to 8 points. The order of approximation increased as well, 
i.e., we now compute a total of 78 moments.

Expansion point
s = 0
s = 27rl.00 X 10 ;̂
5 = 2Tr2.00 X lO"";
s = 27r2.oO X 10·̂ J
s = 27t.3.00 X lO"";
s = 2;r4.00 X
•s = 2TT5.00 X 10^;
s = 27t.5.50 X 10̂ 7

Moments
10

s = 27t6.00 X lO ĵ

Table 6.3: Expansion points and the moment numbers for Example 2

The AC responses of cascaded interconnects computed by MAVVE and 
Methocl2 are compared with HSpice in Fig. 6.5. There is a slight difference 
between MAWE and Hspice (exact) responses, while Method2 has noticeable 
error. The slight error of M.AWE is acceptable since the absolute error never 
exceeds 3.5 x 10""* (Fig. 6.6).

The time comparison is given in Table 6.2. Method2 scored the best time 
again, but, the accuracy of Method2 is not sufficient enough to verify the AC 
analysis. MAVVE has still significant speed advantage over HSpice and Spice3. 
This time, the speed up over HSpice is 14 times and over Spice3 is 7 times in 
6000 point analysis. We have similar results as examplel in 600 point analysis. 
M.AWE scored faster than both Spice simulators in this analysis as w'ell.

We were expecting MAWE to become faster as the circuit enlarges. How­
ever, as in this example, when the circuit size is doubled, the speed gain over 
Spice simulators do not have a noticeable change. After the investigation of 
the distribution in Fig. 6.7, we notice long time bars for solving coefficients ac­
cording to Eq. 3.8 and moment update according to Eq. 3.1. In this example, 
matrix solver consumed the longest time as well, because of the high approxi­
mation order and many expansion points used. .Again, this results in large and
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Figure 6.5: AC Response of MAVVE in cascaded interconnect circuit in Ex. 2

Figure 6.6: Absolute error of MAWE response for Example 2
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Simulator Real Analysis Time(sec)
6000 points 600 points

MAWE 1.6 1.0
METHOD2 1.1 1.0
HSPICE 21.9 4.9
SPICE3 11.0 4.2

Table 6.4: Timing results for cascaded interconnects in E.x. 2 (I/O times ex­
cluded)

Cascaded interconnect circuit time distnbution

0 130
msec

Figure 6.7: Run time distribution of MAVVE for E.xample 2 

ill-conditioned moment matrix systems that takes a long time to solve.

6.3 Exam ple 3

Our example is a lowpass filter with five transmission lines (Fig. 6.8) which was 
also investigated in [8]. The filter has 2 capacitors, 2 resistors and an inductor 
beside 5 lossless transmission lines. The expansion points and moment numbers 
for the filter is given in Table 6.5. The order of the approximation is 47, hence 
a total of 94 moments are calculated.

In Fig. 6.9, the output response of the lowpass filter is given. Methocl2 could 
not solve this ill-conditioned system. The responses of MAVVE and Hspice are 
indistinguishable. The frequency region of interest is 0 — 50GHz. The time 
comparisons between MAWE and Spice simulators and the run-time distribu­
tion of MAWE is given in Table 6.6 and Fig. 6.10, respectively. M.AWE reduced
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Figure 6.8: Example 3: Lowpass filter with o transmission lines

Expansion point Moments
5 = 0 10
s = 2irT2.5 X lO^i 10
s = 2TT25.0 X lO^i 10
s = 2x37.5 X 10*̂ / 10
s = 2x50.0 X 10^/ 10

Table 6.5; Expansion points and moment numbers for the filter example

analysis 4 times against Hspice and 3 times against Spice3 in 6000 point anal­
ysis. The speed recovery of MAWE against Spice simulators reduced in 600 
point analysis.

The run-time distribution of MAWE in lowpass filter analysis is similar to 
the two preceding examples. Again, the matrix solver takes the longest time 
among all processes. Since there are 94 moments calculated, the matrix system 
in 3.8 has an order of 94 x 94. This takes 1000 msecs to solve the coefficients

Simulator Real Analysis Time(stc)
6000 points 600 points

MAWE 1.9 1.4
HSPICE 7.5 3.4
SPICE3 5.2 1.4

Table 6.6: Timing results for the filter in Ex. 3 (1 /0  times excluded)
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Figure 6.9: Lowpass filter output response

Time distribution for lowpass filter

1000

Figure 6.10: Distribution bars for the lovvpass filter analysis by MAWE 

in both 6000 and 600 point analyzes.

6.4 Exam ple 4

Ne.Kt. we will consider two rlc circuits in the same topology with 10 cells and 100 
cells as given in Fig. 6.11. The circuits have 10 rlc elements with 21 nodes and 
100 rlc elements with 201 nodes, respectively. The frequency range of interest 
in the first circuit is 0 — oGHz, while 0 — 2GHz in the second one. Scaling 
was applied to element values as 1 x 10̂ . The moment numbers and expansion
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Figure 6.11; Topology of the rlc circuits in E.\. 4

Expansion point
s = 0
s = 2x2.50 X 10’̂ ;
,s = 2x5.00 X lO"";

Moments
12

Expansion point Moments
.5=0 16
s = 2x1.00 X 10̂ ;' 10
s = 2x2.00 X 10*̂ i 10

(a) (t·)

Table 6.7: Expansion points and moment numbers for (a) 21 and (b) 201 node 
rlc circuits

points are given in Table 6.7. It can be seen that, 28th order approximation 
is needed to find the response of 201 node circuit, while only 20th order is 
sufficient for 21 node circuit.

The output responses of two circuits are given in Fig. 6.12. VVe can see 
that, the exact response of HSpice is matched by M.AVVE for both circuits, 
while Method2 has significant loss of accuracy in both circuits. The time 
comparisons for both rlc circuits are given in Table 6.8. The time results of 
Method2 are excluded, since it has inaccurate responses compared to other 
simulators.

In RLC20, MAWE’s run time improvement against HSpice is in the order 
of 30, while in RLC200 the improvement is higher. This indicates that M.AVVE 
has better scores in a large analysis such contains 5000 points or more. This 
is valid for not only rlc circuits, but also interconnect circuits with distributed 
components.
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(a) RLC20

Figure 6.12: AC Responses of the rlc circuits with 21 and 201 nodes

Simulator
Real Analysis Time (sec)

RLC20 RLC200
•5000 pts 500 pts •5000 pts •500pts

MAWE 0.4 0.25 2.6 2.5
HSPICE 12.5 5.4 89 12.9
SPICE3 20.4 1.1 19 2.4

Table 6.8: Timing results for the rlc networks in E.x. 4 excluding I/O times
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Time distnbution for RLC20 circuit
Time distnbutwn tor RLC200 circuit

f’igure 6.13: Run-tirne distributions of MAVVE for (a)RLC'20 (b)RLC200 in 
Ex. 4

When we look at time distributions of MAWE in Fig. 6.13, a major dif­
ference appears in two diagrams. The addition of the moment update process 
is dominant in 100 cell circuit (Fig 6.13a), while the addition of matrix solver 
dominates in 10 cell circuit (Fig 6.13b). In contrast to previous circuits and 
RLC20 circuit, the moment update takes longer time than the process of solv­
ing coefficients in RLC200 circuit. This is because of the large circuit matrix 
which is used in Eq. 3.1. This is due to the nearly 10 times larger circuit ma- 
tri.x compared to RLC20 circuit. This larger matrix which is used in recursive 
Eq. 3.1 causes many more multiplications than the multiplications needed for 
smaller size rlc network. Notice that, the data retrieving operations in moment 
update process consumes time as much as multiplication operations.

6.5 D iscussion o f the results

The examples introduced before demonstrated the accuracy and efficiency of 
two methods. It is observed that MAWE (Multi point via Methodl) is faster 
than Spice like simulators in AC analysis of distributed networks especially 
in large analysis (more than 5000 points) without any significant loss of ac­
curacy. The reduction in time against HSpice is approximately on the order 
of 10 in large analysis, and 5 in small analysis. Although, Method2 is faster 
than MAWE and Spice simulators, it has quite large deviations from the exact 
response and failed to analyze circuits successively at this size. From this point 
of view, we propose MAWE to compete with conventional simulators.
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Matrix Solver
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I/O Pnx;e.s.s
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Moment Update

Matn-x
Solver

■ LU Solver
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L'pdate

(a) (b)

Figure 6.14: Time shares of all processes in a small and a large analysis

VVe also observed that the recovery of MAVVE in analysis time obtained 
nearly without any accuracy loss. The responses of MAVVE and Spice simu­
lators are indistinguishable in the e.xamples e.xcept a few points and the error 
never exceeds acceptable limits.

When we look at the time distribution diagrams of MAWE, we notice two 
different situations occured. If the circuit is larger compared to the approx­
imation order, there appears a large circuit matrix, and the moment update 
process dominates in total time. The large circuit matrix involved in Eq. -3.1, is 
used in many multiplication and data retrieving operations. The sum of multi­
plications at one expansion point is 0{n] xn^). where Uc is the size of the circuit 
rnatri.x T  and n; is the number of moments at that expansion point. Otherwise, 
higher approximation order compared to circuit size results in dominant time 
for matrix solver.

In the Fig. 6.14, the weights of all processes are given for a moderate MAWE 
analysis. The I/O process is the dominant time consumer in a large analysis. 
The moment update process and matrix solving process follows in order de­
pending on the situations mentioned above. In a small analysis, these two 
processes have more importance than I/O process as expected. Evaluation of 
points costs nearly as much as LU process in the large analysis, but, obviously 
LU becomes expensive in the small analysis. .Vs the circuits expand, the addi­
tion of LU on total time will increase; however, this will not cause dramatical 
changes in total execution time, since LU is performed once at each expansion 
point.
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Chapter 7

CONCLUSION

We have introduced a program with two methods for verifying the AC re­
sponse of linear circuits, using multi point moment matching techniques. Since 
Method2 gave inefficient results, iVIAWE (multi point Fade Approximation via 
Methodl) is proposed to compete with Spice-like simulators.

Instead of calculating the frequency response at a large number of dis­
cretized points — like conventional simulators do — our program extracts the 
coefficients of an s-domain approximating rational of the impulse response. The 
proposed program can handle rlc circuits as well as the circuits with lossless 
transmission lines with no topological constraints, such as inductor loops, etc. 
The v’erification of the pole-zero analysis can also be done by the proposed pro­
gram. The execution time of MAWE compared to Spice-like simulators is 8-10 
times better. This improvement can be rnultipled by using a better matrix 
solver. The performance of the simulator increases as the matrix solver’s ex­
ecution time decreases. Hence, MAWE will have a better run-tirne advantage 
against Spice-like simulators by means of an LU solver faster than the one we 
used.

The effectiveness of the program for large sized circuits can be extended 
by increasing the number of expansion points and distributing the required 
number of moments to these points.
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This program can also handle multi-conductor transmission line circuits 
by using an approach presented in [2]. Finally, our simulator can perform 
tfc^nsient analysis of larger networks easily because of the nature of transient 
analysis which recjuires lower order of approximation (4-8). The recovery of 
the execution time in transient analysis will be similar to AC analysis as well.
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A PPE N D IX  A

I/O  FORMAT OF THE 

PRO G RAM

A .l  Configuration File (.config)

The example .config file that defines the expansion points and corresponding 
moment numbers is given. The order of approximation is 46 and for example 
the number of moments at .s = 0 + j3.0 x 10'̂  is 8.

46
0 0 14 
0 1.5e9 10 
0 3.0e9 8
0 4.5e9 12 
0 6.0e9 9
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A .2 Circuit Input File (inlin.sp)

****** Exajnple interconnect network
resl 1 2 75
lindl 2 3 lOe-9
capO 3 0 le-12
res2 3 4 25
lind2 4 5 6e-9
capl 5 0 le-12
trll 5 0 6 0 C=100e-12 L=60e-9 D= . 03
cap2 6 0 .5e-12
res3 6 0 50
res4 6 7 25
lind3 7 8 5e-9
cap3 8 0 le-12
vin 1 0 1
.ac le7 6e9 le7
.options useawe scaling=le9 lapack 
.print v(8)
. end

Transmission line : nodel node2 node3 node4 C=vaIue(F) L=value(//) D=length(m)

Resistor 

Capacitor 

Inductor 

Voltage Input

: r.K.x.x nodel node2 vaIue(Ω)

: cx.xx nodel node2 value (F) 

; Ixxx nodel node2 value [H) 

: vxxx nodel node2 value (V )

A .2.1 O ptions Card

.options :
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printmb : Prints T  and T'" at each moment computation

showiterno : Prints iteration number

useawe : Employs AWE and multi point 

subroutines to verify the analysis

poles : Prints poles and residues of the circuit

lapack : Employs commercial Lapack package rnatri.x solver 

instead of another solver implemented before

methocl2 : Employs Methocl2 to verify the analysis

moments : Prints moments at each e.xpansion point

post ; Prints every step to output file

scaling : Inputs scaling value i,e, scaling= le9

list : Prints every step to display

A .2.2 Other Cards

.print : Defines output parameter to be printed, i.e, 

print v(node number)

• tran : Determines the transient analysis, i.e, 

tran time-step stoptime

.ac : Determines the ac (frequency) analysis, i.e., 

ac startfreq stopfreq stepfreq

.clc : Determines the dc analysis, i.e., 

dc startvolt stopvolt stepvolt
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A.3 O utput o f the program

The output of the program for the input and .config files above b  given next. 
The output consists of an output file and display output. The output file stores 
the number of discrete frequencies and the corresponding voltages in absolute 
values in a neat format which could be easily loaded by graphics tools (Matlab, 
Mathematica,...). The display output is as follows:

data file is interconnect/Awefiles/inl.out 
scaling

-This is the beginning-

Parsing Time=0 sec.
MNA matrix forming time for (0,0)=0 sec.
LU time=0 sec.
First FBS time=0 sec.
Other moments (13) evaluation time=0.016666 sec. 
MNA matrix forming time for (0,1.5)=0 sec.
LU time=0 sec.
First FBS time=0 sec.
Other moments (9) evaluation time=0 sec.
MNA matrix forming time for (0,3)=0.016666 sec. 
LU time=0 sec.
First FBS time=0 sec.
Other moments (7) evaluation time=0 sec.
MNA matrix forming time for (0,4.5)=0 sec.
LU time=0 sec.
First FBS time=0 sec.
Other moments (11) evaluation time=0.016666 sec. 
MNA matrix forming time for (0,6)=0 sec.
LU time=0 sec.
First FBS time=0 sec.
Other moments (8) evaluation time=0 sec.
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Lapack matrix solving time =0.799968 sec.
♦***rcond = 3.1096e-59 
numerator of order 45
(0.333333,0) (-0.148894,-0.133465) (0.0813455,0.0139253) 
(-0.00395075,0.00700985) (-0.000353988,-0.000384566)
....  (-3.93383e-40,7.23369e-41) (1.71645e-41,6.20467e-42)
denominator of order 46
(1,0) (-0.0821817,-0.400394) (0.140346,-0.104168) 
(0.056108,0.0125836) (0.00711239,0.00681182)
(0.00147754,0.00166321) .... (-1.50432e-37,1.54943e-37)
(-4.3418e-39,2.25196e-39) (-2.74136e-40,3.49853e-40)

Evaluation time for given frequency range =0.116662 sec.

Evaluation time without io =0.033332 sec.

Total time=l.23328 sec. 
-------That ' s the end—
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