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ABSTRACT

BATCH LEARNING OF DISJOINT FEATURE INTERVALS

Aynur Akkuş
M.S. in Computer Engineering and Information Science 

Supervisor: Assoc. Prof. Halil Altay Güvenir 
September, 1996

This thesis presents several learning algorithms for multi-concept descriptions 
in the form of disjoint feature intervals, called Feature Interval Learning algo
rithms (FIL). These algorithms are batch supervised inductive learning algo
rithms, and use feature projections of the training instances for the representci- 
tion of the classification knowledge induced. These projections can be general
ized into disjoint feature intervals. Therefore, the concept description learned 
is a set of disjoint intervals separately for each feature. The classification of 
an unseen instance is based on the weighted majority voting among the local 
predictions of features. In order to handle noisy instances, several extensions 
are developed by placing weights to intervals rather than features. Empirical 
evaluation of the FIL algorithms is presented and compared with some other 
similar classification algorithms. Although the FIL algorithms achieve compa
rable accuracies with other algorithms, their average running times are much 
more less than the others.

This thesis also presents a new adaptation of the well-known /s-NN clas
sification algorithm to the feature projections approach, called A:-NNFP for 
k-Nearest Neighbor on Feature Projections, based on a majority voting on in
dividual classifications made by the projections of the training set on each 
feature and compares with the /:-NN algorithm on some real-world and cirtifi- 
cial datasets.

Keywords: machine learning, supervised learning, inductive learning, batch 
learning, feature projections, voting.

Ill



ÖZET

AYRIK ÖZNİTELİK BÖLÜNTÜLERİNİ TOPLU ÖĞRENME

Aynur Akkuş
Bilgisayar ve Enformatik Mühendisliği, Yüksek Lisans 

Tez Yöneticisi: Doç. Dr. Halil Altay Güvenir 
Eylül, 1996

Bu tezde öznitelik izdüşümlerine dayalı yeni öğrenme algoritmaları sunulmuş
tur. Oznitelik Bölüntülerini Öğrenme (FİL) olarak isimlendirilen bu algorit
malar toplu, denetimli ve türnevarımsal öğrenme yöntemlerini kullanırlar ve 
öğrenme örneklerinin öznitelik izdüşümlerini sınıflama bilgisini çıkarmak için 
kullanırlar. Bu izdüşümler ayrık öznitelik bölüntülerine genellenir. Böylece, 
öğrenilen kavram tanımları her öznitelik için ayrık öznitelik bölüntüleri şeklinde 
gösterilir. Daha önce görülmemiş bir örneğin sınıflandırması için her öznitelik 
tarafından bir ön sınıflandırma yapılır ve son sınıflama bu ön sınıflandırmaların 
ağırlıklı çoğunluk oylamasıyla belirlenir. Hatalı örnekleri tespit edebilmek için 
bölüntülere ağırlık verilerek bazı değişiklikler önerilmiştir. FİL algoritmalarının 
benzer sistemlerle uygulama sonuçları doğal ve yapay veri kümeleri üzerinde 
karşılaştırılmıştır. Bu algoritmaların doğruluk oranları dahci öncekilere yakın 
olmasına rağmen ortalama çalışma süreleri çok daha azdır.

Bu tezde literatürde yaygın olarak bilinen k en yakın komşu sınıflandırma 
algoritması (UNN) yeniden tanımlanmıştır ve UNNFP, öznitelik izdüşümleri 
üzerinde k en yakın komşu sınıflandırması, olarak isimlendirilmiştir. k-NNFP 
algoritmasında sınıflandırma her öznitelikten gelecek olan tahminler arasından 
çoğunluk oylaması yapılarak belirlenir. A;-NNFP ve fc-NN algoritmalarının 
karşılaştırılması doğal ve yapay veri kümeleri üzerinde yapılmıştır.

Anahtar Sözcükler: öğrenme, türnevarımsal öğrenme, toplu öğrenme, dene

timli öğrenme, öznitelik izdüşümleri, oylama.
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Chapter 1

Introduction

Machine learning has played a central role in artificial intelligence since 1980’s, 
especially in modeling behavior of human cognition and human thought pro
cesses for problem solving strategies. The studies in machine learning suggest 
computational algorithms and analyses of such algorithms that suggest expla
nations for capabilities and limitations of human cognition. Learning can be 
described as increasing the knowledge or skills in accomplishing certain tasks 
[13]. The learner applies inferences in order to construct an ajDpropriate repre
sentation of some relevant reality.

One of the fundamental research problems in machine learning is how to 
learn from examples since it it usually possible to obtain a set of examples to 
learn from. From a set of training examples, each labeled with its correct class 
name, a machine learns by forming or selecting a generalization of the training 
examples. This process, also known as supervised learning, is useful for real- 
world classification tasks, e.g. disease diagnosis, and problem solving tasks in 
which control decisions depend on classification. Inductive learning refers to 
learning from examples in which knowledge is acquired by drawing inductive 
inference from the examples given. Acquiring knowledge involves opercitions 
of generalizing, specializing, transforming, correcting and refining knowledge 
representations [42, 43].

Many of the tasks to which machine learning techniques are cipplied are 
tasks that humans can perform quite well. However, humans often cannot tell



how they solve these tasks. Inductive supervised learning is able to exploit the 
human ability to assign labels to given instances without requiring humans to 
explicitly formulate rules that do the same. These training instances are then 
analyzed by inductive supervised algorithms to learn specific tasks.

There are several different methods by which a human (or a machine) can 
acquire knowledge [43]:

• rote learning (learning by being programmed)

• learning from instruction (learning by being told)

• learning from teacher provided examples (concept acquisition)

• learning by observing the environment aird making discoveries (learning 
from observation and discovery)

CHAPTER 1. INTRODUCTION 2

In this thesis, we will concern with concept acquisition. Concept acquisition 
can be defined as the task of learning a description of a given concept from a 
set of examples and counterexamples of that concept [13, 43]. Examples are 
represented usually by input vectors of feature values and their corresponding 
class labels. Concept descriptions are then learned as relations among the given 
set of feature values and the class labels.

The ability to classify is another important facet of intelligence. The task of 
a classification algorithm is to predict correctly the class of an unseen test exam
ple from a set of labeled training examples or classification knowledge learned 
by a concept acquisition algorithm. Many supervised learning algorithms have 
been developed to perform classification [5, 10, 28, 52, 58]. Classification sys
tems require only a minimal domain theory and are based on training instances 
to learn an appropriate classification function.

One of the central problems in classifying objects is distinguishing features 
that are relevant to the target concept from that are irrelevant. Many re
searchers have addressed the issue of feature weighting in order to reduce the 
impact of irrelevant features and to increase the impact of more relevant feci- 
tures in classification tasks, by investigating feature weighting [2], and feature



CHAPTER 1. INTRODUCTION

subset selection [38, 61]. Some classification systems give equal importance 
to all features. However, in real life, the relevance of features may not all be 
the same. The algorithms which assign equal weights to all features are more 
sensitive to the presence of irrelevant features. In order to prevent the intrusive 
effect of irrelevant features, feature subset selection approaches are utilized in 
which the space of subsets of feature sets are considered to determine the rele
vant and irrelevant features. As a simple example, the learning algorithm is run 
on the training data with different subsets of features, using cross-validation to 
estimate its accuracy with each subset. These estimates are used as an evalua
tion metric for directing search through the space of feature sets [6, 29, 38, 61]. 
On the other hand, the disadvantage of using feature selection method is that 
it treats features as completely relevant or irrelevant. In reality, the degree of 
relevance may not be just 0 or 1, but any value between them.

Knowledge representation in exemplar-based learning models are either rep
resentative instances [2, 5], or hyperrectangles [58, 59]. For examj^le, instance- 
based learning model retains examples in memory as points, and never changes 
them. The only decisions that are made are what points to store and how 
to measure similarity. Several variants of this model have been developed 
[2, 3, 4, 5]. Nested generalized-exemplars model represents the learned knowl
edge as hyperrectangles [58, 59]. This model changes the point storage model 
of the instance-based learning and retains examples in the memory as axis- 
parallel hyperrectangles.

The Classification by Feature Partitioning [27, 28, 65], and Classificcition 
with Overlapping Feature Intervals [67] algorithms are also exemplar-based 
learning algorithms based on generalized feature values. They are incremental 
inductive supervised learning algorithms. Their basic knowledge representation 
is based on feature projections. Classification knowledge in these cilgorithms is 
represented as sets of disjoint and overlapping feature intervals, respectively. 
The classification of an unseen test example is determined through a weighted 
voting scheme on classifications based on the individual feature predictions. 
Feature projections for knowledge representation allows faster classification



than other exemplar-based learning models since these projections can be or
ganized tor faster classification. Another important advantage of this repre
sentation is that it allows easy handling of missing feature values by simply 
ignoring them. The major drawback of this knowledge representation is that 
descriptions involving a conjunction between two or more features cannot be 
represented. Plowever, the reported results show that both techniques are suc
cessful by processing each feature separately [27, 28, 65, 67]. This thesis will 
investigate that whether it is possible to obtain more accurate concept descrip
tions in the form of disjoint feature intervals when they are learned in the batch 
(non-incremental) mode.

As a preliminary work to this thesis, we have studied classification of ob
jects on feature projections in a batch mode [7]. Classification in this method 
is based on a majority voting on individual classifications made by the pro
jections of the training set on each feature. We have applied the ¿-nearest 
neighbor algorithm to determine the classifications made on individual feature 
projections. We called the resulting algorithm ¿-NNFP, for k-Nearest Neigh

bor on Feature Projections. The nearest neighbor (NN) algorithm stores all 
training instances in memory as points and classifies an unseen instance as the 
class of the nearest neighbor in the n-dimensional Euclidean space where n is 
the number of features. The extended form of the NN algorithm to reduce the 
effect of the noisy instances is the ¿-NN algorithm in which classification is 
based on a majority voting among ¿ nearest neighbors. The most important 
characteristic of the ¿-NNFP algorithm is that the training instances are stored 
as their projections on each feature dimension. This allows the classification of 
a new instance to be made much faster than the ¿-NN algorithm. The voting 
mechanism reduces the intrusive effect of possible irrelevant features in clas
sification. Furthermore, the classification accuracy of the ¿-NNFP algorithm 
increases when the value of ¿ is increased, which indicates that the process of 
classification can incorporate the learned classification knowledge better when 
¿ increases.

CHAPTER 1. INTRODUCTION 4

First, we treated all features as equivalent in the ¿-NNFP algorithm. How
ever, all features need not have equal relevance. In order to determine the 
relevances of features, the best method is to cissign them weights. In this



thesis, we propose two methods for learning feature weights for the learning 
algorithms whose knowledge representation is feature projections. The first 
method is based on homogeneities of feature projections, called homogeneous 
feature projections, for which the number of consequent values of feature pro
jections of a same class supports an evidence for increasing the probability of 
correct classification in the learning algorithm that uses feature projections as 
the basis of learning. The second method is based on the accuracies of indi
vidual features, called single feature accuracy. In this approach, the learning 
algorithm is run on the basis of a single feature, once for each feature. The 
resulting accuracy is taken as the weight of that feature since it is a measure 
of contribution to classification for that feature. The first empirical evaluation 
of these feature weighting methods on real world datasets will be investigated 
in the k-NNFP algorithm in Section 3.4. These methods can be also applied 
to other learning algorithms which use feature weights.

In this thesis, we focused on the problem of learning multi-concept descrip
tions in the form of disjoint feature intervals following a batch learning strategy. 
We designed and implemented several batch algorithms for learning of disjoint 
feature intervals. The resulting algorithms are called Feature Intervals Learn

ing algorithms (FIT). These algorithms are batch inductive supervised learning 
algorithms. Several modifications are made to the initial FIT algorithm, FIl, to 
investigate whether improvement for this method is possible or not. Although 
the FIL algorithms achieve comparable accuracies with the earlier classifica
tion algorithms, the average running times of the FIL algorithms are much less 

than those.
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The FIL algorithms learn the projections of the concept descriptions over 
each feature dimension from a set of training examples. The knowledge repre
sentation of the FIL algorithms is based on feature projections. The projections 
of training instances are stored in memory, separately in each feature dimen
sion. Concepts are represented as disjoint intervals for each feature. In the bci- 
sic FIL algorithm, an interval is represented by four parameters; lower bound, 
upper bound, representativeness count and associated class label. Lower cind 
upper bounds of an interval are the minimum and maximum feature values 
that fall into the interval respectively. Representativeness count is the number



of the instances that the interval represents, and finally the class label is the 
associated class of the interval.

In the FIL algorithms, each feature makes its local prediction by simply 
searching through the feature intervals containing that feature value of the test 
instance. The final prediction is based on the weighted majority voting among 
local predictions of features. The voting mechanism reduces the negative effect 
of possible irrelevant features in classihcation. Since FIL algorithms treat each 
feature separately, they do not use any similarity metric among instances for 
prediction unlike other exemplar-based models that are similarity-based algo
rithms. This allows the classification of a new instance to be made much faster 
than similarity-based classification algorithms.

Since induction of multi-concept descriptions from classified examples have 
large number of applications to real-world problems, we will evaluate FIL al
gorithms on some real-world datasets from the UCI-Repository [47]. For this 
purpose, we have also compiled two medical datasets, one for the description of 
arrhythmia characteristics from ECG signals, and the other for the histopatho- 
logical description of a set of dermatological illnesses.

In summary, the primary contributions of this thesis can be listed as follows:

CHAPTER 1. INTRODUCTION 6

• We formalized the concept of feature projections for knowledge represen
tation in inductive supervised learning algorithms.

• We applied this representation to classical NN algorithm, compared k- 
NN and A:-NNFP (the /j-NN that uses feature projections). We should 
note that the disadvantage of this representation does not affect the clas
sification of real-world datasets.

• We presented several batch learning methods of disjoint feature intervciJs 
for assigning weights to features and intervals. We also presented two 

feature weight learning methods.

• We started the construction of two new medical datasets as an application 

area, and a test bed for ML algorithms.
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This thesis presents and evaluates several batch learning methods in the 
form of disjoint feature intervals that use feature projections for knowledge 
representation. In the next chapter, a summary of the previous concept learn
ing models are presented. In Chapter 3, feature projections for knowledge rep
resentation are discussed and some prior research is explained in detail. The 
details of the FIL algorithms are described in Chapter 4. The construction of 
feature intervals on a feature dimension and classification process is illustrated 
through examples, and several extensions of basic FIL algorithm are described. 
Complexity analysis and empirical evaluation of FIL algorithms ai'e studied in 
Chapter 5. Performance of the FIL algorithms on artificially generated data 
sets and comparisons with other similar techniques on real-world data sets are 
also presented. The final chapter presents a summary of the results obtained 
from the experiments in this thesis. Also an overview of possible extensions to 
the work presented here is given as future work.



Chapter 2

Concept Learning Models

The symbolic empirical learning has been the most active research area in 
machine learning for developing concept descriptions from concept examples. 
These methods use empirical induction which is falsity-preserving rather than 
truth-preserving inference. Therefore the results of these methods are generally 
hypotheses which need to be validated by further experiments.

Inductive leaning is the process of acquiring knowledge by drawing induc
tive inferences from teacher or environment-provided facts by generalizing, spe
cializing, transforming, correcting and refining knowledge representations [43]. 
There are two major types of inductive learning: learning from examples (con
cept acquisition) and learning from observation (descriptive learning). In the
sis, we will concern ourselves with concept acquisition rather than descriptive 
generalization, which is the process of determining a general concept descrip
tion (a law, a theory) characterizing a collection of observations. In concept 
acquisition, observational statements are characterizations of some objects pre
classified by a teacher into one or more classes (concepts). Induced concept 
description can be viewed as a concept recognition rule, in that, if an object 
satisfies this rule, then it belongs to the given concept [43].

A characteristic description of a class of objects (conjunctive generalization) 
is typically a conjunction of some simple properties common to all objects in 
the class. Such descriptions are intended to discriminate the given class from all 
other possible classes. On the other hand, a discriminant description specifies



one or more ways to distinguish the given class from a fixed number of other- 
classes.

Given a set of instances which are described in terms of featui’e values 
from a predefined range, the task of concept acquisition is to induce general 
concept descriptions from those instances. Concept descriptions are learned 
as a relation among the given set of feature values and the class labels. The 
two types of concept learning are single concept learning and multiple-concept 
learning.

In single concept learning one can distinguish two cases:

1. Learning from “positive” instances only.

2. Learning from “positive” and “negative” examples (examples and coun
terexamples of the concept).

In multiple-concept learning one can also distinguish two cases:

1. Instances do not belong to more than one class, that is, classifications of 
instances are mutually disjoint.

2. Instances may belong to more than one class, that is, classifications of 
instances are possibly overlapping.
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For concept learning tasks, one of the widely used representation tech
nique is the exemplar-based representation. Either representative instances or 
generalizations of instances form concept descriptions [5, 58]. Another useful 

knowledge representation technique for concept learning is decision trees [52]. 
Statistical concept learning algorithms also use training instances to induce 
concept descriptions based on certain probabilistic approaches [21]. In the 
following sections, these concept learning models are presented.
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Exemplar-Based Learning

Instance-Based Learning Exemplar-Based Generalization

Nested Generalized Generalized Feature
Exemplars Values

Feature Partitioning Overlapping Feature
Intervals

Figure 2.1. CIa,ssification of exemplar-based lecirning models.

2.1 Exemplar-Based Learning

Exemplar-based learning was originally proposed as a model of human learning 
by Medin and Schaffer [41]. In the simplest form of exemplar-based learning, 
every example is stored in memory verbatim, with no change of representation. 
An example is defined as a vector of feature values along with a label which 
represents the category (class) of the example.

Knowledge representation of exemplar-based models can be miiintained as 
representative instances [2, 5], hyperrectangles [58, 59], or generalized vcilues 
[27, 28, 67]. Unlike explanation-based generalization (EBG) [18, 45], little or 
no domain specific knowledge is required in exemplar-based learning.

Pdgure 2.1 presents a hierarchical classification of exemplar-based learning 
models. Instance-based learning (IBL) and exemplar-based generalization cire 
two types of exemplar-based learning. For example, instance-based learning 
methods [5] retain examples in memory cis points, and never chcinges them.
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On the other hand, exemplar-based generalization methods make certain gen
eralizations on the training instances. One category of the exemplar-based gen- 
ei'cilization is the nested-generalized exemplars (NGE) model [58]. This model 
changes the i^oint storage model of the instance-bcised learning and retains 
examples in the memory as axis-parallel hyperrectangles. Generalized Fea
ture Values learning models can be classified as exemplar-based genei'cdization, 
such as NGE. The examples of GFV learning models are the Classification by 
Feature Partitioning (CFP), and the Classification by Overlapping Feature In
tervals (COFI). In the CFP algorithm, examples are stored as disjoint intervals 
on each feature dimension. In the COFI algorithm, concept descriptions are 
represented in the form of overlapping feature intervals. In this thesis, we will 
study several batch learning methods whose knowledge representation is in the 
form of disjoint feature intervals that can be also categorized as GFV method. 
In the following sections, we will describe IBL, NGE, and GFV methods briefly. 
GFV methods that use feature projections for knowledge representation will be 
discussed in detail in Chapter 3 since this knowledge representation motivated 
us to develop this thesis.

2.1.1 Instance-Based Learning (IBL)

Instance-based learning algorithms represent concept descriptions as a set of 
stored instances, called exemplars, and with some information concerning their 
past performances during classification [5, 8]. These algorithms extend the clas
sical nearest neighbor algorithm, which has hirge storage requirements [16, 17]. 
All examples are represented as points on the ?r-dimensional Euclidean space, 
where n is the number of features. The concept descriptions can change after 
each training instance is processed. IBL algorithms do not construct exten- 
sional concept descriptions. Instead, concept descriptions are determined by 
how the IBL algorithm’s selected similarity and classification functions use the 
current set of saved instances. There are three components in the framework 
which describe all IBL algorithms as defined by Aha and Kibler [5]:

1. The similarity function computes the similarity between two instances 
(similarities are real-valued).
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2. The classification function receives the output of the similarity function 
and the classification performance records of the instances in the concept 
description, and yields a classification for instances.

3. The concept description updater maintains records on classification per
formance and decides which instance are to be included in the concept 
description.

These similarity and classification functions determine how the set of in
stances in the concept description are used for prediction. So, IBL concept 
descriptions contain not only a set of instances, but also these two functions.

Several IBL algorithms have been developed; IBl, IB2, IB3, IB4 and IB5 
[3, 5]. IBl is the simplest one and it uses the similarity function computed as

similarity[x^ y) (2.1)

\xf — yf\ if /  is linear
0 if f is symbolic and x j =  yj (2.2)
1 if f is symbolic <ind x j ^ i j f

where x and y are the instances.

IBl is identical to the nearest neighbor algorithm except that it processes 
training instances incrementally and simply ignores instances with missing fea
ture value(s). Since IBl stores all the training instances, its storage requirement 
is quite large. IB2 is an extension of IBl, it saves only misclassified instances 
reducing storage requirement. On the other hand, its classification accuracy 
decreases in the presence of noisy instances. IB3 aims to cope with noisy in
stances. IB3 employs a significance test to determine which instances cire good 
classifiers and which ones are believed to be noisy. Once an example is deter
mined to be noisy, it is removed from the description set. IB2 and IB3 are also 
incremental algorithms. IBl, IB2, and IB3 algorithms assume that all features 
have equal relevance for describing concepts.
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Extensions of these three algorithms [1, 3] are developed to remove some 
limitations which occur because of certain assumptions. For example, concepts 
are often assumed to

• be defined with respect to the same set of relevant features,

• be disjoint in instance space, and

• have uniform instance distributions.

To study the effect of relevances of features in IBL algorithms, IB4 has 
been proposed by Aha [3]. In this study, feature weights are learned being 
dependent on concepts; a feature may be highly relevant to one concept and 
completely irrelevant to another. So, IB4 has been developed as an extension of 
IB3 that learns a separate set of feature weights for each concept. Weights are 
adjusted using a simple feedback algorithm to reflect the relative relevances 
of the features to describe instances. These weights are then used in IB4’s 
similarity function which is a Euclidean weighted-distance measure of the sim
ilarity of two instances. Multiple sets of weights are used because similarity 
is concept-dependent, the similarity of two instcinces varies depending on the 
target concept. IB4 decreases the effect of irrelevant features on classification 
decisions. Therefore, it is quite successful in the presence of irrelevant features.

The problem of novelty is defined as the problem of learning when novel 
features are used to help describe instances. IB4, similar to its predecessors, 
assumes that all the features used to describe training instances are known 
before training begins. However, in several learning tasks, the set of describing 
features is not known beforehand. IB5 [3], is an extension of IB4 that tolerates 
the introduction of novel features during training. To simulate this capability 
during training, IB4 simply assumes that the values for the (as yet) unused 
feature are missing. During training, IB4 fixes the expected relevance of the 
feature for classifying instances. IBS instead updates the weight of a feature 
only when its value is known for both of the instances involved in a classification 
cittempt. IBS can therefore learn the relevance of novel features more quickly 
than IB4.
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Also noise-tolerant versions of instance-based algorithms have been devel
oped by Aha and Kibler [4]. These learning algorithms are based on a form of 
significance testing, that identifies and eliminates noisy concept descriptions.

2.1.2 Nested-Generalized Exemplars (NGE)

Nested-generalized exemplar (NGE) theory is a variation of exemplar-based 
learning [58]. In NGE, an exemplar is a single training example, and a general
ized exemplar is an axis-parallel hyperrectangle that may cover several training 
examiDles. These hyperrectangles may overlap or nest. Hyperrectangles are 
grown during training in an incremental manner.

Salzberg implements NGE in a program called EACH (Exemplar-Aided 
Constructor of Hyperrectangles) [59]. In EACH, the learner compares new 
examples to those it has seen before and finds the most similar generalized 
exemplar in memory.

NGE theory makes several significant modifications to the exemplar-bcised 
model. It retains the notion that examples should be stored verbatim in mem
ory, but once it stores them, it allows examples to be generalized. In NGE 
theory, generalizations take the form of hyperrectangles in ?r-dimensional Eu- 
clidecin space, where the space is defined by the feature values mecisured for 
each example. The hyperrectangles may be nested one inside another to arbi
trary depth, and inner rectangles serve as exceptions to surrounding rectangles 
[58]. Each new training example is first classified according to the existing 
set of classified hyperrectangles by computing the distance from the example 
to each hyperrectangle. If the training example falls into the necirest hyper
rectangle, then the nearest hyperrectangle is extended to include the training 
example. Otherwise, the second nearest hyperrectangle is tried. This is called 
as second match heuristic. If the training example falls into neither the first 
nor the second nearest hyperrectangle, then it is stored as a new (trivial) hy
perrectangle.

A new example will be classified according to the class of the necirest hy
perrectangle. Distances are computed as follows: If an example does not fall
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into any existing hyperrectangle, a weighted Euclidean distance is computed. 
If the example falls into a hyperrectangle, its distance to that hyperrectangle is 
zero. If there are several hyperrectangles having equal distances, the smallest 
of these is chosen. The EACH algorithm computes the distance between E and 
H, where E is a, new data point and H  is the hyperrectangle, by measuring 
the Euclidean distance between these two objects as follows;

where

De ,h =  wh

d ( E , H J )

\ 2^  (“>/----------------— r^  max f —min f

h j j  > H f^ u p p e r  

H J  flower E f  E f  <C Hfjower

0 otherwise

(2.3)

(2.4)

where wh is the weight of the exemplar H, Wf is the weight of the feature / ,  
Ef is the value of the /th  feature on example E, Hĵ upper or H},lower are the 
upper end of the range and lower end, respectively, on /th  feature on exemplar 
/ / ,  m axf and mirif are the minimum and maximum values of that feature, 
and n is the number of features recognizable on E.

The EACH algorithm finds the distance from E  to the nearest face of H. 
There can be several alternatives to this, such as using the center of H. If 
the hyperrectangle H  is a point hyperrectangle, representing an individiuil 
example, then the upper and lower values becomes equal.

If a training instance E  and generalized exemplar H  are of the same class, 
that is, a correct prediction has been made, the exemplar is generalized to in
clude the new instance if it is not already contained in the exemplar. However, 
if the closest hyperrectangle has a different class then the algorithm modifies 
the weights of features so that the weights of the features that caused the wrong 
prediction is decreased.

The original NGE was designed for continues features only. Symbolic fea
tures require a modification of the distance and area computations for NGE.
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Figure 2.2. An example concept description of the EACH algorithm in a do
main with two features.

In Figure 2.2, an example concept description of EACH algorithm is pre
sented for two features / i  and / 2. Here, there are three classes. A, B  and 
C, and their descriptions are rectangles (exemplcirs) as shown in Eigure 2.2. 
It is seen that rectangle A contains two rectangles, B  and C', in its region. 
Therefore, B  and C are exceptions in the rectangle A. The NGE model allows 
exceptions to be stored quite easily inside hyperrectangles, and exceptions can 
be nested any number of levels. The test instance, that is marked as test in 
Figure 2.2, falls into the rectangle C, since it has smaller, so the prediction will 
be the class value C for this test instance.

2.1.3 Generalized Feature Values

The previously presented techniques categorized as generalized feature values 
under exemplar-based generalization are the CFP [27, 28, 65], COFI [67], and 
A:-NNFP [7] algorithms. Briefly, the CFP and COFI algorithms are incremental 
algorithms based on feature partitioning and overlapping feature intervals, re
spectively. They use feature projections as the basis of learning. Classification 
of unseen instances are based on voting among the individually predictions of 
features. The discussion of the CFP and COFI algorithms are presented in 
Chapter 3 in more detail (Section 3.1 and 3.2).
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2.2 Decision Trees

Decision trees are one of the most well known and widely used approaches for 
learning from examples. This method was developed initially by Hunt, Marin 
and Stone [31], and later modified by Quinlan [49, 50]. Quinlan’s ID3 [52] and 
C4.5 [55] are the most popular algorithms in decision tree induction. Initially, 
ID3 algorithm has applied to deterministic domains such as chess and games 
[49, 50]. Later, ID3 algorithm has extended to cope with noisy and uncertain 
instances rather than being deterministic [52].

Decision tree algorithms represents concept descriptions in the form of tree 
structure. Decision tree algorithms begin with a set of instances and create a 
tree data structure that can be used to classify new instances. Each instance 
is described by a set of feature values, which can have either continuous or 
symbolic (nominal) values, with the corresponding classification. Each internal 
node of a decision tree contains a test which indicates which branch to follow 
from that node. The leaf nodes contain class labels instead of tests. A new 
test instance is classified by using the class label stored at the leaf node.

Decision tree methods use divide and conquer approcvch. Each internal 
node must contain a test thcit will partition the training instances. The most 
important decision criteria in decision tree induction is how to decide the best 
test. ID3, and its successor C4.5 use information-theoretic metrics to evaluate 
the goodness of a test; in particular they choose the test that extracts the 
maximum amount of information from a set of instances, given the constraint 
that only one feature will be tested.

The recursive partitioning method of constructing decision trees continues 
to subdivide the set of training instances until each subset in the partition con
tains instances of a single class, or until no tests offer any further improvement. 
The result is often a very complex tree that “overfits the data” by inferring 
more structure than is justified by the training instances. A decision tree is 
not usually simplified by deleting the whole subtree in favor of a leaf. Instead, 
the idea is to remove parts of the tree that do not contribute to classifica
tion accuracy on unseen instances, producing something less complex and thus
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more comprehensible. This process is known as the pruning. There are basi
cally two ways in which the recursive partitioning method can be modified to 
produce simpler trees: deciding not to divide a set of training instances any 
further, or removing retrospectively some of the structure built up by recursive 
partitioning [55].

The former approach, sometimes called stopping or prepruning., has the 
advantage that time is not wasted in assembling structures that are not used 
in the final simplified tree. The typical cipproach is to look at the best way of 
splitting a subset and to assess the split from the point of view of statistical 
significance, information gain, error reduction. If this assessment falls below 
some threshold then the division is rejected.

Later, a simple decision tree approach, called IR system, is proposed by 
Holte [30]. It is based on the rules that classify an object on the basis of a 
single feature that is, they are 1-level decision trees, called 1-rules [3'

The input of the IR algorithm is a set of training instances. The output is 
concept descriptions in the form of 1-rule. The IR system can be treated as 
a special case of generalized feature values methods. These methods consider 
all features information whereas the IR system uses only one feature. IR tries 
to partition feature values into several disjoint feature intervals. Since each 
feature is considered separately in IR system, missing feature values can be 
simply ignored instead of ignoring the instance containing missing value. The 
FIL algorithms presented in this thesis also partition feature dimensions into 
disjoint intervals. However, the FIL algorithms make final predictions based 
on majority voting on individual classifications of all features rather than one 
feature as in IR system. During the training phase of the IR system, disjoint 
feature intervals are constructed on each feature dimension. Then, one of the 
concept descriptions on a feature is chosen as final concept descriptions, 1-rules, 
by selecting the one that makes the smallest error on the training dataset.

Holte used sixteen datasets to compare IR and C4 [52], and fourteen of 
the datasets were selected from the collection of UCI-Repository [47] [30]. The 
main result of comparing IR and C4 was an insight into the tradeoff between
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simplicity and accuracy. IR rules are only a little less accurate (about 3 per
centage points) than C4’s pruned decision trees on almost all of the datasets. 
Decision trees formed by C4 are considerably larger in size than 1-rules. Holte 
shows that simple rules such as IR are as accurate as more complex rules such 
as C4.

Another decision tree algorithm is T2 (decision trees of at most 2-levels) 
[12]. Its computation time is almost linear in the size of training set. The T2 
algorithm is evaluated on 15 common reid-world dataset. It is shown that the 
most of these datasets, T2 provides simple decision trees with little or no loss 
in accuracy compared to C4.5.

2.3 Statistical Concept Learning

Statistical concept learning has been extensively studied for induction problems 
[21, 25, 69]. The main goal is to determine the classification of a given instcuice 
based on parametric or nonparametric techniques. The decision-making pro
cesses of humans are somewhat related to the recognition of patterns. For 
example the next move in chess game is based upon the present pattern on 
the board, and buying or selling stocks is decided by a complex pattern of 
information [25]. The goal of the pattern recognition is to clarify these com
plicated mechanisms of decision-making processes and to automate these func
tions using computers. Several pattern recognition methods, either parametric 

or nonparametric, have been presented in the literature [20, 21, 25, 69].

Bayesian classifier originating from work in pattern recognition is a proba
bilistic approach to inductive learning. This method estimates the (posterior) 
probability that an instance belongs to a class, given the observed feature val
ues for the instance. The classification is determined by the highest estimated 
posterior probability [21, 25]. Bayesian chissifiers assume that features are sta
tistically dependent. On the other hand. Naive Bayesian classifier is one of the 
most common parametric classifiers assuming independence of features.

When no parametric structure can be assumed for the density functions, 

nonparametric techniques, for instance nearest neighbor method, must be used
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for classifications [21, 25]. The nearest neighbor method is one of the simplest 
methods conceptually, and is commonly cited as a basis of comparison with 
other methods. It is often used in case-based reasoning [62].

This section is devoted to statistical concept learning methods because 
they have similarities to the FIL algorithms developed in this thesis F’irst, 
Bayes Decision Theory and Naive Bayesian Classifiers will be explained. Then, 
nearest neighbor methods with some variants will be discussed. Finally, a new 
version of k nearest neighbor algorithm, A;-NNFP, based on feature projections 
will be briefly mentioned, and discussed in detail in Chapter 3 by comparing 
k nearest nearest neighbor techniques. In Chapter 5, the FIL algorithms will 
be compared with these statistical methods.

2.3.1 Bayes Decision Theory - Naive Bayesian Classi
fier (NBC)

The goal of the Bayesian classification is to determine the a posteriori proba
bilities P{C j\x)  where Cj  is the class and x  is the instance to be classified. An 
instance x = <  xi,X 2·, ■■■Xn > is a vector of feature values where n is the num
ber of features. The a priori probability P { C j )  and the conditional densities 
P{x\Cj)  allows the use of Bayes rule to compute P ( C ' , [ x ) .

Let D =  {C l, C2, .·, Ck}  be the finite set of k states of nature. Here each Cj  

corresponds to a class in our terminology. Let the feature vector x  be a vector
valued random variable, and let p{x\Cj)  be the state-conditional probcibility 
density function for x ,  that is, the probability density function for x  conditioned 
on Cj  being the state of nature. Finally, let P { C j )  be the a priori probability 
that nature is in the state Cj.  That is, P { C j )  is the proportion of all instances 
of class j  in the training set. Then the a posteriori probability P{C j\x)  can be 
computed from p{x\Cj) by Bayes rule [21]:

p(x|C,)C(Ci)
P(Cj\x.)

pM
(2.5)

where
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p W  =  Y,p{^\Cj)P(C j).
i=i

( 2 .6)

Let A =  { « i ,Q!25 be the finite set of a possible actions. Let X{ai,Cj)
be the loss incurred for taking action ai when the state of nature is Cj.  Since 
P{Cj\'x.) is the probability that the true state of nature is Cj,  the expected loss 
cissociated with taking action ai is

Ricxil̂ ) =  J2\{ai\Cj)P{CM)· (2.7)
i=l

In decision theoretic terminology, an expected loss is called risk, and R(cxi |x) 
is known as the conditional risk. Whenever we encounter a particular observa
tion X , we can minimize our expected loss by selecting the action that minimizes 
the conditional risk. Now, the problem is to find a Bayes decision rule against 
P { C j )  that minimizes the overall risk. A decision rule is a function a (x ) that 
tells us which action to take for every ¡possible observation. That is, for every 
X , the decision function o;(x) assumes one of the a values cri, «2, ··) «a· The 
overall risk R is the expected loss associated with a given decision rule. To 
minimize the overall risk, we compute the conditional risk for i =  l , . . ,a  and 
select the action ai for which i?(ai|x) is minimum. The resulting minimum 
overall risk is called the Bayes risk and is the best performance that can be 
achieved.

H(a.|x) =  X:A(ai|Q )P(Cj|x)i=l
(2.8)

The probability of error is the key parameter in pattern recognition. There 
are many ways to estimate error for Bayesian classifiers. One of them is mini
mizing it. For example, if action ai is taken and the true state of nature is Cj,  

then decision is correct if z =  j ,  and in error ii i ^  j .  A loss function lor this 
case, called zer'o-one loss function is:
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a
0 if z =  j
1 if z 7̂  j

(2.9)

The conditional risk becomes

/2( 0!.·|x) ^ ^ P ( C j \ x ) (2.10)

R(ai\x) =  1 -  P{Ci\x) (2. 11)

Note that P{Ci\x)  is the conditional probability that action ai is correct. To 
minimize the average probability of error, one should maximize the a posteriori 
probability P ( 6 j |x). For minimum error rate;

Decide Ci if P{Ci\x)  >  P{C j\x)  for all j  z.

In summary, a Bayesian classifier classifies a new instance by cipplying 
Bayes’ rule to determine the probability of each class given the instance.

P (C M ) =
p(x\C j)P (C j)

E . p ( x | C i ) P ( C . )
( 2. 12)

The denominator sums over all classes and where P{x\C j)  is the probability 
of the instance x  given the class Cj.  After calculating these quantities for each 
class, the algorithm assigns the instance to the class with the highest proba
bility. In order to make this expression operational, one must specify how to 
compute P{x\Cj) .  The Naive Bayesian Classifier (NBC) assumes independence 
of features within each class, allowing the following equality

n ^ | c ,)  =  n
/=1

(2.13)

An analysis of Bayesian classifier has been presented [36]. Also a method, 
called Selective Bayesian Classifier, has been proposed [37] to overcome the
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limitation of the Bayesian classifier for sensitivity to correlated features. Since 
NBC considers each feature independently, this will form a basis lor comparison 
with the FIL algorithms. The experimental results of these comparisons will 
be presented in Chapter 5.

2.3.2 Nearest Neighbor Classifiers (NN)

One of the most common classification techniques is the nearest neighbor (NN) 
algorithm. In the literature, nearest neighbor algorithms for learning froixi 
examples have been studied extensively [17, 21]. Aha et al. have demonstrated 
that instance-based learning and nearest neighbor methods often work as well 
as other sophisticated rnachjne learning techniques [5].

The NN classification algorithm is based on the assumption that examples 
which are closer in the instance space are of the same class. An example is 
represented as a vector of feature values plus class label. That is, unclassified 
ones should belong to the same class as their nearest neighbor in the ti'ciining 
dataset. After all the training set is stored in memory, a new example is classi
fied as of the class of the nearest neighbor among all stored training instances. 
Although several distance metrics have been proposed for NN algorithms [60], 
the most common metric is the Euclidean distance metric. Instances are rep
resented as a vector of feature values plus class label. The Euclidean distance 
between two instances x = <  x i,X 2 , ...,Xn,Cx >  and y —< y i,y 2 , ...yn,Cy >  on 
an n dimensional space is computed as:

dist{x, y) =

d i f f { f ,x ,y )  =

y E % ,d i f f { f ,x , , jY  (2.14)

\̂ f ~  Vf\ if /  is linear
0 if f is nominal and Xf =  y/ (2.15)
1 if f is nominal and x¡ ^  yj

Here d if f { f ,  x, y) denotes the difference between the values of instances x, and 
y on feature / .  Note that this metric requires the normalization of all feature 
values into a same range.
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Although several techniques have been developed for handling unknown 
(missing) feature values [54, 55], the most common approach is to set them to 
the mean value of the values on corresponding feature.

Stanfill and Waltz introduced the Value Difference Metric (VDM) to define 
the similarity for symbolic-valued (nominal) features and empirically demon
strated its benehts [62]. The VDM computes a distance for each pair of the 
different values a symbolic feature can assume. It essentially compares the 
relative frequencies of each pair of symbolic values across all classes. Two fea
ture values have a small distance if their relative frequencies are approximately 
equal for all output classes. Cost and Salzberg present a nearest neighbor 
algorithm that uses a modification of VDM, called MVDM (Modified Value 
Difference Metric) [15]. The main difference between MVDM and VDM is 
that their method’s feature value differences are symmetric. This is not the 
case for VDM. A comparison of MVDM and Bayesian classifier is presented in 

[56].

A generalization of the nearest neighbor algorithm, A:-NN, classifies a new 
instance by a majority voting among its /: (>  1) nearest neighbors using some 
distance metrics in order to prevent the intrusive effect of noisy training in
stances. This algorithm can be quite effective when the features of the domain 
are equally important. However, it can be less effective when many of the 
features are misleading or irrelevant to classification. Kelly and Davis intro
duced WKNN, the weighted ¿-NN algorithm, and GA-WKNN, a genetic algo

rithm that learns feature weights for WKNN algorithm [33]. Assigning variable 
weights to the features of the instances before applying the k-NN algorithm 
distorts the feature space, modifying the importcince of each feature to reflect 
its relevance to classification. In this way, similarity with respect to impor
tant features becomes more critical than similarity with respect to irrelevant 
features. The study for weighting features in /?-NN algorithm has shown that 
for the best performance the votes of the k nearest neighbors of a test exam
ple should be weighted in inverse proportion to their distances from the test 

example [70].

An experimental comparison of the NN and NGE {Nested Generalized Ex

emplars, a Nearest-Hyperrectangle algorithm) has been presented by Wettschereck
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and Dietterich [71]. NGE and several extensions of it are found to give pre
dictions that are substantially inferior to those given by A;-NN in a variety of 
domains. An average-case analysis of fc-NN classifiers for Boolean threshold 
functions on domains with noise-free Boolean features and a uniform instance 
distance distribution is given by Okamoto and Siitoh [48]. They observed that 
the performance of the A;-NN classifier improves as k increases, then reaches a 
maximum before starting to deteriorate, and the optimum value of k increases 
gradually as the number of training instances increases.

2.3.3 NN Classifier on Feature Projections (NNFP)

Another statistical approach is a new version of the A;-NN classification al
gorithm proposed in this thesis, which uses feature projections of training 
instances for classification knowledge [7]. The classification of an unseen in
stance is based on a majority voting on individual classifications made by the 
projections of the training set on each feature. We have applied the ^;-nearest 
neighbor algorithm to determine the classifications made on individual feature 
projections. We called the resulting algorithm A:-NNFP, for A:-Nearest Neighbor 
on Feature Projections. The classification knowledge is represented in the form 
of projections of the training data on each feature dimension. This allows the 
classification of a new instance to be made much faster than A;-NN algorithm. 
The voting mechanism reduces the intrusive effect of possible irrelevant fea
tures in classification. The A:-NNFP algorithm is discussed in detail in Section 

3.3.



Chapter 3

Feature Projections for Knowledge 
Representation

In this chapter, feature projections for knowledge representation are discussed 
in detail. Given a set of training instances with correct class labels, knowledge 
for representation of a concept description (or classification) is maintained as 
the projections of the training set on each feature dimension separately. The 
most important advantage of this representation is that the projections of the 
feature values can be sorted for each feature, and this reduces the time for 
the computation of similarity to all training instances for nearest neighbor 
like techniques. An additional advantage is the easy and natural handling of 
missing feature values. The rationale behind this knowledge representation is 
that humans maintain knowledge in this form, especially in medical domains. 
An example for this approach is presented, called CRiteria Lecirning System 
[66]. It aims to learn decision rules in the form of criteria tables as humans do. 
One of the shortcomings of feature projections is that descriptions involving a 
conjunction between two or more features can not be represented.

This chapter discusses the CFP, COFI, and /j-NNFP algorithms that use 
feature projections lor knowledge representation. Briefly, the CFP and COFI 
algorithms are based on feature partitioning and overlapping feature intervals, 
respectively. The most important propert}'  ̂ of these algorithms is that they 
both consider each feature separately in an incremental manner. The reported 
results show that both techniques are successful by processing each feature
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separately [27, 28, 65, 67]. The encouraging results of the CFP and COFI 
algorithms motivated us for further investigation of feature projections as a 
form of knowledge representation from a different point of view. We think that 
more accurate results can be obtained from these techniques if ci batch learning 
strategy is followed. After the discussion of the CFP and COFI algorithms, a 
new version oi the classical /j-NN algorithm which treats instances as feature 
projections rather than points, called A:-NNFP (k Nearest Neighbor on Feature 
Projections) is presented. Next, an extension to it by weighting features for 
weighted-voting is presented.

3.1 Classification by Feature Partitioning (CFP)
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The CFP algorithm is a method for learning from examples that uses feature 
projections for knowledge representation [27, 28, 65]. It is an incremental 
supervised inductive learning algorithm where instances are stored by their 
feature projections over each feature dimension. An instance is represented as a 
vector of feature values plus a label that encodes the class of the instcince. In the 
training phase, disjoint feature intervals of concept definitions are constructed 
by generalization and specialization. An interval is a basic unit of knowledge 
representation in this algorithm. For each interval, lower and upper bounds 
of the feature values, the associated class, and the number of instances it 
represents are maintained.

Initially, an interval is a point on a feature dimension. It can be extended 
through generalization with other neighboring points in the same feciture di
mension. In order to avoid overgeneralization, a parameter, called generaliza
tion limit (D f), is given. Before generalizing an interval on a feature dimension 
/  to cover a new point, the distance between interval and the new point must be 
less than Df. Otherwise, new value forms a new point interval on that feature 
dimension. During training, if the feature value of a training instance falls into 
an interval properly with the same class, the representativeness value is incre
mented by one. However, if it falls into an interval with a different class than 
that of the instance, specialization of that interval is made by dividing it into 
subintervals and inserting a point interval for the new value in between them.
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Figure 3.1. Construction of intervals in the CFP algorithm: (a) after ii is 
processed, (b) after ¿2 is i^rocessed, (c) after ¿3 is processed, (d) after all training 
instances are processed.

The representativeness values of these new intervals are updated according to 
their sizes.

Figure 3.1 shows the construction of intervals in the CFP algorithm. Let 
us consider a training dataset with only one feature. The first instance forms 
a point interval at the feature value xi on this feature dimension. After the 
second instance, a range interval is constructed and its lower and upper bounds 
are xi and X2 , respectively, since these two instances have the same class, 
as shown in Figure 3.1.b. Here, we assume that the generalization distcince 
is greater than the difference between .tj and X2· The third instance with 
different class, C2 , specializes the interval into two subintervals by inserting 
a new point interval in between them. In Figure 3.1.c, the fourth one with 
class (7i just increases the representativeness count of the interval that covers 
it. Let us assume the next three instances belong to class C2 , and their related 
feature values are between X4 and X2 . In this case, the interval [0:3, 0:2] in Figure 
3.1.b is subpartitioned into four intervals for class C\ and point intervals are 
constructed for the second class C2 as shown in Figure 3.1.d.

During the training process in the CFP algorithm, feature weights and fea
ture intervals of each concept are learned in an incremental manner. Initially,



all feature weights are taken as 1. Assume that a new training example is 
misclassified by a feature / .  Then the weight of that feature (wf) is decreased 
by multiplying it by (1 - A ). Otherwise, it is increased by multiplying it by (1 
+  A ). Here, A  is the global feature adjustment rate, given as a parameter to 
CFP.
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Classification of an unseen instance is based on a vote tciken cvmong the 
predictions made by each feature separately. The prediction of a feature is 
determined by the value of that instance on that feature. If it Mis into an 
interval with a known class, then the prediction is the class of that interval. 
If it falls on a point interval, the class with highest representativeness value is 
chosen among all the intervals at that point. If it doesn’t fall in any interval, 
then no i^rediction for that feature is made. The effect of the prediction of a 
feature in the voting is proportional to the weight of that feature. The final 
classification is based on weighted majority voting among local predictions of 
features.

In the CFP algorithm, feature intervals are constructed as disjoint set of fea
ture values. However, intervals may have common boundaries. In such cases, 
the representativeness values of the intervals are used to determine the iDredic- 
tion: the class label of the interval which has the maximum representativeness 
value is predicted.

Several extensions to the CFP algorithm have been presented in order to 
handle noisy values [64, 65] and determine the domciin dependent parameters 
(D f and A ) of the CFP algorithm [27].

In the noise-tolerant version of the CFP algorithm, feature intervals that 
are believed to be introduced by noisy examples are removed from the memory 
[65]. A new parameter, called confidence threshold (or level) is introduced to 
control the process of removing the intervals from the concept description. The 
confidence threshold and observed frequency of the classes are used together 
to decide whether an interval is noisy or not.

In order to learn feature weights and domain dependent parameters of the 
CFP algorithm, a hybrid system, called GA-CFP, which combines a genetic
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Figure 3.2. Construction of intervals in the CFP algorithm by changing the 
order of the training instances. Note that here the same set of instances in 
Figure 3.1., but in a different order, is used as the training set: (a) after 13,17 , 
is and ie are processed, (b) after all instances are processed.

cilgorithm with the CFP algorithm has been developed [27]. The genetic algo
rithm is used to determine a very good set of domain dependent parameters 
(A  and D j for each feature) of the CFP, even when trained with a small set 
of the data set. An algorithm that hybridizes the classification power of the 
feature partitioning CFP algorithm with the search and optimization power of 
the genetic algorithm, called GA-CFP, requires more computcitions than the 
CFP algorithm, but achieves improved classification performance.

Figure 3.2 illustrates a limitation for the CFP algorithm. In order to see 
the effect of the order of presentations of training instances, let us construct 
intervals by the CFP algorithm by changing the order of training instances. 
In this case, all instances with class C2 were processed before other instances 
with class C\ in the previous example, then the intervals would have been 
constructed as shown in Figure 3.2. Firstly, a range interval is constructed for 
the class C2 from the first four instances as shown in Figure 3.2a, and then 
three point intervals are constructed for the last three instances of class C\ as in 
Figure 3.2b. The concept descriptions (intervcils) in Figure 3.1 and Figure 3.2 
cire very different from each other although the same training instances were 
processed. This indicates that the order of the instances is very important and
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Figure 3.3. Construction of the intervals in the FIL algorithms with using the 
same dataset as used in Figure 3.1 and Figure 3.2.

it affects the resulting concept descriptions considerably. The different concept 
descriptions can classify a test instance as different classes. For example, the 
test instance < xs, Ci >  where < xg < Xg will be classified as C\ by the 
intervals constructed in Figure 3.1 and as C2 according to feature intervals in 

Figure 3.2.

The FIL algorithms offer a solution to this problem, by constructing inter
vals in a batch mode, that is, seeing all the training instances at once, and 
then processing them. Therefore, they construct intervals as independent of 
the order of training instances. Since all training instances are known initially, 
all feature values are sorted on each feature dimension in the form of point 
intervals. Then, neighboring same class points are generalized to form range 
intervals. Feature values at which there exist more than one class remain as 
point intervals. The concept description learned by the FIL algorithms from 
the same set of training instances is shown in Figure 3.3, independent of the 
order of the training instances. In addition to sensitivity to the order of train
ing instances, the CFP algorithm overgeneralizes intervals as in 3.1c. In this 
case, intervals of concept Ci are formed between point intervals of concept C2 · 
However, one might expect that the range [.'C5,.'C7] should belong to class C2 ·

3.2 Classification with Overlapping Feature Intervals 

(COFI)

The COFI algorithm is another exemplar-based concept learning algorithm 
that uses feature projections to generalize knowledge. It is an inductive su
pervised learning algorithm. Classification knowledge learned is maintained
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Figure 3.4. An example of construction of intervals in the COFI algorithm: 
(a) after ¿i, ¿2, ¿3 and ¿4 are processed, (b) after ¿5 and are processed.

in the form of overlapping feature intervals. The COFI algorithm makes gen
eralizations to construct the concept descriptions from a set of preclassified 
training instances. Concept descriptions learned by the COFI algorithm are 
represented as intervals on the class dimensions for each feature.

In the training process, examples are processed one by one and the corre
sponding intervals on each class dimension for each feature are constructed. 
The COFI algorithm performs the learning task by constructing the projection 
of the concepts over each class dimension for each feature, that is, the COFI 
algorithm learns the overlapping feature intervals for each feature. Learning 
overlapping feature intervals is done by storing the objects separately in each 
class dimension for each feature as class intervals of values. Basic unit of the 
representation is interval as in the CFP algorithm. An interval consists of four 
parameters: lower and upper bounds, representativeness count and a class la
bel. Lower and upper bounds of the interval are the minimum and mciximurn 
feature values that fall into the interval respectively. Representativeness count 
is the number of the instances that the interval represents, and finally the class 
label is the associated class of the interval.

The first task of the training process is the estimation of the current gen
eralization distances, D j, for each feature / .  They are found as follows:
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D f =  {current Jinaxf — current-min f) * g. (3.1)

Here the current maximum and current minimum feature values are the 
maximum and minimum values of the related feature seen up to the current 
example and g is the generalization ration in the range [0,1]. They are updated 
by each new training example. Since current maximum and minimum of fea
tures change through out the training process, the COFI algorithm is affected 
also by the order of the training instances. In the first training instance, the 
maximum and the minimum values are equal to each other and they are the 
first feature values of the related feature of the training instance. Therefore, 
initially all the generalization distances are 0 for each feature. If the feature 
values of the next training instance are different from the previous example’s 
feature values, then one of the maximum and minimum value of the related 
feature is updated so the generalization distance will also be updated.

After deciding the generalization distance Z)y, the intervals should be up
dated according to D f. If the distance between the feature value of the new 
example and the previously constructed intervals is greater than the D j, then 
the new example constructs a new point interval. Otherwise, representativeness 
count of the interval containing it is incremented by 1. The COFI algorithm 
handles both the linear and nominal feature values. However, the generaliza
tion process is applied only to linear type features. Nominal feature values are 
not generalized, taking D f us Q for nominal features.

Figure 3.4 illustrates the construction of overlapping feature intervals in the 
COFI algorithm. This sample training set with one feature and two classes. 
The incremental computation of Df ĉ foi' each class dimension is also shown 
in the Figure 3.4. For this example, on the Ci class dimension only point 
intervals are constructed since the difference between feature values do not 
exceed D/,i. On the other hand, on the second class dimension, the last training 
instances’ value forms a range interval since the difference between feciture 

values is greciter than Df 2̂ -

The classification of an unseen test instance is based on a majority voting 
taken among the individual predictions based on the votes of the features. The
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Figure 3.5. An example of construction of intervals in the COFI algorithm 
using the same set of training instances as in Figure 3.6, but in a different 
order: a) after ii, is, ¿3, and ie are processed, b) after and ¿4 are processed.

vote of a feature is based solely on the value of the test instance for that feature. 
The vote of a feature is not for a single class but rather a vector of votes, called 
vote vector. The size of the vector is equal to the number of classes. An element 
of the vote vector represents the vote given by the feature to the corresponding 
class. The vote that a feature gives to a class is the relative representativeness 
count of the class interval. The relative representativeness count is the ratio of 
the representativeness count to the number of examples of the corresponding 
class label. Since for most of the datasets, the instances are not distributed 
normally in terms of their class values, this kind of normalization is required. 
The vote vectors of each feature are added to determine the predicted class. 
The class which receives the maximum vote is the final class prediction for the 

test instance.

Generalization in the COFI algorithm is sensitive to the order of the train
ing instances as shown in Figure 3.5, as in the CFP algorithm. Here, the order 
of training instances are changed among same classes. We get a different con
struction of overlapping intervals from this ordering of training instances, as 
shown in Figure 3.5 since the initial generalization distances change.

The FIL algorithms construct disjoint feature intervals from the same train
ing instances as independent of the order of the training instances, <is seen 
from the Figure 3.6. Since all feature values are known initially, the intervals
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Figure 3.6. An example of construction of intervals in the FIL Algorithms 
using the same set of training instances as in Figure 3.4 and Figure 3.5.

constructed during the training process are unique whatever the order of the 
training instances is.

3.3 K  Nearest Neighbor Classification on Feature Pro

jections (^-NNFP)

In this section, a new approach to classification is presented, which is based on 
a majority voting on individual classifications made by the projections of the 
training set on each feature [7]. We have applied the ¿-nearest neighbor algo
rithm to determine the classifications made on individual feature projections. 
We called the resulting algorithm ¿-NNFP, for ¿-Nearest Neighbor on Feature 

Projections.

The classification knowledge is represented in the form of projections of the 
training data on each feature dimension. The classification of an instance is 
based on a voting taken on the classifications made on the basis of individual 

feature projections.

In Chapter 2, a brief introduction to ¿-NN algorithm cind its several exten
sions were given. In the next subsection, the ¿-NNFP algorithm is described. 
Section 3.3.2 presents the complexity analysis and empirical eviduation of the 
¿-NNFP and ¿-NN algorithms. Finally, Section 3.2.3 presents a summary of 
the ¿-NNFP algorithm and its applicability.



3.3.1 The A;-NNFP Algorithm

This section presents the ¿-NNFP algorithm, a new classification based on 
feature projections using k nearest neighbor algorithm. First, the description 
of the algorithm is given. Then the algorithm is explained through an exam
ple dataset. Later, the behavior of the algorithm on datasets with irrelevant 
features will be given.

3.3.1.1 Description of the A:-NNFP Algorithm
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The implementation of the algorithm given here is non-incremental, namely, all 
training instances are taken and processed at once. An instance x  is represented 

as x = <  xi,x'2 , ■■XniCx >  where XiS (1 < in) are the feature values and Cx is 
the corresponding class label. An important characteristic of this algorithm 
is that instances are stored as their projections on each feature dimension. In 
the training phase, each training instance is stored simply as its projections 
on each feature dimension. If the value of a training instance is missing for a 
feature, that instance is not stored on that feature.

In order to classify an instance, a preclassiiication separately on each fea
ture dimension is performed. During this preclassification, we use the A;-NN 
algorithm on that single dimension. That is, for a given test instance t and 
feature / ,  the preclassification for k =  1 will be the class of the training in
stance whose value on feature /  is the closest to that of the t. For a larger 
value of k, the preclassification is a bag (multiset) of classes of the nearest k 
training instances. In other words, each feature has exactly k votes, and gives 
these votes for the classes of the nearest training instances. In some cases, es
pecially for nominal features, there may be ties to determine the first k nearest 
neighbors. In such cases ties are broken randomly. For the final classification 
of the test instance f, the preclassification bags of each feature are collected 
using bag union. Finally, the class that occurs most frequently in the collec
tion bag is predicted to be the class of the test instance. In other words, each 
feature has exactly k votes, and gives these votes for the classes of the nearest 
training instances. Also note that, since each feature is processed separately.
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classify (i,/;;)
/*  t: test instance, k: number of neighbors * / 
begin

for each class c 
vote[c] =  0 

for each feature /
/ *  put k nearest neighbors of test instance t 

on feature /  into B a g  * /
B a g  ^  kBag(/, i, k) 
for each class c

vote[c] =  vote[c] +  count(c,
■prediction -  UNDETERMINED 
for each class c

if vote[c] >  yoie\prediction] then 
prediction — c 

return prediction
end.

Figure 3.7. Classification in the A:-NNFP algorithm, 

no normalization of feature values is needed.

The fc-NNFP algorithm is outlined in Figure 3.7. All the projections of 
training instances on linear features are stored in memory as sorted values. In 
Figure 3.7, the votes of a feature is computed by the function k B a g { f , t , k ) ,  

which returns a bag of size k containing the classes of the k nearest training 
instances to the instance t on feature / .  The distance between the values on a 

feature dimension is computed using d i f f { f , x , y )  metric as follows:

\xf — Vfl if /  is linear
0 if /  is nominal and Xf =  yf

1 if /  is nominal and x j ^  yj

(3.2)

Note that the bag returned by k B a g { f ,  i, k) does not contain any U N D E T E R 

M IN E D  clciss as long as there are at least k training instances whose /  values 
are known. Then, the number of votes for each class is incremented by the 
number of votes that a feature gives to that class, which is determined by the



count function. The value of the function count{c, Bag) is the number of 
occurrences of class c in bag Bag.

The A;-NNFP algorithm handles unknown feature values in a straight for
ward manner. If the value of a test instcince for a feature /  is missing, then 
feature /  does not participate in the voting for that instance. The final voting 
is done between the features for which the test instance has a known value. 
That is, unknown feature values are simply ignored.

3.3.1.2 An Example

In order to describe the classification in the A:-NNFP algorithm, consider the 
sample training dataset in Figure 3.8. In this dataset, the feature /o is the only 
relevant feature, and fi  is an irrelevant feature. There are three instances of 
each class A, B, and C in the training set. Let the test instance (<  5,5 > ) be 
of class B.

For the test instance in Figure 3.8, the fc-NN classification, kBag values 
and final prediction for the A:-NNFP algorithm are given in Table 3.1. As seen 
in Table 3.1, the /;-NN algorithm will classify the test instance as C if A; =  1, 
as C or A if A: =  2, as C, A or B if A: =  3, and as C if A: =  4. On the other hand, 
the A:-NNFP algorithm will classify the test instance correctly if A: > 1. This 
example shows that the A;-NNFP algorithm will be unaffected in the presence 

of irrelevant features.

3.3.1.3 Handling Irrelevant Features
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The conclusion about the irrelevant features from the previous excimple can 
be generalized. For an irrelevant feature / ,  the number of occurrences of a 
class C  in a bag returned by k B a g (f,t ,k )  is proportional to the number of 
instances of class C  in the training set. If there are equal number of instances 
of each class in the training set, than the votes of an irrelevant feature will be 
equal for each class, and the final prediction will be determined by the votes 
of the relevant features. If the training instances are not equally distributed
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Figure 3.8. A sample training dataset and a test instance.

among the classes, then the votes of an irrelevant feature will be for the most 
frequently occurring class.

Table 3.1. For the test instance (<  5,5 > ) in Figure 2 the ¿-NN classification, 
kBag values and final prediction of the A;-NNFP algorithm.

k k - m
A;-NNFP

fo fl Sum of Votes Prediction
1 [C] [B] [C] |B,C] B or C
2 [C.A] |B,B] [C,A] [A,B,B.C| B
3 [C,A,B] [B,B.B] [C,A,C] [A,B.B,B.C,C] B
4 [C,A,B,C] [B.B,B,A] [C,A,C,B] [A,A,B,B,B,B,C,C] B

3.3.1.4 Handling Missing Feature Values

The /j-NNFP algorithm handles unknown (missing) feature values by simply 
not taking them into account. During bcitch training and classification, the



features containing missing values are simply ignored. This is a natural ap
proach because in real life if nothing is known about a feciture, it is usually 
ignored. If all class dimensions give no prediction, then no prediction can be 
made and the resulting prediction for the class is UNDETERMINED. This is 
an unexpected case since at least one feature value should be known.

3.3.2 Evaluation of the /j-NNFP Algorithm

Several measures of performance are possible. One performance measure of a 
classification algorithm is its classification accuracy. For supervised concept 
learning tasks, the most commonly used classification accuracy metric is the 
percentage of correctly classified instances over all test instances for a given 
dataset. The other performance measures are time and space complexities. In 
this section, the training and classification complexities of the A;-NNFP cind 
the ¿-NN algorithms are given. Next, an empirical evaluation of the algorithm 
is presented cilong with its comparison with the ¿-NN cilgorithm in terms of 
classification accuracy for increasing values of k and running time.

3.3.2.1 Complexity Analyses
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Since all the training instances are stored in the memory in both A;-NN and k- 
NNFP algorithms, the space required for training with m instances on a domiiin 
with n features is proportional to m-n. That is, the space complexities of these 
algorithms are 0 {m · n).

In the training, all instances are stored on each feature dimension as their 
feature projections. And then they are sorted once at the end. Since the 
sorting of m feature values has the time complexity of 0 (rn log m) Pbr a dataset 
containing m instances and n features the training time complexity of the k- 
NNFP is 0 (n  ■ m ■ log m). On the other hand, the fc-NN algorithm has the time 
complexity of 0 {rn · n) for storing all instances in memory.

The kB ag{f, i, k) function, to determine the votes of a feature, first finds the 
nearest neighbor of t on /  and then next k — 1 neighbors around the nearest



neighbor. The time complexity of this process is O(logm  +  k). The final 
classification requires the votes of each of n features. Therefore, the average 
classification time complexity of the A:-NNFP algorithm is 0 (n  ■ (k +  logm )).

On the other hand, in the ¿-NN algorithm, the classification of a test in

stance requires the computation of its distance to m training instance on di
mensions. Time complexity of computing the distance between two instances 
is 0 (n ). So, computing the distance to m training instances is 0 (m  ■ n) . 
Sorting m instances according to their distances is O (m logm ). Therefore, the 
classification time complexity of a single instance in the A:-NN algorithm is 
0 {m{n  -h log to)), assuming m »  k.

3,3.2.2 Empirical Evaluation
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Here, an empirical evaluation of the ^-NNFP algorithm on both real-world 
data sets and artificially generated datasets is presented in order to show the 
effect of irrelevant features on the classification accuracy. The results will be 
compared with that of the A;-NN algorithm.

Experiments with Real-World Datasets

The ¿-NNFP and A;-NN algorithms are evaluated on some real-world datasets 
which are widely used in the machine learning field, therefore comparisons will 
be possible with other similar methods in future. The real-world datasets are 
selected from the UCI-Repository [47]. An overview of the datasets is given in 
Appendix A, and they are briefly explained.

Accuracy of an algorithm is a measure of correct classifications on a test 
set of unseen instances. There are several ways of measuring the ciccuracy of 
an algorithm. In this study, we chose the 5-fold cross-validation technique. 
That is, the whole dataset is partitioned into 5 subsets. The four of the sub
sets is used as the training set, and the fifth is used as the test set, and this 
process is repeated 5 times once for each subset being the test set. Therefore, 
each instance appears once in the test set, and four times in the training set. 

Classification accuracy is the average of these 5 runs.
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Table 3.2. Accuracy (%) and average running time (msec) of the A:-NNFP 
algorithm on real-world datasets.

Data Set: bcancerw Cleveland glass Hungarian ionosphere iris liver musk wine
k = l 94.00 67.62 57.00 70.04 88.04 90.00 50.44 69.54 79.7
k = 2 94.56 72.28 62.14 70.70 88.02 92.00 53.92 71.40 90.4
k = 3 94.88 72.94 61.18 75.84 88.02 91.34 55.68 70.76 90.96
k = 4 95.72 77.56 60.74 73.80 87.46 92.64 58.84 71.40 93.24
k = 5 96.16 78.88 60.72 76.16 87.46 91.30 58.26 71.22 93.24
k = 6 96.00 77.86 63.54 72.76 87.78 91.88 61.16 69.96 95.48
k = 7 96.00 79.52 62.58 74.80 87.74 92.00 61.46 70.36 95.48
k = 8 96.14 79.18 63.98 73.76 86.90 92.66 61.76 69.96 96.04
k = 9 96.14 78.52 63.04 75.80 87.44 92.00 62.04 69.52 96.62

k = 1 0 96.14 78.86 64.90 72.76 87.46 94.02 62.90 69.10 96.62
Avg. Time 340 740 94 266 477 40 1022 2654 282

Table 3.3. Accuracy (%) and average running time (msec) of the A:-NN cilgo- 
rithm on real-world datasets.

D ata Set: bcancerw Cleveland glass Hungarian ionosphere iris liver musk wine

k = l 95.00 80.52 68.66 75.50 84.62 93.98 63.48 73.10 94.40
k = 2 93.84 80.20 67.70 79.54 88.06 94.00 60.58 77.54 94.42
k = 3 96.28 82.50 66.76 81.58 83.78 94.68 66.66 70.18 96.60
k = 4 95.72 82.84 68.14 80.92 85.20 94.00 62.60 74.16 94.38
k = 5 96.58 83.80 66.30 82.26 83.20 94.66 64.92 67.88 96.04
k = 6 96.56 82.82 67.24 83.64 83.76 95.32 61.46 69.14 96.08
k = 7 96.26 82.50 65.36 83.28 82.34 94.66 64.64 65.58 96.04
k = 8 95.86 82.16 65.36 83.62 84.06 94.66 64.36 67.86 95.48
k = 9 95.56 82.82 65.34 82.94 82.62 94.66 67.54 65.16 96.04

k = 1 0 95.70 81.48 63.96 83.96 84.06 94.66 63.20 67.86 96.06
Avg. Time 3216 7786 318 695 2335 105 2060 18520 615

Tcible 3.4. The average time (in msec) required to train with 80% cind test

Number of features
4 6 8 10 12 14

A;-NNFP 85 212 285 367 517 556
k - m 365 937 1257 1335 1472 1720



The accuracy of the A:-NNFP in Table 3.2 and A;-NN in Table 3.3 were 
obtained for the specified datasets for ^ = 1 , 2 ,  ... 10. These experiments show 
that the classification accuracy of the A:-NNFP algorithm usually increases 
when the value of k increases. This suggests that the A:-NNFP algorithm can 
exploit the knowledge represented in the form of feature projections for higher 
values of k. On the other hand, increase in the value of k does not result 
in a parallel increase in the accuracy of the A;-NN algorithm. Langley and 
Sage’s works on NN classifiers suggest that many of the UCI datasets have few 
irrelevant features, if ciny. Our experimental results also support this claim.

Experiments on Artificial Data

As illustrated through an example in subsection 3.3.1, the A;-NNFP algo
rithm is, in general, unaffected from the presence of irrelevant features in the 
dataset. Experiments with artificial datasets have important roles to play in 
the study of irrelevant features. Hence, in order to empirically prove this claim, 
we have generated six datasets with increasing number of irrelevant features 
from zero to ten. Each of the datasets contain four relevant features, three 
classes with 100 instances each. A class is represented by a hyperrectangle in 
four (relevant) dimensional space, the values for irrelevant features are ran
domly generated. We have conducted 5-fold cross-validation experiments on 
these six datasets, and compared the results of fc-NNFP and ^-NN algorithms. 
The accuracy I’esults are plotted in Figure 3.9.

As seen from these results, the decrease in the accuracy of the A;-NNFP 
algorithm when the number of irrelevant features increase is much less than 
that of the fc-NN algorithm. Also we observed that the accuracy of the k- 
NNFP algorithm increases parallel to the increase in the value of k, whereas 
the accuracy of the A;-NN algorithm is not correlated with increcise in the value 
of k.
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The time required to ti'ain the A:-NNFP and the ¿-NN algorithms with the 
80% of the data cind test with the remaining 20% for these datasets are given 
in Table 3.4. The comparison of the running times in this tcible agrees with 
the time complexity analysis of these algorithms given in Section 3.3.2.1.
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Figure 3.9. Comparison of A:-NN and A;-NNFP on artificial datasets for in
creasing value of k. In all datasets there are 4 relevant features, 3 classes 
and 100 instances for each class. The accuracy results are obtained by 5 way 
cross-validation.



3.3.3 Discussion

A new form of classification method, called A:-NNFP, has been presented. This 
algorithm has been compared with the ¿-NN algorithm in terms of classihcation 
accuracy and time complexity on both real-world and artificially generated 
datasets.
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In the ¿-NNFP algorithm, the classification knowledge is represented in 
the form of sets of projections of the training data separately on each feature 
dimension. The classification of an instance is based on a majority voting 
taken on the classifications made on the basis of individual feature projections. 
Since each feature is processed separately, there is no need for normalization of 
feature values. Also, for the same reason, the algorithm can simply ignore any 
missing feature values that may appear both in training and test instances. The 
effect of the missing and noisy feature values on the prediction accuracy of the 
A:-NNFP algorithm will be investigated as a future work. As another direction 
for future work, we i l̂an to integrate a feature weight learning algorithm to 

k-NNFF.

The A:-NNFP algorithm is based on the assumption that each feature can 
contribute the classification process and the majority voting provides a correct 
classification when data contain many irrelevant features. The /c-NNFP algo
rithm can provide better classification accuracy thcin A;-NN algorithm when 
a dataset contains many irrelevant features with respect to relevant ones. 

This claim has been justified on artificially generated datasets. On real-world 
datasets, the A:-NNFP algorithm achieves comparable accuracy with the k- 
NN algorithm. On the other hand, the average running time of the A;-NNFP 
algorithm is much less than that of the A;-NN algorithm.

The A;-NNFP algorithm treats feature values indei^endently, whereas the k- 
NN algorithm treats all instances as points in ?i-dirnensional Euclidean spcice. 
The A;-NNFP algorithm stores the feature projection of the training instances 
in a sorted order. Therefore, the classification of a new instance requires a 
simple search of the nearest training instance value. On the other hcind, in the 

A;-NN algorithm, a new search must be done for each test instance in the whole 
Euclidean space.



3.4 Weighting Features in k Nearest Neighbor Classi

fication on Feature Projections (/^-NNFP)
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We propose two methods for learning feature weights to improve the classifica
tion accuracy of the A:-NNFP algorithm. The classification of unseen examples 
are made on the basis of feature projections by a majority voting cimong the 

1) predictions of each feature separately. We have treated all features as 
equivalent in this algorithm (Section 3.3). However, all features may not have 
equal relevance, even some features mciy be completely irrelevant. In order to 
determine features’ relevances, the best method is to assign them weights. The 
first method is based on the homogeneity of feature projections for which the 
number of consequent values of feature projections of a same class supports an 
evidence for increasing the probability of correct classification in the ¿-NNFP 
algorithm. We called this method HFP (Homogeneous Feature Projections). 
The second method is based on the individual accuracies of features. We called 
this method SFA (Single Feature Accuracy). In this approach, the k-NNFP 
algorithm is run on the basis of a single feature, once for each feature. The 
resulting accuracy is taken as the weight of that feature since it is a measure 
of contribution to classification for that feature. Empirical evaluation of these 
feature weighting methods in the k-NNFP algorithm on real world datasets is 

given.

These feature weighting methods aim to investigate the effect of weight 
assigning to features in A;-NNFP algorithm. In these methods, no domain- 
specific knowledge is used. These methods can be categorized according to 
Wettshereck and Aha’s five-dimensional framework’s first dimension [72] as 
ignorant and feedback, respectively, since homogeneity of feature projections 
weight setting does not use any feedback from the fc-NNFP cilgorithm wherecis 
the second one uses feedback from A:-NNFP algorithm. These methods modify 
the voting mechanism of A’-NNFP algorithm by incrementing the vote of the 
predicted class by using the feature weight. These feature weighting methods 
can be easily incorporated into other classification algorithms that use feature 
weights.

In this study, we aim to investigate the importance of features’ contribution



to final classification since to assign higher weights to more relevant features in
crease the reliability of voting. This study focused on the empirical evaluations 
of feature weighting methods proposed on real-world datasets.

Comparison of similar algorithms highlights dissimilarities that can explain 
observed performance differences. Our experimental results show that weight
ing features in the A;-NNFP algorithm improves the accuracy effectively in some 
real-world datasets, especially for smaller к values. An explanation of observed 
performance differences is presented in the third subsection.

In the next subsection, the A;-NNFP algorithm is given with its weighted 
version, briefly. In the subsequent subsection, a detailed descriptions of fea
ture weighting methods studied are given. The third subsection presents the 
empirical comparison of these methods on real-world datasets taken from the 
UCTRei^ository [47]. The last subsection presents a summary of these feature 
weighting methods.

3.4.1 The Weighted k-NNFP Algorithm
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In Section 3.3, the A;-NNFP algorithm was introduced for classification based 
on feature projections using k nearest neighbor algorithm. Since all feature 
values are treated separately, there is no need for normalization of feature 
values. In the learning phase, each training instance is stored as its projections 
on each feature dimension. If the value of a training instance is missing for a 
feature, that instance is not stored on that feature. The A:-NNFP algorithm 
stores the feature projections of training instances in a sorted order. Therefore, 
the classification of a new instance requires a simple search of the nearest 

training instance values on each feature. The classification of an instance is 
based on a majority voting taken on the classifications made on the basis of 
individual feature projections. In general, with the majority voting for final 
classification, the effect of irrelevant features may be reduced. On the other 
hand, each feature can contribute to the chissification by its relevance. So, 
if we place weights on features before voting, this can provide more accurate 
result for final class by reflecting each feature’s relevance in the classification. 
The weighted A;-NNFP algorithm is outlined in Figure 3.7. This algorithm
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classify(¿, k)
/*  t: test instance, k: number of neighbors * / 
begin

for each class c 
vote[c] =  0 

for each feature /
/ *  put k nearest neighbors of test instance t 

on feature /  into B a g  * /
B a g  =  kBag(/,i,A;)
/ *  each feature contributes proportional ot its weight * /  
for each class c

vote[c] =  vote[c] +  weight[/] * count(c, 
prediction  = UNDETERMINED 
for each class c

if vote[c] > voie[prediction\ then 
prediction  =  c 

return predietion

end.

Figure 3.10. Classification in the weighted fc-NNFP algorithm.

was explained in Section 3.2.1.1. Here, the number of votes for each class is 
incremented by multiplying the weight of that feature by number of votes that 
a feature gives to that class, which is determined by the count function. The 
value of count{c, Bag)  is the number of occurrences of class c in bag B a g.

3.4.2 Some Methods for Learning Feature Weights

Two feature weighting methods are proposed for A;-NNFP algorithm to see 

the effect of irrelevant, and relevant features with relative relevancies. Firstly, 
the hornogenity of feature projections method is discussed. Next, the second 
method which is based on the single feature accuracy is presented.
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Figure 3.11. Homogeneous distribution on a feature dimension
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Figure 3.12. Heterogeneous distribution on a feature dimension

3 .4 .2.1 Weight Learning Based on Homogenity of Projections

The basic motivation for this method comes from the Ar-NNFP algorithm itself. 
The assumption of the A:-NNFP algorithm is that closer values on a feature di
mension are of the same class, distribution of trainig instances on a feature 
dimension is hornogenious. That is, the projections of all training instances of 
the same class are grouped together. Figure 3.11 cind Figure 3.12 illustrates 
homogeneous and heterogeneous feature projections, respectively. In homo
geneous feature projections, the total number of consequent values of a same 
class can give a measure for its relevancy for classification prediction. In k- 
NNFP algorithm, all seen feature values are stored in memory as sorted. We 
can determine the weight of a feature as follows: Initially, a count is set to 0, 
then for all sorted feature values, if the consequent feature vcilue’s class is same 
as the previous one, then count is incremented. Therefore, feature weight can 
be found by dividing that count by the total number of distinct feature values 
on that feature. This can be summarized as follows:

W f  = T,vil (3.3)

( / ,y )  =
i 1 if Cvj =  Cv+ij 
1 0 otherwise

(3.4)

All feature weights are computed using this formula. Here C^j denotes the



class label of value on feature dimension / ,  and Vf denotes the number of 
distinct values on feature dimension / .  This eqiuition always gives a value for 
a feature between 0 and 1, so it can be the probability of correct classification 
for that feature. These are incorporated with feature weights to allow that 
more important features contribute to classification process more effectively.

3.4.2.2 Weight Learning Based on Single Feature Accuracy

The second method is motivated from the work of Holte since each feature is 
processed individually in A:-NNFP algorithm [.30]. We called this method SFA 
(Single Feature Accuracy) since feature weights are learned from the accuracy 
of the A:-NNFP algorithm of each feature individually. Holte reports the results 
of experiments measuring the performance of very simple rules on the datasets 
commonly used in machine learning research. The specific kind of rules stud
ied is called 1 -rules, which classify an object on the basis of a single feature. 
This study motivated us to examine the classification accuracy of the A;-NNFP 
cilgorithrn on the basis of a single feature. Therefore, those accuracies can be 
used as the weight of that feature since those accuracies reflect how much each 
feature can contribute to the final classification. However, a totally irrelevant 
feature will have about I f  No o f  Classes accuracy, called random accuracy. In 
order to avoid random correct classification, we subtract the random ciccuracy 
of a feature from the individual accuracies.

3.4.3 Experiments on Real-World Datasets
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An empirical evaluation of two feature weighting methods, HFP and SFA, is 
presented here along with their comparisons with unweighted version of the 
A:-NNFP algorithm by 5-fold cross-validation.. The weighted versions of the k- 
NNFP algorithm are evaluated on some real-world datasets selected from the 
collection of datasets provided in the UCI-Repository [47]. The characteristics 
of these datasets are shown in Appendix A.

The accuracy results of A:-NNFP and its two weighted versions are given 
in Table 3.5. In this table, the first row of each k vcilue presents the ^-NNFP
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Table 3.5. Accuracies (%) of the A;-NNFP (N) and its weighted versions using 
homogeneneous feature projections (HFP) and single feature accuracy (SFA)

D ata Set: bcancerw Cleveland glass hungarian ionosphere iris liver wine

N k = l 94.00 67.62 57.00 70.04 88.04 90.00 50.44 79.70
HFP 94.28 67.62 57.92 68.70 88.32 89.98 50.42 87.58
SFA 94.28 79.60 57.00 61.52 88.60 89.98 58.26 87.00
N k = 3 94.88 72.94 61.18 75.84 88.02 91.34 55.68 90.96
HFP 95.02 72.92 62.14 77.88 88.02 94.02 56.52 94.36
SFA 95.02 77.24 62.58 77.18 88.02 94.68 60.58 94.9
N k = 5 96.16 78.88 60.72 76.16 87.46 91.30 58.26 93.24
HFP 96.02 80.18 59.78 77.86 87.18 93.32 57.96 94.38
SFA 96.16 80.50 65.84 74.78 87.74 94.00 63.50 94.90
N k = 7 96.00 79.52 62.58 74.80 87.74 92.00 61.46 95.48
HFP 94.96 79.20 63.06 76.86 87.80 93.34 61.44 95.52
SFA 95.86 81.50 66.76 74.78 86.90 94.00 64.64 95.50
N k = 9 96.14 78.52 63.04 75.80 87.44 92.00 62.04 96.62
HFP 96.28 79.18 63.06 78.20 87.74 94.02 62.32 96.62
SFA 96.28 81.52 66.30 72.74 87.74 94.68 64.94 97.20

algorithm results, the second row is the results of the HFP weight learning, 
and finally the third row presents the results of SFA feature weighting method.

These experiments showed that none of the weight learning algorithms im
proved the A:-NNFP algorithm on the bcancerw and ionosphere datasets signif
icantly. This should be because all the features on these dcvtasets are equally 
relevant. On the Cleveland, liver, iris and glass (except k =  1) datasets, the 
weights learned by the individual accuracies always performed significantly bet
ter than the others. The HFP weight learning method performed better than 
the other on the hungarian dataset, except k — 1 . There were no significant 
difference between the two weight learning algorithms on the wine dataset.

Our findings emphasize that weighted versions do not improve the A:-NNFP 
algorithm effectively in most of the real-world datasets. Langley & Sage con
cluded from their experiments with feature selection that a number of data 
sets in the UCI repository contain few or no irrelevant features [38].

3.4.4 Discussion

A version of the well-known A:-NN algorithm, that stores the classification 
knowledge as the projections of the training instances on the features, called 
A;-NNFP algorithm, had been shown to be successful (Section 3.3). We Imve



presented two methods for determining the relative weights of features for use 
in the A:-NNFP algorithm. The HFP method assigns a higher weight to features 
on which the projections of instances of the same class are located close to each 
other, resulting in a homogeneous distribution. The SFA method, on the other 
hcind, assigns a weight as the classification accuracy that would have been 
obtained if only that feature were used in the classification.

Our experiments reveiiled that these weighting methods assign low weights 
to completely irrelevant features, and high weights to relevant ones. Further, 
cirriong these two weight learning algorithms, the one that is based on the 
individual accuracies learned weights that helped /j-NNFP achieve higher ac
curacies. The reason for this success is due to the feedback received from the 
classification algorithm. Wp conclude that this weight learning method could 
be successful for other classification algorithms that use feature weights. As a 
further work we plan to investigate these weight learning methods on artificial 
datasets.
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3.5 Summary

In this chapter, feature projections for knowledge representation have been 
presented. The most important advantage of this representation is that sorted 
feature values reduces the time for computation of similarity to all training 
instances for NN like techniques. In addition, since each feature is consid
ered separately, handling of missing feature values by simply ignoring them is 
natural. Furthermore, this representation is plausible. The major drawback of 
feature projections knowledge scheme is that descriptions involving conjunction 
between two or more features cannot be represented. However, prior research 

on this representation, by the CFP and COFI algorithms, has shown that they 
are successful in classification of real-world tasks.

The next chapter will introduce several batch learning methods for classifi
cation where knowledge is represented in the form of disjoint feature intervals. 
This is one of the primary contributions of this thesis.



Chapter 4

Batch Learning of Disjoint Feature 
Intervals

This chapter is devoted to batch Feature Intervals Learning (FIL) algorithms. 
We have seen in the previous chapter that feature projections for knowledge 
representation have become successful with the advantage of lower time re
quirement of classification task and natural handling of missing feature values; 

despite its limited representation power. The CFP and COFI algorithms pre
sented in Chapter 3 are incremental supervised inductive learning algorithms 
(Section 3.1 and Section 3.2). Hence, the classification knowledge learned by 
these algorithms is sensitive to presentation order of training instances. In 
Section 3.3, we have presented a new classification algorithm A;-NNFP that 
classifies unseen instances on the basis of feature projections in a batch mode. 
That is a variation of classical ¿-NN algorithm. This chapter is, therefore, 
devoted to developing batch learning of feature intervals and several modifi
cations that can improve their performance. Basic characteristics of the FIL 
algorithms are that they are batch supervised inductive learning algorithms, 
based on feature intervals for knowledge representation. Although classifica
tion is much faster in the A;-NNFP algorithm, its storage requirements are quite 
high. The algorithms discussed in this chapter attempt to find more compact 
representations of the training data by constructing feature intervcds that repre
sent a collection of feature values that belong to the same class. More compact 
representations lead to faster classifications and rniiy increase the ability of the 
user to understand decisions made by the chissifier.

53
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Figure 4.1. An example for an interval.

The FIL algorithms described here are the FIl, FI2, FI3, and FI4 algorithms 
with slight differences. First, we will explain the training and classification 
process in the basic FIL algorithm, FIl, through examples and then present the 
details of the algorithms. This is followed by discussion of modified algorithms 
(FI2, FI3, FI4). Finally, general characteristics of the FIL algorithms are 
discussed classifying them according to some important dimensions in machine 
learning.

4.1 Basic Definitions

First, we will give some necessary definitions before explaining the FIL cdgo- 
rithrns.

Definition. An interval is a range of values of a feature dimension, such 
that all the training instances whose values for that feature fall into that range 
have the same class label.

Figure 4.1 shows an example for a feature interval. This interval represented 
as < [xi, Xu], f', C\ >  on feature /  indicates that, in the training set there are 
r instances whose /  values lie in the range [.t /, Xu\ and their class label is (7i.

Definition. A point interval is an interval whose lower and uiDper bounds 
are the same.

An example for a point interval is given in Figure 4.2. Here, there are 
training instances whose /  values are x and their class label is Ci. Other 
neighboring feature values belong to different classes from Ci- There may be 
more than one point interval at a Scime feature value.

Definition. A range interval is an interval whose lower cind upper bounds
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Figure 4.2. An example for a point interval.
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F'igure 4.3. An example for a multi-class point.

are not equal {xi ^  Xu)·

Figure 4.1 also illustrates a range interval. Range intervals contain several 
feature values belonging to a same class label.

Definition. A single-class point is a value on a feature dimension that 
belongs to the single class label.

For example, x in Figure 4.2 is a single-class point on feature / .  Neighboring 
same single-class points are extended into intervals. But, point intervals may 
be constructed at single-class points if the neighboring feature values belong 

to different class labels.

Definition. A multi-class point is a value on a feature that belongs to 
more than one class labels.

Figure 4.3 illustrates an example for a multi-class point. That is, there 
are ri training instances of class Ci, T2 training instances of class C2, and 
training instances of class Cz whose /  values are x\. These can be represented 

in three point intervals:

<C 1̂

<  [xi, Xi], T2, C2 >,

< [xi, Xi], T3, Cz >■
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4.2 Description of the FIL Algorithms

In this section, the training and classification processes of the FIL algorithms 
will be explciined through examples. Then, the details of these algorithms 
will be presented. Also voting-based classification process will be illustrated 
through examples.

4.2.1 The FIl Algorithm

In the training phase of the FIl algorithm (basic FIL), learning task is per
formed by constructing disjoint feature intervals in a batch mode. All training 
instances are taken and processed at once. Feature intervals on each feature di
mension are constructed through generalization. Concept descriptions learned 
are represented in the form of sets of disjoint feature intervals. For the classifi- 
Ccition task, each feature determines its own prediction (preclassification) using 
only its local knowledge by searching the interval covering test example’s value 
for that feature. The classification of tin instance is biised on a majority voting 
taken among the preclassifications made by each feature. The FIL algorithms 
can handle both continuous (linear) and nominal valued features.

4.2 .1.1 Training in the FIl Algorithm

The input to the FIl algorithm is a training set that contains examples rep
resented as vectors of feature values plus the corresponding chiss label. An 

examiDle is represented as x = <  x i , X 2 , . . ,XnyCx >  where x i , X 2 , - . ,Xn are the 
corresponding feature values of features / i , / 2, ··,/« , and Cx is the associated 
class label of the example x where I <  C < k, here k is the total number of 
the classes. Therefore, the dimension of the example vector i is n -}- 1 where n 

is the number of features.

Since the FIl algorithm learns in a batch mode, it takes all training exam
ples and processes them at once. In the FIl cilgorithrn, the basic unit of the 
knowledge representation is an interval with four parameters:
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< [lower bound, upper bound], representativeness count, class label >

Lower and upper bounds of an interval ai'e the minimum and maximum fea
ture values that fall into the interval, respectively. Representativeness count 
is the number of the instances that the interval represents. Finally, the class 
label is the associated class of the interval. In other words, learned classifi
cation knowledge is represented as the set of feature intervals by generalizing 
neighboring same single-class points into intervals. Feature intervals are dis
joint. However, multi-class points remain as point intervals as in Figure 4.3. 
In that case, a set of point intervals (upper and lower bounds cire equal) are 
constructed for multi-class points. Otherwise, di,sjoint feature intervals are 
single-class intervals.

Let us give an example to illustrate the training process of the FIl algo
rithm. Here, training instances are represented also as vectors of feature values 
and the associated class as shown in Figure 4.4. Training set has 18 exam2Dles 
described with three linear features. There are there different classes in this 
sample training set [C\, C2 and C3). First, feature projections on each feature 
dimension are displayed in Figure 4.4 for this sami^le training set. This corre
sponds to the i^rocess of i^resenting all training instances initially and storing 
them in memory as sorted (if they are linear features) on eiich feature dimen
sion. That is the ordy information kept in the memory to construct feature 

intervals.

Then, from this knowledge, initial point intervcils are constructed with equal 
lower and upper values. This is the same as feature projections shown in 
Figure 4.4, except additional information such as lower, upper bound values, 
re2Dresentativeness count and associated class label. Since all fecitures are linear, 
their intervals are generalized. Generalization process combines neighboring 
point intervals into a single interval if they are of the same class. The resulting 
concept descriptions in the form of feature intervals is given in Figure 4.5. 
For example, the feature projections on the first feature dimension forms the 
following set of feature intervals on /1 dimension;
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T R A I N I N G  S E T
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Figure 4.4. A Sample Training Set and Feature Projections on Ecich Feature 
Dimension
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Figure 4.5. Construction of feature intervals in the FIl algorithm.

{ <  [1, 3], 2, Cl > <  [4, 4], 3, Cl > <  [4, 4], 1, C2 >

<  [4, 4], 4, C3 > < [6, 6], 2, C2 >  < [6, 6], 3, C3 >
< [8, 8], 1, C2 > < [9, 9], 1, (73 > < [10, 10], 2, C2 >  }

The only range interval constructed on /1 is the first interval since only
it contains neighboring single-class points that belong to the same class label 
whereas the other ones are either multi-class points or neighboring single-class 
points that do not belong to the same class. Multi-class points remain as point 
intervals allowing more than one interval at the same feature value as shown in 
Figure 4.5. Nominal features have only point (possibly multi-class) intervals. 
This is because nominal values cannot be generalized. Figure 4.6 sumrncirizes 
the training jDrocess of the FIl algorithm.

4.2 .1.2 Classification in the FIl Algorithm

The output of the training process of the FIl algorithm is the concept de
scriptions learned in the form of feature intervals. In the FIl algorithm, the
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tva,m(Training Set) 
begin

sortTrainingData(rramm^ Set) /* on each feature dimension * / 
construct-intervals(rraining Set)

end.

construct-intervals(Training Set) 
begin

for each feature /
for each training instance i 

initialize-point-intervals(/, i) 
if /  is linear then

generalize-point-intervals(/)
/*  if /  is a nominal feature, no generalization is done * /

end.

generalize-point-intervals(/)
begin

for each consecutive interval pair
if their classes are same and they are single-class intei'vals then 

join them into a range interval
/*  update lower, upper and representativeness values * /

end.

Figure 4.6. Training process in the FIl algorithm.
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TEST : < 2,14, 9,C^>
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7 2 c -

10 13 15 16 18

Final Classification

Figure 4.7. An example for classification in the FIl algorithm.

classification is based on a majority voting taken among the individual pre
dictions of features. The classification of a feature is based not only on the 
value of the test instance on that feature dimension but also on the feature 
intervcds constructed during the training phase. Each feature predicts only a 
single class. FIL algorithms assume that features have different levels of rele
vances. Assuming equal relevance is a special case of weighted-voting, i.e., each 
feature contributes to voting process with equal weights. The feature weights 
are given to the FIL algorithms externally by the user. If they are not given, 
then all features assume equal weights (=1). So, each feature has the same 
voting power in the determination of the final class prediction.

The classification on a feature is simply a search process on that feature 
dimension. If the feature value of the test instance on that feature is contained 
by an interval, then the prediction will become the class of that interval. If 
it falls in a multi-class point, the class of the interval with the maximum 
representativeness count will be predicted. Otherwise, if it is not contained 
by any interval, then no prediction is made by that feature, hence no vote is 
taken from that feature. If all feature dimensions give no predictions, then
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no classification can be made and the resulting decision for the class will be 
UNDETERMINED. Nevertheless, this case is quite unlikely to occur in I’eal-world 
datasets.

In order to determine the final classification, the local vote of each fea
ture are summed up. The class which receives the the maximum vote is the 
classification for the test instance. This can be summarized as follows.

classification(test) — c such that Vc > V{ for each i ^  c.

Let us illustrate the classification process of the FIl algorithm by classifying 
the test instance < 2, 14, 9, Ci >  according to the concept descriptions 
learned by the FIl algorithm in the training phase as shown in Figure 4.5. 
Each feature value of this test instance is indicated in Figure 4.7 by arrows 
on each feature dimension. Each feature makes a preclassification for this 
instance. In the first dimension, the first feature value, 2, falls into the first 
interval with class (7i, < [l,3],2 ,6h >. Therefore, it predicts that the class of 
the test instance should belong to the class Ci- The result of preclassification 
of the second feature is again class Ci since the second feature value, 14, falls 
into the interval < 10,15,6,(7i >. The third feature makes no prediction since 
the third feature value, 9, is not contained by ciny interval. The vote vector 
for this test instance becomes < 2,0,0 >. Here, 2 votes for class Ci and no 
votes for classes C*2, C3 . The class which receives the maximum vote, Ci in this 
case, is determined as the final class prediction. Since the actual class value 
of the test instance is also Ci, the final prediction is a correct classification. 
It should be noted that, for this example, equal feature weights are assumed. 
The classification process of the FIl algorithm is outlined in Figure 4.8. Some 
experiments will be performed to investigate the effect of weighting features in 

voting mechanism in Chapter 5.
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classify(ie5i)
begin

for each class c 
vote[c] =  0

for each feature /
interval =  search-interval(/, testj)
/*  each feature contributes proportional to its weight */ 
if class of interval 7̂  UNDETERMINED then

vote[class of interval] =  vote[class of interval] +  weight[/];

prediction =  first class 
for each class c

if vote[c] > vote\prediction] then 
prediction =  c

if vote[prediction] =  0 then
prediction =  UNDETERMINED /*  all features make no prediction * /

return prediction
end.

search-interval(/, value) 
begin

if value on /  is a single-class point then 
return interval on that point 

else if value on /  is multi-class point then
return interval with the highest representativeness count 

else if value on /  is contained in a range interval then 
return interval on that value 

else /*  no interval exists for that value * / 
return UNDETERMINED

end.

Figure 4.8. Classification process in the Eli algorithm.
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TEST : < 4 ,16 ,  8,C^>
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Figure 4.9. An Example for an incorrect classification in the FIl algorithm 
that leads to the FI2 Algorithm.

4.2.2 The FI2 Algorithm

Figure 4.9 illustrates classification of another test example < 4, 16, 8, C\ >. 
In this case, features /2 and /3 make no predictions since projections on these 
features are not contained by any interval. The lirst feciture value falls into a 
multi-class point of class C3 . The FIl algorithm determines the local prediction 
of the first feature according to the class that has the maximum representative
ness count. Hence, will be predicted without considering the distribution 
of classes. This leads to a slight modification in the FIl algorithm, called FI2. 
Basic unit of knowledge representation in the FI2 algorithm is also interval 
with a slight difference: it uses relative representativeness count which is the 
ratio of the representativeness count to the total number of training instances 
of the corresponding class rather than absolute representativeness count.

In this sample training set, there are three training instances of Ci class 
at this feature value, 4, whereas there are four instances of C3 class. So, the 
relative representativeness counts of intervals with class Ci and C2 are .3/5 and
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4/7, respectively. The relative representativeness count of C\ is greater than 
that of C'2· If preclassification on a feature dimension is made according to the 
relative representativeness count of multi-class points, this may be more fair, 
without always giving a chance to the classes that appear more frequently in 
the training set. Therefore, the concept of relative representativeness count 
introduces a modification to classification ¡Drocess of the FIl algorithm. After 
training, only representativeness counts are divided by total number of cor
responding classes. This is a kind of normalization of class distributions and 
required for datasets with unequally distributed classes.

The training process of the FI2 algorithm is identical to FIl except that af
ter construction of intervals, each feature maintains relative representativeness 
count rather than representativeness count, as outlined in Figure 4.10. The 
difference in the classification process appears in the preclassification of test 
values at multi-class points. The class of the interval which has the maximum 
relative representativeness count is chosen as the prediction. This difference in 
the classification process is summarized in Figure 4.11.

4.2.3 The FIS Algorithm

Since learning is achieved in the batch manner, all training instances are known 
before the construction of feature intervals in both FIl and FI2 algorithms. 
Once they are constructed, the intervals having less representativeness count 
than the one with maximum in the FIl and relative representativeness in the 
FI2 algorithms are not used in the classification process. This raises the fol
lowing question: Why do we store them? This motivated us to investigate a 
method to store a single point interval in multi-class points.

For this purpose, we tried to eliminate less likely contributing intervals to 
classification. The interval having the maximum representcitiveness count is 
chosen as the class of the interval on that multi-class point. The elimination 
of the intervals with lower representativeness counts lecids to the ‘pruning of 
presumably noisy intervals. However, one should be careful in this pruning. 
For example, consider a multi-class point at value v with intervals
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generalize-point-intervals(/)
begin

for each consecutive interval pair
/*  update lower, upper and representativeness values */ 
if their classes are the same and they are point intervals then 

join them into a range interval

end.

/*  normalization of class distributions among intervals * / 
for each interval

, . . 1 represent value of intervalrelative represent value =  t i i -------1—)-------i ■ 4------- 7 ̂ total no of class of interval

Figure 4.10. Generalization of intervals in the FI2 algorithm.

search-interval(/, value) 
begin

if value on /  is a single-class point then 
return interval on that point 

else if value on /  is multi-class point then
return interval with the highest relative representativeness count 

else if value on /  is contained in a range interval then 
return interval on that value 

else /*  no interval exists for that value * / 
return UNDETERMINED

end.

Figure 4.11. Preclassification process in the FI2 algorithm.
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Figure 4.12. Construction of feature intervals in the FI3 cilgorithm.

<  [ u ,u ] ,5 0 , (7 i  > ,

<  [u , u] ,4 9 ,C '2  > ,

< [u,u],2, 63 >.

If we simply remove the last two intervals, we loose the information that 

at this value v, C\ and C2 classes are equally possible. In order to establish a 
bedellice between intervals with high representativeness counts, we designed a 
new method for placing weights to intervals rather than features. To determine 
the weight of a new point interval, two point intervals having mciximum rep
resentativeness counts are found. Then, the weight of the interval is set to be 
the difference between two maximum representativeness counts divided by the 
total number of representativeness counts of multi-class points at that feature 
value. We called this algorithm as FI3. An interval in the FI3 algorithm is 
represented as follows:

< [lower bound, upper bound], weight o f  interval, class label >

Here, weight of the interval represents the vote of the interval when it con
tributes to classification. All other information is the same as in the FIl
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algorithm.

The concept descriptions of the sample training set given in Figure 4.4 
learned by the FI3 algorithm is presented in Figure 4.12. Note that the storage 
requirement of the FI3 algorithm is smaller than the FIl and FI2 algorithms 
if there are many multi-class points.

In the preclassification of feature / ,  its vote is for the class of interval as 
the weight of interval containing the feature value of the test instance on the 
feciture dimension / .  The classification example in Figure 4.13 illustrates the 
behavior of the FI3 algorithm. In this example, the class C3 will take 1 vote 
from feature /3 since / 3th value falls into a range interval and range interval 
votes are set to be 1. The first feature votes 1/8 vote for C3 since first feature 
value falls into a multi-class interval. The class C2 will take 1 vote from the 
range interval on feature / 2. The vote vector becomes < 0 ,1 ,9 /8  >. Final 
classification is the class C3. Since the actual class of the test example is C3, 

the test instance will be correctly clcissified by the constructed intervals as 
shown in Figure 4.13.

The differences in the training and classification algorithms are listed in 
Figure 4.14 and Figure 4.15. In the training, the weights of feature intervals are 
learned in addition to their constructions. In the classification, these weights 
are used for feature votes.

4.2.4 The FI4 Algorithm

In the FI3 algorithm, initial single-class point intervals will have the maximum 
weight (=1). However, these can be noisy intervals as well. To decrease the 
effect of such intervals, normalization of these interval weights are required. 
This is done by dividing these weights to the total number of their classes in the 
training dataset. Figure 4.17 illustrates this by an example. The test instance 
< 8, 18, 3, C3 >  will be tested according to the knowledge learned by the FI3 
algorithm. The value for /1 falls into the interval < [8, 8], 1/6 , C2 >. The 
weight of this interval becomes 1/6 since there is only one training instance 
whose /ith  value is 8, but totally there are 6 training instances of class C2
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TEST : < 4 , 8 , 3,C^>
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Figure 4.13. An example for classification in the FI3 algorithm.

in the whole dataset. So, the first feature predicts C2 with weight 1/ 6, the 
second feature makes no prediction and the third one predicts C3 with weight 
1, because all feature values that belong to the class C3 on feature /3 fall into 
the same interval.

The training process of the FI4 algorithm is identical to the FI3 algorithm 
except normalization of feature interval weights according to class distributions 
in the training set. The normalization process is outlined in Figure 4.16. The 
classification task is performed as in the FI3 algorithm using more reliable 
feature interval weights.

4.3 Characteristics of FIL Algorithms

In this section, general properties of learning methods are presented to char
acterize the FIL algorithms.
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construct-intervals(T'raining Set) 
begin

for each feature /
for each training instance i 

initialize-point-intervals(/, i) 
if /  is linear then

generalize-point-intervals(/)
/* if /  is a nominal feature, no generalization is done */ 
compute-interval-weights(/)

end.

compute-interval-weights(/) 
begin

for each interval
if range interval or single-class point then 

weight o f  interval =  1 
else

end.

find the interval having maximum repr. count
Wci h tof intcVVCll   difference between two max, representativeness counts

J J total repr. count

Figure 4.14. Training process in the FI3 algorithm.
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classify(ie5i)
begin

for each class c 
vote[c] =  0

for each feature /
interval =  search-interval(f, test/)
/*  each interval contributes proportional to its weight */ 
if class of interval ^  UNDETERMINED then 

vote[class of interval] =
vote[class of interval] +  weight of interval

prediction — first class 
for each class, c

if vote[c] > voie[prediction] then 
prediction — c

if voie[prediction] =  0 then
prediction =  UNDETERMINED /*  no final prediction * /

return prediction
end.

Figure 4.15. Classification process in the FI3 algorithm.

cornpute-interval-weights(/)
begin

for each interval
if range interval or single-class point then 

weight of interval =  1 
else

find the interval having maximum repr. count
WGl lit of ITitCWdl _ difference between two max, representativeness counts
WGlg 1 O ITl CTVd total repr. count

/* interval weights are normalized according to class distributions * / 
for each interval

divide weight of interval by
total no of class of interval in training set

end.

Figure 4.16. Normalization of interval weights in the FI4 algorithm.
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TEST : < 8,18, 3,C^>
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Figure 4.17. An example of classification in the FI4 algorithm.

4.3.1 Knowledge Representation

Knowledge representation is one of the most important dimensions in classify
ing machine learning techniques. Many learning systems acquire knowledge in 
the form of rules. Another way to represent what is learned is with decision 
trees as in the ID3 and C4.5 algorithms [55]. On the other hand, knowledge 
representation in exemplar-based learning models is sets of representative in
stances [1, 2, 5] or hyperrectangles which represent generalizations [58, 59].

In Chapter 3, we presented a new knowledge representation in the form of 
feature projections. Generalization and specialization are made on the basis 
of feature projections. This introduces faster classification of test instances by 
preventing the similarity computation to each training instance because feature 
projections can be sorted for continuous valued features. One shortcoming of 
this representation is that descriptions involving a conjuirction between two or 
more features cannot be represented. However, the prior research hcis shown 
that this knowledge representation is quite powerful in the classification of real- 
world tasks [65, 67]. The CFP and COFI algorithms use this representation to
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learn concept descriptions in the form of disjoint feature intervals and overlap
ping feature intervals in an incremental manner [27, 28, 65, 67]. The A:-NNFP 
algorithm also uses this representation in order to classify test instances on the 
basis of feature projections [7].

The FIL algorithms also acquire concept descriptions by using feature pro
jections for knowledge representation. Learned concept descriptions are stored 
in memory in the form of disjoint feature intervals. These intervals are dis
joint (single-class) covering only single-class neighboring point. The multi-class 
points are represented a set of point intervals. Each interval contains upper 
and lower bounds, representativeness count that is the number of examples 
that interval represents, and the associated class label of the interval. The 
number of intervals on a feature dimension depends on the training set, and 
they are unique for the same training set being independent of presentation 
order of training instances. At the worst case, if all examples have different 
feature values, the feature may be either nominal or linear, then the number 
of intervals is equal to m · n where m is the number of instances, and n is the 

number of features.

4.3.2 Inductive Learning

Inductive learning can be described as learning from facts that are provided by 
a teacher or an environment by drawing inductive inference. Acquiring knowl
edge involves operations of generalizing, specializing, transforming, correcting 
and refining knowledge representations [43]. Learning a concept usually means 
to learn its description, i.e., a relation between the name of the conceiDt and a 
given set of features by making some inferences.

The FIL algorithms perform the learning task from a set of training ex
amples and make generalizations on the feature projections to construct the 
concept descriptions in the form of disjoint feature intervals.
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4.3.3 Supervised Learning

Supervised learning has been the most widely studied learning paradigm in in
ductive learning systems, pattern classification and system identification [13]. 
In this learning paradigm, the learner is asked to associate pairs of items. For 
excimple, in pattern classification or concept acquisition, the first item is an 
instance of some pattern or concept and the second item is the name of the 
concept. In system identification, the learner must reproduce the input-output 
behavior of some unknown system. Here, the first item of each pair is an in
put and the second item is the corresponding output. In machine learning, 
from a set of training examples, each labeled with its correct class name, a 
machine learns by forming or selecting a generalization of the training exam
ples. Unsupervised learning techniques try to estimate the class distributions 
successively from unlabeled training instances.

The FIL algorithms learn from examples provided, that is, the supervised 
learning paradigm is followed. Here, the first item is the feature values of an 
instance and the second item is the class of that instance.

4.3.4 Batch Learning

Quinlan has pointed out two alternative learning strategies cis incremental and 
hatch (non-incremental) [52]. Incremental learning aims to improve an internal 
model with each example it processes. Researchers who explore the incremental 
approach are typically concerned with developing plausible models of human 
learning, with agents that must interact with a dynamic environment, or with 
the efficiency of the learning mechanisms. On the other hand, batch learning 
attempts to construct concept descriptions after seeing all training instances to 
maximize the performance of the learning system. In contrast to incremental 
learning, researchers who employ batch learning strategy cvre concerned with 
automating the process of knowledge acquisition for higher performance.

A bcitch learning strategy usually assumes random access to the examples 
in the training set. A learning system which follows this strategy searches 
lor patterns and regularities in the training set in order to induce concept
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descriptions. They may examine and re-examine the training set many times 
before settling on a successful model. The most important advantage of this 
approach is that it is not sensitive to the order of the training examples.

Despite the differences in motivation, researchers in both paradigms have 
much to learn from each other. Incremental and batch systems often use the 
same basic learning operators and produce similar results. In many cases, one 
can create incremental variations of non-incremental algorithms. Presumably, 
many incremental learning methods also have non-incremental counterparts.

Batch learning strategy is employed in the FIL algorithms. Before training, 
all instances are presented as input to the algorithms. In the FIL algorithms, 
concept descriptions are represented in the form of disjoint feature intervals. 
The construction of intervals is unique for that training set, that is, they are 
independent of presentation order of training instances.

4.3.5 Domain Independence in Learning

In some learning methods, such as Explanation-Based Generalization (EBG), 
considerable amount of domain specific knowledge is required to construct ex
planations [18]. In EBG, domain specific knowledge is applied to formuhite 
valid generalizations from a single training example. The characteristic com
mon to these methods is their ability to explain why the training instance is a 
member of the concept being learned.

In contrast, exemplar-based learning does not construct explanations. In
stead, it incorporates new examples into its experience by modifying its existing 
concept representation in the memory. Because it does not convert examples 
into another representation form, it does not need a domain theory to explain 
what conversions are legal. A consequence of domain independence is that 
systems can be adcipted to new domains quickly without any extra donuiin 
knowledge.

The CFP and COFI algorithms use domain specific parcimeters. These 
parameters in the CFP algorithm are A  (feature weight-adjustment rate) and
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D f (generalization distances of features). In the COFI algorithm, the only 
domain dependent parameter is g (generalization ratio).

The FIL algorithms are also exemplar-based learning algorithms, based on 
generalized feature values. Although they do not use parameters used as in the 
CFP and COFI algorithms, weights of features in the FIl and FI2 algorithms 
are given externally. In the FI3 and FI4 algorithms, there is no need for feature 
weights. Therefore, the FI3 and FI4 algorithms do not require any parameter 
to be provided externally.

4.3.6 Multi-concept Learning

Many early concept learning algorithms have been developed for exactly one 
concept. Later, many learning algorithms have been developed that induce 
multi-concept descriptions from examples. The FIL algorithms have been de
signed for learning multi-concept descriptions as well.

4.3.7 Properties of Feature Values

The features in a dataset may have nominal (categorical), or continuous (nu
merical) values. The term continuous is used in literature to refer to features 
taking on numerical values (integer or real), in general a feature with a linearly 

ordered set of attribute values. The FIL algorithms can handle both linear and 
nominal features. Linear features may take on values from —oo to oo and they 
are continuous. Nominal features take on discrete feature values, for example, 
color attribute of an object is a nominal feature, or binary values such cis an
swers to yes/no questions are also nominal feature values. The only difference 
in handling linear features and nominal features is the generalization process. 
Generalization is applied only to linear features.
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; Information about the IRIS dataset 
Features 1 1 1 1  
Classes 0 1 2

Figure 4.18. An examj^le for the information provided to the FIL algorithms.

4.3.8 Handling Missing (Unknown) Feature Values

One of the most important advantages of the FIL algorithms is the handling 
of missing feature values. There is no need to fill in missing values in the FIL 

algorithms. This affects neither the construction of concept descriptions nor 
the voting mechanism. In addition, this is a natural approach because in real 
life if nothing is known about a featui’e, it can be ignoi'ed rather than assigning 
an average or expected value.

4.4 User Interface

We have designed and implemented user interfaces for the FIL algorithms. 
These implementations have been done by using Motif user-interface toolkit. 
The FIL algorithms have been implemented in C language in Unix environment. 
The user can select a dataset from the ’Open’ menu item. Then, with cin initial 
training ratio training and testing sets are formed. User can enter the training 
ratio from the menu item ’Train Ratio’ as well. Figure 4.18 presents an example 
for the information given to the FIL algorithms about the dataset, iiHs in this 
example with number and types of features and number and names of classes.

The feature intervals constructed during training phase of the algorithms 
are displayed on each feature dimension assigning a different color to each class 
label on the screen. Usage of colors provides users to better understand pre
dictions made by individual features. User can see the classification of a single 
test instance by performing classification task step by step with “NEXT” but
ton. Also, all test instances can be classified at once with “ALL” button. It is 
also possible to see the previous examples and their classifications with “PRE
VIOUS” button. Classification accuracy and no of correct classifications after
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f:l s:l 1:4.3 u:4.8 c :0 r:13
f:l s:2 1:4.9 u:4.9 c :0 r:2
f:l s:3 1:4.9 u:4.9 c:l r:l
f:l s:4 1:4.9 u:4.9 c :2 r:l
f:l s:5 1:5 u:5 c :0 r:8
f:l s:6 1:5 u:5 c:l r:2
f:l s:7 1:5.1 u:5.1 c :0 r:7
f:l s:8 1:5.2 u:5.2 c :0 r:3
f:l s:9 1:5.2 u:5.2 c:l r:l
f:l s:10 1:5.4 u:5.4 c :0 r:5
f:l s :ll 1:5.4 u:5.4 c:l r:l
f:l s:12 1:5.5 u:5.5 c:l r:3
f:l s:13 1:5.6 u:5.6 c:l r:3
f:l· s:14 1:5.6 u:5.6 c :2 r:l
f:l s:15 1:5.7 u:5.7 c :0 r:l
f:l s:16 1:5.7 U-.5.7 c:l r:3
f;l s:17 1:5.8 u:5.8 c :0 r:l
f:l s;18 1:5.8 u:5.8 c:l r:3
f:l s:19 1:5.8 u:5.8 c :2 r:3
f:l s:20 1:5.9 u:5.9 c:l r:l
f:l s:21 1:6 u:6 c:l r:3
f:l s:22 1:6 u:6 c :2 r:l
f:l s:23 1:6.1 u:6.1 c:l r:3
f:l s:24 1:6.1 u:6.1 c :2 r:l
f:l s:25 1:6.2 u:6.2 c:l r:2
f:l s:26 1:6.2 u:6.2 c:2 r:2
f:l s:27 1:6.3 u:6.3 c:l r:3
f:l s:28 1:6.3 u:6.3 c :2 r:6
f;l s:29 1:6.4 u:6.4 c:l r:l
f:l s:30 1:6.4 u:6.4 c :2 r:4
f:l s:31 1:6.5 u:6.5 c:l r:l
f:l s:32 1:6.5 u:6.5 c :2 r:4
f:l s:33 1:6.6 u:6.6 c:l r:2
f:l s:34 1:6.7 u:6.7 c:l r:3
f:l s:35 1:6.7 u:6.7 c :2 r:3
f;l s:36 1:6.8 u:6.8 c:l r:l
f:l s:37 1:6.8 u:6.8 c :2 r:2
f:l s:38 1:6.9 u:6.9 c:l r:l
f:l s:39 1:6.9 u:6.9 c :2 r:3
f:l s:40 1:7.1 u:7.9 c :2 r :ll

Figure 4.19. Intervals of iris domain on the first feature.
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f :2 s:l 1:2 u:2 c:l r:l
f:2 s:2 1:2.2 u:2.2 c:l r:2
f:2 s:3 1:2.2 u:2.2 c :2 r:l
f:2 s:4 1:2.3 u:2.3 c :0 r:l
f :2 s:5 1:2.3 u:2.3 c:l r:3
f :2 s:6 1:2.4 u:2.4 c:l r:l
f:2 s:7 1:2.5 U-.2.5 c:l r:2
f:2 s:8 1:2.5 u:2.5 c :2 r:3
f:2 s:9 1:2.6 u:2.6 c:l r:3
f :2 s:10 1:2.6 u:2.6 c :2 r:2
f :2 s :ll 1:2.7 u:2.7 c:l r:5
f :2 s:12 1:2.7 u:2.7 c :2 r:3
f:2 s:13 1:2.8 u:2.8 c:l r:4
f:2 s:14 1:2.8 u:2.8 c :2 r:8
f:2 s:15 1:2.9 u:2.9 c :0 r:l
f:2 s:16 1:2.9 u:2.9 c:l r:5
f:2 s:17 1:2.9 u:2.9 c :2 r:l
f:2 s:18 1:3 u:3 c :0 r:4
f:2 s:19 1:3 u:3 c:l r:6
f:2 s:20 1:3 u:3 c :2 r:9
f:2 s:21 1:3.1 u:3.1 c :0 r:3
f:2 s:22 1:3.1 u:3.1 c:l r:3
f :2 s:23 1:3.1 u:3.1 c :2 r:3
f:2 s:24 1:3.2 u:3.2 c :0 r:4
f :2 s:25 1:3.2 u:3.2 c:l r:2
f :2 s:26 1:3.2 u:3.2 c :2 r:5
f:2 s:27 1:3.3 u:3.3 c :0 r:2
f:2 s:28 1:3.3 u:3.3 c:l r:l
f;2 s:29 1:3.3 U-.3.3 c :2 r:2
f:2 s:30 1:3.4 u:3.4 c :0 r:9
f:2 s:31 1:3.4 u:3.4 c :2 r:2
f:2 s:32 1:3.5 u:3.5 c :0 r:5
f:2 s:33 1:3.6 u:3.6 c :0 r:2
f :2 s:34 1:3.6 u:3.6 c :2 r:l
f :2 s:35 1:3.7 u:3.7 c :0 r:2
f:2 s:36 1:3.8 u:3.8 c :0 r:2
f;2 s:37 1:3.8 u:3.8 c :2 r:2
f:2 s:38 1:3.9 U-.4.4 c :0 r:5

Figure 4.20. Intervals of iris domain on the second feature.
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f:3 s:l 1:1 u:1.9 c :0 r:40
f:3 s;2 1:3.3 u:4.4 c:l r:21
f:3 s:3 1:4.5 u:4.5 c:l r:5
f:3 s:4 1:4.5 u:4.5 c :2 r:l
f:3 s:5 1:4.6 u:4.7 c:l r:6
f:3 s:6 1:4.8 u:4.8 c:l r:2
f:3 s:7 1:4.8 u:4.8 c :2 r:l
f:3 s:8 1:4.9 u:4.9 c:l r:2
f:3 s;9 1:4.9 u:4.9 c :2 r:2
f:3 s:10 1:5 u:5 c:l r:l
f:3 s :ll 1:5 u:5 c :2 r:2
f:3 s:12 1:5.1 u:5.1 c:l r:l
f:3, s:13 1:5.1 u:5.1 c :2 r:6
f:3 s:14 1:5.2 u:6.9 c :2 r:30

Figure 4.21. Intervals of iris domain on the third feature.

f:4 s:l 1:0.1 u:0.6 c :0 r:40
f:4 s:2 1:1 u:1.3 c:l r:20
f:4 s:3 1:1.4 u:1.4 c:l r:6
f:4 s:4 1:1.4 u:1.4 c :2 r:l
f:4 s:5 1:1.5 u:1.5 c:l r:8
f:4 s:6 1:1.5 u:1.5 c :2 r:2
f:4 s:7 1:1.6 u:1.6 c:l r:2
f:4 s:8 1:1.6 u:1.6 c :2 r:l
f:4 s:9 1:1.7 u:1.7 c:l r:l
f:4 s:10 1:1.7 u:1.7 c :2 r:l
f:4 s :ll 1:1.8 u:1.8 c:l r:l
f:4 s:12 1:1.8 u:1.8 c :2 r:7
f:4 s:13 1:1.9 u:2.5 c :2 r:30

Figure 4.22. Intervals of iris domain on the fourth feature.
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classifying each test instance are displayed along with the current test example 
feature values and associated class label. Prediction of each feature with its 
associated weight: feature weights in the FIl and FI2 algorithms and interval 
weights in the FL3 cuid FI4 algorithms are also displayed. The constructed 
intervals can be saved into a text file from the menu with corresponding lower 
and upper bounds, associated class and representativeness and relative repre
sentativeness counts (in FIl and FI2, resj^ectively) or associated weights (in 
FIS and FI4). The disjoint intervals of the iris dataset is as in the Figure 4.19, 
4.20, 4.21, 4.22.

The concept descriptions for the iris dataset learned by the FIS algorithm 
are presented in Figure 4.2S.

4.5 Summary

In this chapter, details of the FIL algorithms has been presented. Their gen
eral characteristics are discussed considering important dimensions classifying 
machine learning techniques. Also, the user interface of all FIL algorithms are 
described.

In the FIL algorithms, a feature interval can be defined cis generalized values 
that may cover several feature values. Intervals (single-class) iire disjoint, how
ever, at multi-class points, overlapping point intervals are constructed. Once 
the feature intervals are learned, a test example can be classihed on each feciture 
dimension by means of these intervals by a voting scheme.

The FIL algorithms assume that similar feature values have similar clas
sifications. The voting mechanism in the FIl and FI2 algorithms is based 
on a weighted-voting scheme, with prior knowledge. However, without prior 
weights, features will have equal relevances for classification decisions. On the 
other hand, although the FIS and FI4 algorithms are bcised on weighted-voting 
scheme, these weights are set to intervals internally. Hence, the FIS cind FI4 
algorithms require no user tuning of parameters such as generalization ratio 
or global feature weight-adjustment rate. Their primary goal is to maintain 
perfect consistency with the initial training set.



Chapter 5

Evaluation of the FIL Algorithms

In this chapter, both complexity analyses and empirical evaluations of the FIL 
algorithms are given. First, training and classification of a single instance 
time complexities are given. Next, the empirical evaluations are presented on 
some real-world datasets for comparison with some similar algorithms such as 
NBC, CFP, fc-NN, and /;-NNFP. Later, the experiments on artificicilly gener
ated datasets are discussed. The goal of these experiments is to demonstrate 
performances of the FIL algorithms. Also, some experimental results are pre
sented for the evaluation of the feature weighting methods proposed in this 
thesis. Experiments described in this chapter are designed to determine the 
behavior of the FIL algorithms on irrelevant features, noisy instances and miss
ing feature values.

5.1 Complexity Analysis

In this section, the FIL algorithms are analyzed in terms of space and time 
complexities. Time complexity analyses are presented for training process and 
classification of single test instance.

Space Complexity Analysis: In the training phase of the FIL algo
rithms, disjoint feature intervals for concept descriptions cire constructed on 
each feature dimension. The space required for training with m instances on 
a domain with n features is proportional to m ■ n at worst case. However, on

83
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the average, it should be less than 0 (m  ■ n) since feature intervals may con
tain several feature values. If the average number of intervals constructed on 
cl feature dimension is i, then the average space complexity of the FIL algo
rithms will be 0 [i  · ii). If feature intervals contain several values, the storcige 
requirement of the FIL algorithms will be less than the /;;-NN and Ai-NNFP al
gorithms since A;-NN stores all instances in memory as conjunctions of featiu’e 
values and A:-NNFP stores them as feature projections. Although the learned 
feature intervals will not be the same as the CFP algorithm since it learns in an 
incremental way, the storage requirement may be nearly the same. The NBC 
also stores all training instances to find the class distributions.

Time Complexity of Training: As mentioned before, all instances are 
stored on each feature dimension as their feature projections initicilly. Feature 
projections on a feature dimension are sorted with time complexity 0 {m  ■ 
log m). So, sorting all feature values has time complexity 0 {m  ■ n ■ logm ) lor 
n features. Then disjoint feature intervals are constructed by examining these 
sorted feature projections on each feature dimension with time complexity 
0 {n  ■ m). Therefore, the training time complexity of the FIL algorithms is 
0 {n  · m ■ logm n ■ m) =  0 {n  ■ m ■ logm) for training a dataset with rn 
instances described by n features.

Time Complexity of a Single Classification: During the preclassili- 
cation, the search-interval{f, value) secirches the interval containing feature 
value of the test instance on the feature dimension / .  by binary search to 
determine the prediction of that feature. The number of intervals on a feature 
dimension is at most equal to the number of training instances, m. Hence, 
the worst case time complexity of this search process is O(log m) for a feciture. 
Since the final classification is based on the prediction of each feature, single 
instance classification time complexity of the FIL algorithms is 0 (n  ■ log m).

We have presented training and classification time complexities of the k- 
NNFP and A;-NN algorithms in Section .3.3.2. The training complexity of the k- 
NNFP algorithm is nearly the same as the FIL algorithms whereas the training 
time complexity of the A;-NN algorithm is 0 {n  ■ rn) for just storing instances in 
memory. Complexity analyses of FIL algorithms indicate that these algorithms 
classify unseen instances much more faster than the A;-NN like algorithms.
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5.2 Empirical Evaluation of the FIL Algorithms

In this section, empirical evaluations of the FIL algorithms on real-world datasets 
which are widely used in the field of machine learning from the UCI-Repository 
[47] and two new datasets constructed in this thesis. We will also evaluate the 
FIL algorithms on artificial datasets. The first section describes the method
ologies used in the experiments. Next, the performance of the FIL algorithms 
on real-world datasets are presented. In the third section, some experiments 
are described on artificial datasets.

5.2.1 Testing Methodology

This section briefly describes the methodologies used in the machine learning 
experiments. The goal of experiments is to better understand behaviors of 
learning algorithms, hence their causes, as in other sciences. This will lead 
to empirical laws that can aid the process of theory formation and theory 
evaluation.

Improved performance is the major aim of learning algorithms [34]. These 
various performance measures are the natural dependent variables for machine 
learning experiments, just as they are for studies of human learning. The ac
curacy and efficiency of an algorithm Ccin be measured by various performance 
measures. There are three important measures of evaluation for a learning 
algorithm: accuracy, time and space complexities.

For supervised concept learning tasks, the most commonly used metric is 
the percentage of correctly classified instances over all test instances. This met
ric cannot be used for unsuiDervised learning tasks like conceptual clustering, 
but this measure can be generalized as the average ability to predict cittribute 
values [23]. Accuracy of an algorithm is a measure of correct classifications on a 
test set of unseen instances. There are several ways of measuring the accuracy 
of an algorithm, in the literature the common techniques are cross-validation, 

leave-one-out and average of randomized runs.

Cross- Validation: In this technique, dataset is partitioned into k mutually



CHAPTER 5. EVALUATION OF THE FIL ALGORITHMS 86

disjoint subsets with the same cardinality. The — 1 of these sets are used 
as the training set, the remaining one is used as the test set. This process is 
repeated k times once for each subset being the test set. Classification accuracy 
is measured as the average accuracy on all the test sets. The union of the all 
test sets equals to the whole dataset. This is called as ^-fold cross-validation.

Leave-one-out: This technique is a special case of A:-fold cross-validation 
taking k =  m. That is, for a dataset containing m instances, training set 
contains m — 1 instances whereas test set contains only 1 instance. Then, this 
is repeated for all instances being test instance each time leading to m-fold 
cross-validation. It is an elegant and straightforward technique for estimating 
classifier error rates. Evidence for the superiority of the leave-one-out approach 
is documented in the literature [22, 35]. While leave-one-out is a preferred 
technique, for large datasets it may be computationally expensive [32].

Average of Randomized Runs: In this method, the algorithm is tested over 
I'cindondy selected training and testing sets. The important point is that train
ing and test sets must be disjoint. The test is repeixted for a fixed number of 
times. The classification accuracy is determined as the average accuracy across 
all trials.

In the pi'evious section, we have computed the time and space complexities 
of the FIL algorithms. In the following subsection, the performance of the FIL 
cdgorithms will be given in terms of classification accuracy. In this thesis, 5- 
fbld cross-validation technique is used to report the classification accuracies of 
FIL algorithms and compare them with other methods. 5-fold cross-validation 
enables the same disjoint training and testing sets each time for ecich algorithm 
in order to compare the results under same conditions. Disjoint training and 
testing sets make sure that unseen test instances are classified to measure the 
accuracy of algorithms.
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Table 5.1. Accuracy results (%) of the FIL algorithms on real-world datasets. 
SFA-FIx and HFP-FIx show the weighted versions of the FIl and FI2 algo
rithms.

Dataset FIl SFA-FIl HFP-FIl FI2 SFA-FI2 HFP-FI2 FI3
arrhythmia
b cancer w
Cleveland
dermatology
diabets
glass
horse
hungarian
ionosphere
iris
liver
musk
wine

55.08
95.72
78.22
36.90
65.76
49.88
64.12
69.02
87.18
86.66
54.78
61.96
82.54

55.08
95.72
80.18
41.40
66.16
49.92 
65.48
70.04
87.16
90.66
57.40
62.16
88.16

55.08
95.72
78.86
35.00
65.50
43.86 
64.38
69.36
87.16 
89.30
54.22 
61.56
88.14

55.00 
96.44 
80.52 
44.60 
64.84
49.50 
73.64 
80.94
84.90
88.00
53.92
71.04 
87.62

55.08
96.30
83.14
43.34
63.80
53.22
74.46
81.92
85.46 
91.32 
56.52
72.50
89.90

55.08
95.72 
81.26
36.72
65.50 
48.96 
64.38
68.15
87.16 
89.60
54.92
61.76 
87.94

FI4
55.08
95.86
78.86 
73.33
68.74
56.98 
65.24
68.00
87.74
90.66
57.98
71.02 
91.6

55.68
97.00
80.50
79.02
69.76
45.36
76.36 
75.48 
88.88
90.66
59.72 
73.34
89.92

5.2.2 Experiments with Real-World Datasets

For empirical evaluations of the FIL algorithms, some real-world datasets from 
the collection of UCI-Repository [47] and two new real-world datasets con
structed in this thesis are used . These domains provide the FIL algorithms 
with opportunity of comparison with other similar learning algorithms. Also 
they demonstrate the applicability of the FIL algorithms to real-world prob
lems. The real-world datasets are explained in Appendix A. These datasets are 
used for the comparison of the FIL algorithms to the NBC, CFP, A:-NN and 
A.--NNFP algorithms. The FIL algorithms use feature weights learned by the 
HFP and SFA methods in the experiments described here. The CFP algorithm 
was run for D f =  0.1 and A  =  0.

Table 5.1 presents the results of experiments on these recxl-world datasets 
which are conducted by using 5-fold cross-validation evaluation technique for 
the FIL algorithms and SFA and HFP feature weighting methods. K  is taken 
as 5 in these experiments since the /:-NN and ¿-NNFP algorithms give almost 
the best accuracies for k =  5. The results of experiments of the NBC, CFP, 
/¡;-NN and A’-NNFP algorithms are summarized in Table 5.2. Both FIl and FI2 
algorithms achieve almost same accuracies. The FL3 cind FI4 algorithms cire
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Table 5.2. Accuracy results (%) of the FI4, NBC, CFP, ¿-NNFP and ¿-NN 
algorithms on real-world datasets.

Dataset FI4 NBC CFP k-NNFP k-NN Baseline (%)
arrhythmia 55.68 3.12 55.09 55.08 58.20 55
bcancerw 97.00 97.28 95.71 96.16 96.58 66
Cleveland 80.50 80.52 74.24 78.88 83.80 54
dermatology 79.02 43.98 35.64 59.42 91.64 27
diabets 69.76 71.24 65.49 67.70 73.18 65
glass 45.36 52.34 52.28 60.72 66.30 36
horse 76.36 81.24 64.94 71.74 80.44 63
hungarian 75.48 79.90 71.04 76.16 82.26 64
ionosphere 88.88 87.74 87.47 87.46 83.20 64
iris 90.66 92.00 86.66 91.30 94.66 33
liver 59.72 60.30 56.23 58.26 64.92 58
musk 73.34 2.10 60.28 71.22 67.88 57
wine 89.92 95.50 86.44 93.24 96.04 40

superior to the FIl and FI2 algorithms. It is seen from the tables that FIL 
algorithms achieve high accuracies as much as previous algorithms on many 
of these datasets. The ¿-NN algorithm gives maximum accuracy in almost all 
datasets. The FI4 algorithm usually outperforms the other FIL algorithms. 
The SFA-FI2 algorithm gives high ciccuracy as much as the fc-NN algorithm 
for Cleveland dataset. Also, the empirical evaluation of the CFP cdgorithm is 
presented in [64] and the A:-NN and ¿-NNFP algorithm in [7].

Table 5.3 shows the average running times of the FIL algorithms across 
the NBC, CFP, fc-NNFP, and k-NN algorithms. Since all FIL algorithms give 
almost equal average running times, they are represented in the table under the 
name FIL. It is seen that the running times of the FIL algorithms are relatively 
smaller than the other algorithms. This verifies the training and classification 
time complexities presented in Section 5.1. Although the classification accuracy 
differ about 5% points, the running time of the ^-NN algorithm is much higher 
than the other algorithms.
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Table 5.3. The Average Time (msec) required for the FIL, NBC, 
and A:-NNFP algorithms on real-world datasets.

89

CFP, k-NN

Dataset FIL NBC CFP k-NNFP k-NN
arrhythmia 3,527 21,641 11,886 3,229 18,135
bcancerw 399 925 340 364 3,276
Cleveland 221 214 292 217 772
dermatology 183 197 347 189 528
diabets 375 1,145 610 297 3,294
glass 130 134 118 105 318
horse 494 641 479 465 1,400
hungarian 287 146 .348 255 631
ionosphere 596 882 1,232 522 2,339
iris 45, 17 250 44 108
liver 129 148 267 114 607
musk 3,477 9,529 11,279 2,740 18,744
vehicle 586 4,787 818 2,012 14,441
wine 113 79 73 299 600

5.2.3 Experiments with Artificial Datasets

To cope with noisy and incomplete data is an important criteria for a learn
ing system to be used in real-world applications [40]. One important point 
for a learning system is presence of irrelevant features [9]. Therefore, artifi
cial datasets are important to study the effects of irrelevant features, noise in 
the domain, and missing feature values since artificial chitasets allows to test 
the system in a more controlled way. In order to empirically demonstrate the 
behaviors of the FIL algorithms on artificial datasets, we conduct some ex
periments. Concept descriptions for these artificially generated datasets are 
represented in the form of possibly overlapping hyperrectangles. We will ex
plain how we generated these datasets in each section with the descriptions of 
experiments. Section 5.2.3.1 describes and presents the results of experiments 
with increasing number of irrelevant features. Next, increasing noise level is 
studied for the FIL algorithms. Then, increasing ratio of missing feature values 
is tested. In these experiments, the CFP algorithm was run for D f =  0.1 and 
A  =  0.
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Figure 5.1. Accuracy results of the FIL, CFP, NBC, A:-NN, A;-NNFP algorithms 
on domains with irrelevant attributes.

5.2.3 .1 Experiments with Increasing Number of Irrelevant Features

Real-world datasets may contain unequally relevant features. For example, 
medical domains usually contain more information than is actually required for 
distinguishing one disease from others. Most probably some of these features 
are not as relevant as the others [39].

The voting mechanism used in the FIL algorithms allows correct classifica
tions in the presence of irrelevant features to a certain extent.

To investigate the behaviors of the FIL algorithms in the presence of irrele
vant features, we conducted a series of experiments. We generated six datasets 
with increasing number of irrelevant features from zero to ten. Each instance 
is described by four relevant features and a number of irrelevant ones. Concept 
descriptions are represented by hyperrectangles in four (relevant) dimensional 
space, the values for irrelevant features are randomly generated. These artifi- 
cicil datasets are also used for the evaluation of ^-NNFP and A:-NN cvlgorithms 
in Section 3.2.2.2. We ran these algorithms 50 times on these six datasets 
generated randomly each time. We have compared the civeriige results of the
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FIL algorithms on these artificial datasets with the average results of the CFP, 
NBC, A;-NNFP and k-NN.

The accuracy results of artificial datasets with increasing number of irrele
vant features are plotted in Figure 5.1. The FIl and FI2 algorithms give about 
the same accuracy results for these exiDerirnents. Similarly, the FI.3 cind Fid’s 
behavior is almost the same in these experiments. Note that the feature values 
range from 0 to 10 as continues. However, in order to have some multi-class 
points, values are generated between 0 and 100 as integers and divided by 10 
(i.e., 85 /10 =  8.5). As seen from the table, assigning weights to intervals out
performs the FIl and FI2 algorithms in which features have equal relevance. 
The NBC algorithm achieves the greatest accuracy in the presence of irrelevant 
features. The performance of the CFP algorithm is worse than the FI3 and FI4 
algorithms. The A;-NNFP and A;-NN algorithms’ behavior on these datasets is 
almost the same.

5 .2 .3.2 Experiments with Increasing Noise Level

In this section, noise tolerance of the FIL algorithms are investigated. There 
are two major types of noise that can be found in real-world datasets: feature 
(attribute) noise, and classification noise [3, 11, 14, 24, 63]. Feature noise can 
be defined as incorrect feature value information. Clcissification noise involves 
corruption of the class label of an instance.

Quinlan demonstrated that feature noise, occurring simultaneously in all 
features describing the instances, can result in faster degradation in classifi
cation accuracy than might noise only in the class label [51]. Therefore, we 

studied the feature noise in our experiments with artificial domains, where fea
ture values only in the training set are replaced with a randomly selected value 
in the feature domain with a fixed probability, called noise ratio.

The artificial dataset with four relevant features and no irrelevant features 
used in the experiments with increasing irrelevant features is used in this section 

in order to study the effect of increasing noise level.

Figure 5.2 presents achieved accuracy of the FIL cilgorithms for comparison
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Figure 5.2. Accuracy results of the FIL, CFP, NBC, A:-NN, ^-NNFP algorithms 
on domains with increasing noise level.

to the CFP, NBC, A:-NNFP and ¿-NN algorithms. The results are the averages 
of the 50 runs of artificial datasets in which noisy feature values cire randomly 
replaced with other possible values on that feature dimension. In this the
sis, to handle noisy feature values, we introduced the FIS cind FI4 algorithms 
that construct disjoint feature intervals by weighting them for classification. 
The results of the experiments indicate that both FIS and FI4 algorithms are 
successful than the FIl and FI2 algorithms. Actually, there is no significant 
difference among all the algorithms on noisy domains up to 60% noise level, 
the accuracy of the fc-NN algorithm sharply decreased after this point. Other 
algorithms are robust up to 80% noise level.

5 .2.3.3 Experiments with Increasing Ratio of Missing Values

Most of the real-world data sets contain missing attribute values. In the lit
erature, some methods are proposed to handle instances containing missing 
feature values [26, 52, 53, 54, 55]. These methods can be summarized as:
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Figure 5.3. Accuracy results of the FIL, CFP, NBC, A:-NN and A:-NNFP algo
rithms on domains with increasing ratio of missing feature values.

• Ignoring examples which have unknown feature value.

• Assuming an additional special value for unknown attribute values. This 
can lead to an anomalous situation.

• Using probability theory by utilizing informcition provided by context.

• Generating additional instances for all possible values of the unknown 
attribute.

• Exploring all branches (on decision trees) remembering that some branches 
are more probable than others.

The method employed in the FIL algorithms for handling feature values is 
similar to the first method mentioned above. However, it states that an incom
plete instance is ignored whereas the FIL algorithms simply ignores missing 
feature values since they process each feature separately. Similarly, the CFP, 
NBC, and /j-NNFP handles missing values. On the other hand, the A;-NN 
algorithm tries to determine the value of an unknown attribute value using
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probability distribution of the known values of a feature. One advantage of 
simply ignoring missing feature values is that it allows reduction in training 
and classification time.

Figure 5.3 presents the accuracies obtained from the experiments with dif
ferent amounts of unknown (missing) attribute values. The A:-NNFP algorithm 
achieved significantly better accuracy than the others. The most iiffected al
gorithm by the presence of missing feature values is the A:-NN algorithm, as 
expected because it tries to fill in missing values. Up to 70% missing value, 
FIL algorithms achieve the same accuracy. Therefore, the FIL algorithms are 
robust to the missing feature values.

5.3 Summary

The results from the experiments in this chapter support the following conclu
sions.

• faster classification times with feature projections knowledge representa
tion

• weighted-voting in the FIL algorithms is more tolerant to the presence 
of irrelevant features

• feature projections knowledge representation is quite successful in han
dling missing feature values.

• A;-NNFP and FIL algorithms are robust to the missing feature values (up 

to 70%).



Chapter 6

Conclusions and Future Work

In this thesis, a new classification algorithm, called A;-NNFP has been pre
sented. In this algorithm, the classification knowledge is represented in the 
form of sets of feciture projections of the training data separately on each fea
ture dimension. The classification of an unseen instance is based on a majority 
voting taken on the classifications made on the basis of individual feature pro

jections.

We have compared the fc-NNFP algorithm with the A;-NN algorithm in 
terms of classification accuracy and running time on both real-world and arti
ficial datasets. On real-world datasets, the A:-NNFP algorithm achieves com
parable accuracy with the ’̂-NN algorithm. On the other hand, the average 
running time is much less than that of the ^-NN algorithm. The majority 
voting in the classification process of the A:-NNFP algorithm reduces the intru
sive effect of the irrelevant features. This claim has been justified on artificiiil 

datasets.

We treated all features as equivalent in the A:-NNFP algorithm. However, all 
features may not have equal relevance in real-world applications, even some fea
tures may be completely irrelevant. In order to determine leiitures’ relevances, 
two feature weight learning algorithm have been proposed for the learning al
gorithms that use feature weights. The first method, called HFP, iissigns high 
weight values to fecvtures on which the projections of instances of the same 
class are located close to each other, resulting in homogeneous distribution.

95
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The SFA method assigns a weight as the classification accuracy that would 
have been obtained if only that feature were used in the classification. These 
techniques have been evaluated on the weighted ¿-NNFP algorithm. The SFA 
method learned weights that helped the ¿-NNFP algorithm achieve higher ac
curacies. The reason for this success is due to the feedback received from the 
A;-NNFP algorithm.

In this thesis, we have also developed several batch learning algorithms 
called FIL algorithms for Feature Interval Learning. These algorithms use 
feature projections of the training instcinces for the representation of the clas
sification knowledge induced. These are FIl, FI2, FI3, FI4 algorithms with 
slight differences. Linear feature projections are generalized into disjoint in
tervals during the training phase. The classification of an unseen instance is 
based on a majority voting among individual predictions of features. Feature 
projections knowledge representation in these algorithms provide them with 
much faster classification. In fact, majority voting reduces the intrusive effect 
of irrelevant features or noisy feature values.

The FIL algorithms have been compared with the NBC, CFP, /;-NN ¿ind 
A;-NNFP algorithms empirically. The FI3 and FI4 algorithms are found to 
be superior to the FIl and FI2 algorithms. In addition, the FIl and FI2 
algorithms gives better accuracies when the SFA feature weighting method is 
integrated. Although the FIL algorithms achieve comparable accuracies with 
other algorithms about 5% less than the A:-NN algorithm, their average running 
times are much more less than the ¿-NN algorithm.

Feature projections for knowledge representation has the following advan
tages for the learning algorithms:

• plausible

• no need for normalization of feature values

• simply ignoring missing feature values

• faster classification times
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The major disadvantage of this representation is that concept descriptions 
involving a conjunction between two or more features cannot be represented. 
Actually, the whole is more than sum of its components. Therefore, the FIL 
algorithms are applicable to concepts where each feature, independent of other 
features, can contribute to the classification of the concept. In fact, this is the 
nature of the most real-world datasets. They are not applicable to domains 
where all of the concept descriptions overlap, or domains in which concept 
descriptions are nested.

As a future work, we plan to investigate the HFP and SFA feature weight 
learning algorithms on artificial datasets. For overlapping concept descrip
tions, batch learning algorithms whose knowledge representation is in the form 
of overlapping feature intervals can be developed. Another research direction 
is to investigate learning concept dependent feature weights for the learning al
gorithms that use feature projections for knowledge representation. Moreover, 
feature weights are learned using genetic algorithms.
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Appendix A

Real-World Datasets

Table A .l. Comparison on some real-world datasets.

Dcitaset Size
# o f

Features
#  of Linear 

Features
# o f

Classes
Urdcnown

Values
(%)

Baseline
Accuracy

(%) '
arrhythmia 352 279 279 16 0.33 55
bcancerw 699 10 10 2 0.25 66
Cleveland 303 13 6 2 0 54
dermatology 157 34 34 6 0.07 27
diabets 768 8 8 2 0 65
glass 214 9 9 6 0 36
horse 368 22 7 2 24 63
hungarian 294 13 6 2 0 64
ionosphere 351 34 34 2 0 64
iris 150 4 4 3 0 33
liver 345 6 6 2 0 58
musk 476 166 166 2 0 57
wine 178 13 13 2 0 40

Table A .l summarizes some properties of the dcitasets to be used in the 
exiDeriments. In this table, name of the real-world datasets are shown with the 
size of the dataset, number of features, number of linear features, number of 
classes, percentage of the unknown attribute vcdues, and the baseline ciccuracy. 
The baseline accuracy of a dataset is the accuracy that will be obtained by 
predicting the class of any test instance as the class of the most frequently 
occurring class.
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Arrhythmia: In this thesis, we construct two real-world datasets. One of 
them is arrhythmia dataset. The aim is to distinguish between the presence 
and absence of cardiac arrhythmia and to classify it in one of the 16 groups. 
Class 01 refers to ’normal’ ECG classes 02 to 15 relers to different classes of 
arrhythmia and class 16 refers to the rest of unclassified ones. Currently, there 
are 352 instances which are described by 279 feature values. There are several 
missing feature values. Class distribution of this datasets is very unfair as seen 
from Table A .l. Class 01 (normal) is the most frequent one. It is cissumed that 
no patient hcis more than one cardiac arrhythmia.

Breast Cancer: Breast Cancer data set contains 273 patient records. All 
the patients underwent a surgery to remove tumors, all of them were followed 
up five years later. The objective here is to predict whether or not breast 
cancer would recur during that five year period. The recurrence rate is about 
30 %, and hence such prognosis is important for determining post-operational 
treatment. The data set contains nine variables that were measured, including 
both numeric and binary values. The prediction is binary: either the patient 
did suffer a recurrence of cancer or not.

Cleveland and Hungarian Data: Both datasets are about the heart 
disease diagnosis. Each dataset is described with same features. Cleveland 
data was collected from the Cleveland Clinic Foundation cind Hungaricin data 
was collected from the Hungarian Institute of Cardiology.

These databases contain 76 attributes originally, but in ML field 13 of them 
is used. All attributes are numeric valued and 6 of them have nominal values. 
The class is determined according to the presence of heart disecise, that is, this 
is binary classification problem. There are no missing values in these datasets 
for the features that we have used.

Dermatology: The second dataset constructed in this thesis current con
tains 157 instances described by 34 feature values to distinguish dermatologi
cal illnesses from histopathological descriptions for 6 classes (illnesses). These 
classes are l-Psoriaris, 2-Dermatit, 3-L. Planus, 4-Posea, 5-Kr.Dermatit, 6- 
P.Rubrapilaris. One of the features (cige) take values between 0 and 100, while 
other 35 features take values 0, 1,2, 3.
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Diabets: This data set contains diabetes diseases collected from National 
Institute of Diabetes and Digestive and Kidney Diseases. The dicignostic, 
binary-valued variable investigated is whether the patient shows signs of di
abetes according to World Health Organization criteria (i.e., if the 2 hour 
post-load plasma glucose was at least 200 nig/dl at any survey examination or 
if found during routine medical care). The pojsulation lives near Phoenix, Ari
zona, USA. Several constraints were placed on the selection of these instances 
from a larger database. In ¡sarticular, all patients here are females at least 
21 years old of Pima Indian heritage. The data set contains records of 768 
patients with 8 features.

Glass Data: This dataset consists of attributes of glass samples taken 
from the scan of an accident. The glass dataset contains 214 instances of 
which belongs to one of six classes. In this dataset there are 9 features. All 
feature values are continuous.

Horse Data: In this dataset there are 368 instances. Number of attributes 
is 22 and the number of classes is 2. Seven of these features are linear and fifteen 
of them are nominal. The 24% of the feature values is missing (unknown).

Ionosphere Data: The radar data was collected by a system in Goose 
Bay, Labrador. This system consists of a phased array of 16 high-frequency 
antennas with a total trcinsmitted power on the order of 6.4 kilowatts. The 
targets were free electrons in the ionosphere. Good radar returns cire those 
showing evidence of some type of structure in the ionosphere. Bad returns 
are those that do not; their signals pass through the ionosphere. Received 
signals were processed using an autocorrelation function whose arguments are 
the time of a pulse and the pulse number. There were 17 pulse numbers for the 

Goose Bay system. Instances in this database are described by 2 attributes per 
pulse number, corresponding to the complex values returned by the function 
resulting from the complex electromagnetic signal.

Iris Flowers: Iris flowers dataset from Fisher [23] consists of four integer 
valued continuous features and a particular species of iris flower. There are 

three different classes: iris virginica, iris setosa, iris versicolor. The four at
tributes measured were sepal length, sepal width, petal length and petal width.
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The dataset contains 150 instances, 50 instances of each three classes.

Liver: This data set contains 345 instances and collected by BUPA Medical 
Research Ltd. Each instance constitutes the record of a single male individ
ual. There are 6 attributes and the first 5 variables are all blood tests which 
are thought to be sensitive to liver disorders that might arise from excessive 
alcohol consumption. The last attribute presents drinks number of half-pint 
equivalents of alcoholic beverages drunk per dciy. The purpose of this data set 
is to determine whether patient has liver disorders or not. 276 of the instcinces 
are used in training the remaining 69 are used in testing.

Musk: This dataset describes a set of 92 molecules of which 47 are judged 
by human experts to be musks and the remaining 45 molecules are judged to be 
non-musks. The goal is to learn to predict whether new molecules will be musks 
or non-musks. However, the 166 features that describe these molecules depend 
upon the exact shape, or conformation, of the molecule. Because bonds can 
rotate, a single molecule can adopt many different shapes. To generate this data 
set, the low-energy conformations of the molecules were generated and then 
filtered to remove highly similar conformations. This left 476 conformations. 
Then, a feature vector was extracted that describes each conformation.

This many-to-one relationship between feature vectors and molecules is 
called the “multiple instance problem” . When learning a classifier for this data, 
the classifier should classify a molecule as musk if ANY of its conformations is 
classified as a musk. A molecule should be classified as non-rnusk if NONE of 
its conformations is classified as a musk.

Wine Data: This dataset is about recognizing wine types. This data is 
provided by Pharmaceutical and Food analysis and technologies. The classes 
are separable. In a classification context, this is a well-posed problem with 
“well behaved” class structures. This dataset is the result of the chemical 
analysis of wines grown in the same region in Italy but derived from three 
different cultures. The analysis determined the quantities of 13 constituents 
found in each of the three types of wines. The dataset contains 178 instances. 

All features are linear.


