whii

AMD TH= i\



ANIMATING FACIAL IMAGES
WITH DRAWINGS

A THESIS
SUBMITTED TO THE DEPARTMENT OF COMPUTER
ENGINEERING AND INFORMATION SCIENCE
AND THE INSTITUTE OF ENGINEERING AND SCIENCE
OF BILKENT UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF
MASTER OF SCIENCE

By
Gamze Dilek Tunal
July, 1996



TR
R} . >
“TRs
4296

gt
Ny

BA34970

b g



I certify that I have read this thesis and that in my opin-
ion it is fully adequate, in scope and in quality, as a thesis

for the degree of Master of Science.

b A"

Prof. Biilent Ozgug (Principal Advisor)

I certify that I have read this thesis and that in my opin-
ion it is fully adequate, in scope and in quality, as a thesis

for the degree of Master of Science.

Assoc. Prof. Dr. Cevdet Aykanat

I certify that I have read this thesis and that in my opin-
ion it is fully adequate, in scope and in quality, as a thesis

for the degree of Master of Science.

\m\y (RSB AT
Asst! Prof. Dr. Ozgiir [jlusoy

Approved for the Institute of Engineering and Science:

Ao

Prof. Dr. Mehmét Baray

Director of Institute of Engineering and Science

il



v

ABSTRACT
ANIMATING FACIAL IMAGES WITH DRAWINGS

Gamze Dilek Tunali
M.S. in Computer Engineering and Information Science

Supervisor: Prof. Biilent Ozgiic
July, 1996

The work presented here describes the power of 2D animation with texture
mapping controlled by line drawings. Animation is specifically intended for

facial animation and not restricted by the human face.

We initially have a sequence of facial images which are taken from a video
sequence of the same face and an image of another face to be animated. The
alm 1s to animate the face image with the same expressions as those of the

given video sequence.

To realize the animation, a set of frames are taken from a video sequence.
Key features of the first frame are rotoscoped and the other frames are automat-
ically rotoscoped using the first frame. Similarly, the corresponding features of
the image which will be animated are rotoscoped. The key features of the first
frame of the sequence and the image to be animated are mapped and using
cross-synthesis procedure, other drawings for the given image are produced.
Using these animated line drawings and the original image, the corresponding
frame sequence is produced by image warping. The resulting sequence has the

same expressions as those of the video sequence.

This work encourages the reuse of animated motion by gathering facial mo-
tion sequences into a database. Furthermore, by using motion sequences of
a human face, non-human characters can be animated realistically or com-

plex characters can be animated by the help of motion sequences of simpler

characters.

Key words: facial animation, facial expression, snakes, active contour mod-

els, multigrid relaxation, multilevel B-Spline interpolation.



OZET

YUZ GORUNTULERINI CIZIMLER YARDIMIYLA
CANLANDIRMA

Gamze Dilek Tunali
Bilgisayar ve Enformatik Miithendisligi
Yiiksek Lisans

Tez Yéneticisi: Prof. Biilent Ozgiic
Temmuz, 1996

Bu galigma, ¢izimlerin denetiminde doku kaplama yontemini kullanarak, iki
boyutlu animasyonlarin gerceklegtirilmesini icerir. Caligma 6zellikle yliz ani-

masyonunu amaglamaktadir ve yiuzler insan ytizii olmak zorunda degildir.

Ilk asamada, ayni yuze ait bir video dizgisinden alinmig yliz goriintileri ve
canlandiralacak bagka bir yiize ait bir gortintii kullanilir. Amacimz, verilen

tek kare yliz gorintisuni, video dizgisindeki ylz ifadeleriyle canlandirmaktir.

Bu galigma sayesinde, canlandirilmig sirali yiz hareketler: bir veri tabaninda
toplanarak, verilen herhangi bir yiz igin istenilen hareket sirasi secilerek, can-
landirma gergeklestirilebilir. Daha da 6nemlisi, insan yuziine ait sirali ytz
hareketleri kullanilarak, insana ait olmayan yuzler gergege ¢ok yakin bir bi¢imde
canlandirilabilir. Aym zamanda, karmagik karakterler daha basit karakterlerin

hareket siralar yardimiyla canlandirilabilirler.

¢

Anahtar sozcikler: yliz animasyonu, yuz ifadesi, snakes, aktif ayirici ¢izgi
modelleri, ¢cok kath 1zgara interpolasyonu, ¢ok seviyeli B-Spline interpolasy-

onu.
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Chapter 1

INTRODUCTION

In this study, 2D facial animation is performed which is controlled by line
drawings. By aligning curves, lines and points with features in an image,
intuitive controls for image warping are constructed. Deformation of an image
can be accomplished by applying the warp defined by the original drawing
and any other drawing of the same features. Animation is done simply by
animating drawings and applying the image warp at each frame. The ability
of mapping animation from one image and a set of features to another gives

a power to animated sequences and enables the reuse of animated motion for

any single face image.

Initially, we have frames of a video sequence of the same face and an image
of another face that is to be animated. The goal of our work is to animate a
given face image with the same expressions as those of the given video frames.
As the first step, we outline some features which are of interest by hand on the
first frame of the sequence, and then carry them to their real places by the help
of snakes. Features are mouth, eyes, nose, eyebrows, etc. The face need not he
human face for both images. For each feature on the first frame, we specify a
corresponding feature on the image to be animated. Features can be consid-
ered as a collection of sequenced points on the image plane. For each feature
correspondence, we have a set of point pairs. Using the cross-synthesis method
explained in [14], we get an interpolation function which gives a pixel position

on the image to be animated for each pixel on the first frame. Litwinowicz used
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multilevel surface reconstruction method to find the interpolation function, but
it is slow. Furthermore, there will be no discontinuity in the function, therefore
using this method is not advantegous. Instead, multilevel B-spline interpola-

tion is used, which is faster and simpler than multilevel surface reconstruction

method in this respect.

After the features are specified on the first frame, places of these features on
the other frames in the sequence should be tracked. This process is performed
automatically using two motion estimation techniques. For the end-points of
the features, block matching technique and for the interior points, optical flow
method are used to automatically find appropriate places of the features on

the next frame.

Since we have acquired the interpolation function which gives pixel posi-
tion correspondences of two initial images and tracks each feature on the video
frames, a similar animated drawing sequence can be produced for the image
to be animated. To produce the full set of animated images, we need a warp
function for each animated drawing frame. For a number of known (z,yx)
positions in the image plane which are control points of the features, we have a
set of known displacements (Azy, Ayy,) as defined by the original and produced
feature drawings. To warp the image according to the drawings, we need two
interpolation functions Fj(zk,yr) = Axg and Fa(ak,yr) = Ayk. First func-
tion is a smooth interpolating function for the x-displacements for an entire
image, and the second is similarly for the y-displacements. In this case, some
discontinuities can be pointed out by the user for some features, therefore mul-
tilevel surface reconstruction method is more convenient. For each produced
animated drawing frame of the sequence, a warp function is computed by using
the original drawings. Then the warp functions Fy and [, are applied to the

still image for animation.

To find the mapping between corresponding feature drawings, multilevel B-
spline interpolation; for image warping, multilevel surface reconstruction meth-
ods are used. Litwinowicz used multilevel surface recons‘truction method to
find the mapping between corresponding feature drawings. Instead, multilevel
B-spline interpolation is used in our work, which is faster and simpler than

the multilevel surface reconstruction method. To specify features on an image
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snakes, of Williams and Shah [24] are applied and these features are automat-

ically tracked by applying block matching and optical flow methods.

This animation system is implemented in C, under Irix. User interface
design is realized by using Motif combined with graphics library of SG Iris

Indigo [8].

The organization of the text is as follows. Chapter 2 presents the most
recent research that contribute to the study of facial animation. Some different

techniques in animation studies are presented.

Chapter 3 explains the specifications of features on a face. Major studies
in this area are compared, and the most advantegous one, Greedy algorithm is

broadly explained.

In chapter 4, automatic feature tracking in a sequence of frames is explained.

Block matching and optical flow methods are briefly presented.
In chapter 5, B-Spline interpolation is explained briefly.

Chapter 6 presents multigrid visual surface reconstruction method used in
scattered data interpolation of warping step. After the mathematical basis is

presented, discretization of the problem follows and finally multilevel equations

are given.

Chapter 7 gives some example animation sequences produced. By using

these examples, the important factors that effect our facial animation work are

explained.

Chapter 8 gives a conclusion of the work.



Chapter 2

BACKGROUND

Traditional animation carries all action by drawings - points, lines and curves
- defined at arbitrary instants. The work described here takes much of the
motivation from the technique of traditional animation where interpolation
defines the full sequence from the sparse keys. In our work, drawings on the
objects or characters define the keys and an interpolation in space gives the
full action of them on the image. The interpolated motion of a sequence of
keyframe drawings define spatial deformations which may be applied to other
images. Therefore, this technique encourages the reuse of animated motions.
Feature-based deformations controlled by curves, lines and regions enable the

animation of complex images and forms.

Animating drawings by their features is first studied by Litwinowicz et al.
[11] by using a mesh of bilinear Coons patches [4]. Coons patches are inexpél’l-
sive to evaluate, but they require manual division of the image into a mesh and
all of the patch boundaries should be animated to control the motion. There-
fore, it is time consuming and requires a substantial manual effort. Specifying

and animating only the features of interest is more general and easier.

Deformations based on tensor-product splines [16, 3] permit an animated
skeleton of linked line segments to drive the animation by polygonal tessella-
tion of regions around the bones (line drawings) of the skeleton. An alternate

parameterization has been described by Wolberg et al. [25] which is based on
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skeleton derived from the shape of the image region to be animated. The skele-
ton is obtained by successive thinning operations on the original shape. The
works of Sederberg, Farin and Wolberg [16, 3, 25] are based on the skeletons
and bones of them. But there is no guarantee that bones will align with the

features the animator is interested in controlling directly.

More recent skeleton animation research has tried to use smoother interpo-
lation functions. Van Overvald et al. [23] has improved the skeleton animation
technique. He developed a physical simulation which is calculated for a simple

skeleton and then applied to a more complex model by a distance-weighted

force field.

The interpolation function used is equivalent to Shepard’s interpolation that
has been developed for terrain surfaces [17]. Beier and Neely [2] have also
used Shepard’s interpolation for image warping but they have also added line
segments as control primitives to the animation. Since the lines can be aligned
with edges in the image, the metamorphism was termed feature based. Since a

line can do the work of dozens of points, it offers a natural and intuitive means

of interpolating local orientations.

Harder and Desmarais introduced thin-plate spline surfaces to computer
aided geometric design [5]. By the use of finite-element methods, smooth sur-
faces have been computed over the scattered data, for CAGD purposes by
Pilcher et al. [15]. Smooth scattered data interpolation is analogous to physi-
cal surfaces and widely used in vision and image reconstruction. Fast numerical
methods [22] supplied the demands of rapid processing for practical vision sys-
tems. Our animation system utilizes multigrid finite-difference evaluation of a
thin-plate spline for animated deformations. This approach extends the feature

primitives to curves and solid regions.

The most recent related work has been carried out by Litwinowicz et al.
[14]. In that case, an actor’s facial expressions are captured from video by the
help of fluorescent spots on the actor’s face. By these spots, motion control
points are tracked. The acquired motion control points are spatially mapped

to the synthetic face, giving new control points which are used to animate the

synthetic face.



Chapter 3

FEATURE SPECIFICATION

After deciding on the features that are important for our animation sequence,
they should be localized on the image accurately. Initially they are outlined
by hand and then snakes are applied to carry them to their real places. To
effectively use snakes to track edges on an image, a preprocessing operation
should be performed. For this reason, Sobel [13] or another edge enhancement
filter is run over the image. This produces a binary image which is white where
the filter has detected an edge, and black otherwise. Then, the gradient [13] of

the enhanced image is calculated to determine in which direction is the nearest

edge.

A snake is an energy minimizing-spline guided by external constraint forces
and influenced by image forces that pull it toward features such as lines and

edges. Snakes are active contour models. They lock onto nearby edges, local-

izing them accurately.

An energy function, whose local minima comprise a set of alternative solu-
tions, should be designed. Selection of the answer from this set is accomplished
by the addition of some energy terms which push the model towards the desired
solution. The solution is an active model that falls into the desired solution
when placed near it. A snake always minimizes its energy functional until
reaching the desired solution, so it exhibits a dynamic behaviour. Since it

slithers like a snake while minimizing its energy, it is called as snake.
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A snake has internal contour forces, external forces and image forces which
are composed according to the desired behaviour of the contour. Internal spline
forces serve to control the smoothness of the contour while external and image
forces push the snake towards salient image features. Image energy term can
include three different energy functionals which attract a snake to lines, edges
and terminals. The total image energy can be stated as a weighted combination
of these functionals according to the nature of the desired features. External

forces can be exerted by the user to give direction to the contour in the desired

way.

Kass, Witkin and Terzopoulos [7] have developed the snakes (Active Con-
tour Models). The problems of the method of Kass, Witkin and Terzopoulos
are numerical instability and a tendency for points to bunch up on strong por-
tions of an edge contour. Amini et al. [1] has pointed out these problems and
proposed a new algorithm using dynamic programming. This method is more
stable and allows the inclusion of hard constraints but it is slow and having the
complexity O(nm?) where n is the number of control points and m is the size of
the neighborhood in which a point can move during a single iteration. Another
method, a greedy algorithm for active contours was proposed by Williams and
Shah [24]. This new method retains the improvements of older methods and
also brings a new improvement, lower complexity. The complexity of the algo-
rithm is O(nm). The control points are more evenly spaced, so the estimation

of curvature 1s more accurate.

The greedy algorithm is stable, flexible and allows hard constraints and
runs much faster than the dynamic programming method. In addition to the
other methods’ internal spline energy and external energy terms, it includes a

continuity term and a curvature term in the total energy to be minimized.
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3.1 Minimum Energy Contours

3.1.1 Snakes of Kass, Witkin and Terzopoulos

Kass, Witkin and Terzopoulos [7] has developed an active contour model called
snakes. In this method, controlled continuity spline can be operated upon
internal control forces, image forces and some external forces applied by an

interactive user or a higher level process.

In their work, a contour was represented by a vector v(s) = (z(s),y(s))
where s is the parameter denoting the arc length. They defined an energy
functional and described a method to find the local minima of the functional

as the solution. The functional is:

1 1
Esnake = '/0 Esnake(v(s))ds = /0 Eint(v(s)) + E'image(v(s)) + Econ(v(s))ds (-I-)

E;ni represents the internal energy of the snake due to the bending or dis-
continuities. Fjnq4e 15 the image forces applied by some features like edges,

lines and terminals in the image. FE.., is the force applied by the external

constraints.

Internal energy E;,: is written as:

Eint = (a(s)[vs(s)[* + B(s)[vss(s)]*) /2 (2)

Equation 2 contains a first order term which will have large values when
there is a gap in the curvature and a second order term which will be larger
where the curve is bending rapidly. The relative sizes of & and 3 can be chosen
to control the influence of the corresponding constraints. The minimum energy

contour was determined by the variational calculus techniques.

In this method, forces can travel large distances along the contour, allowing
faster convergence. On the other hand, image forces and constraints should
be differentiable in order to guarantee the convergence. So it is not possible
to include hard constraints such as minimum distance between points. As

another drawback, intermediate results are not meaningful. The contour does

not smoothly approach the minimum value.
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3.1.2 The Solution of Amini

Amini et al. has pointed out some problems of snakes and proposed a new
method which uses dynamic programming. This work introduced hard con-
straints that cannot be violated besides the continuity constraints inherent to

the problem which are called soft constraints.

This method is numerically stable but slow, being O(nm?®) and memory
requirements are large, being O(nm?) where n is the number of points and

m is the number of possible locations to which a point may move in a single

iteration.

3.1.3 Advantages and Disadvantages Related to Both
Methods

Besides the advantages and disadvantages specific to the methods themselves
which are mentioned in the previous sections, there are some advantages and

disadvantages related to both methods. Advantages of snakes of Kass and

Amini are:

e A closed contour which is placed around an object outlines the entire

object, rather than following texture edges on the surface of the object.

o Higher level processes can determine the values of external constraint term

and the values of o and 3. For example, corners can be allowed at certain

points on the contours.
Disadvantages are as follows:

o o and A are used in both methods but there is no information about the
values of them. It is apparent that their values are critical and must be

chosen carefully to obtain meaningful results.

"

e If 3 is constant, corners will be not well defined. If points are far apart

and a corner falls between these, there will be a problem on the contour.
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e |vs(s)|? in equation 2 is approximated as
os(s)|* = (2 — wimt)? + (yi — yizr)?

This is equivalent to minimizing the distance between the points and

causes the contour to shrink.

o According to the minimization algorithm, points can move along the con-
tour as well as perpendicular to it. This allows the points to bunch up in
segments of the contour where the image forces are higher. Amini et al.

used hard constraints to overcome this problem.

3.2 Greedy Algorithm

A greedy algorithm is presented by Williams and Shah [24] which allows the
inclusion of hard constraints as described by Amini et al. [1] but much faster
than their O(nm3) algorithm, being O(nm). This algorithm allows a contour
with controlled first and second order continuity to converge on an area of high

image energy, in this case edges.

The algorithm is not guaranteed to give a global minimum but the ex-

perimental results produced by Williams and Shah were comparable to other

methods.

The energy functional which will be minimized is:
B = [ (a(5)Baons + B(5) Eeurs + 1(5) Binage) s 3)

First and second terms correspond to E;,; in equation 2. The last term mea-

sures some image quantity such as edge strength or intensity.

This method, as the methods of Kass and Amini, is iterative. At each
iteration, points in the neighborhood of the current point are examined and
the value of the energy function is computed at each of them. Then, one of the
points in the neighborhood, giving the smallest energy value, is chosen as the
new location of the current point. For example in figure 3.1, the neighborhood

of point v, consists of 9 points (pixels) including itself. If the value of the



CHAPTER 3. FEATURE SPECIFICATION 11

energy function is smallest at v}, then new location of the point at v, is chosen

as the point v}.

Figure 3.1: New location of a point in an iteration

The values of @ and v are considered as 1 and 1.2 in the study, so the
image gradient will have slightly more importance than the contunity term to
determine where the points on the contour move. # will be 0 or 1 depending

upon whether a corner is assumed at that location.

Determining the first term FE,,.; of equation 3 presents some difliculties. If
we use [v; —v;_1|* as Kass and Amini, contour tends to shrink while minimizing
the distance between the points. It also contributes to the problem of points
bunching up on strong portions of the contour. A term encouraging even
spacing will reflect the desired behaviour of the contours. In this case, the
original goal, first order continuity is still satisfied. So the algorithm uses
the difference between d, average distance between points, and |v; — v;_1], the
distance between the points: d — |v; — v;_1|. By this formula, points havirig
distance near the average will have the minimum value. The value is normalized
by dividing by the largest value in the neighborhood to which the point may

move, having a value in [0,1]. At the end of each iteration, a new value of d is

computed.

The second term FE.,,, in equation 3 is curvature. Since the continuity
term causes the points to be relatively evenly spaced, |vi_1 — 2v; + vig1]? Is a
reasonable estimate of curvature. This formulation has alsg given good results
in the work of Kass and Amini. Like the continuity term, curvature term is

also normalized by dividing the largest value in the neighborhood, giving a

value in [0, 1].
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The third term Ejmqg is the image force which is the gradient magnitude.
Gradient magnitude is computed as eight bit integer with values 0—255. There
is a significant difference between 240 and 255 as gradient magnitudes. So
normalizing the value by 255 will not reflect the differences. Thus given the
magnitude (mag) at a point and the maximum (maz) and minimum (min)
gradient in each neighborhood, normalized edge strength term is computed as
(min —mag)/(maz —min). This term is negative so points with large gradient
will have small values. If the magnitude of a gradient at a point is high, it
means that, the point is probably on an edge of the image. If (maz —min) <5
then min is given the value (maz — 5). This prevents large differences in the
value of this term from occurring in areas where the gradient magnitude is

nearly uniform.

At the end of each iteration, the curvature at each point is determined
and if the value is a curvature maximum, then f§ is set to 0, otherwise it
remains 1. This step is a primitive high level process giving feedback to the
energy minimization process. Curvature is computed as I%:_I — I%:_Ilz where
4; = (2; — Tio1, Yi — Yi—1) and @ip1 = (i1 — i, Yigr — ¥i). Then, nonmaxima
suppression is performed on curvature values along the contour and curvature
maxima points having curvature above a threshold are considered as corner
points for the next iteration. A further consideration is that the gradient
magnitude must be above some minimum value. This prevents corners from

forming until the corner is near an edge.
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Pseudo-code for the greedy algorithm is as follows:

Initialize o; and f; to 1 and ¥; to 1.2 for all 3.
do
/* loop to move points to new locations */
fori=0ton
E...n = BIG
forj=0tom -1
E; = aiEcont,j + Bilcurv,j + ViFimage,j
if E; < Epp then
Erin = E;
jmin=j
Move point v; to location jmin
if yjmin not current location, ptsmoved+ = 1
/*process determines where to allow corners in the next iteration x/
forte=0ton-1
¢; = @/ = @i /| T
fori=0ton-1
if (¢; > ¢;—1 and ¢; > ¢i41 /*if curvature is larger than neighbors */
and ¢; > thresholdl /* curvature is larger than threshold */
and mag(v;) > threshold2 [* edge strength is above threshold*/
then 3, =0
until ptsmoved < threshold3

The threshold for setting 8 = 0 was 0.25, the threshold for the minimum
gradient magnitude before a corner would be marked was 100 and the final
threshold which is the number of points move to determine the convergence

was a small nonzero value (2 — 5). These values have given quite well results.
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AUTOMATIC FEATURE
TRACKING

Some robot vision, animation and medical applications require feature tracking
in video sequences. In our work, we focus on tracking edges in video sequences
corresponding to facial features for animation purposes. By tracking an actor’s
facial expression, various computer animated characters can be driven. We have
a sequence of facial images, so the motion is traced in 2D by the method of [12]
and the animations are morphing of 2D images, but with sequences produced

by two or more cameras, the motion can be tracked in 3D.

The features which are important for the animation purposes are outlined in
the first frame by hand. Then, by using active contours method [7] mentioned
in chapter 3, they are carried to their exact place on the image. For the other
frames of the sequence, automatic edge finding process is applied to track the

edges specified on the first frame.

During the edge finding process for each frame, the endpoints of snakes
generally tend to move away from the corresponding features' in the first frame.
According to the motion of the features, they can slide back ‘and forth along an
edge. So, snakes that have a length preserving constraint are of little use for our
work. Furthermore, if a feature moves far enough from one frame to another,

a snake may switch edges. For instance, when you are viewing the video of a

14
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talking person, you can see that the lower edge of the upper lip visually replace
the upper edge of the lower lip from one frame to another. Without motion
prediction, a snake trying to track upper lip will suddenly find itself tracking
the lower lip. Because of these problems, intensive user interaction may be

necessary to extract motion from video sequences.

To track and position the endpoints of a snake, Litwinowitcz et al. [12]
introduced the use of block matching technique for the first time. After block
matching technique, the endpoints of a snake are held in place and non end-
points are moved by optical low method and then energy minimization process
takes place. This technique avoids the sliding of a snake back and forth between

frames.

As to the second problem, a snake can find an incorrect edge due to the
large motion between frames. Litwinowitcz et al. [12] proposed the optical
flow technique for the first time. Optical flow techniques generally do not
produce perfect results for the motion of edges. However, after optical flow
method is applied, energy minimization method can find the correct place as a

last step. Thus, optical estimation is used to push a snake near to its desired

edge.

4.1 Motion Estimation Techniques

4.1.1 Block Matching

Block matching is commonly used in motion analysis to find the correspon-
dences among local image patterns in a sequence of images. The first step in
our tracking process is to find the new locations of feature end-points based
on their positions in the previous frame. The basic idea is to try to find the

rectangular block, which is centered around the feature in the first frame, in

the second frame.

The algorithm can be summarized by two figures. Figute 4.1(a) shows the

displacement of an object from one frame to another. In figure 4.1(b), the cross
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indicates a feature end-point, the inner rectangle indicates block of best match
around the feature point and the outer rectangle indicates a search area. The
basic idea is to search the block of best match on the next frame within the

specified search area.

dx

object displacement

(@ (b

Figure 4.1: Basic algorithm of Block Matching

By experimentation, 13x13 block size and 9x9 search area size are found

optimal by [12]. These sizes worked well for their video sequences.

In order to find the best match between blocks within the search area, a

similarity measure is needed:

C(i,8) = S W Ff(i + m)] * F[h(i + m + 6)] (1)

The general correlation formula C is computed between a pattern in f cen-
tered at point 7 and a pattern h centered at (z + ). The size of the pattern is
determined by a window function W. A preprocessing operator F' is applied
to both reference frames. The comparison operator * can be any operator to

find the similarity between two reference frames.

Known comparison operators that measure similarity can be classified as ab-
solute differences and squared differences. These tend to identify only identical
images and changes of reflectance and illumination highly effect the measure.
Correlation methods are used to measure similarity on the basis of pattern

characteristics that are invariant over motion. Simple correlation measures

are:
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o Direct Correlation which uses simple multiplication operator as the com-

parison operator.

C(5,8) = S W f(6 + m)h(i + m + 6) (2)

Gives a high peak if patterns are identical but gives wrong results if mean
values between blocks differ and therefore the maximum value may seldom

be the point of exact match.

e Mean Normalized Correlation which eliminates the principal source of
errors of direct correlation by subtracting the mean value of the block

being considered (f and & respectively).
Cm(i,6) = 3 W (f(i +m) — f(2)) (hG+m +6) — k(i +68))  (3)

The mean value of an MxN block b is:

where E(k,[) is the intensity value at point (k,!) on the frame.

o Variance Normalized Correlation looks like equation 3 but in this case
variance (Var) of the pattern is taken into consideration. It is very costly
to compute but, it can be considered as an optimum measure since it gives

1 if exact match exists, otherwise gives a value between 0 and 1.

S Won (G +m) = F(3)) (R(G +m + 6) — k(i + 6))
VVars(@)/Vara(i + 6)

Cv(i,6) =

The variance of an MxN block b is:

1 XM 2
Vany = o kzzjl g (E(k,1) - 1)
Variance Normalized Correlation method is used in this work since it pro-

duces more correct results.
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4.1.2 Optical Flow

The next step in the tracking process is to automatically push non end-points
of a snake to wherever the corresponding image edge is moved by using optical
flow technique. Optical flow technique was first developed by Horn and Schunck
[6]. In feature tracking, the usage of optical flow method is first proposed by
Litwinowicz et al. [12]. It was very convenient for feature tracking process,
because it is independent from the number of snakes and the total number of
snakes’ control points. Initially, block matching was considered by Litwinowicz
for all control points but accuracy could not be guaranteed and was much
more time consuming. Optical low technique is based on the assumption that
illumination is constant and occlusion can be ignored, that is the observed
grey-level changes are only due to the motion of underlying objects. In this

case, it is evident that:

E(z,y,t) = E(z + Az,y + Ay, t + At)
where E is the image brightness at point (z,y) in the image plane at time t.

When the pattern moves, the brightness of a particular point in the pattern

is constant, so that

dE
i 0
Using the chain rule for differentiation,
OEde O0Fdy OFE _

Gedt Togat a0

If we let u = dz/dt and v = dy/dt as velocities in the x and y direction, then

we have a single linear equation with two unknowns u and v:
Eau+Ev+E =0

The flow velocity (u,v) cannot be determined by one equation. The second
constraint will be utilized is smoothness constraint. This constraint is necessary
because if every point of the brightness pattern can move independently, we
cannot recover the velocities. One way of expressing the smoothness constraint

is to minimize the square of magnitude of the gradient of the optical velocity:
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Bui,  Duy, o Bu, v,
(G + (5 and (50 +(5)

Another measure of the smoothness of optical flow field is the sum of the
squares of the Laplacians of the x and y components of the flow. Laplacians
of u and v are defined as:
0w 0%u v 0%

— + — and Vv = —— + —
Ox? + Oy? Ox? + oy?

We have used the square of the magnitude of the gradient as the smoothness

Viu =

measure in our work.

Derivatives of brightness should be estimated from the discrete set of avail-
able image brightness measurements. Horn and Schunck proposed an estimate
of E,, E,, E, at a point in the center of a cube shown in figure 4.2 formed by
eight measurements. Each of the estimates is the average of four first differ-

ences taken over adjacent measurements in the cube.

i+l

k+1
j+l

Figure 4.2: Horn and Schunck estimate of E,, E, and E;.

B~ %{Eiﬂ'ﬂ»k — Eiji+ Eigr 416 — Eiv1,5k
+Ei jy1k41 — Eijpar + Eigr i — Eirrjetr}s
B, ~ %{Ei+1,j,k —FEiir+ Eivij10 — Eijik
+Ei+1,j,k+1 - Ei,j,lc+1 + Ei+1,j+1,k+1 - Ei,j+1,k+1},
E, = {Eijkr1 — Eijr + Eiprjpen — Bigyn
+Eijyipn = Bijrrs + B jeress — Biprjried,

Here the unit of length is the grid spacing interval in each frame and the

unit of time is the image frame sampling period.
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Also, Laplacians of u and v are needed to approximate:
2 _ _
ViU (k0 = k) and Vi & &(Bik — vik)
where the local averages @ and ¢ are defined as follows:
7, o= Lo . o )
Uijk = é{ul—lmk + Uitk T Uigr,jk T ui,J—l,k}
1
+is{ticr otk F Uic ek F Yikrgark + Uiknio1k )

= 1
Vigk = iVi-14k + Vigark + Vignik + Vigo1k}
1
1 {vic1,-1k + Vic1i41k F Vitrierk F Vi1 i-1k )

1712 | 1/6 1/12

176 | -1 1/6

12y 1/6 2

Figure 4.3: Mask shows the suitable weights.

The proportionality factor & is 3 with these neighboring weights and the

assignment of weights to neighboring points are shown in figure 4.3.

Now, the problem is to minimize the sum of the errors in the equation for

the rate of change of image brightness,
&=FEu+ Eo+ E, (5)

and the measure of departure from smoothness in the velocity flow,

o= (Gl + (G + (G + () ()

Because of the possible quantization error and noise, we can not expect &,
to be identically zero. This quantity will tend to have a magnitude that is
proportional to the noise in the measurement. The factor, will be denoted by

o?, determines the relative weight of & and &,. The total error to be minimized

1S:

= //(azgf + &2) dz dy (7)
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The minimization is to be accomplished by finding suitable values for the

optical flow velocity (v, v). Using the calculus of variation, we obtain

E*u+ E,Ev = o*Vu — E, Et,

E.Eyu+ E}v = o®V?v — E Et

Using the approximation to the Laplacian,

(a® + Ex*)u + E,Ev = (*a — E, E,),
E.Esu+ (® + Ey*v = (o’ — E,E))
When we allow a? to tend to zero we obtain the solution to a constrained
minimization problem:.
Iterative Method:

We have now a pair of equations for each point on the image. It would
be very costly to solve these equations simultaneously by one of the standard
methods such as Gauss-Jordan elimination. The corresponding matrix is very
large and sparse, so iterative methods such as Gauss-Seidel method, suggests
themselves. At each iteration, (u™*! v™*!) will be estimated by using the

estimated derivatives and the average of the previous velocity estimates (u", v")

by

W = @ — B {E,@" + Ey5" + E }/(o® + EX + E?)

v = §" — B {E,a" + E,5" + Ei}/(a? + E2 + E?)

The initial values of u and v for each point can be assigned to zero.



Chapter 5

MULTILEVEL B-SPLINE
INTERPOLATION

After the feature correspondence between the two faces is set by the animator,
a scattered data interpolation should be applied to find the correspondence
between all the pixels of the two images. Uniform cubic B-spline surfaces
are a good choice because they offer nice properties such as continuity and
local control. B-spline method is much simpler and faster than the energy

minimization method [9)].

5.1 Manipulation of B-spline surfaces

n+l

12 mm+l U

Figure 5.1: Lattice of control points on the uv plane

22
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Let € be a rectangular region in the uv-plane which contains points P = (u, )
such that 1 <u <m and 1 <v < n. Let ® be a (m +2) x (n + 2) lattice of

control points overlaid on the region Q. It is shown in figure 5.1.

Initially, the control point ¢j is on lattice ® lies on the point (i,j) in the
uv-plane. If the control points on lattice ® are displaced only in the direction
perpendicular to the uv-plane (z direction), the resulting B-spline surface can
be represented by a real valued function f. For all points p = (u,v) on 2, the
function value f(p) implies that point p is placed at the position (u,v,f(p)) on

the surface when the surface is generated.

Let ¢;; be the height of the control point (7,7) from the wv-plane. The

function f can be stated as:

3 3
Fu,0) =303 Bi(8)Bi(t) biitry i+ (1)

k=01=0
where : = |u| — 1,7 =|v] —1,s=u— |u] and t = v — [v]. Bi(s) and Bi(t)
are uniform cubic B-spline basis functions evaluated at s and ¢. Uniform cubic

B-spline basis functions are as follows:

1—-1¢)%/6

By(t) = (
(36 — 662 + 4) /6
(—
t

)
Bi(t)
)
)

3t°+3t2 +3t+1)/6
°/6

By(t
Bs(t

From the equation 1, we know that the function value of a point p depends
on sixteen control points in its neighborhood. So the height of the zjth control
point on lattice ® is computed by using the set of points P’ = (uc,v.) € P
such that 1 —2 <wu. <t+2and j —2 < v, <j+2( the point 7j is the initial
position of ¢ as in figure 5.2).
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Figure 5.2: Sixteen neighbors of ¢

When we displace the ¢, displacement of all the points in P’ are influenced.
For each point p. in P/, the displacement ¢, of control point ¢ required for
moving p, to the specified point (u.,v,,t.) is given by the equation:

Ad. Wite 2
¢ 23_0 Zb Ow ( )

where k =i+ 1 — |uc|, I =74+ 1—|ve], s = ue — |ue], t = ve — |vc] and
Wap = Bu(8)By(t)

Since A, may be different from point to point in P’, displacement A¢ of
control point ¢ is chosen to minimize the error:

> (wAd — wAde)” (3)

[od

In the error, w.A¢ is the displacement of point p. due to the displacemerit
A¢ of ¢ and w.A¢. represents the contribution of control point ¢ to move p,
to its specified position (u,v.,t.). To minimize the error, differentiating the

equation 3 with respect to A¢ and then equating to zero, A¢ is found as:

T wiAd, "

Bo="s

5.2 Multilevel B-spline interpolation

Let P be a set of points (u.,v.,t.) where each (uc,v.) is in the region . A

function is required to interpolate all the points in P. By using the equation
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1, we may not necessarily interpolate the points in P. The solution to the
problem can he to use sufficiently fine control lattice so that every point in
P can be interpolated without inferring with other points. But in that case,
the surface shows sharp local deformations near the points in P [9]. Thus,

multilevel B-spline interpolation is introduced to overcome this drawback.

In multilevel B-spline interpolation, there are m control lattices ®q, ®4,..., P,
which are overlaid over the region ) to derive the functions fo, fi,..., fm. hiis
defined as the spacing between control points of lattice ®; such that h; = 2h;4;.
We assume that hg and h,, are given. The coarsest spacing hg determines the
effect of an interpolated point on the resulting surface and the finest spacing

h., controls the precision to which the resulting surface interpolates the given

points.

Interpolation process starts from the coarsest level. First, the heights of the
control points on ®y are derived and then the surface fo which interpolates
the points in P is generated. The surface fo may only pass near the points
(u¢, Ve, o) in P leaving the deviation A%, = ¢, — fo(uc,v:). Then the next finer
control lattice ®, is used to obtain the surface f; which interpolates the points
(ue, v, A%,). Generally, the method is to derive the heights of the control
points on lattice ®; and then generating the surface f; which interpolates
(te, v, A¥1t,) where AF~'¢, = t, — S5} fi(ue,ve). This process continues to
the finest level ®,, until the maximum difference between the points in P and

the final surface f falls below a given threshold. The final surface is defined as

the sum of functions f;, that is, }°; f;(w) for each point w on .



Chapter 6

MULTIGRID VISUAL
SURFACE
RECONSTRUCTION

A control primitive’s original and final shape defines a set of displacements.
Namely, for a number of known (2, yx) positions on the image plane, there are
known displacements (Azy, Ayy) as defined by the original and final drawings.
We should construct interpolating functions Fi(zx, yx) = Az, and Fa(ag, yi) =
Ay to apply the image warp at each frame. Since the points (zy,yx) are

arbitrarily spaced on the image domain, the term scattered [10] is used.

The visual surface reconstruction stage should assimilate the scattered in-
formation provided by the various processes and fill in the gaps in a way that
the constructed surface is a unique, smooth and most consistent with the scat-
tered information. The thin-plate spline is one solution to our goals. Effect of
a particular primitive is global but the area most affected is between primitive
and its nearest neighbors. The thin-plate spline is C' continuous, certainly
smoother than a piecewise planar triangulated surface, and not so cuspy as a

Shepard’s interpolant [10].

The solution of the thin-plate spline requires computation on each point

and solving a linear system. It is extremely expensive when the number of

26
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points increases. Discretizing the problem, the solution time is dependent on
the strain energy in the plate and not on the number of the data points (beyond
a small initialization cost) [10]. The grid sizes are on the order of the image
size in pixel. To get the function value at each pixel, we make sure that at least
one grid element corresponds to each pixel. So the size of the grid is large and

we will use coarse to fine multiresolution method to calculate our intepolants

eficiently.

6.1 The Thin Plate Model

The thin plate model provides an intuitive interpretation of the surface recon-
struction problem. The model consist of a bounded planar region 2, an elastic
surface and a number of pins and springs. On the planar region Q2 (assume on
the zy plane), there are some pins in the z direction which resemble the depth
constraints and heights of them are proportional to the corresponding depth
constraint values. Since some of the measurements may be erroneous, an ideal
spring which pulls the plate’s surface toward it is attached to the tip of the
each pin as shown in figure 6.1. The springs provide that the thin-plate surface

passes near the constraints (pins) by leaving a small amount of deviation.

The reconstructed surface is then deflection function u(z,y) defined over §2

that represents the plate’s surface in its equilibrium position.

Figure 6.1: The thin-plate model
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6.2 Mathematical Basis of Visible Surface Re-

construction

Let the distance z = Z(x,y) (function of the image coordinates) be the distance
from the zy plane to the surface. Low level visual processes generate a set
of noise corrupted surface shape estimates (i.e. constraints) ¢; which can be
expressed as:

¢ =Lz, y) + € (1)
where £; is the measurement functional and ¢; is the associated measurement
error [22]. In the light of immediate definitions, visible surface reconstruction
can be stated as: reconstruct from available constraints c;, the depth function
Z(x,y) along with an explicit representation of its discontinuities over the vi-

sual field.

Let x be a linear space of admissible functions. Let S(v) be a stabilizing
functional which measures the (lack of) smoothness of a function v € k. Let
P(v) be a penalty functional which measures the discrepancy between v and

the given constraint. The energy functional is:

E(v) = S(v) + Plv) (2)

The solution u(z,y) to the problem which minimizes the energy functional,
characterizes the best reconstruction of the function Z(z,y) as the smoothest
admissible function v € « which is most compatible with the available con-
straints. u(z,y) should satisfy the Euler-Lagrange equation which is necessary
condition to get the minimum energy functional value by taking first variational

derivative é, of £(u) and equating to zero:

8.E(u) = 6.5(w) + 6, P(u) =0 (3)



CHAPTER 6. MULTIGRID VISUAL SURFACE RECONSTRUCTION 29

6.2.1 Controlled-continuity Stabilizers

Controlled-continuity stabilizer provides local control over the continuity of
the solution while preserving discontinuities. Controlled-continuity stabilizer
of order 2 in two dimensions suffices in constructing C! continuous surfaces.
C*' continuous surface has continuously varying surface normal. The formula

of the stabilizer is:

) =3 [ [ ole)r(@ ) ek 20, 402 )+ 1= 7(@, (03 +02)) dedy (4)

where p(z,y) and 7(z,y) are real-valued continuity control functions which get
a value in [0,1]. p and 7 constitutes an explicit representation of depth and
orientation discontinuities respectively over the visual field §2. In our work,
there is no orientation constraint and orientation discontinuity. Because we
have not an information about the orientation of the surface, we have only a

number of Az, and Ay, values as depth constraints at each (z,yx) on the Q.

The formulas of controlled-continuity stabilizer and penalty functional will
be given by considering both depth constraints and orientation constraints for
completion of the mathematical basis but note that only depth constraints will
be considered as only constraint when we discretize the problem. For more

information about orientation constraints please refer to [22].

The variational derivative of = in the interior of € is given by:

0? 20* 0? 0 0
6.S(v) = w(#vm) + W(My) + gzﬁ(ﬂvyy) - a—m(ﬂvx) - 55(77%) (5)

where p(z,y) = plz,y)7(z,y) and n(z,) = p(z,y)[1 - 7(z,)]

Since p and 7 determine the local continuity of u(z,y) at any point (z,y)

in §,

lim; (z,5)—0 Spr(v) locally characterizes membrane spline, which is C° surface

which needs only be continuous,

lim, (3 ,4)—1 Syr(v) locally characterizes thin-plate spline, which is C* surface

which is continuous and has continuous first derivative,
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limy(z y)—0 S,r(v) characterizes locally discontinuous surface.

Intermediate values of p and 7 locally characterize a hybrid C! thin-plate
spline under tension where p(x,y) is a spatially varying surface cohesion and

[l — 7(z,y)] is the spatially varying surface tension [22].

6.2.2 Penalty Functional

Penalty functional is the total deformation energy of a set of ideal springs
attached to the constraints. Scattered depth constraints determine the shape
of the elastic surface at equilibrium. The springs let the u(z,y) value to deviate
from the constraint at the point (z,y), to supply the equilibrium of elastic

surface.

surface orientation
normal [> 4 constraint

Figure 6.2: Local influence of an orientation constraint

Let us enumerate the constraints by ¢. If there is a depth constraint at

(=i, 9i),

Aoy = (@i ¥:) + €
is the function value at that point and ¢ € D. Otherwise, (z;,y;) is an orien-
tation constraint and p(s ) = v(ei,yi) + € is the £ component of the surface
normal and

Qo) = V(@0 ¥i) + € ,
is the y component of the surface normal at that point. If £ component exists

then ¢ € P and if y component exists then z also an element of ().
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The penalty function can be written as:

1
P(v) = 5 Z Qad; [U(mi’ Yi) — d(xi,yi)]z

ieD
1 ,
+§ Z A, [vw(xia yi) - p(:vi,yi)]z
iEP
1 .
+§ Z Gy, ['Uw(xia yi) - ‘.I(a:e,yz‘)]2 (6)
i€eQ

where ay; is the stiffness of the springs which control the depth constraints
and a;, and «y, are the stiffness of the springs coercing the surface normal as

shown in figure 6.2.

6.3 The Discrete Surface Reconstruction Prob-

lem

A closed form solution to the variational principle for visible surface recon-
struction is infeasible due to the irregular occurrence of constraints and dis-
continuities [22]. So, by using finite element model, local approximations can

be performed and the problem can be discretized.

6.3.1 Discretizing the Domain

The domain of the surface could be discretized by irregularly shaped elements,

but discretizing will follow a Cartesian sampling pattern typical of images.

The domain 2 is teselled into square element subdomains with sides of
length h. Nodes are located at corners of subdomains and the elements arce
interconnected at the nodes. The nodal variables (v* € S*) are displacements
of the plate at nodes. The element size h is adjustable so, one-to-one mapping
can be achieved between nodes and pixels on the image. The nodes are indexed
by (i,7) for i =1,...,N* and for j = 1,... ,N;L. A superscript h of a variable

indicates that this variable defined over the grid where the element size is b. It
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is a convenient notation for multilevel structure. The total number of nodes,

hence the number of nodal variables on a level will be N* = N* x N}

A
h h
0,1 NB
h
V_1,0
@------------- —— > *
V0,0 1,0
i
]
: h
1
1
1
i
1
@'0.-1

Figure 6.3: Unisolvent nodes for nonconforming element

A polynomial p¥ is required within the element domain. The completeness
condition, which must be satisfied, states that p® be at least a general full-
second degree polynomial [19]. When pP is chosen to be six-degree-of freedom,

full-quadratic polynomial, the requirement is satisfied. p¥ : £ — R is:
PP (z,y) = az’ + by’ + cay + da ey + f

The six parameters a to f are determined uniquely in terms of the elemernt
node displacements at a p®-unisolvent set of nodes which are shown in figurce

6.3.

In figure 6.3, v; ; € R denotes the node displacement and the parameters of

pl are as follows:
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_ 1
a = 5z(v1,0 — 2v0,0 + v_1,0)

b= #(Uo,l — 2v90 + vp —1)

_ 1
c= ,7(’01,1 — Vp,1 — V1,0 + Vo,0)

d= 2—11;('01,0 - U—l,o)
e = 35 (vo1 — vo,-1)

f = V0,0

Six degrees of freedom is insufficient to enforce C! continuity of v" across
interelement boundaries. But, since the square elements pass the patch test

[19], unique discrete solutions will converge to exact solution of the continuous

problem as the discretizing is made increasingly finer.

6.3.2 The Discrete Equations

Since discretizing is realized, the functionals defined for continuous problem

should be discretized in terms of nodal displacements. Partial derivatives at

node (i,j) are:

h _ B _ 1 /.h .. h h
v.’L‘.’L‘lE = Pgz = 2a = h_2(0i+1,j - ‘z’vi,j + vi—l,j)

hl . E —on_ L(h _ ok h
Oy |B = Py = 26 = 55 (vilj1 — 2055 + vi5)

hl . —_—nE _o,.__ 1(,h _ b b h
vglE = Py = 20 = 35 (Via i — Vijgr — Vi Vi)

h _ 1(.,h — h
vil? T h ~vi+1).f vivj)

wh — 1(..h __ah
vy = 3 (Vi1 vi;)
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By substituting these partial derivatives in equation 4, we can write the

discrete controlled-continuity stabilizer as:

) 1 9oyl p
S/’;T(v}) = EZ { [(vz+l i “vzl] + Ut 1 7)2

5]

+2(vfy g1 = O — Ol 0l)?
+(.'Uz!fj+1 zvh +vz] 1)
[J“—T ][(U1,+17 ,1)2

+(vij — vi)’])

Assuming a one-to-one mapping between nodes and image pixels, a con-
straint or discontinuity may coincide with a node on the grid, but not all

nodes be constrained or defined as a discontinuity.

Penalty functional will be given in the case of depth constraint only. For

the complete expressions, see [22]. The discrete form of equation 6 becomes:

1
PR =5 3 o (ol — by 7

(1,5)ED

The gradient of the discrete energy functional should be minimized to find

the surface u” at equilibrium,

VEL (uh) = V8L, (u) + VPHul) (8)

This formula is generally a nonlinear system of equations. For fixed p; ; and
7;; (preset discontinuities), the system reduces to a linear system of equations,
because £ (u") is a quadratic form in the u}; [22]. To find u", a linear equation
for each node (z, j) should be solved 31multane011sly. The npdal equation at an

h (0 L
arbitrary node (¢, 7) is given by (82’;,(11‘ ) 4 87;Z§f')) =0.
7 tJ
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Letting uk. = pt h? and =pt(l— 7' , the partial derivatives are:
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We can express VE" (u") as:

VEL (uh) = AMuh — fh =0 (11)

where A" € RVV is a matrix of coefficients and f* € RN and u" € RV are
column vectors. The linear term is f* = B¢, where those entries of ¢* € RN
which are associated with constrained displacements are the constrained values
¢. and the rest are 0. N” is the number of nodes on the grid where element
size is h, namely N* = NI x Nél. A" is a positive-definite, symmetric and
a sparse matrix. So the solution of equation 11 is easier than an ordinary
linear equation. To find a linear equation for each node (%, ), the coefficients
of u!;’s should be found by using the discrete controlled-continuity stabilizer
and penalty functions. But it can be tedious for nodes at the boundary of €2

and nodes near the discontinuities. So we use computation molecules to make

life easier.

6.3.3 Computational Molecules

The values of pf" ; and Ti}}j in the discrete case are assumed in the range [0, 1]. But
if we permit pf"j and Ti’fj to get only the values in {0, 1} indicating {presence,
absence} of discontinuities, suggests the following graphical interpretation of

nodal equations.

Fach term of equation 9 and 10 in the parenthesis may be visualized as
a basic computational molecule [22]. Molecules consists of atoms, indicated
by circles, arranged in the spatial grid pattern and containing coefficients of
the associated nodal variables. Figure 6.4(a) illustrates ten plate molecules
obtained from first component of equation 9 while 6.4(b) shows four membrane
molecules obtained from second component of equation 9. The depth constraint
molecule consists of one basic atom shown by figure 6.4(c). A double circle

indicates the node (¢, 7), central to the nodal equation.
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©

Iigure 6.4: Basic molecules (a) Plate molecules (b) Membrane molecules (c)

Depth constraint molecule

We have fifteen basic molecules at hand and then we will construct a com-
putational molecule for each (z,7) on the grid by molecular summation. Dis-
continuities require molecular inhibition. If there exists a discontinuity at node
(1,5) then p}; or ni; or both are zero, which inhibits the summation of cer-
tain molecules. Specifically, for a node (¢, 7), the corresponding computational
molecule is found by summing basic molecules, which have not an atom corre-
sponds to a discontinuity node on the grid or remain out of boundary, at the
central atom. If depth constraint exists at the node (7, j) then depth constraint

molecule is also added.
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Figure 6.5: Constructing the computational molecule for the node (i,j)

Figure 6.5 shows some basic molecules to be added and resulting computa-
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©

Figure 6.6: Biggest computational molecule

tional molecules as examples.

For example, the equation for the displacement at node (¢, j) in the interior
of () and away from discontinuities where computation molecule is shown by

figure 6.6 is:
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The terms involving f exist only if the node (%,7) has a depth constraint.

B is taken as 22 in the equations.

6.3.4 Solution of the Linear System of Equations

To find the reconstructed surface u" as the solution of interpolating operation,

the linear system of equations in the form of A"u" = f* should be solved.

The solution can be found as f*(A*)~' with a direct method. But the
time to find the inverse of a large matrix is very long. Another method is LL
decomposition. We will use a recursive method to find u”. The sparseness,
bandness and symmetrical structure of the matrix A is very convenient for a
recursive method. Gauss-Seidel relaxation, Jacobi relaxation and successive
overrelaxation method as well as gradient methods can be used to solve the
equation. In this work, first Gauss-Seidel relaxation method was used, but this
is very slow and not very prominent. Instead, Conjugate Gradient Method [18]
is applied. It is the most prominent iterative method for solving sparse systems

of linear equations.
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6.4 Multilevel Equations

To introduce multilevel relaxation theory, consider the large, sparse system
of linear equations A*u"* = f* where A" is nonsingular. The typical iter-
ative solution technique is used to obtain a sequence of increasingly better
approximations to the exact solution u" by applying a long series of relaxation

operations. This approach is inefficient because takes too much time.

One approach to increase the efliciency is to introduce L—1 similar problems
on increasingly coarser levels. Discretizing can be done in the usual way by in-
troducing a sequence of finite element spaces S™, ..., S" over the rectangular
domain 2 where L is the number of levels and hy > ... > hp are fundamental
sizes of the elements at each level. The hierarchy of problems is then given by

the sequence of L linear systems of the form
Ahkuhk — fhk

where 1 < k < L.

Element sizes are chosen as hy = 2hy41. The finer level is L** level and the
coarsest level is 1°¢ level. Fixing the element size of finest level, the element
sizes can be found on the coarser levels. Figure 6.7 shows a three level multigrid

structure.

The problem at the coarsest level AMu™M = fM can be solved quickly and
the solution ™ can be used as an initial approximation to the next level. Pro-
ceeding in this way to the finest level L, a single accurate solution is obtained
at the finest level. In the work of [21], interlevel operations are performed
between levels to correct coarser levels’ solutions. This is necessary to obtain
solutions at each level as accurate as the finest level. But in our work, we do
not need the solutions at the levels 1 to L — 1. So multilevel cycle algorithm

in [22, 19, 20, 21] is not used in our multilevel surface reconstruction problem.
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IPigure 6.7: Three level multigrid structure

6.4.1 The Multilevel Relaxation Algorithm

e Stepl- Solve the coarsest-grid equation
Compute by relaxation an approximate solution u™ to the coarsest-grid

equation AMuM = fM. Set | « 1.

o Step2- Set a new finest level
If I = L stop, otherwise increment [ and set the finest approximation on
)“)0

the new level to be (u = [hl_1=>h,uh'_1-

e Step3- Perform relaxation
Perform a relaxation iteration. If the norm of the current u™ is smaller

than a precipecified value goto Step2, else goto Step3.

The operation [y, =i, uh-1 is an interpolation operation from level [ — 1 to

level /. Bilinear interpolation [3] is used for this operation in our work.



Chapter 7

SAMPLE ANIMATED
FRAMES

7.1 Indefinite Feature Borders

In facial animation, finding features and tracking them correctly is the most
important part. In the study of Litwinowitcz et al. [10], actors in the video
sequences have a make up on their faces to highlight the important details
[12]. In this study, we do not have a video sequence recorded in a similar way.
Therefore, snakes find and track edges only according to the intensities and
lighting highly effects the intensities. In this work, generally synthetic facial
image sequences are used as the given sequence and their features are not def-
inite adequately. But the implemented second and third parts of the thesis,
namely finding the corresponding drawings and warping the image according
to these drawings work well. This is demonstrated in all of the example figures.
Animated drawings for the given image are consistent with the tracked draw-
ings of the given sequence. Similarly, animated images are warped according

to the changes of drawings from frame to frame.

In example 7.1, given sequence is obtained from a face maker program by
changing some parameters of the eyes and mouth. Features of the face are

not very definite, also some are visualized as incomplete. Because of the light

42
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source located on the right, right half of the lower lip is indefinite, so our snake
algorithm passes this part reaching through a nearest edge. Although feature
drawings of the sequence are not very correct, animated drawings are highly
consistent with them. Similarly, produced (animated) images show the effects
of deflections of animated drawings from the original drawings. Since only

the outer border of the mouth is selected, open mouth is not realized by the

animation.

wl00:mw3.rgb

xvX00:nm4.rgb

Figure 7.1: Tracked features, generated drawings on the original image and the
animated image sequence
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7.2 Which Features Should be Outlined?

To realize an animation most realistically, deciding the features to be specified
is highly important. It is shown by the following example. In figure 7.2, we
only want to map the change of mouth, and the corresponding mouths are
selected on both images. Animated image shows a deformation mostly on the
lower half of it. This part shrinks since the mouth does the same. If we could

outline the borders of the faces, it would give a better result.

The same problem arises also in example 7.3. The eyes, the mouth and
the left and right sides of the head are specified on the first frame and the
corresponding features are specified on the face of the woman. The first row of
figure 7.3 shows the frames of the given sequence. Left eyelid closes very slowly
from frst frame to third and mouth shrinks as kissing. Since motion should
be smooth between frames for optical flow motion estimation technique, big

changes between frames are not allowed.

While the features correspond to left eye and the mouth, they effect the
nearby regions on the face. There is a shadow on the left eye visualized as an
eyebrow but it is only a shadow on the face. While eyelid slightly closes, this
shadow remains on the same place. But, while corresponding eyelid is closing,
the eyebrow on it comes down by the effect of this eyelid. The same effect is

shown around the mouth, especially on the nose.

To overcome these unwanted effects, two curves, one for the left eyebrow
and the other for the right side of the nose is added to the existing features.
This is shown in figure 7.4. Because of the reasons mentioned in the previous
section, these newly added features are not tracked properly on the second
frame. But the improvements on the eyebrow and nose are visualized clearly.
In spite of the closing eyelid, eyebrow remained in its place. Nose is more
close to its original appearance. If the left side of the nose could be specified
properly, then more improvements could be achieved. Unfortunately, this part

on the given sequence is too bright to be caught by the snakes.
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7.3 Opening Mouth

In figure 7.5, an opening mouth is tracked with the feature specification of eyes,
mouth, left and right sides of the head. Inner edges of the lips are only outlined
to see the effect on the lips. First row shows the tracked head. First frame
is displayed twice the size to effectively draw the edges. Other two frames
are tracked automatically. Second row shows the animated drawings on the
original image. Third row shows the animated frames. The lower ends of the
side drawings of the head in the first row moved a little bit from the original
drawings. Therefore, corresponding side drawings of the given image reflect
this movements by deviating from the original lower ends. Since the warping
functions account for these changes, produced images show a deformation on
the neck. As a result, some incorrect movements of the features of the given
sequence produce some deformations on the animated frames. The mouth
is opened and lips moved accordingly in spite of determining only the inner

boundary of the lips. This is the natural consequence of using thin-plate splines.

7.4 Marylin Monroe Kisses

In figure 7.6, first row shows the given sequence with the tracked features. The
eyes, the mouth, the eyebrow and the two sides of the head are selected as
features. The first frame of the second row shows the corresponding features
which are drawn by hand on the original image. Other three frames show
the generated drawings which are produced according to the corresponding
drawings of the first row on the original image. The changes in the drawings
from one frame to another reflect the motion of given sequence. The left eye
closes from one frame to the next slightly, the mouth shrinks as kissing and the
eyebrow raises slightly. The side drawings of the head remain as they are. The
third row shows the animated images. The first frame 1s the original image
and the other three are the warped images. These images reflect the facial
expressions of the given sequence. The left eyebrow 1‘ai"’ses, the left eye closes

slightly and the mouth shrinks as kissing.
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Figure 7.2: Generating a new frame by only specifying the mouths
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[cajxv.j - in] ITH™1*iP]

Figure 7.3: Change of the left eye and the mouth
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Figure 7.4. Adding two new features to the features of previous figure
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Figure 7.5: Opening Mouth
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Figure 7.6: Marylin Monroe is kissing

50



Chapter 8

CONCLUSION

In this work, 2D facial animation controlled by drawings is presented. By align-
ing curves, lines and points with features (salient objects on a face), intuitive
controls for image warping are constructed. Motion is basically obtained by

animating drawings and applying image warp at each frame of the sequence.

A sequence of facial images which are taken from a video sequence of the
same face or synthetic facial image sequences are taken and a still image of
another face to be animated is selected. This face image is animated with the

same expressions as those of the given sequence.

In the first step, salient facial features are outlined on the first frame of
the sequence. The selection of these features are very important. Besides the
major features that we want to animate, some auxiliary features should also
be specified. The change of a feature mostly affects its nearest neighbors but
its eflect 1s global. This is the typical characteristic of thin plate splines which

are used in image warping.

To extract the motion in video sequence, features which are indicated on the
first frame should be tracked. This sequence may include hundreds of frames
and outlining each feature on each of them manually is very time and effort
consuming. Also, consistency may not be guaranteed. Therefore, automatic
tracking of features is strongly necessary. In automatic tracking, for end-points

of the features block matching, and for non end-points, optical flow methods
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and then snakes are used to find the real places of the features on the next

frame.

After corresponding features are specified on both images, their control
points should be mapped. This mapping can be one-to-one or many-to-one.
One-to-one mapping is applied in this work. Since the corresponding features
are drawn by different number of control points, a preprocessing operation
should be done to equate them. Each corresponding drawings are linearly di-
vided into a preset number. For each feature drawing, a different number is

set according to its length.

After mapping the features of the first frame to the given image by using
multilevel B-Spline interpolation, a function which maps each pixel of the first
frame to a pixel of given image is found. By using this function, for each tracked
frame of the video sequence, a corresponding animated feature drawings of the

image can be produced.

The last step is to find a warp function by multigrid surface reconstruction
method for each produced drawings that corresponds to a frame of the video
sequence by using original drawings specified on the image. Warp function is
hasically a pair of (Az, Ay) displacement for each pixel on the original image.
By using these displacements, a new image is constructed which shows the

same expression as the corresponding video frame.

This work encourages the reuse of animated motion by gathering facial mo-
tion sequences into a database. For any single image, a sequence can be selected
and animation can be realized. New features can be added at any time to both
images (first frame and given image) without modifying the current mapping.
By using motion sequence of a human face, non-human or synthetic faces can
be realistically animated in cartoons and films. Similarly, by the motion se-
quence of simple characters, more complex characters can be animated. As a
new consideration, by using these motion sequences, some objects other than a

face can be animated by aligning some of their parts with features of the faces.

Some future improvements can be proposed related to this work. Multilevel
surface reconstruction algorithm takes too much time, so it is the bottleneck

ol our animation system. Parallel implementation of this part greatly reduces
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the total animation time.

For mapping corresponding features one-to-one mapping is used in this work

but, many to one mapping may be more convenient and produce better results.

Extra information besides the given image to be animated helps to produce
more realistic results. For example, if a neutral face image is given which will
be animated, mouth may be opened at any animated frame. In that case,
to produce realistic images, teeth should be visualized. Small image parts
other than the neutral face could be very useful to produce the more realistic

animations.
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