G (MW RLLWIRT i

WA pllfirV A W Km V-« «WM"AV*.

MPTM LU W
i®ileera? .

> il fepy b >3, UL LT RV e

29wl :J wTU NadSIT e VAN

i

>'? KV WS VST K» LB y\ WAyl Gl mer

ATYTRlLV i IR U AR Y MAMALAY A NPV wn iA g rmLm, % - m

ta--.c-a iy i
- in R 4y V'seh-im - VvvE

wr ce-m— N arn.

SeNETNE 7'

K85
Ll ©6

DEVELOPMENT AND EVALUATION OF
INTER-QUERY OPTIMIZATION HEURISTICS
IN DATABASE SYSTEMS

A THESIS
SUBMITTED TO THE DEPARTMENT OF COMPUTER
ENGINEERING AND INFORMATION SCIENCE
AND THE INSTITUTE OF ENGINEERING AND SCIENCE
OF BILKENT UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF

MASTER OF SCIENCE

By
Yigit Kulabas

January, 1996

Vgt Kubag

farafindc.; a8 [smighr,

QR
36.9

DY
KRS

1926

033778

I certify that I have read this thesis and that in my opinion it is fully adequate, in scope
and in quality, as a thesis for the degree of Master of Science.

A)‘WL DV VE Y
Asst. Prof. Ozgiir Ulusoy (Advisor)

I certify that I have read this thesis and that in my opinion it is fully adequate, in scope
and in quality, as a thesis for the degree of Master of Science.

Y Lo&/f
7
Assoc. Prof. Cevdet Aykanat

I certify that I have read this thesis and that in my opinion it is fully adequate, in scope
and in quality, as a thesis for the degree of Master of Science.

27 g 7

Prof. ErolArkun

Approved for the Institute of Engineering and Science:

Prof. Mehmet ’ray
Director of the Institute

ABSTRACT

DEVELOPMENT AND EVALUATION OF
INTER-QUERY OPTIMIZATION HEURISTICS
IN DATABASE SYSTEMS

Yigit Kulabas
M.S. in Computer Engineering and Information Science
Advisor: Asst. Prof. Ozgiir Ulusoy
January, 1996

In a multi-user database system multiple queries can be issued by different users at
about the same time. These queries may have some common operations and/or
common relations to process. In our work, we have developed some inter-query
optimization heuristics for improving the performance by exploiting the common
relations within the queries. We have focused mostly on the join operation, with the
build and probe phases. Some of the proposed heuristics are for the build phase, some
for the probe phase, and finally some for the memory flush operation. The
performance of the proposed heuristics s studied using a simple simulation model. We
show that the heuristics can provide significant performance improvements compared
to conventional scheduling methods for different workloads.

Keywords: Inter-query optimization, join operation with build and probe phases,

memory flush operation.

1

OZET

VERITABANI SISTEMLERINDE
SORGULARARASI OPTIMIZASYON METODLARININ
GELISTIRILMESI VE INCELENMESI

Yigit Kulabag
Bilgisayar ve Enformatik Muhendisligi Boliimii - Yiiksek Lisans
Damsman : Yrd. Dog¢.Ozgiir Ulusoy
Ocak 1996

Cok kullanicili veri tabani sistemlerinde, yakin zamanli olarak birden fazla sorgunun,
degisik kullanicilar tarafindan sisteme yiiklenmesi sikga rastlanan bir durumdur. Bu
sorgular ortak islem ve/veya verilere sahip olabilirler. Caligmamizda, bu ortak islem ya
da verilerin, sorgular tarafindan paylasilmasi amaciyla bazi sorgulararasi en iyileme
(optimizasyon) teknikleri gelistirmig bulunmaktayiz. Bu ¢aligmalar sirasinda daha gok
birlestirme (join) islemine odaklandik. Birlestirme isleminde ise sekil olarak dagitim
kodlamasi (hash) teknigini kullandik. Gelistirilen metodlarin bir kismi dagitim kod
tablolarinin olugturulmas:, bir kismi bu tablolarin sorgulanmasi, bir kismi ise bellegin
verimli olarak kullanilmasini saglamaktadir. Calisma kapsaminda ayrica bu metodlarin
performanslart bir benzetim modelinin Gzerinde kargilastinlmigtir. Kargilagtirmalar
sonucunda en ¢ok dikkat ¢eken nokta ise, geligtirilen butiin tekniklerin, sorgularin birer
birer ele alinmasi teknigine gore oldukga 6nemli ustiinliikler géstermesi olmugtur.

Anahtar Kelimeler: Sorgulararast en iylleme, birlestirme islemi, inga-etme agamasi,
sorgulama asamasi, bellek temizleme asamasi.

ACKNOWLEDGEMENTS

I am very grateful to my advisor Asst. Prof Ozgiir Ulusoy for his guidance,
suggestions, and encouragement throughout the development of this thesis. I would
like to thank Prof. Erol Arkun and Assoc. Prof Cevdet Aykanat for reading and

commenting on the thesis.

Contents

1. Introduction
1.1. Overview of Multi-Query Environments
1.1.1. Intra-Query Parallelism vs. Inter-Query Parallelism
1.1.1.1. Intra-Query Parallelism
[.1.1.1.1. Pipelined Intra-Query Parallelism
I.1.1.1.2. Partitioned Intra-Query Parallelism
1.1.1.2. Inter-Query Parallelism
1.1.2. Inter-Query Parallelism and Relational Operations
1.2. Overview of the Thesis
1.3. Related Work

2. Inter-Query Optimization
2.1. Which Relation to Build?
2.2. How and When to Probe?
2.3. Which Relation to Flush?

3. Algorithms
3.1. Main Algorithm
3.2. Main Outline According to Probe Heuristics
3.2.1. Immediate Probe
3.2.2. Total Probe
3.2.3. Partial Probe
3.3. Initialization Session

3.4. Build Algorithms
3.4.1. Build by Largest Number of Tuples that will Probe

3.4.2. Highest Number of Relations Interacted with

3.4.3. Smallest Size

vi

WD B LW LW W NN N -

~

10
14

18
19
19
19

TS T [E T O T NG N NS W N6
0 AN B KO —

3.5. Probe Phase

3.6. Flush Algorithms
3.6.1. Largest Sized Relation
3.6.2. Flush by Join-Set

3.6.3. Consecutive Flush
4. Simulation Model

5. Performance Results
5.1. Comparison of the Probe Heuristics
5.2. Comparison of the Build Heuristics

6. Conclusion and Future Work

7. References

Vil

40

43

43

45

47

48

List of Figures

Figure 1: Comparison of the Probe Heuristics - Performance
Figure 2: Comparison of the Probe/Flush Heuristics - Performance
Figure 3: Comparison of the Probe Heuristics - Utilization

Figure 4: Comparison of the Flush Heuristics - Utilization

Figure 5: Comparison of the Build Heuristics - Performance

Figure 6: Comparison of the Build Heuristics - Memory Utilization

Vi

43
44
45
45
46
46

List of Tables

Table 1: Simulation Model Parameters
Table 2: CPU costs of Some Operations

40
40

1. Introduction

We start this chapter with a brief introduction to the concepts in Multi-Query
Environments, Query Scheduling Optimization, Intra-Query Parallelism, Inter-Query
Parallelism, and Sharing Relational Operations. Following this general introduction, we
provide a brief overview of the thesis topic, along with the related work and the
general organization of the thesis.

I.1. Overview of Multi-Query Environments

During the last decade, there have been significant enhancements in the performance
of computer systems. The processor speed and the capacity of main memory and
secondary storage devices have steadily increased. Symmetric multiprocessing
technology, clustering technology, and parallel processing technology have
continuously been improved. These enhancements have also enforced improvements in
the database technology. The leading database vendors have developed uniprocessor,
multiprocessor, clustered, and parallel versions of their DBMS’s. These versions have
continuously been enhanced to have better performance.

An important part of the workload for the database systems consists of resource-
intensive read-only queries. For this reason, one of the main factors that the
performance depends on, is query scheduling. To optimize the scheduling of queries in
terms of the response time, various algorithms have been developed. These algorithms
mainly focused on intra-query parallelism. In other words, research on query
scheduling has so far concentrated mainly on efficient processing of single queries.

However, an important property of DBMS’s, regardless of whether they are
uniprocesor, multiprocessor, clustered, or parallel systems, in general they are multi-
user systems. In a multi-user system, multiple queries can be delivered by different
users at the same time. A multi-user environment leads to “multi-query” executions,
and to optimize query scheduling in such environments, the focus should not be only
on “single-query” execution but also on “multi-query” execution.

In a multi-query environment, quite often the same relation is a part of several queries.
When the queries are optimized only by the single-query manner, such relations are
processed multiple times, since the queries are scheduled independently. If these
relations could be shared between concurrently executing queries, they would have to
be processed only once.

A multi-query scheduling method can optimize a set of queries together, by identifying
common relations in the set and scheduling them in such a way that the repeated
processing of the common relations 1s avoided. Therefore, the total execution time of

queries will decrease.

This thesis is focused on efficient scheduling of “multi-queries”. Several scheduling
algorithms are presented which can be used to take advantage of sharing of relations
among a set of queries. The aim 1s to optimize query scheduling in multi-user
environments. The general information about the thesis can be found in Section 1.2.
Before the overview, let us go over the parallelism concepts used in query scheduling.

1.1.1. Intra-Query Parallelism vs. Inter-Query Parallelism

Various query scheduling techniques based on parallelising query executions, have
been developed. The focus in these techniques have basically been on the parallel
execution of a single query at a time. This type of parallel execution is called “intra-

query” parallelism.

1.1.1.1. Intra-Query Parallelism:

This type of parallelism is used in most of the parallel machines, and parallel DBMS’s.
There are two types of intra-query parallelism:

- Pipelined Intra-Query Parallelism
- Partitioned Intra-Query Parallelism

1.1.1.L.1. Pipelined Intra-Query Parallelism:

Queries that require multiple relational operations can be parallelised by the “pipeline”
version. In this type of scheduling, the operations are classified on the basis of whether
they are dependent or independent. The dependent operations use the output of the

other operations (e.g., sorts, aggregation).

This type of parallelism benefits in OLCP (On-line Complex Processing) and DSS
(Decision Support Systems) response times and can be used on any type of multi-
processor machmes | 1].

1.1.1.1.2. Partitioned Intra-Query Parallelism:

Any type of query can be parallelised by this method since the parallelism is achieved
by data partitioning. In this type of scheduling, database tables are partitioned and
spread across multiple disks.

This type of parallelism provides a high degree of scalability when searching database
tables, benefits DSS processing of large tables and is only available on parallel (shared-

nothing) machines [1].

1.1.1.2 Inter-Query Parallelism:

This method deals with the scheduling of more than one query at a time. In this type of
scheduling, multiple threads are used for execution of each query. Multiple threads
may execute on multiple processors. There is a significant benefit in reducing OLTP

response times.

In the literature, the term “inter-query parallelism™ is mostly used to refer to the
“independent” processing of multi-queries as multi-threads. In this thesis, we deal with
the “dependency” of the multi-queries, which is another side of the inter-query

parallelism [1].

1.1.2. Inter-Query Parallelism and Relational Operations

Inter-query parallelism can be applied on any type of relational operations. It tries to
achieve the following goal: get the information in the relations into the main memory
and complete the operation as quickly as possible. Therefore, efficient memory
management is one of the most important requirements in query scheduling. Inter-
query parallelism can optimize the memory usage by sharing common tables between

different operations of different queries.

Among all relational operations, the join operation is distinguished by its complexity. It
is the most expensive relational operation in terms of the amount of system resources
required. Many algorithms have been developed to eliminate this complexity; namely
traditional nested loops, hashing techniques, sort-merge techniques, and their mixtures.
All these algorithms have both serial and parallel versions. It has been shown that hash-
based join algorithms outperform the others in most environments. There are also
different versions of the hash join algorithms. One of the most commonly used one is
the hybrid-hash join algorithm. In this thesis our discussions will basically involve this

algorithm.

4

The hybrid-hash join algorithm executes in two phases, called “Build” and “Probe”. In
the first phase, the smaller relation is scanned and an in-memory hash table is
constructed by hashing each tuple on the join attribute. In the second phase, the outer
relation is scanned and hash values of the tuples are used to probe the hash table to test
for matches. The matched tuples are joined. There is a partial order defined on these
two phases. The probe phase cannot begin until the build phase 1s completed [2].

Although sharing in multi-query environments s applicable for any type of query
operations, the focus in this thesis will be on the join operation.

1.2. Overview of the Thesis

This thesis presents several scheduling algorithms that can be used to exploit the
sharing of relations for batches of queries.

In a multi-user database system, the queries delivered to the same system, by different
users at about the same time, can include the same relations, operations, or even the
same total query. As an example consider an Airline Database. There can be lots of
agencies, and other users entering exactly the same query: “Flights from New York to
Miami on Dec 27, 19957 at about the same time. Or, think of a similar example, this
time the queries entered about the same time are not exactly the same but they use the
same relations: user-1 “Flights from New York to Miami on Dec 27, 1995, user-2
“Flights from New York to San Francisco on Dec 27, 1995”.

If the queries delivered within a certain time period are not considered as a batch, the
potential of sharing some operations and relations can not be exploited. This 1s the
point that shows the importance of inter-query optimization for the performance
enhancements, and resource utilization. However, this topic has been considered in just
a few works as explained in Section 1.3. The significance of inter-query optimization
and the lack of enough research works in this topic have been the basic motivations of

the thesis.

An ideal multi-query scheduling method would optimize a set of queries together and
minimize the total execution time. The conventional multi-query scheduling
corresponds to scheduling queries independently. The scheduler allows the maximum
possible number of queries to run together with no consideration for the sharing of

relations.

1

The optimum exhaustive sharing algorithm has a huge time complexity: n!.2".m!,
where n is the total number of relations, and m i1s the number of relations in the
memory. Here n! is the complexity of selecting an ordering of the queries, 2" is the
number of choices to select probe/build relations, and m! is the complexity of
determining the order in which relations are flushed from the memory [3]. Therefore,
using the exhaustive algorithm is not feasible. Heuristic algorithms need to be
developed to provide efficient sharing of relations in a batch of queries. The thesis
provides such heuristics and presents their performance results obtained in a simulation
environment.

For the sake of simplicity, some assumptions have been made in developing and testing
the heuristics. A uniprocessor, multi-user database system has been chosen as the query
execution environment. Due to its large time complexity, the join operation has been
chosen to apply the inter-query optimization, although it is applicable to any kind of
operations. For the implementation of the join operation, the Hybrid-Hash Join
Algorithm has been used. All the algorithms have been designed to optimize the
execution time of the build and probe phases of the hybrid hash join, and the memory
flush operation, by exploiting the share of the common relations. All the queries are
assumed to be single-join queries; 1.e. each query consists of a join of two relations.

A full query optimization will be possible when the intra-query and inter-query
optimization techniques are used together. In this thesis, we ignore the application of
intra-query techniques as our focus 1s on inter-query processing.

The remainder of the thesis is organized as follows. In the second chapter, inter-query
optimization will be discussed. The ideas behind developing the heuristics will be
explained in detail. In the third chapter, the scheduling algorithms based on the
proposed heuristics will be demonstrated. Each algorithm will be explained in detail,
and related examples will be given. The fourth chapter is devoted to the simulation
results. The performance results of the algorithms will be compared in this chapter.
The last chapter concludes the thesis and provides some suggestions for the future

work.
1.3 Related Work
The work on the optimization of queries have mostly been provided for single query

scheduling. The optimization techniques have first begun with the simple, basic queries
|4] and extended to larger and more complex queries [5] [6] [7] [8] [9].

For multi-query scheduling, we noticed that the number of related works is very few.
One of these works is [10], which examines the effect of different memory allocation
schemes. But this is a very preliminary study that can not answer important scheduling
policy questions. There are some query-language-level optimization research
conducted for multi-query environment [11] [12] [13] [14].

One of the studies that deals with multi-query optimization at the individual query
operator level is the inspiration of this thesis [3]. In this study, the hybrid-hash join
with the build and probe phases, is the operation that is focused on. In this paper, there
are several heuristics proposed for improving the average response time of multiple
queries. Our work considers a similar execution environment and has the same
scheduling goal. We have developed some more heuristics for the build and flush
phases of the join operation. We have also developed different probe heuristics. In [3]
no alternatives are provided for the probe phase.

When developing new techniques for the join operation, we have had an extensive
research on the join optimization [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25]
[26] [27]. Some of these papers deal with different join techniques, some with hashing
details in the join environment, and some with CPU, disk and memory usage of the

join operation.

2. Inter-Query Optimization

In a set of queries, if several joins involve the same relation, the hash table for this
relation can be shared. Here is a simple set as an example:

JOIN(X,Y), JOIN(X,Z).

For both joins, we have two phases: build the hash table of one of the relations (in
most cases, the small one), probe the hash table with the other relation. Here the
relation to be shared 1s X, and relations Y and Z will share the hash table of X to

probe.

The sharing we just considered has two significant impacts on the efficiency of query
execution. Since the built relation 1s scanned once, the total execution time is reduced.
(If the two operations were handled separately, hash tables of two relations would have
to be built, and the scan time would be doubled.) Another impact on the performance
is that, since only one table is built, there will be a considerable saving in the memory

usage.

As could easily be noticed, in the case of two queries it is straightforward to determine
which relation should be selected to build and which one to probe. This decision does
not require the involvement of complex algorithms.

Consider another set of queries:
JOIN(X,Y), JOIN(X,Z), JOIN(X,T), JOIN(T,Z), JOIN(T,A), JOIN(Y,Z), JOIN(A,Y)

In this case, the queries involve relation Y 3 times, relation X 3 times, relation Z 3
times, relation T 3 times, and finally relation A 2 times. Which relations should be
built? Relation Y, X, Z, or T? Or even relation A? Let Y be the built relation and X, Z
and A make the probes. After this processing (i.e. the probes to the hash table of
relation Y are finalized), we are left with the requirement to process X 2 times, Z 2
times, T 3 times, and A | time. Let T be selected to be built and the probes are made.
We are left with the processing requirements of X and Z 1 time. Is this a good
solution? If Y and T had been built at the same time, and the probes would have
followed them, would the total execution time be shorter? Would Y and T fit into
memory at the same time? If T and A together fit into memory, would it be more
efficient to build them both? After T and A are built, we still have to build X, Y, or Z,
but none of them fits into memory; so, which relation should we flush from the
memory? In selecting a relation to build, what criteria need to be considered? Many
more similar questions can be asked. This simple example clearly illustrates the
requirement for the optimization algorithms for the shared relations in processing the

join operations.

Three basic questions are involved in inter-query optimization:
- Which relation to build?

- How and when to probe?
- Which relation to flush?

2.1. Which Relation to Build?

There can be many different considerations in detecting the relation to be built. Again,
let us consider an example:

Set of Queries:
JOIN(A,B), JOIN(A,C), JOIN(B.C), JOIN(B,D)
with the following sizes

Relation A: 20 pages, Relation B: 40 pages,
Relation C: 10 pages, Relation D: 20 pages.

A number of heunstics can be considered in determining the built relation:
Heuristic | - Highest Number of Relations Interacted with:

In the example, A and C join with 2 relations, B with 3 relations, while D joins with
only one relation. According to this heuristic, for this example, relation B is selected to

be built.

Phase 1 Phase 2
Number of Relations Number of Relations
Interacted with Interacted with
Relation A: 2-(B.,C) probe 1-(C) build
Relation B: 3-(A,C,D) build 0
Relation C: 2-(A ' B) probe 1-(A) probe
Relation D: 1-(B) probe 0

When the hash table of relation B is formed, the three relations that B joins, namely A,
C and D can probe the table at the same time. As a result of these probes, the queries
JOIN(A,B), JOIN(B,C), JOIN(B,D) are processed (/snd of Phase [). Only the query
JOIN(A,C) remains unprocessed. At this stage (Phase 2), B and D will have the value
0 (i.e., there is no join operation that uses these relations left), while A and C have 1.
One of the relations will be built, the other one will probe and the remaining query,

JOIN(A,C) will be processed.

The aim of using this heuristic is to build the relation that will be probed with the
maximum number of relations. If we assume that each join quéfy is assumed to be
submitted by a different user, by this heuristic, after the build and probe phases, the
highest number of users will get the results for their queries.

Heuristic 2 - Largest Number of Tuples that will Probe[3]:

Let’s define the Weight of a Relation X as the total size of the relations that Relation X
joins with. In the example given above, we have the following weights: A 50 (40+10),
B 50 (20+20+10), C 60 (40+20), and D 40. As the first step, C is chosen to be built
as its weight is larger than the others. If we use Hewristic 2, C will be built as shown

below.

Phase 1

Weight
Relation A: 50 - (Size(B) + Size(C), 40+10) probe
Relation B: 50 - (Size(A) + Size(C) + Size(D), 20+10+20) probe
Relation C: 60 - (Size(A) + Size(B), 40+20) build
Relation D: 40 - (Size(B), 40) N/A

A and B will make the probes and the queries JOIN(A,C) and JOIN(B,C) will be
processed first. In the second phase, we have:

Phase 2

Weight - Heuristic 2 Heuristic 1
Relation A: 40 - (S1ze(B) , 40) I -(B)
Relation B: 40 - (Size(A) + Size(D), 20+20) 2-(AD)
Relation C: 0 0
Relation D: 40 - (Size(B), 40) 1 -(B)

All the joins of C are processed and C has a weight 0, while A, B, and D has the
weight 40. If we apply only Heuristic 2, any of three relations A, B and D is selected to
be built. But, if we also consider Heuristic 1, B will be the one to be built since it
interacts with 2 relations while the others interact with only one. After B is built, the
remaining queries will be processed.

The aim of using this parameter is similar to that of Heuristic 1, but in this case, the
relative sizes of relations are also important. There is a subtle memory utilization: the
larger relations are enforced to make probes and leave the memory as soon as possible.
Therefore besides response times, the memory utilization is also considered.

10

Heuristic 3 - Smallest Size:

This heuristic is directly related with the size of the relations. The relation with the
smallest size is selected to build. In the given example the sizes of A, B, C, and D are
respectively 20, 40, 10, and 20. Thus, C will be the built relation. A and B will make
the probes. Then A or D is built. The built one will be probed by B. Finally, the relation
A or D that was not built in the previous step, will be built and be probed by B. Here,
the only performance consideration is the savings in memory utilization.

It is also possible that these three heuristics can be used together. Consider the
following types of algorithms:

Mixed Algorithins:

Various combinations of heuristics could be considered in scheduling algorithms.
Some examples can be:

weight / size, (Heuristic 2/ Heunristic 3)

number of relation probes / size, (Heuristic 1/ Heuristic 3)

number of relation probes x weight,

¢l x number of relation probes + ¢2 x weight + ¢3 x size
(for some constant cl,c2.¢3 values)

etc.
Cascaded Algorithms:
A possible scheduling algorithm can be:

If the weights of two relations are the same, use the number of relations heuristic. If
they are also the same, build the small sized relation.

2.2. How and When to Probe?

The hash tables of the built relations are probed by the other relations. But there can
also be different considerations about the probing.

11

Heuristic 4 - Immediate Probing:

The probing can be done immediately after the relation is built. While explaining the
Building Heuristics, this type of probing has been assumed.

Let us consider the same example with a limitation in the memory size:
Set of Querties:
JOIN(A.B), JOIN(A,C), JOIN(B,C), JOIN(B,D)
with the following sizes

Relation A: 20 pages, Relation B: 40 pages,
Relation C: 10 pages, Relation D: 20 pages,

and the memory size is 50 pages.

If we use Heuristic 1 for choosing the relation to build, as you could remember the
order of the built relations will be B and A (or C) . If we use Hewristic 4 for probing
after the hash table of B is built, it will be immediately probed by A, C, and D. And as
a result, JOIN(A,B), JOIN(B,C) and JOIN(B,D) will be processed. After probes are
completed, the hash table of B will not be used again, so it is flushed from the
memory. Then, the hash table for A is formed and JOIN(A,C) is processed by probing

the hash table of A with C.

This type of probing has some advantages as well as some disadvantages. One of the
advantages arises from the timely response given to some of the users. The user gets
his/her answer immediately after one of the relations in his/her query is built. Another
advantage is related to the memory management; the memory contains at most one
hash table and is always available for other operations.

The disadvantage arises from the optimization point of view. For the above case, B is
probed by A, C, and D. After this, the hash table for A is built and is probed by C. If
the hash tables of both A and B were available at the same time, the hash values for C
would be calculated only once and C would probe both tables at the same time. (Here
we assume that the join attributes of C are the same in both queries.) With Heuristic 4,
we will not be able to take this advantage and the processing time will increase.
Another disadvantage arises again from the user side. It has been mentioned as an
advantage that, some of the users get their results as soon as a hash table related to
their query is obtained. But, the owner of the last handled query will wait until all the
previous queries are processed.

12

Heuristic 5 - Probe with No Need for a Flush:

The probing phase can wait until all the relations are built. This can be achieved if the
memory is large enough to contain all the hash tables of the built relations.

Let us use Heuristic 3 for choosing which relation to build. As you could remember
the order of the relations to build will be C, A and D. And, let us use Heuristic 5 for
probing. C will use 10 pages of the memory, while A and D use 20 pages each. And as
a result, the memory will be totally occupied. After this, all the probes will be done.

This heuristic is not complete, because most of the time the memory is not large
enough to contain all the hash tables of the built relations. The Hewristics 7, 9 and 10
are alternatives to handle this case, and they all make use of Heuristic 5 for the case
that the memory is large enough to handle all the hash tables. Before discussing those
heuristics, let us focus on another issue:

Heuristic 6 - Probe while Building:

When there are more than one relation built in the memory, we can have the following
situation : the relation that will be built next can also be able to probe one or more hash

tables residing in the memory.

Consider again the same example. By using Heuristic 3 for choosing which relation to
build, we will have the order of the built relations as C, A, and D. First C is built. After
that, it is time for A to be built. While building the hash table of A, the hash values of
A can also probe C and finalize JOIN(A,C). If this is not done, following the build
phase of all relations, the hash values of A will again be computed to probe C.

After A is built, the hash table for D is built. And finally B will probe all the built
relations A, C, and D; and JOIN(A,B), JOIN(B,C), JOIN(B,D) are processed.

So far, there was no need for a flush to occur, as it was assumed that the amount of
memory is large enough. Let us have a more complex example for the rest of

heuristics with flush operation:
Example 2:
JOIN(A,B), JOIN(A,C), JOIN(B,C), JOIN(B.D), JOIN(A,E), JOIN(C, E)
with the following sizes
Relation A: 20 pages, Relation B: 40 pages, Relation C: 10 pages,

Relation D: 20 pages, Relation E: 30 pages
Total Memory Capacity : 40 pages

13

Heuristic 7 - Partial Probe:

The probing phase can wait until there is no place in the memory for the hash table of
the next relation to be built. To build the next relation, we need to flush at least one
hash table of a relation from the memory.

Let us use a cascading algorithm for choosing the order of the relations to build: Apply
Heuristic 1; if the values obtained for some relations are the same, apply Heuristic 2; if

some relations still have the same values for Hewristic 2 | apply Heuristic 3.

We have the following values for each of the relations for the three heuristics:

Heuristic 1 Heuristic 2 Heuristic 3
Relation A: 3-(B,C,E) 80 - (Size(B)+Size(C)+Size(D),40+10+30) 20
Relation B: 3 -(A, C,D) 50 - (Size(A)+Size(C)+Size(D),20+10+20) 40
Relation C: 3 - (A, B, E) 90 - (Size(A)+Size(B)+Size(E), 20+40+30) 10
Relation D: | -(B) 40 - (Size(B), 40) 20
Relation E: 2 -(A, C) 30 - (Size(A)+Size(C), 20+10) 30

And the order of relations for being built will be: C, A and D. We have a memory of
40 pages. When C is build, 30 pages of memory is left. The next relation A is 20 pages.
Therefore, we have enough space for A. A will be built using Heuristic 6: it will probe
C while being built and finalize the query JOIN(A,C). After A is built, the amount of
left memory is 10 pages. When 1t 1s time to build D, there is no enough space for this
relation as its size is 20 pages and there 1s only 10 pages of available memory.
Therefore, we have to flush relations till there is enough space for Relation D. If A is
flushed, the available memory size will increase to 30 pages which is enough for

Relation D. So, let us flush A.

Before flushing A, relations B and E will probe the hash table of A. Both B and E will
also need to probe the hash table of C. To probe A, the hash values of B and E will be
computed and to probe C at a later time, recalculating these values will only be a waste
of time. So, the probing of A and C by B and E will be done at the same time. This

can be specified as another heuristic:

Heuristic 8 - Probe More than one Hash Table: 1f the probing of different hash tables
at the same time 1s possible, finalize the probes to avoid recalculating the hash values

at a later time.

By using this heuristic, the queries JOIN(A,B), JOIN(B,C), JOIN(A,E), JOIN(C,E)
will be finalized at the same time. After this, A will be flushed and then D will be built.
C can also be flushed since there is no more relations to probe it. As the next step, B

will probe D.

14

Heuristic 9 - Flush All:

This heuristic works the same as Hewristic 7 until the flush time. When the flush of a
relation is needed, all the relations in the memory are flushed.

Let the order of relations for being built be: C, D, and A. We have a memory of 40
pages. When C is built, 30 pages of memory is left. The next relation D is 20 pages.
That is to say we have enough space for D. D will be built, and since there is no join
operation on D and C, Heuristic 6 is not applicable at this step. After D is built, the
amount of available memory is 10 pages. When it is time to build A, there is no
enough space for this relation as its size is 20 pages. So we have to flush some
relations. By this heuristic all the relations are flushed. Before the flush of D, it is
probed by B. B probes C at the same time using Heuristic 8. Before the flush of C it is
also probed by A and E. After the flush operations, JOIN(A,C), JOIN(B,C),
JOIN(B,D), JOIN(C,E) queries are completed and the whole memory is available. As
the next step, A is built and it is probed by B and E. As a result, all the queries are

completed.

Let us now consider the sequence of operations that uses the same build order and
performs probing by using Heuristic = The workflow is exactly the same until the
need for a flush. According to Hewristic 7, flushing only D is enough. When D is
flushed, the available memory size will increase to 30 pages and 20 paged A can fit into
the memory. Before the flush, D is probed by B. B probes C at the same time by
Heuristic 8. The queries JOIN(B,C), JOIN(B,D) are processed. After the probe of B,
D is flushed. C still remains in the memory, since the other probes of C, namely
probing by A and E are not completed. The next step is building relation A. A probes
C during the building phase using Hewristic 6. Then E probes A and C at the same
time (Heuristic 8), and A is also probed by B. All the queries are processed.

Heuristic 9 has a disadvantage over Heuristic ~. The disadvantage arises from not
being able to use Heuristic 8. For the above example, using Heuristic 9 causes the hash
values of E to be processed twice. In very complex query environments, i.e., real life
examples with hundreds of relations, this re-processing can cause an important add-on
to the query time. Therefore, Heuristic 7 can be expected to perform better than

Heuristic 9.

2.3. Which Relation to Flush?

After deciding which relation to build, the next step is to build the hash table of the
selected relation, if of course there is enough space in the memory for the hash table. If
there is a memory limitation, then some of the relations should be flushed out of the

memory.

15

Here emerges another question. If there are more than one relation in the memory,
which relation should we flush? Flushing all the relations in the memory vs. flushing
until there is enough space for the next relation to be built was discussed in Section
2.3. If the second alternative is used, what should be done to detect which relation to
flush? This new 1ssue is also another important criteria related to query optimization.

Let us again use Example 2 with the build criteria used in Heuristic 7. The flow of the
query scheduling was as follows:

The order of relations for being built are: C, A and D. We have a memory of 40
pages. When Cis build, 30 pages of memory is left. The next relation A is 20 pages.
That is to say we have enough space for A. A will be buill as in Heuristic 6: it will
probe C while being built and finalize the query JOIN(A,C). After A is built, the
amount of memory left is 10 pages. When it is time to build D, there is no enough
space for this relation with its size of 20 pages and 10 pages of available memory.
So, we have to flush relations Gll there is enough space for Relation D.

Here comes the question: should we flush C or A?

Heuristic 10: Flush the Larger Sized Relation:

Relation A has a size of 20 while C has 10. According to this heuristic A should be
flushed first. When A is flushed, the available memory will increase to 30 pages which
is enough for Relation D. So there i1s no need to flush C to build D.

Heuristic 11: FFlush According to the Join Set of the Next Relation 1o be Built:

Let us have another example. We have the relations with the following properties:

Number of relations Join Set

Interacted (Relations Interacted with) Size
Relation A: 4 {B,C, E, G} 20
Relation B: 5 {A,C,D,F, G} 30
Relation C: 2 {A, B} 20
Relation D: ! (B} 20
Relation E: i {A} 20
Relation F: 2 (B, G} 30
Relation G: 3 {A, B, F} 20

Memory Size: 50

16

Let the order of building the relations be : B, A, G.

Let us have the relations A and B in the memory. And it is time to build G. If we use
Heuristic 10, we will flush B. By this way, C and G will probe both A and B. D and F
will probe B. After this, G will be built. Since there is no relation need to be built, the
probes are completed. A will be probed by E, and G will be probed by F.

As you can notice, the hash values of F are computed twice, once for probing B before
its flush, and once for probing G. Instead of flushing B, if we flush A all the hash
values will be completed only once. Before the flush of A, C and G will probe both A
and B. A will also be probed by E. After this, G will be built. Then the probes are
completed and F probes both B and G, and E probes B.

In Heuristic 11 , before selecting the relation to flush, the relations that are in the join
set of the next relation in the build queue, and the relations that are in the join set of
the relations in the memory are compared.

In the example, the next relation to build 1s G, with the join set {F}. The relations in
the memory are A and B with the join sets of {C, E, G} and {C, D, F, G},
respectively. The intersection of the jom sets of A and G is empty set, while the
intersection of the join sets of B and G is {F}. Since the number of elements in the
intersection set of A and G, is less then the intersection set of B and G, A will be

flushed out of the memory.

Before using this technique, some investigation should be done. For the above
example, flushing either A or B is enough for G to be built. If we do not make any pre-
investigation, and directly use Heuristic 11, there won’t be any advantage. For the
above example, let the join sets be the same but the sizes be different. Let B be 40, A
be 10 and G be 20. Here flushing only A, is not enough for G to be built. But if we
directly use Heuristic 11, A will be flushed and after this since the memory is not
enough for G, B will also be flushed before building G.

Heuristic 12 - Consider also the Next Baich

While processing the last queries in a batch, the hash tables in the memory can also be
used by the next batch. At the end of the processing of a batch of queries, the probes
to the in-memory relations will be completed, but the relations will not be flushed from
the memory. When it is the time for the next batch, the in-memory relations will be
assumed to be the first built relations.

17

Let us consider the first batch as the above group, we have A and G in the memory as
the final step. Let us assume that without using this heuristic, the build queue of the
second batch is as follows: B, E, G. But by Hewristic 12, since G and A are already in
the memory, the build queue will change according to the new weights without

considering G and A.

18

3. Algorithms

Before discussing the algorithms, let us first go over some important data structures
used. The queries are formed randomly. Each query is a row in the query-table. An
inter-relation table 1s formed by using query-table. Before its usage let us give an
example: |

Rel-1 | Rel-2

R1 R2 R1] o0

R3 R1 R2 | 1 0

R4 R1 R3 | 1 1 0

R7 R5 R4 | 1 0 0 0

R5 R6 R5| 0O 0 0 0 0

R6 R5 R6 | O 0 0 0 1 0

R5 | R7 R7|1]JoJo 1] 1]o0]0]
R1 R7 R1T R2 R3 R4 R5 R6 R7
R2 R3

R7 R4 inter-relation table
query-table

Inter-relation table i1s used in all the algorithms. At the initial state, this table shows
whether there is a join operation between two relations. In the example, since there is a
query as JOIN(R1,R2), the value in the inter-relation table for the cell RI-R2 is 1. In
the same manner, since there is no join between R2-R4, the corresponding value in the
inter-relation table is 0. Join is a commutative operation. For both JOIN(R1,R2) and
JOIN(R2,R1), the operation is completed by building either R1 or R2, and probing
with the other one. For this reason, the corresponding value for R1-R2 in the inter-
relation table is set by one of the mentioned joins.

Besides these two tables, we have some more tables that are algorithm specific. These
tables are:

size-table: This table shows the size of each relation. It 1s formed at the initialization
part and is not changed by any algorithm (i.e., it is a static table).

weight-table: This table shows the sum of the sizes of relations that a relation joins
with. It is formed according to the join-table and continuously modified as the joins are

completed.

number-of-relations-table: This table shows the number of relations that a relation
joins with. This table is a dynamic table as weight-table and modified as the queries are

completed.

19

3.1. Main Algorithm

The main algorithm for the join operation is directly related with the probe phase. All
the algorithms start with an initialize session. In this session, the tables are initialized.
Then the query set is formed randomly by getbatch. Then the other parts of the main
algorithm build-criteria, build, flush-criteria, probe and flush take place according to
the probe workflow. Let us go into procedural details.

Build-criteria: This part is directly related with the build heuristic.

Build: The main build phase.
Flush-Criteria: This part is directly related with the flush heuristic.

Probe: The main probe phase. As mentioned before, the probe heuristic forms the
main outline. This algorithm only deals with the probe details, not the heuristics.

Flush: The flush job is done in this phase.

The main algorithm without inter-relation optimization is as follows:

initialize
gethatch
Jfor each join query
begin
build the hash table of the first relation
probe the hash table with the hash values of the other relation
flush the hash table of the relation from the memory

end

Since there is no optimization, the inter-relation table, weight-table, number-of-
relations-table, build-criteria algorithm, and flush-criteria algorithm are not used. For
each query one of the relations is built, the other relation probes the hash table of the
built relation, and after the probe the hash table is flushed from the memory.

To see the outline of the optimized version, let us first focus on the probe heuristics.

3.2. Main Outline According to Probe Heuristics

In this part only join heuristics will be discussed. The real join process will be described
in detail in Section 3.5.

3.2.1. Immediate Probe

The probing can be done immediately after the relation 1s built as discussed in detail
with Hewuristic 4. The main algorithm now takes the following form:

20

initialize
gethatch
while there exist join queries o process
begin
select the relation to be built by build-criteria
build the hash table of the relation selected by build-criteria
complete all the probes 1o the relation
flush the relation from the memory
end

The algorithm resembles the algorithm with no inter-query optimization. One of the
relations is built, then this relation is probed immediately and flushed. But here, there is
an important difference, the built relation is probed by more than one relation. And
finally the relation is flushed. This loop continues unti] all the joins are processed.

The relation to be built 1s detected by the help of build-criteria. The details about the
phases build and build-criteria can be found in Section 3.3. The probe phase is
explained in Section 3.4. In this algorithm, since there is only one relation in the
memory, there is no need for an algorithm for deciding which relation to flush. So
flush-criteria is not used. The details about the flush procedure can be found in Section

3.5,
3.2.2. Total Probe

This algorithm apphes Heuristic 8, 1.e., when there is need for a flush, all the relations

in the memory are flushed.

The algorithm is as follows:

initialize
gethatch
while there exist join queries 10 process
begin
select the relation to be built by build-criteria
while the memory is not totally occupicd
and there are still queries lefi to be processed
begin
build the hash table of the relation selected by built-criteria
select the relation to be built by build-criteria
end
complete all the probes to all the relations in the memory
flush all the relations from the memory

end

21

Here the maximum number of relations are built as long as the memory is available, by
the condition while the memory is not totally occupied. When the memory is totally
occupied, to continue to the operation, (i.e., to be able to build the other relations), all
of the relations should be flushed from the memory. The aim of the flush is to leave
space for the next relation to be built. Before the flush, all the probes that will be made
to the relations are completed. And finally all the relations in the memory are flushed.
As in immediate flush, there is no need for flush-criteria. This loop continues until all
the joins are processed.

3.2.3. Partial Probe

This algorithm applies Hewristic 7, i.e., the probing phase can wait until there is no
space in the memory for the hash table of the next relation to be built. To build the next
relation, we need to flush at least one relation from the hash table.

initialize
getbatch
while there exist join queries 10 procesy
begin
select the relation to be built by build-criteria
while the memory is not totally occupied
and there are still queries left 10 be processed
begin
build the hash table of the relation selected by built-criteria
select the relation to be built by build-criteria
end
select the relation to be flushed from the memory by flush-criteria
complete all the probes 1o the selected relation which will be flushed
flush the relation from the memory

end

To select which relation to flush, the function flush-criteria is used. After the relation to
be flushed is detected, all the probes that will be made to this relation are completed.
And finally the relation is flushed. This loop continues until all the joins are processed.

3.3. Initialization Session

22

Before going into details of build, probe and flush operations, let us first focus on two
initialization procedures: initialize and getbatch. Here are the algorithms for Heuristic
2 - Build by Largest Number of Tuples that will Probe.

Initialize performs the classical initialization job. The algorithm is as follows:

For all relations

Set the size of the relation, in the size-table

Set the weight value of the relation (o 0, in the weight-table
Reset the query-table
Reset all the variables

Following the execution of this function the contents of the main tables, namely query-
table, inter-relation table, size-table, and weight-table will be:

Rel-1 |Rel-2
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

query-table

Relation | Size
R1 37
R2 43
R3 73
R4 24
R5 40
R6 45
R7 53

size-table

R1
R2
R3
R4
R5
R6
R7

0
ojo

ofofo

ofofo]o
oJoJofojo
ocJojofofo]o0
ojojJoJoJo]o]o|
R1 R2 R3 R4 R5 R6 R7

inter-relation table

Relation| Weight

R1 0
R2
R3
R4
R5
R6
R7

OO O OO0

weight-tahle

Getbatch forms the query set to be processed. And the algorithm is as follows:

[or each query (number of queries times)
Form Relationl of this query randomly
Form Relation2 of this query randomly

Update the inter-relation table

(Set the value of inter-relation table entry for Relationl-Relation2 to 1)
Update the weight-table
(Add the size of Relationl to the weight value of Relation2
Adld the size of Relation? to the weight value of Relationl)

23

First the query-table is formed randomly, and the other tables are rebuilt as follows:

Rel-1 | Rel-2
R5 R6
R7 R5
R3 R6
R3 R4
R1 R3
R2 R5
R6 R1
R6 R7
R1 R4
R4 R2

query-table

R1
R2
R3
R4
R5
R6
R7

0
0] 0

1 {00

11]1]o
o/]1]o]o]o

1o 1]o]1]0
oloJo o[1][1]0]
R1T R2 R3 R4 R5 R6 R7

inter-relation table

weight of R1 = size(R3) + size(R4) + s1ze(R6) = 73 + 24 + 45 = 142
weight of R2 = size(R4) + size(R5) = 24 + 40 = 64
weight of R3 = size(R1) + size(R4) + size(R6) = 37 + 24 + 45 = 106
weight of R4 = size(R1) + size(R2) + size(R3) =37 +43 + 73 = 153
weight of RS = size(R2) + size(R06) + size(R7) = 43 + 45 + 53 = 141
weight of R6 = size(R1) + size(R3) + size(R5) + size(R7) = 37 + 73 + 40 + 53 = 203
weight of R7 = size(R5) + size(R6) =40 + 45 = 85

Relation | Weight
R1 142
R2 64
R3 106
R4 153
RS 141
R6 203
R7 85

weight-table

These two procedures are used by all the build/probe and flush algorithms except for
consecutive flush. The related algorithms for this flush type are explained in Section

3.63.

24

3.4. Build Algorithms

The build phase of the join operation is composed of two main parts: build-criteria
and build. By build-criteria one of the relations is chosen to be built. Let us begin
with the Heuristic 2 - Largest Number of Tuples that will Probe.

3.4.1. Build by Largest Number of Tuples that will Probe

In this algorithm, the build-criteria chooses the relation with the largest weight. The
algorithm is as follows:

Choose the relation with the largest weight

if the chosen relation is Relation0 then
Set Completed Flag 1o True

else
Increase the value of occupied by the size of the chosen relation
Increase the value of hashno by 1.

Here occupied 1s the variable showing the total amount of occupied memory and
hashno 1s the total number of hash tables built until that time. The relation with the
largest value is chosen by the function largest.

Set the largest weight 10 0
Set the relation to build to Relation0
Jor each relation
if the weight of the relation is larger than largest weight
set largest weight to the weight of the relation
set relation (o build, to the relation

In largest, the relation to build is initially set to 0. At the end of the function if the
highest value is still 0, this means that all the relations have the weight zero, i.e., all the
weight values were modified since all the queries have been processed.

For the above example first Relation6 is chosen since it has the largest weight (203).
The hashno becomes 1, and the size of the occupied memory becomes 45, which is the

size of Relationo.

25

Following the selection of a relation (say RelationX), the relation is built by the
following build algorithm.

Set the value of inter-relation table for RelationX-RelationX to 2
if RelationY and RelationX have the value 1 in the inter-relation table
For all relations - RelationY
Change this value to 3
Modify the weight value of RelationY by subtracting the size value of RelationX
else if RelationY and RelationX have the value 3 in the inter-relation table
Change this value to 4
Set the weight of RelationX to -hashno
Read the data related (o RelationX from the disk
For each tuple
Form the hash value of the key attribute
Insert the tuple into the hash table
lor all relations - RelationZ
if the RelationX has value 4 with RelationZ in the inter-relation table
probe the hash table of RelationZ with the hash value of the tuple

After the execution of this procedure the inter-relation table is reformed. The value for
RelationX-RelationX m the table becomes 2. Value 2 means that RelationX is built.
Then for all the relations that join with RelationX, the value in the table becomes 3.
Value 3 means that these relations can probe the hash table of RelationX. If the value is
already 3 in the table, this means that the other relation is already in the memory, so
RelationX can probe it. RelationX probes the hash table of the other relation, with its
hash values. This is Probe while building and was explained as Heuwristic 6. After this

phase the tables are like:

Rel-1 | Rel-2

R5 R6 R1}{ 0 Relation| Size
R7 | RS R2| O 0 R1 97
R3 R6 R3 1 0 0 R2 64
R3 | R4 R4 | 1 1 1 0 R3 61
R1 R3 RS| O 1 0 0 0 R4 153
R2 | R5 R6 | 3 0 3 0 3 2 R5 96
R6 | R1 R7{o|o|o]o]1]3]0|] R6 -1
R6 | R7 Rt R2 R3 R4 R5 R6 R7 R7 40
R1 R4

R4 R2 inter-relation table weight-table
query-table

Weight(RI) 142 -45 97 Weight(R3) 106 -45 61
Weight(R35) 141 -45 96 Weight(R7) 85-45 40
Weight(R6) -hashno -1

26

3.4.2. Highest Number of Relations Interacted with

The algorithms here resemble the algorithms given in Section 3.4.1. In this heuristic,
instead of using the weight table, we use the number-of-relations table. Here are the
modified lines in each algorithm:

initialize:
For all relations

Set the value of the relation 10 0, in the number-of-relations-table

For the above example

relation R1 R2 R3 R4 R5 R6 R7
relations 0 0 0 0 0 0 0
getbatch:

For each query (number of queries times)

Update the number-of-relations-table
(Increment the value of Relationl for the number-of-relations-table
Increment the value of Relation?2 for the number-of-relations-table)

Rel-1iRel-2
R5 R6 R1 0 relation |#relations
R7 R5 R2 | 0 0 R1 3
R3 R6 R3 | 1 0 0 R2 2
R3 R4 R4 | 1 1 1 0 R3 3
R1 R3 R51 0 1 0 0 0 R4 3
R2 R5 R6 | 1 0 1 0 1 0 R5 3
R6 | R1 R7foJojo o1][1]0] R6 4
R6 R7 RT R2Z R3 R4 R5 R6 R7 R7 2
R1 R4
R4 R2 inter-relation table #relations-table

query-table

27

largest:
Set the largest number-of-relations 1o 0
Jor every relation - RelationX

if number-of-relations value of RelationX is larger than largest number-of-

relations
sel largest number-of-relations (o the number-of-relations value of

RelationX

For the example Relation6 is chosen as in the first heuristic, since it has the largest
value, 4 as the number of relations interacted with.

build-criteria:

Choose the relation with the largest number of relations

The value of the occupied memory is 45, the size of Relation6. The parameter hashno
issetto 1.

build:

For all relations - RelationY
if the RelationY and RelationX have the value 1 in the inter-relation table

Decrement the value of RelationY in the #relations-table

Set the value of RelationX in #relations-table (0 -hashno

Rel-1 | Rel-2
R5 R6 R1 0 Relation [#relations
R7 R5 R2] 0 0 R1 2
R3 R6 R3 | 1 0 0 R2 2
R3 R4 R4 | 1 1 1 0 R3 2
R1 R3 R5| 0 1 0 0 0 R4 3
R2 R5 R6 | 3 0 3 0 3 2 R5 2
R6 | Ri1 R7/oJoJo|lo[1]3] 0] R6 -1
R6 R7 Rt R2 R3 R4 R5 R6 R7 R7 1
R1 R4
R4 R2 inter-relation table #relations-table

query-table

3.4.3. Smallest Size

28

In this heuristic, there is no change in the initialize, getbatch, and build functions of
Section 3.3.1. Instead of using largest, we use a function called smallest. By this
function, the relation with the smallest size i1s chosen. Because of its similarity, the
algorithm will not be presented here in detail. In this case, both the weight and size
tables are used. After the weights are computed, the smallest sized relation is chosen to
be built. The build operation 1s followed by the modification of the weight table
exactly as in Section 3.3.1.

For the same example, Relation4 is chosen with its smallest size, 24.

relation R1 R2 R3 R4 RS R6 R7
size 37 43 73 24 40 45 53
And as a result, the tables will be as follows:
Rel-1 | Rel-2

R5 R6 R1 0 Relation |Weight
R7 R5 R2 0 0 R1 118
R3 R6 R3 1 0 0 R2 40
R3 R4 R4 | 3 3 3 2 R3 82
R1 R3 R5| O 1 0 0 0 R4 -1
R2 RS R6 | 1 0 1 0 1 0 RS 141
R6 R1 R71 0 0 0 0 1 1 0 | R6 203
R6 R7 R1T R2 R3 R4 R5 R6 R7 R7 85
R1 R4
R4 R2 inter-relation table weight-table

29

3.5. Probe Phase

As explained in Section 3.1., the main algorithm is directly related with the probe
heuristics. This section explains the probe phase of the main algorithm.

Select the relation to be probed - RelationX
For all relations - RelationY
if the value corresponding 1o RelationX and RelationY in inter-relation table is 3
Read the data of RelationY from the disk
Form the hash value for each tuple of RelationY
For all relations - RelationZ (including RelationX)
if the value in the inter-relation table for RelationY and RelationZ is 3
Join RelationY and RelationZ
(probe the hash table of RelationZ with the values of RelationY
write the matching tuples to the output buffer)
For all relations - Relation
Update the inter-relation table by setting the RelationY-RelationZ to 0

The relation to be probed, namely RelationX is chosen based on the probe heuristic.
Then, first the Relations that RelationX joins with, namely RelationY’s are detected.
This means that RelationY will probe the hash table of RelationX. As mentioned by
Heuristic 8 - Probe More than one Hash Table, if there are more than one hash table in
the memory, then probing all tables at the same time is a factor that can increase the
performance. So all the relations that have a join with RelationY and have hash tables
already built in the memory, namely RelationZ’s, are probed by RelationY. RelationX
is also a member of RelationZ’s.

For the above examples let us consider the two probe heuristic alternatives and
complete the probe phase:

1- Immediate probing

For this case, let us use the number-of-relations heuristic for build, and use the final
tables of Section 3.4.2. By using the number-of relations heuristic, Relation6 is chosen
and its hash table is built. According to the immediate probing technique, Relation6
should be probed immediately after it has been built.

After the probe, the tables’ contents will be:

30

Rel-1 | Rel-2

R5 R6 R1 0 Relation [#relations
R7 R5 R2| 0O 0 R1 2
R3 R6 R3 | 1 0 0 R2 2
R3 R4 R4 | 1 1 1 0 R3 2
R1 R3 R5| O 1 0 0 0 R4 3
R2 R5 R6 | O 0 0 0 0 2 RS 2
R6 | R1 RTfojoJoflo]1]o] o] R6 -1
R6 R7 R1T R2 R3 R4 R5 R6 R7 R7 1
R1 R4

R4 R2 inter-relation table #relations-table
query-table

Relationl, Relation3, Relation5 and Relation7 probe Relation6. And the joins
JOIN(RO,R1), JOIN(R3,R6), JOIN(R5,R6), JOIN(RG6,R7)

are completed. This procedure continues until all the queries are processed. In the
second turn of the loop, Relation4 is chosen and built. Then Relationl, Relation2, and
Relation3 will probe Relation4. After these operations, the #relations-table is as
follows:

relation R1 R2 R3 R4 R5 R6 R7
#relations 1 1 1 -2 2 -1 1

and the completed joins are:
JOIN(R1,R4), JOIN(R4,R2), JOIN(R3,R4)

As the next step, Relation5 is built since it has the maximum value in the table. Then
Relation2 and Relation7 probe RelationS. Then, the table is like:

relation R1 R2 R3 R4 R5 R6 R7
#relations 1 0 1 -2 -3 -1 0

and the completed joins are:
JOIN(R2,RS), JOIN(R7,RS)

Finally, Relation] is built and probed by Relation3. JOIN(R1,R3) is processed. By this
way all the values in the table are less than or equal to 0, and this shows that all the
queries have been processed.

2- Probe All:

31

This alternative is more complex than Immediate Probing. In this case, the relations are
built as long as the memory is available, and when there exists no enough memory
space, all the probes to the built relations are completed. Let us use the Maximum
Number of Tuples that will Probe Heuristic for build.

With this heuristic, Relation6 is chosen to be built. By building Relation6, the amount
of occupied memory becomes 45. After this step, the maximum weighed relation
becomes Relation4. Therefore, Relation4 is built. The occupied value is increased to

69, by the size of Relation4.

Rel-1 | Rel-2
R5 R6
R7 R5
R3 R6
R3 R4
R1 R3
R2 R5
R6 R1
R6 R7
R1 R4
R4 R2

query-table

R1
R2
R3
R4
R5
R6
R7

0
ofo

1 [oo

3 [3[3]2
o]1]o]o]o
3Jo|3]o]3]2
olojo o 1]3]o0]
R1T R2 R3 R4 R5 R6 R7

inter-relation table

Relation| Size
R1 73
R2 40
R3 37
R4 -2
RS 96
R6 -1
R7 40
weight-table

The next relation to be built i1s Relation5. But its size is 40 and cannot fit into memory.
So it is the probe time. The queries JOIN(RI,R4), JOIN(R4,R2), JOIN(R3,R4),

JOIN(R6,R 1), JOIN(R3,R6), JOIN(R5,R06), JOIN(R6,R7) are processed.

The tables are as follows:

Rel-1 | Rel-2
R5 R6
R7 RS
R3 R6
R3 R4
R1 R3
R2 RS
R6 R1
R6 R7
R1 R4
R4 R2

query-table

R1
R2
R3
R4
R5
R6
R7

0
0o]o

1]o0]o

0o [o0o]o0o]2
o{t1][ojofo
o[ojoo0o[o]2
o/loJojo[1]o0]o0|
RT R2 R3 R4 R5 R6 R7

inter-relation table

Relation| Size
R1 73
R2 40
R3 37
R4 -2
R5 96
R6 -1
R7 40
weight-table

After this operation memory is totally flushed. Relation5 and Relationl ‘are built and
again probed completely. The other quertes JOIN(R2,RS), JOIN(R7,RS),
JOIN(R1,R3) are processed.

In both alternatives there is no need for a criteria in detecting which relation to flush.
But before going into details of Heuristic ~- Probe After IFlush, we should first
investigate the flush algorithms.

3.6. Flush Algorithms:

When there is no place for the hash table of the next relation, at least one of the
relations n the memory should be flushed from the memory. Flush operation is
composed of two main parts: flush-criteria and flush. Between these two phases

probe operation is completed.
Before the flush-criteria, let us focus on the flush phase.

Move the chosen RelationX from the memory
Decrease the occupied value by the size of RelationX
Set the value of inter-relation table for RelationX-RelationX to 0
Set completed 10 0
For all relations- RelationY-RelationZ
if the value of inter-relation table for RelationY-RelationZ is more than 0
increment the value for completed

If completed is larger than 0

sel the completed value to 0
else

set the completed value to 1

As easily seen, the flush function not only flushes the RelationX , but also detects
whether there are more queries to process by setting the completed value. If completed
is equal to 1 at the end, this means that all the queries have been processed. Now, let us

focus on flush algorithms.
3.6.1. Largest Sized Relation
The procedural description of this heuristic 1s:

Set RelationX to Relation
for each relation - RelationY
if weight of RelationY is less than 0 and size of RelationY is larger than

RelationX
Set RelationX to RelationY

33

Let us consider the example of Section 3.3.1., and use weight-table for build, partial
probe for probe, and largest size for flush. In 3.3.1., as the first step, Relation6 was the
built relation, so the occupied memory value was 45. After this, we choose Relation4
with the highest weight value. By this operation the total occupied memory becomes
069.

Rel-1 | Rel-2

R5 R6 R1 0 Relation [Weight
R7 R5 R2| O 0 R1 73
R3 | R6 R3 | 1 0 0 R2 40
R3 R4 R4 | 3 3 3 2 R3 37
R1 R3 R5| 0 1 0 0 0 R4 -2
R2 R5 R6 | 3 0 3 0 3 2 RS 96
R6 | R1 R7/ojo]Jo|lo[1]3]0o0] R6 -1
R6 R7 R1T R2 R3 R4 R5 R6 R7 R7 40
R1 R4

R4 R2 inter-relation table weight-table
query-table

The next relation to build is RelationS. But since RelationS cannot fit into memory, one
of the relations in the memory should be flushed. To detect which relation to flush, the
relations with the negative weight values are compared according to their sizes. Here
we have Relation4 and Relation6 in the memory. Relation6 will be the flushed relation

with its larger size.

Then, by the probe operation the 3 values related to Relation6 is selected from the
inter-relation table: Relationl, Relation3, Relation5, and Relation7. For all these
relations, it is detected whether they also join with Relation4 and it is found that
Relation and Relation3 also probe Relation4. So all the related probes are completed,
and then Relation6 1s flushed from the memory. By this way the queries JOIN(RI,R4),
JOIN(RG,R1), JOIN(R3,R4), JOIN(R3,R6), JOIN(RS,R6), JOIN(R6,R7) are

completed.

Rel-1| Rel-2
R5 R6 R1 0 Relation [Weight
R7 R5 R2] 0 0 R1 73
R3 R6 R3 | 1 0 0 R2 40
R3 R4 R4 | 0 3 0 2 R3 37
R1 R3 R5| 0 1 0 0 0 R4 -2
R2 R5 R6 | O 0 0 0 0 0 RS 96
R6 | R1 R7{ojJoJojJo]1]o]o| R6 0
R6 R7 R1T R2 R3 R4 R5 R6 R7 R7 40
R1 R4
R4 R2 inter-relation table weight-table

query-table

34

After the flush, the occupied value is decreased to 24. Now only the hash table of
Relation4 is in the memory. Relation5 is able to be built. When Relation5 is built the
occupied value increases to 64, and the tables are like:

Rel-1 | Rel-2
R5 | R6
R7 RS
R3 | R6
R3 | R4
R1 R3
R2 RS
R6 | R1
R6 | R7
R1 R4
R4 R2

query-table

R1
R2
R3
R4
RS
R6
R7

0
o] o

10O

o [3]o]2

o [3]o]o] 2
ojfojo|ofo]oO
o|lojofo]3][o0o]o0|
R1T R2 R3 R4 RS R6 R7

inter-relation table

Relation {Weight
R1 73
R2 0
R3 37
R4 -2
R5 -3
R6 0
R7 0

weight-table

The next relation to build 1s Relation|, but it cannot fit into the memory. Again one of
the relations in the memory should be chosen. The relations that are in the memory are
Relation4 and Relation5. Since Relation5 1s larger than Relation4, it is the flushed one.

Relation5 will be probed by Relation2 and Relation7. From these relations Relation2
can also probe the other relation in the memory, namely Relation4.

Rel-1|Rel-2
R5 | R6
R7 RS
R3 | R6
R3 | R4
R1 R3
R2 RS
R6 | R1
R6 | R7
R1 R4
R4 R2

query-table

R1
R2
R3
R4
RS
R6
R7

0
o] o

1]o]o

o[ojo]2
oJoJo]ofo
oloJolJofJo}lo
o[of[ojJofjo]o} 0|
RT R2 R3 R4 R5 R6 R7

inter-relation table

Relation { Weight
R1 73
R2 0
R3 37
R4 -2
RS -3
R6 0
R7 0

weight-table

As a result queries, JOIN(R4,R2), JOIN(R2,RS), JOIN(R7,RS) are processed. Finally,
Relation] is built and is probed by Relation3. JOIN(R1,R3) is processed by this way.
All the values in the inter-relation table and weight-table turn to 0.

35

3.6.2. Flush by Join-Set

Flush by Join-Set uses Heuristic 12 for the flush operation. When there is a need for
flush we have two main items: relations that are in the memory and a relation that
cannot fit into memory (say, RelationX). This algorithm compares whether the
relations that will probe RelationX, will also probe in-memory relations. For this
algorithm we use a new table named common-table. Here is the algorithm:

set min-common (o 10
set flag o 0
if RelationX is Relation0 then
flush all the relations from the memory
else
for all relations - RelationY
sel the common-table for RelationY (o -1
for all relations - RelationY
if weight of RelationY is less thain 0
sel the common-table value for RelationY 1o 0
if the value in the inter-relation table for RelationX-RelationY is equal to 3
increment the common-table value for RelationY
increment flag
for all relations - RelationZ
if the value in inter-relation table for RelationY-RelationZ is equal 1o 3
and the value in inter=relation table for RelationX-RelationZ is equal to 1
increment the common-table value for RelationY
increment flag
if flag is larger than 0
for all relations - RelationY
if common-table value for RelationY is larger than 0
and smaller than min-common
sel min-common fo the common-table value of RelationY
sel the relation to flush, 1o RelationY
else
flush-largest

Here by the common-table which relation to flush is detected. Let us turn back to the
example of Section 3.3.1. The tables are as follows:

36

Rel-1 | Rel-2

R5 R6 R1| O Relation [Weight
R7 | R5 R2| O 0 R1 73
R3 R6 R3 | 1 0 0 R2 40
R3 | R4 R4 | 3 3 3 2 R3 37
R1 R3 RS | O 1 0 0 0 R4 -2
R2 R5 R6 | 3 0 3 0 3 2 RS 96
R6 | R1 R7{olo]ojo|1]3]o] R6 -1
Ré | R7 R1T R2 R3 R4 R5 R6 R7 R7 40
R1 R4

R4 R2 inter-relation table weight-table
query-table

As explained in Section 3.6.1, after Relation6, Relation4 is built. The next relation to
build is Relation$5, but it cannot fit into memory. So flush by join-set takes place. The
common table is first totally set to -1. The common table is as follows.

relation R1 R2 R3 R4 R5 R6 R7
common -1 -1 -1 -1 -1 -1 -1

Then the loops begin and first the value for Relation4 is changed to 1, since both
Relation4 and RelationS join with Relation2. Then the common-value of the other in-
memory relation, Relation6 is changed to 2. First the value is increased to 1, since we
have JOIN(R5,R6) as a query. Then the value is increased to 2, since both Relation5
and Relation6 join with Relation7. And the table contents become:

relation R1 R2 R3 R4 R5 R6 R7
common -1 -1 -1 1 -1 2 -1

Relation4 is chosen for flush, since it has the smallest value greater than 0. The probes
to Relationd4 are completed. Then, Relation5 is built. Relation5 will also probe
Relation6 during the build phase. And the inter-relation table value will turn to 4 as
explained in Section 3.3. By this way, JOIN(R5,R6), JOIN(R3,R4), JOIN(R1,R4),
JOIN(R4,R2) will be processed.

Rel-1 | Rel-2

RS R6 R1 0 Relation | Weight
R7 | R5 R2| 0 0 R1 73
R3 | R6 R3 | 1 0 0 R2 0
R3 | R4 R4 | O 0 0 0 R3 37
R1 R3 R5| O 3 0 0 2 R4 0
R2 | R5 R6 | 3 0 3 0 4 2 RS -3
R6 | R1 R7[ofo]Jo]o]3 |3][0o] R6 -1
R6 | R7 R1T RZ R3 R4 R5 R6 R7 R7 0
R1 R4

R4 R2 inter-relation table weight-table

query-table

37

3.6.3. Consecutive Flush

The consecutive flush uses two sets of query batches and it is fundamentally different
from the other two heuristics. This heuristic 1s used in processing the last queries in a
batch and has no effect in deciding which relation to flush during the execution. For
this decision, it has to use one of the two alternatives explained above. Most of the
steps related to this algorithm are performed in the initialization and getbatch sessions.
The basic aim 1s to make use of the in-memory hash tables of one batch in the
following batch. For this reason, significant modifications are needed in initialization,
getbatch, flush, probe, and build sessions. The difference in the flush session is simply

as follows:

Move the chosen RelationX from the memory

Decrease the occupied value by the size of RelationX

Set the value of inter-relation table for RelationX-RelationX to 0
Set completed to 0

changes to:

if the next relation is not the last relation to build

Move the chosen RelationX from the memory

Decrease the occupied value by the size of RelationX

Set the value of inter-relation table for RelationX-RelationX fo 0
Set completed 10 0

By this way, at the end of a batch we still have relations that have hash tables in the
memory. When it is time to process the next batch, what we do is not initializing the
inter-relation table to all zeros and modify the table according to the new batch
received by getbatch. The getbatch is described below:

For each query (number of queries times)
Form Relationl randomly
Form Relation2 randomly
if none of Relation! and Relation2 is in the memory
Set the value of inter-relation table for Relationl-Relation2 (o 1
Add the size of Relation! (o the weight value of Relation2
Add the size of Relation2 1o the weight value of Relation]
else if at least one of Relation! and Relation2 is in the memory
Increment hashno
Set the value of inter-relation table for Relation!-Relation2 to 3
if Relationl is in the memory
Set the weight of Relationl to -hashno
if Relation2 is in the memory
Set the weight of Relation2 o -hashno

38

After these tables are reformed according to this heuristic, the furnctions that use these
tables should also be modified. The modification for build function is as follows:

if the value for RelationX-RelationX is equal to 0
do the build job

The build job explained in Section 3.3. There is no need for the modification of the
probe function. Let us turn back to the last phase of the above example which was
nearly finalized in Section 3.6.2. If we continue with the example, the next relation to
build would be Relationl and by join-set algorithm the relation to flush would be
Relation5. And the tables would be like:

Rel-1 | Rel-2

R5 | R6 R1 | 2 Relation |Weight
R7 R5 R2 | O 0 R1 -4
R3 | R6 R3| 3 0 0 R2 0
R3 R4 R4 | O 0 0 0 R3 0
R1 R3 RS | O 0 0 0 0 R4 0
R2 | RS Ré | 4 0 3 0 0 2 R5 0
R6 | R1 R7|o]oJo]o]o]3]o] R6 -1
R6 | R7 R1T R2 R3 R4 R5 R6 R7 R7 0
R1 R4

R4 R2 inter-relation table weight-table

query-table

After this step, since all the relations have weights less than or equal to 0, the probes
will be computed. But by this consecutive flush technique, the relations will not be

flushed from the memory.

Rel-1 | Rel-2 Rel-1 | Rel-2
R5 | R6 R1| 2 R1 R2
R7 | R5 R2| O 0 R2 R3
R3 R6 R3| O 0 0 R3 R1
R3 | R4 R4 | O 0 0 0 R4 R5
R1 R3 R§| O 0 0 0 2 R6 R1
R2 | R5 R6 | O 0 0 0 0 0 R6 R7
R6 | R1 R7{o0o]JoJolofJo]o]o] R7 R1
R6 R7 R1T R2 R3 R4 R§ R6 R7 R5 R4
R1 R4 R6 R4
R4 R2 inter-relation table R7 R6

query-table next query-table

39

Now, it is time to begin processing the next batch shown with the next query-table
above. Since we have Relation] and Relation2 already in the memory, the calculations
are made according to the consecutive flush - getbatch algorithm.

Rel-1 | Rel-2
R1 R2
R2 R3
R3 R1
R4 R5
R6 R1
R6 R7
R7 R1
R5 R4
R6 R4
R7 R6

query-table

R1
R2
R3
R4
RS
R6
R7

2
3]0

311]0

oJoJojo

0 J]o o |3]2
3JoJol1]o]o0 _
3JofJoJo o[1] o]
Rl R2 R3 R4 R5 R6 R7

inter-relation table

Relation [Weight
R1 -1
R2 73
R3 43
R4 45
R5 -2
R6 77
R7 45

weight-table

If we did not use this method and go forward as in the beginning, the memory would
be totally available. First Relation] would be built, and Relation4 would follow it. But,
by this technique we do not lose time by rebuilding Relationl and Relations.

40

4, Simulation Model

This chapter briefly presents the database system model that we used to evaluate the
performance of the algorithms. The model is based on a uniprocessor database system.
It contains two physical resources shared by the queries: CPU and Disk. Table 1
provides the set of parameters used in specifying the configuration of the database
system. The disk characteristics are those of the Fujitsu Model M2266 (1GB, 5.25”°)

disk drive [3].

Number of CPU’s I Disk Seek Factor 16 msec
CPU Speed 30 MIPS Disk Rotation Time 16.667 msec
Memory 100 pages Disk Settle Time 2 msec

Page Size 8 KB Disk Transfer Rate 3.09 MB/sec
Tuple Size 400 Bytes

Number of Disks |

Table | - Simulation Model Parameters

To evaluate the algorithms fairly, the CPU overhead of performing various operations
during query processing should be taken into account. The CPU costs of the
operations considered in our model are presented in Table 2. The parameter values are

based on instruction counts taken from the Gamma prototype [3].

instruction ms
t-initselect |Initiate Select 20,000 0.66667
t-initjoin Initiate Join 40,000 1.33333
t-term-j Terminate Join 10,000 0.33333
t-term-s Terminate Select 5,000 0.16667
t-apply Apply a Predicate 100 0.00333
t-read Time to Read a Tuple 300 0.01000
t-output Time to Write a Tuple into Output Buffer 100 0.00333
t-probe Probe Hash Table 200 0.00667
t-insert Insert Tuple in Hash Table 100 0.00333
t-hash Hash Tuple Using Split Table 500 0.01667
t-sio Start an I/O 1,000 0.03333
t-cb Copy a Byte into Memory 1 0.00003
t-ct Copy a Tuple into Memory (a tuple = 400 bytes) 400 0.01333
t-cp Copy a Page into Memory (a page = 8 KBs) 8192 0.27307

Table 2 - CPU costs of some operations

41

The time required for processing each join operation can be computed by using the
parameter values. The time for reading a file with N pages can be calculated as follows:

read-file(x) cpu-time disk-time
start an 110 0.03333
seek the disk 16
rotational latency 16.667
for all pages of x (N pages)

transfer the page to memory 2.52832*N

copy the page into memory 0.27307*N

t-readfile() 0.033+0.27307*N 32.667+2.52832*N

The time required for a build operation can also be computed for a relation of N pages.
First, the relation to be built is read, then the build operation is performed for every

tuple of the relation.

build(x)

cpu-time

disk-time

read-file(build) t-readfile()

for all tuples of x (N * 8KB/400B)

read tuple
compute hash-value
copy the page into memory

0.033+0.27307*N

0.01*N*8KB/400
0.01667*N*8KB/400
0.00333*N*8KB/400

32.667+2.52832*N

t-build()

0.033+0.88747*N

32.667+2.52832*N

The probe operation 1s the final step of the join. Again, the relations to probe are first
read, then for every tuple in the relation the processing is completed. In the calculation
of the time associated with the line “if join write to output buffer”, we assume a join

probability of 50%.

probe(x)

cpu-time

disk-time

for each relation to be probed
read-file(probe)
for all tuples of x (N * 8KB/400B)
initiate-join

read tuple

compute hash-value

probe hash-table

if join write to output buffer

terminate-join

0.033+0.27307*N

1.3333
0.01*N*8KB/400
0.01667*N*8KB/400
0.00667*N*8KB/400
0.00167*N*8KB/400
0.3333

32.667+2.52832*N

t-probe()

1.6996+0.99007*N

32.667+2.52832*N

This probe time is calculated according to the Partial Probe algorithm.

42

The details of the described model were captured in a simulation program. This
program was written in CSIM/C [28], which is a process-oriented simulation language
based on the C programming language.

During the simulation of the algorithms we made some assumptions about our
workload. The simplified workload consists purely of single hash-join queries. The
reason of choosing single hash-join queries is for the sake of simplicity. For a more
complex multi-join query, there are different execution strategies like bushy, left-deep
and right-deep. Using such queries would not have allowed the separation of the
effects of sharing from other query scheduling issues. The join selectivity in our queries
is assumed to be 50%. Also, when we talk about two join operations with a common
relation (e.g., JOIN(RI,R2) and JOIN(RI,R3)), we assume that the joins are
performed on the same attribute of the common relation (R1).

These assumptions also took place in [3]. Having the same assumptions enabled us to
compare the performance results of our heuristics against the results of theirs.

43

5. Performance Results

In this section we present the simulation results for the proposed heuristics. The values
used in simulation experiments are given in Table 1 Ten different relations are
considered in the experiments. These relations have a size of 20 - 70 pages, while the
memory is composed of 100 pages. The sizes of the batches differ from 10 to 50. We
calculate the mean performance results for a batch by using 10 consecutive batches.
The query batches are formed randomly.

5.1. Comparison of the Probe Heuristics

We first present the comparative results of the three probe heuristics. Figure 1 shows
the performance of the heuristics for batches of 10, 20, 30, 40, and 50 queries. All of
the probe heuristics below use weight heuristic for build. Partial Probe uses consecutive
flush with join-set as the flush heuristic.

~Immediate
i otal
R« partial

A Classical

Figure 1- Comparison of the Probe Heuristics (Performance)

As you can see in Figure 1, all three techniques perform much better than the classical
method, which uses no inter-queiy optimization. The processing time for the classical
method increases linearly with the increasing number of queries.

As mentioned before, the main outline of the join algorithm is directly related to the
probe phase. For this reason, the classical method is compared to the probe heuristics.
Classical method will not take place in the following figures. Here, all the probe
heuristics use the weight heuristic for the build phase. Immediate probing and Total
probing do not require any flush algorithm. In the figure the flush heuristic used with
the partial probe is the consecutive heuristic, which is better than the other flush

heuristics.

44

To see the performance differences between the probe heuristics better, let us present
the results in a different scale. In Figure 2 you will also be able to find partial probe
with the other flush heuristics.

- Immediate

mTotal

- Partial - Consecutive
mPartial - Join-Set
'Partial - Size

Figure 2 - Comparison of the Probe/Flush Heuristics (Performance)

In [3], the only probe technique proposed is the partial probing. The flush technique
that performed the best in their experiments is the size heuristic. But when we compare
this method with the others, we can observe that even the total probing technique is
better than partial probe with the size flush (except for the batch with 10 queries). In all
batches, the other two flush heuristics have a better performance than both total

probing and partial probe with size flush.

Immediate probing has a worse performance than both total and partial probe
techniques. The worse performance can be explained by the lack of application of
HeurisUc 8. As you can remember. Heuristic 8 was probing more than one hash table
at the same time. Immediate probing does not use this technique. Partial probe
performs a little bit better than total probe as it applies Heuristic 8 more often.

We also collected some statistics about the resource utilization by the heuristic. The
best CPU utilization is observed with the partial and total probing. The memory
utilization on the other hand is better with partial probing. The disk utilization
corresponds to the read operations for the relations stored on the disk. Higher disk
utilization means more frequent disk 1/0, and thus increased response times for the
queries. Therefore, the method that leads to the highest disk utilization (i.e. , classical)
has the worst performance. The details can be found in Figure 3. The heuristics used
with the probe algorithms are the same as the ones in Figure 1 The flush heuristic used

with the partial probe is the size heuristic.

45

classical immediate partial total
probe heuristics

Figure 3 - Comparison of the Probe Heuristics (Utilization)

The CPU, Disk and Memory utilizations of all the flush heuristics in the partial probe
environment are provided in Figure 4. The CPU and memory utilizations of join-set
and consecutive are better than the size heuristic. This is because both heuristics use the
in-memory relations more efficiently than the size heuristic. The disk utilizations seem
to be about the same for all three heuristics.

Size join-set consecutive

Aush Heuristics
Figure 4 - Comparison of the Flush Heuristics (Utilization)
5.2. Comparison of the Build Heuristics

Figure 5 provides the comparative performance of different build heuristics. Although
the performances of all three heuristics are close to each other, the ~relations heuristic
provides a little bit better performance than the others in large number of batches. The
better performance can be contributed to the fact that by this heuristic minimum
number of relations is needed to be built.

46

Figure 5 - Comparison of the Build Heuristics (Performance)

The memory utilizations of build heuristics are provided in Figure 6. The CPU and disk
utilizations are nearly the same for all the three heuristics. The #relations heuristic has a
better memoi'y utilization than the others when the number of queries in the batch
increases. Size is the worst method in terms of both the response time and the memory
utilization.

Figure 6 - Comparison of the Build Heuristics (Memory Utilization)

6. Conclusion and Future Work

In this thesis, we studied the inter-query optimization problem in multi-query execution
environments. We developed some heuristics for the execution of queries in the form
of a sequence of batches. We specifically focused on the relational join operation. The
proposed heuristics aimed to improve the response time of each of the build, probe,
and flush phases of the hybrid-hash join algorithm. The proposed heuristics were
implemented on a simple uniprocessor database system model. The comparative
performance of the heuristics was evaluated using this model. The most considerable
result was that even with the worst performing heuristics, the performance is much
better than the classical query execution method that does not make use of any inter-

query optimization.

In developing the heuristics and implementing the simulation model, we made some
simplifying assumptions to make our results comparable to others’ and also to
concentrate on certain steps of the query execution. We assumed all the queries consist
of join operations and hybrid-hash method is used in processing joins. As a future
work, queries with multi-operations, queries that have operations other than join, and
join implementation techniques other than the hybrid-hash can be considered.

We studied the heuristics on a uniprocessor database system environment. The
heuristics can also be implemented on multi-processor systems and parallel machines.

We believe that inter-query optimization i1s a very important topic that deserves further
investigation. Implementing such optimization techniques in database systems can
provide considerable improvements in the response time performance of the processed

quertes.

48

References

[1] Jones, J., “Parallel Database Concepts Presentation”, AT&T, 1995
[2] Lu, H., Tan, K., and Shan, M., “Hash-Based Join Algorithms for

Multiprocessor Computers with Shared Memory”, Proceedings of the 16th VLDB

Conf., Brisbane, Australia, 1990
[3] Mehta, M., Soloviev, V., and DeWitt, D., “Batch Scheduling in Parallel

Database Systems”, University of Wisconsin-Madison, 1993

[4] Selinger, P. G. et. al, “Access Path Selection in a Relational Database
Management System”, Proc. ACM, SIGMOD Conf, 1979

[5] Krishnamurthy, R., Boral., H., and C. Zaniolo, “Optimization of Nonrecursive

Quertes”, Proceedings 12th VLDB Conf., August 1986
[6] loannidis, Y. and Kang, Y. C., “Randomized Algorithms for Optimizing Large

Join Queries”, Proc. ACM SIGMOD Conf., Atlantic City, NJ, May 1990

(7] Swami. a. and A. Gupta, “Optimization of Large Join Queries”, Proc. ACM
SIGMOD Conf., June 1988

[8] Schneider, D. and D. DeWitt, “Tradeoffs in Processing Complex Join Queries
via Hashing in Multiprocessor Database Machines.”, Proc. 16th VLDB Conf,
Melbourne, Australia, Aug. 1990

(9] Chen, Ming-syan et. al., “Scheduling and Processor Allocation for Parallel
Execution of Multi-Join Queries”, Proc. 8th IEEE Data Engineering Conf., Phoenix,
Az, Feb. 1992

[10] Brown, K, et. al., “Resource Allocation and Scheduling Issues for Mixed
Database Workloads”, Comp. Sc. Tech. Rep. TR 1095, University of Wisconsin-
Madison, July, 1992

[11] Chakravarthy, U. S. et. al., “Semantic Query Optimization in Expert systems
and Database Systems”, Expert Database Systems: Proc. of Ist International

Workshop, Melno Park, California, 1986
[12] Finkelstein, F., “Common Expression Analysis in Database Applications”, Proc.

ACM SIGMOD Conf., Orlando, FL, June 1982

[13] Hall, P.V., “Common Subexpression Identification in General Algebraic
Systems”, Tech. Rep. UKSC 0060, IBM United Kingdom Scientific Centre, Nov.
1974
[14] Sellis, T., “Multiple Query Optimization”, ACM TODS 13(1), March 1988
[15] DeWitt, D., Naughton, J., and Schneider, D., “An Evaluation of Non-Equijoin
Algorithms”, University of Wisconsin, Madison, Feb 1991

[16] Kitsuregawa, M., and Ogawa, Y., “Bucket Spreading Parallel Hash: A New,
Robust, Parallel Hash Join Method for Data Skew in the Super Database Computer”,

Proc. of the 16th VLDB Conf., 1990
[17] Stathal, A, and Naughton, J., “Using Shared Virtual Memory for Parallel Join

Processing”, University of Wisconsin, Madison, 1993

49

[18] Wilschut, A, and Apers, P., “Dataflow Query Execution in a Parallel] Main-
Memory Environment”, University of Twente, The Netherlands, 1993

[19] Pang, H., Carey, M. and Livny, M., “Partially Preemptible Hash Joins”,
SIGMOD Washington, DC, May 1993

[20] Lee, C., and Chang, Z., “Workload Balance and Page Access Scheduling For
Parallel Joins In Shared-Nothing Systems”, 9th Intern. Conf. on Data Eng., 1993

[21] Kitsuregawa, M., Nakano, M., and Takagi, M., “Query Execution for Large
Relations on Functional disk System”, 5th Intern. Conf. on Data Engr., 1989

[22] Severance, C., Pramanik, S., and Wolberg, P., “Distributed Linear Hashing and
Parallel Projection in Main Memory Databases”, Proc. of 16th VLDB Conf., 1990

23] Lieuwen, D., Dewitt, D., and Mehta, M., “Parallel Pointer-Based Techniques
for Object-Oriented Databases”, 2nd Intern. Conf. on Parallel and Distr. Information

Systems, 1993
[24] Soloviev, V., “A Truncating Algorithm for Processing Band-Join Queries”, 9th

Intern. Conf. on Data Eng., 1993
[25] Mikkilineni, K., and Su, S., “An evaluation of Relational Join Algorithms in

Pipelined Query Processing Environment”, IEEE, 1988
[26] Bittan, D., Boral, H., Dewitt, D., and Wilkinson., K., “Parallel Algorithms for

the Execution of Relational Database Operations”, University of Wisconsin, Madison,

1983
[27] Pang, H., Carey, M. and Livny, M, “Managing Memory For Real-Time

Queries”, University of Wisconsin, Madison, 1994
[28] CSIM User Manual

