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ABSTRACT
ANIMATING FACIAL IMAGES WITH DRAWINGS

Gamze Dilek Tiinali
M.S. in Computer Engineering and Information Science

Supervisor: Prof. Biilent Ozgüç 
July, 1996

The work presented here describes the power of 2D animation with texture 
mai^ping controlled by line drawings. Animation is specifically intended for 
facial animation and not restricted by the human face.

We initially have a sequence of facial images which are taken from a video 
sequence of the same face and an image of another face to be animated. The 
aim is to animate the face image with the same expressions as those of the 
given video sequence.

To realize the animation, a set of frames are taken from a video sequence. 
Key features of the first frame are I’otoscoped and the other frames are automat­
ically rotoscoped using the first frame. Similarly, the corresponding features of 
the image which will be animated are rotoscoped. The key features of the first 
frame of the sequence and the image to be animated are mapped and using 
cross-synthesis procedure, other drawings for the given image are produced. 
Using these animated line drawings and the original image, the corresponding 
frame sequence is produced by image warping. The resulting sequence has the 
same expressions as those of the video sequence.

This work encourages the reuse of animated motion by gathering facial mo­
tion sequences into a database. Furthermore, by using motion sequences of 
a human face, non-human characters can be animated realistically or com­
plex characters can be animated by the help of motion sequences of simpler 
characters.

Key words: facial animation, facial expression, snakes, active contour mod­
els, multigrid relaxation, multilevel B-Spline interpolation.



ÖZET
YÜZ GÖRÜNTÜLERİNİ ÇİZİMLER YARDIMIYLA

CANLANDIRMA

Gamze Dilek Tunalı 
Bilgisayar ve Enformatik Mühendisliği 

Yüksek Lisans
Tez Yöneticisi: Prof. Bülent Özgüç 

Temmuz, 1996

Bu çalışma, çizimlerin denetiminde doku kaplama yöntemini kullanarak, iki 
boyutlu animasyonların gerçekleştirilmesini içerir. Çalışma özellikle yüz ani­
masyonunu amaçlamaktadır ve yüzler insan yüzü olmak zorunda değildir.

ilk aşamada, aynı yüze ait bir video dizgisinden alınmış yüz görüntüleri ve 
canlandıralacak başka bir yüze ait bir görüntü kullanılır. Amacımız, verilen 
tek kare yüz görüntüsünü, video dizgisindeki yüz ifadeleriyle canlandırmaktır.

Bu çalışma sayesinde, canlandırılmış sıralı yüz hareketlen bir veri tabanında 
toplanarak, verilen herhangi bir yüz için istenilen hareket sırası seçilerek, can­
landırma gerçekleştirilebilir. Daha da önemlisi, insan yüzüne ait sıralı yüz 
hareketleri kullanılarak, insana ait olmayan yüzler gerçeğe çok yakın bir biçimde 
canlandırılabilir. Aynı zamanda, karmaşık karakterler daha basit karakterlerin 
hareket sıraları yardımıyla canlandırılabilirler.

Anahtar sözcükler: yüz animasyonu, yüz ifadesi, snakes, aktif ayırıcı çizgi 
modelleri, çok katlı ızgara interpolasyonu, çok seviyeli B-Spline interpolasy-
onu.
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Chapter 1

INTRODUCTION

In this study, 2D facial animation is performed which is controlled by line 
drawings. By aligning curves, lines and points with features in an image, 
intuitive controls for image warping are constructed. Deformation of an image 
can be accomplished by applying the warp defined by the original drawing 
and any other drawing of the same features. Animation is done simply by 
animating drawings and applying the image warp at each frame. The ability 
of mapping animation from one image and a set of features to another gives 
a power to animcited sequences and enables the reuse of animated motion for 
any single face imcige.

Initially, we have frames of a video sequence of the same face and an imcvge 
of another face that is to be animated. The goal of our work is to animate a 
given face image with the same expressions as those of the given video frames. 
As the first step, we outline some features which are of interest by hand on the 
first frame of the sequence, and then carry them to their real places by the help 
of snakes. Features are mouth, eyes, nose, eyebrows, etc. The face need not be 
human face for both images. For each feature on the first frame, we specify a 
corresponding feature on the image to be animated. Features can be consid­
ered as a collection of sequenced points on the image plane. For each feature 
correspondence, we have a set of point pairs. Using the cross-synthesis method 
explained in [14], we get an interpolation function which gives a pixel position 
on the image to be animated for each pixel on the first frame. Litwinowicz used

1



CHAPTER 1. INTRODUCTION

multilevel surface reconstruction method to find the interpolation function, but 
it is slow. Furthermore, there will be no discontinuity in the function, therefore 
using this method is not advantegous. Instecid, multilevel B-spline interpola­
tion is used, which is faster and simpler than multilevel surface reconstruction 
method in this respect.

After the features are specified on the first frame, places of these features on 
the other frames in the sequence should be tracked. This process is performed 
automatically using two motion estimation techniques. For the end-points of 
the features, block matching technique and for the interior points, optical flow 
method are used to automatically find appropriate places of the features on 
the next frame.

Since we have acquired the interpolation function which gives pixel posi­
tion correspondences of two initial images and tracks each feature on the video 
frames, a similar animated drawing sequence can be produced for the image 
to be animated. To produce the full set of animated images, we need a warp 
function for each animated drawing frame. For a number of known {xk,yk) 
positions in the image plane which are control points of the features, we have a 
set of known displacements (Aa;/., Ayk) as defined by the original and produced 
feature drawings. To warp the image according to the drawings, we need two 
interpolation functions Fi{xk,yk) — Axk and F2 (xk,yk) = Ayk· First func­
tion is a smooth interpolating function for the x-displacements for an entire 
image, and the second is similarly for the y-displacements. In this case, some 
discontinuities can be pointed out by the user for some features, therefore mul­
tilevel surface reconstruction method is more convenient. For each produced 
animated drawing frame of the sequence, a warp function is computed by using 
the original drawings. Then the warp functions Fi and F2 are applied to the 
still image for animation.

To find the mapping between corresponding feature drawings, multilevel B- 
spline intei'polation] for image warping, multilevel surface reconstruction meth-

II

ods are used. Litwinowicz used multilevel surface reconstruction method to 
find the mapping between corresponding feature drawings. Instead, multilevel 
B-spline interpolation is used in our work, which is faster and simpler than 
the multilevel surface reconstruction method. To specify features on an image
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snakes, of Williams and Shah [24] are applied and these features are automat­
ically tracked by applying block matching and optical flow methods.

This animation system is implemented in C, under Irix. User interface 
design is realized by using Motif combined with graphics library of SG Iris 
Indigo [8].

The organization of the text is as follows. Chapter 2 presents the most 
recent resecirch that contribute to the study of facial animation. Some different 
techniques in animation studies are presented.

Chapter 3 explains the specifications of features on a face. Major studies 
in this area are compared, and the most advantegous one, Greedy algorithm is 
broadly explained.

In chapter 4, automatic featui-e tracking in a sequence of frames is explained. 
Block mcitching and optical flow methods are briefly presented.

In chapter 5, B-Spline interpolation is explained briefly.

Chapter 6 presents multigrid visual surface reconstruction method used in 
scattered data interpolation of warping step. After the mathematical basis is 
¡Dresented, discretization of the problem follows and finally multilevel equations 
are given.

Chapter 7 gives some example animation sequences produced. By using 
these examples, the important factors that effect our facial animation work are 
explained.

Chapter 8 gives a conclusion of the work.



Chapter 2

BACKGROUND

Traditional animation carries all action by drawings - points, lines and curves 
- defined at arbitrary instants. The work described here takes much of the 
motivation from the technique of traditional animation where interpolation 
defines the full sequence from the sparse keys. In our work, drawings on the 
objects or characters define the keys and an interpolation in space gives the 
full action of them on the image. The interpolated motion of a sequence of 
keyframe drawings define spatial deformations which may be applied to other 
images. Therefore, this technique encourages the reuse of animated motions. 
Feature-based deformations controlled by curves, lines and regions enable the 
animation of complex images and forms.

Animating drawings by their features is first studied by Litwinowicz et al. 
[11] by using a mesh of bilinear Coons patches [4]. Coons patches are inexpen­
sive to evaluate, but they require manual division of the image into a mesh and 
all of the patch boundaries should be animated to control the motion. There­
fore, it is time consuming and requires a substantial manual effort. Specifying 
and animating only the features of interest is more general and easier.

Deformations based on tensor-product splines [16, 3] permit an animated 

skeleton of linked line segments to drive the animation by polygonal tessella­
tion of regions around the bones (line drawings) of the skeleton. An alternate 
parameterization has been described by Wolberg et al. [25] which is based on
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skeleton derived from the shajDe of the image region to be animated. The skele­
ton is obtained by successive thinning operations on the original shape. The 
works of Sederberg, Farin and Wolberg [16, 3, 25] are based on the skeletons 
and bones of them. But there is no guarantee that bones will align with the 
features the animator is interested in controlling directly.

More recent skeleton animation research has tried to use smoother interpo- 
Icition functions. Van Overvald et al. [23] has improved the skeleton animation 
technique. He developed a physical simulation which is calculated for a simple 
skeleton and then applied to a more complex model by a distance-weighted 
force field.

The interpolation function used is equivalent to Shepard’s interpolation that 
has been developed for terrain surfaces [17]. Beier and Neely [2] have also 
used Shepard’s interpolation for image warping but they have also added line 
segments as control primitives to the animation. Since the lines can be aligned 
with edges in the image, the metamorphism was termed feature based. Since a 
line can do the work of dozens of points, it offers a natural and intuitive means 
of interpolating local orientations.

Harder and Desmarais introduced thin-plate spline surfaces to computer 
aided geometric design [5]. By the use of finite-element methods, smooth sur­
faces have been computed over the scattered data, for CAGD purposes by 
Pilcher et al. [15]. Smooth scattered data interpolation is analogous to physi­
cal surfaces and widely used in vision and image reconstruction. Fast numerical 
methods [22] supplied the demands of rapid processing for practical vision sys­
tems. Our animation system utilizes multigrid finite-difference evaluation of a 
thin-plate spline for animated deformations. This approach extends the feature 
primitives to curves and solid regions.

The most recent related work has been carried out by Litwinowicz et al. 
[14]. In that case, an actor’s facial expressions are captured from video by the 
help of fluorescent spots on the actor’s face. By these spots, motion control 
points are tracked. The acquired motion control points are spatially mapped 
to the synthetic face, giving new control points which are used to animate the 

synthetic face.



Chapter 3

FEATURE SPECIFICATION

After deciding on the features that are important for our animation sequence, 
they should be localized on the image accurately. Initially they are outlined 
by hand and then snakes are applied to carry them to their real places. To 
effectively use snakes to track edges on an image, a preprocessing operation 
should be 2:>erformed. Бог this reason, Sobel [1.3] or another edge enhancement 
filter is run over the image. This produces a binary image which is white where 
the filter has detected an edge, and black otherwise. Then, the gradient [13] of 
the enhanced image is calculated to determine in which direction is the nearest 
edge.

A snake is cin energy minimizing-siDline guided by external constraint forces 
and influenced by image forces that pull it toward features such as lines and 
edges. Snakes are active contour models. They lock onto nearby edges, local­
izing them accurately.

An energy function, whose local minima comprise a set of alternative solu­
tions, should be designed. Selection of the answer from this set is accomplished 
by the addition of some energy terms which push the model towards the desired 
solution. The solution is an active model that falls into the desired solution 
when placed near it. A snake always minimizes its energy functional until 

reaching the desired solution, so it exhibits a dynamic behaviour. Since it 
slithers like a snake while minimizing its energy, it is called as snake.



A snake has internal contour forces, external forces and image forces which 
are composed according to the desired behaviour of the contour. Internal spline 
forces serve to control the smoothness of the contour while external and image 
forces î ush the snake towards salient image features. Image energy term can 
include three different energy functionals which attract a snake to lines, edges 
and terminals. The total image energy can be stated as a weighted combination 
of these functionals according to the nature of the desired features. External 
forces can be exerted by the user to give direction to the contour in the desired 
way.

Kass, Witkin and Terzopoulos [7] have developed the snakes (Active Con­
tour Models). The problems of the method of Kass, Witkin and Terzopoulos 
are numerical instability and a tendency for points to bunch up on strong por­
tions of an edge contour. Amini et al. [1] has pointed out these problems and 
proposed a new algorithm using dynamic programming. This method is more 
stable and allows the inclusion of hard constraints but it is slow and having the 
complexity 0{nrrP) where n is the number of control points and m is the size of 
the neighborhood in which a point can move during a single iteration. Another 
method, a greedy algorithm for active contours was proposed by Williams and 
Shah [24]. This new method retains the improvements of older methods and 
also brings a new improvement, lower complexity. The complexity of the algo­
rithm is 0{nm). The control points are more evenly spaced, so the estimation 
of curvature is more accurate.

CHAPTER 3. FEATURE SPECIFICATION 7

The greedy algorithm is stable, flexible and allows hard constraints and 
runs much faster than the dynamic programming method. In addition to the 
other methods’ internal spline energy and external energy terms, it includes a 
continuity term and a curvature term in the total energy to be minimized.
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3.1 Minimum Energy Contours

3.1.1 Snakes of Kass, Witkin and Terzopoulos

Kass, Witkin and Terzopoulos [7] has developed an active contour model called 
snakes. In this method, controlled continuity spline can be operated upon 
internal control forces, image forces and some external forces applied by an 
interactive user or a higher level iDi'ocess.

In their work, a contour was represented by a vector u(s) =  {x(s),y{s)) 
where s is the parameter denoting the arc length. They defined an energy 
functional and described a method to find the local minima of the functional 
as the solution. The functional is:

Esnake [  ( (̂■5))c /s  f  Eifif(^v(^S^  ̂ E{jjiQ,gQ
Jo Jo

(v{s)) +  Econ{v{s))ds (1)

Eint represents the internal energy of the snake due to the bending or dis­
continuities. Eimage IS the image forces applied by some features like edges, 
lines and terminals in the image. Econ is the force applied by the external 
constraints.

Internal energy Eint is written as:

( 2)

Equation 2 contains a first order term which will have large values when 
there is a gap in the curvature and a second order term which will be larger 
where the curve is bending rapidly. The relative sizes of a and ¡3 can be chosen 
to control the influence of the corresponding constraints. The minimum energy 
contour was determined by the variational calculus techniques.

In this method, forces can travel large distances along the contour, allowing 
faster convergence. On the other hand, image forces and constraints should 
be differentiable in order to guarantee the convergence. So it is not possible 
to include hard constraints such as minimum distance between points. As 
another drawback, intermediate results are not meaningful. The contour does 

not smoothly approach the minimum value.



3.1.2 The Solution of Amini

Amini et al. has iDointed out some problems of snakes and proposed a new 
method which uses dynamic programming. This work introduced hard con­
straints that cannot be violated besides the continuity constraints inherent to 
the problem which are called soft constraints.

This method is numerically stable but slow, being 0{nrrP) and memory 
requirements are large, being 0{nm^) where n is the number of points and 
m is the number of possible locations to which a point may move in a single 
itei'ation.

CHAPTER 3. FEATURE SPECIFICATION 9

3.1.3 Advantages and Disadvantages Related to Both 
Methods

Besides the advantages and disadvantages specific to the methods themselves 
which are mentioned in the previous sections, there are some advantages and 
disadvantciges related to both methods. Advantages of snakes of Kass and 
Amini are:

• A closed contour which is placed around an object outlines the entire 
object, rather than following textui’e edges on the surface of the object.

• Higher level processes can determine the values of external constraint term 
and the values of a and ¡3. For example, corners can be allowed at certain 
points on the contours.

Disadvantages are as follows:

• a and (3 are used in both methods but there is no information about the 

values of them. It is apparent that their values are critical and must be 

chosen carefully to obtain meaningful results.
II

• If ^ is constant, corners will be not well defined. If points are far apart 
and a corner falls between these, there will be a problem on the contour.
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• |us(s)p in equation 2 is approximated as

|us(s)| ~  (í/¿

This is equivalent to minimizing the distance between the points and 
causes the contour to shrink.

• According to the minimization algorithm, points can move along the con­
tour as well as perpendicular to it. This allows the points to bunch up in 
segments of the contour where the image forces are higher. Amini et al. 
used hard constraints to overcome this problem.

3.2 Greedy Algorithm

A greedy algorithm is presented by Williams and Shah [24] which allows the 
inclusion of hard constraints as described by Amini et al. [1] but much faster 
than their O(nm^) algorithm, being 0{nm). This algorithm allows a contour 
with controlled first and second order continuity to converge on an area of high 
image energy, in this case edges.

The algorithm is not guaranteed to give a global minimum but the ex­
perimented results produced by Williams and Shah were comparable to other 
methods.

The energy functional which will be minimized is:

E =  J(̂ (xî Ŝ Econi T ß(̂ )̂Ecurv T (3)

First and second terms correspond to Eint in equation 2. The last term mea­
sures some image qucintity such as edge strength or intensity.

This method, as the methods of Kass and Amini, is iterative. At each 
iteration, points in the neighborhood of the current point are examined and 
the value of the energy function is computed at each of them. Then, one of the 
points in the neighborhood, giving the smallest energy val'ue, is chosen as the 
new location of the current point. For example in figure 3.1, the neighborhood 
of point Ü2 consists of 9 points (pixels) including itself. If the value of the



CHAPTER 3. FEATURE SPECIFICATION 11

energy function is smallest cit v'2 , then new location of the point at V2 is chosen 
as the point

The values of a and 7 are considered as 1 and 1.2 in the study, so the 
image gradient will have slightly more importance than the contunity term to 
determine where the points on the contour move. ¡3 will be 0 or 1 depending 
upon whether a corner is assumed at that location.

Determining the first term Econt of equation 3 presents some difficulties. If 
we Li.se \vi — Vi-iŸ as Kass and Amini, contour tends to shrink while minimizing 
the distance between the points. It also contributes to the problem of points 
bunching up on strong portions of the contour. A term encouraging even 
spacing will reflect the desired behaviour of the contours. In this case, the 
original goal, first order continuity is still satisfied. So the algorithm uses 
the difference between d, avercige distance between points, and \vi — Ui_i|, the 
distance between the points: d — \vi — Ui_i|. By this formula, points having 
distance near the average will have the minimum value. The value is normalized 
by dividing by the largest value in the neighborhood to which the point may 
move, having a value in [0,1]. At the end of each iteration, a new value of d is 

computed.

The second term Ecurv in equation 3 is curvature. Since the continuity 
term causes the points to be relatively evenly spaced, |ui_i — 2vi +  t’i+ip is a 
reasonable estimate of curvature. This formulation has also given good results 
in the work of Kass and Amini. Like the continuity term, curvature term is 
also normalized by dividing the largest value in the neighborhood, giving a 

value in [0, 1].
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The third term Eimage is the image force which is the gradient magnitude. 
Gradient magnitude is computed as eight bit integer with values 0 — 255. There 
is a significant difference between 240 and 255 as gradient magnitudes. So 
normcdizing the value by 255 will not reflect the differences. Thus given the 
magnitude (mag) at a point and the maximum (max) and minimum (min) 
gradient in each neighborhood, normalized edge strength term is computed as 
(min — mag) I (max —min). This term is negative so points with large gradient 
will have small values. If the magnitude of a gradient at a point is high, it 
means that, the point is probably on an edge of the image. If (max — min) < 5 
then min is given the value (max — 5). This prevents large differences in the 
value of this term from occurring in areas whei'e the gradient magnitude is 
nearly uniform.

At the end of each iteration, the curvature at each point is determined 
and if the value is a curvature maximum, then ¡3 is set to 0, otherwise it 
remains 1. This step is a primitive high level process giving feedback to the 
enei’gy minimization process. Curvature is computed as ||||̂ — where
Ui = (xi -  Xi-i,yi -  iU-i) and Ui+i =  (a;i+i -  Xi,iji+i -  Hi). Then, nonmaxima 
suppression is performed on curvature values along the contour and curvature 
maxima points having curvature above a threshold cire considered as corner 
points for the next iteration. A further consideration is that the gradient 
magnitude must be above some minimum value. This prevents corners from 
forming until the corner is near an edge.
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Pseudo-code for the greedy algorithm is as follows:

Initialize ai and (3i to 1 and 7*· to 1.2 for all i. 
do

/* loop to move points to new locations */ 
for i = 0 to n

Emin — B I G  

for j  = 0 to m — 1

E j  — ^{EcontJ "I” l^iEcurvJ "l· 'yiEimageJ

if Ej <C Emin then 
Emin — E j  

jmin = j
Move point Vi to location jmin 
if jmin not current location, ptsmoved+ = 1 

/^process determines where to allow corners in the next iteration */ 
for i = 0 to n — 1

Ci = \ui/\ui\ -
for z = 0 to n — 1

if (cj· > Cj_i and Ci > Cj+i /*if curvature is larger than neighbors */ 
and Ci > threshold! /* curvature is larger than threshold */
and mag{vi) > threshold2 /* edge strength is above threshold*/ 

then /3i — 0
until ptsmoved < thresholds

The threshold for setting /3 — 0 was 0.25, the threshold for the minimum 
gradient magnitude before a corner would be marked was 100 and the final 
threshold which is the number of points move to determine the convergence 
was a small nonzero value (2 — 5). These values have given quite well results.



Chapter 4

AUTOMATIC FEATURE 
TRACKING

Some robot vision, animation and medical applications require feature tracking 
in video sequences. In our work, we focus on tracking edges in video sequences 
corresponding to facial features for animation purposes. By tracking an actor’s 
facial expression, various computer animated characters can be driven.We have 
a sequence of facial images, so the motion is traced in 2D by the method of [12] 
and the animations are morphing of 2D images, but with sequences produced 
by two or more cameras, the motion can be tracked in 3D.

The features which are important for the animation purposes are outlined in 
the first frame by hand. Then, by using active contours method [7] mentioned 
in chapter 3, they are carried to their exact place on the image. For the other 
frames of the sequence, automatic edge finding process is applied to track the 
edges specified on the first frame.

During the edge finding process for each frame, the endpoints of snakes 
generally tend to move away from the corresponding features in the first frame. 
According to the motion of the features, they can slide back and forth along an 
edge. So, snakes that have a length preserving constraint are of little use for our 
work. Furthermore, if a feature moves far enough from one frame to another, 
a snake may switch edges. For instance, when you are viewing the video of a

14
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talking person, you can see that the lower edge of the upper lip visually replace 
the upper edge of the lower lip from one frame to another. Without motion 
prediction, a snake trying to track upper lip will suddenly find itself tracking 
the lower lip. Because of these problems, intensive user interaction may be 
necessary to extract motion from video sequences.

To track and position the endpoints of a snake, Litwinowitcz et al. [12] 
introduced the use of block matching technique for the first time. After block 
matching technique, the endpoints of a snake are held in place and non end­
points are moved by optical flow method and then energy minimization process 
takes place. This technique avoids the sliding of a snake back and forth between 
frames.

As to the second problem, a snake can find an incorrect edge due to the 
large motion between frames. Litwinowitcz et al. [12] proposed the optical 
flow technique for the first time. Optical flow techniques generally do not 
produce perfect results for the motion of edges. However, after optical flow 
method is applied, energy minimization method can find the correct place as a 
last step. Thus, optical estimation is used to push a snake near to its desired 
edge.

4.1 Motion Estimation Techniques

4.1.1 Block Matching

Block matching is commonly used in motion analysis to find the correspon­
dences among local image patterns in a sequence of images. The first step in 
our tracking process is to find the new locations of feature end-points based 

on their positions in the previous frame. The basic idea is to try to find the 
rectangular block, which is centered around the feature in the first frame, in 

the second frame.

The algorithm can be summarized by two figures. Figure 4.1(a) shows the 
displacement of an object from one frame to another. In figure 4.1(b), the cross
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indicates a feature end-point, the inner rectangle indicates block of best match 
around the feature point and the outer rectangle indicates a search area. The 
basic idea is to search the block of best match on the next frame within the 
specified search area.

(a) (b)

F'igure 4.1: Basic algorithm of Block Matching

By experimentation, 13x13 block size and 9x9 search area size are found 
optimal by [12]. These sizes worked well for their video sequences.

In order to find the best match between blocks within the search area, a 
similarity measure is needed:

C{i, 6) = J2 ^m F[f(i +  m)j * F[h{i + m + (̂ )j ( 1)

The general correlation formula C is computed between a pattern in /  cen­
tered at point i and a pattern h centered at (z -|- ^). The size of the pattern is 
determined by a window function W. A preprocessing operator F  is applied 
to both reference frames. The comparison operator * can be any operator to 
find the similarity between two reference frames.

Known comparison operators that measure similarity can be classified as ab­
solute differences and squared differences. These tend to identify only identical 
images and changes of reflectance and illumination highly effect the measure. 
Correlation methods are used to measure similarity on the bcisis of pattern 
characteristics that are invariant over motion. Simple correlation measures 

are:
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• Direct Correlation which uses simple multiplication operator as the com­
parison operator.

C{i,^) = Wmf{i +  m)h{i + m + 6) ( 2)

Gives a high peak if patterns are identical but gives wrong results if mean 
values between blocks differ and therefore the maximum value may seldom 
be the point of exact match.

• Mean Normalized Correlation which eliminates the principal source of 
errors of direct correlation by subtracting the mean value of the block 
being considered ( /  and h respectively).

Cm {C d) = Y^Wm (f {i  + m )~  / ( i ) )  (̂ h{i + m + 6 ) -  Ji{i -f ¿)) (3)
m

The mean value of an MxN  block b is:
M N

b =
MN k=l1=1

where E(k,l) is the intensity value at jDoint {k,l) on the frame.

• Variance Normalized Correlation looks like equation 3 but in this case 
variance {Var) of the pattern is taken into consideration. It is very costly 
to compute but, it can be considered as an optimum measure since it gives 
1 if exact match exists, otherwise gives a value between 0 and 1.

^  f { i ) ) (h { i  + m T d ) - h { i  + 8))
C'v(г, i )  = ------------ ^ ^  (4)

^JVarf{t)yJVarh{i -|- 8)

The variance of an MxN  block b is:

, M N _ 2

k=l1=1

Variance Normalized Correlation method is used in this work since it pro­
duces more correct results.
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4.1.2 Optical Flow

The next step in the tracking process is to automatically push non end-points 
of a snake to wherever the corresponding image edge is moved by using optical 
flow technicjue. Optical flow technique was first developed by Horn and Schunck 
[6]. In feature tracking, the usage of optical flow method is first proposed by 
Litwinowicz et al. [12]. It was very convenient for feature trcicking process, 
because it is independent from the number of snakes and the total number of 
snakes’ control points. Initially, block matching was considered by Litwinowicz 
for all control points but accuracy could not be guaranteed and was much 
more time consuming. Optical flow teclmique is based on the assumption that 
illumination is constant and occlusion can be ignored, that is the observed 
grey-level changes are only due to the motion of underlying objects. In this 
case, it is evident that:

E(x, y, t) = E{x +  Ax, y -b Ay, t At) 

where E is the image brightne,ss at point {x,y)  in the image plane at time t.

When the pattern moves, the brightness of a particular point in the pattern 
is constant, so that

dt

Using the chain rule for differentiation,

d E ^  ^  -  n
dx dt ^ dy dt ^ dt

If we let u — dxjdt and v = dyfdt as velocities in the x and y direction, then 
we have a single linear equation with two unknowns u and v:

ExU -|- EyV T Et — D

The flow velocity (u,v) cannot be determined by one equation. The second 
constraint will be utilized is smoothness constraint. This constraint is necessary 
because if every point of the brightness pattern can move independently, we 
cannot recover the velocities. One way of expressing the smoothness constraint 
is to minimize the square of magnitude of the gradient of the opticcil velocity;
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2 2 j .dv  ̂ dv ^

Another measure of the smoothness of optical flow field is the sum of the 
squares of the Laplacians of the x and y components of the flow. Laplacians 
of u and V are defined as:

_ 2  d'̂ u d^u 2
V^¿ =  7T-X + and = +dx“̂ dy"̂  dx'̂  dy'̂

We have used the square of the magnitude of the gradient as the smoothness 
measure in our work.

Derivatives of brightness should be estimated from the discrete set of avail­
able image brightness measurements. Horn and Schunck proposed an estimate 
of Ex,Ey,Et at a point in the center of a cube shown in figure 4.2 formed by 
eight measurements. Each of the estimates is the average of four first differ­
ences taken over adjacent measurements in the cube.

Figure 4.2: Horn and Schunck estimate of Ex, Ey and Et-

Ex ~  — Eiĵ h -)- Ei îj î îc Ei îj^k

— Eij^k+i +  — Eiĵ î ĵ k+i]·,
E y  ~  4{Ei-kl,j,k EiJ^k "k E 'i+ lJ-|-l,/c  Eij^-i^k

+Ei+ij,k+i -  Eij,k+i +  Ei -̂ij+i^k+i -  Eij+i^k+i}·,

Et  ~  \{Ei,j,k+i  -  Eij^k +  Ei+ij^k+i -  Ei+i,j,k

,fc+l Eij4-l,k 4” Ei4-ij4.î k-\-l Ei4-ij4-i^k} ̂

Here the unit of length is the grid spacing interval in each frame and the 

unit of time is the image frame sampling period.
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Also, Laplacians of u and v are needed to approximate:

K{uiĵ k -  Uij k̂) and n{vij,k ~ Vij k̂)

where the local averages u and v are defined as follows:

uhhk — l{ni-l,j,k +  +  Ui+iĵ k + Uij-i^k}
+  +  ni-lj+l,k +  ^¿+1J+1,A: +  г<г·+l,i-l, -̂},

+  ^¿J+1,A: +  Vi+iJ^k +  Vij - i^ k}

+  ̂ { v i - l , j - l , k  +  Vi-iJ+i^k  +  'У¿+ıJ+ı,̂ . +

1/12 1/6 1/12

1/6 -1 1/6

1/12 1/6 2

Figure 4.3: Mask shows the suitable weights.

The proportionality factor k is 3 with these neighboring weights and the 
assignment of weights to neighboring points are shown in figure 4.3.

Now, the problem is to minimize the sum of the errors in the equation for 
the rate of change of image brightness,

€(, — ExU +  EyV +  Et (5)

and the measure of departure from smoothness in the velocity flow.

. ,du.y ,du.y ,dv.o ,dv.o 
= (6)

Because of the possible quantization error and noise, we can not expect Sb 
to be identically zero. This quantity will tend to have a magnitude that is 
proportional to the noise in the measurement. The factor, will be denoted by 
q;̂ , determines the relative weight of Sb and £c· The total error to be minimized 

is:
= J  J +  El) dx dy (7)
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The minimization is to be accomplished by finding suitable values for the 
optical flow velocity Using the calculus of variation, we obtain

E^u +  ExEyV =  — E^Et,

E xE y U  +  E ^ v  =  -  E y E t

Using the approximation to the Laplacian,

(ct̂  +  Ex^)u +  ExEyV = {a^u -  E^Et),

ExEyU +  {a  ̂ +  Ey^v =  [a^v -  EyEt)

When we allow to tend to zero we obtain the solution to a constrained 
minimization problem.

Iterative Method:

We have now a pair of equations for each point on the image. It would 
be very costly to solve these equcitions simultaneously by one of the stcindard 
methods such as Gauss-Jordan elimination. The corresponding matrix is very 
large and sparse, so iterative methods such as Gauss-Seidel method, suggests 
themselves. At each itercition, will be estimated by using the
estimated derivatives and the average of the previous velocity estimates {iC, u” )

by

=  u" -  Ex{ExV^ +  Eyv  ̂+  Et]l{a^ + El + El)

=  u” -  Ey{Ex4E +  Eyv^ +  Et)l{a^ +  El +  ED

The initial values of u and v for each point can be assigned to zero.



Chapter 5

MULTILEVEL B-SPLINE 
INTERPOLATION

After the feature correspondence between the two faces is set by the animator, 
a scattered data interpolation should be applied to find the correspondence 
between all the pixels of the two images. Uniform cubic B-spline surfaces 
are a good choice because they offer nice properties such as continuity and 
local control. B-spline method is much simpler and faster than the energy 
minimization method [9].

5.1 Manipulation of B-spline surfaces

A
n+1

n
o

Q

1 2
>

111 m+1 ^

Figure 5.1: Lattice of control points on the uv plane
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Let be a rectangular region in the uu-plane which contains points P =  (u,u) 
such that I < u < 7n and I < v < n. Let $  be a (m + 2) x (n +  2) lattice of 
control points overlaid on the region il. It is shown in figure 5.1.

Initially, the control point ij is on lattice $  lies on the point (i,j) in the 
iiu-plane. If the control points on lattice $  are displaced only in the direction 
perpendicular to the uv-plane (z direction), the I’esulting B-spline surface can 
be represented by a real valued function / .  For all points p =  iu,v) on ÍÍ, the 
function value /(p )  implies that point p is placed at the position (u ,v,/(p)) on 
the surface when the surface is generated.

Let (¡)ij be the height of the control point ( f , j )  from the uu-plane. The 
function /  can be stated as:

f(u ,v )  =  ^X)^fc(5).fí;(t)?i(¿+yt)(i+0 
A;=0 /=0

(1)

where z =  [uj — 1,  ̂ =  [uj — 1, 3 =  u — [uj and t = v — [uj. Bk{s) and Bi{t) 
are uniform cubic B-spline basis functions evaluated at s and t. Uniform cubic 
B-spline basis functions are as follows:

Boit) =  (1 -  i)V6 
Bi{t) = (SC -  + I)/6
B2{t) =  +  3t -b l) /6
Bsit) = C/6

From the equation 1, we know that the function value of a point p depends 
on sixteen control points in its neighborhood. So the height of the ¿jth control 
point on lattice $  is computed by using the set of points P' — (uc, Vc) € P 
such that i - 2 < U c < i  + 2 and j  -  2 < Vc < j  + 2 { the point ij is the initial 

position of (j) as in figure 5.2).
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CD
• F

P|
3 ^

P4
1>

■p? P3

Figure 5.2: Sixteen neighbors of <j)

When we displace the (j>̂ displacement of all the points in P' are influenced. 
For each point pc in P\ the displacement (j)c of control point (j) required for 
moving Pc to the specified point (uc, Uc, tc) is given by the equation:

■WkltcA(j)c (2)
E L o U = o K b

where k =  i 1 — [ucj, I =  j  1 — [ucj, s = Uc — [«cj, t = Vc — and 
tOab =  Bais)Bb(t)

Since A(f)c may be different from point to point in P', displacement A(f> of 
control point ({> is chosen to minimize the error:

^  {lOcAcj) -  WcA(f>cf (3)

In the error, WcA(f> is the displacement of point pc due to the displacement 
A(f) of 4> and WcA(f>c represents the contribution of control point (¡) to move Pc 
to its specified position {uc,VcUc)· To minimize the error, differentiating the 
equation 3 with respect to A(j) and then equating to zero, A(f> is found as:

A<l) = E c (4)

5.2 Multilevel B-spline interpolation

Let P  be a set of points {u^VcNc) where each (uc,Uc) is in the region Lt. A 
function is required to interpolate all the points in P. By using the equation
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1, we nicvy not necessarily interpolate the points in P. The solution to the 
problem can be to use sufficiently fine control lattice so that every point in 
P  can be interpolated without inferring with other points. But in that case, 
the surface shows sharp local deformations near the points in P  [9]. Thus, 
multilevel B-spline interpolation is introduced to overcome this drawback.

In multilevel B-spline interpolation, there are m control lattices , · · · ?
which are overlaid over the region Ll to derive the functions /o, / i ,  · · ·, /m· hi is 
defined as the spacing between control points of lattice such that hi =  2A,+i. 
We assume that ho and h^ are given. The coarsest spacing ho determines the 
effect of an interpolated point on the resulting surface cind the finest spacing 
hm controls the precision to which the resulting surface interpolates the given 
points.

Interpolation process starts from the coarsest level. First, the heights of the 
control points on $0 are derived and then the surface fo which interpolates 
the points in P  is generated. The surface fo may only pass near the points 
{uci Vc, tc) in P  leaving the deviation A^tc = tc — fo{uc Vc). Then the next finer 
control lattice is used to obtain the surface / i  which interpolates the points 
(uc,Vc, A°tc). Generally, the method is to derive the heights of the control 
points on lattice and then generating the surface fk which interpolates 
(uc,Vc,A'^~^tc) where A'̂ ~̂ tc = tc — D fjo fi{uciVc). This process continues to 
the finest level until the maximum difference between the points in P and 
the final surface /  falls below a given threshold. The final surface is defined as 
the sum of functions /¿, that is, ff,i fi{w) for each point w on 0.



Chapter 6

MULTIGRID VISUAL 
SURFACE
RECONSTRUCTION

A control primitive’s original and fincil shape defines a set of displacements. 
Namely, for a number of known yk) positions on the image plane, there are 
known displacements {/S.Xki Ai/^) as defined by the original and final drawings. 
We should construct interpolating functions Fi{xk-,yk) =  Ax^ and F îxki'llk) =  
A?/fc to apply the image warp at each frame. Since the points {xk,yk) are 
arbitrarily spaced on the image domain, the term scattered [10] is used.

The visual surface reconstruction stage should assimilate the scattered in­
formation provided by the various processes and fill in the gaps in a way that 
the constructed surface is a unique, smooth and most consistent with the scat­
tered information. The thin-plate spline is one solution to our goals. Effect of 
a particular primitive is global but the area most affected is between primitive 
and its nearest neighbors. The thin-plate spline is continuous, certainly 
smoother than a piecewise planar triangulated surface, and not so cuspy as a 
Shepard’s interpolant [10].

The solution of the thin-plate spline requires computation on each point 
cind solving a linear system. It is extremely expensive when the number of
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points increases. Discretizing the problem, the solution time is dependent on 
the strain energy in the plate and not on the number of the data points (beyond 
a small initialization cost) [10]. The grid sizes are on the order of the image 
size in pixel. To get the function value at each pixel, we make sure that at least 
one grid element corresponds to each pixel. So the size of the grid is large and 
we will use coarse to fine multiresolution method to calculate our intepolants 
efficiently.

6.1 The Thin Plate Model
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The thin plate model provides an intuitive interpretation of the surface recon­
struction problem. The model consist of a bounded planar region ft, an elastic 
surface and a number of pins and springs. On the planar region ft (assume on 
the xy plane), there are some pins in the 2: direction which resemble the depth 
constraints and heights of them are proportional to the corresponding depth 
constraint values. Since some of the measurements may be erroneous, an ideal 
spring which pulls the plate’s surface toward it is attached to the tip of the 
each pin as shown in figure 6.1. The springs provide that the thin-plate surface 
passes near the constraints (pins) by leaving a small amount of deviation.

The reconstructed surface is then deflection function u{x,y) defined over ft 
that represents the plate’s surface in its equilibrium position.



6.2 Mathematical Basis of Visible Surface Re­
construction

Let the distance z =  Z{x, y) (function of the image coordinates) be the distance 
from the xy plane to the surface. Low level visual processes generate a set 
of noise corrupted surface shape estimates (i.e. constraints) Ci which can be 
expressed as:

Ci ^  C i { x , y )  +  €i ( 1 )

where Ci is the measurement functional and e; is the associated measurement 
error [22]. In the light of immediate definitions, visible surface reconstruction 
can be stated as: reconstruct from available constraints Ci, the depth function 
Z {x,y) along with an explicit representation of its discontinuities over the vi­
sual field.

Let K be a linear space of admissible functions. Let <S(u) be a stabilizing 
functional which measures the (lack of) smoothness of a function v E k. Let 
V{v) be a penalty functional which measures the discrepancy between v and 
the given constraint. The energy functional is:
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S{v) — S{v) +  V{v) (2)

The solution u(x,y) to the problem which minimizes the energy functional, 
characterizes the best reconstruction of the function Z {x,y) as the smoothest 
admissible function v E k which is most compatible with the available con­
straints. u{x.,y) should satisfy the Euler-Lagrange equation which is necessary 
condition to get the minimum energy functional value by taking first variational 

derivative 8u of £{u) and equating to zero:

8uS{u) = 8uS{u) +  8uV{u) =  0 (3)
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6.2.1 Controlled-continuity Stabilizers

Controlled-continuity stabilizer provides local control over the continuity of 
the solution while preserving discontinuities. Controlled-continuity stabilizer 
of order 2 in two dimensions suffices in constructing C  ̂ continuous surfaces. 
O'- continuous surface has continuously varying surface normal. The formula 
of the stabilizer is:

where p{x, y) and r(æ, y) are real-valued continuity control functions which get 
a value in [0,1]. p and r constitutes an explicit representation of depth and 
orientation discontinuities respectively over the visual field if. In our work, 
there is no orientation constraint and orientation discontinuity. Because we 
have not an information about the orientation of the surface, we have only a 
number of Nxk and Ay/, values as depth constraints at each {xk,yk) on the Ll.

The formulas of controlled-continuity stabilizer and penalty functional will 
be given by considering both depth constraints and orientation constraints for 
completion of the mathematical basis but note that only depth constraints will 
be considered as only constraint when we discretize the problem. For more 
information about orientation constraints please refer to [22].

The variational derivative of x in the interior of ft is given by:

^2 2d̂  d'̂  d d

where p{x,tj) = p{x,y)T{x,y) and r]{x,y) =  p{x-,y)[l -  T{x,y)] .

Since p and r determine the local continuity of u{x, y) at any point (x, y) 
in i),

limr(x·,y)-,o <Spr('i’ ) locally characterizes membrane spline, which is C  ̂ surface 
which needs only be continuous,

limT(a;,y)-,i Spr{v) locally characterizes thin-plate spline, which is C  ̂ surface 
which is continuous and has continuous first derivative.
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liiTip(a;,,j)_+o characterizes locally discontinuous surface.

Intermediate values of p and r locally characterize a hybrid Ĉ  thin-plate 
spline under tension where p(x,y)  is a spaticilly varying surface cohesion and 
[1 — r(x,?/)] is the spatially varying surface tension [22].

6.2.2 Penalty Functional

Penalty functional is the total deformation energy of a set of ideal springs 
attached to the constraints. Scattered depth constraints determine the shape 
of the elastic surface at equilibrium. The springs let the u{x  ̂y) value to deviate 
from the constraint at the i^oint {x,y)i to supply the equilibrium of elastic 
surface.

surface orientation

Figure 6.2: Local influence of an orientation constraint

Let us enumerate the constraints by L If there is a depth constraint at

d(xi,vi) =  v{xi,yi) +  Ci

is the function value at that point and i € D. Otherwise, {xi^yi) is an orien­
tation constraint and P(xi,yi) -  v{xi,yi) +  Ci is the x component of the surface 

normal and

y(xi,yt) ~  T „

is the y component of the surface normal at that point. If x component exists 

then i £ P  and if y component exists then i also an element of Q.
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The penalty function can be written as:

1

ieD

+ 2 Vi) -  P{:vi,yi)f
ieP

+ 9 Z ] Vi) -  (l{x„y,)Y (6)
íEQ

where adi is the stiffness of the springs which control the depth constraints 
and ap̂  and dg- are the stiffness of the springs coercing the surface normal as 
shown in figure 6.2.

6.3 The Discrete Surface Reconstruction Prob­
lem

A closed form solution to the variational principle for visible surface recon­
struction is infeasible due to the irregular occurrence of consti'ciints and dis­
continuities [22]. So, by using finite element model, local approximations Ccin 
be performed and the problem can be discretized.

6.3.1 Discretizing the Domain

The domain of the surface could be discretized by irregularly shaped elements, 
but discretizing will follow a Cartesian sampling ¡pattern typical of images.

The domain 0  is teselled into square element subdomains with sides of 
length h. Nodes are located at corners of subdomains and the elements are 
interconnected at the nodes. The nodal variables € S^) are displacements 
of the plate at nodes. The element size h is adjustable so, one-to-one mapping 
can be achieved between nodes and pixels on the image. Thé nodes are indexed 
by {i , j)  for i = I , . , N^ and for j  =  1 , . . . ,  Ny. A superscript h of a variable 
indicates that this variable defined over the grid where the element size is h. It
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is a convenient notation for multilevel structure. The total number of nodes, 
hence the number of nodal variables on a level will be =  N'  ̂ x N’\X y

y A

O

• V i T

Figure 6.3: Unisolvent nodes for nonconforming element

A polynomial is required within the element domain. The completeness 
condition, which must be satisfied, states that be at least a general full- 
second degree polynomial [19]. When p^ is chosen to be six-degree-of freedom, 
full-quadratic polynomial, the requirement is satisfied, p^ : A’ —> is:

p^{x, y) =  ax̂  -I- bif +  cxy Pdx + ey + f

The six parameters a to f  are determined uniquely in terms of the element 
node displacements at a p'^-unisolvent set of nodes which are shown in figure 

6.3.

In figure 6.3, Vij G denotes the node displacement and the parameters of 

p^ are as follows:
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~ 2^0,0 +  ^-i,o)

b — ^(^0,1 — 2vo,o +  ^0,-1) 

c =  ^ (^ 1,1 — ^0,1 ~  1̂1,0 +  ô,o) 

d =  ^(vi,o -  v_i^o) 

e =  4 K i  -

/  =  î o.o

Six degrees of freedom is insufficient to enforce C  ̂ continuity of across 
interelement boundaries. But, since the square elements pass the patch test 
[19], unique discrete solutions will converge to exact solution of the continuous 
problem as the discretizing is made increasingly finer.

6.3.2 The Discrete Equations

Since discretizing is realized, the functionals defined for continuous problem 
should be discretized in terms of nodal displacements. Partial derivatives at 
node (i,j) are:

— Pxx — 2a —  2̂ 2u,-j +

' i U  =  Pyy =  26 =  ^(^5+1 -  2vU +  vC_^)

— Pm — 2c —

v'̂  — I(vb hjh . )IJ/



By substituting these partial derivatives in equation 4, we can write the 
discrete controlled-continuity stabilizer as:
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S > ’') =  -  H ,  +
hj

+2(vh h h h \2• +  v'-)-J ' luU

+ «■ + 1  -  H j  +  < / - i )

+ [i -  -  <■/)'

Assuming a one-to-one mapping between nodes and image ¡pixels, a con­
straint or discontinuity may coincide with a node on the grid, but not all 
nodes be constrained or defined as a discontinuity.

Penalty functional will be given in the case of deiDth constraint only. For 
the complete expressions, see [22]. The discrete form of equation 6 becomes:

(7)

The gradient of the discrete energy functional should be minimized to find 
the surface û ’’ at equilibrium.

VS^U^) =  -b VVHu'^) (8)

This formula is generally a nonlinear system of equations. For fixed pij and 
Tij (preset discontinuities), the system reduces to a linecir system of equations, 
because €p̂ {û ‘') is a quadratic form in the uC [22]. To find u'\ a linear equation 
for each node (i . j)  should be solved simultaneously. The nodal equation ¿it an
arbitrary node (i , j)  is given by (- ') =  o.
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Letting fx'lj =  derivatives are:

¿>gpr(«'‘ ) (( h 1,,/i .

+(-2w!Vi.i +
h
hii

+  (^f+2J “  2u-':,.ij +  j

+(2x! < - 2 « t i . - 2 <

d -( -2 u f+ ij  +  2 u 'j +  2 u f^ ij_ i 2 u fj_ i);ti-j_ i 

+(~2iifj^_i +  2uf_| +  2riJj — l u ' l _ y j ) n ^ _ y j

+(2^if+ij+i — 2w4j_̂  — 2uf_(.ij + 2uU)fj.ij

+ (^ ii -  2u,^,_i + ¿J-l

+ ( “ 2n4^i +4'wfj 2ufj_i)/i-j

+ (^ !j +2 “  2u-j^i +

+  {(^ !j “  ^i-i,j)Vi-i,j

+(^5i “
h
ij

+{uij -  u’l j -i)v tj-i

+(^5i ■" '“ ¿j+ i)^5) (9)

5'P'‘ ( u ‘ ) _  h _  o ^ h  \ (10 )
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We can express 'VSp̂ {u'̂ ) as:

=  /1V  -  f 0 (11)

where /1̂ '· e  is a matrix of coefficients and 6 3?  ̂ and ŵ'· G cire
column vectors. The linear term is =  ¡Ic'\ where those entries of U’' G 
which are associated with constrained displacements are the constrained values 

cind the rest cire 0. N'̂ ' is the number of nodes on the grid where element 
size is h, namely N^ =  N ’̂  x Ny. A’'' is a positive-definite, symmetric and 
a sparse matrix. So the solution of equation 11 is easier than an ordinary 
linear equation. To find a linear equation for each node the coefficients
of « ¿ j ’s should be found by using the discrete controlled-continuity stabilizer 
and penalty functions. But it can be tedious for nodes cit the boundary of i2 
cind nodes near the discontinuities. So we use computation molecules to make 
life ecvsier.

6.3.3 Computational Molecules

The values of pC and tE in the discrete case are assumed in the range [0,1]. But 
if we permit p-j and r /j to get only the values in {0 ,1 } indicating {presence, 
absence} of discontinuities, suggests the following graphical interpretation of 

nodal equations.

Each term of equation 9 and 10 in the parenthesis may be visualized as 
a basic computational molecule [22]. Molecules consists of atoms, indicated 
by circles, arranged in the spatial grid pattern and containing coefficients of 
the cissociated nodal variables. Figure 6.4(a) illustrates ten plate molecules 
obtained from first component of equation 9 while 6.4(b) shows four inembrcuie 
molecules obtained from second component of equation 9. The depth constraint 
molecule consists of one basic atom shown by figure 6.4(c). A double circle 
indicates the node ('¿, j ) ,  central to the nodal equation.
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Figure 6.4: Basic molecules (a) Plate molecules (b) Membrane molecules (c) 
Dejith constraint molecule

We have fifteen basic molecules at hand and then we will construct a com­
putational molecule for each (i,j)  on the grid by molecular summation. Dis­
continuities require molecular irdiibition. If there exists a discontinuity at node 
{i , j)  then or rjC or both are zero, which inhibits the summation of cer­
tain molecules. Specifically, for a node (i, j ) ,  the corresponding computcitional 
molecule is found by summing basic molecules, which have not an atom corre­
sponds to a discontinuity node on the grid or remain out of boundary, at the 
central atom. If depth constraint exists at the node {i, j)  then depth constrciint 
molecule is also added.
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P’igure 6.5: Constructing the computational molecule for the node (i,j)

Figure 6.5 shows some basic molecules to be added and resulting corniDuta- 
tional molecules as exam2:)les.

GMfo
© —GF-0

O
Figure 6.6: Biggest computational molecule

r*br example, the equation for the disjjlacement at node (i, j)  in the interior 
of Q and away from discontinuities where computation molecule is shown by 

figure 6.6 is:
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+  ^i+ij +

h? + ^¿Vl,i+l) +

+  ¿̂+2J +  ''4j -2 +  ^5 +2) +

The terms involving fi exist only if the node {i, j)  has a depth constraint. 
¡3 is taken as in the equations.

6.3.4 Solution of the Linear System of Equations

To find the reconstructed surface as the solution of interpolating operation, 
the linear system of equations in the form of A'̂ 'û '' — f ' ’ should be solved.

The solution can be found as f ' ’[A^)~  ̂ with a direct method. But the 
time to find the inverse of a large matrix is very long. Another method is LL 
decomposition. We will use ci recursive method to find The sparseness, 
bandness and symmetrical structure of the matrix A is very convenient lor a 
recursive method. Gauss-Seidel relaxation, Jacobi relaxation and successive 
overrelaxation method as well as gradient methods can be used to solve the 
equation. In this work, first Gauss-Seidel relaxation method was used, but this 
is very slow and not very prominent. Instead, Conjugate Gradient Method [18] 
is applied. It is the most prominent iterative method for solving sparse systems 
of linear equations.



6.4 Multilevel Equations

To introduce multilevel relaxation theory, consider the large, sparse system 
of linear equations A'̂ u'̂  =  where /1  ̂ is nonsingular. The typical iter­
ative solution technique is used to obtain a sequence of increasingly better 
approximations to the exact solution rd* by applying a long series of relaxation 
operations. This approach is inefficient because takes too much time.

One ap2Di'oach to increase the efficiency is to introduce L — 1 similar problems 
on increasingly coarser levels. Discretizing can be done in the usucd way by in­
troducing a sequence of finite element spaces S^̂ , . . . ,  over the rectangular 
domain Ll where L is the number of levels and h\ > .. .  > Iil are fundamental 
sizes of the elements at each level. The hierarchy of problems is then given by 
the sequence of L linear systems of the form
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^ jhk

where I < k < L.

Element sizes are chosen as hk =  2/гyt+ı. The finer level is level and the 
coarsest level is level. Fixing the element size of finest level, the element 
sizes can be found on the coarser levels. Figure 6.7 shows a three level multigrid 
structure.

The problem at the coarsest level can be solved quickly and
the solution can be used as an initial approximation to the next level. Pro­
ceeding in this way to the finest level T, a single accurate solution is obtained 
cit the finest level. In the work of [21], interlevel operations cire performed 
between levels to correct coarser levels’ solutions. This is necessary to obtain 
solutions at each level as accurate as the finest level. But in our work, we do 
not need the solutions at the levels 1 to T — 1. So multilevel cycle algorithm 
in [22, 19, 20, 21] is not used in our multilevel surface reconstruction problem.
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Figure 6.7: Three level multigrid structure

6.4.1 The Multilevel Relaxation Algorithm

• Stepl- Solve the coarsest-grid equation

Compute by relaxation an approximate solution to the coarsest-grid 
equation . Set / <— 1.

• Step2- Set a new finest level

li I = L stop, otherwise increment / ¿md set the finest approximation on 
the new level to be .

• Step3- Perform relaxation

Perform a relaxation iteration. If the norm of the current tC‘ is smaller 
than a precipecified value goto Step2, else goto Step3.

The operation is an interpolation operation from level / — 1 to
level /. Bilinear interpolation [3] is used for this operation in our work.



Chapter 7

SAMPLE ANIMATED 
FRAMES

7.1 Indefinite Feature Borders

In facial animation, finding features and tracking them correctly is the most 
important part. In the study of Litwinowitcz et al. [10], tictors in the video 
sequences have a make up on their faces to highlight the importcuit detciils 
[12]. In this study, we do not have a video sequence recorded in a similar way. 
Therefore, snakes find and track edges only according to the intensities and 
lighting highly effects the intensities. In this work, generally synthetic facial 
image sequences are used as the given sequence and their features are not def­
inite adequately. But the implemented second and third parts of the thesis, 
namely finding the corresponding drawings and wai'i îng the inicige according 
to these drawings work well. This is demonstrated in all of the example figures. 
Animated drawings for the given image are consistent with the tracked draw­
ings of the given sequence. Similarly, animated images a?;e warped according 
to the changes of drawings from frame to frame.

In example 7.1, given sequence is obtained from a face niciker program by 
changing some parameters of the eyes and mouth. Features of the face are 
not very definite, also some are visualized as inconqDlete. Because of the light
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source located on the right, right half of the lower lip is indefinite, so our snake 
algorithm passes this part reaching through a nearest edge. Although feature 
drawings of the sequence are not very correct, animated drawings are highly 
consistent with them. Similarly, produced (animated) images show the effects 
of deflections of animated drawings from the original drawings. Since only 
the outer border of the mouth is selected, open mouth is not realized by the 
animation.

wl00:mw3.rgb

xvX00:nm4.rgb

Figure 7.1: Tracked features, generated drawings on the original image and the 
animated image sequence
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7.2 Which Features Should be Outlined?

To realize an animation most realistically, deciding the features to be specified 
is highly important. It is shown by the following example. In figure 7.2, we 
only want to map the change of mouth, and the corresponding mouths are 
selected on both images. Animated image shows a deformation mostly on the 
lower half of it. This part shrinks since the mouth does the same. If we could 
outline the borders of the faces, it would give a better result.

The same problem arises cilso in example 7.3. The eyes, the mouth ¿uid 
the left cind right sides of the head cire specified on the first frame and the 
corresponding features are specified on the face of the woman. The first row of 
figure 7.3 shows the frames of the given sequence. Left eyelid closes very slowly 
from first frame to third and mouth shrinks as kissing. Since motion should 
be smooth between frames for optical flow motion estimation technique, big 
changes between frames are not cillowed.

While the features correspond to left eye cind the mouth, they effect the 
nearby regions on the face. There is a shadow on the left eye visualized as an 
eyebrow but it is only a shadow on the face. While eyelid slightly closes, this 
shadow remains on the same place. But, while corresponding eyelid is closing, 
the eyebrow on it comes down by the effect of this eyelid. The Scime effect is 
shown around the mouth, especially on the nose.

To overcome these unwanted effects, two curves, one for the left eyebrow 
and the other for the right side of the nose is added to the existing features. 
This is shown in figure 7.4. Because of the reasons mentioned in the previous 
section, these newly added features are not tracked properly on the second 
frame. But the improvements on the eyebrow and nose are visualized clearly. 
In spite of the closing eyelid, eyebrow remained in its place. Nose is more 
close to its original appearance. If the left side of the nose could be specified 
properly, then more improvements could be achieved. Unfortuncitely, this part 
on the given sequence is too bright to be caught by the snakes.
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7.3 Opening Mouth

In figure 7.5, an opening mouth is tracked with the feature specification of eyes, 
mouth, left and right sides of the head. Inner edges of the lips are only outlined 
to see the effect on the lips. First row shows the tracked head. First frame 
is displayed twice the size to effectively draw the edges. Other two frcimes 
are tracked automatically. Second row shows the animated drawings on the 
original image. Third row shows the animated frames. The lower ends of the 
side drawings of the head in the first row moved a little bit from the original 
drawings. Therefore, corresponding side drawings of the given image reflect 
this movements by deviating from the original lower ends. Since the warping 
functions account for these changes, produced images show a deformation on 
the neck. As a result, some incorrect movements of the features of the given 
sequence produce some deformations on the animated frames. The mouth 
is opened and lips moved accordingly in spite of determining only the inner 
boundary of the lips. This is the natural consequence of using thin-plate splines.

7.4 Marylin Monroe Kisses

In figure 7.6, first row shows the given sequence with the tracked features. The 
eyes, the mouth, the eyebrow and the two sides of the head are selected as 
features. The first frame of the second row shows the corresponding features 
which cire drawn by hand on the original image. Other three frames show 
the generated drawings which are produced according to the corresponding 
drawings of the first row on the original image. The changes in the drawings 
from one frame to another reflect the motion of given sequence. The left eye 
closes from one frame to the next slightly, the mouth shrinks as kissing and the 
eyebrow raises slightly. The side drawings of the head remain as they are. 'riie 
third row shows the animated images. The first frame is the original image 
and the other three are the warped images. These images reflect the hicicd 
expressions of the given sequence. The left eyebrow raises, the left eye closes 
slightly and the mouth shrinks as kissing.
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Figure 7.2: G eneratin g  a new fram e by on ly  sp ecify in g  the m ou th s
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[cajxv.j ·  ¡n|  I H ^  I * iP ]

Figure 7.3: C hange o f  the left eye and the m ou th
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Figure 7.4: Adding two new features to the features of previous figure
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Figure 7.5: O pen ing  M ou th
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Figure 7.6: Marylin Monroe is kissing



Chapter 8

CONCLUSION

In this work, 2D facial animation controlled by drawings is presented. By align­
ing curves, lines and points with features (salient objects on a face), intuitive 
controls for image warping are constructed. Motion is basically obtained by 
animating drawings and applying image warp at each frame of the sequence.

A sequence of facial images which are taken from a video sequence of the 
same face or synthetic facial image sequences are taken cind a still irna.ge of 
another face to be animated is selected. This face image is animated with the 
same expressions as those of the given sequence.

In the first step, salient facial features are outlined on the first frcime of 
the sequence. The selection of these features are very important. Besides the 
major features that we want to animate, some auxiliary features should also 
be specified. The change of a feature mostly affects its nearest neighbors but 
its effect is global. This is the typical characteristic of thin plate splines which 
are used in image warping.

To extract the motion in video sequence, features which are indicated on the 
first frame should be tracked. This sequence may include hundreds of frames 
and outlining each feature on each of them manually is very time and effort 
consuming. Also, consistency may not be guaranteed. Therefore, automatic 
tracking of features is strongly necessary. In automatic trcicking, for end-points 
of the features block mcitching, and for non end-points, optical flow methods
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and then snakes are used to find the real places of the features on the next 
frame.

After corresponding features are specified on both images, their control 
points should be mapped. This mapping can be one-to-one or rnany-to-one. 
One-to-one mapping is applied in this work. Since the corresponding features 
are drawn by different number of control points, a preprocessing operation 
should be done to equate them. Each corresponding drawings are linearly di­
vided into a preset number. For each feature drawing, a different number is 
set according to its length.

After mapping the features of the first frame to the given image by using- 
multilevel B-Spline interpolation, a function which maps each pixel of the first 
frame to a pixel of given image is found. By using this function, for each trcicked 
frame of the video sequence, a corresponding animated feature drawings of the 
image can be produced.

The last step is to find a warp function by multigrid surface reconstruction 
method for each produced drawings that corresponds to a frame of the video 
sequence by using original drawings specified on the image. Warp function is 
basically a pair of (Ax, Ay)  displacement lor each pixel on the original image. 
By using these displacements, a new image is constructed which shows the 
same expression as the corresponding video frame.

This work encourages the reuse of animated motion by gathering facial mo­
tion sequences into a database. For any single imcige, a sequence can be selected 
and animation can be realized. New features can be added at any time to both 
images (first frame and given image) without modifying the current nicipping. 
By using motion sequence of a human face, non-hurnan or synthetic fiices can 
be realistically animated in cartoons and films. Similai’ly, by the motion se­
quence of simple characters, more complex characters Ccin be aninicited. As a 
new consideration, by using these motion sequences, some objects other than a 
face can be animated by aligning some of their parts with features of the faces.

Some future improvements can be proposed rehited to this work. Multilevel 
surface reconstruction algorithm takes too much time, so it is the bottleneck 
of our animation system. Parallel implementation of this pcirt greatly reduces
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the total animation time.

For mapping corresponding features one-to-one mapping is used in this work 
but, many to one mapping may be more convenient and produce better results.

Extra information besides the given image to be animated helps to produce 
more realistic results. For example, if a neutral face image is given which will 
be animated, mouth may be opened at any animated frame. In that case, 
to produce realistic images, teeth should be visualized. Small image parts 
other than the neutral face could be very useful to produce the more realistic 
animations.
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