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ABSTRACT

IMPLEMENTATION OF
PARALLEL NESTED TRANSACTIONS FOR
NESTED RULIS EXECUTION
IN ACTIV]ES DATABASES

Yucel Saygmn
M.5. in Computer lingineering and Information Science
Supervisor: Asst. Prol. Dr. Ozgilir Ulusoy

september, 1996

Conventional, passive databascs, execute transactions or queries in response
to the requests from a user or an application program. In contrast, an Active
Database Management System (ADBMS) allows users to specify actions to be
executed when some specific events are signaled. ADBMSs achieve this fea-
ture by means of rules. Iixecution of rules is an important part of an ADBMS
which may affect the overall performance of the system. Nested transactions
are proposed as a rule execution model for ADBMSs. The nested transaction
model, in contrast to fat transactions, allows transactions to be started inside
some other transactions forming a transaction hicrarchy. In this thesis, imple-
mentation issues of parallel nested transactions, where all the transactions in
the hierarchy may run in parallel, are discussed for parallel rule execution in
ADBMSs. Implementation ol nested transactions has been performed by ex-
tending the flat transaction semantics of OpenOODB using Solaris threads. A
formal specification ol the proposed execution model using ACTA framework

is also provided.

Key words: Active Databases, Nested ‘Transactions, execution model, So-

laris Threads, rule execution, ACTA.
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OZET

PARALEL IC ICE YUVALANMIS HAREKETLERIN AKTIF VERI
TABANI KURALLARININ ISLIEMI KONMASINDA UYGULANMASI

Yicel Saygin
Bilgisayar ve Enformaltik Mihendisligi, Yiksek Lisans
Tez Yoneticisi: Yred. Doc¢. Dr. (")zgiir Ulusoy
loylid, 1996

Klasik veri tabanlarinda, hareketler veya sorgular kullanicinin talebine kar-
silik igleme konur; buna kargilil, aktil veri tabanlari, belli olaylarm sinyal
edilmesi sonucu igleme konacak eylemlerin kullanier tarafindan belirlenmesine
izin verir. Aktif veri tabanlary, aktif ozelliklerini kurallar sayesinde gosterir.
Kurallarin igleme konmasi aktil veri tabanim énemli bir parcasidir, ve tiim
sistemin performansim etkileyebilir. I¢ ice yuvalanmis hareket modeli, bir kural
isleme modeli olarak onceden sunulmugtur. [g ice yuvalanmig hareket modeli,
normal hareket modelinden farkli olarak, hareketlerin icinde bagka hareketler
baglatilmasina izin verir, boylece bir hareket hiyerarsisi olugur. Bu tezde par-
alel i¢ ice yuvalanmg hareketlerin uygulanmasmdan bahsedilmektedir. Par-
alel i¢ ice yuvalanmug hareketlerde, hiyerarginin i¢indeki bittin hareketler par-
alel olarak caligabilir ve bu gekilde sistemin verimliligi arttirilimig olur. Par-
alel i¢ ige yuvalanimy harcketlerin uygulanmasi OpenOODB’nin diz harcket
modeli genigletilerek gerceklegtirilmigtiv. Solaris thread’leri, harcketlerin par-
alel caligmas: amactyla kullandmgtir. ACTA adli formal ¢ergeve yapist kul-

lanilarak, sunulan ¢ahiyma modeli formal olarak agiklanmigtir.

Anahtar kelimeler:  Aktil Veri Tabanlar, ¢ Ice Yuvalanmig Hareketler,

isleme koyma modeli, Solaris T'hread’leri, kural igleme, ACTA.
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Chapter 1

Introduction

Conventional, passive, databases execute queries or {ransactions only when ex-
plicitly requested to do so by a user or an application program. In contrast,
an active database management systeimr (ADBMS) allows users to specily ac-
tions to be executed when specific events are signaled. The concept of active
databases has been originated from the production rule paradigm ol Artifi-
cial Intelligence (AI). The Al production rule concept has heen modified for
the active database context so that rules can respond to the state changes
caused by the database operations [[IW92]. An active database implements
reactive behavior since it is able to detect situations, which may occur in and
out of the database, and to perform necessary actions which were previously
specified by the user. In the absence of such an active mechanism, either the
database should be polled or situation monitoring should be embedded in the
application code. Neither of these approaches is completely satisfactory. Fre-
quent polling degrades performance of the system and infrequent polling may
deteriorate the timeliness of system respouses. Imbedding situation monitor-
ing in the application code is error prone and reduces the modularity of the

application [Day88].

Active databases is now an actively rescarched area since it has many ap-
plications that cannot be supported in a time-critical and eflicient maunner by
a conventional database. Applications ol active databases cover a wide range

ol arcas like authorization, access logging, integrity constraint maintenance,
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SN

RULEL: Inventory Control
Event: Update Quantity On_lland(ilem)
Condition: Quantity On_Hand(item) < Threshold(item)
Action: Submil Order(item)

RULE2: Access Logging
Event: Update User_Accounts
Condition: 1'ruc
Action: Insert Into Sccurily_Log Values(User, Timestamp)

RULE3: Power Plant Control
Event: rver — updateWater Level(w)
Condition: @ < 37 Arwwer — gell'emp() > 24.5
A reactor — gel H ealOul Put()
Action: recactor — reducePlanncdPower(0.05)

IFigure 1.1: Sample Rules

alerting, network management, air trallic control, computer integrated manu-
facturing, engineering design, plant and reactor control, tracking, monitoring
of toxic emissions, and any other application where large volumes of data must
he analyzed to detect relevant situations [Day88], [BDZ95]. Active databasc
systems are proposed [or system level applications as well, like supporting dil-

> ot fraran e e 3 ] 1 hed
ferent transaction models [CA95].

In a typical ADBMS, system responses are declaratively expressed using
Event-Condition-Action (ECA) rules [Day88]. An ECA rule is composed of an
coent that triggers the rule, a condilion describing a given situation, and an
action to be performed if the condition is satisfied. One of the most important
concerns in ADBMS research is event, condition, and action specification. An-
other significant research issue in active databases is event detection. Among
typical events in an ADBMS are data modification operations (e.g.,insertions
and deletions), method invocations on objects, external events (e.g., appli-

cation signals), temporal events, and transaction related events (e.g., begin,
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abort transaction) [BZBW95]. Some sample rules for a subset of the applica-
tions listed at the beginning of this section are provided in Figure 1.1. The
first and second rules deal with the handling of inventory control and access
logging, respectively [HLMS8S]. T'he third rule is related to power plant control
which is specified in a rule language called REAL [BDZ95]. First rule is fired
when an update of the quantity on hand of an item occurs, condition is checked
to see whether the quantity on hand ol an item goes below the threshold value
for that item, and in the action part of the rule, some amount of that item is
ordered. Second rule is fired when the user accounts are updated, condition is
true, meaning that the action will be executed anyway, action for that rule is
an insertion of some information into the security log about the user and time.
For the third rule to be fired, water level of the river in concern should be
updated, some condition about the temperature of the river and heat output
ol the reactor is checked, and the planned power of the reactor is reduced as
an action. Basic events, such as the ones presented in the sample rules, can
also be combined to form composite events by using an event algebra. Iffi-
cient event detection is of particular importance especially when the number
ol events to be monitored is large. Rule execution is also a significant concept
in ADBMS research. Section 2.1 of Chapter 2 provides a detailed discussion

ol rule execution in ADBMSs.

Isflicient rule execution is also important from the performance perspective
of the whole system. The occurrence of an event can start the execution of
some rules by firing them. If the condition part of a fired rule is satisfied,
then the action part of that rule is executed. Coupling modes between event
and condition, and condition and action determine when the condition will
be executed relative to the occurrence of the event, and when the action will
he executed relative to the condition, respectively. During the condition eval-
uation and action execution of a rule, some other rules may be fired. This
situation may go on recursively and is called nested (or cascaded) rule firing.
Nested transaction model [Mos85] is considered as a suitable tool to implement
rule execution since it can handle nested rule fiving well. In the nested trans-
action model, some transactions may be started inside some other transactions

forming a transactions hierarchy. The transaction at the top of the hierarchy is
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called a top-level transaction, and the other transactions are called subtransac-
tions. Subtransactions can be executed in parallel which is a desirable situation
il subtransactions are performing tasks that can be overlapped. Concurrency

control of parallel nested transactions is discussed in [[IR93].

In this thesis, we describe a parallel execution model for rule execution
in ADBMSs based on nested transactions [Mos85]. The execution model is
formally specificd using ACTA which is a framework for specifying extended
transaction models [CRI1].  An implementation of parallel nested transac-
tions for nested rule execution is described. The locking protocol in [HR93] is
implemented which allows us to control the concurrency among all the trans-
actions in the transaction hierarchy running in parallel. Implementation has
been performed by extending the flat transaction semantics of OpenOODB
using Solaris threads. OpenOODDB is an open (i.e., extendible) object oriented
database management system developed by Texas Instruments [WBT92]. In
our implementation we allow all the transactions in the transaction hierarchy
to run in parallel, therelore achieving the highest level of concurrency. Solaris
threads are used for running the subtransactions in parallel which provides us
with efficient handling of transactions executing concurrently [Sun94]. Our im-
plementation of parallel nested transactions is currently being integrated into

Sentinel [CAM93] which is an ADBMS developed at the University of IMlorida.

A detailed discussion of the issues introduced in this chapter is provided in
the following chapters. In Chaptler 2 we provide a detailed description of rule
execution in active databases. Our execution model [or active databases is de-
scribed in Chapter 3 together with its formal specification. Nested transactions
are also discussed in the same chapter. Chapter 4 deals with the implementa-
tion issues of parallel nested transactions on OpenOODB using Solaris threads,
and discusses the integration ol our implementation into Sentinel. Finally in

Chapter 5 conclusions and future work are discussed.



Chapter 2

Rule Execution in ADBMSs

This chapter provides an overview of rule execution in Active Databases and
describes a model for rule execution in Active Databases which is formally
specified in Section 3.3 together with an appropriate transaction model. We
introduce the concept of nested {ransactions together with their concurrency

control and recovery properties.

2.1 Overview of ADBMS Rule Execution

Rules in Active Databases consist of an event, a condition and an action. [f the
event is missing, then the result is a condition-action (CA) rule or a production
rule; if no condition is specified, then the resulting rule is an event-action (15A)
rule or simply a trigger [PD95]. When an event is detected, the system searches
for the corresponding rules. The condition part of the rule triggered by that
event 1s evaluated and the action is taken if the condition is satisfied. One
event may cause more than one rule to be fired. Handling of multiple rules
fired by an event is also an important task ol rule execution. New events may
also occur during rule execution which may cause triggering of other rules.
This is called cascading rule firing. Eflicient handling of cascading rule firing

improves the performance ol the whole system and is a desirable situation.

The action part of a rule may be exccuted in one transaction immediately

N
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as a linear extension of the triggering transaction. This is called coupled
crecution [HLMS88]. We can give Starburst as an example of coupled exe-
cution of rules [AWHY2]. In Starburst, rules are based on the notion of transi-
tions. A transition is a database state change resulting from the execution of
a sequence of data manipulation operations. Rules are activated at assertion
points. There is an assertion point at the end of each transaction and users
may specily other assertion points within a transaction. The state change re-
sulting from the database operations issued by the user since the last assertion
point creates the first relevant transition which triggers a set of rules. A rule r
is chosen from the set of triggered rules such that no other triggered rule has
precedence over 1t. Condition of » (if it has any) is evaluated . Action part of
r is executed provided that its condition cvaluates to true; otherwise another
rule is chosen. Alter the execution of 1’s action, rules that are not considered
up until now are triggered only if their transition predicates hold with respect
to the predicate created by the composition of the initial transition and the
execution of 1’s action. Rule processing terminates after all triggered rules are

executed.

Although coupled execution is useful in some cases, it degrades the per-
formance of the system by increasing the response time of transactions. If
we allow actions to be executed i separate transactions, then the triggering
transaction can finish more quickly and release resources earlier, and this way
transaction response times can be improved. We may also want the condition
part of the rule to be executed as a separate transaction since conditions which
are queries on the database can be long and time consuming. Allowing con-
ditions and actions to be executed in separate transactions is called decoupled

caeculion [HLMSS].

It 1s also important to specify when the condition will be evaluated relative
to the triggering event and when the action will be executed relative to the con-
dition evaluation. This is achieved by delining coupling modes for conditions
and actions. There are three basic coupling modes: immediale, de ferred, and
detached (or decoupled) [Day83). Basic coupling modes between event and con-
dition are illustrated in Figure 2.1. 1[ the condition is specified to be evaluated

in immediate mode, then it is executed rvight after the triggering operation
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Begin Transaction Event E End Transaction Commit Transaction
| | | |
| ] ' ' 1
| !
| |
1 |
| |
|Condition] [Condition]

(IMMEDIATE) (DEFERRED)

|
|
!
|
|
|

| [Condition]
(DETACHED)

Figure 2.1: Basic Coupling Modes Hlustrated

that caused the event to be raised. [f the action part is specified to be exe-
cuted in immediate mode then it is executed immediately after the evaluation
of the condition. In case the condition is specified to be in de ferred mode, its
evaluation is delayed until the commit point of the transaction, and similarly
il the action is in deferred mode relative to the condition, again it is executed
right before the transaction commits. Finally, in detached mode, condition
is evaluated or action is executed in a separate transaction. Detached mode
can further be classified into four subcategories: detached coupling, detached
causally dependent coupling, scquential causally dependent coupling, and
cauclusive causally dependent coupling [Buc9d]. In detached coupling there is
no dependency between the triggering and triggered transactions. In detached
causally dependent coupling, the triggered transaction can commit only if the
triggering transaction commits. In sequential causally dependent coupling,
the triggered transaction can start exccuting only if the triggering transac-
tion commits. Finally, in cxclusive causally dependent coupling, triggered

transaction commits only if the triggering transaction [lails.

There is a special technique used for the execution of transactions fired
in deferred mode [HLM88]. Delerred transactions are executed in cycles. In
cycle-0, deferred transactions that have been fired up to that point arc exe-

cuted. Transactions spawned during cycle-0 in immediate mode are executed as
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a linear extension of their parents as usual. Execution of the deferred transac-
tions that are fired during cycle-0 by another deferred transaction is postponed
to the next cycle, which is cycle-1. Again deferred transactions that are fired
in cycle-1 are postponed to the next cycle, which is cycle-2, and so on. This

process continues until there are no deferred transactions left.

2.2 Nested Transactions for Rule Execution

Nested transactions are considered to be suitable for rule execution in ADBMSs.
In the lollowing subsections, we will discuss nested transactions together with

the concurrency control and recovery issues.

2.2.1 An Introduction to Nested Transactions

Traditional transactions have only one branch of execution. In the Nested
Transaction Model, transactions can have multiple branches of execution. A
nested transaction may either consist ol a set of primitive actions or other
nested transactions; i.e., it is recursive. Nested transactions form hicrarchies
which can be represented as trees and standard tree notions like parent, child,
ancestor, descendant, superior, and inlerior also apply to them. The root of
the tree is called a root or top-level transaction. The root may have one or
more children, similarly children of the root may also have other children.
By dividing transactions into smaller granules, we localize the failures into
subtransactions. Subtransactions can abort independently without causing the
abortion of the whole transaction hicrarchy. When a transaction aborts, all of
its descendants are also aborted, hut other transactions arve not alfected. Nested
transactions are also very useful in terms of system modularity. If we consider
a transaction hierarchy as a big module, its subtransactions may be designed
and implemented independently as submodules, also providing encapsulation

and security [HR93].
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2.2.2 Concurrency Control and Recovery Issues in Nested

Transactions
Using nested transactions we can exploit the parallelism among subtransactions
since subtransactions can be executed in parallel. There can be four different

kinds ol parallelism:

1. only sibling

IS4

only parent-child
3. parent-child and sibling

4. no parallelism (i.e., sequential execution)

In the first case, where only sibling parallelism is allowed, parent stops its
execution while its children are running concurrently. In the second case, only
parvent-child parallelism is allowed where parent and child run concurrently
while the other children wait. In the third case, all transactions in the hierarchy
can run in parallel. In the fourth case, we have no parallelism at all (i.e.,
fransactions in the hierarchy are executed sequentially) [HR93]. In our model,
we will assume parent-child and sibling parallelism since it provides us with

the most flexible model of parallelism.

When transactions are exccuted concurrently, serializability is used as the
correctuess criterion, and it is ensured by two-phase locking. A child transac-
tion can potentially access any object in the database. When a subtransaction
commits, the objects modified by it are delegated to its parent transaction.
We used a locking protocol, which is described in Chapter 3, for concurrency

control in nested transaction exccution.

[n nested transactions, ACID properties (i.e., atomicity, consistency, iso-
lation, and durability) are valid {or top-level transactions, but only a subset
of them holds for subtransactions [[IR93]. A subtransaction may commit or
abort independent of other transactions. Aborting a subtransaction does not

alfeet other transactions outside of its hicrarchy, hence they protect the outside
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world from internal failures. If we had packed all subtransactions into one big

flat transaction then we would have to abort the whole transaction.

Recovery of nested transactions is similar to the recovery of flat transactions.
Standard recovery algorithms like versioning or log-based recovery can be used.
Log-based recovery for nested transactions is discussed in [Mos87] and [RM89)].
[RM89Y] introduces a model called ARIES/NT and this has several advantages
over the recovery model provided in [Mos87] . The biggest drawback of the
recovery model of [Mos87] is that it does not use Compensation Log Records
(CLRs) which are necessary for performance reasons. A detailed description of
CLRs is provided in [RM89]. Implementation of our execution model has been
built on OpenOODB which uses EXODUS as storage manager whose recovery
component is implemented based on ARIES [MHL*92], and ARIES/NT is pro-
vided for nested transactions as an extension to ARIES. Therefore, ARIES/N'T
is the most suitable recovery scheme that can be adopted to our transaction

execution model.



Chapter 3

Execution Model

Our rule execution model is based on the nested transaction model. The nested
transaction model implicitly assumes that the subtransactions are spawned in
immediate mode. In our execution model, transactions may spawn subtransac-
tions in any coupling mode specilicd by the system. Bach rule is encapsulated
in a transaction. When a rule », fires another rule r,, then depending on the
coupling mode, ry is encapsulated in another (sub)transaction and executed in
the specified coupling mode. If the coupling mode is immediate or deferred,
then 1y is executed as a subtransaction ol . If the coupling mode is one
of sequential causally dependent, detached causally dependent or, exclusive
causally dependent, then ry is executed as a top-level transaction. The overall
structure of the currently executing rules in the system forms a forest consisting
of trees whose roots are the rules fired in one of the detached coupling modes.
As stated earlier, both parent-child and sibling parallelism are allowed which
provides us with the maximum concurrency among subtransactions. Top-Level
transactions are exccuted in parallel. All nested transaction semantics apply
among the individual rules in the nested transaction tree. Abort and commit
dependencies among the top-level transactions are enforced by the transaction

manager.

The concurrency control algorithim used in our exccution model is based
on the notion of nested concurrency control. Harder and Rothermel [HRY3]

have extended Moss’s nested transaction model to contain downward as well

I



JHAPTER 3. EXECUTION MODIJL 12

as upward inheritance of locks. We have employed in our model the locking
protocol provided in [HR93]. The protocol is composed of the following locking

rules:

e Rule It Transaction 1" may acquire a lock in mode M or upgrade a lock

it holds to mode M il

— no other transaction holds the lock in a mode that conflicts with M,
and
— all transactions that retain the lock in a mode conflicting with M are

ancestors of .

A transaction holds a lock on an object if it has the right to access the
locked object in the requested mode. In contrast, a transactions retains a
lock on an object to control the access of the transactions outside the hier-
archy of the retainer and cannotl be accessed by the transaction retaining

the lock.

e Rule 2: When subtransaction 1" commits, the parent of T inherits T7s

locks (held and retained). After that, the parent retains the locks in the

same mode as T held or retained them before.

o Rule 3: When a top-level transaction commits, it releases all locks it holds

or retains.

e Rule 4: When a transaction aborts, it releases all locks it holds or retains.
[f any of its superiors hold or retain any ol these locks, they continue to

do so.

e Rule h: Transaction T, holding a lock in mode M, can downgrade the lock
to a less restrictive mode, M’. After downgrading the lock, T retains it in

mode M.

These locking rules can be used with dilferent types of coupling modes. A
transaction spawned in detached causally dependent mode should be able to use
its parent’s locks in the same way as a subtransaction spawned in immediate or

deferred mode. Since the transaction spawned in detached causally dependent
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mode should abort if its parent aborts, it can use its parent’s locks without

causing any problem in the recovery.

Both shared and exclusive lock modes are avatlable to transactions in our

execution model.

Active database recovery is still an open research area. There are only a
[ew papers on active database recovery which mainly focus on the recovery of

events (e.g., [HEKX94], [Zuk95]).

Active database recovery in general deals with :

e Recovery of events.

e Recovery of aborted rules. Possible solutions to the recovery of aborted

rules are listed in [HEKX94] as:

— ignore the aborted transaction,

— abort the triggering transaction,

— retry the triggered transaction or start a different one,

— reset the triggering transaction to the point of the occurrence of the

event that caused the rule to be triggered.

The above recovery options may be left to the user decision, or they may be
handled automatically depending on the implementation. The most reasonable
approach would be to let the user specily the recovery mode of the rule during

the rule definition and make the recovery mode an attribute of the rule.

The execution model described in this thesis does not include recovery. As
we discussed in Section 2.2.2, ARIES/NT [RM89] can be adopted as a recovery
model for nested rule execution without significant modifications. Recovery
of transactions spawned in immediate or deferred mode can be handled as
described in [RM89]. Abort dependencies must be considered during rollbacks.
Among the detached coupling modes, only the detached causally dependent
mode requires some extension to the model of ARIES/NT. Assume that a

transaction A spawns a transaction 3 in causally dependent mode. It means
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that abortion of B should be succeeded by the abortion of A which should be
enforced by the recovery model. Other detached coupling modes do not require
any extension to the recovery model. Transactions spawned in one of those
modes are treated as top level transactions, and their recovery is performed by

following the top-level transaction abortion steps.

3.1 ACTA

ACTA is a transaction [ramework that can be used to formally describe ex-
tended transaction models [CR91). Using ACTA, we can specify the interac-
tions and dependencies between the transactions in a model. ACTA character-
izes the semantics of interactions (1) in terms of different types of dependencies
hetween transactions (e.g., commit dependency and abort dependency) and (2)
in terms of transactions effects on objects (their state and concurrency status,
i.e., synchronization state) [CR91]. Effects of transactions on objects are speci-
fied using two sets associated with cach transaction: a view set which contains
the state of objects visible to that transaction and a con flict set which con-
tains operations for which conflicts necd to be considered. ACTA [framework
consists of four basic blocks which are history, dependencics between transac-
tions, vicw and con flict sets ol transactions, and (inally delegalion. History
represents the concurrent execution ol a set ol transactions and contains all
the events invoked by those transactions, also indicating the partial order in
which these events occur. ACTA captures both of the effects of transactions
on other transactions and their effects on objects through constraints on his-
tories. Transaction models are defined by a sct of axioms. These axioms are
invariant assertions about the histories of transactions belonging to the partic-
ular model. The whole history is denoted by H, and H,, denotes the current
history. We may also project the history to obtain a subhistory that satisfies
some criterion. Invocation of a general event ¢ by transaction ¢ is denoted by

¢;. There are three possibilitics that can affect the occurrence of an event:

E . . !
[. an event € can occur only alter the occurrence of another event ¢ (denoted

as ¢ — €)
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2. an event e can occur only il a condition ¢ is true (denoted as ¢ = ¢)

L.

3. a condition ¢ can require the occurrence of an event ¢ (denoted as ¢ = ¢).

) is the projection of the history /1 with respect to the object ob.
Two operations p and ¢ conflict in a state produced by H© denoted by

con [lict(IT, p, q), if and only if,

(state(H" o p,q) # state(H) o ¢,p))
V (return(H q) # retwrn(H o p,q))
V (return(H©, p) # return(H o ¢, p))

where state(s, o) represents the state produced after the operation
o is applied to the state s, and return(s, o) represents the output
produced when the operation o is applied to state s, and o denotes

function composition.
There are two types of events in ACTA:

e Object Ivents: [nvocation ol an operation on an object is called an object
event. An invocation of an operation p on an object ob by transaction [ is
shown by p,[ob] and O L is the set of object events that can be invoked by
transaction {. Liffects of p,[ob] are made permanent by invoking a cormit
operation on this object, which corresponds to the event Commil[pob]].
When we want to discard the operation performed on an object, we abort

it, and the corresponding event is Abort[pob]].

e Significant Ivents: Invocation of a transaction management primitive like
begin, abort, spawn, or commit is called a significant event. S17; is the sct
of significant events corresponding to transaction ¢. Iivents related to the
initiation of a transaction are called iniliation cvents and arve denoted by
[I7,. Events that are related to the termination of a transaction are called

termination events and are denoted by 1'E;.

Delegate,,[Li, pi;[0b]] denotes that transaction ¢; delegated the responsibil-

ity of committing or aborting the operation py,[ob] to transaction ;. A set of
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operations may be delegated by Delegate[t;, DelcgaleSet]. Initially, the re-
sponsibility of committing or aborting an operation belongs to the transaction

that invoked the operation, unless it is delegated to another transaction.

ResponsibleTr(p,,[0b]) identilies the transaction that is responsible for com-

mitting or aborting the operation py[0b] with respect to the current history.

Now we can formally define the access set of a transaction ( by:
AccessSely = {py,;[0b]| Responsible’I'r(p,[ob]) = 1)}
An object 0b behaves correctly il and only if

Vit € Tt # L, Vp, q(return valuc_dependent(p, q)

A (pi;[0b] = q¢,[00])) A =((Commil[p,[ob] — ¢;;[0b])

V (Abort[p[ob]] = qi,[0b])) = ((Abort[p,[ob] € H(M) =
(Abort[qy,[ob]] € H)Y))

where return_valuedependent(110Pp, ¢) is true if con flict(H) p, q)

is true and return(H o p, ¢) # return(HEY, q)
An object 0b behaves serializably il and only if

. Vi;, l_j € fl'(:mn.-m.a L # [;.'f
(Libust) & Fpyqleon flict(py[ob], g, [ob)) A (pr,[ob] — a1, [ob]))).

2. Vi e Tlcmn.-m. = _'(u):bt)

where 1.om is the set of committed transactions; by is a binary relationship
that occurs due to an access to the object ob by the transactions that take

place in the binary relationship; and 07, is the closure ol bg.

An object ob is atomic il ob hehaves correctly and serializably.

IMindamental axioms of transactions:
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1. Vo € [E (o € HY) = =3B € 1 Ly(or — f3)

A transaction cannot be initiated by two different events.

o

V6 € TE; o € [Ey(§ € HY) = (o — §)

[t a transaction has terminated, it must have been previously initiated.

3. VyeTE(y € HY) = -36 € 1I'ly,(y — 6)

A transaction cannot be terminated by two different termination events.

4. YobVp(pifob] € H) = ((Fa € L[, (or — pifob])) A (Fy € T L, (pi[ob] — 7)))

Only in-progress transactions can invoke operations on objects.

Here we list a subset of standard dependencies between transactions that
are defined in ACTA which we have used for specifying our execution model

for Active Databases.

e Commit Dependency (denoted as £; C'D ;). If transactions ¢; and ¢; both
commit then ¢; should commit before £;. This can be shown axiomatically
as:

Commit,; € H = (Commaly, € 1l = (Commal,, — Commily;)).

e Abort Dependency (denoted as t; AD t;). If t; aborts then £; should also
abort:

Abort,; € H = Abort;, € I

o Weak-Abort Dependency (denoted as (; WD ;). If {; aborts and ¢; has
not yet committed, then ¢; aborts:

Abort,, € H = (-(Commal,, — Abort,) = (Aborty; € H))

o Faclusion Dependency is denoted by t; LD t;, and ensures that if ¢
commits , then ¢; must abort. We can state this formally as:

Commity, € H = Aborl;; € H.
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These dependencies may be the result of the structural properties of trans-
actions. For example, in nested transactions child transactions are related to

their parent by commit and weak-abort dependencies.

Axiomatic definition of the standard nested transaction model is provided
in [CR94]. Since we are utilizing the extended model of nested transactions
described in [HR93], which is different from the standard nested transac-
tion model of [Mos85], we need to modify the axiomatic definitions provided
for nested transactions in [CR91]. Pirst of all, the standard ACTA term
ResponsibleTr is separated into two notions, namely Responsible retainT'r
and Responstble_sel fTr. With respect to this modification, Responsible_sel f
T'r(py, [0b]) identifies the transaction which actually invoked an operation on the
object ob. The transaction identificd by Responsible_sel fTr(p,[ob]) is also rve-
sponsible for the commit or abort of this operation. Responsible retain®'r(py,[ob])
identifies the transaction to which the responsibility of committing or aborting

this operation is delegated.

Since our notion of responsible transaction is different, the semantics of

delegation should also be modified. According to this modification,

Delegate|t;, pi;[ob]] denotes thal transaction {; delegated the retain
or self responsibility of committing or aborting the operation py,[0b]]
to transaction ¢; as rctain responsibility.

I'inally, the access set of a transaction is modified as:

AccessSet; = {pi, [ob]| Responsible_sel f1'r(py;[0b]) =1

vV Responsible retainl'r(p,[ob]) = t}

[n the next section, we provide the axiomatic definition of the extended
parallel nested transaction model. These definitions have been obtained by
modilying the axiomatic definitions of standard nested transactions provided

in [CRY4].
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3.2 Axiomatic Definition of Parallel Nested

Transactions in ACTA

Assume that £y is the root transaction, [, is a root or a subtransaction, and (.

is a subtransaction of {,. Ancestors(l) is the set of all ancestors of transaction

L, Descendants(t) is the set of all descendants of transaction ¢, and Parent(t)

contains the parent of ¢.

[SV]

4.

(W53 4

9.

10.

11

. SE

= { Begin, Spawn., Commail, Abort
to ’ )

. 1B, = {Begin}

TE,, = {Commaut, Abort}

SE;,, = {Spawn, Commil, Abort}

[, = {Spawn}

115, = {Commit, Abort}

t, satisfies the fundamental axioms of transactions that are listed in the
preceding section.

‘/7:(:3101,1, = -[Jcl

That is, {, sees the current state of objects in the database.

Con flictSely,, = {piob]| Responsible_sel f1'r(pfob]) # Lo, Inprogress(p,[ob])}
Conflict set of Lo consists ol all operations performed by different transac-
tions for which it is not sell-responsible (i.c., ¢o did not actually invoked

the operation).

Yob3ppy,[ob] € H = (0b is alomic)

All objects on which ¢, invokes an operation are atomic objects.
Commat,, € H = =(1,b5,)
Transaction ¢, can commit only il it is not part of a cycle of b relations

that are results of conflicting operations.
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12. Job, p, t (Commit, [pfob]] € Il = Commit,, € H A Parent(t,) = ¢)
Il an operation p invoked on au object 0b is committed by transaction (£,

then ¢, should also commit and it should be a top-level transaction.

3. (Commat,, € H A Parenl(l,) = ¢) = Vob, p,t(p,[ob] € AccessSel,,
= Commitpi[ob]] € H)
If a top-level transaction commits then all the operations for which it is

responsible must also be committed.

L4. Job, p, t (Abort, [ps|ob]] € H = Abort,, € IT)
If an operation p invoked on an object ob in transaction ¢ is aborted by

transaction £, then ¢, must also abort.

15. Abort,, € H = Yob, p, l{pfob] € AccessSely, = Abort, [pfob]] € H)

If £, aborts then all the operations for which it is responsible must abort,.
v I

16. Begin,, € H = (Parenl(l,) = ¢ A Ancestor(l,) = ¢)

Begin operation implies that a top-level transaction starts its execution.

17. ConflictSet,, = {p:[ob]| Responsiblc_sel fTr(p[ob]) # L., Inprogress(p,[ob])}
Conflict set of a child transaction /. consists ol those operations for which
L. is not self responsible, since the operations on the object ob for which ¢,
has the retain responsibility may be conflicting with another transaction
which is not an ancestor of {.. T'his is due to the fact that subtransactions

are executing in parallel with the parent transaction.

18. Spawny [t] € H = Parenl(l.) =1,

[f transaction [, is spawned by transaction ¢, then ¢, is the parent of ..

19. Spawny,[t.]) € H = (LW DL,) A (1,("DL.)
[f transaction . is spawned by transaction ¢, then ¢, cannot commit until

[. terminates, and if ¢, aborts then £, must also abort.
[ 9 1

20. Commit,, € H & Delegale, [Parent(l.), AccessSety] € 11
Il a child transaction . commits, then it should delegate the objects in

its access set to its parent.

21. Yt € Descendants(L,)Vob, p, ¢(pfob] — q.,[0b])Con flict(p[ob], q.,[0b])
= Al ((Delegaley,[t,, AccessScly,] — q,[0b]) A pifob] € AccessSet,,)
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Given a transaction ¢ and its ancestor £, and operations p and ¢, ¢, can

invoke ¢ after ¢ invokes p il £, is responsible for the operation p.

22. (Ancestor(t.) = Ancestor(t,) U {L,}) AVt(t, € Descendants(t)
= t. € Descendants(l))
Ancestor set of (. consists ol ils parent plus ancestors of its parent, and
for all transactions ¢ of which £, is a descendant, . is also a descendant

of {.

3.3 A Formal Model for Rule Execution in
Active Databases using ACTA

A formal specification of rule exccution in Active Databases using ACTA can
be provided without significant changes to the standard ACTA primitives.
[nstead of using a single Spawn primitive, we add the primitives Spawn_Ifmm,
Spawn_Def, Spawn_Detached, Spawn_Caus, Spawn_Seq, and Spawn_Ezc,
which specify the coupling modes in which the subtransactions are spawned.
These new primitives will be explained in Section 3.3.1. All coupling modes
except the deferred mode and scquential causally dependent mode can be
specified easily using the usual dependencies of ACTA. For the delerred mode,

we need to specily a eycling excculion mecthod, which can be stated as follows:

Deferred transactions are executed in cycles at the end, but just
before the commit of the transaction that spawned them. Cycling
execution can start only in a top-level transaction or a subtransaction
spawned in immediate mode since deferred subtransactions spawned
by another deferred transaction are executed in the next cycle after
the commitment of their parcent. Subtransactions spawned in im-
mediate mode are executed immediately, which deviates from the

standard deferred execution specification.
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3.3.1 Coupling Modes
The coupling modes we considered in our execution model are listed below:

o vmmediate mode, which has the same semantics as the creation of a sub-
transaction in standard nested transaction model. Spawning of an imme-

diate subtransaction is denoted by the primitive Spawn_Imm.

o delached mode, which has the same semantics as the creation ol top-
level transactions in the standard nested transaction model. There are no
dependencies between the spawning and spawned transaction. Spawning

ol a detached transaction is denoted by the primitive Spawn_Detached.

o detached causally dependent mode, in which spawned transaction aborts
if the parent aborts, so there is an abort dependency between the spawning
transaction and spawned transaction. Spawning of a transaction in this

mode is specified by the primitive Spawn_-Caus.

o scquential causally dependent mode, which specifies that a child trans-
action cannot start its execution until its parent commits. This can be
enforced by a Sequential_Dependency(SQ D) which is provided as an ex-
tension to the ACTA dependency set and can be stated formally as:

LSQDL; < ((Beging, € 1) = (Commitl,, — Beging,))
The primitive Spawn_Seq indicates that a subtransaction is spawned in
this mode.

o caclusive causally dependent mode, which is denoted by the primitive
Spawn_Ezc and it ensures that the spawned transaction commits only if
the spawning transaction aborts. This can be enforced by using a stan-
dard ACTA dependency, namely the Ieclusion Dependency between the
spawning and spawned transactions.

o deferred mode, which is denoted by the primitive Spawn_Def, and a
bit more effort is required to specily it in ACTA framework due to the
cycling execution method. Assume that o is a top-level transaction, ¢, is
a top-level or subtransaction, and [, is a child transaction spawned by (£,

in deferred mode.
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Case 1: £, is a top-level transaction or a subtransaction spawned
in immediate mode, i.c., {. is going to be executed in cycle-0. In
this case £, is executed just before the commit of £, after all other
operations of , arc completed, i.e., all operations of ¢, precede
all operations of ¢..

Case 2: £, is a transaction spawned in deferred mode. This means
that . is spawned during a cycle. Then, every operation per-
formed by t. should succeed all the operations of ¢, and the op-
erations of siblings of 1, that arc spawned in deferred mode (i.e.,

executed in the same cycle).

Discussion

There is an ambiguity in the method described in [HLMSS8] for the cycling
execution of rules fired in deferred coupling mode. If a rule is fired in deferred
mode by a transaction during the execution ol a cycle, it is executed in the
next cycle; but if a rule is fired in deferred mode by a transaction which has
been fired in immediate mode then the fate of this transaction, i.e., whether it
will be deferred to the next cycle or it will be executed in another execution
cycle is left unspecified. We chose to execute these kinds of rules in another

cycle before the commit point of the immediate rule.

In our execution model, we consider the coupling modes between the event
and condition, and also the condition and action. We can give the option of
defining the coupling mode between the condition and action to the user, where
the user can select immediate or sequential causally dependent coupling mode.
Other conpling modes would not, be meaningful due to the relation between
the condition and action. In immediate mode, condition evaluation is followed
by execution of the action only il the condition evaluates to true. In sequential
causally dependent mode, action execution starts before condition evaluation
is completed. This improves the concurrency in a system in case there exist
abundant resources in the system, which is a reasonable assumption due to the
continuous decrease in the prices of system resources. The transaction in which

the action is executed can commit only il the condition commits and returns
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true. The performance impact of the sequential causally dependent coupling
mode between condition and action needs further research and testing in a real

system.

3.3.2 A Formal Model Using ACTA

Assume that the definitions provided al the beginning of Section 3.2 [or the fol-
lowing notations also hold in this section: ly, {,, t., Ancestors(t), Decendants(t),

Parent(t).

Notice that, as one deviation [rom the standard nested transaction model,
there are various spawn events in axioms (1),(1), and (5) corresponding to dif-
ferent coupling modes. Some of the axioms used for the nested transaction
model directly apply to our execution model. For example, axioms (7) through
(17) which define the semantics ol a top-level or a subtransaction which spawns
another transaction are the same for hoth models, therefore we did not include
their explanations here. Readers who need more information about those ax-

ioms are referred to Section 3.2.

1. SE,, = {Begin, Spawn_lmm, Spawn_Def, Spawn_Detach, Spawn_Caus,

Spawn_Seq, Spawn_Itve, Commat, Aborl
s q, ) ,

N

IE,, = {Begin}
3. T'E,, = {Commail, Abort}

4. SE, = {Spawn_Imm, Spawn_De[, Spawn_Detach, Spawn_Caus,

Spawn_Seq, Spawn_Live, Commait, Abort}

5. [, = {Spawn_Imm, Spawn_Def, Spawn_Detach, Spawn_Caus,

Spawn_Seq, Spawn_1svc)
6. TE,, = {Commat, Abort}

7. 1, satisfies the fundamental axioms ol transactions that are listed in Sec-

tion 3.1.

8. View,, = Hy
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9.

10.

16.
L7,

I8.

19.

20.

o
I

o
V3

Con flictSety, = {p:[ob]|responsible_scl fTr(p[od]) # Lo, [nprogress(p[ob])}

Vob3pp,,[ob] € H = (ob is alomic)

. Commaty, € H = —(L,b51,)

Job, p, tCommity,[pfob]] € I = Conanit,, € H A Parent(t,) = ¢

3. Commity, € H N Parent(l,) = ¢ = (Yob, p, l{p[ob] € AccessSet,,

= Commail,[p[ob]] € H))

4. Job, p, t Abort,,[p[ob]] € II = Abort,, € I

Aborty, € H = (Yob, p, L(pfob] € AccessSely, = Abort, [pfob]] € H))
Begin,, € H = Parent(l,) = ¢ N Ancestor(l,) = ¢
ConflictSet;, = {pfob]| Responsible_sel fTr(p[ob]) # L., Inprogress(p:[ob])}

(Spawn_Immyt) € H V Spawn_def, [t.] € H) = Parent(t.) =1,
[f a transaction ¢, spawns a child transaction £, in immediate or deferred

mode then ¢, is the parent of /..

(Spawn_Immy[t.] € H V Spawn_def, [t.] € ) = (LW DL,) A (L,CDL.)
Il a transaction £, is spawned in immediate or deferred mode by a trans-
action t,, then ¢, aborts when [, aborts and f, cannot commit until £.

terminates.

(Spawn_Causy[t.] € LI V Spawn_Detachy [t € H

V Spawn_Seqy[t] € LI V Spawn_Live,[t.] € ) = Parent(t,) = ¢

A Ancesstor(l.) = ¢

A transaction spawned with detached, detached causally dependent, se-
quential causally dependent, or exclusive causally dependent mode is a

top-level transaction, therefore has no parent or ancestor.

. Spawn_Caus, [l] € H = L. ADL,

If a subtransaction {, is spawned in causally dependent mode by transac-
tion ¢, then t. must abort il ¢, aborts.

Spawn_Seq,[t.] € H = 1.5QDt,

[f a subtransaction (. is spawned in sequential causally dependent mode

by transaction f, then £, can start its execution only if £, commits.
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23. ,5'1)mu7’L_Ewctp[tC] et =1t1Di,
If a subtransaction ¢, is spawned in exclusive causally dependent mode by

transaction ¢, then ¢, can start its execution only if ¢, aborts.

24. (Spawn_Immy[l.] V Spawn_def, [l.]) € H A Commit,, € H
& Delegate, [Parent(l.), AccessScly,] € H
If a subtransaction £, is spawned in immediate or deferred mode by trans-
action ¢, then . must delegate all the operations in its access set to its

parent £,.

Vi, (;(), P, q(t € Descendants(L,) A (p[ob] — qu,[0b]) A Con flict(p,[ob], q.,[0b])
= 3l ((Delegate, [t,, AccessSel, ] — q,[ob] A plob] € AccessSely,)))

Q%
[\ 4

(Given a transaction ¢ and its ancestor {, and operations p and ¢, ¢, can

invoke q alter ¢ invokes p if {, is responsible for the operation p.

26. (Spawn_Immy[t:] V Spawn_Def, [t.]) € I
& (Ancestor(t.) = Ancestor(t,) U {l,}) AVL(t, € Descendants(t)
= l. € Descendants(l))
Ancestor set of a transaction spawned in immediate or deferred mode is

defined similarly as that with the standard nested transactions.

27. (Spawn_Defi,[t.] € H A (Parent(t,) = ¢ V It(Spawn_Imm,t,] € H))
= Vp, 0by, ¢, 0ba(p # Comanil A py, [ob]) € H A gy loby) € H
= (p¢, [001] — pi.[0ba])))
This axiom corresponds to Case-1 of the deferred coupling mode execution

described in Section 3.3.1.

28. (Spawn_Def,[t] € H A I(Spawn_Defi[t,] € H)
= Vp, q,7, 0b1, 0by, 0b3, Ly, La(py, [00L] € H A qi [ob2] € I
A Spawn_Def[ts) € H = (p,[obl] — ¢, [0b2] A ri,[0b3] — ¢ [0b3])

This axiom corresponds to Case-2 of the deferred mode execution.
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Implementation of Nested

Transactions

4.1 Previous Work

Various implementations of the nested transaction model have been provided
to date. One such implementation has heen performed on the Eden Resource
Management System (ERMS) [PN87]. In ERMS, transaction managers are
composed hierarchically, L.e., [or cach subtransaction there is a corresponding
transaction manager. For ensuring the serializability, 2-phase locking is used,
and a version-based recovery is used lor the recovery of sub-transactions. In
[DGRVIS], the implementation described focuses on nested transactions for

client workstations of an OODBMS.

Nested transactions have also been implemented for supporting parallelism
in engineering databases [HPS92]. T'hat implementation of nested transactions

supports both parent-child and sibling parallelism as in our implementation.

Nested transactions have been implemented lor parallel rule execution of
Sentinel ADBMS [CAM93] by modilying a prototype OODBMS called Zeit-
geist [PP91] without considering recovery of nested transactions [Bad93]. Only
sibling parallelism is assumed in that implementation; i.e., parent transaction

is suspended while its children are executing in parallel. Deadlock detection is

.)7

4
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SGDirEntry

Volume_Lisll IParmneler_lisll Ibufgrp_lisll

1 SystemDircctory StorageGroupDirectory

TRANSACTION
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| NAME_MGR |
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Next
Figure 4.1: OpenOODB Object Relationship Diagram

performed by modifying the transaction manager of Zeitgeist. An analysis of
the nested transaction locking protocol is made using the concept of spheres
ol control. Only the immediate coupling s supported in the implementation

of nested transactions.

4.2 Implementation

We implement nested transactions by extending the flat-transaction semantics
of OpenOODB [WBT92]. OpceuOODB is an open object oriented database
management system that can be extended by special constructs called sen-
tries. In our implementation, a component architecture method is used in-
stead ol sentries, i.c., a new component is added without significantly modify-
ing the existing ones. Our first task was to construct the object relationships
of OpenOODB by examining the class declarations. In Figure 4.1 the whole

OpenOODB object relationships diagram is given.
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ASM_CLIENT TRANSACTION
00DB “I TRANS_MGR

PERSIST_MGR

Figure 4.2: Related Object Relationships

Among the components illustrated in this diagram, the ones that need to
be considered for our implementation are isolated. These isolated components
are shown in Figure 4.2. In this figure, we sce that the main OpenOODB ob-
ject OODB has a pointer to cach ol four objects namely PILRSIST _MGR,
TRANS_MGR, TRANSACTION, and ASM_CLIIINT which means that
whenever an instance of an object of type OO DB is created, its constructor cre-
ates instances of PERSIST_MGR, TTRANS_MGR, TRANSACTION, and
ASM _CLIENT objects. Furthermore, the constructor of T"RANS_MG R ob-
ject creates an instance of T'"RANSACTTON object which is also used directly

hy OODB.

To give a flavor of how a transaction is started and objects are letched from

the database, we give a sample application of OpenOODDB in Figure 4.3.

As can be seen from the figure, an OpenOODB main object p_oodb is cre-
ated which provides us with an interface to OpenQODB. A transaction is
started by using poodb — beginT'ransaction and committed by p-oodb —
commilTransaction.  Abortion ol a transaction is achicved by p_oodb —
abortTransaction. Objects are made persistent by my_obj — persist() and
arve fetched from the database by the poodb — feteh(...). OpenOODB fetch
operation does not give the flexibility of specifying the lock mode but acquires
a default READ lock from EXODUS storage manager. ‘Lo provide the applica-
tion programmer with more flexibility, we decided to modily the fetch operator
of OpenOODB so that it takes the locking mode as a parameter. As a second

stage, nested transaction primitives:
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OODB *p_oodh;
My _Class *my_obj = new My_Class;
My _Class *tmp_obj;
char *obj_name = “objl”;
main()
{
p-oodh —beginTransaction();
[* make the objecl persistent and give a name to it */
my-obj —persist(objname);
p-oodh —conunitTransaction();

p-oodl —begin'lransaction();

[* feteh Lhe object with the given name */
p_oodb —letch(ohj name);

p-oodh —commitIransaction();

I'igure 4.3: A Simple OpenOODB Application

o spawn_sub_lransaction
o comnmil_sub_transaction

o abort_sub_transaction

arce added to the transaction maunager of OpenOODB (i.e., TRANS_MGR in
Figure 4.2). Finally, a Lock Manager is tmplemented to support the nested
transaction primitives that are added to the transaction manager. Among the
nested transaction primitives, only the spawn_sub_transaction takes parame-
ters. The first parameter of it is the name of the function where the subtransac-
tion is written in, the second one is the spawn-mode. Spawn-mode specifies the
coupling mode between the parent and child. For our nested transaction com-
ponent, we implemented the IMMEDIATE and DEFERRED coupling modes.
DETACHED coupling modes are handled by the rule manager of the ADBMS.

Using IMigure 4.2 we can describe where our lock manager fits in the object,
relationships diagram. In that figure, the main object of OpenOODB (i.c.,

OODB), points to a TRANS_MCIE object which has a TRANSACTION
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object. And the TRANSACTION object has a LOCK _MANAGER object,
i.c., the constructor of the transaction object creates the LOCK_MANAGER
object which can be accessed by QO D 3. 'I'his way the constructs implemented
in LOCK _MANAGER and T'RANS_MG IR can be used by the application
via the OpenOODB interface object, OODB.

LOCK _MAN AGER has two main data structures, namely the Lock_Table
and the Transaction Table. Lock T'ablcis a hash table that is used to keep the
lock information of objects that have previously been fetched by a transaction
in the transaction hierarchy. Lock_T'able is hashed by the object name, and
given an object, we can reach all the transactions that have a lock on this
object with any mode. Transaction_I'able keeps the transaction hierarchy,
wait-for graph and the lock information of the subtransactions. These data
structures are shown in Figure 4.4. We can see from the figurc that those hash
tables are interconnected, that is, we can reach the objects that are held by a
transaction given its transaction identifier. This provides us with efficient abort
and commit of subtransactions. TransactionI'able is hashed by transaction
identifiers(ted). Given the ted of a transaction (from now on we will use the

term transaction for both top-level transactions and subtransactions):

o We can reach all the objects held by that transaction in any hold and lock
mode. Hold mode of a lock can be hold or retain, lock mode can be read
or write.

o We can reach the transactions for which the given transaction is waiting.

We can reach the transactions waiting for the given transaction.

e We can reach all the children and ancestors of this transaction.

For the parallel exccution of subtransactions, Solaris threads are used [Sun94].
Solaris is a fully functional distributed operating and windowing environment [Sun92].
Thread is a sequence ol instructions executed within the context of a process.
Traditional Unix process contains a single thread of control. Solaris provides us
with Multi-threaded Programming. Multi-threading separates a process into

many execution threads each ol which runs independently.
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Primitive Explanation
thr_create() create a thread
thr_sel f() return the thread identifier of the calling thread

thr_suspend() | block the execution of a thread
thr_continue() | unblock a thread

thr_kull() send a signal to a thread
thr_exit() terminate a thread
thr _join() wait [or the termination of a thread

Table 4.1: Thread Primitives Used

Advantages of Multi-threading can be listed as:

e overlap in time, logically scparate tasks that use different resources,
e share the same address space,

e provide cheap switching amoung threads.

Thread primitives used in our implementation are listed in Table 4.1.

Mutual exclusive locks are used to control the concurrent access of different
threads to the shared data structures. In Iligure 4.5, we give a sample program

for the creation of threads.

As can be seen from the figure, using (hr_create() we execute a given
[unction in a thread. In our implementation, subtransactions are defined
as functions in a specified format and arc executed concurrently using the
spawn_sub_transaction primitive provided by our implementation of nested
transactions. In Figure 4.6, the spawn_sub_transaction primitive executes
the transaction, embedded inside a function, in a thread using thr_create().
Threads are created in suspended mode so that the necessary information is
inserted into the transaction_table. Since the lids are unique within a Unix
process, and top-level transaction houndaries do not exceed the process bound-
aries, it was very convenient for ns to define the tids as the transaction iden-
tifiers. This way we do not need to pass the transaction identifier to the
subtransaction as a parameter. Subtransactions can access their leds by call-

ing the thread library function Lhr_sel f(). This function returns the thread
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void *mylool(void *result)

{
printf(“mylool”);
printf(“my id is:%d” thr_self());

void *myfoo2(void *result)

{
}

printf(“myfoo2”);

main()

{
// define two thread identifiers
thread_t thradl;
thread_t thr_id2;
// functions myfool and myfoo2 will be executed
// in threads that are created in suspended mode
thr_create(0,0, myfool, 0, THR.SUSPENDED,&thr_idl);
thr_create(0,0, myfoo2, 0, THR_.SUSPENDED,&thr_id2);
// suspended threads ave restarted
thr_continue(thridl);
thr_continue(thr_id2);
// wait for the created threads to finish their execution
thr_join(thr_idl);
thr_join(thr_id?2);

Figure 4.5: A Sample Multithreaded Program
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identifier of the calling thread, i.c., the lzd. When an OpenOODB top-level
transaction is created, the f2d is also inserted into the transaction table for the

sake of completeness of the transaction hierarchy.

Since all the subtransactions in the transaction hierarchy can access the data
structures in the LOCK _M AN AGI R, we define a global mutex variable. This
way, the critical sections of the methods modifying the lock and transaction
tables are wrapped by mutex-lock and mutex-unlock. Concurrent access to

Lock Manager tables is discussed in Section 4.3 in more detail.

When we look at the data structures, we observe that there are linked
lists belonging to both transaction and lock tables which means that deletions
and insertions of new blocks to those lists take a lot of time. At this point,
we made an optimization by implementing our own memory management via
keeping lists of deleted blocks so that they can be used efficiently whenever
they are needed. Another optimization was to extend our component with a
sort of garbage collection, i.e., when we want to delete a block [rom the lock
or transaction table, we do not delete it physically but mark it as deleted.
This technique makes the usage of doubly linked lists unnecessary. Garbage

collection is performed during the searches in the lock table.

4.3 Controlling Concurrent Access to Com-

mon Data Structures

Since all the transactions can reach the common data structures, i.e., transac-
tion and lock table, there may be inconsistencies during the concurrent updates.
To avoid this problem mutual exclusion locks are used. Only one mutex vari-
able is defined which is locked and unlocked by the standard thread library
functions mutex lock and mulca_unlock, respectively. This way the critical
sections of the nested transaction component methods (i.e., the sections where
there is an update to the lock or transaction table) are wrapped so that only

one transaction at a time can execute its critical section.
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// create an OpenOODB main object
OODB *p_oodb;
void *sub2(void *res)
{
// lock the object with name obj3 in WRITE mode
int rc = p_oodh —letch_object(“obj3” WRITE);
// in casc of an crror, abort the subtransaction
// otherwise, conunit the subtransactions
if (re == KRROR )
p-oodb — sub_abort();
else
p-oodb —sub_commit();

void *subl(void *res)

{
// lock the object with name objl in READ mode
p-oodb —fletch_object(“objl”,READ);
// create a subtransaction in IMMEDIATE mode
p-oodb —spawn_sub_tr(sub2,IMMEDIATL);
// commit the subtransaction
p-oodb —sub_commit();

main()
{
// start an OpenOODB transaction
p-oodb —begin'Transaction();
// spawn a subtransaction in IMMEDIATE mode
p-oodb —spawn_sub_tr(subl,IMMEDIATE);
// commit the OpenOODB transaction
p_oodb —commit'Iransaction();

[igure 4.6: Sample OpenOODB Application Using Nested Transactions
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4.4 Implementation of the Locking Protocol

for Nested Transactions

When a transaction requests a lock on an object it specifies the locking mode
as well by providing the fetch_objecel method with the lock_type parameter.
Allowed lock-modes are RICAD and WRI'T I, A locking protocol for nested
transactions is provided in Chapter 3. We implemented this locking protocol
considering both READ and WRITI locks. Below we describe the locking

protocol.

e A transaction 1T may acquire a lock in RISAD mode if:

— no other transaction holds a lock in WRITFE mode,
— and all the transactions that retain a lock in W RIT I2 mode are an-
cestors of T'.
e A transaction 7' may acquire a lock in WRI'T L2 mode if:

— no other transaction holds a lock in READ or W RIT IV mode,
— and all the transactions that retain alock in READ ov W RIT I5 mode
are ancestors of T'.
e When a subtransaction 7' commits, parent of T inherits all the locks (held
or retained) that 17" has. After that, parent retains the locks in the same

mode as T' held or retained them belore.

e When a top-level transaction commits, it releases all the locks it holds or
retains.

e When a transaction aborts, it releases all the locks it holds or retains. If
any of its ancestors holds or retains any of these locks, it continues to do

50.

In Figure 4.7, if T; retains a WRIT'I5 lock on an object O; and no other
transaction inside the sphere S; (i.c., 15, Ty, 1i and T5,) has any lock on O,

then all the transactions inside S can acquire a READ ovr W RITE lock on
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Iigure 4.7: Control Sphere of T;

O;. It T; acquires a WRITI lock on O, then no other transaction (including
the ones inside the sphere S; in igure 4.8) can acquire a READ or WRITE

lock on O;.

The fetch-object method first checks whether the requested object is in
the lock table. If not, it just requests the object from OpenOODB and re-
turns a pointer to it. If the requested object is in the lock table then nested
transaction concurrency control protocol is put into action. If the lock can be
granted, then a pointer to the object is returned as in the previous case. If the
lock cannot be granted with the requested lock_Lype, then for each transaction
that has a lock on the object that conllicts with the requested lock_type, a
node is inserted to the watl_for_list ol the lock requesting transaction and
the same node is appended to the wailed_by_list of the conllicting transaction.
Additionally the wazit_for_count (i.e., the number of transactions for which the
transaction in concern is waiting for) is incremented for each node appended to
the wait_for_list. Deadlock detection is perlormed for each node appended to
wail_for_list . If no deadlock occurs then the transaction that requested the
lock is suspended using thr_suspend(), otherwise it is aborted. Transactions
can be unblocked using the thr_continue() function provided by the thread
library. Unblocking of a transaction may occur due to the commit or abort of

another transaction. When a transaction is aborted, all its locks ave released,



CHAPTER 4. IMPLEMENTATION OFF NESTED TRANSACTIONS 39

Figure 4.8: Control Sphere of T}

and all the nodes in the waited by list of that transaction are deleted; while
doing the deletions, watt_for_counts ol the corresponding (blocked) transac-
tions are decremented by one. Blocked transactions whose wazit_for_counts
hecome zero, are unblocked, and their lock requests are reconsidered. When a
subtransaction commits, all the locks held or retained by that transaction are
inherited by the parent transaction which may cause some transaction(s) to
he unblocked. Those transactions are identified by checking the wailed by list
of the committing transaction, and decrementing the wail_for_counts of the
transactions which are descendants ol the transaction inheriting the locks. The
transactions whose wail_for_counts hecome zero are unblocked and their lock
requests are reconsidered as in the previous case. A sample pseudo-code for

the processing of lock requests is provided in Appendix A.

4.5 Deadlock Detection

Deadlocks may arise among subtransactions in the same transaction hierarchy
as well as among subtransactions belonging to different transaction hierarchies.
OpenQODB views a transaction hierarchy as one (lat transaction; i.e., it is not

aware of subtransactions. Lock requests made by a subtransaction is treated by
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Figure 4.9: Wait-for-commit graph

OpenOODB as if the top-level transaction made the request. If there is a cy-
cle among subtransactions belonging to different transaction hierarchies, then,
from the point of view of OpenOODB, it mmeans that there is a cycle among the
top-level transactions as well. Therefore, deadlocks that occur among transac-
tions belonging to different transaction hierarchies are resolved by OpenOODB
via EXODUS storage manager. Deadlocks among the transactions belonging
to the same transaction hierarchy are resolved by the new component managing
nested transactions. Wait-for graph data structure is used to detect deadlock
occurrences. Deadlock detection for nested transactions is different from the
one for flat transactions in that, there are some other wait-for relations besides
the wait-for-lock relation. The first wait-lor relation associated with nested
transactions is wait-for-commit; i.e., a parent transaction should wait for all
its children to finish their execution. A wait-for-commit graph is illustrated in
Figure 4.9 for a transaction hierarchy where the top-level transaction spawns
subtransactions 1} and T}, T; spawns subtransactions Ty and T}, and finally 7

spawns subtransaction Th,.

The second wait-for relation for nested transactions is wait-for-retained-
locks. In flat transaction model, when a transaction commits, all the locks it
holds are released, and transactions waiting for one or more ol those locks

can be unblocked immediately provided that they are not waiting for any
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Top-Level Transaction
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Figure 4.10: Wait-for-retained locks graph (before the commit of 77)

other transaction. In nested transaction model, locks held by a subtransac-
tion are not released immediately alter it commits, but they are inherited by
the parent transaction and kept in relain mode. This situation is illustrated

in Figures 4.10 and 4.11.

In Figure 4.10 we see that transaction 7T} holds a write lock on object Oby;
at the time when transaction 7} requests a write-lock on the same object. The
arc labeled as wait-for-held-lock depicts this waiting situation. Following the
commit of transaction 7}, all the locks that belong to Tj are inherited by the
parent transaction, namely 7}, in retain mode. Transaction 7; still have to
wait until the commit of Tk. T; should wait until the first common ancestor of
T and T; inherits the lock on object Obj;, which is the top-level transaction in

this case.

Both wait-for-commit and wait-for-retained-locks should be taken into con-
sideration in addition to the classical wait-for relation, for deadlock detection
in nested transactions. Whenever a sub-transaction is spawned, a node is ap-
pended to the child-list of the parent transaction. The union of those linked
lists is also used as the wait-for-commit graph. When a transaction requests a
lock and blocks, all the transactions that cause this transaction to be blocked

are kept as a linked list (wait-for list) to be used for unblocking the transaction
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Figure 4.11: Wait-for-retained locks graph (after the commit of T})

later. Those lists also represent the wait-for-retained or held locks relationship.
During the commit of a transaction, wait-lor list of the committing transaction

is inherited by its parent.

Deadlock detection is performed before each insertion to a wait-for-graph
using the graph coloring technique. 1l a wait-for arc (13,1}) is going to be
inserted to the wait-for graph, deadlock detection algorithm is started assuming
that the new link is added. Initially all the nodes of the graph are colored
BLACK. Deadlock detection algorithm colors T; as WHITLE, and marks
all the nodes on its way recursively till there are no remaining nodes or a
W HIT I node is reached. Deadlock detection algorithm uses the child and
wait-for lists of the transactions during its traversal. Since all the nodes ave
initially BLACK , a W HIT I node reached means that there is a cycle in the
graph, implying a deadlock situation. Deadlock algorithm recursively restores

the colors of all the nodes it traversed hack to BLACK.

In case of a deadlock situation, we can abort 15, T or any other transaction
in the deadlock cycle. Deciding which transaction to abort is not an casy
task. The simplest solution is to abort 7} (i.e., the transaction that requests
the lock). Another possibility would be to abort the transaction that caused

the lock-requesting transaction to block. Other possibilities for deciding which
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transaction to abort require the usage of some information about transactions
such as the time stamp or the number ol subtransactions. We can choose
the transaction that has the smallest transaction hierarchy, or we can choose
the transaction with the largest timestamp (i.e., the youngest one). As a
future work, these alternative techniques could be implemented and their effects
on the performance could be observed. We have chosen to use the simplest
solution, i.e., to abort T;. T'he pseudo-code of our deadlock detection algorithm

is provided in Appendix A.

4.6 Integration of Our Implementation of Par-

allel Nested Transactions to Sentinel

Our implementation of parallel nested transactions is currently being integrated
into Sentinel [CAM93] which is an Active Database Management System built
on OpenOODB. In Sentinel, rules are treated as objects which means that they
can be created, modified and deleted in the same way as other objects. Sub-
scription mechanism is used to reduce the checking overhead of rules; i.e., when
an object generates an event, during rule exccution, only those rules which have

previously subscribed to the object generating the event are checked.

In Sentinel, there is a rule class and all the rules in the system are instances
of that class. The condition and action parts of a rule are implemented as
methods in that rule class. The rule class is shown in Figure 4.12. The rule class
is a subclass of the noti fiable class which means that it can receive and record
primitive events generated by reactive (i.e., event generating) objects. [Sach
rule has a name, cvent —id, condilion, aclion, mode and ¢nabled. The event-id
denotes the identity of the event object associated with the rule. Condition, and
action are pointers to the condition and action member functions, respectively.
The attribute mode denotes the coupling mode, and enabled indicates whether

the rule is enabled or disabled.

Declaration of the condition and action functions should be modified so that

they can be executed in subtransactions. The modiflied [unction declarations
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class Rule:Notifiable // Rule class made notifiable
{
char *name; // Rule name
Ivent *event-id; //
PMT* *condition, *action; // PMI" is a pointer
// to a member [unction
Coupling mode; // Coupling Mode
int enabled; // Rule Enabled or not

public:
virtual int Enable();
virtual int Disable();
virtual Update(LEvent™ eventid);
virtual int Condition();
virtual int Action();
Rule(Event* eventid, PMF condition, PMF action, Coupling mode);

“Rule();

Figure 4.12: Rule Class of Sentinel

should look like the sample subtransactions provided in Figure 4.6. PFurther-
more, the rule execution component of Sentinel should be modified so that
conditions and actions of rules can be executed in parallel inside the subtrans-

actions.
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Conclusions and Future Work

In this thesis, we described an execution model for active database management
systems (ADBMSs). We used nested transactions in our execution model for
rule execution and covered some aspects of nested transactions like recovery

and concurrency control.

The advantages of our implementation ol nested rule execution over the

previous implementations can be listed as [ollows:

e Previous implementations lor rule execution assume only sibling paral-
lelism. In our implementation we assume both sibling and parent-child

parallelism which i1s the most flexible kind of parallelism.
o We support deferred mode ol execution as well as immediate mode.

e In previous implementations, subtransactions are executed in different
processes. In our system, subtransactions are executed in threads which

are more eflicient than forking other processes.

In case of a deadlock situation, deciding which transaction to abort is an
important issue which may affect the performance of the system. In our system,
we nsed the method that has the simplest implementation; i.e., aborting the
transaction that causes the deadlock to occur. Other heuristics for choosing the
transaction to abort can be implemented and their effects on the performance

can be studied.
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Our nested rule execution module was designed in such a way that it can
easily be ported to other systems as well, besides OpenOODB. As a future
work, our implementation can be ported to different ADBMSs and its benefits

and overheads in rule execution can be investigated.

Implementation of the recovery of nested transactions is left as a future
work. A log based recovery method, ARIES/N'I' [RM89], was proposed for
nested transaction recovery which is an extension of ARIES. Version based
recovery techniques can also be applied which are casier to implement but

have some major drawbacks against log-based recovery techniques [MHL192].

Our implementation of parallel nested transactions is currently being inte-
grated into Sentinel which is an active database management system developed
at the University ol Florida. Following the completion of the integration, we
are planning to investigate the impact ol the parallel nested transaction com-

ponent on the performance of Sentinel.
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Sample Pseudocodes

A.1 Processing Lock Requests

// given the name of the requested object and requested lock type
// process the lock request of the transaction with identifier tid
[unctionprocess_lock request(char x name, LOCKTY Plilock_type, '] Diid)
{
// only one transaction at a time can enter this region
mulex lock(lock_mgr _mute)
// get the address of the object using its name
objplkptr = hash_obj_name(name)
// perform garbage collection on the hold list
collect garbage(obj _blk_plr — hold_lisl)
conflict_found = FALSL
swilch (lock_type)
{
case WRITE [/ in case of exclusive lock
// traverse the hold_list to check for conflicts
[an fo_ptr = obj -blk_ptr — hold_lisl
while(lan foptr # NULL
{

// if the requested object is held by another transaction

17
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if (lanfo_ptr — state = HOLD)

{

}

// if the transaction requesting the lock has already acquired it
if (Iinfoptr — lid = lid and [an fo_ptr — lock_type = W RITY)
{
mutex unlock(lock_mgr_mutex)
return (obj 0lk_plr — addr)
}
clse 1f (Ianfoplr — Lid # tid)
}
if conflict_found = ["ALSE
{
append_towail _for_list(tid, lan fo_ptr — tid,name, lock_type)
con flict_found ="TRUL
}
else // il conflict was not found

append_to_wail _for_list(tid, [in fo_ptr — tid, name, lock Lype)

// state is RETAIN

// if the transaction holding the lock is not an acesstor

// of the requesting transaction

else if (mancestor(tid, linfo_plr — lid)

{

}

if conflict_found = ["ALST

{
append_towail_for_list(tid,lin fo_plr — tid,name, lock typc)
conflict_found =TRULE

}

else // il conllict was found

append_towail_for list(tid, Lin foplr — tid, name, lock_Lype)

[an foptr = lanfoplr — nexl

collect _garbage(obj blk_ptr — hold_list)
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} // end while

// If we reached the end of the list without any conflics

1f conflict_found = FALSE

{
acquire_lock(ted, lock type, oby _blk_plr)
mutex_unlock(lock_mgr_mulex)

}

else [/ conflict is found

{
mulex_unloc(lock_mgr_mute)
// suspend the transaction requesting the lock
Lhr_suspend(tid)
}
case READ [/ in case of shared lock
// traverse the hold_list to check [or conflicts
[anfo_ptr = oby _blk_ptr — hold_lust
while(lan foptr # NULL
{
// if the requested object is held by another transaction
if (lanfo_ptr — state = HOLD) and ({anfopltr — lock lype = WRITE)
{
// if the transaction requesting the lock has already acquired it
of (Ianfo_ptr — lid = lud
{
mutex_unlock(lock_mgr_mutex)
return (obj _blk_plr — addr)

}

else i f conflict_found = I'ALSE
{
append_to_wail_for_list(lid, Lin fo_plr — tid, name, lock type)
conflicl_found =TRUL
}
clse [/ il conflict was not found

append_to_wail _for list(tid, {an fo_plr — tid,name, lock Ltype)



APPENDIX A. SAMPLE PSEUDOCODES 50

}
else if (linfo_plr — state == RIETAIN

and [an fo_ptr — lock_lype = WRITE

and —ancestor(tid, [an fo_plr — lid)

if conflict_found = FALSE
{
append_towait_for list(tid,lin fo_ptr — tid, name, lock_type)
conflict_found = TRUI
}
else [/ if conflict was found
append_to_wail_for_list(tid, | in foptr — tid, name, lock_type)
}
[anfoptr = lanfo_plr — newxl
collect _garbage(obj_blk_ptr — hold_list)
} // end while
// If we reached the end of the list without any conflics
if conflict_found = "ALSL
{
acquire_lock(tid, lock Lype, obj blk_plr)
mautex_unlock(lock mgr_muteca)
}
else [/ conflict is found

{

mautex _unloc(lock_mgr_ mulex)

// suspend the transaction requesting the lock

thr _suspend(lid)

]
// eund case

return(obg blk_ptr — addr)
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A.2 Deadlock Detection

// This function is called for deadlock detection
Jfunction detect _deadlock(startnode, next node)
{

start.node — color = BLACK

result = detect rest(next,ode)

start_node — color = WHITE

return result

// This function is called by the main deadlock detection function
SJunction detect rest(node)
{ hspace™0.2cm
if (node — color = BLACK)
return DIEADLOCK _DETECTIED
else
{
node — color = BLAC'K
// check for the wait-for-commit dependencies
for(tmpl = node — child; tmpl £ NULL; tmpl = lmpl — next)
{
resull = deleel rest(tmpl — child)
if (resull = DEADLOCK _DETECT YD)
{
node — color = WHITLE
return DISADLOCK _DETECTED

// check for the wait-for-lock dependencies
for(tmp2 = node — wait_for_list; tmp2 # NULL; limp2 = lmp2 — nex

{
if (tmp2 — mark = UNMARKED)
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resull = delect rest(tmp2 — tr_ptr)
of (resull = DDEADLOCK _DETECTED)
{

node — color = WHITE

relurn DISADLOCK _DETECTED

)
node — color = WHITI
return NO_DIEADLOCK
!
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