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ABSTRACT

APPLICATION OF DITHER AND OBSERVER BASED
STATE FEEDBACK IN THE CONTROL OF CHAOTIC
SYSTEMS

Umut Ersoy
M.S. in Electrical and Electronics Engineering
Supervisor: Assoc. Prof. Dr. Omer Morgiil
August 1996

In the first part of this thesis, the application of dither for controlling chaotic
systems is presented. Dither is a high frequency periodic signal that has been
examined in the literature before, for changing nonlinear systems effectively.
The presented technique is based on a conjecture proposed by Genesio and

Tesi and is mainly applicable to systems in Lur’e form.

In the second part, the application of state feedback is presented. Unknown
states of the system arve constructed by using nonlinear full-state observers.
The control strategy is mainly based on the mentioned conjecture and also on

bifurcation diagrams.

Keywords :  Chaotic dynamics, describing function analysis, dither, ob-

servers, state feedback, bifurcation diagrams.
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OZET

KIPIRTILANDIRMANIN VE GOZLEYICI TABANLI
DURUM GERIBESLEMESININ KAOTIK SISTEMLERIN
KONTROLUNDE UYGULAMASI

Umut Ersoy
Elektrik ve Elektronik Muhendisligi Bolumu Yiksek Lisans
Tez Yoneticisi: Dog. Dr. Omer Morgiil
Agustos 1996

Bu tezin ilk bolimiinde kipirtimin (dither) kaotik sistemlerin kontroliinde
uygulanmasi anlatilmigtie. Kipirti (dither), bundan once literatiirde, dogrusal
olmayan sistemlerin etkili bir bigimde degistirilmesi konusunda incelenmis,
yiiksek frekansl periyodik bir sinyaldir. Burada anlatilan teknik, bashca Lur’e
formdaki sistemlere uygulanabilir ve Genesio ve Tesi tarafindan onesurtalmisg

bir varsayima dayanmaltadir.

Ikinci boliimde, durum geribeslemesinin kaotik sistemlerin kontroliinde
uygulanmasi anlatilmistir. Sistemin bilinmeyen durumlari, dogrusal olmayan
tiim-durum gozleyicileri ile elde edilmis, kontrol stratejisi ise yine hem bahsi

gegen varsayima, hem de gatallanma (bifurcation) semalarina dayandirilmigtir.

Anahtar Kelimeler : Kaotik hareketler, tanimlayici fonsiyon analizi, kipirtt
(dither), gozleyiciler, durum geribeslemesi, catallanma semalart.

v



ACKNOWLEDGEMENT

I would like to express my gratitude to Dr. Omer Morgil for his super-
vision, guidance, suggestions and invaluable encouragement throughout the

development of this thesis.

I would also like to thank to Dr. Erol Sezer and Dr. Biilent Ozgiiler for

reading and commenting on the thesis.

It is also a pleasure for me to express my thanks to all my friends.



TABLE OF CONTENTS

Introduction

1.1 Chaos Phenomenon . . . . . . . . . . . . . . .

1.2 Controlling Chaos . . . . . ... ... ... ... L.

The Conjecture of Genesio and Tesi

L

2.2 Equilibrium Points . . . . ... ... ... ..

2.3 Filtering Effect

24 Interaction . . . . . v v o o

Dither Control of Chaotic Systems

3.1 Dither . .. .« e
3.2 Application of Dither on the Control of Chaotic Systems

3.9.1 Control Based on Equilibrium Point Elimination

3.2.2  Control Based on Interaction

Vi

2.1 Prediction of Limit Cycles . . . . . .. .. ..

6

9

11

11



3.2.3 Control Based on Bifurcation Diagrdms . . . . . .. ...

3.3 Application Examples

3.3.1 Chua’s Circuit . . . . . . .. ..o o
3.3.2 Relay System . . . . . ... oo
3.3.3 System with a Square Nonlinearity . . ... .. ... ..
3.3.4 System with a Cubic Nonlinearity . . . . .. .. .. ...
3.3.5 Duffing Oscillator . . . . .. ... ... ... .......
4 Observer Based Feedback Control of Chaotic Systems
4.1 ODSELVELS « o v v o e v e e e e e e e e e e
4.1.1 Linear Observers . . . . . . .. .. .. .. ... ...,

4.2 Observer Based State Feedback Control of Chaotic Systems

4.2.1 Feedback Control Based on Interaction . . . .. .. ...
4.2.2 Feedback Control Based on Bifurcation Diagrams . . . .

4.3  Application Examples

4.3.1 Chua’sCircuit. . . . . . .. . . . oo
4.3.2 Relay System . . . ... ... oo
4.3.3 Duffing Oscillator . . . . .. .. ... ... ..
4.3.4  Forced Van der Pol Oscillator . . . .. ... .. .. ...

5 Conclusion

Vil

20

21

24

27

‘)9

<

31

33

33

34

36

37

39

39

46



2.1

3.1

3.2

3.3

3.6

3.7

3.8

3.9

LIST OF FIGURES

General configuration of a system in Lur’e form . . .. .. ...

Application of dither to a system in Lur’e form

Compensating nonlinear feedback . . . .. ... ... ... ...
Chua’s circuit . . . . . .« .. .
Chaotic attractors of Chua’s circuit . . . . . . .. ... .. ...
Chua’s nonlinearity before and after the application of dither

Actual and predicted limit cycles of Chua’s circuit after the ap-

plication of dither
Claos in the relay system

Nonlinearity of the relay system before and after the application

of dither . . . . o v v e e

Actual and predicted limit cycles of the relay system alter the

application of dither

3.10 Chaos in the system with square nonlinearity

Viil

11

18

21

23

[
[\

20



3.11

3.12

3.13

3.14

3.15

4.4

4.5

4.7

Actual and predicted limit cycles of the system with square non-

linearity after the application of dither
Chaotic behavior for the system with cubic nonlinearity.

Limit cycles for the system with cubic non. after the application

of dither.

Chaotic behavior of the Duffing oscillator

Limit cycle for the Duffing oscillator after the application of
dither

Feedback based on observer configuration

Limit cycle of the Chua’s circuit after feedback is applied

Limit cycle of the relay system after feedback is applied

Limit cycle of the Dufling oscillator . . . . . . ... .. .. ...
Chaos of the Duffing oscillator after feedback is applied

Chaotic behavior of the Van der Pol oscillator . . . . . . . . ..

Limit cycle of the Van der Pol oscillator after feedback is applied 4

ix

28

30

30

32

32

37

40

44

D



Chapter 1

Introduction

Chaos is one of the most popular subjects in many different fields of science
in the last few decades. With the appearance of high speed, high capacity
computers, the simulation and analysis of nonlinear dynamical systems which
were very difficult and in some cases impossible before, have become possible
in recent years. This powerful tool has forced an extensive research on less un-
derstood nonlinear dynamics resulting in a complex and exciting phenomenon,

namely chaos.

1.1 Chaos Phenomenon

Although it has been observed in many dynamical systems, there is not a uni-
versally accepted definition for the term chaos. A generally accepted informal
definition can be stated as follows: ‘Chaos is aperiodic long-term behavior of
a deterministic system, that is neither converging to a point nor diverging to

infinitv and that depends sensitively on initial conditions’, see [1].
)

The most important property of chaos phenomenon is that it 1s a behavior

of deterministic systems. The irregular behavior arises due to the nonlinearity



embedded in the system, rather than to the noisy driving forces or random
system parameters. Another important point is the sensitive dependence on
initial conditions. Trajectories of a chaotic system, starting from nearby points
separate exponentially fast making the long-term behavior of the system un-

predictable.

There are two necessary conditions for a system to exhibit chaotic behav-
ior. The first one i1s nonlinearity. Without nonlinearity, a deterministic system
cannot have such a complex behavior. The other one is dimensionality. The
trajectory of a dynamical system should find some space in order not to repeat
its motion in a bounded region. A discrete system can achieve this in one or
more dimensions. However, a continuous system with a continuously differen-
tiable nonlinearity cannot have a nonconverging aperiodic motion in a bounded
region without at least three degrees of freedom, see Poincare-Bendixon the-
orem for details, e.g. in [2]. A two dimensional system with a double valued
nonlinearity for example hysteresis, can exhibit chaotic motion, see [3] for an

example.

There are different signs of chaos that are used to identify and analyze

chaotic motion, which are mainly based on the experimental data. Some of

them are:

e State space plots: Aperiodic nonconverging state space trajectory in a

bounded region shows chaos.

e Bilurcation diagrams: These diagrams show the changes of system be-

havior with respect one or more varying system parameters.

e Lyapunov exponents: These exponents give a quantitative measure ol the
separation of trajectories. A dissipative systein with at least one negative

and one positive Lyapunov exponent mostly exhibits chaotic behavior.

o



e Power spectrum of system states or output: A’chaotic signal has a con-
tinuous power spectrum with power located in a wide range of frequency

components.

1.2 Controlling Chaos

An interesting and challenging research subject in the field of chaos is the
control of chaotic systems. However, there is neither a common definition of
a control problem nor a general framework for the control of chaotic systems.
Chaos is generally considered as an unwanted phenomenon because of the long-
term unpredictability. Therefore a natural definition of the control problem is
to force a chaotic system to behave regularly (i.e. converge to a limit cycle).
But recently, it has been shown that chaos can also be used as a useful tool in
some practical applications, see e.g. [1, 4, 5]. Hence, a general definition of the
control problem of chaotic systems, which is considered by many researchers
recently, may be given as follows: ‘For a given dynamical system, the control
problem is to choose a control law appropriately to switch the system behavior
from chaotic motion to regular motion (e.g. a limit cycle, etc.) or from regular

motion to chaos whichever is required, see [6, 7].

Explanations and comparisons on different control strategies can be found
in review articles such as [8, 9]. Control strategies in the literature can be
classified in five main categories. Simple methods, open-loop methods, OGY

approach, control engineering tools and more complex methods.

(i) Simple methods such as parameter variation and shock absorber concept
require redesigning of the systems which is not allowed in most practical

cases, see [10].

(ii) Open-loop methods use apriori calculation of a suitable input that forces

3
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the system behave in a desired way, see [11].

(iii) OGY approach uses an n — 1 dimensional map constructed from the
output of an n dimensional system and tries to change an accessible
system parameter with small perturbations to stabilize unstable periodic

orbits embedded in a chaotic attractor, see [4].

(iv) Control engineering tools cover proportional feedback, Lyapunov func-
tions, H,, design technique and describing functions to analyze and con-

trol the chaotic trajectories, see [6, 12, 13].

(v) There are also more complex methods such as intelligent control, see [14].

One general, but approximate method for analyzing chaotic systems has
been proposed by Genesio and Tesi, see [15, 16]. This method is based on
the well-known describing function analysis (harmonic balance method) aund
applicable to systems of Lur’e type, see figure 2.1. In the literature, there
exist some controllers designed using nonlinear feedback and adaptive control

based on this analysis, see e.g. [13, 17].

In this thesis, two different control schemnes based on the conjecture of
Genesio and Tesi and also on bifurcation diagrams are examined. Dither and

observer based state feedback are used to switch between chaotic and regular

motion.

This thesis is organized as follows. In chapter 2, the mentioned conjecture
of Genesio and Tesi on the existence of chaos is given. In chapter 3, the elfects
of dither and its application for control are discussed and some examples are
given. In chapter 4, nonlinear observers and observer based control of chaotic
systems are examined and some application examples are given. IMinally, the

last chapter consists of concluding remarks.



Chapter 2

The Conjecture of Genesio and

Tesi

Genesio and Tesi have proposed a conjecture [13, 15, 16] that gives some con-
ditions under which a class of dynamical systerns, i.e. systems in Lur’e form,
may exhibit chaotic behavior. General configuration of a system in Lw’e form
is shown in figure 2.1. This is a simple output feedback structure where
L(s) is the transfer function of a general single input, single output linear
time-invariant system, n(.) is a memoryless single input nonlinearity and r(¢),
which is generally zero, is the input. The conjecture that will be given below is
wealk in the sense that it gives neither necessary nor suflicient conditions, but
useful since it is easy to apply and is almost the only analytical and practical

prediction tool on the subject at present time.
The conjecture states that a dynamical system given in figure 2.1 may
behave chaotically if it has;
(i) a stable predicted limit cycle,

(i) an unstable separate equilibrium point,

(&1



r(H=0_ L) y(©

n(.)

Figure 2.1: General configuration of a system in Lur’e form
(iii) suitable filtering effect,

(iv) interaction between the limit cycle and the equilibrium point.

In the following sections, the conditions stated above are explained.

2.1 Prediction of Limit Cycles

The existence of a limit cycle of a system in Lur’e form can be examined
approximately by using the well-known describing function (harmonic balance)
method, see e.g. [2, 16, 18]. This method attempts to represent the single
input nonlinearity of the system (n(.) in figure 2.1) by means of a lincar
time invariant system. This linear system is defined according to the input of
the nonlinearity. Dominant frequency components of the input are taken into
consideration and the nonlinearity is represented by the gains that it applies to
these components. Therefore, different describing functions can be defined for
a nonlinearity with respect to different inputs. Some approximate and rigorous

arguments on the subject can be found in e.g. [2, 18].

Ior our analysis, the most suitable describing functions are sinusoidal plus
bias input describing functions (SBDI') or as referred in some texts, dual input
describing functions (DIDI'). In SBDI® analysis, the input ol the nonlinearity

y(t), i.e. the output of the original system shown in figure 2.1 is assumed to

6



be in the following form:
y(t) = A+ Bsin(wt), A,B,we R, B,w> 0. (2.1)

The output of the nonlinearity may be represented by IFourier series expansion

as,
n(A+ Bsin(wt)) = ao + Y, [arsin(wt) + by cos(wt)] . (2.2)

k=1
This signal is applied to the linear block of the original system (L(s) in figure
2.1). If this linear block has a low pass characteristic, only the leading terms

of the expansion given by (2.2) are important. Assuming that this filtering

condition holds, equation (2.2) is simplified to
n(A + Bsin{wt)) = a + bsin(wt + ¢). (2.3)

Describing functions of the nonlinearity with respect to equalities (2.1) and

(2.3) are defined as,

No(A, B) = % (2.4)
Ni(A,B) = %e“’. (2.5)

Since « and b in the above equalities come from the leading Fourier coefficients

of the output of the nonlinearity, describing functions can be calculated as,

1 m
No(4, B) = 5— / n(A + Bsina)de, (2.6)
Ni(A,B) = W_lé / n(A + Bsin a) sin ada. (2.7)

For the system given in figure 2.1, the existing limit cycles can be predicted,
j.e. A, B and w parameters in the equality (2.1) can be found by solving the
following equations:
No(A, B)L(0) = —1, (2.8)
Ni(A, B)L(jw) = —1. (2.9)

Since equation (2.9) is complex valued, these two equations are enough to find

the three unknowns A, B and w of the trajectory given by (2.1).

T



There are different methods to examine the stability of the predicted limit
cycles, see [18]. The Loeb criterion is the most appropriate one. It is both
simple and also has the advantage of using the SBDF results. The basic idea
behind the criterion is to apply small perturbations to the amplitude and fre-
quency of the predicted limit cycle. If the system tends to return to the original
limit cycle when subjected to these perturbations, then the limit cycle is said
to be stable. After straightforward algebra, for single valued nonlinearities,
the Loeb criterion simplifies to the following statement. A limit cycle of the
system in fAigure 2.1 is stable, if

ONy(A, B) OV (w)

aB 8&) |A=A",B=B‘,w=w"< O (2.10)

where Ny(A, B) is given by (2.7), V(w) is the imaginary part of the transfer
function of the linear system represented by L(s). Inequality (2.10) is evaluated

at A*, B* and w* which are found from equations (2.8) and (2.9), see [18].

2.2 Equilibrium Points

It is trivial to find equilibrium points of a dynamical system. If the system is
represented by first order differential equations, then the state values at which
the time derivatives vanish are the equilibrium points. If the system is given
in Lur’e form, then the equilibrium points can be found using the following
equation.

E+LO)n(E)=0 (2.11)
where F is the location of an equilibrium point, L(0) is the response of the linear
hlock to bias inputs and n(.) is the nonlinear element, see [16]. This equation
also implies a graphical way to obtain the locations of the equilibrium points.
The points where n(y) curve crosses with the —y/L(0) line are the equilibrium

points.



Stability properties of any equilibrium point can’be examined with the use
of conventional methods such as linearization at that point. An equilibrium

point is stable if all eigenvalues of the Jacobian matrix are located in the open

left half plane.

2.3 Filtering Effect

The linear block L(s) of the system in figure 2.1 should have a low pass
characteristic for the describing function analysis to be reliable. This can be

examined analytically by checking the following inequality.
| L(jw) [>| L(jkw) | &k =2,3,... (2.12)

where w is the frequency of the predicted limit cycle given by (2.1).

2.4 Interaction

The equilibrium points of a system in Lur’e form can be classified into two
categories. When the magnitude of the sinusoidal term of a predicted limit
cycle vanishes to zero, then equalities (2.6 - 2.7) and equations (2.8 - 2.9)
simplify to the equation (2.11), which explicitly shows an equilibrium point.
However, all equilibrium points cannot be found with this approach. Genesio
and Tesi define the equilibrium points that can be found by using the above
approach as generating equilibrium points and others as separate equilibrium
points. According to the conjecture, the interaction between a predicted limit

cycle and a separate equilibrium point 1s important.

The degree of interaction can be examined through the following constant,

B*

9



where A* and B* are predicted limit cycle parameters and I/ is the location of
the separate equilibrium point. When this interaction constant 7 is near unity,
the system may exhibit chaotic behavior, and when it is small (i.e. near 0.5
from our simulation results), the system may exhibit a regular solution, i.e. a

limit cycle.

Because of the approximate nature of the describing function analysis and
the ambiguity ou the interaction parameter, the statement of the conjecture
is neither necessary, nor sufficient. An improvement on this conjecture can be
found in [19]. In this reference, some necessary and(or) sufficient conditions
for the existence of chaotic motion are given for a class of dynamical systems

with special nonlinearities.

10



Chapter 3

Dither Control of Chaotic

Systems

3.1 Dither

Dither is a high frequency signal, introduced into a system preceding the non-
linear element in an additive way in order to modify its nonlinear characteristic.
Figure 3.1 shows the configuration used for the application of dither. By sweep-

ing back and forth quickly across the domain of the nonlinear element, dither

r()=0_,7 L(s) y(®)

d(t)

[igure 3.1: Application of dither to a system in Lur’e form

Ll



has the effect of averaging the nonlinearity, in a way tnaking it smoother. Gen-
erally, dither signals are periodic deterministic or stationary random functions
of time. Their frequencies are much higher than the system cut-off frequency
so that they are filtered out before reaching the output. The application of var-
lous types of dither signals such as sinusoidal, triangular, square wave, randorn,
cte. have been examined in the literature, see [18, 20, 21, 22]. The classical
purpose of application of dither is the stabilization or elimination of limit cy-
cles in nonlinear systems. The application of dither changes the behavior of a

nonlinearity in the following way.

Assume that n(.):R — R is a memoryless nonlinearity satisfying the fol-

lowing conditions:

e n(.) is single valued,
e 2(0) =0,

e n(.) is Lipschitz, i.e. there is a constant v > 0 with the property

|n(z) —n(y)|<v|z—y| Ve,y€R.

Definition: Let v(.):R — R be a given function. The amplitude distri-
bution function (ADT') of v(.) on a subinterval (£, ¢2) of RY is defined as the
function F, : R — [0, 1],

B p(t |t € (tr,ta), v(t) <€) ,
F,(&) = 0t , (3.1)

where p(.) denote the length in a Lebesque-measurable subset of R, see [23].

Definition:The function v(.):R — R is called I-repetitive, if there is a
sequence {¢;}, 0 < o < t; < ..., unbounded from above, such that for ¢ =

1,2,..., the ADF of v(.) on (t;—1,t;) equals the ADI" of v(.) on (Lo, ty), see [23].

According to this definition, periodicity is not a necessary but a sullicient

condition for F-repetitiveness.



When a fixed F-repetitive dither signal d(t) is applied to a nonlinearity n(.)

satisfying the above conditions, the nonlinearity becomes
o0
n.(z) = / n(€)Fy(€ — x)dé, (3.2)
—00

where Fj(£) is the derivative of ADI® with respect to £. Further analysis on

this property can be found in [23].

In this work, the following plecewise constant periodic signal is taken as

the dither signal.

51 kT <t < (a1 + /C)T,

By (cu + k)T <t<(oa+etk)T,
d(t) = L k=0,1,..., (3.3)

vevy

n—1
Bn (T v+ k)T <t<(k+1)T.
=1

koA
where 3; € R , o; >0 for t=1,2,..,n, Ya =1 and T >0.
-

i

In order to find the ADT of the function given by (3.3), let us construct two
sequences {a} and {#}. These sequences are defined as {a} = {1, a2, oy}
and {A} = {1, B2, - . Bn}, where o;’s are the durations of different subintervals
of one period of d(t) and f;’s are the magnitudes of d(¢) corresponding to
these subintervals. We can order {} to construct a new sequence (B} =
{B1, B2y -, Bn} where B; € {f} and B; < B; if and only if j < 4. Also, another
new sequence {@} is constructed where & = «; with indices corresponding
to By = B;. If B; = B;41 for any j, Bj+1 is deleted from the sequence, the

corresponding &; is changed as &; = &; + &)1 and &4 is also deleted.

Using the definitions of {&}, {B} and ADF, the ADI ol the signal given

L3



by (3.3) is found to be, ’

0 —o0 < € < f,
ay B < €< fa
&+ @y [ <E< B,

sy

% Bt < €< P,

1 fm < € < 0.

where m is the number of entries of sequences {&} and { /?}, and m < n.
Derivative of this function with respect to £ is,
Fé(ﬁ) = &16(6 - Bl) + 5"26(6 - BZ) + ... + C_Ymé(g - Bm)a (J5>

where 8(£) is the impulse function. According to the property given in (3.2) a
nonlinearity n(y) changes to n,(y) as follows with the application of the dither

signal d(t) given by (3.4).
n(y) = anly + Bi) + Gnly + Ba) + .. + &mn(y + Pm)- (3.6)

From the definitions of {&} and {8}, equality (3.6) is equivalent to,

n—1

no(y) = canly + A1) + can(y + B2 + o + (1= D anly + ). (37)
1

i

Same result has also been found using a different methodology in [21].

Hence, the dither-applied system given in figure 3.1 is equivalent to the
system in figure 2.1, provided that the nonlinearity n(.) is replaced with the
dither-applied nonlinearity n,(.) given by the equality (3.7). The nonlinear-
ity n(.) should satisfy the conditions given at the beginning of this section to
achieve this result. However, for chaotic systems and systems converging to a
limit cycle, the Lipschitz condition can be weakened. Since such a system op-
erates in a bounded region, the input and output of its nonlinearity always stay
in a bounded region. So, the nonlinearity is automatically locally Lipschitz.

14



Moreover, if the nonlinearity is differentiable and if’the solutions » remain in
a bounded region (2, then an estimate of the Lipschitz constant v can be ob-
tained as:

v < sup [ n/(y) |

3y
see e.g. [24].

3.2 Application of Dither on the Control of

Chaotic Systems

Dither signal can be used to change many single input nonlinearities. However,
the following control strategies are only applicable to systems in Lur’e form,
given in figure 2.1, since they are mainly based on the conjecture of Genesio
and Tesi which has been examined in the previous chapter. As mentioned in the
introduction, control in the context of chaos means to force a chaotic system
behave regularly (i.e. a limit cycle behavior) or conversely to force a regularly
behaving system behave chaotically. In the following two strategies, in order
to make a chaotic system exhibit a limit cycle behavior, the nonlinearity in
the system is changed by the application of an appropriate dither signal so
that the resulting system violates one or more conditions of the conjecture.
Conversely, to make a regular system chaotic, the nonlinearity of the system
is again changed by the application of an appropriate dither signal so that
the resulting system satisfies the conjecture conditions more strongly. These
two strategies have also been examined with application examples in [25]. In
the third method the behavior of the system is observed from the bifurcation
diagrams and one parameter of the system is changed by the application of

dither in order to make the system behave in a required way.



The control is applied as in figure 3.1, where the dither signal is given by,

Bi kT <t<(a+ k)T,
d(t) = ,k=0,1,..., (3.8)
By (a+k)T <t <(k+1)T.

for simplicity. The amplitudes 31, 3; and the duration « are chosen according
to the desired effect. The frequency of the dither signal is not important, as
long as it is more than three orders of magnitude greater than the operating

frequency of the system.

3.2.1 Control Based on Equilibrium Point Elimination

According to the second condition of the conjecture, a system should have an
unstable equilibrium point and according to the fourth condition, the location
of that equilibrium point is close enough to the limit cycle for the system to
exhibit chaotic motion. In this approach, the nonlinear element of the system
with chaotic behavior is changed so that one or more of its equilibrium points
are eliminated. The resulting system violates second and fourth conditions of

the conjecture.

It is clear from equation (2.11) that changing the nonlinearity n(.) ol the
system results in a change of equilibrium points. Nonlinearity changes as given
by equality (3.7) when dither is applied. Equilibrium points of the resulting

system can be found by solving
E+ LO0O)an(E 4+ p1)+ (1 —a)n(E+ B2)] =0 . (3.9)

This equation can be solved analytically only in some special cases. However, it
can easily be solved numerically or graphically in order to find the appropriate

o and 3 values.

Application of an appropriate dither signal may eliminate the unstable equi-
librium point that interacts with the limit cycle. Ixistence and stability of a
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limit cycle is not guaranteed for the dither-applied system. However, as men-
tioned before, the resulting system given by figure 3.1 becomes equivalent to
the original system given by figure 2.1, provided that the nonlinearity n(.) is
replaced with n,(.). Hence, the describing function analysis and the conjecture
are applicable to the dither-applied system and should be used to check the
existence and stability of a limit cycle of the dither-applied system. In most ap-
plication examples, it has been observed that the dither-applied systems have

stable limit cycles that can be predicted with the describing function analysis.

3.2.2 Control Based on Interaction

This strategy is based on the fourth condition of the conjecture of Genesio and
Tesi. According to the conjecture, if the interaction parameter 7 is near unity,
then the system may exhibit chaotic behavior. On the other hand, if i is small
(i.e. near 0.5), then the system may exhibit regular motion. The interaction
parameter is defined with respect to the equality (2.13). Since A, B and I
are functions of dither parameters o, 3 and f, for the dither-applied system,
the amount of interaction can be increased or decreased by the application of
dither. It is too difficult to analytically determine the dependence of 5 on dither
parameters, However by fixing some of the dither parameters beforehand, other
dither parameters can be found for the desired  numerically. With this method
by increasing 7, a regular behaving system with an unstable equilibrium point
and a stable limit cycle can be made chaotic, or a chaotic system can be forced
to behave regularly by decreasing n. After the parameters of dither are found,
existence and stability properties for the dither-applied system should again

be checked by describing function analysis.

This method results in complicated equations for an arbitrary nonlinearity

n(.). Ifn(.) has a special structure (e.g. polynomial), then the analysis becomes



y(t)

vy | |

Figure 3.2: Compensating nonlinear feedback
much simpler. For more simplicity, assume that the chaotic system is given by

9(D)y(t) +nly(t)) =0, (3.10)

where D is the differential operator £, ¢(.) and n(.) are polynomials of degree

[ and m respectively as given below.
q(s) = bos' + bys'™ 4 4 bys + by, (3.11)

n(y) = agy™ + a1y™ " 4 .+ Gy + . (3.12)

The system (3.10) can be transformed into the form given in figure 2.1, where
L(s) = q_(lf) and n(.) is as given by (3.12). After the application of dither signal
given by (3.8), the nonlinearity n(.) changes to

k

m Lk s i .
ne(y) =S [ | (@B + (1= ) )y (3.13)
k=0

=0 2
Equality (3.13) can be simplified further, compensating the undesirable
effects of dither by applying a polynomial output feedback and(or) a nonzero
bias signal r(¢) to the system as in figure 3.2, where I; gains can be found
from (3.13) as functions of «, A, and 3.
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The resulting nonlinear block n,(y) is in an especially useful form such as,
n(y) = n(y) + (e, as, b1, Ba)y. (3.14)

The dither-applied system can be given as follows. When the modified nonlin-
earity and the definition given by (3.11) are substituted in equation (3.10), we

obtain,
{boD' + 0y D' oA b D+ b}y (8) + n(y (L)) + (e, Br, B2)y(t) = 0, (3.15)
which yields,
{bD' + by D' 4 o+ bt D+ (b + (v, B, 52)) Yy (8) + nfy(t) = 0. (3.16)

As can be seen from equation (3.16), the dither-applied system is equivalent to
the original system with the only change being in b which is the last term of the
denominator ¢(s) of the transfer function of the linear block. The interaction
parameter 7 originally depends on system parameters, therefore on 6. With
this approach, the problem of choosing dither parameters to change n simplifies
to the problem of choosing dither parameters to change ;, which is simpler.
Also, this approach gives the possibility of using bifurcation diagrams provided
that the system behavior depends explicitly on b;.

For further special cases, n(y)=y? and n(y)=y”, the above simplification can
he achieved without the use of compensating nonlinear feedback. For n(y)=y?,
the modified nonlinearity becomes,

n(y) =y* + (@B + (1 = a)Ba)y + (af] + (L — a) ). (3.17)
With the reference input,
r(t) = Ko = —(aff 4+ (1 — ) B3)
equality (3.17) is simplified to equality (3.14) where,
Y =af+ (1 —a)ls.

When n(y)=y>, the dither-applied nonlinearity becomes,

ne(y) = y3+(a/31—l—(l—a')ﬂg)y")—l-(aﬁ'f—%(l—a)ﬁ%)y—}-(aﬂf-}-(l.—a')/ﬁf_,’). (3.18)
19



By selecting a=0.5 and f81=~p,, equality (3.18) simplifies to equality (3.14)
where,
b =0.5(8} + 53),

without the need for a reference input.

3.2.3 Control Based on Bifurcation Diagrams

As mentioned before, bifurcation diagrams are used to show the changes in the
behavior of a dynamical system with respect to a varying system parameter.
Bifurcation diagrams of many different chaotic systems can be found in the

literature. Some examples are given in [16, 26].

Let a dynamical system have a system parameter which can be changed
by the application of dither without affecting the other parameters. Moreover,
let the bifurcation diagrams of this system with respect to this system param-
eter are available. Then the system can be forced to exhibit any behavior in
those bifurcation diagrams with the application of a suitable dither. Dither

parameters are chosen to change the required system parameter.

This strategy is applicable to a more general class of dynamical systems
than the describing function analysis. However, it requires the knowledge of

bifurcation diagrams which may be unavailable in some cases.

8V
=
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3.3 Application Examples '

3.3.1 Chua’s Circuit

Chua’s circuit given in figure 3.3 is a well-known nonlinear electrical circuit
that exhibits chaotic behavior for some parameter values, see [27]. Using Kir-
cholf’s laws and a little algebra, the governing equations of this circuit are

found to be, see [13],

T, = a{—:l:1+l'2—”(~'731)}7

.’bz = I —$2+Q}3, (319)
3'53 = —Z)LL‘Q,
where z,(¢) = Vol(%—t), zo(t) = Vo2(%:é), x3(t) = ézL(%ﬁ), a = gf, b= F%T

and n(.) is defined as below. These equations can be transformed into a system

in Lur’e form with the following linear block and the nonlinear element,

a(s*+ 5+ 0)

L(s) = 3.2
() 2+ (L4 a)s?+bs+ab’ (3.20)
Mg —m ]
a) = =T =Ty 2

where y = w1 in (3.19). Chua’s diode has the characteristic # = n(V) where
n(.) is given as above. In this thesis as well as in other sources, the parameters

of the nonlinearity are taken as m; = 0.286, m, = 1.142 and M = 1.

VAVAVe
G
+ + +
Vo, ——C2 L Voo —=c1
- b Chua’s diode
" i=n(V)

Iigure 3.3: Chua’s circuit



Using the definitions (2.6) and (2.7), describing functions of the above non-

linearity are determined as,

I —m / B
No(A, B) = 5 [(ml +ma) + %B <f0 (A-I];M> . (A M))J
(3.2

:

Ni(A,B) = % [(ml + m2) + i ; e <f1 <A ;M) — ( ))
(3.23)
where,
i Z(zsin™Ha) + (1 —2%)2) |z |< 1,
fo(z) = ) lels (3.24)
| @ | |z |> 1.
and
—1 T < —~1,
filz) = § Z(sin™'(2) + (1 — 2?)3) |2 <1, (3.25)
1 z>1

It is difficult to obtain analytical expressions for limit cycle parameters A,
B and w. However, numerical solutions of (3.22-3.25) can easily be found for

fixed « and b.

Chua’s circuit exhibits single scroll chaos for ¢ = 8, and b = 2.7, see [13].
From the numerical solution of (2.8-2.9) with (3.22-3.25), two limit cycles are
predicted with A = £1.0806, B = 0.9964 and w = 2.335. These limit cycles

are found to be stable according to the Loeb criterion.

This system has three equilibrium points at y = —1.5, 0, 1.5. The equilib-
rium point at y = 0 is a separate equilibrium point and is unstable. It interacts

with the predicted limit cycles with n = 0.922.

The linear block L(s) given by equality (3.20) has a moderate low pass filter
characteristic. According to the conjecture, this system may exhibit chaotic
hehavior and simulation results confirms this prediction. Two dilferent chaotic

attractors resulting from the interaction are shown in figure 3.4.
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Figure 3.4: Chaotic attractors of Chua’s circuit

This system is suitable for the application of equilibrium point elimination.
When the parameters of the dither signal given by equality (3.8) are chosen as
a = 0.5, fi = 0.1 and f = —0.5, the nonlinearity n(y) changes as shown in
figure 3.5. From the crossings of the modified nonlinearity with the T_(_gj line
which is shown as the dotted line in the same figure, it is found out that the
dither-applied system has one equilibrium point at y = —2. So, the equilibrium
point at y = 0 is eliminated.

Original nonlinoarity Modified nonlincanty

nV_C1)

-5 s R . . . ) . - s . .
5 -4 -3 -2 -1 ) 1 2 3 4 5 2s ) ) ) ) ° I
v_C1 Vv_C1

Figure 3.5: Chua’s nonlinearity before and after the application of dither

Describing function analysis predicts a stable limit cycle for the dither-
applied system, which is plotted in figure 3.6 by plus signs. Simulation of
the dither-applied system also gives a limit cycle at the same region, which
is shown as the solid line in the same figure. The predicted and actual limit
cycles are not quite close. This difference is due to the approximation errors of
the describing function analysis, since the linear block L(s) given by cquality
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Limit cycle of Chua's circuit

x2
o
T
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Figure 3.6: Actual and predicted limit cycles of Chua’s circuit after the appli-

cation of dither

(3.20) does not have enough filtering effect.

3.3.2 Relay System

This is a third order system given in Lur’e form as in figure 2.1 with,

1

L(s) = 3.26
(s) 8%+ as?+bs+c’ (3:26)
I y<0
ny) =4 0 y=0 (3.27)
-1 y>0
Describing functious of this nonlinearity are given in [16] as,
No(A, B 20 3.28
10(/’ )_-H (~)
4 cos W
Vi(A,B)=— 3.29
! l( {) ) ﬂ'B ( )



—7/2 A< -B
where ¥ = ¢ arcsin(4/B) | A/B|<1
7r/2 A>B

The solution of (2.8) and (2.9) for these functions yields

e 2¢
B= 2 cos[5t [ (3.31)
7(c— ab) 2¢ ’ o
w= b7, (3.32)

where S(¢) = ﬂllz—b for ¢ > ab. Equilibrium points of this system are found as

= _1 1
y__caoa .

[s4

State diagram of relay system for a=1,b=2.5,c=4

Figure 3.7: Chaos in the relay system

For parameter values a = 1.0, b = 2.5, ¢ = 4.0, this system exhibits double
scroll chaotic motion as can be seen from figure 3.7. The equalities (3.30-3.32)
for these parameter values show two predicted limit cycles with A = £0.3434,
B = 0.3498, w = 1.5811. The stability of these limit cycles cannot be analyzed
by the Loeb criterion, however in [16] it is shown that the limit cycles are stable.
The equilibrium point at y = 0 is unstable and interacts with the predicted
limit cycles with n = 0.9817. The linear part L(s) of the system given by
equality (3.26) has suitable filtering effect. Hence, this system satisfies the

conjecture given in chapter 2.
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Figure 3.8: Nonlinearity of the relay system before and after the application
of dither

Although the nonlinearity n(y) given by equality (3.27) is not Lipschitz
and does not satisly the conditions for dither given at the beginning of this
chapter, the application of dither to relay type nonlinearities has been analyzed
in [18, 20]. The application of the dither signal given by (3.8) with a = 0.5,
B, = 0.15 and B = 0.35 changes the nonlinearity as in figure 3.8. In this
figure the solid line represents the original, the dash-dotted line represents the

modified nonlinearities. The dotted line is ﬁg}. As can be seen from the
crossings, the dither-applied system has one equilibrium point at y = —1 s0
the equilibrium point at y = 0 has been eliminated.

Relay systemn ——-actual +++predicted limit cycles
T T T T

1 — T

o.8f + + -
+

s —0.4 —0.2 o 0.2 0.4 0.6 0.8

x1

Figure 3.9: Actual and predicted limit cycles of the relay system after the

application of dither



In figure 3.9, the actual limit cycle found from tlte simulations is shown as
the solid curve. The predicted limit cycle found from the describing function

analysis is also given in the same figure plotted with plus signs.

3.3.3 System with a Square Nonlinearity

Consider the nonlinear differential equation,
Y +ay+by+cy+y*=0. (3.33)

This equation can be turned into a system in Lur’e form, with
1
3+ as?+bs+c’

n(y) = y*. (3.35)

L{s) =

Describing functions for this nonlinearity and the corresponding limit cycles

are found as,

Bz
No(A, B) = A+ = . MNi(4,B) =24, (3.36)
b—c 1 4 |
A== 2 -, B= {le—ab)(c+ab)}'/* | w=1b"/" (3.37)

This system has one limit cycle which is stable according to the Loeb cri-
terion. Also, the linear part of the system has suitable filtering effect. Two

equilibrium points are found at y = 0, —¢. The separate equilibrium point at

y = —c is unstable for ¢ > 0 and interacts with the limit cycle with
c—ab
= (2 2, 3.38
1= () (3.39)

This system exhibits chaos for parameter values « = 0.4, b = 1.18, ¢ = L.0,
see figure 3.10. The equalities (3.37) and (3.38) for these parameter values
show that this system obeys the conjecture given in the 2nd chapter with
n=0.846. Since interaction parameter 7 for this system system is a function
of system parameters, the system is suitable for the application ol control
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Chaos in the square nonlinearity system,
T T T T

Figure 3.10: Chaos in the system with square nonlinearity

based on interaction. The nonlinearity is a square polynomial, therefore dither
parameters can be selected in order to change ¢ and decrease n. The application
of the dither signal given by equality (3.8) for o = 0.5, #; = =0.3 and f, = 0.1
and a constant reference input r(¢) = 0.03, decrease n to 0.515. Simulation of
the system after the application of this control shows the existence of a stable
limit cycle which can be predicted by the describing function analysis quite
precisely. The actual (solid curve) and predicted (plus signs) limit cycle of the
control applied system are shown in figure 3.11.

Square Non. Sys. after dither ——actual ++predicted LC
T v T T v v T

—0.4f

Figure 3.11: Actual and predicted limit cycles of the system with square non-
linearity after the application of dither



Conversely, for parameters ¢ = 0.4,0 = 1.18 dnd ¢ = 0.8, the system
exhibits a limit cycle behavior. Describing function analysis shows an interac-
tion of n = 0.515. This time by applying a dither signal to the system with
a = 0.5, fp = —0.15 and f; = 0.35, and also a constant relerence input as
r(t) = 0.0725, the interaction amount is increased. The resulting system with

n = 0.85 exhibits chaotic behavior.

3.3.4 System with a Cubic Nonlinearity

In this example, the following nonlinear differential equation is considered, see

[15])
Yy +ay+by+cy+y°=0. (3.39)

This system can also be turned into the Lur’e form, with

1

Lis) = s3+ast+bs+c’ (340)
n(y) = y°. (3.41)

The corresponding describing functions are found as,
No(A,B) = A* + %B'Z , Ni(A,B)=3A%+ %32’ (3.42)

The limit cycles of this system are predicted with the following parameters.

1 2
A= :i:{—5-(‘2ab - c)}l/‘ , 2ab>c, (3.43)
S dab
B= {_(1_5‘04-%)}1/2 , 2c+ab<0, (3.44)
w= 02 (3.45)

These two predicted limit cycles are stable due to the Loeb criterion. This
system has three equilibrium points at y = —(—¢)/%, 0, (—¢)"/? for ¢ < 0. The
equilibrium point at y = 0 is unstable. Also, there is suitable filtering ellect on

the systemn.
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Figure 3.12: Chaotic behavior for the system with cubic nonlinearity.

The interaction parameteris n = 0.873 for parameter valuesa = 1.0, b= 1.5
and ¢ = —1.25. For these parameters, this system exhibits a double scroll

<

chaotic behavior, shown in figure 3.12.

Using the control based on interaction strategy described in the previous
section, dither parameters in equality (3.8) are chosen as o = 0.5, B, = 0.65,
3, = —0.65, yielding n = 0.395. Simulation of the dither-applied system shows
two symmetric stable limit cycles, which can be predicted with the describing
function analysis. Actual (solid curve) and predicted (plus signs) limit cycles
are shown in figure 3.13.

Cubic Non. Sys. after dither ——actual ++predicted LC
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Figure 3.13: Limit cycles for the system with cubic non. after the application

of cither.



3.3.5 Duffing Oscillator

Duffing oscillator is a forced oscillator that is used extensively in nonlinear
studies, since it can describe many physical phenomena, see [26, 28]. The

governing equation for this system is,
&+ a13 + aoz + 2 = gcos(wt) + u(t) (3.46)

This equation can be turned into Lur’e form with,

1.
L(s) = ———— 3 4
(s) R (3.47)
nly) = 4% (3.49)
r(t) = gcos(wt) + u(t). (3.49)

SBDF cannot be applied to this system because of the forcing term. How-
ever dither can be applied to the nonlinearity given by equality (3.48) as it has

been done in the previous section.

For this system, from the bifurcation diagrams available in the literature,
[26, 28], we choose two parameter sets:

Set 1: ap=0, a;=0.25, q=11, w=1,

Set 2: ag=0.64, a;=0.25, q=11, w=1.

[t is known that this system exhibits a chaotic behavior for the first parameter
set and a limit cycle behavior for the second parameter set. It is obvious that
by changing the parameter ag effectively, we may switch the behavior of this
system from chaotic behavior to limit cycle behavior, and vice versa. This

effective change can be achieved by applying a suitable dither signal.

Choosing the dither parameters as «=0.5, 3;=-0.8 and ,=0.8, we may
change the parameter ag from ap = 0 to ap = 0.64. Hence, although the
system with the parameters given in Set 1 exhibits chaotic behavior before
the application of dither, it exhibits the limit cycle behavior dictated by the
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parameter set 2 after the application of dither. This point is confirmed with
the simulation results as shown in figure 3.14 and figure 3.15.

Chaos in the Duffing Oscillator
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Figure 3.14: Chaotic behavior of the Duffing oscillator

Limit Cycle of the Duffing Oscillator after dither
6 T T T T T T T

-4 -3 -2 -1 0 1 2 3 4

Figure 3.15: Limit cycle for the Duffing oscillator after the application of dither



Chapter 4

Observer Based Feedback

Control of Chaotic Systems

4.1 Observers

In many physical systems, all state variables are not directly available as output
signals. However, in some situations, especially for state feedback control, a
knowledge of state values is required. Some sort of ad hoc differentiation
of measured states may provide an estimate of the unmeasured states. This
method does not give accurate performance in many cases, especially in the case
of noisy data. A better way is to use the full knowledge of the mathematical
model of the system with the available output in order to estimate the unknown
states. The resulting estimator system is called an observer. In this work, [ull

state observers that produce estimates of all state variables are considered.

The theory of observers for linear systems is well-developed. In ovder to

reach a theory for nonlinear systems, one should begin with lincar systems.
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4.1.1 Linear Observers :

Consider a dynamical system described by the equations
z = Az + Bu,

_ (4.1)
y=Cu.

where  is an n x 1 vector consisting of system states, A € R™", B € R™*!,

C' € R™*™ are constant matrices, u is the input and y is the output of the

systemn. A well-known fact for this system can be stated as follows:

Theorem: For the above system, the following conditions are equivalent,

i The pair (C, A) is observable.
ii rank[CT ATCT ... (ADTCTT = p,

iii For any real and monic polynomial p(A) of degree n, there exists a con-

stant matrix

K € R™™ such that det(Al — A+ KC) = p(}A).

Proof :See e.g. [29].

For a linear dynamical system given by (4.1), if the pair (C, A) is observable,

an observer system that can estimate all states of the original system can be

constructed as,

2= A%+ K(y — i) + Bu,
( J) (4.2)
y=C2.

where & € R™™ will be chosen accordingly.

Defining e = ¢ — &, we get an error system between the states of the original
system and the observer as,

¢ = (A—KC)e = Ace (4.3)

From the theorem stated above, K can be chosen such that the cigenvalues of

A, = A — KC all have negative veal parts. Then the error equation bhecomes
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exponentially stable, indicating that,

e(t) = 0 or &(t) — z(t) as ¢t — oo.

This class of observers can be generalized to a class of nonlinear dynamical
systems, namely for nonlinear dynamical systems that are linear up to an

output injection. Consider the dynamical system of the form,

t= Az +g(y) + Bu,
2 (4.4)

y =Ce.

In this class of nonlinear dynamical systems, only the output signal is sub-
jected to a nonlinearity. Since the output is available from the original system,

we may still use an observer similar to the one given by (4.2).

Let the observer system be,

&= A&+ K(y —§) + gly) + Bu,
(4.5)
g = Cg.

Defining ¢ = = — &, as for the linear case, we get the error system as,
¢ = (A-KC)e = Ace (4.6)

with an appropriate choice of K € R™™ such that A, is a Hurwitz matrix, it

follows that the error e(¢) decays to zero exponentially fast.

Note that systems in Lur’e form are linear up to output injection. To see
this, consider the standard Lur’e system given by figure 2.1. Let (A, B,C) be
a minimal state representation of L(s), i.e.,

L(s)=C(s[—A)"'B
and (C, A) is observable. Then, a state space representation of the system
given in figure 2.1 can be given as,
T = Az — Bn(y),
' (4.7)

y =Cu.
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Hence, the observer given by (4.5) can be used to estimate the states of any

systemn in Lur’e form.

Yet, observer for a more general class of nonlinear dynamical systems which

are given by the following equations can be constructed.

T = Az + g(2) + Bu,

(4.8)
y=Ce,
where the nonlinearity is Lipschitz, i.e.
g(z) = glzo) | < 7z —a0| (4.9)

FFor the design methodology and analysis of such observers, see [30].

4.2 Observer Based State Feedback Control

of Chaotic Systems

Feedback control of chaotic systems is not a new subject. It has been examined
in the literature, see [6, 12]. In these articles only one system, Duffing oscillator
has been considered. In [12], an observer different from the one given by (4.5) is
considered. However, a general state feedback control scheme should he based
on a general observer scheme, since in most practical situations, system states

cannot be measured directly.

Cousider a system given by the equation (4.8). A general feedback control

law based on an observer for this system can be given as,
u(t) = LE(t) + f(3(), (4.10)

where & is a vector consisting of observer states, L € R"*! is the feedback gain
matrix and f(.) is the nonlinear feedback gain function. With the suitable
choice of L and f(.), the system given by (4.8) can be controlled (i.c is forced
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r(t) (D) X=Ax+Bu+g(x) 0]

\r y=Cx
Original system
a0 O?server
A A
{=AL+But+g(R)+K(y-y)
L 9=CX
] ]
. - ] Q
+ (®)

r’(t) (if the system has a forcing term)
Figure 4.1: Feedback based on observer configuration
to behave regularly or chaotically according to the purpose). The configuration

shown by figure 4.1 is used to apply the control law. If the system is a forced

system, then a forcing term can also be included in (4.10) to cancel it.

In the following sections, two different strategies will be examined in order

to choose L and f(.) for different types of systems.

4.2.1 Feedback Control Based on Interaction

Assume that the system given by (4.8) is a system to which the analysis method
and the conjecture given in chapter 2 are applicable. The system should be
in Lure form, therefore is automatically linear up to output injection. An

ohserver of the form given by (4.5) can be constructed for it.

Consider the following feedback law,
u(t) = La(¢) (4.11)

is applied to this system. The resulting system becomes,

t=(A—-BL)x+g(y) + BLe, ‘
(4.12)

y = Cu,
where e = © — & is the observer ervor. Since ¢(t) decays to zero exponentially

fast, we may neglect the term BLe in (4.12). Hence, the representation of the
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system in Lur’e form as given by figure 2.1 becomes,

L(s)=C(s]— A+ BL)™'B,
(4.13)

The interaction parameter n for this system can be calculated analytically
or numerically. This parameter will in general be a function of the feedback
gain matrix L. Therefore, by adjusting the feedback gain L, we may also adjust
the amount of interaction 5. This way we may force the system to change its

behavior from chaotic motion to regular motion, or vice versa.

4.2.2 Feedback Control Based on Bifurcation Dia-

grams

Consider the system given by (4.8). Assume that for such a system an observer
can be constructed so that the observer states #(¢) converges exponentially to
the original system states, z(¢). Then, we may use a state feedback law as

given by (4.10). Hence the state space representation of the system becomes,
¢ =(A—BL)x+(g— f)(z)+ BLe+ h(e), (4.14)

where ¢ = z — & is the observer error, (¢ — f)(.) is the resulting nonlinearity
and h(e) = g(z) — f(&) — (9 — f)(z). Since e(t) decays exponentially to zero,
we may neglect the term BLe in (4.14). Choosing f(.) appropriately, in some
cases, we may also make A(e) to decay zero or in other cases choosing f(y=0,
we may keep (g — f)(x) = g(z) and k(e) = 0. Therefore, with the appropriate
choice of L, some of the entries of the matrix A of the original system can be

changed.

Assunie that the system parameters corresponding to the entries that can
be changed by L or by f(.) determine the dynamical behavior of the system
given by (4.8). Also, assume that bifurcation diagrams in terms ol some of
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these parameters are available. Then by choosing the appropriate feedback
law given by (4.10), we may change the behavior of the system to one of the
behaviors shown in the hifurcation diagram. This kind of control on a special

class of chaotic systems, namely forced chaotic oscillators has been examined

in [31].

4.3 Application Examples

4.3.1 Chua’s Circuit

Chua’s circuit can be transformed into Lur’e form and describing function
analysis can be applied to it as it has been examined in section 3.3.1. Therelore,

it is a good candidate for the feedback control based on interaction.

Consider the system given by equations (3.19). We construct an observer of
the form given by equations (4.5) for this system using the following observer
gain matrix,

5b6—0
a2

K= a=b6 (4.15)

2
@

da—a’—ib
a2
This observer gain matrix locates the eigenvalues of 4. = A — K( at A = -1,

—2, —3. Since, /. is stable, the observer states given by (4.5) converges to the

states of the original system.

This system exhibits chaotic behavior for « = 8.0, b = 12.7, as shown in
figure 3.4. The interaction parameter for the original system is 7 = 0.922. A

feedback law for this system is chosen as,
lt(f) = l1i1(t) + lzig(t) + 13%3(6) (’116)

The feedback gain parameters for the closed loop system are found to be,
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Feedback applied Chua's circuit
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Figure 4.2: Limit cycle of the Chua’s circuit after feedback is applied

11 = —02, 12 = 1.0 and

[ = 0.2, in order to set the interaction parameter
) :

n = 0.5. The resulting limit cycle of the feedback applied system is shown in

figure 4.2.

4.3.2 Relay System

Relay system examined in section 3.3.2 is another good candidate for the ap-

plication of observer based state feedback control by changing the interaction

parameter. A state space representation for the relay system given by equations

(3.26) and (3.27) is found
Ty
.’i’z

23

where n(y) is given by (3.

as,

T2,
(4.17)

T3,

—cxy — bzy — ax3 — nzy).

7.

In terms of the system parameters, an observer for this system can be
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constructed with an observer gain matrix,

6 —a
K = 11 —6a+a%—0 (4.18)
6 —1la + 6a% — a® + 2ab— 60 — ¢

in order to put the eigenvalues of the matrix A, = A — KC at A = -1, =2,

—3. Hence, the observer error ¢(t) decays exponentially to zero.

As it has been shown in section 3.3.2, for parameter values ¢ = 1.0, b = 2.5

and ¢ = 4.0, this system exhibits a chaotic motion of the form given by figure

3.7. The interaction parameter corresponding to this motion is 7 = 0.9317.

When a feedback law of the form given by (4.16) is applied to this system
with {;=0, [,=10 and [3=-0.8, the system exhibits a limit cycle behavior as can
be seen from figure 4.3. The feedback parameters are chosen such that the

interaction parameter of the feedback applied system becomes n=0.5.

T T

Feedback applied relay system
O.B T T T T

0.6
0.4

0.2

1 1 1 1 1 1 1 1 L
9'08.45 -04 -035 -03 -025 -02 -0.15 -0.1 -0.05 0 0.05
x1

Figure 4.3: Limit cycle of the relay system after feedback is applied



4.3.3 Duffing Oscillator '

Dufling oscillator which has been examined in section 3.3.5 cannot be analyzed
by the SBDF method, because of the forcing term. However, a feedback control
scheme on this system can be based on bifurcation diagrams. Consider the
Duffing oscillator given by (3.46). This system is in Lur’e form, hence an

ohserver of the form (4.5) can be constructed. The feedback gain matrix, given

by,
3 - a
K = (4.19)
2+a%——3a1 — g
is chosen such that the eigenvalues of A, are located at A = —1, —2.

The system converges to a limit cycle for system parameters ag = 0,
a; = 0.4, ¢ = 7.5, w=1.0 as shown in figure 4.4 and exhibits a chaotic behavior
for ag = 0.2, a; = 0.05, ¢ = 7.5, w=1.0. This information can be found from

the bifurcation diagrams, see e.g. [26, 28].

Duffing system limit cycle — before control

-2

-3

Figure 4.4: Limit cycle of the Duffing oscillator

When system parameters are chosen as in the first set, and a feedback law
of the form
w(t) = L&y + lhds (4.20)
with {, = 0.2 and [, = 0.35 is applied to the system, the resulting behavior
which is shown in figure 4.5 corresponds to the second parameter set.
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Chaos in Duffing System — after control ,
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% Y 2 o o 1 P B 2
Figure 4.5: Chaos of the Duffing oscillator after feedback is applied

Conversely, chaotic behavior of the system corresponding to the parameter

values ap = 0, ay = 0.25, ¢ = 11 and w = 1.0 can be changed to the limit cycle
behavior corresponding to the parameter values ap = 0, a; = 1.45, ¢ = 11 and
w = 1.0 with the feedback control law chosen as,

u(t) = —1.22,.

4.3.4 Forced Van der Pol Oscillator

Forced Van der Pol oscillator is given as,
i +d(z® - 1)3 + = = acos(wt) + u(t). (4.21)

It has been shown in [32] that for various values of d, ¢ and w, this system

exhibits a large variety of nonlinear phenomena, including chaos.

Since this system is not in Lur’e form and its bifurcation diagrams can be
found e.g. in [32], it is a good example for feedback control based on bifurcation

diagrams.

Assuming that y = z; is an observable output of the system, an observer



Chaos in Van Der Pol Oscillator — before control
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=10

s R N R
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x
Figure 4.6: Chaotic behavior of the Van der Pol oscillator

for this system can be constructed as,
1%1 = 5)2+k1(1«"—3}1), (

Fo = —d(3% = D)ig — & + ko2 — 2)).

The observer gains k; and k; gains can be chosen using the procedure given
in [30]. However, the entries of the gain matrix resulting from that procedure

is found to be too large, making simulations too slow. Therefore a gain matrix

12
_[( = (423)
35
is chosen to set the eigenvalues of A, at A = —5, —7. The observer system

given by (4.22) has been seen to work also with this gain matrix. Therefore,

this gain matrix has been used in simulations.

From the bifurcation diagrams it can be found that for parameter values
a=25,d=6,w =3, this system exhibits chaos as can be seen [rom figure
4.6. For parameter values a = 2.5, d = 0.5, w = 3, it converges to a limit cycle.
The parameters of the system are chosen as given by the first set. A leedback
control law for this system is chosen as,

u(t) = 5.5(2% — 1)32. (4.24)

With this nonlinear control, the system converges to the limit cycle correspond-
ing to the sccond parameter set, as can be seeu from figure 4.7.

11. :L



Van Der Pol Oscillator — after control
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Figure 4.7: Limit cycle of the Van der Pol oscillator after feedback is applied

Conversely, the limit cycle behavior of the system corresponding to the

parameter values a« = 1, d = 1, w = 0.7 can be changed to the chaotic behavior
corresponding to the parameter values ¢ = 15, d = 3, w = 3.945 with the

feedback control law chosen as,

u(t) = —2(2% — 1)& + 15 cos(3.945¢) — cos(0.7¢).



Chapter 5

Conclusion

In the first part of this thesis, the application of an additive dither signal for
controlling chaotic systems is examined. The techniques mentioned for the
selection of dither parameters are based on describing function analysis, on a

conjecture proposed by Genesio and Tesi and also on the bifurcation diagrams.

A system in Lur’e form that exhibits chaotic behavior may be controlled

by the application of dither if one of the following conditions holds;

e the system obeys the conjecture proposed by Genesio and Tesi, and the
application of dither can change the conditions of the conjecture resulting

in the convergence of the system to a limit cycle or vice versa,

o the application of dither can change only one system parameter for which

a bifurcation diagram of the system is available.

Main advantage of the application of dither is its simplicity. Both the
generation of the dither signal and the selection of dither parameters are easy.
This control technique does not require full state description of the system, as
long as the system is given in the Lur’e form, given by figure 2.1. [t may be
impossible to find such a description of chaotic systems in some cases, whereas
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because of the same reason, this technique is immuhe to noise as opposed to

the methods using experimental data.

Main disadvantage of the techniques discussed is as follows. Many physical
systems may not be transformed into Lur’e form or their nonlinear part may
be inseparable from their linear part easily. Therefore dither cannot be applied
to such systems. Also, in physical applications, electrical components may be
unable to handle such fast oscillating signals as dither due to transmission

delays and power consumption.

In the second part of this thesis, the use of state feedback for controlling
chaotic systems is considered. The unavailable states are found by using an
observer system. Then, the feedback law is chosen either by using the de-
scribing function analysis and the conjecture given in chapter 2 or by using a

bifurcation diagram.

The main advantage of using a feedback controller scheme is its simplicity
and its applicability to a general class of systems. The techniques presented
here may be improved in several ways. Different observer forms can be devel-
oped to yield better results such as immunity to noise or to cover more general
class of systems. Instead of changing the dynamics, the feedback scheme can

be used to track a given reference trajectory.

The techniques discussed above which are based on the conjecture of Gene-
sio and Tesi are mainly applicable to systems that can be transformed into Lur’e
form. However, different applications of describing functions to a more gen-
eral class of chaotic systems have been reported in the literature, e.g. [16, 33].
These methods do not try to predict chaotic motion itself, but the beginning
of routes that result in chaos. Especially, the application of observer-hased
feedback control to such systems is also a possibility. However, these points

require further research.
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