
. it í'·'̂ í?;-. íí íí» -г.»í; ·> ‘jíoή if ІИ· «**»
ЛІЙ '<ΐ Γί“·. ?·Λ j ·. .· Λ .·»■ Î 'Г ■; -» ■·;. J
^ í ;· ̂ ·:; -̂, îf
M ·-''..■ « <, »i'w . 1̂- .w ,'..■ -ÀV

r. -r ·.» ^ ·-» '.'-Л. ^ 7 J -
, ■ 'V* ’ . * Г'.·' •fv̂'Î <1 ' .Í -̂ ·■ : ? -r ̂ i\ ώ. ■ i·; - Γ ΐ· || | ¡y

лѵ ív ®·? ■''•5' /·“* % *··'̂ <̂·> 'í* í*·̂ ■*“

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bilkent University Institutional Repository

https://core.ac.uk/display/52928193?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

IMPLEMENTATION OF

PARALLEL NESTED TRANSACTIONS FOR

NESTED RULE EXECUTION IN
ACTIVE DATABASES

A THESIS

SUBMITTED TO THE DEPARTMENT OF COMPUTER

ENGINEERING AND INFORMATION SCIENCE

AND THE INSTITUTE OF ENGINEERING AND SCIENCE

OF BILKENT UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTER OF SCIENCE

By

S a y g iii

S('pt(Tiil)(T·, 1996

11

I certify thcit I hcive read iJiis tliesis and that in rny opin­

ion it is iully adequate, in scojx' and in quality, as a thesis
for the decree of MastcM* of Science.

Asst. Prof4)F. Пг. О'/дГп* IJlusoviPO'/giii* lJhisoy(Principal Advisor)

I certify that 1 liave i('a.d tliis thesis and that in iny opin­
ion it is fully adequate, in scope' and in qucility, a.s a thesis

for the degree of Master of Science'.

Pi4)f. Dr. Varol Akman

I certify that I have' I'cael this tlu'sis and that in iny opin­
ion it is fully (lelequa.te', in se'e)pe' anel in ejuality, as a the'sis

for the degree of Master of Sci('uc(\

Лнн1.. Pi'oi. Di'. "rugrul Dayar

Approved for the lii.stitutc' оГ I'higiiieering and Scii'iice;

<r
Pro!'. Dr. Mehmet Baray, Director of ¡usjJpne of l'hıgineering and Science

4б'.Э

SJ.3

ь 03523

Il l

A BSTR A C T

IMPLEMENTATION OF
PARALLEL NILSTED 'I'RANSACTIONS FOR

NESTED lUJLE EXECUTION
IN ACTIVE DATABASES

Yiicx'l Sa-ygin
M.S. in Computer Engineering and Inibrmation Science

Supervisor: Asst. Prof. Dr. Özgür Ulusoy
Septeml)er, 1996

(Jonventional, passive datal)ases, ex('cute transcictions or queries in response
to the requests from a user or an application program. In contrcist, an Active
Database Management System (ADI3MS) allows users to specify actions to be
executed when some specific evcMits are signaled. ADBMSs ¿ichieve tliis feci-
ture by mecins of rules. Execution of ruh's is an important part of an ADBMS
which may affect the overall performanc'e of the system. Nested transactions
are proposed as a rule execution model for ADBMSs. The nested trcinsciction
model, in contrast to flat transactions, allows transactions to be started inside
some other trcinsactions forming a transaction hierarchy. In this thesis, imple­
mentation issues of pcirallel nested transactions, wluM’e all the transactions in
the hierarchy may run in pcirallel, aix' discussed for parallel rule execution in
ADBMSs. Implementation of nested transactions ha.s Î een performed by ex­
tending the flat trcuisaction semantics of OpenOODB using Solaris threads. A
formal specification of the proposed (xxec.ution model using ACTA framework
is also provided.

Key 'Words: Active Databases, Nested Transactions, execution model, So­
laris Threads, rule execution, A(JTA.

IV

ÖZET

PARALEL İÇ İÇE YUVAI.ANiV1I,<î IIAREKEl'LERİN AKTİF VERİ
TABANI KURALLARININ İŞLEME KONMASINDA UYGULANMASI

Yücd Saygın
Bilgisciyar ve liniormatik Mülıendisliği, Yüksek Liscins

Tez Yöneticisi: Yrd. Doç. Dr. Özgür Ulusoy
Eylül, 1996

Klcisik veri tabcinlarında, lıa.rcLketler veya sorgular kııllcinıcının tciiebine kar-
î ılık işleme konur; buım karşılık, aktif veri tabanları, belli olayların sinyal
edilmesi sonucu işleme konaca.k eylemlerin kullanıcı tarafından belirlenmesine
izin verir. Aktif veri tabanları, aktif özelliklerini kurallcir sciyesinde gösterir.
Kurallcirm işleme konması ¿ıktif veri tabanının önemli bir pcirçasıdır, ve tüm
sistemin performansını etkileyebilir. İç içe yuvalanmış İmreket modeli, bir kural
işleme modeli oUırak önceden sunulmuştur. İç içe yuvalanmış hareket modeli,
normal hareket modelinden farklı olarak, liareketlerin içinde başkci İmreketler
başlatılmasına izin verir, böyh'ce bir hareket hiyerarşisi oluşur. Bu tezde par­
alel iç içe yuvcilcinımş hareketlerin uygulanmasından l)ahsedilmektedir. Par­
alel iç içe yuvalanmış harekethn-de, lıiycyrarşinin içindeki bütün hareketler par­
alel olarcik çalışabilir ve bu şekihk' sist(vmin verimliliği arttirilıniş olur. Par­
alel iç içe yuvalanmış hareketlerin uygulanması OpenOODB’nin düz hareket
modeli genişletilerek gerçekleştirilmiştir. Solaris thread’leri, hareketlerin par­
alel çalışrricisı cirricicıyla kullanılmıştır. A(!TA adlı fornicil çerçeve yapısı kul­
lanılarak, sunulan çcilışma modeli İbrırıal olarak ciçıklanmıştır.

Anahtar kelimeler’. Aktü V(n*i Tal)anları, İç İçe Yuvalanmış Hareketler,
işleme koyma modeli, Solaris Tlıread’leri, kural işleme, AÇTA.

To m y parents and m y brother

VI

ACK NO W LEDG M ENTS

1 am very grateful to my supervisor, Asst. Prof. Dr. Özgür Ulusoy tor his
invaluable guidance and motivating support during this study. His instruction
will l)e the closest and most important reference in my future research. I would
also like to thank Prof. Alejandro Buchinaim for his guidance, Dr. Juergen
Zimmerman, ¿ind Alin Deutsch for their technical support, my colleague Uğur
Çetintemel who alwciys provided me with technical and moral support. Prof.
Sharma Clmkrcwarthy for providing me with a platform for integrating my
implementation, Shashi Neelakantan and llyoungjin Kim tor their technical
support during the integration, my colleagues Aynur Akkuş, Bilge Say and
Murat Bciyraktar for their moral support, my friends Gökhan Tür, Dilek Z.
líakkcini and A. Kurtulu.^ Yorulmaz who were always with me with their in­
valuable moral support, my family for their moral support and patience during
the stressful moments of my work, and last but not the least, Tahsin Mertefe
Kurç, who was always ready for liel|) witli his priceless techniccil knowledge
and experience.

Finally, 1 would like to thank the c()iiimitt(.'e members Prof. Dr. Varol
Akman und Asst. Prof. Dr. Tuğrul Dayar lor their valuable comments, and
everybody who has in some way contributed to this study by lending moral
and techniccd support.

C ontents

1 In trod u ction 1

2 R u le E xecu tion in A D B M S s 5

2.1 Overview of ADBMS Rule E xecution... 5

2.2 Nested Transcictions for Rule Execution.. 8

2.2.1 An Introduction to Nested 'I'ransactions 8

2.2.2 Concurrency Control and Recovery Issues in Nested I'rans-
actions... 9

3 E xecu tion M odel 11

;U A C T A ... 14

.'1.2 Axiomatic Definition of Parall(4 Nested Transactions in ACTA . 19

3.3 A Formal Model lor Rule lixecution in Active Databcises using
A C T A ... 21

3.3.1 Coupling Modes... 22

3.3.2 A Formal Modcrl Using A C T A .. 24

4 Im p lem en tation o f N ested Transactions 27

vii

CONTENTS viii

4.1 Previous Work 27

4.2 Implementation.. 28

4.3 Controlling Concurrent Acc.e.s.s to (iommon Data Structures 35

4.4 Implementation of tlio Locking Protocol for Nested Transactions 37

4.5 Deadlock Detection.. 39

4.6 Integration of Our lni|)[('meiitation of Pcirallel Nested Transac­
tions to Sentinel.. 43

5 C onclusions and Future W ork 45

A Sam ple P seu d ocod es 47

A.l Processing Lock Requests 47

A.2 Deadlock D etection.. 51

C hapter 1

Introduction

(¡oiiventional, passive, databases execute queries or transactions only when ex­
plicitly requested to do so by a user or an application program. In contrast,
an active dcitabase management system (ADBMS) allows users to specify ac­
tions to Ire executed when specific events a.re signaled. The concept of cictive
datalrases has been originated from the |)roduction rule paradigm of Artifi­
cial Intelligence (AI). The A1 product,ion rule concept has been modified for
the active database context so tliat rules can respond to the state changes
caused by the database operations [11VV92]. An active database implements
reactive behavior since it is able to detect situations, which ma.y occur in and
out of the database, and to perform necessary actions which were previously
specified by the user. In the absence; of such an active mechanism, either the
databa.se should be polled or situation monitoi-ing should be embedded in tlie
application code. Neither of these a.pproaches is completely satisfactory. Fre-
(|uent polling degrades performance of the system and infrequent polling nmy
deterioi’cite the timeliness of system responses. Embedding situation monitor­
ing in tlie applicevtion code is error prone and reduces the modularity of the
a.pplica.tion [Day88].

Active databases is now an activedy researclied areci since it has many ap-
plications that cannot be supported in a time-critical and efficient manner by
a conventional databcise. Applications of active databases cover a wide range
of areas like authorization, access logging, into;grity constraint maintenance.

CHAPTER 1. INTRODUCTION

R.ULEl: Inventory Control
E ven t: Update Qtuintil:yJOn_Hund{itern)
C ondition: Qu(wMtyjOv JIajid(il:ern) < Tlireshold(item)
A ctio n : SabrniljOrder{itern)

H,ULE2: Access Logging
Event: Update User_Accounts
C ondition: Ti'ue
A ction: Insert Into Securtl/y-Log Values{Usei\Tirruistarnp)

RULE3: Power Plant (Jontrol
Event: r-iver updatcAVuter·Levelix)
C ondition: X < 37 A river· —»■ get'l'ernpi) > 24.5

A reactor getHeutOutPut{) > 10000
A ction: reactor —> reduce.Plann.e.dPoiver{0.06)

Eigure i.i: .Sample Rules

alerting, network iria.nageinent, air trallic control, computer integrated manu­
facturing, engineering design, plant and ı■(!a.ctor control, tracking, monitoring
of toxic emissions, and гшу otlier ap|)lication where large volumes of data must
be analyzed to detect relevant situations [Da.y88], [BDZ95]. Active datalrase
systems are proposed for system level a.|rplications as well, like supporting dif­
ferent transaction models [СА95].

In a typical ADBMS, system responses a.re declaratively expressed using
Event-Condition-Action (ECA) rules [1)а.у88]. An ECA rule is composed of an
event that triggers the rule, a condition describing a. given situation, and an
action to be performed if the condition is satisfied. One of the most irnportcuit
concerns in ADBMS research is event, condition, and iiction specification. An­
other signilicant resecirch issue in cictive da.taba.ses is event detection. Ainong
typical events in an ADBMS are data modification operations (e.g.,insertions
and deletions), method invocations on ol)jects, external events (e.g., appli-
Ccition signals), temporal events, and transaction related events (e.g., begin.

a.bort transciction) [BZBW95]. Some sample rules for a subset, of the applica­
tions listed at the beginning of this section are provided in Figure 1.1. The
first and second rules deal with the liaudling of inventory control cind access
logging, respectively [HLM88]. 'I'lie third rule is related to power plant control
which is specified in a rule language called I{,EAL [BDZ95]. First rule is fired
wlien an update of the c|uantity on hand of tin item occurs, condition is checked
to see whether the quantity on liand of an item goes l êlow the threshold value
for that it('ni, and in the action part of the rule, some amount of that item is
ordered. Second rule is fired wlien the user accounts are updated, condition is
true, meaning that the action will b(j e.xecutc'd anyway, action for that rule is
an insertion of some information into the security log about the user cuid time.
For the third rule to be fired, water level of the river in concern should be
updated, some condition about the temperature of the river and heat output
of the reactor is checked, and the [planned power of the reactor is reduced as
an action. Basic events, such as tlic ones])resented in the Scunple rules, can
also be combined to form composite events by using an event algebra. Effi­
cient event detection is of particular importance especicdly when the number
of events to be monitored is large. Rule e.xecution is also a significant concept
in ADBMS research. Section 2.1 of Cliapter 2 provides a detailed discussion
of rule execution in ADBMSs.

CHAPTER 1. INTRODUCTION 3

Efficient ride execution is also important from the performance perspective
of the whole system. The occurrence of an event can start the execution of
some rules by firing them. If the condition part of a fired rule is satisfied,
then the action part of that ride is executed. Coupling modes between event
and condition, and condition and action determine when the condition will
be executed relative to the occiirrenci; of the event, and when the action will
l)c executed relative to the condition, respectively. During the condition eval­
uation and action execution of a. rule, some other rules may be fired. Tliis
situation may go on recursively and is called nested (or cascaded) rule firing.
Nested transaction model [Mos8o] is considered as a. suitable tool to implement
rıdcî execution since it can handle nested rule firing well. In the nested trans­
action model, some transactions may be started inside some other transactions
forming a transactions hierarchy. 'I'lie (.raiisaction at, the top ol the hierarchy is

CHAPTER 1. INTRODUCTION

called a. top-level transaction, and the other transactions are called subtransac­
tions. Subtransactions can be e.xecuted in parallel which is a desiridDle situation
if subtransactions are performing tasks thal. can be overlapped. Concurrency
control of pcirallel nested trajisactions is discussed in

In this thesis, we describe a parallel e.xecution model for rule execution
in ADBMSs based on nested transactions [Mos85]. The execution model is
tbrmally specifi(xl using ACTA which is a, frcimework for specifying extended
trcuisaction models [CR.9I]. An implementation of parallel nested transac­
tions for nested rule execution is described. The locking protocol in [HR93] is
implemented which allows us to conti-ol the concurrency among all the trans­
actions in the transaction hiera.rchy I·unning in parallel. Im{)lementation has
Ireen performed by extending tlie flat tra.nsa.ction semantics of OpenOODB
using Solaris threads. OpenOODB is an open (i.e., extendible) object oriented
database nuumgement system developed by Texas Instruments [WBT92]. In
our implementation we allow all the transactions in the trcinsaction hierarchy
to run in parallel, therefore acliieving the iiighest level of concurrency. Solaris
threads cire used for running the subtransactions in pcirallel which provides us
with eflicient handling of transactions executing concurrently [Suii94]. Our im­
plementation of parallel nested transactions is currently lieing integrated into
Sentinel [CAM93] which is an ADBMS developed at the University of Florida.

A detciiled discussion of the issues introduced in this chapter is provided in
the following chapters. In Chapter 2 we provide a detailed description of rule
execution in active databcises. Our execution model for cictive databases is de­
scribed in Chapter 3 together with its Ibrmal specification. Nested trcuiscictions
are also discussed in the same cliapter. Chapter 4 deals with the implementa­
tion issues of parallel nested transactions on OpenOODB using Solaris threads,
a.nd discusses the integrcition of our implementation into Sentinel. Finally in
Chaptei' 5 conclusions and future work are discussed.

C hapter 2

R ule E xecution in A D B M Ss

This chcipter provides cui overview of rule execution in Active Databases and
describes a model for rule execution in Active Databases which is Ibrrnally
specihcd in Section 3.3 together with an appropriate transaction model. VVe
introduce the concept of nested transactions together with their concurrency
control and recovery propei’ties.

2.1 Overview of ADBM S Rule Execution

Rules in yVctive Databases consist of an event, a condition cUid an action. If the
event is missing, then the restdt is a condition-action (CA) rule or a production
rule; if no condition is s]jeciiied, tlien the resulting ruk; is cui event-action (EA)
ride or simply a trigger [PD95]. VVlieu an I'veid, is detecf,ed, t.he system searches
for the corresponding rules. The condition part of the rule triggered by tha.t
event is ('valuated and the action is taken if the condition is satisfied. Oru'
event may cause more than oiu' rule to be fired. Handling of multiple rides
fired l)y an event is a,Iso an importard, task of rule execiduon. New (iveid,s may
also occur during rule execid,ion which may cause triggering of other ruk's.
'I'lds is called cascading rule f iring. I'lflicient handling of cascading rule firing
improves the performance of tlu' wliole system and is a dcsiraTle situation.

'I’he action part of a rule may be executed in one transaction iirimediately

as a. linear extension of the triggering transaction. 7.’liis is called coupled
execution [HLM88]. VVe can give Starburst as an example of coupled exe­
cution of rules [AWH92]. In Starburst, rules are based on the notion of transi­
tions. A transition is a database state change resulting from the execution of
a. sequence of data manipulatioii operations. Rules are activated at assertion
points. There is an cissertion [)oint a.t the end of each transaction and users
ma.,y specify other assertion points witliin a. transaction. The state change re­
sulting from the database operations issued l),y the user since the last assertion
point creates the first relevant transition vvhicli triggers a set of rules. A rule r
is chosciii from the set of l,riggered rules such that no other triggered rule has
precedence over it. Condition of r (if it has any) is evaluated . Action part of
r is executed provided that its condition evaluates to true; otherwise another
rule is chosen. After the execution of r ’s action, rules that cire not considered
up until now are triggered only if their transition predicates hold with respect
to the predicate created by the com|:>osition of the initial transition and the
execution of r ’s action. Rule processing terminates after all triggered rules are
executed.

CHAPTER 2. RULE EXECUTION IN ADBMSS 6

Although coupled execution is uscdiil in some cases, it degrades the per-
Ibrmance of the system by increasing the response time of transactions. If
we allow actions to be executed in separate; transactions, then the triggering
transaction can finish more quickly and ixylcasc; resources earlier, and this way
transciction response times can l)e im|)roved. VVe may also want the condition
part of the rule to be executed as a. separate transaction since conditions which
are queries on the database can be long and time consuming. Allowing con­
ditions and actions to be executed in separate transactions is called decoupled
execution [HLM88].

It is also important to specify when tlie condition will be evaluated relative
to tlie triggering event and when tlu; action will be executed relative to tlie con­
dition evaluation. This is achieved by defining coupling rnodea for conditions
and actions. There are three basic coupling modes: irmnediate, dejerred, and
detached (or decoupled,) [Day88]. Basic coupling modes between event and con­
dition are illustrated in Figure 2.1. If the condition is specified to be evaluated
in irnrnediate mode, then it is executed right after the triggering operation

CHAPTER 2. RULE EXECUTION IN ADBMSS

Begin Transaction
I------------

Event E End Transaction Commit Transaction

I

[Condition]
(IMMEDIATE)

[Condition]
(DEFERRED)

I
I [Condition]

(DETACHED)

Figure 2.1: Ba..sic (Joupling Modes Illustrated

that caused the event to be raised. If the action part is specified to be exe­
cuted in immediate mode then it. is executed irnmediatel_y after the evaluation
of the condition. In case the condition is specified to be in deferred mode, its
evaluation is delayed until the commit point of the transaction, and similarly
if the action is in deferred mode relative to the condition, a.gain it is executed
right l)elbre the transaction commits. Finally, in detached mode, condition
is evaluated or action is executed in a separate transaction. Detached mode
can further be classified into four subcategories: detached coupling, detached
causally dependent coupling, sequential causally dependent coupling, and
exclusive causally dependent coupling [Buc94]. In detached coupling there is
no dependency between the triggering and triggered transcictions. In detached
causally dependent coupling, tlic triggered transaction can commit only if the
triggering transaction commits. In sequential causally dependent coupling,
the triggeied transaction can start executing only if the triggering transac­
tion commits. Finally, in exclusive causally dependent coupling, triggered
transaction commits only if the triggering transaction fails.

There is a special technic|ue used tor the execution of transactions fired
in deferred mode [HLM88]. Deferred transactions are executed in cycles. In
cycle-0, deterred transactions that have Ireen fired up to tliat point are exe­
cuted. 'ITansactions spawned during cycle-0 in immediate mode are executed as

a linear extension of their parents a.s usual. Execution of the deferred transac­
tions that are fired during cycle-0 by another deferred transaction is postponed
to the next cycle, which is cycle-1. Again deferred transactions that are fired
in cycle-i are postponed to the next cycle, which is cycle-2, and so on. 'I'his
process continues until there aix' no d(;lerred transcictions left.

2.2 N ested Transactions for Rule Execution

Nested transactions are considered to be suitable for rule execution in ADBMSs.
In the following subsections, we will discuss nested transactions together with
I,he concurrency control cuid recovery issues.

2.2.1 An Introduction to Nested Transactions

CHAPTER 2. RULE EXECUTION IN A DBMSS 8

Traditioiicd transactions have only one branch of execution. In the Nested
'rransaction Model, transactions can lui.ve niultiple branches of execution. A
nested transaction may either consist of a. set of primitive actions or other
nested transactions; i.e., it is recursive. Nested transactions form hicrarcliies
which can İ3e represented as tree's aritl sta.ndard tree notions like parent, cliild,
ancestor, descendant, superior, and inferior also a.|>ply to them. I'lie root of
the tree is called a root or top-level transaction. The root may have one or
more children, similarly children! of the root may also have other children.
By dividing transactions into sinalleM· granules, we localize the failures into
subtransactions. Subtransactious can abort independently without causing the
a.l)ortion of the whole transaction hierarchy. When a transaction aborts, all of
its descendants a,re also aborted, but othen· transactions are not affected. Nest,ed
transactions are also very useful in tei ins of system modularity. If we cousid('r
a. transaction hierarch}^ as a. big module, its subtransactions may be designed
and implemented independently as submodules, also providing encapsulatioii
and security iBlfQ't

2.2.2 Concurrency Control and Recovery Issues in Nested
Transactions

CHAPTER 2. RULE EXECUTION IN ADBMSS 9

; nested transactions we can (exploit the parallelism among subtransactions
since subtransactions can be executed in [)arallel. 'I'liere can be four different
kinds of parallelism:

1. only sibling

2. only parent-child

parent-child and siblii

4. no paicdlelism (i.e., sequential execution)

In the first case, where ordy sibling parallelism is allowed, parent stops its
execution while its children are running concurrently. In the second case, only
parent-child pcirallelism is allowed where parent and cfiild run concurrently
while the other children wait. In the third case, all transactions in the fiierarchy
can run in parcdlel. In the Iburth case, we have no parallelism at all (i.e.,
transactions in the hierarchy cU'c executed sequentially) [HR93]. In our model,
we will assume pcirent-child and sibling parallelism since it provides us witfi
the most flexible model of parallelism.

When trcuisactions are executed concurrently, serializability is used as tlu'
correctness criterion, and it is ensured by two-phase locking. A child transac­
tion can |)otenticilly access any object in tlie database. When a sid:)transa.ction
commits, the objects modified by it are delegated to its parent transaction.
We used ci. locking protocol, which is described in Chapter 3, tor concurrency
control in nested trcinsaction execution.

in nested transactions, ACID properties (i.e., citomicity, consistency, iso-
la,tion, and durability) are valid lor top-level transa,ctions, but oidy a subsc't
of them holds lor subtransactions [IfR.93]. A subtransaction ma.y commit or
abort independiiiit ot otfuir transactions. Aborting a subtransaction do(3s not
affect other transactions outside of its fiierarchy, hence they protect the outside

CHAPrER 2. RULE EXECUTION IN ADBhiSS 10

world from internal failures. If we had paeked all subtransactions into one big
flat transaction then we would liave to abort the whole transaction.

Recovery of nested trcinsactions is similar to the recovery of fiat transactions.
Standard recovery algorithms like versioning or log-based recovery can l)e used.
Log-based recovery for nested transactions is discussed in [Mos87] and [RM89].
[RM89] introduces a model calk'd ARlf'lS/NT and this has several advantages
over the recovery model provided in [lVlos87] . The biggest drawback of the
recovery model of [Mos87] is that it does not use (Jompensation Log Records
(CLRs) which are necessary foi' [Kvrformance reasons. A detailed description of
CLRs is provided in [RM89]. Implementation of our execution model has been
built on OpenOODB which uses EXODUS as storage nicuiciger whose recovery
component is implemented based on ARIES [MHL+92], cind ARIES/NT is pro­
vided lor nested transactions as an extension to ARIES. Therefore, ARIES/NT
is the most suitable recovery sclieme tliat can be adopted to our transaction
execution model.

C hapter 3

E xecution M odel

Our rule execution model is Irased on the nested transaction model. The nested
transaction model implicitly assumes tliat tlie subtranscictions are spawned in
immediate mode. In our execution model, transactions may spawn subtransac­
tions in any coui^ling mode speciiicd by the system. Each rule is encapsulated
in a transaction. When a rule ri fires another rule 7-2, then depending on the
coupling mode, V2 is encapsulated in a.notlier (sub)transaction and executed in
the specified coupling mode. IF the coupling mode is immediate or deterred,
then r-i is executed as a. subtransaction of r |. If the cou|rling mode is one
of sequential causally dependent, detadied causally dependent or, exclusive
cauisally dependent, then r-i is executed as a, top-level transaction. 'JTie overall
structure of the currently executing rules in the system tbrrns a. forest consisting
of trees whose roots are the rules fired in one of the detached coupling modes.
As stated ecudier, l)oth pcirent-diild and sibling parallelism are allowed which
provides us with the maximum concurrency among subtransactions. Top-Level
transactions are executed in parallel. All nested transaction semantics ap|)ly
among the individual rules in tlie nested transaction tree. Abort and commit
depeiKlencies among the top-level transactions are enforced by the transaction
manager.

The concurrency control algorithm used in our execution model is based
on the notion of nested concurrency control. Harder and Rothermel [HR.93]
ha.ve extended Moss’s nested transaction model to contain downward as well

CHAPTER 3. EXECUTION MODEL 12

as upward inheritance of locks. VVe liave employed in our model the locking
protocol provided in [HR93]. The protocol is composed of the following locking
rules:

• Rule 1: Transaction T ma.y a,c(|uii-(,' a. lock in mode M or upgrade a lock
it holds to mode M if

— no other transaction holds the lock in a mode that conflicts with M,
and

- all transactions that retain tlie lock in a mode conflicting with M a.re
ancestors of 1'.

A transciction holds a lock on an ob ject, if it has the right to access the
locked object in the requested mode. In contrast, a trcuiscictions retains ci
lock on an object to control the access ol the transactions outside the hier-
circliy of the retainer and ca,imot l)c accessed by the transaction retciining
the lock.

• Rule 2: When subtransaction 'I' commits, the parent of T inherits T ’s
locks (held and retained). Alter tliat, the parent retains the locks in the
same mode as 'b held or retained them before.

• Rule 3: When a top-level transa.ction commits, it refocises all locks it holds
or retains.

• Rule 4: When a transaction aborts, it releases ¿ill locks it holds or retains.
If any of its superiors hold or retain any of tlu'se locks, they continue to
do .so.

• Rule 5: Transaction T, holding a lock in mode M, can downgrade the lock
to a less restrictive mode, Mb After downgrading the lock, T retains it in
mode M.

These locking rules can be used with dilferent types ol coupling mode's. A
(,1'ansa.ction spawned in detached causally dependent mode should be able to use
its parent’s locks in the same wa.y as a. subtra,nsaction spawned in immediate or
deferred mode. .Since the transaction spa,wned in detached causally dependent

CHAPTER 3. EXECUTION MODEL 13

mode should abort if its parent aborts, it can use its parent’s locks without
causing any problem in the recovery.

Both slurred and exclusive lock modes a.re available to transactions in our
execution model.

Active database recovery is stilt a.n open research area. There are only a,
lew papers on active database recovery which mainly focus on the recovery of
events (e.g., [HEKX94], [Zuk95]).

y\ctive database recovery in general deals with :

• Recovery of events.

• Recovery ol aborted rules. Possible solutions to the recovery of aborted
rules are listed in [HEKX94] as:

— ignore the aborted transaction,

— abort the triggering tra.nsaction,

— retry the triggered transaction or start a dilferent one,

— reset the triggering transaction to the point of the occurrence of the
event that caused the rule to Ire triggered.

The alrove recovery options may Ire left to the user chrcision, or they may be
handled automatically depending on tlu' im|rlementa.tion. The most reasoiicible
approach would be to let the user s|r(x:ily th(! reccrvery mode of the rule during
the ride defiintion ¿md make the reccrvery mode an attribute of the rule.

The execution model described in this thesis does not include recovery. As
we discussed in Section 2.2.2, ARIES/NT [RM89] can be adopted as a recovery
model for nested rule execution without significant modifications. Recovery
(rf transcictions spawned in immediate' or deterred rrurde can be liandh'd as
described in [RM89]. Abort dependencies must be considered during rollbacks.
Among the detached coupling nurders, crnly the detached causally dependent
mode I'equires some extension to the model ol ARIES/NT. Assume that a
transaction A spawns a transaction B in carisally dependent mode, it means

that abortion of B should be succoieded by tlie abortion of A which should be
enforced by the recovery model. Other detached coupling modes do not require
any extension to the recovery model, 'fransactions spawned in one of those
modes are treated as top level transactions, a.nd their recovery is performed by
Ibllowing the top-level transaction abortion steps.

CH/iPTER 3. EXECUTION MODEL 14

3.1 ACTA

ACTA is a transaction framework tha.t, can Ire used to formally describe ex­
tended transciction models [CR,9 l·]. Using ACTA, we can specify the interac­
tions and dependencies between tlie transactions in a model. ACTA character-
i/.es the semantics of interactions (1) in terms of different types of dependencies
Iretween transactions (e.g., commit dependency and abort dependency) and (2)
in terms of transactions effects on objects (their state and concurrency status,
i.e., synchronization stcite) [CK.94]. Uffects of tra.nsactions on objects are speci­
fied using two sets associated with eacli transaction: a vieio set which contains
tlie state of objects visible to that transaction a.nd a conflict set which con­
tains operations for which conflicts luicd to be considered. ACTA frainework
consists of four basic blocks which are history^ dependencies between transac­
tions, view and conflict sets of tra.nsactions, a.nd finally delegation. History
represents the concurrent execution of a. set of transactions and contains all
tlie events invoked by those transactions, also indicating the partial order in
which these events occur. A(JTA ca.pf,ures lioth of the effects of transactions
on other transactions and their effects on objects through constraints on his­
tories. 'rransaction models are defined by a set of axioms. These axioms are
invariant assertions about the histories of transactions belonging to the partic­
ular model. The whole history is denoted liy /■/, and 11 ̂ denotes the current
history. We may also project tlic history to obtain a subliistory that scitisfies
some criterion. Invocation of a general (went e by transaction t is denoted by
(,. 'riiere are three possibilities that can affect the occurrence of an event;

1. an event e can occur only after the occurrence of another event e (denotcxl

as t —i e)

CHAPTER 3. EXECUTION MODEL 15

2. an event e can occur only if a condition c is true (denoted cis c => e)

3. a condition c can require the occurrence of an event c (denoted as e ^ c).

¡-[{oh) jg yjg projection of the history II with respect to the object ob.
Two opei'citions p and q conflict in a. state produced by lP°^\ denoted by
conjIict{HC^’\p,(l), if anti ordy if,

o p, q) C:ate{lR^’̂̂ o r/,p))
V {retu.rn{lR '̂^\q) ^ return{lR‘̂ '̂ ̂ ° 'Pt(l))
V {reiurn{lR°^\p) ^ rei:urn{liC'b oqpp))

where sl:ate{s,o) represents the state produced after the operation
o is applied to the stcite .s, and re,turn{s,o) represents the output
produced when the operation o is applied to sta.te .s, and o denotes
function coiTiposi tion.

There are two types of events in ACTA:

• Object Events: Invocation of aii oi)eration on an oljject is called an ol)ject
ev(int. An invoccvtion of an operation p on an object ob by trcuisaction t is
shown by pt[ob] and OEi is the set of object events that can be invoked l)y
transaction t. Effects of pi[ob] arc; made permanent l)y invoking a commit
operation on this object, which corresponds to the event Comm.it[pt[ob]].
When we want to discard tlie operation performed on an object, we al)ort
it, and the corresponding event is Aborl:[pt[ob]].

• Significant Events: Invocation of a transaetion management primitive like'
begin, cibort, spawn, or commit is called a, significant event. SEt is the set
of significant events corresponding to transaction t. Events related to tlie
initicition of a transaction are called tmiiation events and are denoted by
I Ell. Events that are related to tlie termination of a transaction are called
terrnincition events and are denoted liy TEt.

Delegate.i\tjppti[ob\[denotes that transaction delegated the responsibil­
ity of committing or aborting the o|)cration pi,[ob] to transaction A set ol

CHAPTER 3. EXECUTION MODEL 16

operations may be delegated by Delc<jul.tti[tj·, DdcgateSet]. Initially, the re­
sponsibility of committing or aborting an operation belongs to the transaction
that invoked the operation, unless it is delegiited to another transaction.

ResponsibleTr{pt.[ob]) identifies the transaction that is responsible for com­
mitting or aborting the operation p/,Jo6] with respect to the current history.

Now we can formally define the access set of a transaction t by:

AccessSeti = {pti[ob]\Res])onsihl(-:Tr{pi.[oh]) — /,)}

An object ob behaves correctly if and only if

'itiC j G T,ti 7̂ tj,\/p, (¡{return Jval/ucMepcndent{p,q)
A [ptiiob] ^ qtj[ob])) A - î(C(nrwnt[pi..[ob] (¡tj[ob])
V {Abort[pt.[ob]] qtj[ob])) ^ {{Ab()rt[pt-[()b] G ^

(y\b(rrt[qt^[(M] e

where return jo alueAepen(l(mt{HbNp, ci) is true if conflic:t{lU^'^\p, (¡)
is true and return{H^“'̂'> o />,</) ^ return{HC’̂ \(j)

An object ob behaves sericdizably if and oidy if

1. ytiJ.j 6 TcommCi 7̂ Lj
(tjiobtj) ^ 3p,qicxm.fli(q.{pi,[ob],qi,^[()b]) A {pi,[ob] qtj[ob]))).

2. V/ G Tcomn <tbl,t)

where Team is Ih« set of committed transactions; bob is a binary relationship
that occurs due to an access to the ol)ject ob by the transactions tluit take
|)lace in the binary relationship; cind 6*̂ is the closure of bob-

An ob ject ob is atomic if o6 behaves correctly and serializably.

Fundamental axioms of transactions:

CHAPTER 3. EXECUTION MODEL 17

1. Vcv G IEi{a G IP) ~'3/3 G 1 Et[a (3)
A transaction cannot be initiated I)}' two different events.

2. yS G TEt 3cv G lE t i l G IP) ^ (a -> ¿)
If a transcvction h,as terminated, it must have been previously initiated.

3. V7 G T E t(j e IP) ^ ^3S G T E t(j -> S)
A ti a.nsciction cannot be terminat(xl l)y two different termination events.

4. VoOVp(pt[ob] G II) => ((3a G IE ,(a p,[o/,])) A (37 G TE\(p,[ob] ^ 7)))
Only in-progress trcinsactions can invoke operations on objects.

Here we list a subset of standard dependencies between transactions that
are dehned in ACTA which we have used for specifying our execution model
for Active Dcitabases. •

• Commit Dependency (denoted a.s CD ti). If transactions 1, and t. j both
commit then t, should commit before tj. This can be shown axiornatically
¿IS I

Cornrnittj e H (Commit,,^ G U => (Cornmittf Commit,,^)).

• Abort Dependency (denoted as /,, AD ti). iff,· aborts then tj should also

abort:

Aborts G II => Aborttj G II

• Weak-Abort Dependency (denoted as tj WD ti). Iff,; aborts and tj has
not yet committed, then tj aborts:

Aborts G II => (-<(Comrnittj Abort,¿) ^ (Abortij G II))

• Exclusion Dependency is denoted by tj ED ti., and ensures that il ti
commits , then tj must abort. VVe can state this formally as:

Comrnitti G /7 => Abort,,j G H .

CH/iPTER 3. EXECUTION MODEL 18

These dependencies nicî ̂ be the result of the structural properties of trans­
actions. For example, in nested transactions child transactions are related to
their parent by commit and vveak-abort dependencies.

Axiomatic definition of the standard nested transaction model is provided
in [CR94]. Since we are utilizing tlie ('xtended model of nested transactions
described in [HR93], which is dilfereiit from the standard nested transac­
tion model of [Mos85], we necxl to modify tlie axiomatic definitions provided
tor nested transactions in [(JR94]. First of rdl, the standard ACTA term
UesponsibleTr is sepcirated into two notions, namely Responsiblej'etainTr
and RespoiisibleselfTr. With respect to this modification, Responsibleself
7'r{pt,[ob]) identifies the transaction wliich actually invoked an operation on the
object ob. The transaction identified Iry ll(:sponsible_selfTr(pif[ob]) is also re­
sponsible lor the commit or abort of this operation. Responsible j-etainTr{pt^ [o6])
identifies the transaction to which (iie responsibility of committing or aborting
tliis operation is delegated.

Since our notion of responsibh' transaction is different, the semantics of
delegation should also be modified. According to this modification,

Delegatet^[tj^pi\ob^ denotes tliat transaction delegated the retain
or self responsibility of committing or aborting the operation p/,, [o6]]
to transaction tj as retain res|)onsil)ility.

Finally, the access set of a. tra.nsactioii is modified as;
AccessSett = {pt,[ob]\ Responsible ..self Tr{pt..[ob]) = t
V Responsible-vetainTv{pifob\) = t]

In the next section, we provide' the axiomatic definition of tlie extended
parallel nested transaction model. Tliese definitions have been obtained by
modifying the axiomatic definitions of standard nested transactions provided

in [CR94].

CHAPTER 3. EXECUTION MODEL 19

3.2 A xiom atic D efinition o f Parallel N ested

Transactions in ACTA

Assurnoi that ig is the root transaction, /,,, is a root or a subtransaction, and
is a subtransaction of ¿p. Ancestors(l) is the set of all cuicestors of transaction
/, DescendantsU) is the set of all d('sc(MKlants of transaction and Parent(t)
contains the ^Darent of t.

1. /S'A’io = {Begin, Spaion, Coniinil, AhorI:}

2. TEt^ = {Begin}

3. TEti ̂ = {Cornnlit, Abort}

4. SEt^ = {Spaion, Commit, Abort}

5. lEt,, = {Spawn}

6. TEt^ = {Com.rnit. Abort}

7. tp scitisiies the fundcuiiental axioms of transactions that are listed in the
preceding section.

8. Vieiot,, = Hct
That is, tp sees the current state of ob jects in the database.

9. Conj’lictSett^ = {pt[ob]\Respon.sible^sel fTr{pt[ob]) ^ to, [nprogress{pt[ob])}
(Jonflict set of to consists of all oj)era.tions pcirfornied by different transac­
tions for which it is not self-i('sponsil)le (he., to did not ¿ictually invoked
the operation).

10. Vo63ppip[o6] G H (ob is atomic)
All objects on which tp invokes an opercition are atomic ob jects.

11. Cornmitt,, G II
Transaction tp can commit only if it is not part of a cycle of b relations
that are results of conflicting opcu ations.

CHAPTER 3. EXECUTION MODEL 20

12.

L3.

14.

15.

16.

3ob,p, t{Commitij\j)t[ob]] G II => Cornmiti^^ G H /\ Purent(t^,) = <¡6)
If an opercition p invoked on an object ob is committed by transaction /,p,
then tp should also commit and it sliould be a top-level transaction.

(C ornrnittp G II A Parent(tp) = f) ^ \/ob,p,t(pt[ob] G AccessSett^^
=> Cornmitt[pt[ob]] G II)
If a top-level transaction commits then all the operations for which it is
responsible must also be committcxl.

Bub,p, t (Aborttj^[pt[ob]] G II =4> Aborii ,̂ G II)
If an operation p invoked on an ob ject ob in transaction t is aborted by
transaction t,p, then tp must nJso abort.

Aborttp G II yob,p,t(pt[ob] G Acc(:»sSettp ^ Abortf,p[pt[ob]] G II)
If tp aborts then all the operations for which it is responsible must abort.

Begiritp G H => {Purent{tp) = (j) A Ancestor(tp) = (/>)
gin operation implies that a. to|)-lcvel transaction stcU'ts its e.xecution.

17. Conflict Sett,. = {pt[ob]\Responsibl(:-.selfTr(pt[ob]) tc, Inprogress{pt[ob])}
Conflict set of a child transa.ction consists of those operations for which
tc is not self responsible, since the opera.tions on the object ob for which tc
has the retevin responsibility ma.y l)e conflicting with cuiother transaction
which is not an ancestor of C·. 'This is due to the fact that subtransactions
a.re executing in parallel witli t,he |)a.rent transciction.

Spu'wntp[tc] £ II Parent(tc) = tp
If trcuisciction tc is spawned by tra,nsa.ction tp then tp is the parent of C··

Spat.ont„[tc\ G II ^ (teWOtp) A (tpCDtc)
If transaction tc is si:)awned by transaction tp then tp cannot commit until
tc terminates, and if tp aborts then tc must cdso abort.

20. Commiti,^ £ II ^ Delegate!.,,[Parent{tc), AccessSeti^ £ H
If a child trcuisaction tc commits, then it should delegate the objects in
its access set to its parent.

21. Vi G Descendants{tp)\/ob,p,(iipi[ob] qtp[ob])Conflict{pt[ob],qtp[ob])
3tc iiDelegate!ftp, Acces.HSct!,] —> c/i„[o6]) A pt[ob] £ AccessSett,)

18.

19.

CHAPTER 3. EXECUTION A40DEL 21

Given a transaction t and its ancestor 1:̂ and operations p ¿uid c/, tp can
invoke q after t invokes p if l.p is responsible for the operation p.

22. (Ancestol'itc) = Ancestor{tp) U {/-,j}) A V/(ip G Descendants(t)
tc € Desccnclants{t))

Ancestor set of tc consists of il,s pai(^nt plus ancestors of its parent, and
lor all ti'cinsactions t of wliicli is a descendant, tc is also a descendant
of /,.

3.3 A Formal M odel for R ule E xecution in

A ctive D atabases using ACTA

A Ibrrnal specification of rule execution in Active Databases using ACTA can
be provided without signilicant changes to the standcird ACTA primitives.
Instead of using a single Spaton pi imitiv(,̂ we add the primitives SpaiunHrnrn,
Spaiun^Def, Spaton-Detached, S]>aurn-Cans, SpatvnSeq, and Spaton.-Exc,
which specify the coupling modes in which the subtransactions are spa.wned.
These new primitives will be explained in Section 3.3.1. All coupling modes
except the def erred mode and .^e<iti.ential causally dependent mode can be
specified easily using the usiud de|)eudencies of ACTA. For the deferred mode,
\\H'. need to specify a. cycling execution method, whicli can be stated as follows:

Deferred transcictions are ex('cut,('d in cycles at the end, but just
before the commit of the transaction that spawned them. Cycling
execntion c<in start oidy in a. top-level transaction or a subtranscvction
spciwned in immediate mode since deferred subtransactions spawned
by another deferred transaction are executed in the next cycle after
the commitment of their parcMil.. Subtransactions spawned in im­
mediate mode are executed immediately, which deviates from the
standard deferred execution spccilication.

CHAPrER 3. EXECUTION MODEL 22

3.3.1 Coupling Modes

'he coupling modes we considcM-ed in our execution model are listed below;

• immediate mode, which lias tlie same semantics as the creation of a sub­
transaction in standard nested transaction model. Spawning of an imme­
diate subtransciction is denoted by the primitive SpuionMmrn.

• detached mode, which has tlie sanie semantics as the (vreation of top-
level transactions in the standard nested transaction model, '['here cire no
dependencies between the spawning and spawned transaction. Spawning
of a. detached transaction is denoted by the primitive Spawn^Detached.

• detached causally dependent mode, in which spawned transaction aborts
if the parent aborts, so there is an aJrort dependency between the spawning
transciction and spawned transa.ction. Spawning of a transaction in this
mode is specified by the primitive Spawri-Caus.

• sequentied causally dependent mode, which specifies that a child trans­
action cannot start its execution until its parent commits, '['his can be
enforced by a ShufuentialJJcpendencyiS'QD) which is provided as an ex­
tension to the ACTA dependency set a,nd can be stated formally as:

tiSQDtj ^ {{Begini^ G //) =» [Cornrnit^ —> Begiriij))

The primitive SpaiunSeq indicates that a suirtransaction is spawned in
this mode.

• exclusive causally dependent mode, which is denoted by the primitive
Spaiori-Exc and it ensures tliat tlie spawned transciction commits only if
the spawning ti’cinsciction al)orts. 'I'his can be enforced by using a stan­
dard ACTA dependency, namely tlie Exclusion Dependency between the
spawning and spawned tra,nsa.ctions.

• deferred mode, which is denoted by the primitive Spawn^Def, and a
bit more effort is required to specily it in ACTA framework due to the
cycling execution method. Assume that to is a top-level transaction, tp is
a top-level or subtransciction, and is a child transaction spirwried by t,,
in ckiferred mode.

CHAPTER 3. EXECUTION MODEL 23

Case 1; tp is ci top-level transaction or a subtransaction spawned
in immediate mode, i.('., is going to be executed in cycle-0. In
this case C is executed just bei'oix! the commit of ip after all other
operations of ip are completed, i.e., all operations of ip precede
all opei'citions of ic-
Case 2: tp is a transaction spawned in deferred mode. This means
that ic is spawned during a cycle. Then, every operation per­
formed by tc should succeed aJl the operations of ip and the op­
erations of siblings of ip that are spawned in deferred mode (i.e.,
executcxl in the same cycle).

D iscu ssion

There is cin ambiguity in the method described in [HLM88] for the c.ycling
execution of rules fired in deferred coupling mode. If a rule is fired in deferred
mode by a transaction during the execution of a cycle, it is executed in the
next cycle; but if a rule is fired in deferred mode by a transaction which has
been fired in immediate mode tlien tlie fate of this transaction, i.e., whether it
will be deferred to the next cycle or it will be executed in another execution
cycle is left unspecified. We chose to crxecute these kinds of rules in another
cycle before the commit point of the immediate rule.

In our execution model, we consider the coupling modes between the event
arid condition, and also the condition and action. We can give the option of
defining the coupling mode betweim the condition and action to the user, where
the user can select immediate or se(|uentia.l causally dependent coupling mode.
Otlier coupling modes would not 1k' meaningful due to the relation between
the condition and action. In immediate mode, condition evaluation is followed
by execution of the action only if the condition evaluates to true. In sequential
causally dependent mode, action execution starts before condition evaluation
is completed. This imj^roves the concurrency in a system in case there exist
abundant resources in the system, whicli is a. reasonable assumption due to the
continuous decrease in the priccis of systcmi resources. I'he transaction in which
the action is executed can commit only if the condition commits and returns

CHAPTER 3. EXECUTION i\4()DEL 24

true. The performance impact of tlie sec|uential causally dependent coupling
mode between condition and ciction needs further research cind testing in a real
system.

3.3.2 A Formal Model Using ACTA

Assume thcit the deiinitions provided at the beginning of Section 3.2 for the fol­
lowing notcitions also hold in this section: /q, /p, A? Ancesto7^s{t)^ Decendants{t)^
PaTent{t).

Notice that, as one deviation Irom tire stcindcird nested transciction model,
there are various spciwn events in axioms (i),(1), and (5) corresponding to dif­
ferent coupling modes. Some of the axioms used for the nested transciction
model directly apply to our execution model. For example, cixioms (7) through
(17) which define the semantics of a top-level or a subtransaction which spawns
another trcinsaction are the same for both models, therefore we did not include
their explcinations here. Readers wlio need more inlbrmation about those ax­
ioms cire referred to Section 3.2.

1. SEt^ = {Begin^ Spawri-lrmn^ SpawnJ.)cJ\ Spazon-Detach^ SpawnJJaus^
Spawri-Secp SpanrnJi!xc^ Comrriii^Abort}

2. = {Begin}

3. T’/'y'io = {Commit^ Abort]

4. SEt,. = [Spawn Jrnrn, SpawnJJtj\ Spaiun-Detach, SpaiunWatcs,
SpawnSeq, Spawri-Exc, Commit^ Abort}

5. lEt,. — [Spaiun Jrnrn, Spawn J)eJ\ Spawn.Detach, Spawn.Caus,
S pa wn.Seq, S pa to 11 Jji x c}

6. TEt^ = {Commit, Abort}

7. tp satisfies the fundamental axioms of transactions that are listed in Sec­

tion 3.1.

8. View, - He.

CHAPTER 3. EXECUTION MODEL 25

9. ConjlictSeti^^ = [pi[ob]\respunsiblt-seljTr{pi[ob\) ^ Inproyress{pt[ob\)]

10. yob3pptp[ob] G / / => (ob is atomic)

11. Committj, G H ~'{l-pb%lp)

12. 3obpp,tCommittp[pt[ob]] G // Commiti,^^ G H A Partnt{tp) = (f>

13. Cornmiti^ G //A Parent{ip) = <-/> (Vo6,p, ¿(pi[o6] G AccessSettp
^ Conmntt[pL[ob\] G //))

14. 3ob,p^t AborttJppi[ob\] G // ^ Abort G //

15. Aborti^, G H ^ (Vo6,p,/(pi[o6] G AcccssSctt^ =4- /l6o?’/ip[pi[o6]] G //))

16. Begiritj, G / / => Purent{tp) = </> A Anccstor(tp) = cj)

17. ConflictSett,. = {pi[o6]|/?,t:.spo;/.s"//j/e_.5t;//7'r(pi,[o6]) ^ 1̂ , Inprogress{pt[ob])}

18. (,S'/xí'í,o?■í,_У'm?7г¡p[¿c] G /7 V G //) Parent(tc) - tp
if a transciction tp spawns a child ti-ansaction t ̂ in immediate or delerred
mode then tp is the parent of tf..

19. {SpaumJmmi^\tc] G H V SpaurnMcfi^\t(] G H) {t,.WDtp) A (tpCDtc)
If a transaction t,. is spawned in immediate or deferred mode by a trans­
action tp, then tc aborts when tp aJrorts and tp cannot commit until
terminates.

20. {SpaLuri-Causi^,[tc] G II V Apaurn.Detach^\tc] G II
V Spaiun.Seqtp[tc] G /7 V SpatonJCxci„̂ ,[tc] G 77) ^ Parent{t(.) = 4>
A Ancesstor(tc) = 4>
A transaction spawned witli detached, detached causally dependent, se­
quential causally dependent, or ('.xclusive causally dependent mode is a.
top-level trcinsaction, therefore has no [rarent or ancestor.

2 1 . Spaton-Caus^,[t(·] £ II ^ t,.ADtp
If a subtransaction tc is spawned in causally dependent mode by transac­
tion tp then tc must abort if Ip al)orts.

22. Spawn.Seqtj^[tc] E II ^ tcSQDtp
If a subtrcuisaction tc is spawned in se(|iiential causally dependent mode
by transaction tp then tc can start its e.xecution oidy if tp commits.

CHAPrER 3. EXECUTION MODEL 26

23. Spatun-Exctp[tc] G B => tcl'IDtp
If a subtransaction tc is spawned in exclusive causally dependent mode by
trcuisaction tp then can start its execution only if tp ciborts.

24. (SpavmBmmtj,[lc\ V [/,,,]) G H i\ C o m m i t G H
Dele(jatet,XParent{ic)N\ccc.^.'?S(:ti,^] G H

If a subtransaction ¿e i« spawned in immediate or deferred mode by trans­
action tp then tc must dcihigate a.11 the operations in its access set to its
parent tp.

25. \/t,ob, p,q{t G Descendant.s(tp) A {pt,[oh] —> qtp[ob]) A Conflict{pi[ob],qt^^ob])
3tc({Delegatei^[tp, Accc.‘̂.'iSeti,2 Api[o6] G Acces.sSettJ))

Given a transaction t and its ancx'stor and operations p and (/, tp can
invoke q after t invokes p if tp is responsil)le for the operation p.

26. {SpatunBmmtp[tc\ V Spaiim^Defi^,[tc\) G II
<t4 {Ancestor{tc) — Ancestor{tp) U {tp}) AVt{tp G Descendants{t)

tc G Descendants(t))
Ancestor set of a trcuisaction s|)awiie<l in immediate or deferred mode is
defined similarly as that with the standard nested transiictions.

27. {Spa'wn.Defi,^,[tc] G H A {Partnt[tp) = (j) V 3t{SpaiunJrnmi[tp] G H))
=> \/p,obi,q,ob2 {p 7̂ Commit A p/,,[o6i] G H A <//.,[062] G H
=> iptp[obl] Pijofo])))
This axiom corresponds to Gase-1 of tlie deferred coupling mode execidion
described in Section 3.3. f.

28. {Spawn.Dtft^Xtc] G H A 3t{Spa'wnJ)c:.J,[t.,] G H)
Vp,</,r, 061, 062, 2(14, , , G II A qiXob'l] G II

A Spawn.Deft[t2] G H ^ —> </¿,,[062] A ri, [̂ob3] <7ic[i>i3])
This axiom corresponds to Case-2 of the deferred mode execution.

C hapter 4

Im plem entation o f N ested
Transactions

4.1 Previous Work

Various implementations of the nested transaction model have been provided
to date. One such implementation has Ikhui performed on the Eden Resource
Management System (ERMS) [PN87]. In ERMS, transaction maruigers are
composed hierarchically, i.e., for (;a.cli subtransaction there is cr corresponding
transaction maimger. For ensuring tlie serializability, 2-phase locking is used,
and a vers ion-based recovery is used for tlie recovery of sub-transactions. In
[DGRV95], the implementation descrilnvl focuses on nested transactions for
client workstations of an OODBMS.

Nested transactions have also Ireen implemeid,ed for sup[)orting parallelism
in engiiKHiring databases [HPS92]. 'I'hat implementation of nested transactions
supports both parent-child and sil)ling |)arallelism as in our implementation.

.Nested transcictions have been im|jlemented for parallel rule e.x:ecution of
Sentinel ADBMS [CAM93] by modifying a prototype OODBMS called Z(fit-
geist [PP91] without considering recovery of nested transactions [Bad93]. Only
sil)ling parallelism is assumed in that implementation; i.e., parent trcuisaction
is suspended while its children are executing in parallel. Deadlock detection is

27

CHAPTER 4. IMPLEMENTATION OE NESTED TRANSACTIONS 28

SGDirEiilry
Voliime_Lisl Parameler_lis(biifgip_lisl d A

OODB TRANS.MGRLASM

balloctbl)

Next

Figure 4.1: OpenOODB Object Relationship Diagram

performed by modifying the transaction mariciger of Zeitgeist. An analysis of
the nested transaction locking protocol is made using the concept of spheres
of control. Only the immedia.l,e coupling is supported in the implementation
of nested transcictions.

4.2 Im plem entation

We implement nested trcinsactions by extending the flat-transaction semantics
of OpenOODB [WBT92]. OpenOODB is an open object oriented database
management system that can lie extended by specied constructs called som-
tries. In our implementation, a. component architecture method is used in­
stead of sentries, i.e., a new component is added without significantly modify­
ing the existing ones. Our first task was to construct the object relationships
of OpenOODB by examining the class declarations. In Figure 4.1 the wliole
OpenOODB object relationships diagram is given.

CHA PTER 4. IMPLEMENTATION OF NESTED TRANSACTIONS 29

f’igure 4.2: K.elatecl Object Rela.tion.ships

Among the components illustratecl in this diagram, the ones that need to
be considered tor our implementation are isolated. These isolated components
are shown in Figure 4.2. In this ligure, we see that the nuiin OpenOODB ob­
ject 0 0 D В hcis a pointer to each of four objects namely F E R S I ST.MGR,
TR A NS-M G R , T R A N S A C T IO N , and A S M .C L I E N T which means that
whenever an instcuice of an object of type CODE is created, its constructor cre­
ates instances of PE R S I ST.MGR, TR A N S.M G R , T R A N S A C T IO N , and
AS M -C LI E N T objects. Furthermore, tlie constructor of T R A N S .MGR ob­
ject creates an instance of T R AN S AC'T ! О N object which is also used directly

by OODB.

To give a flavor of how a transaction is sta.rted and objects are fetched from
the database, we give a sample application of OpenOODB in Figure 4.3.

As can be seen from the figure, an OpenOODB main object p.oodb is cre-
a.ted which provides us with a.n interface to OpcnOODB. A transaction is
started by using p.oodb —> btgviiTvu'ii.'iO.ction and comniitted by p.oodb —>·
cornniitTransaction. Abortion of a, ti-a,iisaction is achieved by p.oodb
abortTransaciion. Objects are made |)ersistent by rny.obj —> persist() a.nd
are fetched from the database by tlio p.oodb —> fetch{...). OpenOODB letch
opercition does not give the flexibility of specifying the lock mode but acquires
a default READ lock from EXODUS storage manager. To provide the applica­
tion programmer with more flexibility, we decided to modify the letch operator
of OpenOODB so that it takes the locking mode cis a parameter. As a second
stage, nested transaction primitives:

CHAPTER 4. WIPLEMENTATION OF NESTED TRANSACTIONS 30

OODB *p_oodb;
My_Class *my_obj = new My .Class;
My.Class *tmp_obj;
char *obj_uame = “ol)jl”;
main()
{

j3_oo(JI) begi111raiisa.ction ();
/* make the object persistent and give a name to it
iTiy _ob j —> persist (obj _iia.me) ;
p_oocl 1) —> comini t Transact ion () ;

p_oocl I.) —> bc'gi iiTransact ion() ;
/* fetch the object with the given name */
p_ood b —̂ (etc! 1 (ol) j _name) ;
p_oodb —>>00111 niitTransciction();

Figure 4.3: A Simple OpenOODB Application

• spa w n -S u bJ r a n s a ct i on

• corn rn i t -S u b-t ran s a ct i on

• a bor t _6’ u b _/ r a ri sact i on

a.re cidded to the trcinsciction nianager ol‘ OpenOODB (i.e., TR A N S-M G R in
Figure 4.2). Finall} ,̂ a Lock Manager is iinplemented to support the nested
transaction primitives that are added to tlie transaction manager. Among tlie
nested transaction primitives, only the spaunisub-transaction takes parame­
ters. The first parcuneter of it is tlie name of the function where the subtransac­
tion is written in, the second one is tlie s|)awn-mode. Spawn-mode specifies the
coupling mode between the parent and child. For our nested transaction com­
ponent, we implemented the IA4MEDIyVTF and DEFERRED coupling modes.
DETACHED coupling modes are handled by the rule manager of the ADBMS.

Figure 4.2 we can describe wliere our lock nianager fits in the ob jc'ct
relationships diagrcim. In that figure, tfie main object of OpenOODB (i.e.,
OODB), points to a TRANS-MGR. object which has a T R A N S A C T IO N

CHAFrER 4. IMPLEMENTATION OF NESTED TRANSACTIONS 31

object. And the T R A N S A C T IO N object has a L O C K .M A N A CER object,
i.e., the constructor of the tran.sa.ction object creates the L O C K .M A N A C E R
object which can be ¿iccessed by OODB. This way the constructs impleinented
in LO C K -M A N ACER and I 'RAN S j VKJR can be used by the application
via the OpenOODB interface object, OODB.

LOC K -M A N A CER has two niain data structures, namely the Lock.Table
and the TransactionSTahlt. Ijock.TuMt is a, hash table that is used to keep the
lock inlbrmation of objects that have previously been fetched by a transaction
in the transaction hiercirchy. Lock IT able is hashed by the object name, and
given an object, we can reach ail the transactions that have a lock on this
object with ciny mode. Tran.'iaction.Table keeps the transaction hierarchy,
wait-lbr graph and the lock information of the subtransactions. These data
structures are shown in Figure 4.4. VVe can see from the figure that those hash
tables are interconnected, that is, we can reach the objects that are held by a
transaction given its transaction identilier. This provides us with efficient abort
and commit of subtrcinsactions. Tran.saclion.Table is hashed by transaction
identifiers(hh/). Given the ltd of a transaction (from now on we will use the
term transaction for both top-level transactions and subtransactions):

• We can reach all the objects held by tliat transaction in any hold cuid lock
mode. Hold mode of a lock can l)c hold or retain, lock mode can be read

or lorite.

• We can reach the transactions foi· wliicli the given transaction is waiting.

• We can reach the transcictions waiting for the given transaction.

• We can reach all the children and ancestors of this transaction.

For l.hc pcirallel execution of subtransactions, Solaris threads are used [Sun94].
Solaris is a fully functional distrilnited opei ating cuid windowing environment [Suii92].
Thread is a sequence of instructions executed within the context of a process.
Traditional Unix process contains a single thread of control. Solaris provid(>s ns
with Multi-threaded Progreunming. Multi-threading separates a process into
many execution threads each of which runs independently.

CHAPTER 4. IMPLEMENTATION OF NESTED TRANSACTIONS 32

LOCK TABLE

TRANSACTION TABLE

Figure 4.4: Data Structures

CHAPTER 4. IMPLEMENTATION OP NESTED TRANSACTIONS 33

P rim itiv e E xplan ation
tlir-Ci'eate{) create a tlireacl
th rse l /() return tliĉ tlirearl identifier of the calling thread
thr .suspendo block the execution of a thread
thr.continueO unblock a, thread

send cl signal to a tliread
thr^exit{) teriiiinat(' a thrc'ad

wait For the teririina.tion of a thread

Table 4.1: 'Thread Primitive.s Used

Advantages of Multi-threading can l)e listed as:

• overlap in time, logically separate tasks that use different resources,

• share the same address space,

• provide cheap switching among threads.

'I'liread primitives used in our im|;)lementation are listed in Table 4.1.

Mutual exclusive locks are used to control the concurrent access of different
f.hreads to the shared data structures. In Figure 4.5, we give a sample program
for the creation of threads.

As can be seen from the figure, using thr.create() we execute a given
function in a thread. In our im|)lementation, subtransactions are defined
as functions in a specified format and are executcid concurrently using the
spaion.sub J r an suction primitive provided by our implementation of nested
transactions. In Figure 4.6, tlu' spaa)n.suhJransaction primitive executes
tlie transciction, embedded inside a function, in a thread using thrjcreatcQ·
'Fhreads are created in suspfind('d mode so that the necessary information is
inserted into the transactionJable. Since the tids are unique within a Unix
process, and top-level transaction boundaries do not exceed the process bound­
aries, it was very convenient lor us to define the tids as the transaction iden­
tifiers. This way we do not need to pass the transaction identifier to the
subtransaction as a parameter. Subtransactions can rrccess their tids by call­
ing the thread library function thr.selfi). 'This function returns the thread

CHAPTER 4. IMPLEMENTATION OE NESTED TRANSACTIONS 34

void *inyfool(void *resull)
{

printf(“niyioor’);
print,f(“my id is:%d”,tlir_self());

}

void *myibo2(void *re.suIt)
{

priiitf(“iriy foo2”);
]

main()
{

/ / define two throjad identifiers
thread_t tlirJdf;
thread-t tlir_id2;
/ / functions inyfoof and niyfbo2 will be executed
/ / in threads tliat are created in suspended mode
thr_create(0 ,0 , myrool, 0 , THR_SUSPENDED,&thr_idl);
tlir_create((),0 , myfbo2, 0 , THR_SUSPENDED,&;thr_id2);
/ / suspended threads a.re restcirted
thr_continue(th r_id 1);
t hr -CO n t i n Li e (t h r _i cl 2);
/ / wait for the created threads to finish their execution
thr_join(thr_idf);
thr-join(thr_icl2);

Figure 4.5: A Sa.inplc; N4ultithreaded Program

identifier of the calling thread, i.e., the Lid. When an OpenOODB top-level
transaction is created, the tixl is also inserted into the trcinsaction table for the
sa.ke of cornpleteness of the transaction liierarchy.

Since all the subtraiisactions in tlie transaction hierarchy can access the data
structures in the LOCKJVI AN AGE R, we define a global mutex variable. This
way, the critical sections of the melJiods modifying the lock cuid transaction
tables are wrapped by mutex-lock and mutex-unlock. (Joncurrent access to
Lock Mcuiager tables is discussed in Section 4.3 in more detail.

When we look at the data structures, we observe that there are linked
lists belonging to both transaction and lock tables which means that deletions
and insertions of new blocks to those lists take a lot of time. At this point,
we made an optimization by im|)lementing our own memory mancigement via
keeping lists of deleted blocks so that they can be used eihciently whenever
they are needed. Another optimization was to extend our component with a
sort of garbage collection, i.e., wfien we want to delete a block from the lock
or transaction table, we do not delete it physically but mark it ¿is deleted.
This technique irnikes the uscige of doubly linked lists unnecessciry. (kirbcige
collection is performed during the secirches in the lock table.

4.3 Controlling Concurrent A ccess to Com­

mon D ata Structures

CHAPTER 4. IMPLEMENTATION OE NESTED TRANSACTIONS 35

Since all the transactions CcUi reach tlie coninion data structures, i.e., transac­
tion and lock table, there nuiy be; inconsistencies during the concurrent updates.
To a.void this problem mutual exclusion locks are used. Only one mutex vari­
able is dehned which is locked and unlocked by the standard thread library
functions mutex Jock and mutex ji.nl ock, respectively. This way the critical
sections of the nested transciction component methods (i.e., the sections where
there is an update to the lock or transaction table) are wrapped so that only
one transciction at a time can execute its critical section.

CHAPTER 4. IMPLEMENTATION OF NESTED TRANSACTIONS 36

/ / create aii OpenOODB main
OODB *p_oodb;
void *sub2(void *re.s)
{

/ / lock the object with name ob|3 in WRITE mode
int rc = p_oodl) ^fetch_object(“obj3”,WRITE);
/ / in case of an (.'i ror, a.bort the sul:)transaction
/ / otherwise, commit the srd:)transa.ctions
if { rc = = ERROR)

p_oodb —> sub_abort();
else

p_ood b —>s u b _comm i t ();
)

void *subl(void *res)
{

/ / lock the object with name objl in READ mode
p_oodb —̂ letcli_ol)ject(‘k)b j 1”, READ);
/ / crecite a subtransaction in IMMEDIATE mode
p_oodb —> s paw 11_s ii b_t i*(su b2,1MMED I Al'E);
/ / commit the sul^transactiori
p _ood b —> s u b _com mi t ();

}

nicUn()
{

/ / start an OpeiiOODB transaction
p_oodb —)-l)(!gind'ransaction();
/ / spawn a. snl)transa.ction in IMMEDIATE mode
p_oodb —>spawn_sub_tr(snbl,IMMEDIATE);
/ / commit the 0|)en00D B transaction
p_oodb ^commit'I'ransaction();

Figure 4.6; Sample OpenOODB Application Using Nested rransactions

4.4 Im plem entation of the Locking P rotocol
for N ested Transactions

When a transaction requests a lock on an object it specifies the locking mode
as well by providing the fetch-ohjtcl: method with the lockJrype parameter.
Allowed lock-modes are RE/\ D and W lU'I'E. A locking protocol for nested
trcinsactions is provided in (Jliapter 3. We implemented this locking protocol
considering both READ and WREJ'li locks. Helow we describe the locking
|)rotocol.

• A transaction T may accjuiii ̂ a. lock in READ mode if:

— no other transaction holds a lock in W R IT E mode,

— and all the transactions that ri'tain a lock in W R IT E mode are an­
cestors of T.

• A transaction T may accpiiix' a, lock in W R IT E mode if;

— no other transaction liolds a lock in READ or W R IT E mode,

— and all the transactions that retain a lock in READ or W R I T E mode
are ancestors ol T.

• When a subtransaction T commits, parent of 2' inherits all the locks (iield
or retained) tha.t T lias. After that, |)a,i-ent retains the locks in the same

mode as T held or retained them before.

• When a top-level transaction commits, it releases all the locks it holds or

retains.

• When a trcinsciction aborts, it releases all the locks it holds or retains. If
any of its ancestors holds or retains any ol these locks, it continues to do

so.

CHAPTER 4. IMPLEMENTATION OF NESTED TRANSACTIONS 37

In Figure 4.7, if Ti retains a W RET E lock on an object 0i and no other
transaction inside the sphere Si (i.e., 7), 7):, 7'/ and 7A) has any lock on Oi ̂
then all the transactions inside ,S',· can ac<|uirc a READ or W R I T E lock on

CHAPTER 4. IMPLEMENTATION OE NESTED TRANSACTIONS 38

Figure 4.7; Control Sphere of T{

Oi. If Tj cicquires a W R IT E lock on C,:, then no other transaction (including
the ones inside the sphere Sj in Figure 4.8) can acquire a READ or W R I T E
lock on Oi-

The ftich-object method first checks whether the requested object is in
the lock table. If not, it just requests the object from OpenOODB and re­
turns a pointer to it. If the requested ol)ject is in the lock table then nested
transciction concurrency control piotocol is put into action. If the lock can be
granted, then a pointer to the obj(;ct is ixhairned as in the previous case. If the
lock cannot be granted with the re(|uest(Kl lockJypc , then lor each trcUisaction
that has a. lock on the object that coiillicts with the requested lockJype, a
node is inserted to the waitJorJis t of the lock rcciuestiiag transaction and
the same node is appended to the 'waitcdTyJist of the conflicting transaction.
Additionally the loait^f or-count (i.e., tlie number of transactions for which the
transaction in concern is waiting for) is incremented for each node appended to
tlie wait-forJist. Deadlock detection is performed for each node appended to
wait-forJist . If no deadlock occurs then the transaction that requested tbe
lock is suspended using tlirsuspendi), otherwise it is aborted. Transa.ctions
can be unblocked using the thr-Continuc{) function provided by the thread
libra.ry. Unblocking of a transaction may occur due to the commit or abort of
another transaction. When a. transaction is aborted, all its locks are released.

CHAPTER 4. IMPLEMENTATION OF NESTED TRANSACTIONS 39

Figure 4.8: (Joiitrol Sphere of Tj

and all the nodes in the waitedTy list of that transaction are deleted; while
doing the deletions, ioait_fov-CounC of the corresponding (blocked) transac­
tions cire decremented by one. Blocked transcictions whose waitCoi'-C(nmts
become zero, are unblocked, and their lock requests are reconsidered. When a
subtransaction commits, all the locks lu'ld or retained by that transaction are
inherited by the parent transaction wliicli may cause some transaction(s) to
l)e unblocked. Those transactions are identified by checking the tvaitedJyy Jist
of the committing transaction, iUid decrementing the wait JTr.counts of the
tra,nsactions which are descendants of tlie transaction inheriting the locks. The
transactions whose wait Cor-counts bcicome zero are unblocked and their lock
requests are reconsidered as in the previous case. A sample pseudo-code for
the processing of lock requests is provided in Appendix A.

4.5 Deadlock D etection

Deadlocks rriay arise cimorig subtransactions in the Scuiie transaction hierarch}^
as well ¿is ¿imorig subtransactions l^elonging to dilFerent trcinsciction hiercirchies.
OpenOODB views a transciction hierfirchy ¿is one ihit tr¿ıns¿ıction; i.e., it is not
¿^¿ire of subtr¿ıns¿ıctions. Lock requests iiuide by ¿i subtr¿ıns¿ıction is tre¿ıted by

CHAPTEB. 4. IMPLEMENTATION OE NESTED TRANSACTIONS 40

OpenOODB as if the top-level transaction made the request. If there is a cy­
cle among subtransactions belonging to different transaction hierarchies, then,
from the point of view of OpenOODB, it means that there is a cycle among the
top-level transactions as well. Therefore;, deadlocks tha.t occur among transac­
tions belonging to different transaction hierarchies are resolved Iry OpenOODB
via EXODUS storage manager. Deaxllocks among the trcuisactions belonging
1,0 the same transaction hierarchy a,re i-esol ved l)y the new componenrt managing
nested transactions. Wait-for graph data structure' is used to detect deadlock
ocenirrences. Deadlock detection for nested transactions is different from the
one for flat transactions in that, there ai'e; some other wait-for I'elations besieles
the wait-for-lock relation. The first wait-for relation associated with neisted
transactions is wait-for-e;ommit; i.e., a |)arent transaction should wait h)r all
its children to finish their executiein. A vvait-for-e:ommit graph is illustrated in
Figure 4.9 for a transaction hierarchy where tlie top-level transaction spa.wns
subtransactions T and T,·, T spawns subtransactions and T/, and finally Ij

spawns subtransaction T„i.

The second wait-for relation lor nested transactions is wait-for-retained-
locks. In flat transaction model, when a. transaction commits, all the locks it
liolds are released, and transactions waiting for one or more of those locks
can Ire unblocked immediatidy irrovided that they are not waiting lor any

CHAPTER 4. IMPLEMENTATION OF NESTED TRANSACTIONS 41

Figure 4.10; Wait-for-retained locks griipli (before the commit of J))

other transciction. In nested transaction model, locks held by a subtra.nsa.c-
tion are not released immediately a,ft,er it commits, but they are inherited by
the parent trcinsciction and kept in rC.ain mode. This situation is illustrated
in Figures 4.10 and 4.11.

In Figure 4.10 we see tluit transaction 1.) holds a write lock on object Obji
at the time when transaction 1} requests a write-lock on the same object. The
arc labeled as wait-for-held-lock depicts tins waiting situation. Following the
commit of transciction Tj, all the locks that belong to Tj are inherited by the
pa.rent transaction, namely in retain mode, 'rransaction 2',; still have to
wait until the commit of J'k· T',: should wait until the first common ancestor of
7',: and Tj inherits the lock on ol^ject Obji, which is the top-level transaction in

this Cci.se.

Both wciit-for-commit and wait-for-retained-locks should be taken into con­
sideration in addition to the classical wait-lbr relation, for decidlock detection
in nested transactions. Whenever a suli-transaction is spciwned, a node is ap­
pended to the child-list of the parent transaction. The union of those linked
lists is cilso used as the wait-for-commit grapli. When a. trcUisaction requests a
lock and blocks, all the trcuisactions that cause this transaction to be blocked
are kept as a linked list (wciit-for list) to lie used for unblocking the transaction

CliAFTER 4. IMPLEMENTATION OF NESTED TRANSACTIONS 42

Top-Level Transaction

Tj req:wonObj|

T| ̂ retain:w on Obj|

wait-for-retained-lock

Figure 4.11: Wait-for-retciined locks graph (¿ifter the commit of T j)

letter. Those lists iiJso represent the wait-for-retained or held locks relationship.
During the commit of a transaction, wait-for list of the committing transaction
is inherited by its parent.

Deadlock detection is performed l:)efore each insertion to a wait-for-graph
using the graph coloring technique. If a wait-for arc is going to be
inserted to the wait-for graph, deadlock detection algorithm is started assuming
that the new link is added. Initially all the nodes of the graph are coloi-ed
BLACK. Deadlock detection algoritlmi colors 7',; as W H IT E , and marks
all the nodes on its way recursively till there a.re no remaining nodes or a
W H I T E node is reciched. Deadlock detection algorithm uses the child and
Wciit-for lists of the transactions during its tra.versal. Since all the nodes are
initially BLACK, a W H I T E node reached inecins that there is a. cycle in the
graph, implying a deadlock situation. Deadlock algorithm recursively restores
the colors of all the nodes it traversed l)ack to BLACK.

In case of a deadlock situation, we can abort 1}, Tj or any other transaction
in the deadlock cycle. Deciding wliich tj-ansaction to abort is not an easy
task. The simplest solution is to abort '[) (i.e., the transaction that requests
the lock). Another possibility would be to abort the transaction that caused
the lock-requesting transciction to block. Other possibilities for deciding which

transciction to abort require the usage of some information about transactions
such as the time stcimp or the number of subtrcinscictions. We can choose
the transaction that has the smallest transaction hierarchy, or we can choose
the transaction with the largest timestamp (i.e., the youngest one). As a
future work, these alternative techniques could l)e implemented and their effects
on the performance could be observed. We have chosen to use the simplest
solution, i.e., to abort T/. The pseudo-code of our deadlock detection algorithm
is provided in Appendix A.

4.6 Integration of Our Im plem entation of Par­
allel N ested Transactions to Sentinel

CHAPTER 4. IMPLEMENTATION OF NESTED TRANSACTIONS 43

Our irnpleinentation of parallel nested transactions is currently being integrated
into Sentinel [CAM93] which is an Active Database Management System built
on OpenOODB. In Sentinel, rules are treated as objects which means that they
can be created, modified and deleted in tlie same way as other object,s. Sub­
scription mechanism is used to reduce the checking overhead of rules; i.e., when
an object genercites cin event, during rule e.xecution, only those rules which have
previously subscribed to the olrject genera.ting the event are checked.

In Sentinel, there is a rule clas.s and all the rules in the system are instances
of that class. The condition and iiction parts of a rule are implemented as
methods in that rule class. The rule class is shown in Figure 4.12. The rule class
is a subclass of the notifiable class whicli means that it can receive and record
primitive events generated by reactive (i.e., event generating) objects. Each
rule has name, event — id, condition, action, mode and enabled. 4'lie event-id
denotes the identity of the event oirject associated with the rule. Condition, and
action are pointers to the condition and action member functions, respectively.
'The attribute mode denotes the coupling mode, and enabled indicates whetlier

tlie rule is enabled or disabled.

Declaration of the condition and action functions should be modified so that
thoiy Cell! be e.xecuted in subtransactions. 'I'lie modified lunctioii declarations

CHAPTER 4. IMPLEMENTATION OF NESTED TRANS/WTIONS 44

clciss Rule:Notiiiable / / Rule class made notifiable
{

char *name; / / Rule name
Event *event-id; / /
PMF *condition, *action; / / PA4E is a pointer

/ / to a member function
Coupling mode; / / Conpling A4ode
int enabled; / / Rule Enabled or not

virtual int Enable();
virtucil int Discible();
virtual Updiite(Event* eventid);
virtual int Condition();
virtual int Action();
Rnle(Event* eventid, PMF condition, PMF action. Coupling mode);
~Rnle();

Figure 4.12: Rule Class of Sentinel

should look like the sample subtransactions provided in Figure 4.6. Further­
more, the rule execution component of Sentinel should be modified so that
conditions and actions of rules can be executed in pcirallel inside the subtrans­

actions.

C hapter 5

C onclusions and Future Work

In this thesis, we clescrilsed an execution nioclel tor cictive database management
s^cstems (ADBMSs). We used nested transactions in our execution model lor
nde execution and covered some aspcvts of nested transactions like recovery
a,nd concurrency control.

'I'lie advantages of our implementa.t.iou of nested rule execution over the
previous implementations can be listed a.s follows:

• Priwious implementa.tioiis for rule execution assume only sibling paral­
lelism. In our implementation wo assume both sibling and parent-child
irarallelism which is the most ilexible kind of parallelism.

• We support deferred mode of execution as well as immediate mode.

• In previous implementations, sul)tra.nsactions are executed in different
processes, in our system, subtransactions are executed in threads which
arci more efficient than forking otlier processes.

In case of a deadlock situation, deciding which transaction to abort is an
important issue which may affect the |)erformance of the system. In our syst.('m,
we used the method that has the sim|)lest implementation; i.e., aborting tin'
transaction that causes the deadlock to occur. Other heuristics for choosing the
transaetion to abort can be implementc'd and their effects on the performance
can be studied.

45

CHAPTER 5. CONCLUSIONS AND FUTURE WORK 46

Our nested rule execution module was designed in such a way that it Ccui
easily be ported to other systems as well, besides OpenOODB. As a future
work, our iinplementcition can be ported to different ADBMSs ¿uid its benefits
and overheads in rule execution can be investigated.

Implementation of the recovery of nested transactions is left as a future
work. A log based recovery method, ARIES/NT [RM89], was proposed lor
nested transaction recovery which is an extension of ARIES. Version based
recovery techniques can also Ix' applied which are easier to implement but
have some major drawbacks against log-based recovery techniques [MHL+92].

Our implementation of parallel nested transactions is currently being inte­
grated into Sentinel wliich is an a.ctive database mancigement system developed
at the University of Florida. Following the conqrletion of the integration, we
are planning to investigcite the impact of the parallel nested transciction com­
ponent on the performance of Sentinel.

A ppendix A

Sam ple Pseudocodes

A .l Processing Lock R equests

/ / given the iicime of the requested object and requested lock type
/ / process the lock request of the transaction with identifier tid
f (ijictionprocess Jock jre(i'uest[clw,r name, LOC K T Y P E lock J y pc, T I Dtid)

{
I I only one transaction at a time ca.n enter this region
m и t eX Jock { Iocк jmgr jinи I: e x)
/ / get the address of the object using its ruune
о bj 6 / kp tr = h a s h _o hj л a rn e (n a me)
/ / perform gcirbage collection on the hold list
collect-garhage{objJ)lkxptr holdJist)
con f lict ound = FALSE
switch (lockJype)

{
case WRITFJ / / in case of exclusive lock
/ / traverse the holdJist to check lor conflicts

IJnfojptr = objMk-ptr —> lioldJist
■u)hilc(lJnfojptr 7̂ NULL

{
/ / if the requestiid object is held by another transaction

47

APPENDIX A. SAMPLE PSEUDOCODES 48

i f (IJnfo-ptr state = HOLD)

{
/ / if the transaction rec|nesting the lock has already acquired it
i f (Ijinfo.ptr tid = tid. and Linfo-ptr —> lock-type = W RITE)

{
mutex jiin I ock (/ ock jingr jm/atex)
return [obj J)lkjptr addr)

]
else i f (Linfo-ptr tid, 7̂ tid)

}
i f conflicts found = FALSE

{
append Jo Jioait ̂ f or Jist{tid^ IJnfo-ptr tid ̂name,, lockJype)
con flict-found = TRUE

}
else / / if conflict was not Ibund

append-tojwait-f or-list{tid, IJnfo-ptr —> tid, name, lock-type)

)
}
/ / state is RETAIN
/ / i f the trcinscictioii holding the lock is not an acesstor
/ / of the requesting transaction
else i f {-^ancestor(tidJ-info-ptr —> tid)

{
i f conflict-found = FALSE

{
append-to-tvail-forJislftid, IJnfo-ptr —> tid, name, lock-type)
conflict-found — TRUE

}
else II if conflict was found

append-to-ioait-forJistitid, IJnfo-ptr -> tid, name, lock Type)

}
l-info-ptr = l-injo-ptr next
collect-(jarbage{obj-blk-ptr —>· hold-list)

APPENDIX A. SAMPLE PSEUDOCJODES 49

} / / end while
/ / If we reached the end of the list without any conflics
i f conflict./ound = P'ALSE

{
ac(i'aireJock(ticl^ lockJype^ ohjMk-ptr)
rn u t e X Jit n lock{loc k jng i * jin 11, i e x)

]
else / / conflict is found

{
rn u i e X jii nloc{loc k jni cj 1 · jin u t c x)
/ / suspend the trcirisaction requesting the lock
/ h r -S u spen d{tid)

}
case READ / / in case of shiired lock
/ / traverse the holdJist to check for conflicts

l.info-ptr = obj.blk.ptr holdJist
while(l-injo.ptr NULL

{
/ / if the requested object is held by another transaction
i f (IJnfo.ptr —> state = HOLD) and {IJnfo.ptv —»· lock.type = W R ITE)

{
I I if the transciction requesting the lock has already cicquired it
i f {Unfo.ptr tid = tid

{
m u i e X Jit n loc k (I oc k j in g 1 * j n u t e x)
return (obj-blk-ptr —> addr)

}
else i f conflict./ound. = F A L S E

{
append.to.iuait.for.list{tid, Linfo.ptr tid, name, lock-type)
conflict-/ound, = TRUE

}
else / / if conflict was not found

appe.nd.to jwa.it.f or Jist{tid, Lin fo.ptr —> tid, name, lockJype)

APPENDIX A . SAMPLE PSEUDOCODES 50

}
)
else i f (Linfojptr state == R E T A I N

and Linfojptr lockJype = W R IT E
and, -^ancestor(tidJJnfojpti^ tid)

{
i f conf l ic t - found = F A L S E

{
cippendJ,ojwait-forJisL{tid, L info-p tr — > tid, name, lock-type)

con f l i c t - fo u n d = T RIJ E

}
eJse II if conflict was (blind

append-tojwait-f or-list{tid, l- info-ptr tid, name, lock-type)

}
l-info-ptr = l-info-ptr —>· next
collect -yarbay e{ol)j -blk jptr —> hold-list)

} / / end while
/ / If we reciched the end of the list without any conflics
i f con flict-found = FALSE

{
acquireJockf tid, lock-type, obj-blk-ptr)
rn u t e X junlockflock any r -in 111 e x)

)
else / / conflict is found

{
rn u t e X -U nloc{lock jniy r jiri u t e x)

I I suspend the transaction re(|uesting the lock
t h r -S u spen d{tid)

}
}
/ / end case
return(obj-blk-ptr addr)

APPENDIX A. SAMPLE PSEUDOCODES 51

A .2 Deadlock D etection

/ / This function is CciJled for deadlock detection
I unction detect_deadlock{start jiode^ nextcnode)

{
startjnode color — B L A C K

result == detect jrest{nextnode)

startjiiode eolor = W H I T E

return result

]

/ / This function is Ccilled by the main deadlock detection function
function detectj'(ist{nocle)
{ hspace*0.2cm

i f {node —> color = BLACK)
return DEADLOCK ̂ DETECTED

else

{
node —> color = В LAC К
II check for the wait-for-coinmit dependencies
for{tmj)l = node — > child] trnjA ф NULL] trnpl — trnpi —> next)

{
result = detectjrcst(trnp\ —> chtld)
■i.f {result = DEAD LO C K .D E TE C T ED)

{
node ^ color = W H I T E
return D EAD LO CK.D ETECTED

]

}
I I check for the wait-ior-lock dependencies
for{tnvp2 = node —>■ wait.for.list; tmp2 ф NULL] l.mp2 = trnp2 nex

{
i f (trnp2 mark = UNlVlARKED)

APPENDIX A. SAMPLE PSEUD()(X)DES 52

result = detectj-est[tmp2 trjjjtr)
■if (res'ult = D EAD LO CK.D ETECT ED)

{
■node color = W H I T E
relurn DEAD LO C K .D E TE C T ED

■node ^ color = W H I T E
■return NO.DEADLOC K

Bibliography

[AWH92] Alexander Aiken, Jennifer VVidoin, and Joseph M. Hellerstein. Be-
licivior of Database Production Rules: Terniin<ition, Confluence,
and Ol^servable Deterrninisni. in Proceedirifjs of ACM-SIGMOD
Conference on Management of Data, pages 59-68, San Diego, Cal­
ifornia, June 1992.

[Bad93] Rcijesli Badani. Nested Transactions for Concurrent Execution of
Rules: Design and Irnpleinentation. Master’s thesis. Department of
Computer and Information Sciences, University of Florida, 1993.

[BDZ95] Alejcuidro P. Buchmann, Alin Deutsch, cuid Juergen Zimmermann.
The REACH Active OODBMS. Technical report, JTcimical Uni­
versity Darmstadt, 1995.

[Buc94] Alejandro Buchmann. Active Object Systems. In Asuman Dogac,
M. Tamer Ozsu, Alex Biliris, and 3'imos Sellis, editors, Advances in
Object-Oriented Database Systems, pages 201-224. Springer-Verlag,
1994.

[BZBW95] A.P. Buchmann, .1. Zimmermann, J.A. Blakeley, and D.L. Wells.
Building an integrated Active OODBMS: Requirements, Arclutec-
ture, and Design Decisions. In Proceedings of the Pith International
Conference on Data Engineervng, pages 117 -128, Taipei, daiwan,

1995.

[CA95] A. Chaki’civcirthy and E. AnvvcU’. Exploiting Active Database
l^aradigm For Suj)porting h'lexil)le 'rransaction Models. Technical
report, University of Idorida, Computer and Information Science
cind Engineering Department, 1995.

53

BIBLIOGRAPHY 54

[CAM93] S. Chcxkravarthy, E. Anwar, and L. Maugis. Design and implernen-
tation of Active Capability for an Object-Oriented Database. Tech­
nical Report UF-CIS-TR-93-001, University of Floridci, Department
of Computer and Informatioji Sciences, 1993.

[C!R91] Panos K. Chrysanthis and Krithi Ramamritham. A Fornicilism
For Extended Transaction Models. In Proceedings of the i7th in­
ternational Conference on Very Large Databases^ pages 103-112,
Barcelona, Spain, September 1991.

[CR94] Panos K. Chrysanthis and Ki-ithi Ramamritluun. Synthesis of Ex­
tended Transaction Mlodels Using ACTA. ACM Transactions on
Database Systems^ 19(3);450-491, September 1994.

[Da.y88] Umeshwar Dayal. Active Database Management Systems. In Pro­
ceedings of the Third International Conference on Data and Knowl­
edge Bases, pages 150-169, .Jerusalem, June 1988.

[DGRV95] Laurent Daynes, Olivier Gruber, Projet Rodin, and Patrick Val-
duriez. Locking in OODBMS (Jlient Supporting Nested 'iTansac-
tions. In Proceedings of the lith International Conference on. Data
Engineering, pages 316-322, 'iai-pei(Taiwan), March 1995.

[11FKX94] Eric N. Hanson, Kurt Engel, 1-Cheng Chen Vijay Karnaswcvmy, and
Roxana Dastur Chun Xu. Flexible and Recoverable Interaction Be­
tween Applications and Active Databases. Technical report, Uiu-
versity of Florida CIS Department, 1994.

[HLM88] Meichun Hsu, Rivka Ladin, and Dennis R. McCarthy. An Execution
Model For Active Databcise Ma.nagement Systems. In Proceedings of
the Third International Conference on Data and Knowledge Bases,
pages 171-179, .Jerusalem, June 1988.

[HPS92] T. Harder, M. Profit, and 11. Schonning. Supporting Parallelism in
Engineering Datcibases by Nested Transactions. Jechnical Report
34/92, University ol Kaiserslautern, Computer Science Department,

1992.

BIBLIOGRAPHY

)s85]

[Mos87]

i,93] Tlieo Hcirder cincl Kurt Rothennel. Concurrency Control Issues in
Nested Transcictions. VLDB Journal, 2(l):39-74, 1993.

[HW92] Eric N. Hanson and .Jennifer VVidorn. An Overview of Production
Rules in Databa.se Systems. Technical report, University of Florida,
DeiDartment of Computer and Information Sciences, October 1992.

[MHL‘''92] C. Mohcin, Don Haderle, Bruce Lindsay, Hamid Pirahesh, and Pe­
ter Schwartz. ARIES; A transaction recovery method supporting
fine-gi'cuiularity locking and pai ticd rollbacks using write-ahead log­
ging. ACM Transactions on Database Systems, 17(1):94-162, March
1992.

E. Moss. Nested Transactions. M.I.4'. Press, Cambridge, Mass.,
198.5.

.1. Eliot B. Moss. Log-Based Recovery for Nested Transactions. In
Proceedings of the 13th VLDB Conference, pages 427-432, Brighton ,

1987.

Norman W. Patón and Oscar Diaz. Active Database Systems. Tech-
niccd report. University of Manchester, Department of Computer
Science, 1995.

Calton Pu cuid Jerre D. Noe. Design and Implementation of Nested
'IVansactions in Eden. In Proceedings of Sixth International Synipo-
siurn on Reliability in Distributed Software and Database Systems,
pa.ges 126-136, Kingsmill-Williarnsburg, VA, March 1987.

Edward Perez and Robert W. Peterson. Zeitgeist PersistentC-l--|-
User Manual. Technical Repoi t 90-07-02, Information Technologies

Laboi’citory, 1991.

K. Rothermelcind C. Mohan. ARIES/NT: A recovery method based
on write-ahead logging lor nesl;ed transactions. In Proceedings oj
the Fifteenth International Conference on Very Large Data Bases,
pages 337 -346, Arnsterdcirn, 1989.

Sun Micros3̂ stems, Inc., 2.5.50 Carcia Avenue, Mountain View, Cal­
ifornia 94043-1100 U.S.A. Getting Started with Solaris, 1992.

[PD95]

[PN87]

[Sim92]

BIBLIOGRAPHY 56

[Sun94] Sun Microsystems, Inc., 2550 Garcia Avenue, Mountain View, Cal­
ifornia 94043-1100 U.S.A. Multithreaded Programming Guide, 1994.

[WBT92] David L. Wells, Jose A. Blakeley, and Craig W. Thompson. Archi­
tecture of and Open Object-Oi’iexited Database Management Sys­
tem. IEEE COMPUTER, pages 74-81, October 1992.

[Zuk95] Olaf Zukunft. Recovering Active Databases. In Rules in database
systems: Proceedings of the Second International Workshop on
Rules in Database Systems, pages 357-371, Athens, Greece, Septem­
ber 1995.

