
к 85
Ш Ѳ 6

::íÍ?í;Cí ζ m , .̂ 5 í i | W í^ T i«
»İl'âtA' i» p4 » iW -^>‘ Íi/ » p-‘...<Ufr<r V ^ W km «W ·«' «W M '^V*· a» « a· '•••'WV* >é4 4̂«

Й Р Т М Ш Ш
ΐΐ.® іЦ%ТД ? w

 ̂ - 'ί '· ν .· . -.>··; '. f i il · ίν . 'fc ;p v \:, > ;> > , · * . Л-'Ш.·! •,.i'î» .«· / , т . - . . ; , : г і ; . - , - ,ѵ я 'Ѵ * . ·

'? ‘Jw.U ;· J liwTÜ JvaiJlS'J Í • V'·· ;:^ '

áí;̂¿!Í¿ví.óî í-

>.' ;? ..·. '•(К.ѵ‘ѵ> ‘ '■ г̂. -Ѵ> '?*;V>Ï г к » .'..■-'«i γ \ ■̂?а.ÿï/_ Г; лЧ. ·■··»г: .; ·■». . ·ι*·ϊ*,·3
^ " y ”e l¿ V i « г ^ '^ л л . u' 'а^ '*и . У ^’^ ^ ϊ^ ί · . ΐ ν ΐι·ι·*»..* ·|* <ί 'ч і’ ѵ' ы и , ί ^ ¿ * m . m , >·*'' - . 'л m .· . » «· m , ..Ч .

V s: а - - . · - а і’ч .i'··;.
■ ' і·^ .' · : ^ ч ч V '>.■,'/ν’·‘і ■ - ѴѵѴ*

..г · - - ■ — Л 1аа»и.

·;. « ̂ί:-'Τ^νϊ ?" *

DEVELOPMENT AND EVALUATION OF
INTER-QUERY OPTIMIZATION HEURISTICS

IN DATABASE SYSTEMS

A THESIS

SUBMITTED TO THE DEPARTMENT OF COMPUTER

ENGINEERING AND INFORMATION SCIENCE

AND THE INSTITUTE OF ENGINEERING AND SCIENCE

OF BiLKENT UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTER OF SCIENCE

By

Yigil Kiilaba§

January, 1996

—

larcfnidi,: ia

G2h
^ 6 . 3

■ Ь З
KS5

в о 3 3 7 7 8

I certify that I have read this thesis and that in my opinion it is fully adequate, in scope
and in quality, as a thesis for the degree o f Master o f Science.

Asst. Prof, özgür Ulusoy (Advisor)

I certify that I have read this thesis and that in my opinion it is fully adequate, in scope
and in quality, as a thesis for the degree o f Master o f Science.

Assoc. Prof Cevdet Aykanat

I certify that I have read this thesis and that in my opinion it is fully adequate, in scope
and in quality, as a thesis for the degree o f Master o f Science.

Approved for the Institute o f Engineering and Science:

Prof Mehmet itâray
Director o f the Institute

ABSTRACT

DEVELOPMENT AND EVALUATION OF
INTER-QUERY OPTIMIZATION HEURISTICS

IN DATABASE SYSTEMS

Yiğit Kulabaş
M.S. in Computer Engineering and Infomiation Science

Advisor: Asst. Prof. Özgür Ulusoy
Janiiaiy, 1996

In a multi-user database system multiple queries can be issued by different users at
about the same time. These queries may have some common operations and/or
common relations to process. In our work, we have developed some inter-query
optimization heuristics for improving the performance by exploiting the common
relations within the queries. We have focused mostly on the join operation, with the
build and probe phases. Some of the proposed heuristics are for the build phase, some
for the probe phase, and finally some for the memory flush operation. The
performance of the proposed heuristics is studied using a simple simulation model. We
show that the heuristics can provide significant performance improvements compared
to conventional scheduling methods for different workloads.

Keywords: Inter-query optimization, join operation with build and probe phases,
memory flush operation.

Ill

ÖZET

VERÎTABANI SİSTEMLERİNDE
SORGULARARASI OPTİMİZASYON METODLARININ

GELİŞTİRİLMESİ VE İNCELENMESİ

Yiğit Kıılabaş
Bilgisayar ve Enformatik Mühendisliği Bölümü - Yüksek Lisans

Danışman : Yrd. Doç.Özgür Ulusoy
Oeak 1996

Çok kullanıcılı veri tabanı sistemlerinde, yakın zamanlı olarak birden fazla sorgunun,
değişik kullanıcılar tarafından sisteme yüklenmesi sıkça rastlanan bir durumdur. Bu
sorgular ortak işlem ve/veya verilere sahip olabilirler. Çalışmamızda, bu ortak işlem ya
da verilerin, sorgular tarafından paylaşılması amacıyla bazı sorgulararası en iyileme
(optimizasyon) teknikleri geliştirmiş bulunmaktayız. Bu çalışmalar sırasında daha çok
birleştirme (jo'''') işlemine odaklandık. Birleştirme işleminde ise şekil olarak dağıtım
kodlaması (haslı) tekniğini kullandık. Geliştirilen metodların bir kısmı dağıtım kod
tablolarının oluşturulması, bir kısmı bu tabloların sorgulanması, bir kısmı ise belleğin
verimli olarak kullanılmasını sağlamaktadır. Çalışma kapsamında ayrıca bu metodların
performansları bir benzetim modelinin üzerinde karşılaştırılmıştır. Karşılaştırmalar
sonucunda en çok dikkat çeken nokta ise, geliştirilen bütün tekniklerin, sorguların birer
birer ele alınması tekniğine göre oldukça önemli üstünlükler göstermesi olmuştur.

Anahlar Kelimeler: Sorgulararası en iyileme, birleştirme işlemi, inşa-etme aşaması,
sorgulama aşaması, bellek temizleme aşaması.

IV

ACKNOWLEDGEMENTS

I am very grateful to my advisor Asst, Prof Özgür Ulusoy for his guidance,

suggestions, and encouragement throughout the development of this thesis. I would
like to thank Prof Erol Arkım and Assoc. Prof Cevdet Aykanat for reading and
commenting on the thesis.

Contents

1. Introduction 1
1.1. Overview of Multi-Queiy Environments 1

1.1.1. Intra-Query Parallelism vs. Inter-Queiy Parallelism 2

1. 1. 1. 1. 1 ntra-Query Parallelism 2

1.1.1.1.1. Pipelined Intra-Query Parallelism 2

1.1.1.12. Partitioned Intra-Query Parallelism 3

1.11.2. Inter-Query Parallelism 3

1.1.2. Inter-Queiy Parallelism and Relational Operations 3

1.2. Overview of the Thesis 4
1.3. Related Work 5

2. Inter-Query Optimization
2.1. Which Relation to Build?
2.2. How and When to Probe?
2.3. Which Relation to Flush?

7
8
10
14

3. Algorithms
3.1. Main Algorithm

3.2. Main Outline According to Probe Heuristics
.3.2.1. Immediate Probe

3.2.2. Total Probe

3.2.3. Partial Probe

3.3. Initialization Session
3.4. Build Algorithms

3.4.1. Build by Largest Number of Tuples that will Probe

3.4.2. Highest Number of Relations Interacted with

3.4.3. Smallest Size

18

19

19

19

20
21
22
24

24

26

28

VI

3.5. Probe Phase
3.6. Flush Algorithms

3.6.1. Largest Sized Relation

3.6.2. Flush by Join-Set

3.6.3. Consecutive Flush

29
32
32
35
37

4. Simulation Model 40

5. Performance Results
5.1. Comparison of the Probe Heuristics
5.2. Comparison of the Build Heuristics

43
43
45

6. Conclusion and Future Work 47

7. References 48

VII

List o f Figures

Figure I : Comparison of the Probe Heuristics - Perfonnance 43
Figure 2: Comparison of the Probe/Flush Heuristics - Performance 44
Figure 3; Comparison of the Probe Heuristics - Utilization 45
Figure 4: Comparison of the Flush Heuristics - Utilization 45
Figure 5: Comparison of the Build Heuristics - Perfonnance 46
Figure 6: Comparison of the Build Heuristics - Memoiy Utilization 46

Vlll

List o f Tables

Table I: Simulation Model Parameters
Table 2: CPU costs of Some Operations

40
40

IX

1. Introduction

We start this chapter with a brief introduction to the concepts in Multi-Query
Environments, Query Scheduling Optimization, Intra-Query Parallelism, Inter-Query
Parallelism, and Sharing Relational Operations. Following this general introduction, we
provide a brief overview of the thesis topic, along with the related work and the
general organization of the thesis.

1.1. Overview of Multi-Query Environments

During the last decade, there have been significant enhancements in the performance
of computer systems. The processor speed and the capacity of main memory and
secondary storage devices have steadily increased. Symmetric multiprocessing
technology, clustering technology, and parallel processing technology have
continuously been improved. These enhancements have also enforced improvements in
the database technology. The leading database vendors have developed uniprocessor,
multiprocessor, clustered, and parallel versions of their DBMS’s. These versions have
continuously been enhanced to have better performance.

An important part of the workload for the database systems consists of resource
intensive read-only queries. For this reason, one of the main factors that the
performance depends on, is query scheduling. To optimize the scheduling of queries in
terms of the response time, various algorithms have been developed. These algorithms
mainly focused on intra-query parallelism. In other words, research on query
scheduling has so far concentrated mainly on efficient processing of single queries.

However, an important property of DBMS’s, regardless of whether they are
uniprocesor, multiprocessor, clustered, or parallel systems, in general they are multi
user systems. In a multi-user system, multiple queries can be delivered by different
users at the same time. A multi-user environment leads to “multi-query” executions,
and to optimize query scheduling in such environments, the focus should not be only
on “single-queiy” execution but also on “multi-quei-y” execution.

In a multi-query environment, quite often the same relation is a part of several queries.
When the queries are optimized only by the single-queiy manner, such relations are
processed multiple times, since the queries are scheduled independently. If these
relations could be shared between concurrently executing queries, they would have to
be processed only once.

A multi-query scheduling method can optimize a set of queries together, by identifying
common relations in the set and scheduling them in such a way that the repeated
processing of the common relations is avoided. Therefore, the total execution time o f
queries will decrease.

This thesis is focused on efficient scheduling of “multi-queries”. Several scheduling
algorithms are presented which can be used to take advantage of sharing o f relations
among a set of queries. The aim is to optimize query scheduling in multi-user
environments. The general information about the thesis can be found in Section 1.2.
Before the overview, let us go over the parallelism concepts used in query scheduling.

1.1.1. Intra-Query Parallelism vs. Inter-Query Parallelism

Various queiy scheduling techniques based on parallelising query executions, have
been developed. The focus in these techniques have basically been on the parallel
execution of a single queiy at a time. This type of parallel execution is called “intra
query” parallelism.

1.1.1.1. Intra-Query Parallelism:

This type of parallelism is used in most of the parallel machines, and parallel DBMS’s.
There are two types of intra-query parallelism:

- Pipelined Intra-Queiy Parallelism
- Partitioned Intra-Query Parallelism

1.1.1.1.1. Pipelined Intra-Query Parallelism:

Queries that require multiple relational operations can be parallelised by the “pipeline”
version. In this type of scheduling, the operations are classified on the basis of whether
they are dependent or independent. The dependent operations use the output of the
other operations (e.g., sorts, aggregation).

This type of parallelism benefits in OLCP (On-line Complex Processing) and DSS
(Decision Support Systems) response times and can be used on any type o f multi
processor machines 111.

1.1.1.1.2. Partitioned Intra-Qiiei^ Parallelism:

Any type of quei7 can be parallelised by this method since the parallelism is achieved
by data partitioning. In this type of scheduling, database tables are partitioned and
spread across multiple disks.

This type of parallelism provides a high degree of scalability when searching database
tables, benefits DSS processing of large tables and is only available on parallel (shared-
nothing) machines [1].

1.1.1.2 Inter-Quei7 Parallelism:

This method deals with the scheduling of more than one queiy at a time. In this type of
scheduling, multiple threads are used for execution of each query. Multiple threads
may execute on multiple processors. There is a significant benefit in reducing OLTP
response times.

In the literature, the term “inter-query parallelism” is mostly used to refer to the
“independent” processing of multi-queries as multi-threads. In this thesis, we deal with
the “dependency” of the multi-queries, which is another side of the inter-query
parallelism [1].

1.1.2. Inter-Query Parallelism and Relational Operations

Inter-queiy parallelism can be applied on any type of relational operations. It tries to
achieve the following goal: get the information in the relations into the main memory
and complete the operation as quickly as possible. Therefore, efficient memory
management is one of the most important requirements in query scheduling. Inter
query parallelism can optimize the memory usage by sharing common tables between
different operations o f different queries.

Among all relational operations, the join operation is distinguished by its complexity. It
is the most expensive relational operation in terms of the amount of system resources
required. Many algorithms have been developed to eliminate this complexity; namely
traditional nested loops, hashing techniques, sort-merge techniques, and their mixtures.
All these algorithms have both serial and parallel versions. It has been shown that hash-
based join algorithms outperform the others in most environments. There are also
different versions of the hash join algorithms. One of the most commonly used one is
the hybrid-hash join algorithm. In this thesis our discussions will basically involve this
algorithm.

The hybrid-hash join algorithm executes in two phases, called “Build” and “Probe”. In
the first phase, the smaller relation is scanned and an in-memory hash table is
constructed by hashing each tuple on the join attribute. In the second phase, the outer
relation is scanned and hash values of the tuples are used to probe the hash table to test
for matches. The matched tuples are joined. There is a partial order defined on these
two phases. The probe phase cannot begin until the build phase is completed [2].

Although sharing in multi-query environments is applicable for any type of query
operations, the focus in this thesis will be on the join operation.

1.2. Overview of the Thesis

This thesis presents several scheduling algorithms that can be used to exploit the
sharing of relations for batches of queries.

In a multi-user database system, the queries delivered to the same system, by different
users at about the same time, can include the same relations, operations, or even the
same total query. As an example consider an Airline Database. There can be lots of
agencies, and other users entering exactly the same query: “Flights from New York to
Miami on Dec 27, 1995” at about the same time. Or, think of a similar example, this
time the queries entered about the same time are not exactly the same but they use the
same relations: user-1 “Flights from New York to Miami on Dec 27, 1995”, user-2
“Flights from New York to San Francisco on Dec 27, 1995”.

If the queries delivered within a certain time period are not considered as a batch, the
potential of sharing some operations and relations can not be exploited. This is the
point that shows the importance of inter-quei^ optimization for the performance
enhancements, and resource utilization. However, this topic has been considered in just
a few works as explained in Section 1.3. The significance of inter-query optimization
and the lack of enough research works in this topic have been the basic motivations of
the thesis.

An ideal multi-query scheduling method would optimize a set of queries together and
minimize the total execution time. The conventional multi-query scheduling
corresponds to scheduling queries independently. The scheduler allows the maximum
possible number of queries to run together with no consideration for the sharing of
relations.

The optimum exhaustive sharing algorithm has a huge time complexity: n!.2".m!,
where n is the total number of relations, and m is the numbei· of relations in the
memory. Here n! is the complexity of selecting an ordering of the queries, 2" is the
number of choices to select probe/build relations, and m! is the complexity of
determining the order in which relations are flushed from the memory [3]. Therefore,
using the exhaustive algorithm is not feasible. Heuristic algorithms need to be
developed to provide efficient sharing of relations in a batch of queries. The thesis
provides such heuristics and presents their performance results obtained in a simulation
environment.

For the sake of simplicity, some assumptions have been made in developing and testing
the heuristics. A uniprocessor, multi-user database system has been chosen as the query
execution environment. Due to its large time complexity, the join operation has been
chosen to apply the inter-queiy optimization, although it is applicable to any kind of
operations. For the implementation of the join operation, the Hybrid-Hash Join
Algorithm has been used. All the algorithms have been designed to optimize the
execution time of the build and probe phases of the hybrid hash join, and the memory
flush operation, by exploiting the share of the common relations. All the queries are
assumed to be single-join queries; i.e. each query consists of a join of two relations.

A full queiy optimization will be possible when the intra-query and inter-query
optimization techniques are used together. In this thesis, we ignore the application of
intra-queiy techniques as our focus is on inter-query processing.

The remainder of the thesis is organized as follows. In the second chapter, inter-query
optimization will be discussed. The ideas behind developing the heuristics will be
explained in detail. In the third chapter, the scheduling algorithms based on the
proposed heuristics will be demonstrated. Each algorithm will be explained in detail,
and related examples will be given. The fourth chapter is devoted to the simulation
results. The performance results of the algorithms will be compared in this chapter.
The last chapter concludes the thesis and provides some suggestions for the future
work.

1.3 Related Work

The work on the optimization of queries have mostly been provided for single query
scheduling. The optimization techniques have first begun with the simple, basic queries
|4| and extended to larger and more complex queries [5] [6] [7] [8] [9].

For multi-query scheduling, we noticed that the number o f related works is very few.
One of these works is [10], which examines the effect of different memory allocation
schemes. But this is a very preliminary study that can not answer important scheduling
policy questions. There are some query-language-level optimization research
conducted for multi-query environment [11] [12] [13] [14].

One of the studies that deals with multi-query optimization at the individual query
operator level is the inspiration of this thesis [3]. In this study, the hybrid-hash join
with the build and probe phases, is the operation that is focused on. In this paper, there
are several heuristics proposed for improving the average response time of multiple
queries. Our work considers a similar execution environment and has the same
scheduling goal. We have developed some more heuristics for the build and flush
phases of the join operation. We have also developed different probe heuristics. In [3]
no alternatives are provided for the probe phase.

When developing new techniques for the join operation, we have had an extensive
research on the join optimization [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25]
[26] [27]. Some of these papers deal with different join techniques, some with hashing
details in the join environment, and some with CPU, disk and memory usage o f the
join operation.

2. Inter-Query Optimization

In a set of queries, if several joins involve the same relation, the hash table for this
relation can be shared. Here is a simple set as an example.

JOIN(X,Y), JOIN(X,Z).

For both joins, we have two phases: build the hash table of one of the relations (in
most cases, the small one), probe the hash table with the other relation. Here the
relation to be shared is X, and relations Y and Z will share the hash table o f X to
probe.

The sharing we just considered has two significant impacts on the efficiency o f query
execution. Since the built relation is scanned once, the total execution time is reduced.
(If the two operations were handled separately, hash tables of two relations would have
to be built, and the scan time would be doubled.) Another impact on the performance
is that, since only one table is built, there will be a considerable saving in the memory
usage.

As could easily be noticed, in the case of two queries it is straightforward to determine
which relation should be selected to build and which one to probe. This decision does
not require the involvement of complex algorithms.

Consider another set of queries:

JOIN(X,Y), JOIN(X,Z), JOIN(X,T), JOIN(T,Z), JOIN(T,A), JOIN(Y,Z), JOIN(A,Y)

In this case, the queries involve relation Y 3 times, relation X 3 times, relation Z 3
times, relation T 3 times, and finally relation A 2 times. Which relations should be
built? Relation Y, X, Z, or T? Or even relation A? Let Y be the built relation and X, Z
and A make the probes. After this processing (i.e. the probes to the hash table of
relation Y are finalized), we are left with the requirement to process X 2 times, Z 2
times, T 3 times, and A 1 time. Let T be selected to be built and the probes are made.
We are left with the processing requirements of X and Z 1 time. Is this a good
solution? If Y and T had been built at the same time, and the probes would have
followed them, would the total execution time be shorter? Would Y and T fit into
memory at the same time‘s If T and A together fit into memory, would it be more
efficient to build them both? After T and A are built, we still have to build X, Y, or Z,
but none of them fits into memory; so, which relation should we flush from the
memory? In selecting a relation to build, what criteria need to be considered? Many
more similar questions can be asked. This simple example clearly illustrates the
requirement for the optimization algorithms for the shared relations in processing the
join operations.

8

Three basic questions are involved in inter-query optimization:

- Which relation to build?
- How and when to probe?
- Which relation to flush?

2.1. Which Relation to Build?

There can be many different considerations in detecting the relation to be built. Again,
let us consider an example:

Set o f Queries:

J01N(A,B), J01N(A,C), JOIN(B,C), JOIN(B,D)

with the following sizes

Relation A: 20 pages. Relation B: 40 pages,
Relation C: 10 pages, Relation D: 20 pages.

A number o f heuristics can be considered in determining the built relation:

Heiirislic I - Highest Number o f Relalio/is Inleracled with:

In the example, A and C join with 2 relations, B with 3 relations, while D joins with
only one relation. According to this heuristic, for this example, relation B is selected to
be built.

Phase I
Number o f Relations
Interacted with

Phase 2
Number of Relations
Interacted with

Relation A: 2 - (B , C) probe 1 - (C) build
Relation B: 3 - (A , C , D) build 0
Relation C: 2 - (A, B) probe l - (A) probe
Relation D: 1 - (B) probe 0

When the hash table of relation B is formed, the three relations that B joins, namely A,
C and D can probe the table at the same time. As a result o f these probes, the queries
JOIN(A,B), JOIN(B,C), J01N(B,D) are processed (End o f Phase I). Only the query
JOIN(A,C) remains unprocessed. At this stage (Phase 2), B and D will have the value
0 (i.e., there is no join operation that uses these relations left), while A and C have 1.
One of the relations will be built, the other one will probe and the remaining query,
J01N(A,C) will be processed,

The aim of using this heuristic is to build the relation that will be probed with the
maximum number o f relations. If we assume that each join query is assumed to be
submitted by a different user, by this heuristic, after the build and probe phases, the
highest number of users will get the results for their queries.

Heuristic 2 - Largest Number o f Tuples that 'will Probe[3]:

Let’s define the Weight of a Relation X as the total size of the relations that Relation X
joins with. In the example given above, we have the following weights; A 50 (40+10),
B 50 (20+20+10), C 60 (40+20), and D 40. As the first step, C is chosen to be built
as its weight is larger than the others. If we use Heuristic 2, C will be built as shown
below.

Phase I
Weight

Relation A: 50 - fSize(B) + Size(C), 40+10) probe
Relation B: 50 - (Size(A) + Size(C) + Size(D), 20+10+20) probe
Relation C: 60 - (SizefA) + Size(B), 40+20) build
Relation D: 40 - (Size(B), 40) N/A

A and B will make the probes and the queries J01N(A,C) and JOIN(B,C) will be
processed first. In the second phase, we have:

Relation A
Relation B
Relation C
Relation D

Phase 2
Weight - Heuristic 2

40 - iS ize(B), 40)
40 - (Size(A) + Size(D), 20+20)
0
40 - (Size(B), 40)

Heuristic 1
1 -(B)
2 -(A ,D)
0
1 - (B)

All the joins of C are processed and C has a weight 0, while A, B, and D has the
weight 40. If we apply only Heuristic 2, any of three relations A, B and D is selected to
be built. But, if we also consider Heuristic 7, B will be the one to be built since it
interacts with 2 relations while the others interact with only one. After B is built, the
remaining queries will be processed.

The aim of using this parameter is similar to that o f Heuristic 7, but in this case, the
relative sizes o f relations are also important. There is a subtle memory utilization: the
larger relations are enforced to make probes and leave the memory as soon as possible.
Therefore besides response times, the memoiy utilization is also considered.

10

This heuristic is directly related with the size of the relations. The relation with the
smallest size is selected to build. In the given example the sizes of A, B, C, and D are
respectively 20, 40, 10, and 20. Thus, C will be the built relation. A and B will make
the probes. Then A or D is built. The built one will be probed by B. Finally, the relation
A or D that was not built in the previous step, will be built and be probed by B. Here,
the only performance consideration is the savings in memory utilization.

It is also possible that these three heuristics can be used together. Consider the
following types o f algorithms:

Mixed Algorithms:

Various combinations of heuristics could be considered in scheduling algorithms.
Some examples can be:

weight / size, (Heuristic 2 / Heuristic i)
number of relation probes / size, (Heuristic I / Heuristic 3)
number of relation probes x weight,
c 1 X number of relation probes + c2 x weight + c3 x size

(for some constant cl,c2,c3 values)

Heuristic 3 - Smallest Size:

etc.

Cascaded A Igorithins:

A possible scheduling algorithm can be:

If the weights o f two relations are the same, use the number o f relations heuristic. If
they are also the same, build the small sized relation.

2.2. How and When to Probe?

The hash tables of the built relations are probed by the other relations. But there can
also be different considerations about the probing.

11

The probing can be done immediately after the relation is built. While explaining the
Building Heuristics, this type of probing has been assumed.

Let us consider the same example with a limitation in the memory size:

Set of Queries:

JOIN(A,B), JOIN(A,C), JOIN(B,C), JOIN(B,D)

with the following sizes

Relation A: 20 pages, Relation B: 40 pages,
Relation C: 10 pages. Relation D: 20 pages,

and the memoiy size is 50 pages.

If we use Heuristic 1 for choosing the relation to build, as you could remember the
order of the built relations will be B and A (or C) . If we use Heuristic 4 for probing
after the hash table of B is built, it will be immediately probed by A, C, and D. And as
a result, JOIN(A,B), JOIN(B,C) and JOIN(B,D) will be processed. After probes are
completed, the hash table of B will not be used again, so it is flushed from the
memory. Then, the hash table for A is formed and JOIN(A,C) is processed by probing
the hash table o f A with C.

He mi Stic 4 - 1m mediate Probing:

This type of probing has some advantages as well as some disadvantages. One o f the
advantages arises from the timely response given to some of the users. The user gets
his/her answer immediately after one of the relations in his/her queiy is built. Another
advantage is related to the memory management; the memory contains at most one
hash table and is always available for other operations.

The disadvantage arises from the optimization point of view. For the above case, B is
probed by A, C, and D. After this, the hash table for A is built and is probed by C. If
the hash tables of both A and B were available at the same time, the hash values for C
would be calculated only once and C would probe both tables at the same time. (Here
we assume that the join attributes o f C are the same in both queries.) With Heuristic 4,
we will not be able to take this advantage and the processing time will increase.
Another disadvantage arises again from the user side. It has been mentioned as an
advantage that, some of the users get their results as soon as a hash table related to
their queiy is obtained. But, the owner of the last handled queiy will wait until all the
previous queries are processed.

12

Henri Stic 5 - Probe with No Need for a Flush:

The probing phase can wait until all the relations are built. This can be achieved if the
memory is large enough to contain all the hash tables o f the built relations.

Let us use Heuristic 3 for choosing which relation to build. As you could remember
the order of the relations to build will be C, A and D. And, let us use Heuristic 5 for
probing. C will use 10 pages o f the memory, while A and D use 20 pages each. And as
a result, the memory will be totally occupied. After this, all the probes will be done.

This heuristic is not complete, because most of the time the memory is not large
enough to contain all the hash tables of the built relations. The Heuristics 7, 9 and 10
are alternatives to handle this case, and they all make use of Heuristic 5 for the case
that the memoi7 is large enough to handle all the hash tables. Before discussing those
heuristics, let us focus on another issue:

Heuristic 6 - Jh-obe while Building:

When there are more than one relation built in the memoiy, we can have the following
situation : the relation that will be built next can also be able to probe one or more hash
tables residing in the memory.

Consider again the same example. By using Heuristic 3 for choosing which relation to
build, we will have the order of the built relations as C, A, and D. First C is built. After
that, it is time for A to be built. While building the hash table of A, the hash values of
A can also probe C and finalize JOIN(A,C). If this is not done, following the build
phase o f all relations, the hash values of A will again be computed to probe C.

After A is built, the hash table for D is built. And finally B will probe all the built
relations A, C, and D; and J01N(A,B), .I01N(B,C), JOIN(B,D) are processed.

So far, there was no need for a flush to occur, as it was assumed that the amount of
memory is large enough. Let us have a more complex example for the rest o f
heuristics with flush operation:

Example 2:

JOIN(A,B), JOIN(A,C), J01N(B,C), JOIN(B,D), JOIN(A,E), JOIN(C, E)

with the following sizes

Relation A: 20 pages. Relation B: 40 pages. Relation C: 10 pages.
Relation D: 20 pages. Relation E: 30 pages
Total Memoiy Capacity : 40 pages

13

The probing phase can wait until there is no place in the memory for the hash table o f
the next relation to be built. To build the next relation, we need to flush at least one
hash table of a relation from the memory.

Let us use a cascading algorithm for choosing the order of the relations to build; Apply
Heuristic 7; if the values obtained for some relations are the same, apply Heuristic 2; if
some relations still have the same values for Heuristic 2 , apply Heuristic 3.

We have the following values for each of the relations for the three heuristics:

Heuristic 7 - Partial Probe:

Heuristic 1 Heuristic 2 Heuristic 3
Relation A: 3 - (B, C, E) 80 - (Size(B)+Size(C)+Size(D),40+10+30) 20
Relation B: 3 - (A, C, D) 50 - (Size(A)+Size(C)+Size(D),20+10+20) 40
Relation C: 3 - (A, B, E) 90 - (Size(A)+Size(B)+Size(E), 20+40+30) 10
Relation D: 1 -(B) 40 - (Size(B), 40) 20
Relation E: 2 -(A, C) 30 - (Size(A)+Size(C), 20+10) 30

And the order of relations for being built will be: C, A and D. We have a memory of
40 pages. When C is build, 30 pages of memory is left. The next relation A is 20 pages.
Therefore, we have enough space for A. A will be built using Heuristic 6: it will probe
C while being built and finalize the queiy JOIN(A,C). After A is built, the amount of
left memoiy is 10 pages. When it is time to build D, there is no enough space for this
relation as its size is 20 pages and there is only 10 pages of available memory.
Therefore, we have to flush relations till there is enough space for Relation D. If A is
flushed, the available memory size will increase to 30 pages which is enough for
Relation D. So, let us flush A.

Before flushing A, relations B and E will probe the hash table o f A. Both B and E will
also need to probe the hash table of C. To probe A, the hash values of B and E will be
computed and to probe C at a later time, recalculating these values will only be a waste
o f time. So, the probing of A and C by B and E will be done at the same time. This
can be specified as another heuristic:

Heuristic b - Probe More than one Hash Table: If the probing of different hash tables
at the same time is possible, finalize the probes to avoid recalculating the hash values
at a later time.

By using this heuristic, the queries .101N(A,B), JOIN(B,C), JOIN(A,E), JOIN(C,E)
will be finalized at the same time. After this, A will be flushed and then D will be built.
C can also be flushed since there is no more relations to probe it. As the next step, B
will probe D.

14

HeunsUc 9 - Î ’lush All:

This heuristic works the same as Heuristic 7 until the flush time. When the flush o f a
relation is needed, all the relations in the memory are flushed.

Let the order o f relations for being built be; C, D, and A. We have a memory of 40
pages. When C is built, 30 pages of memory is left. The next relation D is 20 pages.
That is to say we have enough space for D. D will be built, and since there is no join
operation on D and C, Heurisiic 6 is not applicable at this step. After D is built, the
amount of available memory is 10 pages. When it is time to build A, there is no
enough space for this relation as its size is 20 pages. So we have to flush some
relations. By this heuristic all the relations are flushed. Before the flush o f D, it is
probed by B, B probes C at the same time using Heuristic H. Before the flush o f C it is
also probed by A and E. After the flush operations, JOIN(A,C), JOIN(B,C),
JOIN(B,D), JOIN(C,E) queries are completed and the whole memory is available. As
the next step, A is built and it is probed by B and E. As a result, all the queries are
completed.

Let us now consider the sequence of operations that uses the same build order and
performs probing by using Heuristic ~ The workflow is exactly the same until the
need for a flush. According to Heuristic ", flushing only D is enough. When D is
flushed, the available memory size will increase to 30 pages and 20 paged A can fit into
the memory. Before the flush, D is probed by B. B probes C at the same time by
Heuristic 8. The queries J01N(B,C), J01N(B,D) are processed. After the probe of B,
D is flushed. C still remains in the memoiy, since the other probes of C, namely
probing by A and E are not completed. The next step is building relation A. A probes
C during the building phase using Heuristic 6. Then E probes A and C at the same
time {Heuristic 8), and A is also probed by B. All the queries are processed.

Heuristic 9 has a disadvantage over Heuristic ". The disadvantage arises from not
being able to use Heuristic 8. For the above example, using Heuristic 9 causes the hash
values o f E to be processed twice. In veiy complex queiy environments, i.e., real life
examples with hundreds of relations, this re-processing can cause an important add-on
to the query time. Therefore, Heuristic can be expected to perform better than
Heuristic 9.

2.3. Which Relation to Flush?

After deciding which relation to build, the next step is to build the hash table of the
selected relation, if o f course there is enough space in the memory for the hash table. If
there is a memoiy limitation, then some of the relations should be flushed out of the
memoiy.

15

Here emerges another question. If there are more than one relation in the memory,
which relation should we flush? Flushing all the relations in the memory vs. flushing
until there is enough space for the next relation to be built was discussed in Section
2.3. If the second alternative is used, what should be done to detect which relation to
flush? This new issue is also another important criteria related to query optimization.

Let us again use Example 2 with the build criteria used in Heuristic 7. The flow o f the
query scheduling was as follows:

The order o f relations for being built are: C, A and D. We have a memory o f 40
pages. When C is build, 30 pages o f memory is left. The next relation A is 20 pages.
That is to .say we have enough space for A. A will he built as in Heuristic 6: it will

probe C while being built and finalize the query J01N(A,C). After A is built, the
amount o f memory left is 10 pages. When it is time to build D, there is no enough
space fo r this relation with its size o f 20 pages and 10 pages o f available memory.
So, we have to flu.sh relations till there is enough .space fo r Relation D.

Here comes the question: should we flush C or A?

Heuristic 10: Plush the Larger Sized Relation:

Relation A has a size of 20 while C has 10. According to this heuristic A should be
flushed first. When A is flushed, the available memory will increase to 30 pages which
is enough for Relation D. So there is no need to flush C to build D.

Heuristic 11: l-lush According to the .loin Set o f the Next Relation to he Built:

Let us have another example. We have the relations with the following properties:

Number o f relations Join Set
Interacted (Relations Interacted with) Size

Relation A: 4 {B, C, E, G} 20
Relation B: 5 {A, C, D, F, G} 30
Relation C: 2 {A,B} 20
Relation D: 1 iB} 20
Relation E: 1 {A} 20
Relation F: 2 {B,G} 30
Relation G: J (A, B,F} 20

Memoiy Size: 50

16

Let the order of building the relations be : B, A, G.

Let us have the relations A and B in the memory. And it is time to build G. If we use
Heuristic 10, we will flush B. By this way, C and G will probe both A and B. D and F
will probe B. After this, G will be built. Since there is no relation need to be built, the
probes are completed. A will be probed by E, and G will be probed by F.

As you can notice, the hash values of F are computed twice, once for probing B before
its flush, and once for probing G. Instead of flushing B, if we flush A all the hash
values will be completed only once. Before the flush of A, C and G will probe both A
and B. A will also be probed by E. After this, G will be built. Then the probes are
completed and F probes both B and G, and E probes B.

In Heuristic 11 , before selecting the relation to flush, the relations that are in the join
set of the next relation in the build queue, and the relations that are in the join set of
the relations in the memory are compared.

In the example, the next relation to build is G, with the join set {F}. The relations in
the memory are A and B with the join sets of {C, E, G} and {C, D, F, G),
respectively. The intersection o f the join sets of A and G is empty set, while the
intersection of the join sets o f B and G is {F}. Since the number of elements in the
intersection set of A and G, is less then the intersection set of B and G, A will be
flushed out of the memory.

Before using this technique, some investigation should be done. For the above
example, flushing either A or B is enough for G to be built. If we do not make any pre
investigation, and directly use Heuristic 11, there won’t be any advantage. For the
above example, let the join sets be the same but the sizes be different. Let B be 40, A
be 10 and G be 20. Here flushing only A, is not enough for G to be built. But if we
directly use Heuristic 11, A will be flushed and after this since the memory is not
enough for G, B will also be flushed before building G.

Heuristic 12 - Consider also the Next Hatch

While processing the last queries in a batch, the hash tables in the memory can also be
used by the next batch. At the end of the processing of a batch o f queries, the probes
to the in-memory relations will be completed, but the relations will not be flushed from
the memoiy. When it is the time for the next batch, the in-memory relations will be
assumed to be the first built relations.

17

Let us consider the first batch as the above group, we have A and G in the memory as
the final step. Let us assume that without using this heuristic, the build queue o f the
second batch is as follows: B, E, G. But by Heuristic 12, since G and A are already in
the memory, the build queue will change according to the new weights without
considering G and A.

18

3. Algorithms

Before discussing the algorithms, let us first go over some important data structures
used. The queries are formed randomly. Each query is a row in the query-table. An
inter-relation table is formed by using query-table. Before its usage let us give an
example:

Rel-1 R e l-2

R1 R 2 R1 0

R 3 R1 R 2 1 0

R 4 R1 R 3 1 1 0

R 7 R 5 R 4 1 0 0 0

R 5 R 6 R 5 0 0 0 0 0

R 6 R 5 R 6 0 0 0 0 1 0

R 5 R 7 R 7 1 0 0 1 1 0 0

R1 R 7 R1 R 2 R 3 R 4 R 5 R 6 R 7
R 2 R 3

R 7 R 4 inter-relation table

query-table

Inter-relation table is used in all the algorithms. At the initial state, this table shows
whether there is a join operation between two relations. In the example, since there is a
query as JOIN(Rl,R2), the value in the inter-relation table for the cell R1-R2 is 1. In
the same manner, since there is no join between R2-R4, the corresponding value in the
inter-relation table is 0, Join is a commutative operation. For both JOIN(Rl,R2) and
JOIN(R2,Rl), the operation is completed by building either R1 or R2, and probing
with the other one. For this reason, the corresponding value for R1-R2 in the inter
relation table is set by one of the mentioned joins.

Besides these two tables, we have some more tables that are algorithm specific. These
tables are:

size-table: This table shows the size of each relation. It is formed at the initialization
part and is not changed by any algorithm (i.e., it is a static table).

weight-table: This table shows the sum of the sizes of relations that a relation joins
with. It is formed according to the join-table and continuously modified as the joins are
completed.

winiber-of-relalions-table: This table shows the number of relations that a relation
joins with. This table is a dynamic table as weight-table and modified as the queries are
completed.

19

3.1. Main Algorithm

The main algorithm for the join operation is directly related with the probe phase. All
the algorithms start with an initialize session. In this session, the tables are initialized.
Then the queiy set is formed randomly by gethatch. Then the other parts o f the main
algorithm build-criteria, huUd, flush-criteria, probe a n d t a k e place according to
the probe workflow. Let us go into procedural details.

Build -criteria: This part is directly related with the build heuristic.

Build: The main build phase.

Flush-Criteria: This part is directly related with the flush heuristic.

Probe: The main probe phase. As mentioned before, the probe heuristic forms the
main outline. This algorithm only deals with the probe details, not the heuristics.

Flush: The flush job is done in this phase.

The main algorithm without inter-relation optimization is as follows:

initialize
getbatch
fo r each Joit) query

begin
build the hash table o f the first relation
probe the hash table with the hash values o f the other relation
flush the hash table o f the relation from the memory

end

Since there is no optimization, the inter-relation table, weight-table, number-of-
relations-table, build-criteria algorithm, and flush-criteria algorithm are not used. For
each query one of the relations is built, the other relation probes the hash table o f the
built relation, and after the probe the hash table is flushed from the memory.

To see the outline of the optimized version, let us first focus on the probe heuristics.

3.2. Main Outline According to Probe Heuristics

In this part only join heuristics will be discussed. The real join process will be described
in detail in Section 3.5.

3.2.1. Immediate Probe

The probing can be done immediately after the relation is built as discussed in detail
with Heuristic 4. The main algorithm now takes the following form:

20

initialize
gethatch
while there exist join queries to process

begin
select the relation to he built by huUd-criteria
build the hash table o f the relation selected by huHd-criteria
complete all the probes to the relation
flush the relation from the memory

end

The algorithm resembles the algorithm with no inter-query optimization. One of the
relations is built, then this relation is probed immediately and flushed. But here, there is
an important difference, the built relation is probed by more than one relation. And
finally the relation is flushed. This loop continues until all the joins are processed.

The relation to be built is detected by the help o f build-criteria. The details about the
phases build and build-criteria can be found in Section 3.3. The probe phase is
explained in Section 3.4. In this algorithm, since there is only one relation in the
memoiy, there is no need for an algorithm for deciding which relation to flush. So
flush-criteria is not used. The details about the flush procedure can be found in Section
3.5.

3.2.2. Total Probe

This algorithm applies Heuristic A', i.e., when there is need for a flush, all the relations
in the memory are flushed.

The algorithm is as follows:

initialize
getbatch
while there exist Join queries to process

begin
select the relation to he built by build-criteria
while the memory is not totally occupied

and there are still queries left to he processed
begin

build the hash table o f the relation selected by huHt-criteria
select the relation to be built by build-criteria

end
complete all the probes to all the relations in the memory
flush all the relations from the memory

end

21

Here the maximum number of relations are built as long as the memory is available, by
the condition while (he memory is not totally occupied. When the memory is totally
occupied, to continue to the operation, (i.e., to be able to build the other relations), all
o f the relations should be flushed from the memory. The aim o f the flush is to leave
space for the next relation to be built. Before the flush, all the probes that will be made
to the relations are completed. And finally all the relations in the memory are flushed.
As in immediate flush, there is no need for flush-criteria. This loop continues until all
the joins are processed.

3.2.3. Partial Probe

This algorithm applies Heuristic 7, i.e., the probing phase can wait until there is no
space in the memoiy for the hash table of the next relation to be built. To build the next
relation, we need to flush at least one relation from the hash table.

initialize
gethatch
while there exist Join queries to process

begin
select the relation to he built by build-criteria
while the memory is not totally occupied

and there are still queries left to he processed
begin

build the ha.sh table o f the relation selected by built-criteria
select the relation to he built by build-criteria

end
select the relation to be flushed from the memory by flush-criteria
complete all the probes to the selected relation which will he flushed
flush the relation from the memory

end

To select which relation to flush, the function flush-criteria is used. After the relation to
be flushed is detected, all the probes that will be made to this relation are completed.
And finally the relation is flushed. This loop continues until all the joins are processed.

22

3.3. Initialization Session

Before going into details of build, probe and flush operations, let us first focus on two
initialization procedures: initialize and getbatch. Here are the algorithms iox H euristic
2 - B u ild by Largest Num ber o f Tuples that w ill Probe.

Initialize performs the classical initialization job. The algorithm is as follows:

For a ll relations
Set the size o f the relation, in the size-table
Set the weight value o f the relation to 0, in the weight-table

Reset the query-table
Reset a ll the variables

Following the execution of this function the contents of the main tables, namely query-
table, inter-relation table, size-table, and weight-table will be:

Rel-1 R e l-2

0 0 R1 0

0 0 R 2 0 0

0 0 R 3 0 0 0

0 0 R 4 0 0 0 0

0 0 R 5 0 0 0 0 0

0 0 R 6 0 0 0 0 0 0

0 0 R 7 0 0 0 0 0 0 0

0 0 R1 R 2 R 3 R 4 R 5 R 6 R 7

0 0
0 0 inter-relation table

query-table

R elation S ize R elation W e ig h t

R1 37 R1 0

R 2 4 3 R 2 0

R 3 73 R 3 0

R 4 2 4 R 4 0

R 5 40 R 5 0

R 6 4 5 R 6 0

R 7 53 R 7 0

size-table weight-table

23

(iethatch forms the query set to be processed. And the algorithm is as follows:

For each query (number o f queries times)
Form Re!a!ion I o f this query randomly
Form Relation! o f this query randomly
Update the inter-relation table

(Set the value o f inter-relation table entry fo r Relation I-Relation! to 1)
Update the weight-table

(Add the size o f Relation I to the weight value o f Relation!
Add the size o f Relation! to the weight value o f Relation 1)

First the query-table is formed randomly, and the other tables are rebuilt as follows:

={el-1 R e l-2

R 5 R 6 R1 0

R 7 R 5 R 2 0 0

R 3 R 6 R 3 1 0 0

R 3 R 4 R 4 1 1 1 0

R1 R 3 R 5 0 1 0 0 0

R 2 R 5 R 6 1 0 1 0 1 0

R 6 R1 R 7 0 0 0 0 1 1 0

R 6 R 7 R1 R 2 R 3 R 4 R 5 R 6 R 7

R1 R 4
R 4 R 2 inter-relation table

R elation W e ig h t

R1 142

R 2 6 4

R 3 106

R 4 153

R 5 141

R 6 2 0 3

R 7 85

weight-table

query-table

weight of Rl = size(R3) + size(R4) + size(R6) = 73 + 24 + 45 = 142
weight of R2 = size(R4) + size(R5) = 24 + 40 =64
weight of R3 = size(Rl) + size(R4) + size(R6) = 37 + 24 + 45 = 106
weight ofR 4 = size(Rl) + size(R2) + size(R3) = 37 + 43 + 73 = 153
weight of R5 = size(R2) + size(R6) + size(R7) = 43 + 45 + 53 = 141
weight o f R6 = size(Rl) + size(R3) + size(R5) + size(R7) = 37 + 73 + 40 + 53 = 203
weight o f R7 = size(R5) + size(R6) = 40 + 45 = 85

These two procedures are used by all the build/probe and flush algorithms except for
consecutive flush. The related algorithms for this flush type are explained in Section
3.6.3.

24

3.4. Build Algorithms

The build phase of the join operation is composed of two main parts: build-criteria
and build. By build-criteria one of the relations is chosen to be built. Let us begin
with the H euristic 2 - Largest Num ber o f Tuples that w ill Probe.

3.4.1. Build by Largest Number of Tuples that will Probe

In this algorithm, the build-criteria chooses the relation with the largest weight. The
algorithm is as follows:

Choose the relation with the largest weight
i f the chosen relation is RelationO then

Set C om pleted Flag to True
else

Increase the value o f occupied by the size o f the chosen relation
Increase the value ofhashno by 1.

Here occupied is the variable showing the total amount of occupied memory and
hashno is the total number of hash tables built until that time. The relation with the
largest value is chosen by the function largest.

Set the largest weight to 0
Set the relation to bu ild to RelationO
for each relation

i f the weight o f the relation is larger than largest weight
set largest weight to the weight o f the relation
set relation to build, to the i elation

In largest, the relation to build is initially set to 0. At the end of the function if the
highest value is still 0, this means that all the relations have the weight zero, i.e., all the
weight values were modified since all the queries have been processed.

For the above example first Relationb is chosen since it has the largest weight (203),
The hashno becomes 1, and the size of the occupied memory becomes 45, which is the
size of Relationb.

25

Following the selection of a relation (say RelationX), the relation is built by the
following build algorithm.

Set the value o f itUer-relaiiori table for RelationX-RelatioiiX to 2
i f RelationY and RelationX have the value 1 in the inter-relation table

For all relations - RelationY
Change this value to 2
Modify the weight value o f Relation Y by subtracting the size value o f RelationX

else i f RelationY and RelationX have the value 3 in the inter-relation table
Change this value to 4

Set the weight o f RelationX to -hashno
Read the data related to RelationX from the disk
For each tuple

Form the hash value o f the key attribute
Insert the tuple into the hash table
!u)r all relations - RelationZ

if the RelationX has value 4 with RelcttionZ in the inter-relation table
¡)robe the hash table o f RelationZ with the hash value o f the tuple

After the execution of this procedure the inter-relation table is reformed. The value for
RelationX-RelationX in the table becomes 2. Value 2 means that RelationX is built.
Then for all the relations that join with RelationX, the value in the table becomes 3.
Value 3 means that these relations can probe the hash table of RelationX. If the value is
already 3 in the table, this means that the other relation is already in the memory, so
RelationX can probe it. RelationX probes the hash table of the other relation, with its
hash values. This is Probe while building and was explained as Heuristic 6. After this
phase the tables are like:

Rel-1 R e l-2

R 5 R 6 R1 0

R 7 R 5 R 2 0 0

R 3 R 6 R 3 1 0 0

R 3 R 4 R 4 1 1 1 0

R1 R 3 R 5 0 1 0 0 0

R 2 R 5 R 6 3 0 3 0 3 2

R 6 R1 R 7 0 0 0 0 1 3 0

R 6 R 7 R1 R 2 R 3 R 4 R 5 R 6 R 7

R1 R 4

R 4 R 2 inter-relation table

R elation S ize

R1 97
R 2 6 4

R 3 61
R 4 153

R 5 96
R 6 -1

R 7 40

weight-table

query-table

Weight(Rl) 142 - 45 97
Weight(R5) 141 - 45 96
Weight(R6) -hashno -I

Weighl(R3) 106 - 45 61
Weight (IF) S5 - 45 40

26

3.4.2. Highest Number of Relations Interacted with

The algorithms here resemble the algorithms given in Section 3.4.1. In this heuristic,
instead of using the weight table, we use the number-of-relations table. Here are the
modified lines in each algorithm:

initialize:

For all relalioHs

Set the value o f the relation to 0, in the numhcr-of-reJations-tahIc

For the above example

relation R1 R 2 R 3 R 4 R 5 R 6 R 7

relations 0 0 0 0 0 0 0

getbatch:

For each query (number o f queries times)

Update the numher-of-relations-tahle
(Increment the value o f Relation I for the numher-of-relations-table
Increment the value o f Relation! for the numher-o frelations-tahle)

Rel-1 R e l-2

R 5 R 6 R1 0

R 7 R 5 R 2 0 0

R 3 R 6 R 3 1 0 0

R 3 R 4 R 4 1 1 1 0

R1 R 3 R 5 0 1 0 0 0

R 2 R 5 R 6 1 0 1 0 1 0

R 6 R1 R 7 0 0 0 0 1 1 0

R 6 R 7 R1 R 2 R 3 R 4 R 5 R 6 R 7

R1 R 4

R 4 R 2 inter-relation table

relation ^relations
R1 3

R 2 2

R 3 3

R 4 3

R 5 3

R 6 4

R 7 2

Urelations-table

query-table

27

largest:

Set the largest numher-of-relations to 0

fo r every relation - RelationX
if numher-of-relations value o f RelationX is larger than largest number-of-

relations
set largest nuniher-of-relations to the nuniher-of-relations value of

RelationX

For the example Relation6 is chosen as in the first heuristic, since it has the largest
value, 4 as the number o f relations interacted with.

build-criteria:

Choose the relation with the largest number of relations

The value of the occupied memoi^ is 45, the size of Relationb. The parameter hashno
is set to 1.

build:

For all relations - Relation Y
if the RelationY and RelationX have the value I in the inter-relation table

Decrement the value o f RelationY in the #relations-table

Set the value o f RelationX in #relations-table to -hashno

Rel-1 R e l-2

R 5 R 6 R1 0

R 7 R 5 R 2 0 0

R 3 R 6 R 3 1 0 0

R 3 R 4 R 4 1 1 1 0

R1 R 3 R 5 0 1 0 0 0

R 2 R 5 R 6 3 0 3 0 3 2

R 6 R1 R 7 0 0 0 0 1 3 0

R 6 R 7 R1 R 2 R 3 R 4 R 5 R 6 R 7

R1 R 4

R 4 R 2 inter-relation table

R elation #re la tio n s

R1 2

R 2 2

R 3 2

R 4 3

R 5 2

R 6 -1

R 7 1

Hrelations-table

query-table

28

3.4.3. Smallest Size

In this heuristic, there is no change in the initialize, getbatcli, and build functions of
Section 3.3.1. Instead of using largest, we use a function called smallest. By this
function, the relation with the smallest size is chosen. Because o f its similarity, the
algorithm will not be presented here in detail. In this case, both the weight and size
tables are used. After the weights are computed, the smallest sized relation is chosen to
be built. The build operation is followed by the modification of the weight table
exactly as in Section 3.3.1.

For the same example, Relation4 is chosen with its smallest size, 24.

relation R1 R 2 R 3 R 4 R 5 R 6 R 7

size 37 43 73 24 4 0 45 53

And as a result, the tables will be as follows:

Rel-1 R e l-2

R 5 R 6 R1 0

R 7 R 5 R 2 0 0

R 3 R 6 R 3 1 0 0

R 3 R 4 R 4 3 3 3 2
R1 R 3 R 5 0 1 0 0 0

R 2 R 5 R 6 1 0 1 0 1 0

R 6 R1 R 7 0 0 0 0 1 1 0

R 6 R 7 R1 R 2 R 3 R 4 R 5 R 6 R 7

R1 R 4
R 4 R 2 inter-relation tabie

R elation W e ig h t
R1 118
R 2 40
R 3 82
R 4 -1
R 5 141

R 6 2 0 3

R 7 85

weight-table

29

3.5. Probe Phase

As explained in Section 3.I., the main algorithm is directly related with the probe
heuristics. This section explains the probe phase of the main algorithm.

Select the relation to he p ro b e d - R elationX
For a ll relations - R elation Y

i f the value corresponding’ to R elationX an d R ela tionY in inter-relation table is 3
R ead the data o f R ela tionY from the disk
Form the hash value fo r each tuple o f R elationY
For a ll relations - R elationZ (including, RelationX)

i f the value in the inter-relation table fo r R elationY an d R elationZ is 3
Join R elationY an d RelationZ

(probe the hash table o f R elationZ with the values o f R elationY
write the matching, tuples to the output buffer)

l o r a ll relations - R elationZ
Update the inter-relation table by setting, the R elationY-R elationZ to 0

The relation to be probed, namely RelationX is chosen based on the probe heuristic.
Then, first the Relations that RelationX joins with, namely RelationY’s are detected.
This means that RelationY will probe the hash table of RelationX. As mentioned by
Heuristic 8 - Probe More than one Hash Table, if there are more than one hash table in
the memoiy, then probing all tables at the same time is a factor that can increase the
performance. So all the relations that have a join with RelationY and have hash tables
already built in the memoiy, namely RelationZ’s, are probed by RelationY. RelationX
is also a member of RelationZ's.

For the above examples let us consider the two probe heuristic alternatives and
complete the probe phase:

1- Im m ediate probiny,

For this case, let us use the number-of-relations heuristic for build, and use the final
tables of Section 3 .4.2. By using the number-of relations heuristic, Relationb is chosen
and its hash table is built. According to the immediate probing technique, Relationb
should be probed immediately after it has been built.

After the probe, the tables’ contents will be:

30

Rel-1 R e l-2

R 5 R 6 R1 0

R 7 R 5 R 2 0 0

R 3 R 6 R 3 1 0 0

R 3 R 4 R 4 1 1 1 0

R1 R 3 R 5 0 1 0 0 0

R 2 R 5 R 6 0 0 0 0 0 2
R 6 R1 R 7 0 0 0 0 1 0 0
R 6 R 7 R1 R 2 R 3 R 4 R 5 R 6 R 7

R1 R 4
R 4 R 2 inter-relation table

R elation #re la tio n s

R1 2

R 2 2

R 3 2

R 4 3

R 5 2

R 6 -1

R 7 1

#relations-table

query-table

Relation], Relations, Relations and Relation? probe Relationb. And the joins

J01N(R6,RI), JOIN(R3,R6), JOIN(R5,R6), JOrN(R6,R7)

are completed. This procedure continues until all the queries are processed. In the
second turn of the loop, Relation4 is chosen and built. Then Relation I, Relation2, and
Relations will probe Relationd. After these operations, the #relations-table is as
follows:

relation R1 R 2 R 3 R 4 R 5 R 6 R 7

itrelations 1 1 1 -2 2 -1 1

and the completed joins are:

J01NiR],R4), JOIN(R4,R2), JOIN(RS,R4)

As the next step. Relations is built since it has the maximum value in the table. Then
Relation2 and Relation? probe Relations. Then, the table is like.

relation R1 R 2 R 3 R 4 R 5 R 6 R 7

itrelations 1 0 1 -2 -3 -1 0

and the completed joins are:

JOIN(R2,RS), JOIN(R?,RS)

Finally, Relation! is built and probed by Relations. JOIN(RI,RS) is processed. By this
way all the values in the table are less than or equal to 0, and this shows that all the
queries have been processed.

31

2- Ffobe All:

This alternative is more complex than Immediate Probing. In this case, the relations are
built as long as the memory is available, and when there exists no enough memory
space, all the probes to the built relations are completed. Let us use the Maximum
Number o f Tuples tha! will Probe Heuristic for build.

With this heuristic, Relationb is chosen to be built. By building Relationb, the amount
o f occupied memory becomes 45. After this step, the maximum weighed relation
becomes Relation4. Therefore, Relation4 is built. The occupied value is increased to
69, by the size o f Relation4.

Rel-1 R e l-2

R 5 R 6 R1 0
R 7 R 5 R 2 0 0
R 3 R 6 R 3 1 0 0
R 3 R 4 R4 3 3 3 2
R1 R 3 R 5 0 1 0 0 0
R 2 R 5 R 6 3 0 3 0 3 2

R 6 R1 R 7 0 0 0 0 1 3 0
R 6 R 7 R1 R 2 R 3 R4 R 5 R 6 R 7

R1 R 4

R 4 R 2 inter-relation table

R elation S iz e

R1 73
R 2 40
R 3 37
R 4 -2
R 5 96

R 6 -1
R 7 4 0

weight-table

query-table

The next relation to be built is Relation5. But its size is 40 and cannot fit into memory.
So it is the probe time. The queries JOIN(Rl,R4), JOIN(R4,R2), JOIN(R3,R4),
JOIN(R6,Rl), JOIN(R3,R6), JOIN(R5,R6), .IOIN(R6,R7) are processed.

The tables are as follows:

Rel-1 R e l-2

R 5 R 6 R1 0
R 7 R 5 R 2 0 0
R 3 R 6 R 3 1 0 0
R 3 R 4 R4 0 0 0 2
R1 R 3 R 5 0 1 0 0 0
R 2 R 5 R 6 0 0 0 0 0 2
R 6 R1 R 7 0 0 0 0 1 0 0
R 6 R 7 R1 R 2 R 3 R4 R 5 R 6 R 7

R1 R 4

R 4 R 2 inter-relation table

R elation S ize

R1 73
R 2 40
R 3 37
R 4 -2
R 5 96

R 6 -1

R 7 4 0

weight-table

query-table

32

After this operation memory is totally flushed. Relations and Relation 1 are built and
again probed completely. The other queries JOIN(R2,R5), JOIN(R7,R5),
JOIN(Rl,R3) are processed.

In both alternatives there is no need for a criteria in detecting which relation to flush.
But before going into details of H euristic Probe A fter blush, we should first
investigate the flush algorithms.

3.6. Flush Algorithms:

When there is no place for the hash table of the next relation, at least one of the
relations in the memory should be flushed from the memory. Flush operation is
composed of two main parts, flush-criteria and flush. Between these two phases
probe operation is completed.

Before the flush-criteria, let us focus on the flush phase.

M ove the chosen R elationX from the m em ory
D ecrease the occupied value by the size o f R elationX
Set the value o f inter-relation table for RelationX-RelationX to 0
Set com pleted to 0
For a ll relations- R elationY-R elaiionZ

i f the value o f inter-relation table for R elationY-R elationZ is more than 0
increment the value for com pleted

I f com pleted is larger than 0
set the com pleted value to 0

else
set the com pleted value to I

As easily seen, the flush function not only flushes the RelationX , but also detects
whether there are more queries to process by setting the completed value. If completed
is equal to 1 at the end, this means that all the queries have been processed. Now, let us
focus on flush algorithms.

3.6.1. Largest Sized Relation

The procedural description of this heuristic is:

Set R elationX to RelationO
for each relation - Relation Y

i f weight o f R elationY is less than 0 and size o f R elationY is larger than

R elationX
Set R elationX to Relation Y

33

Let us consider the example of Section 3.3 .1., and use weight-table for build, partial
probe for probe, and largest size for flush. In 3.3.1., as the first step, Relationb was the
built relation, so the occupied memory value was 45. After this, we choose Relation4
with the highest weight value. By this operation the total occupied memory becomes
69.

Rel-1

R 5

R 7

R 3

R 3

R1

R 2

R 6

R 6

R1
R 4

R e l-2

R 6

R 5

R 6

R 4

R 3

R 5

R1

R 7

R 4
R 2

R1

R 2

R 3

R4
R 5

R6
R 7

0 R elation W e ig h t
0 0 R1 73
1 0 0 R 2 40
3 3 3 2 R 3 37
0 1 0 0 0 R 4 -2
3 0 3 0 3 2 R 5 9 6

0 0 0 0 1 3 0 R 6 -1
R1 R 2 R 3 R 4 R 5 R6 R 7 R 7 4 0

inter-relation table weight-table

query-table

The next relation to build is Relation5. But since Relations cannot fit into memory, one
of the relations in the memoiy should be flushed. To detect which relation to flush, the
relations with the negative weight values are compared according to their sizes. Here
we have Relation4 and Relationb in the memory. Relationb will be the flushed relation
with its larger size.

Then, by the probe operation the 3 values related to Relationb is selected from the
inter-relation table: Relation 1, Relation3, Relations, and Relation?. For all these
relations, it is detected whether they also join with Relation4 and it is found that
Relation 1 and Relation3 also probe Relation4. So all the related probes are completed,
and then RelationG is flushed from the memory. By this way the queries JOIN(Rl,R4),
JOIN(R6,Rl), J01N(R3,R4), J01N(R3,R6), J01N(RS,R6), JOIN(R6,R7) are
completed.

Rel-1 R e l-2

R5 R6 R1 0

R 7 R 5 R 2 0 0

R3 R6 R 3 1 0 0

R3 R4 R4 0 3 0 2
R1 R 3 R 5 0 1 0 0 0

R 2 R 5 R6 0 0 0 0 0 0

R6 R1 R 7 0 0 0 0 1 0 0

R6 R7 R1 R 2 R 3 R 4 R 5 R6 R 7

R1 R4
R 4 R 2 inter-relation table

R elation W e ig h t

R1 73

R 2 4 0

R 3 37

R 4 -2

R 5 96

R 6 0

R 7 40

weight-table

query-table

34

After the flush, the occupied value is decreased to 24. Now only the hash table of
Relation4 is in the memory. Relations is able to be built. When Relations is built the
occupied value increases to 64, and the tables are like:

Rel-1 R e l-2

R5 R6 R1 0

R 7 R 5 R 2 0 0

R3 R6 R 3 1 0 0

R3 R4 R 4 0 3 0 2
R1 R 3 R 5 0 3 0 0 2

R 2 R 5 R 6 0 0 0 0 0 0

R6 R1 R 7 0 0 0 0 3 0 0

R6 R7 R1 R 2 R 3 R 4 R 5 R 6 R 7

R1 R4
R 4 R 2 inter-relation table

R elation W e ig h t

R1 73

R 2 0

R 3 37

R 4 -2

R 5 -3

R 6 0

R 7 0

weight-table

query-table

The next relation to build is Relation 1, but it cannot fit into the memory. Again one o f
the relations in the memory should be chosen. The relations that are in the memory are
Relation4 and Relations. Since Relations is larger than Relation4, it is the flushed one.

Relations will be probed by Relation2 and Relation?. From these relations Relation2
can also probe the other relation in the memoiy, namely Relation4.

query-table

Rel-1 R e l-2

R5 R6 R1 0

R 7 R 5 R 2 0 0

R3 R6 R 3 1 0 0

R3 R4 R 4 0 0 0 2
R1 R 3 R 5 0 0 0 0 0

R 2 R 5 R 6 0 0 0 0 0 0

R6 R1 R 7 0 0 0 0 0 0 0

R6 R7 R1 R 2 R 3 R 4 R 5 R 6 R 7

R1 R4
R 4 R 2 inter-relation tabie

R elation W e ig h t

R1 73

R 2 0

R 3 37

R 4 -2

R 5 -3

R 6 0

R 7 0

weight-table

As a result queries, .IOIN(R4,R2), JOIN(R2,RS), JOIN(R7,RS) are processed. Finally,
Relation 1 is built and is probed by Relations. JOIN(Rl,R3) is processed by this way.
All the values in the inter-relation table and weight-table turn to 0.

35

3.6.2. Flush by Join-Set

Flush by Join-Set uses Heuristic 12 for the flush operation. When there is a need for
flush we have two main items: relations that are in the memory and a relation that
cannot fit into memory (say, RelationX). This algorithm compares whether the
relations that will probe RelationX, will also probe in-memory relations. For this
algorithm we use a new table named common-table. Here is the algorithm:

set niin-conmioii to 10
set flag to 0
i f RelationX is RelaiionO then

flush all the relations from the memory
else

for all relations - RelationY
set the common-table for RelationY to -I

for all relations - RelationY
i f weight of RelationY is less than 0

set the common-table value for RelationY to 0
if the value in the inter-relation table for RelationX-RelationY is equal to 3

increment the common-table value for RelationY
increment flag

for all relations - RelationZ
if the value in inter-relation table for RelationY-RelaiionZ is equal to 3
and the value in inter-relation table for RelationX-RelationZ is equal to 1

increment the common-table value for RelationY
increment flag

i f flag is larger than 0
for all relations - RelationY
if common-table value for RelationY is larger than 0

and smaller than min-common
set min-common to the common-table value o f RelationY
set the relation to flush, to RelationY

else
flush-largest

Here by the common-table which relation to flush is detected. Let us tuin back to the
example of Section 3.3.1. The tables are as follows:

36

Rel-1 R e l-2

R 5 R 6

R 7 R 5

R 3 R 6

R 3 R 4

R1 R 3

R 2 R 5

R 6 R1

R 6 R 7

R1 R 4
R 4 R 2

R1

R 2

R 3

R 4

R 5

R 6

R 7

0

0 0

1 0 0

3 3 3 2

0 1 0 0 0

3 0 3 0 3 2

0 0 0 0 1 3 0

R1 R 2 R 3 R 4 R 5 R 6 R 7

R elation W e ig h t

R1 73

R 2 4 0

R 3 3 7

R 4 -2

R 5 96

R 6 -1

R 7 4 0

inter-relation table weight-table

query-table
As explained in Section 3,6.1, after Relation6, Relation4 is built. The next relation to
build is Relation5, but it cannot fit into memoiy. So flush by join-set takes place. The
common table is first totally set to -1. The common table is as follows.

relation R1 R 2 R 3 R 4 R 5 R 6 R 7

common -1 -1 -1 -1 -1 -1 -1

Then the loops begin and first the value for Relation4 is changed to 1, since both
Relation4 and Relations join with Relation2. Then the common-value of the other in
memory relation, RelationG is changed to 2. First the value is increased to 1, since we
have JOIN(R5,R6) as a query. Then the value is increased to 2, since both Relations
and Relationb join with Relation?. And the table contents become:

relation R1 R 2 R 3 R 4 R 5 R 6 R 7

common -1 -1 -1 1 -1 2 -1

Relation4 is chosen for flush, since it has the smallest value greater than 0. The probes
to Relation4 are completed. Then, Relations is built. Relations will also probe
Relation6 during the build phase. And the inter-relation table value will turn to 4 as
explained in Section 3.3. By this way, JOIN(R5,R6), JOIN(R3,R4), JOIN(Rl,R4),
JOIN(R4,R2) will be processed.

Rel-1 R e l-2

R 5 R 6 R1 0

R 7 R 5 R 2 0 0

R 3 R 6 R 3 1 0 0

R 3 R 4 R 4 0 0 0 0

R1 R 3 R 5 0 3 0 0 2

R 2 R 5 R 6 3 0 3 0 4 2

R 6 R1 R 7 0 0 0 0 3 3 0

R 6 R 7 R1 R 2 R 3 R 4 R 5 R 6 R 7

R1 R 4

R 4 R 2 inter-relation table

R elation W e ig h t

R1 73

R 2 0

R 3 37

R 4 0

R 5 -3

R 6 -1

R 7 0

weight-table

query-table

37

3.6.3. Consecutive Flush

The consecutive flush uses two sets of query batches and it is fundamentally different
from the other two heuristics. This heuristic is used in processing the last queries in a
batch and has no effect in deciding which relation to flush during the execution. For
this decision, it has to use one of the two alternatives explained above. Most of the
steps related to this algorithm are performed in the initialization and getbatch sessions.
The basic aim is to make use of the in-memory hash tables o f one batch in the
following batch. For this reason, significant modifications are needed in initialization,
getbatch, flush, probe, and build sessions. The difference in the flush session is simply
as follows;

Move the chosen RelationXfrom the memory
Decrease the occupied value hy the size o f RelationX
Set the value o f inter-relation table for RelationX-RelationX to 0
Set completed to 0

changes to:

i f the next relation is not the last relation to build
Move the chosen RelationX from the memory
Decrease the occupied value by the size o f RelationX
Set the value o f inter-relation table for RelationX-RelationX to 0

Set completed to 0

By this way, at the end of a batch we still have relations that have hash tables in the
memory. When it is time to process the next batch, what we do is not initializing the
inter-relation table to all zeros and modify the table according to the new batch
received by getbatch. The getbatch is described below:

Jd)r each query (number o f queries times)
Form Relation! randomly
Form Relation! randomly
i f none o f Relation! and Relation! is in the memory

Set the value o f inter-relation table for Relation !-Relation! to I
Add the size o f Relation I to the weight value o f Relation!
Add the size o f Relation! to the weight value o f Relation!

else i f at least one o f Relation I and Relation! is in the memory
Increment hashno
Set the value o f inter-relation table for Relation 1-Relation! to 3
i f Relation! is in the memory

Set the weight o f Relation ! to -hashno
i f Relation! is in the memory

Set the weight o f Relation! to -hashno

38

After these tables are reformed according to this heuristic, the functions that use these
tables should also be modified. The modification for build function is as follows:

i f the value fo r RelalioriX-RelalionX is equal to 0
do the bu ild jo b

The build job explained in Section 3.3. There is no need for the modification o f the
probe function. Let us turn back to the last phase of the above example which was
nearly finalized in Section 3.6.2. If we continue with the example, the next relation to
build would be Relation 1 and by join-set algorithm the relation to flush would be
Relations. And the tables would be like:

R el-1 R e l-2

R5 R6
R7 R5
R 3 R 6

R3 R4
R1 R 3

R2 R5
R 6 R1

R 6 R 7

R1 R4
R4 R2

query-table

R1

R 2

R 3

R 4

R 5

R 6

R 7

2
0 0

3 0 0

0 0 0 0

0 0 0 0 0

4 0 3 0 0 2

0 0 0 0 0 3 0

R1 R 2 R 3 R 4 R 5 R 6 R 7

inter-relation table

R elation W e ig h t

R1 -4

R 2 0
R 3 0

R 4 0

R 5 0

R 6 -1

R 7 0

weight-table

After this step, since all the relations have weights less than or equal to 0, the probes
will be computed. But by this consecutive flush technique, the relations will not be
flushed from the memory.

Rel-1 R e l-2

R5 R6 R1 2

R7 R5 R 2 0 0

R 3 R 6 R 3 0 0 0

R3 R4 R 4 0 0 0 0

R1 R 3 R 5 0 0 0 0 2

R2 R5 R 6 0 0 0 0 0 0

R6 R1 R 7 0 0 0 0 0 0 0

R 6 R 7 R1 R 2 R 3 R 4 R 5 R 6 R 7

R1 R4
R4 R2 inter-relation table

Rel-1 R e l-2

R1 R 2

R 2 R 3

R 3 R1

R 4 R 5

R 6 R1

R 6 R 7

R 7 R1

R 5 R 4
R 6 R 4
R 7 R 6

query-table next query-table

39

Now, it is time to begin processing the next batch shown with the next query-table
above. Since we have Relation 1 and Relation2 already in the memory, the calculations
are made according to the consecutive flush - getbatch algorithm.

=?el-1 R e l-2

R1 R 2 R1 2

R 2 R 3 R 2 3 0

R 3 R1 R 3 3 1 0

R 4 R 5 R 4 0 0 0 0

R 6 R1 R 5 0 0 0 3 2

R 6 R 7 R 6 3 0 0 1 0 0

R 7 R1 R 7 3 0 0 0 0 1 0

R 5 R 4 R1 R 2 R 3 R 4 R 5 R 6 R 7

R 6 R 4

R 7 R 6 inter-relation table

R elation W e ig h t

R1 -1

R 2 73

R 3 4 3

R 4 4 5
R 5 -2
R 6 77
R 7 4 5

weight-table

query-table

If we did not use this method and go forward as in the beginning, the memory would
be totally available. First Relation 1 would be built, and Relation4 would follow it. But,
by this technique we do not lose time by rebuilding Relation 1 and Relations.

40

4. Simulation Model

This chapter briefly presents the database system model that we used to evaluate the
performance of the algorithms. The model is based on a uniprocessor database system.
It contains two physical resources shared by the queries: CPU and Disk. Table 1
provides the set of parameters used in specifying the configuration o f the database
system. The disk characteristics are those of the Fujitsu Model M2266 (1GB, 5.25”)
disk drive [3].

Number of CPU’s 1 Disk Seek Factor 16 msec
CPU Speed 30 MIPS Disk Rotation Time 16.667 msec
Memory 100 pages Disk Settle Time 2 msec
Page Size 8 KB Disk Transfer Rate 3.09 MB/sec
Tuple Size 400 Bytes
Number of Disks I

Table 1 - Simulation Model Parameters

To evaluate the algorithms fairly, the CPU overhead of performing various operations
during query processing should be taken into account. The CPU costs of the
operations considered in our model are presented in Table 2. The parameter values are
based on instruction counts taken from the Gamma prototype [3].

instruction m s

t-in itselect In itia te S e le c t 2 0 ,0 0 0 0 .6 6 6 6 7

t-in itjo in In itiate Join 4 0 ,0 0 0 1 .3 3 3 3 3

t-te rm -j T e rm in a te Join 1 0 ,0 0 0 0 .3 3 3 3 3

t-te rm -s T e rm in a te S e lec t 5 ,0 0 0 0 .1 6 6 6 7

t-ap p ly A pply a P red icate 100 0 .0 0 3 3 3

t-read T im e to R ea d a T u p le 3 0 0 0 .0 1 0 0 0

t-output T im e to W rite a T u p le into O utput B u ffer 100 0 .0 0 3 3 3

t-p robe P robe H ash T a b le 2 0 0 0 .0 0 6 6 7

t-insert Insert T u p le in H ash T ab le 100 0 .0 0 3 3 3

t-hash H ash T u p le Using Split T ab le 5 0 0 0 .0 1 6 6 7

t-sio S tart an I/O 1 ,0 0 0 0 .0 3 3 3 3

t-cb C opy a Byte into M em o ry 1 0 .0 0 0 0 3

t-ct C opy a T u p le into M em o ry (a tup le = 4 0 0 bytes) 4 0 0 0 .0 1 3 3 3

t-cp C o py a P a g e into M em o ry (a page = 8 KBs) 8 1 9 2 0 .2 7 3 0 7

Table 2 - CPU costs of some operations

41

The time required for processing each join operation can be computed by using the
parameter values. The time for reading a file with N pages can be calculated as follows:

re a d -fi le (x) c p u -tim e d is k -t im e
start an I/O
s ee k th e disk
rotational la tency
fo r all pages o f x (N p a g e s)

0 .0 3 3 3 3

16
1 6 .6 6 7

tran s fe r the page to m em o ry

copy the page into m em o ry 0 .2 7 3 0 7 *N
2 .5 2 8 3 2 *N

t-read fileO = 0 .0 3 3 + 0 .2 7 3 0 7 *N 3 2 .6 6 7 + 2 .5 2 8 3 2 *N

The time required for a build operation can also be computed for a relation o f N pages.
First, the relation to be built is read, then the build operation is performed for every
tuple o f the relation.

b u ild (x) c p u -t im e d is k -t im e

re ad -file (b u ild) t-re ad file () =

for all tup les o f x (N * 8 K B /4 0 0 B)
0 .0 3 3 + 0 .2 7 3 0 7 *N 3 2 .6 6 7 + 2 .5 2 8 3 2 *N

read tup le
com pute h ash -va lu e

copy the page into m em o ry

0 .0 1 ‘ N *8 K B /4 0 0
0 .0 1 6 6 7 *N *8 K B /4 0 0
0 .0 0 3 3 3 *N *8 K B /4 0 0

t-bu ild () = 0 .0 3 3 + 0 .8 8 7 4 7 *N 3 2 .6 6 7 + 2 .5 2 8 3 2 *N

The probe operation is the final step of the join. Again, the relations to probe are first
read, then for eveiy tuple in the relation the processing is completed. In the calculation
of the time associated with the line “if join write to output buffer”, we assume a join
probability of 50%.

probe(x) c p u -tim e d is k -t im e

fo r each re lation to be probed
read -file (p ro b e) 0 .0 3 3 + 0 .2 7 3 0 7 *N 3 2 .6 6 7 + 2 .5 2 8 3 2 *N
for all tup les of x (N * 8 K B /4 0 0 B)

in itia te-jo in 1 .3 3 3 3

read tuple 0 .0 1 *N *8 K B /4 0 0
com pu te h ash -va lu e 0 .0 1 6 6 7 *N *8 K B /4 0 0

probe hash -tab le 0 .0 0 6 6 7 *N *8 K B /4 0 0

if join w rite to output buffer 0 .0 0 1 6 7 *N *8 K B /4 0 0

ferm in ate -jo in 0 .3 3 3 3

t-p ro b e() = 1 .6 9 9 6 + 0 .9 9 0 0 7 *N 3 2 .6 6 7 + 2 .5 2 8 3 2 *N

This probe time is calculated according to the Partial Probe algorithm.

42

The details of the described model were captured in a simulation program. This
program was written in CSIM/C [28], which is a process-oriented simulation language
based on the C programming language.

During the simulation o f the algorithms we made some assumptions about our
workload. The simplified workload consists purely o f single hash-join queries. The
reason of choosing single hash-join queries is for the sake of simplicity. For a more
complex multi-join queiy, there are different execution strategies like bushy, left-deep
and right-deep. Using such queries would not have allowed the separation o f the
effects of sharing from other query scheduling issues. The join selectivity in our queries
is assumed to be 50%. Also, when we talk about two join operations with a common
relation (e.g., JOIN(Rl,R2) and JOIN(Rl,R3)), we assume that the joins are
performed on the same attribute of the common relation (Rl).

These assumptions also took place in [3]. Having the same assumptions enabled us to
compare the performance results of our heuristics against the results of theirs.

43

5. Performance Results

In this section we present the simulation results for the proposed heuristics. The values
used in simulation experiments are given in Table 1. Ten different relations are
considered in the experiments. These relations have a size of 20 - 70 pages, while the
memory is composed of 100 pages. The sizes of the batches differ from 10 to 50. We
calculate the mean performance results for a batch by using 10 consecutive batches.
The query batches are formed randomly.

5.1. Comparison of the Probe Heuristics

We first present the comparative results of the three probe heuristics. Figure 1 shows
the performance of the heuristics for batches of 10, 20, 30, 40, and 50 queries. All of
the probe heuristics below use weight heuristic for build. Partial Probe uses consecutive
flush with join-set as the flush heuristic.

tm

~ Immediate
■
A .

lotal
A “ Partial
A Classical

Figure 1 - Comparison of the Probe Heuristics (Performance)

As you can see in Figure 1, all three techniques perform much better than the classical
method, which uses no inter-queiy optimization. The processing time for the classical
method increases linearly with the increasing number of queries.

As mentioned before, the main outline of the join algorithm is directly related to the
probe phase. For this reason, the classical method is compared to the probe heuristics.
Classical method will not take place in the following figures. Here, all the probe
heuristics use the weight heuristic for the build phase. Immediate probing and Total
probing do not require any flush algorithm. In the figure the flush heuristic used with
the partial probe is the consecutive heuristic, which is better than the other flush
heuristics.

44

To see the performance differences between the probe heuristics better, let us present
the results in a different scale. In Figure 2 you will also be able to find partial probe
with the other flush heuristics.

- Immediate
■Total
- Partial - Consecutive
■ Partial - Join-Set
'Partial - Size

Figure 2 - Comparison of the Probe/Flush Heuristics (Performance)

In [3], the only probe technique proposed is the partial probing. The flush technique
that performed the best in their experiments is the size heuristic. But when we compare
this method with the others, we can observe that even the total probing technique is
better than partial probe with the size flush (except for the batch with 10 queries). In all
batches, the other two flush heuristics have a better performance than both total
probing and partial probe with size flush.

Immediate probing has a worse performance than both total and partial probe
techniques. The worse performance can be explained by the lack of application o f
HeurisUc 8. As you can remember. Heuristic 8 was probing more than one hash table
at the same time. Immediate probing does not use this technique. Partial probe
performs a little bit better than total probe as it applies Heuristic 8 more often.

We also collected some statistics about the resource utilization by the heuristic. The
best CPU utilization is observed with the partial and total probing. The memory
utilization on the other hand is better with partial probing. The disk utilization
corresponds to the read operations for the relations stored on the disk. Higher disk
utilization means more frequent disk I/O, and thus increased response times for the
queries. Therefore, the method that leads to the highest disk utilization (i.e. , classical)
has the worst performance. The details can be found in Figure 3. The heuristics used
with the probe algorithms are the same as the ones in Figure 1. The flush heuristic used
with the partial probe is the size heuristic.

45

classical immediate partial

probe heuristics

total

Figure 3 - Comparison of the Probe Heuristics (Utilization)

The CPU, Disk and Memory utilizations o f all the flush heuristics in the partial probe
environment are provided in Figure 4. The CPU and memory utilizations of join-set
and consecutive are better than the size heuristic. This is because both heuristics use the
in-memory relations more efficiently than the size heuristic. The disk utilizations seem
to be about the same for all three heuristics.

3

Size join-set

Flush Heuristics

consecutive

Figure 4 - Comparison of the Flush Heuristics (Utilization)

5.2. Comparison of the Build Heuristics

Figure 5 provides the comparative performance of different build heuristics. Although
the performances of all three heuristics are close to each other, the ^relations heuristic
provides a little bit better performance than the others in large number of batches. The
better performance can be contributed to the fact that by this heuristic minimum
number of relations is needed to be built.

46

Figure 5 - Comparison of the Build Heuristics (Performance)

The memory utilizations of build heuristics are provided in Figure 6. The CPU and disk
utilizations are nearly the same for all the three heuristics. The #relations heuristic has a
better memoi'y utilization than the others when the number of queries in the batch
increases. Size is the worst method in terms of both the response time and the memory
utilization.

Figure 6 - Comparison of the Build Heuristics (Memory Utilization)

47

6. Conclusion and Future Work

In this thesis, we studied the inter-query optimization problem in multi-query execution
environments. We developed some heuristics for the execution of queries in the form
of a sequence of batches. We specifically focused on the relational join operation. The
proposed heuristics aimed to improve the response time of each of the build, probe,
and flush phases o f the hybrid-hash join algorithm. The proposed heuristics were
implemented on a simple uniprocessor database system model. The comparative
performance of the heuristics was evaluated using this model. The most considerable
result was that even with the worst performing heuristics, the performance is much
better than the classical query execution method that does not make use of any inter
query optimization.

In developing the heuristics and implementing the simulation model, we made some
simplifying assumptions to make our results comparable to others’ and also to
concentrate on certain steps of the query execution. We assumed all the queries consist
of join operations and hybrid-hash method is used in processing joins. As a future
work, queries with multi-operations, queries that have operations other than join, and
join implementation techniques other than the hybrid-hash can be considered.

We studied the heuristics on a uniprocessor database system environment. The
heuristics can also be implemented on multi-processor systems and parallel machines.

We believe that inter-queiy optimization is a veiy important topic that deserves further
investigation. Implementing such optimization techniques in database systems can
provide considerable improvements in the response time performance of the processed
queries.

References

48

[1] Jones, J,, “Parallel Database Concepts Presentation”, AT&T, 1995
[2] Lu, H,, Tan, K., and Shan, M., “Hash-Based Join Algorithms for
Multiprocessor Computers with Shared Memory”, Proceedings of the 16th VLDB
Conf, Brisbane, Australia, 1990
[3] Mehta, M., Soloviev, V., and DeWitt, D., “Batch Scheduling in Parallel
Database Systems”, University of Wisconsin-Madison, 1993
[4] Selinger, P. G. et. al., “Access Path Selection in a Relational Database
Management System”, Proc. ACM, SIGMOD Conf, 1979
[5] Krishnamurthy, R., Boral., H., and C. Zaniolo, “Optimization of Nonrecursive
Queries”, Proceedings 12th VLDB Conf, August 1986
[6] loannidis, Y. and Kang, Y. C., “Randomized Algorithms for Optimizing Large
Join Queries”, Proc. ACM SIGMOD Conf, Atlantic City, NJ, May 1990
[7] Swami. a. and A. Gupta, “Optimization of Large Join Queries”, Proc. ACM
SIGMOD Conf, June 1988
[8] Schneider, D. and D. DeWitt, “Tradeoffs in Processing Complex Join Queries
via Hashing in Multiprocessor Database M achines”, Proc. 16th VLDB Conf,
Melbourne, Australia, Aug. 1990
[9] Chen, Ming-syan et. al., “Scheduling and Processor Allocation for Parallel
Execution o f Multi-Join Queries”, Proc. 8th IEEE Data Engineering Conf, Phoenix,
Az, Feb. 1992
[10] Brown, K., et. al., “Resource Allocation and Scheduling Issues for Mixed
Database Workloads”, Comp. Sc. Tech. Rep. TR 1095, University of Wisconsin-
Madison, July, 1992
[11] Chakravarthy, U. S. et. al., “Semantic Query Optimization in Expert systems
and Database Systems”, Expert Database Systems: Proc. of 1st International
Workshop, Meino Park, California, 1986
[12] Finkelstein, F., “Common Expression Analysis in Database Applications”, Proc.
ACM SIGMOD Conf, Orlando, FL, June 1982
[13] Hall, P.V., “Common Subexpression Identification in General Algebraic
Systems”, Tech. Rep. UKSC 0060, IBM United Kingdom Scientific Centre, Nov.
1974
[14] Sellis, T., “Multiple Query Optimization”, ACM TODS 13(1), March 1988
[15] DeWitt, D., Naughton, J., and Schneider, D., “An Evaluation of Non-Equijoin
Algorithms”, University of Wisconsin, Madison, Feb 1991
[16] Kitsuregawa, M., and Ogawa, Y., “Bucket Spreading Parallel Hash; A New,
Robust, Parallel Hash Join Method for Data Skew in the Super Database Computer”,
Proc. o f the 16th VLDB Conf., 1990
[17] Stathal, A., and Naughton, J., “Using Shared Virtual Memoiy for Parallel Join
Processing”, University o f Wisconsin, Madison, 1993

49

[18] Wilschut, A., and Apers, P,, “Dataflow Queiy Execution in a Parallel Main-
Memory Environment”, University of Twente, The Netherlands, 1993
[19] Pang, H., Carey, M, and Livny, M., “Partially Preemptible Hash Joins”,
SIGMOD Washington, DC, May 1993
[20] Lee, C., and Chang, Z., “Workload Balance and Page Access Scheduling For
Parallel Joins In Shared-Nothing Systems”, 9th Intern. Conf on Data Eng., 1993
[21] Kitsuregawa, M., Nakano, M., and Takagi, M., “Query Execution for Large
Relations on Functional disk System”, 5th Intern. Conf on Data Engr., 1989
[22] Severance, C., Pramanik, S., and Wolberg, P., “Distributed Linear Hashing and
Parallel Projection in Main Memoiy Databases”, Proc. o f 16th VLDB Conf, 1990
[23] Lieuwen, D., Dewitt, D., and Mehta, M., “Parallel Pointer-Based Techniques
for Object-Oriented Databases”, 2nd Intern. Conf on Parallel and Distr. Information
Systems, 1993
[24] Soloviev, V., “A Truncating Algorithm for Processing Band-Join Queries”, 9th
Intern. Conf on Data Eng., 1993
[25] Mikkilineni, K., and Su, S., “An evaluation of Relational Join Algorithms in
Pipelined Queiy Processing Environment”, IEEE, 1988
[26] Bittan, D., Boral, H., Dewitt, D., and Wilkinson., K., “Parallel Algorithms for
the Execution o f Relational Database Operations”, University of Wisconsin, Madison,
1983
[27] Pang, H., Carey, M. and Livny, M., “Managing Memory For Real-Time
Queries”, University o f Wisconsin, Madison, 1994
[28] CSIM User Manual

