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ABSTRACT

ROBUST ADAPTIVE FILTERING ALGORITHMS 
FOR IMPULSIVE NOISE ENVIRONMENTS

Gül Aydın
M.S. in Electriccil and Electronics Engineering 

Supervisor: Assoc. Prof. Dr. A. Enis Çetin 
•July 1996

In this thesis, robust adaptive filtering algorithms are introduced for im­
pulsive noise environments which can be modeled as o;-stable distributions 
and/or c-contarninated Gaussian distributions. The algorithms are devcrloped 
using the Fractional Lower Order Statistics concept. Robust perf()rrnance is 
obtained.

Keywords : Adaptive F'iltering, a-stable distributions, Fractional Lower Or­
der Moments, e-contaminated Gaussian distributions

m



ÖZET

PATLAMALI GÜRÜLTÜLÜ ORTAMLAR İÇİN DAYANIKLI 
SÜZGEÇLEME ALGORİTMALARI

Gül Aydın
Elektrik ve Elektronik Mühendisliği Bölümü Yüksek Lisans 

Tez yöneticisi: Assoc. Prof. Dr. A. Enis Çetin 
Temmuz 1996

Bu tezde, patlamalı gürültülerin bulunduğu ortamlarda çalışabilecek 
dayanıklı süzgeçleme algoritmaları geliştirilmiştir. Bu ¿dgoritmalar geliştirilirken 
patlamalı gürültüler kararlı dağılımlarla ve/veya e ’la kirletilm iş Gauss dağılımı 
ile ınodellenmiştir. Tanıtılan algoritmalarda Kesirsel Düşük Derece İstatistiği 
(KDDİ) kullanılmıştır. Sonuçta dayanıklı perfornicince elde edilmiştir.

Anahtar Kelimeler : Süzgeçleme Algoritmaları, Gauss olmayan dağılımlar, 
Kararlı dağılımlar, e ’la kirletilmiş Gauss dağılımı, Kesirsel Düşük Derece 
istatistiği.
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Chapter 1

INTRODUCTION

'I'iie Gaussian distribution has been by iar the most popuhir statistical distribu­
tion in signed processing. This distribution has been widely used to model the 
noise in the analysis of signals corrupted during transmission or measurement. 
Many theorems in the fields of communications, speech analysis, estimation 
and detection hcive used Gaussian noise assumption. Having no a priori in­
formation cibout the noise process, this is a well justified cissumption due to 
the “Central Limit Theorem” [1]. The second reason that nudies a Gcuissian 
noise assumption attractive is its cuicdytical tractcd^ility. The filled reason is 
that Gaussicin processes are easy to describe, i.e., only the first two moments 
are sufficient to characterize a Gaussian process.

Unfortunately, there are also many phenomena in signal processing which 
are decidedly non-Gaussian [2]-[4]. Some examples of non-Gaussian noise are 
atmospheric noise [5]-[7], underwater acoustic noise [8], noise on telephone 
lines [9, 10], low frequency electromagnetic interference [11] cind degrcidations 
on aged ciudio recordings [12]. The common property of most of these type 
of noises is that they show impulsive behaviour, that is they produce large- 
amplitude outliers much more frequently than Gaussian noise. These high 
amplitude samples correspond to very low probability parts of the Gaussian 
probability density function, therefore they are not likely to be the samples 
from a Gaussian probability density function. This indiccites that impulsive 
noises can only be represented by heavier tailed probability density functions 
than Gaussian distribution.

Several citternpts were made in developing a statistical model lor impulsive 
noise [4, 5], [12]-[16]. In this thesis, we concentrate on impulsive type noise
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using the statistical model of a-stable distributions developed by Nikias and 
Shao [17] and of e-contaminated Gaussian distributions [3]. We develop some 
a.dciptive filtering algorithms.

An cidaptive filter is a learning and self designing system which adjusts its 
parameters by a recursive algorithm to optimize some i^erformance criteria. 
In this thesis, robust adaptive filtering algorithms are developed for impulsive 
noise environments.

A brief outline of the chapters in this thesis is given below :

In Chapter 2 , cr-stable distributions and some of their properties will be 
presented. We also give information about e-contaminated Gciussian distribu­
tions.

In Chcipter 3, a family of the NLMS algorithms [18] are investigated. The 
performance of these algorithms are examined in impulsive noise environments 
for system identification both theoretically and experimentally. We also study 
the performance under additive observation noise. We observe that they have 
a very poor performance in impulsive noise environments.

In Chcipter 4, we introduce a new family of adaptive filtering cdgorithms 
based on the Fractional Lower Order Statistics (FLOS) concept. Some proper­
ties of the proposed FLOS based algorithms are investigated. We also present 
other existing FLOS based adaptive filtering cilgorithms for impulsive noise 
environments and compare their performance.

In Chapter 5, we modify the Least Mean Mixed Norm algorithms using the 
FLOS. We investigate the properties of the LMMN algorithms in impulsive 
noise environments. Then the proposed family of the algorithms is investigated. 
Simulation studies will be presented.

In ChaiDter 6, proposed algorithms are compared and directions for the 
future work cire addressed.



Chapter 2

SOME HEAVY TAILED 
DISTRIBUTIONS

2.1 Introduction

111 this cluipter, we introduce cn-stable distributions and e-contarninated Gaus­
sian distributions. We review their chcU’cicteristics and statisticcd properties. 
'J'he proofs of most of the results are omitted but can be found in probability 
and statistics literature such as [l],[20]-[26].

2.2 o-Stable Distributions

The characteristic iunction of cv-stable distributions are given by :

(j){t) =  exp{zai — 7 |i|̂ '[l +  z^sign(Z)u;(i, a)])

where

tan ( i f )  if cr f  1 

flog|i| ifcv =  l.

and

-oo < a < oo, 7 > 0, 0 < a < 2, —1 < /î  < 1.

(2.1)

( 2 .2)

(2.3)

In the above expressions, a is the location parameter, 7 is the dispersion, ¡3 is 
the index of skewness and cv is the charcicteristic exponent. When fi =  0, tlie
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distribution is called symmetric a-stable (SaS). The chariicteristic exponent, 
cv, controls the tails of the distribution. For 0 < o; < 2, the distributions have 
algebraic tails which are significantly heavier than the exponential tail of the 
Gaussian distribution. The smaller the Vcilue of the a, the heavier the tails of 
the distributions. When cv =  2, the relevant stable distribution is Gaussian. 
Gauchy distribution is also an a-stable distribution with a =  1 and ^ =  0.

The a-stable distributions are called standard when a =  0 and 7 =  1. 
Then, one can see that if X  is an a-stable rcindom Vciriable with parameters 
a, fJ, 7 cind a then {X  — a)f'ya is standard with characteristic exponent cv and 
skewness p.

By taking the inverse Fourier transform of the chciracteristic function, it is 
easy to show that the standard stable density function is given by

1 rcoi
f(x ; cv, 1̂ ) =  -  e x p (-i" )  cos[xi +  /3t°'w(t, a)]dt. 

IT Jo
(2.4)

Note that /(;c; cv, ¡3) =  f { —x] a, —(3)· It can ivlso be shown that the probability 
density functions of the cv-stable distributions are bounded cirid have derivatives 
of arbitrary orders [21]. Unfortunately, no closed-form expressions exist for the 
general cv-stable density and distribution functions, except for the Gaussian 
(cv =  2), Cauchy (cv =  1,(3 =  0), and Pearson (cv =  |,/3 =  —1) distributions 
[26]. But power series expansions of their density functions are available. The 
stcuidcird cv-stable density function can be expanded into convergent power 
series as follows [1], [21, 22], [26, 27]. For .t > 0,

¿ X r . i G G - r i « * :  + [7 (a  + i)j fo>· 0 < o  < 1
for 1 < cv < 2

,/'(» ·■ ;(З) =  <

where

+ Dp) sin [g(a + {) 

Г] = ^ tan(7rcv/2).
/1 1r = (l + r/̂ )

=  —(2/ 7t) arctan(7 ).

The r  is the usual gamma function defined by
roo

r(.T) =  /  t^-^-^dt.
Jo

In particular, the standard SaS density function is given by
k-na

(2.5)

(2.6)

(2.7)

(2.8)

Ш  = 7Г(.Т7̂ +1)
ro' ̂ k = 0  2kl 'тга 

1

2fc+lV„2fc
a

for 0 < CV < 1 

for cv =  1 

for 1 < cv < 2 

for a =  2.



The standard SaS density functions for a few values of the characteristic 
exponent a are shown in Figure 2.1. Observe that ScvS densities hcive many 
features of the Gaussian density. They are smooth, unimodal, symmetric with 
respect to the median and bell-shaped. A detailed comparison between the 
standard normal and SctS density functions shows that non-Gaussian stable 
density functions depart from the corresponding Gaussian density in the fol­
lowing ways. For small absolute values of x, the SaS densities are more peaked 
than the normal. For some intermediate range of |.r|, the ScvS distributions 
have lower densities than the normal. Most importantly, unlike the Gaussian 
density which has exponential tails, the cv-stable densities have algebraic tails 
[23]. Thus, the SaS densities have heavier tails than the Gaussian density [see 
Figure 2.1 (b)].

2.2.1 Basic Properties of a-Stable Distributions

Two of the most important properties of the cv-stable distributions are the 
Stability Property and the Generalized Central Limit Theorem. They are re­
sponsible for much of the appeal of the stable distribution as a statistical model 
of uncertainty.

The stability property is actually a defining characteristic of cv-stable dis­
tributions.

Theorem 1 (Stability Property) : A random variable X  is cv-stable if and 
only if lor any independent random variables X j, X -2 with the same distribution 
as X , and tor arbitrary constants cii, a-2, there exist constants a, and b such 
that

ayXi -)- 02X 2 — aX  -|- b (2.9)

where the notation X  =  Y means that X  iincl Y  have the same distributions. 
By using the characteristic function of the a-stable distributions, one can easily 
sliow a more general stcvtement : if X y ,X 2,...,X n  are independent and liave 
cv-stable distribution functions with the same (a,/3), then all the linear corn- 
l)inations of the form are a-stable with the same parameters cv and

As a conseciuence of the stability property, it can be shown that cv-stable 
distributions are the only possible limit distributions for sums of independent 
identically distributed (i.i.d.) random variables. This is known as the Gener­
alized Central Limit Theorem and is formally stated as follows [20]:



Figure 2.1: Density functions of SaS distributions for different values of char­
acteristic exponent a :(a) the overall densities and (b) the tails of the densities.



Theorem 2 (Generalized Central Limit Theorem) : X  is the limit in distri­
bution of normalized sums of the form

Sn =  (^1 +  ··· +  X\)/an — bn (2.10)

where X i ,X 2, are i.i.d. and a„ ^  oo, if and only if X  is stable.

In ¡^articular, if Xi's cire i.i.d. and have finite variances then the limiting 
distribution is Gaussian. This is of course the result of the ordiiiciry Centred 
Limit Theorem.

The main cause of different behaviours of the Gaussicui and «-stable dis­
tributions is their tails. It can be shown [28], [29] that for «-stable random 
variable X  with zero location parameter and dispersion 7 ,

lirn i"P(|A"| > t) =  'yC(a)¿—»•CO (2 .11)

where C (a) is a positive constant depending on « . The «-stable distributions 
hewe inverse power (i.e. :algebraic) tails while Gaussian distribution has expo­
nential tails. This fact shows that the tails of «-stable distributions are much 
heavier than the tails of the Gaussian distributions.

Equation (2.11) has an important consequence thcit the second-order mo­
ment of cv-stable distributions, except for the limiting case «  =  2, does not 
exist. This can be written as in the following proposition [17]:

Proposition : Let X  be an «-stable random variable. If 0 < «  < 2 then

E[|A:n =  00, if p > «  (2.12)

and

If «  =  2, then

E[|Xf] < 00, if 0 < p < «.

E[|A"H < 00, for all p > 0.

(2.13)

(2.14)

Therefore, «-stable distributions have no finite first or higher-order mo­
ments for ( ) < « < ! ;  they have finite first-order moments cind all the fi’cictional 
moments of order p for 1 < «  < 2 where p < « ; and all the moments exist for 
«  =  2. Note also that «-stable distributions have infinite varicinces.



2.3 Symmetric a-Stable Random Variables 
and Processes

A real random variable (r.v.) X  is ScvS, if its characteristics function is of the 
form :

=  exp{iat -  7 |i|"} (2.15)

where 0 < a < 2 is the characteristic exponent, 7 > 0 is the dispersion, and 
—00 < a < 00 is the location parameter. When a =  2, X  is Ga.ussian and 
when a =  1, AT is Cauchy.

2.3.1 Fractional Lower-Order Moments

Although the second-order momerii of a So;S random variable with 0 < cv < 2 
does not exist, all the moments of order less than cv do exist and are called the 
fractional lower-order moments or FLOM’s. The FLOM’s of a ScvS random 
variable can be easily found from its dispersion and characteristic exponent as 
follow.

Theorem 3 : Let X  be a ScvS r.v. with zei’o location pcvrarneter and disper­
sion 7 . Then,

E[|V|»| = C(p.q)7"/“ (2.16)

for ( ) < / ) <  cv, where

C(p, cv) =
2P+iF(2± i ) r (_ p /« )

(2.17)
cv7rF(—p/2)

depends only on cv and p, not on X . In this expression F is defined in (2.8).

'I'his important result was first proved by Zolotarev using the Mellin-Stieljes 
transform [30]. Cambanis and Miller rediscovered [31] it by using a property of 
the characteristic function derived in [32]. An elementary proof of the theorem 
using basic properties of the gamma function is given in [17].

A fundamental difficulty in stable sigiicil processing with lower-order mo­
ments is that the tools of the Hilbert space theory are no longer applicable. 
yMthough the linear space of a Gaussian process is a Hilbert space, the linear 
spa.ce of the cv-stable distributions is a Banach space for 1 <  cv < 2 and only a 
metric space for 0 < cv < 1 [17], [33].



2.4 ^-contaminated Gaussian Distributions

The e-contaminated Gciussian mixture density has the probability density func­
tion of (1 — e)N{0, +  eA^(0, Acr̂ ). This family of the distribution is chcu’cic-
tcrized by the mixing parameter e which is the fraction of the contamination. 
The outliers of the distribution are also Gaussian but have A times the varicuice 
of the dominant distribution, resulting in an impulsive behaviour.

A typical realization of e-contaminated Gaussian distribution is given in 
the following figure. In this figure we take e =  0.1, A =  10 and cr̂  =  1.

-15
0 100 200 300 400 500 600 700 800 900 1000

time

I'’igure 2 .2: A typical realization of e-contaminated Gaussian mixture.

2.5 Conclusion

In this chapter, we briefly review some heavy tailed distributions, namely cv- 
stable distributions and e-contaminated Gaussian distributions. I'hrough the 
thesis we use these two chisses of distributions for modeling impulsive noise 
environments.



Chapter 3

A FAMILY OF NORMALIZED 
LEAST MEAN SQUARE 
ALGORITHM

3.1 Introduction

Normalized Least Mean Square (NLMS) algorithm is first developed by 
Naguino and Noda [36] cind Albert cuid Gardner [37] independently. This a.l- 
goritlmi is cdso Ccilled the projection algorithm [35]. In [36], ci modified version 
of the NLMS [36] is introduced. Properties of the NLMS algorithm are studied 
in [34] and in [18] a genercxlized family of the NLMS algorithms are presented.

In this chapter, we first review the above algorithms with some of their 
properties. Then using the adaptive filtering configuration of Figure 3.1 we 
investigate the performance of the NLMS type algorithms in impulsive noise 
environments.

3.2 NLMS Algorithm

'I'lie NLMS algorithm of [36] and [37] has the following update eqiuition :

(ikW w = W t + , .  - Xt
Ẑ m=0 '̂ k—rn

(3.1)
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where W k  =  [iOo,k---WM-i,k]'  ̂ are the tap weights of the achiptive filter at time 
k, X̂ . = [xk---Xk-M+i]'^ are the M samples of the input data in filter memory 
at time k, tk =  dk ~  is the error between the adaptive hlter output
and the desired signal dk, and ¡i is the step size which should be appropriately 
determined.

A variety of the theoretical results for NLMS algorithm such as conditions 
for convergence, rates of convergence and the effects of errors due to digital 
implementation of the algorithm are given in [38, 39].

Figure 3.1: Adciptive filtering block diagram

3.2.1 Performance of NLMS Algorithm in Impulsive 
Noise Environments

Consider an AR(L) a-stable process, defined as follows.

Xk =  X ] a-iXk-i +  Uk 
i = i

(3.2)

where Uk is a symmetric a-stable (SaS) sequence of random variables. The 
random variable Xk is cilso symmetric a-stable (SaS) with the same parameters 
as Uk [17], [40] if {a,·} is an cibsolutely surnmable sequence.

The NLMS algorithm of Equation (3.1) is used to identify ¿m AR system 
driven by cin i.i.d. SaS rcuidom process, Uk, with three different values ol the 
a parcuneter as well as e-contaminated Gaussian noise. AR(2) process has the 
parameters ai =  0.99 cuid (I2 =  -0 .1 . The tap weight values versus time |)lots

11



cire given in Figure 3.2. We used cv =  1.1, 1.2 and 1.5 values for the ScvS pro­
cess and standard Gaussian random process N {0 ,1) contaminated by cuiother 
Gaussian process N{0 ,10) with contamination rate e =  0.1. As it can be seen 
from Figure 3.2, the performance of the algorithm is far from satisfactory. We 
repeat the experiment under additive observation noise. For various a values 
and c-contaminated Gaussian random processes, the performance is seen in 
Figure 3.3. Again, we conclude that the performance is far from satisfactory.

Note thcit in this thesis cdl the simulations are obtained by averaging 100 
independent trials of the experiment and for ecich trial, a different computer 
realization of the process Uk is used.

3.3 A Modified NLMS Algorithm

'I'he NLMS cilgorithms requires a minimum number of one additiomil multipli­
cation, division and addition over the usiuil LMS algorithm [41], which has the 
following update equation :

= W ic + iieî X.)·, (3.3)

to implement for shilt-input data. Even so, the multipliers required for the 
algorithm update niciy still be prohibitive in certain high-data-rate applications. 
In these situations, it is useful to determine modified versions of the NLMS 
aigorithm of Equation (3.1) while reducing the computation per iteration. One 
such modilied algorithm, first suggested by Naguino and Noda [36], is :

W k + i^ W k  +  i-f, e-k

\xk-r
-sign(X;t)· (3.4)

This update is similar to thcit of Equation (3.1) but allows the nonlinear trans­
formation of the input data vector elements.

3.3.1 Performance of the Modified NLMS Algorithm 
in Impulsive Environments

'fhe same experiment of Figure 3.2 is performed for the modified NLMS algo­
rithm of Equation (3.4). The plot is in Figure 3.4. The concluding remark is 
again that this algorithm is unsatisfactory in impulsive noise environments.

12



3.4 A Family of NLMS Algorithms

ill [18] a fcimily of NLMS cilgorithrns is derived with the motivation of the N LMS 
and the modified NLMS algorithms mentioned above. The update equation is 
given l:)y :

Wfc+i = W , + ĉekF,{Xk) (3.5)

K i x n j i

\xk-i\'̂  ŝign(a;fe_̂ )
Em=0

if 1 < (/ < oo

(3.6)

~̂ i~n \[q oo

where [T]/.)]; denotes the element of the vector-valued function /'],(.), n is 
any one of the integers 0, — 1 such that =  maxo<j<M-i |·'í'·̂ -,■|,
and 8j is the Kronecker delta function. For q =  2, this algorithm reduces to 
the NLMS cdgorithm of Equation (3.1) and for q =  1, this update reduces to 
the modified NLMS algorithm of Equation (3.4). For =  1, this algorithm is 
shown to be the solution of the following optimization problem [18] :

minimize ||W/;+i 

dk

W ,k\\p
subject to W f+ iX , ^ 0

(3.7)
(3.8)

where |].]|p denotes the Lp norm, and p satisfies the Holder inequality l/p 4- 
l/q =  1. Therelore, the adaptation algorithm of Equations (3.5) and (3.6) 
provides the minimum change in an Lp-norm sense of the tap weights to ex­
actly satisfy the filtering relationship between the input data and the desired 
response at time A:, similar to a projection in the / /2-norm case. Investigating 
the algorithm ol Equations (3.5) and (3.6) for q =  oo, that is for //i-norm case, 
the update equation takes the following form:

■Wг,k+̂

Wi,k + if maxo<j<M-i \Xk-j\
(3.9)

otherwise.1 Wi,k

In this update equation, the maximum absolute value of the input data vector 
|:i.·/,;_;] =  rnaxo<;<j\//-i l-'i-’i'-il ii’ supposed to be unique. In the case of being not 
unique, a single filter tap weight of the set {wî k ■ |·'í'■A:-¿| =  maxo</<y\/f-i|.'i'’A:-i|} 
is chosen randomly for updating. Therefore the only filter tap weight changed 
a.t time k is a tap weight associated with an input sample that has the largest 
absolute value of all input data samples currently in the filter memory.

13



3.4.1 Derivation

In this section we review the derivation of [18] in which it is shown thcit the 
algorithms of Equations (3.5) and (3.6) solve the optimization problem in Eqiui- 
tions (3.7) and (3.8). This derivation follows a similar derivation of [42] for the 
modified NLMS cilgorithm and uses the following theorem :

Theorem : Let A be a nonzero vector contciined in the vector space 
cuid b be a scalar quantity. Then, the minimum Lp-norm solution vector Z to 
a consistent linear equation Z =  b is given by

Z = 6T’ (A) (3.10)

where the vector function Fq(.) is given by Equation (3.6).

Proof : Let ai and Zi denote the T'' elements of the vectors A and Z, 
respectively. Then

M-l
=  I a,z,\ <  ||Z||„||A|

¿=0
(3.11)

where the inequality follows from the Holder inequality with l/p + 1 /q =  1 . 
Thus, for the nonzero vector A , we have

IM

Consequently, the Ibllowing inequality holds :

miriA'rz=6||Z|| > \ b \

iiA ii;

(3.12)

(3.13)

Let Z be a solution vector to the equation A^ Z =  b. Note that Z is not 
unique but that it satisfies

Pl lp > minAï’z=6||Z||p 

for all ||Z|| in R ^. Now, let

Z = bF,(A).

It can be seen tluit for 1 < ç < oo

|Z||„ = |i>l E _ ii-i /E S it M T !! '
i/p

iiAii;PI 1IA|I, I IIAII7

(3.14)

(3.1.5)

(3.16)

14



Using the relationship p — q/{q -  1), the term inside the parenthesis of 
(3.16) can be shown to be equal to one. Thus, from (3.13) and (3.16), we have

minATz=b||Z|| . (3.17)

Considering the case (p =! ,</  =  oo), it is found from (3.13) and (3.16) that

|z||x = |i>l
l|A|L

= minATz=6||Z||i. (3.18)

Therefore, Equation (3.10) follows.

To see how the theorem enables the solution to the problem posed in (3.7) 
and (3.8), assign Z =  Wr.+i — W^., A  =  X̂ .., and b =  ek. Then, Irorn the 
definition of the error we have

('k, =  d t -  x l W t  =  ( 4  -  x i 'W t+ .)  + x i (W i+ ,  -  W t). (3.19)

If the constraint in Eqiuition (3.8) is satisfied, then from the assignments of Z, 
A , and b

X iiW k+ i -  W k) =  Ck A^ Z =  b (3.20)

and thus, the optimization problem in Equation (3.7) and (3.8) is the sai 
a.s the minimizcition of ||Z||p subject to A^Z =  b. Therefore, from Equa.ti 
(3.17), the optimum update for Wk is given by (3.5) and (3.6).

ne
ion

3.4.2 Variance Analysis for Impulsive Environments

in this section we will show that :

E [||W ,.+ i-W ,|0 = oo (3.21)

for the family of the NLMS algorithms presented above, for both finite and 
infinite q.

Fiiiite q case : Equation (3.5) and (3.6) can be written for each sample of 
Wi, as follows :

foign(aifc_/)
Щ,Ш -  '̂ i,k +  /iCfc M-l I |,

l^rn= 0

(3.22)

cind

E[(r0i,i;+1 -  Wi k̂Y] =  p^E ЩХк-Л -1 \

(3.23)
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If the cilgorithrn converges at steady state, it can be assumed that the error, 
and the samples of the random process are uncorrelated. Thus the right 

hand side of the hist equation can be written as ;

17-1

2-jm=0 \̂ k̂-rn\ ,
=  ^ı^E[e,^]E \xk~. 17-1

I 17^m=0 ,
(3.24)

In the following, we will show that E[ê .̂ ] in Equation (3.24) is infinite and 
the hist expectation is strictly positive for at least one value of i, 0 < i <  M  — 1., 
'This way, we will be able to conclude that the left side of Equation (3.24) is 
infinite for at least one value of z, hence the claim in Equation (3.21) is true. 
For this purpose, let us investigate the last expectation for the index j ,  which 
js chosen such that — maxo<y7i< /̂/—i Then, we have

\xk-j\
7 -1

>
17-1 1

E;]f=o k w r "
(3.25)

implying.

E
17-1

> ^ E  -  M 2 P-’fc-
(3.26)

Using .lensen’s inequality for the last term we obtain :

M 2
E

Lĥ T-il J
> (:i.27)

where the right hand side is zero since E[|a:fc_j| ]̂ =  oo. So, we can say that the 
second expectation term in the right hand side of Equation (3.24) is strictly 
greater tlian zero.

As lor the first expectation term, E[cfc2], it includes some linear combina­
tions of E[xk-i^]· Knowing that the samples of are ScvS random variables, 
it is clecir that E[eA,·’̂ ] has an infinite value. Therefore :

-  Wj^kf] =  oo (3.28)

implying

E|||Wi+,-Wi|0 =  (X). (3.29)

Infinite q case : In this Ccise, Equation (3.9) can be rewritten iis :

Wi fc T : if Î A:—i’l 1 m i
Wî k otherwise

16
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and

E [||W ,+J-W ,|a  =  ;«^E 4 (3.31)

Agcun a.ssuming that the error and the samples of the input vector are uncor­
related and the system converges, this last equation can be expressed as

1
Xk-

(3.32)

Using the Jensen’s inequality, [44], the second expectation term in the right 
hand side of Equation (3.32) may be written as :

Since E[xi;-i^] =  oo, we can say that the left hand side of Equation (3.33) is 
strictly greater thcin zero.

Similar to the finite q case, E[ek^] is infinite since it includes some linear 
combinations of E[xk-i^\· Therefore, we can conclude that

E[||W,+i-W,||^] = oo. (3.34)

It can be also shown that in the case of Gaussian excitation and a-stable 
observation noise, i.e., Xk is a Gaussian AR sequence and (4 =  +  Hk
where Uk is «-stable, the vciriance of the update term of Equation (3.22) and 
lii|uation (3.30) is not finite, either.

3.4.3 Performance Analysis of the Family of NLMS A l­
gorithms in Impulsive Environments

VVe repeat the same experiment tor the family of the NLMS algorithm of Equa­
tions (3.5) find (3.6) cis in Section 3.3.1 for a particuhir value of q and see from 
the Figure 3.5 that this algorithm is also far from satisfactory when the «-stable 
distributions are used.

3.5 The Family of NLMS Algorithms with 
Variable Step Size

'I'he performance of the family of NLMS algorithms is inq:)roved lor the Gaus­
sian environments using a variable step size, [43] instead of /i in Equation

17



(3.5). The variiible step size ¡Xk is :

l·>■k =  -\- ptk^k-\.F{'X.k-\Y'Kk

where p is a. convergence parameter for the step size.

(3.35)

3.5.1 Derivation

In this subsection, we review the derivcition for pk, [43]. In [43] the update 
equation is considered in a more general form, i.e..

W k + i= W k  +  pkf(ek)F(Xk). (3.36)

Following the stochastic gradient-descent procedure as in [45] and [46], it can 
be written

—  l^k—i P c '

d(t>{ek)
dpk-i

(3.37)

The function </>(.) denotes the relevant cost function to be minimized. Also

d(j){ek) d(j){ek) dck
^Pk—l ^^k ^Pk—\

Following the notation in [47], ¡{dk) =  d(j){ek)/dek and putting 

= Wk-i + Pk-if{ek-y)FiXt,_,) 

into the expression oI Ck ,

e, =  dk -  Wk-iXk -  Pk-if{ek-i)F(Xk- ,fXk  

is obtained. Thus, we get

(3.38)

dck
dpk-i

=  - f i e k - i )F iX k - iy X k .

Combining (3.37), (3.38) and (3.41) yields the step size update as 

p ,  = P k - i  + p f { e k ) f { e k - i ) F { X k - , f X k .

(3.39)

(3.40)

(3.44)

(3.42)

Since in our case /(e^) = ek, the last form of the step size is as given in 
1'kiua.tion (3.35).
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3.5.2 Performance of the Family of the NLMS Al­
gorithms with Variable Step Size in Impulsive 
Noise

'I'lie Scune experiment of the Section 3.4.3 is performed agcun. As can be seen 
from Figure 3.6 the performance of the algorithm is unsatisfactory in the case 
of o'-stable distributions. This result is also obvious from the fact that the 
expected value of the variable step size of Eqiuition (3.35) is infinite in the case 
of «-stable distributions.

3.6 Conclusion

In this cha]>ter we review a family of NLMS algorithms. The performance of 
the algorithms are cissessed in impulsive noise environments. The obtained 
|)lots are far from scitisfoctory. The degradation is also shown theoreticcUly by 
finding the vciriance of the update term as infinite by using cv-stable random 
processes. After all, it is clear that we need to develop some robust algorithms 
for impulsive noise environments.
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Figure 3.2: Transient behavior of tap weight crdaptations for the NLMS algo­
rithm of Equation (3.1) for a =  1.1, a =  1.2, a =  1..5 and e = 0.1. The AR(2) 
process parameters are ai =  0.99 and a2 =  —0.1.
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time time

Figure 3.3: Transient behavior of tap weight adaptations for the NLMS al­
gorithm of Equation (3.1) for a - 1.1, a =  1.2, cv =  1.-5 and e = 0.1 under 
additive observation noise whose a =  1.2. The AR(2) process parameters are 
0,1 =  0.99 and «2 =  —0.1.
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Figure 3.4: Tran.sient behavior of tcip weight adciptations for the inodified 
NLMS algorithm of Equation (3.4) for a =  1.1, a =  1.2, a =  1.5 and e -  0.1. 
The AR(2) proce.ss parameters are «j =  0.99 cind 02 =  —0.1.

22



time

Figure 3.5: Transient behcivior oi tap weight achiptations for the family of the 
NLMS algorithm of Equations (3.5) and (3.6) for a =  1.1, a = 1.2, rv =  1.5 
and e =  0.1. The AR(2) process parcirncters are ai =  0.99 and «2 =  -0 .1 .
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Figure 3.6: Transient behavior of tap weight adaptations for the family of 
the NLMS algorithm of Equations (3.5) and (3.6) with variable step size of 
Equation (3.35) for a =  1.1, a =  1.2, a =  1.5 and £ =  0.1. The AR(2) process 
parameters are a\ =  0.99 and a-2 — —0.1.
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Chapter 4

FRACTIONAL
LOWER-ORDER STATISTICS 
BASED ALGORITHMS

4.1 Introduction

The well-known NLMS algorithm is based on a second-order cost function. 
Therefore it exhibits poor performance under cv-stable noise. We robustify this 
cdgoritlirn using the Fractional Lower Order Statistics (FLOS). In this chapter, 
proposed adaptive algorithms utilize fractional moments and correlations.

In the following section, the proposed FLOS based lainily of cilgorithms 
and some of their properties are investigated. In Section 4.3 and 4.4 some 
existing FLOS based adai^tive filtering algorithms for cv-stable distributions 
are reviewed. Following these, simulation results are presented. The perfor­
mance of these algorithms are investigated for systems with unknown orders 
in Section 4.5. In Section 4.6 “Momentum” FLOS based adaptive algorithms 
are proposed with relevant simulations. In Section 4.7, “Median” FLOS based 
adaptive algorithms are introduced and in Section 4.8, we modify the FLOS 
based algorithms using a prenonlinearity at the input and the desired signal. 
“Delayed” FLOS based algorithms are presented in Section 4.9. Extensive 
simulation studies are also presented.

Let us introduce the following notation [17]. For any two real numbers .2
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^<y> A

where sigri(.) is the signurn function.

an d  y >  0 as :

4.2 Proposed FLOS Based Algorithm

As it is discussed in Section 3.4.2, the variance of the update term of the 
algorithms presented in Chapter 3 is not finite in impulsive environments. In 
order to achieve a finite variance, i.e.,

E (| | W i+ ,-W t ia < c » (4.1)

we modify the algorithms of Chapter 3 using Fractional Lower Order Statistics 
(FLOS) concept.

The fractional lower-order moment (FLOM) of the error, E[|eA;|*], is finite 
for Q < h < Oi. Based on this observation we define the following update 
eqiuition [51], [52], [53] :

= W , + ye,<“>F,(X,.) (4.2)

E„,=o b"

if (7 = 00

^  if 2 < (7 < oooa ^

(4.3)

‘̂ k-n

where [Fg(.)]i· denotes the element of the vector-valued lunction F',(.), q 
satisfies the relation 1/a +  l /y  < 1 . The FLOS parameter a > 0 obeys the 
following inequality :

a < 1/2. (4.4)

Also, it is eclsy to check that actual weights form a stcitionary point of the 
iterations. Hence, it is expected that the above class of algorithms which we 
Ccdl FLOS based will have better performance than those in Chapter 3, in 
impulsive environments.

In the following we will prove Equation (4.4) both for finite and infinite q 
Cci.se.
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by :
Finite q case : The update equation of the FLOS based algorithms is given

_  , ^̂“sign(.^A,-0
W i,k+i -  Wi,k +  iiCk  ^ M- 1 1  — —

Z-̂ m=0
(4.5)

for each sample of the weight vector W^. Equation (4.5) implies that :

/ I i a i „  \
n2i ,2iE[('u;iy-+1 -  Wî k) ] =  /2 E k;ci (4.6)

which Ccin be written as :

î̂ E Y'M-l I I'J¿^m=0 \'̂ k-m\
/^^E[|e,r“]E f o ’ f c - i

E M -1 L·, Im=0 \̂ k—m\
(4.7)

by assuming that the error is uncorrelated with the past samples, Xk-i , of the 
input at steady state.

To licive a finite value of the first expectcition term in the right hiuid side, 
we should have the following inequality:

a < a/2 . (4.8)

For the second expectation term of the right hand side of Equation (4.7), 
let |a:A,._/| =  m a x o < T O < M - i t h e n  the term inside the expectation can be 
written as :

l^k—i1(7- 1)“
<

1(7- 1)“
<

Ir, .|('i~L“
[70

1
\xk-rnr ~ \^k-rnr 

From here, we have to find the value of a satisfying the following:

1

(4.9)

E
kk -j

\2a < 00. (4.10)

It is shown in [61] that the ¡property given in Equation (2.13) is cdso valid 
for the interval —1 < p < « . Therefore the condition in Equation (4.1) is 
satisfied when

a <  1/2. (4.11)

Since the value of a is in the interval [1,2), in the applications of adap­
tive filtering for impulsive environments, taking the simultaneous solution of
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Equation (4.8) and (4.11) we get the condition for a as in Equation (4.11), i.e., 
a <  1/2 having :

E[||W,+a-W,||^]<oo. (4.12)

Infinite q case : The update equation of the FLOS based ¿ilgorithm can be 
rewritten as :

4" Xk—: l̂ /s—¿1 1 7«  I
I0i,k+1 =

Wî k otherwise.
(4.13)

So we consider for the analysis oidy the value of i for which |.rfc_,| =  
inciXo<77x<M-i|a;fc-ml- Then, we may write

|2fi
(4.1<1)

.\Xk-i\
2a

Agciin cissurning that the error and scimples of the input vector are uncorrelated 
cUid the system converges, this last equation can be expressed as :

E[||W7,+i-Wj||‘ J =  ,.^E(|e,r|E
1

.  — t
12a (4.1.5)

To have a finite value for the E[|ei,.p“] we must have the condition of Equation 
(4.8) for a. Following the same arguments as in finite q case, for the second 
expectation term we have for a again the condition of Equation (4.11). Taking 
the intersection region, we obtciin a < 1/2 for having

E[||W,+i-W,.||J<oo. (4.16)

4.3 Least Mean-p Norm (LMP) Algorithm

The first of the FLOS based adaj^tive filtering algorithms for impulsive noise 
environments is called Least Mean-p Norm (LMP) [17] algorithm with the 
following update equation :

W ,+ i =

The cost function of this algorithm is given by,

.h = E[|ein = E [ |*  -  WlXtf]

where 1 < p < cr.

(4.17)

(4.18)
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There is no closed-form solution for the set of the coefficients minimizing 
Equation (4.18). But knowing that Jk is convex, a stochastic gradient method 
to solve the coefficients as in Equation (4.17) Ccui be used. The algorithm 
in Equation (4.17) is called Least Meiin Absolute Devia.tion (LMAD) when 
p =  1 . The LMAD is actually the familiar signed LMS algorithm, although it 
is derived in a different context.

4.4 Normalized Least Mean-p Norm (NLMP) 
Algorithm

With the motivation of the NLMS algorithm, recently LMP algorithm is nor­
malized giving the Normalized Least Mean p-Norrn (NLMP) [3.3] cdgorithm by 
the Ibllowing update equation ;

W ,+ i =  Wk + P, -Xyt lor 1 < p < a
P O i f  +  A'^*  ̂ ^

where p, A > 0 are appropriately chosen update parameters. When p =  1 
tlie algorithm in Equation (4.19) is called Normalized Least Mean Absolute 
Deviation (NLMAD) [33], having the following update equation:

sign(cfc)
W ,+ i =  Wk + p- -X i (4.20)

|Xa-||i +  a ·

The NLMP algorithm is shown to outi^erforrn the other existing algorithms 
when cv-stable distributions are used, [33]. Therefore, during the simulation 
studies we will only consider the NLMP algorithm and the algorithm that we 
propose in Section 4.2.

4.4.1 Simulation Studies

In Figure 4.1, the system identification problem of Chapter 3 is considered. 
A comparison study is performed for the proposed FLOS based algorithm ot 
Equations (4.2) and (4.3) and the NLMP cdgorithm of Equation (4.19). The 
same comparison study is made on Figure 4.2 for an AR(3) process with coel- 
ficients ui =  0.99, U2 =  —0.152, =  —0.097.

In Figure 4.3 the system mismatch, [50], ||Wyt — W*||2, where and W* 
are the current tap weight and the optimal solution vectors, respectively, of the 
AR(3) process defined above versus time plots are given lor both algorithms.
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In Figure 4.4 the proposed FLOS based algorithm is investigated under 
additive impulsive observation noise with the same AR(2) process as above. 
The degradation of the algorithm is seen from the plot clearly.

In Figure 4.5 the degradation of the NLMP algorithm under additive im­
pulsive observation noise is investigated with the same AR(2) process as in 
Figure 4.1.

In Figure 4.6 a comparison study under additive impulsive noise is plotted 
for the proposed FLOS based cilgorithm and the NLMP cilgorithm. From this 
plot it is seen that they have comparable performcince.

All the plots are obtained by 100 independent trials and to get a fair com­
parison between the algorithms, the step size of the algorithms are adjusted so 
tlicit the stecidy state Vciriances of the tap weights are equal.
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Figure 4.1; Transient behavior of tap weight aclaptcitions for the proposed 
FLOS based algorithm (dashed line) of Equations (4.2) and (4.3) and the 
NLMP algorithm (solid line) of Equation (4.19) for cv =  1.1, cv =  1.2, rv =  1.5 
and £ =  0.1. The AR(2) process parameters are iq =  0.99 and a-2 =  —0.1.
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Figure 4.2: Transient behavior of tap weight adaptations for the proposed 
FLOS based algorithm (dashed line) of Equations (4.2) and (4.3) and the 
NLMP algorithn:! (solid line) of Equation (4.19) for cv =  1.1, cv =  1.2, a — 1.5 
cind e =  0.1. The AR(3) process parameters cire ai =  0.99, a2 · —0.152 and 
aa =  -0.097.
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Figure 4.3: The system mismatch, ||Wfc+] — versus time is plotted for
the proposed FLOS based algorithm (dashed line) of Equations (4.2) and (4.3) 
and the NLMP algorithm (solid line) of (4.19) for a =  1.1, a; =  1.2, cv =  1..5 and 
e =  0.1. The AR(3) pcirarneters are (q =  0.99, a-i =  —0.152 and (¿3 =  —0.097.

33



Figure 4.4: Trcinsient behavior of the tap weight adaptations for the proposed 
FLOS based algorithm of Equations (4.2) and (4.3) for cv =  1.2 under additive 
impulsive observation noise (solid line) when the noise distribution has tv values 
as 1.2 and 1.-5, respectively. For comparison the performance under no additive 
observation noise is cdso plotted (dcished line). The AR(2) process parameters 
are a\ =  0.99 and U2 =  —0.1.

Figure 4..5: Transient behavior of the tap weight adaptations lor the NLMP 
cdgorithm of Equations (4.19) for a — 1.2 under additive impulsive observation 
noise (solid line) when the noise distribution has cv vidues 1.2 and 1..5, respec­
tively. For comparison the performance under no additive observation noise is 
also plotted (dashed line). The AR(2) process parameters are ai =  0.99 and 
«2 =  -0 .1 .
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Figure 4.6; Transient behavior of the tap weight adaptations for the proposed 
FLOS based algorithm of Equations (4.2) and (4.3) (dashed line), and the 
NLMP algorithm (solid line) of Equations (4.19), for a =  1.2 under additive 
impulsive observation noise when the noise distribution has a values 1.2 and 
1.5, respectively.

4.5 Performance of the FLOS Based Algo­
rithm for Systems with Unknown Orders

In practice, there may be some systems with unknown order. In this section, 
we try to see the performance of the proposed algorithm of Equations (4.2) 
and (4.3) cind the NLMP algorithm of Equation (4.19) when the order of the 
system is unknown.

For this purpose, we generate the AR(2) SctS process with a =  1.2 and 
iii =  0.99 and U2 - —0.1 that we used before. Then we try to find the 5 tap 
weight FIR filter for this system. In Figure 4.7, we plot the transient behaviors 
of these 5 tap weights for both of the algorithms and see their steady state 
values as follows : ai =  0.9858, (I2 =  —0.0956, (I3 =  —0.0047, a.i =  0.0014 
and «5 =  —0.0030. As it is seen from these results « 3, 04 and as are so siruill 
that they can be neglected, i.e., the system can be thought as a second-order 

tern.
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Figure 4.7: Transient behavior of the tap weight adaptations for the proposed 
FLOS based algorithm of Equations (4.2) and (4..3) (dashed line), and the 
NLMP algorithm (solid line) of Equations (4.19), for cv =  1.2. The AR(2) 
system, with ai =  0.99 and <t2 =  —0.1, is modeled by an AR(5) system.

4.6 “Momentum” FLOS Based Adaptive Al­
gorithms

The algorithms presented in this duq^ter until now are all based on the in- 
stantcuieous value of the gradient vector. When the sigimls are Gaussian cind 
stationary, ignoring the past values and considering just the values of the gradi­
ent vector at time k for evaluating the coefficients at the step, is a reasonable 
approximation [49]. In impulsive noise environments, the current observation 
iriciy be an outlier and the corresponding update term may be useless. There­
fore the use of past values may provide robustness cuid improve convergence 
speed.

In this section, with the motivation of “Momentum” LMS algorithm [54], 
in addition to instantaneous value of the gradient vector, we deal also with 
some of its past values. By doing so, we expect to accelerate the algorithms.
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4.6.1 “Momentum” FLOS Based Algorithm

The cost function of the algorithms in Equation (4.2) ¿uid (4.-3) will be taken
c lS

Jk == E[||W„+1 -  W„||p for 0 < j  < k and 1 < p < a (4.21)
n = k - j

The corresponding update equation of the algorithm will have the tbllowing 
form :

W k + i = W ,  +  p
n = k —j

where

(C,(X»)li =

for the entry.

i f 2 <  < o o
E,„=o 1·̂·-—I""

,,< a >  ^ n  — m if <7 =  OO

(4.22)

(4.23)

4.6.2 “Momentum” NLMP Algorithm

With the help of the motivation given above, we take the cost function of the 
NLMP algorithm of Equation (4.19) as

k

Jk — X ] L[|e„| ]̂ lor 0 < j  < A: and 1 < p < a (4.24)
n = k - j

Using this new cost function we modify the NLMP algorithm by the following 
update equation ;

k e<p-^>
(4.25)

The additional terms introduce a “Momentum” effect during convergence 
[54, 55], and they serve as the estimate of the previous gradients. Also by 
intuition, if the previous weight charges is large, then adding a fraction of this 
amount to the current update will “accelerate” the descent procedure to the 
global minimum. As a result, smoother and faster convergence can be expected 
tor the weight vector. This improvement is achieved at the expense of the extra 
stoi'cige requirement of the past weight vectors and an additional scalar vector 
multiplication.
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4.6.3 Simulation Studies

In Figure 4.8 the proposed FLOS based algorithm of Equations (4.2) and (4.3) 
is plotted with the “Momentum” FLOS based cilgorithrn of Equations (4.22) 
and (4.23) using the AR(2) j^rocess with coefficients cii =  0.99 and «2 =  —0.1. 
In Figure 4.9 the NLMP algorithm of Equation (4.19) and the “Momentum” 
NLMP algorithm of Eqiuition (4.25) is plotted lor the same system identi- 
lication problem. In Figure 4.10 we plot the system mismatch of both of 
the “Momentum” FLOS based algorithms mentioned above by generating an 
AR(5) process. The process parameters cire cii =  0.89, =  —0.152, (I3 =  0.1,
m =  -0.197 and «5 =  0.097.

We also compare the “Momentum” FLOS based algorithms with cidditive 
observation noise within themselves and each other. In Figure 4.11 “Momen­
tum” FLOS based algorithm of Equations (4.22) and (4.23) with and without 
additive observation noise is plotted with the same AR(2) process, as above. 
In Figure 4.12 the “Momentum” NLMP algorithm of Equation (4.25) with and 
without cidditive observation noise is plotted cigain for the same AR(2) process. 
Lastly, in Figure 4.13 both of the “Momentum” cdgorithms under additive ob­
servation noise is plotted for the same system identification problem. We take 
j  =  1 from Figure 4.8 to Figure 4.13.

In Figure 4.14 with the AR(5) o-stable process above we investigate the 
effect of the added last j  terms to the update term in both of the algorithms 
of Equations (4.22) and (4.23) and Equation (4.25). We plot the system niis- 
match for various j  =  1,3 and 5 values. For j  — 1 the proposed FLOS based 
algorithm of Equations (4.22) cind (4.23) converges around 2500 time steps, 
whereas for j  =  5, it converges around 1000 time steps. Similarly, the algo­
rithm of Equation (4.25) converges in 3000 time steps for j  =  1 and 1000 time 
steps for j  =  5. However, increasing j  means also decreasing the space in the 
memory. From the plots it is observed that, there is a great improvement in 
the results when j  is increased from 1 to 3. However, there is not much differ­
ence when j  is increased from 3 to 5. We reach a point of diminishing returns 
at j =  3 and the use of too many past values of the gradient vector does not 
improve the convergence further.
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Figure 4.8; Transient behavior of tap weight adaptations for the “Momentum” 
FLOS based algorithm (dashed line) of Equations (4.22) and (4.23) and the 
proposed FLOS based algorithm (solid line) of Eqiuitions (4.2) cind (4.3) for 
a =  1.1, a =  1.2, a — 1.5, and e =  0.1. The AR(2) parameters are aj =  0.99 
cind a-2 — —0.1.
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Figure 4.9; Transient behavior of tap weight adaptations for the “Mornentuni” 
NLMP algorithm (dashed line) of Equation (4.25) and the NLMP algorithm 
(solid line) of Equations (4.19) for ot =  1.1, a =  1.2, a =  1.5, and e = 0.1. The 
AR(2) parameters are ai =  0.99 and a-i =  —0.1.
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Figure 4.10: The system mismatch for the “Momentum” FLOS based cilgorithm 
(dashed line) of Equations (4.22) and (4.23) and the “Momentum” NLMP 
cilgorithm (solid line) of Equations (4.25) for o; =  1.2. The AR(5) parameters 
are ay =  0.89, «2 =  —0.152, 03 =  0.1, «4 =  —0.197 and 05 =  0.097.

Figure 4.11: Transient behavior of tap weight cidciptations for the “Momentum” 
FLOS based algorithm of Equcition (4.22) and (4.23) for a =  1.1 and cv =  1.5 
under additive impulsive observation noise with cv =  1.2 (solid line). For 
comparison the performance under no additive observation noise is cdso plotted 
(dashed line). The AR(2) parameters are ay =  0.99 and U2 =  —0.1.
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Figure 4.12: Transient behavior of tap weight adaptations for the “Momentum” 
NLMP algorithm of Equation (4.25J for a =  1.1 and a; =  1.5 under additive 
impulsive observation noise with a = 1.2 (.solid line). For compcirison the 
performance under no additive observation noise is also ¡^lotted (dashed line). 
The AR(2) parameters are a\ =  0.99 and =  —0.1

Figure 4.13: Transient behavior of tap weight adaptations for the “Momentum” 
FLOS bcvsed algorithm (dashed line) of Equations (4.22) and (4.23) and the 
“Momentum” NLMP algorithm (solid line) of Equation (4.25) for cv =  1.1 and 
cv =  1.5 under additive impulsive observation noise with cv =  1.2. The AR(2) 
parameters are Ui =  0.99 and 02 =  —0.1.
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Figure 4.14; System mismatch for the proposed “Momentum” FLOS based 
cdgorithm of Equations (4.22) and (4.23) (left) and for the “Momentum” NLMP 
algorithm of Equation (4.25) (right). Solid line lor j  =  1, dashdot line lor j  =  3 
and dashed line for j  =  5. The AR(5) parameters are ai =  0.89, 02 =  —0.152, 
a:i =  0.1, a., =  -0.197 and =  0.097.

4.7 “Median” FLOS Based Adaptive Algo­

rithms

Order sta.tistics filtering is very effective in impulsive noise environments [56]. 
Eor some practical puiq^oses the added last j  terms of the updcite term of 
Equations (4.22) and (4.23) and Equation (4.25) may be median filtered, i.e., 
we mciy reorganize the update equations for the algorithm of Equations (4.22) 
and (4.23) as :

Wfc+i =  Wk  +  /;imedian(U) (4.26)

where

U =   (4.27)

with the same used before and for the algorithm of Equation (4.25) as ;

[ =  Wk  +  ^imedian(V) (4.28)

where

V  =
< P - i >
^—j Y  k______ Y

i ’ ···’ iiv IIP 1 \l|x.ll^ + A·

T

(4.29)

43



The major drawback of median filtering is that the estimators are biased 
[57] if the distribution of the input is asymmetric or if its mean and median 
have different signs. This point is shown in the following section.

4.7.1 Simulation Studies

In this subsection, for the AR(5) process used before, we plot in Figure 4.15 
the transient behavior of the first tap weight for both of the algorithms of 
Equation (4.26) and (4.28) and see that although we choose ScvS distribution 
as the input, we have a biased value for ai — 0.89 in both of the cilgorithms. 
We also show the algorithms of Equations (4.2) and (4.3) and the algorithm of 
Equation (4.19) on the same plot. We see that although the transient behaviour 
of the tap weights improves the steady state, tap weights are biased.

Figure 4.15: Transient behaviour of the first tap weight for “Median” FLOS 
based algorithm of Equations (4.26) (left) and for the “Median” NLMP algo­
rithm of Equation (4.28) (right). Also the algorithms of Equation (4.2) and
(4.3) (left) and Equation (4.19) (right) with dashed line. True value, aj =  0.89, 
is plotted by the dashed line.

4.7.2 Variation of the Parameter a with Median Fil­

tering

In this section, we investigate how the length of the median filter affects the 
parameter a of any a-stable sequence. For this purpose we take two a-stable
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sequences with a =  1.1 and a =  1.2. We median filtered these sequences with 
the filter length N. Then, we estiiricite the value of a by using the Koutrovelos 
Method cuid linear regression [17] for this median filtered sequence. The results 
are shown in Table 4.1. in the first column of the table, there is the length of 
the median filter, in the second coluimi, the estimated a values when the true 
value of the a =  1.1 and in the third column, those estimated values for the 
true value of a =  1.2.

N ^{^true — l. l ) c\{atrue -  1-2)
3 1.6375 1.7593
5 1.8600 1.9421
7 1.9593 1.9763
9 1.9764 1.9851
11 1.9822 1.9881

Table 4.1: Table of computation results of cv for different values of N

From this table, it is seen that as the length of the median filter increases, 
the sequence tends to behave as if it is Gaussian. Being aware of this fact, we 
tested all the filter lengths above. The transient performance gets better, but 
agcun there is a bias at stecidy state.

4.8 Use of the Prenonlinearity in FLOS 
Based Adaptive Algorithms

In this section, we investigate both of the algorithms using a soft limiter [58], 
[59]. By doing so, we first passed the input iind the desired signal through 
the nonlinearity of Figure 4.16. In [58], [59] it is shown that for the NLMP 
algorithm of Equation (4.19), using this kind of nonlinearity improves the per- 
(briiicince, giving a small bias.

We also investigate the performance of the “Momentum” FLOS based al­
gorithms under this prenoidinearity.

4.8.1 Simulation Studies

To see the performance of both of the algorithms of Equations (4.2) and (4.3) 
and Equation (4.19) using nonlinearity, we plot the tap weight adaptations ol
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Figure 4.16: The nonlinearity used for the input and the desired signal.

the AR(2) process above in Figure 4.17. As it is seen Irorn the plot there is a 
small bias at the output.

In Figure 4.18, we plot both of the “Momentum” FLOS based algorithms 
of Equations (4.22) and (4.23) and Equation (4.25) lor the j  values of 0,1,3 
and 5 using the nonlinearity of Figure 4.16 for the input and desired sigiuvl 
considering the AR(5) process used before. It can be deduced that cis j  increases 
the performance of both of the algorithms improve.

Figure 4.17: FLOS based algorithm of Equations (4.2) and (4.3) (left) and 
NLMP algorithm of Equation (4.19) (right) with (dcished) and without (solid) 
prenonlinearity, respectively.
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Figure 4.18: “Mornenturn” FLOS based algorithm of Equations (4.22) and 
(4.23) (left) and “Momentum” NLMP algorithm of Equation (4.25) (right) by 
using nonlinearity, for j  =  0,1,3 and 5 for the heavy solid, solid, dashdot and 
dcished line, respectively.

4.9 “Delayed” FLOS Based Adaptive Algo­

rithms

In some applications of adaptive filtering, the adaptation algorithm can be 
implemented only with a dehiy, h, in the coefficient update [60].

In this section, with the motivation of “Delayed” LMS algorithm, [58], we 
investigate the “Delayed” version of the FLOS based cilgorithms and compare 
their performance. The update equation for the proposed FLOS based algo­
rithm of Equations (4.2) and (4-3) will be

W t+, =  W t +  (4.30)

tuid the update equation of the NLMP algorithm of Equation (4.19) will be

= We + (-‘ ■31)

where e/,_/i =  dĵ -h — ¿nid h is the delay. I he teim i'^(X^·_/() is
the term F[j(X/i) which is given before, with k is replaced by k — h.
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4.9.1 Simulation Studies

In this subsection, we investigate the performance of the “Delayed” FLOS 
based algorithms under the system identification problem with the AR(2) pro­
cess that we encountered before.

In Figure 4.19, we plot the system mismatch for the proposed algorithms 
of above. The simulations are again the average of 100 independent trials.

Figure 4.19: The system mismatch, ||Wfc —W*||2, lor the “dehiyed” FLOS 
based algorithm of Equations (4..30) (dashed line), and the “delayed” NLMP 
algorithm of Equation (4.31) (solid) line. The AR(2) process pcirameters are 
at =  0.99, U2 =  —0.1.

4.10 Computational Complexity of the FLOS 
Based Algorithms

The proposed FLOS bcised algorithm of Equation (4.2) and (4.3) can also be 
written as :

<a>

Wfc+l — W a: -|- /.i.. n a a ^ k
ll- k̂l

17a  - 

\qa

where

Xk =  [xk
< { q - i ) a > T

and the NLMP cilgorithm which Ccin be rewritten as :
,<p-l>

Wfc+1 = W a. + /i Ck
lIXfcIC + A
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for p < a. If we compare the computational complexity of these two algorithms, 
it Ccui be seen that the only difference is the nonlinecir transformation of the 
input vector in the algorithm of Equation (4.32). Since the vector X .̂ Ccin be 
rewritten as :

1

X k - M + l Xk

-\T
(4.34)

only the term - —-  is needed for recursive evaluation of X*,., at ecich time
<r,a>step. The term ^̂ -7-— can be computed by power series expansion and it 

can be closely approximated by using a few multipliccitions independent of the 
filter length M. Therefore, the complexity of both NLMP and FLOS based 
algorithms are the same.

4.11 Conclusion

In this chcipter we present new adaptive filtering cilgorithrns in the presence of 
cv-stable distributions. The proposed algorithms are developed with the rno- 
tivcition of FLOS concept and the family of NLMS cilgorithms of Chapter 3. 
The performance of the jiroposed algorithms are investigated under various 
additive observation noise. We also accelerate the cilgorithms that we pro­
pose and the NLMP algorithm. The performance of both of the ¿iccelerated 
cdgorithms under cidditive observation noise is also investigated. The median 
filtered versions and the prenonlinear filtered version of both of the algorithms 
are also presented. For some practical purposes, the delayed version of the 
algorithms are also explained. At the end, we see that the accelerated version 
of the proposed FLOS based algorithms gives the best results iuriong all of the 
different versions of the algorithms. Ending with this result, we also deal with 
the computational complexity of the proposed FLOS based algorithm and see 
that it is of the same order with the NLMP algorithm.
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Chapter 5

ROBUST LEAST MEAN 
MIXED NORM ADAPTIVE 
FILTERING

5.1 Introduction

In this chapter, Leiist Mean Mixed Norm (LMMN) algorithm [19] is robustiiied 
using the Fractional Lower Order Statistics (FLOS). In the next section, we 
briefly review the LMMN algorithm and some of its properties in impulsive 
noise environments. In Section 5.3, we present the Robust Least Mean Mixed 
Norm (RLMMN) algorithm and some of its properties.

5.2 The LMMN Algorithm

The LMMN cdgorithrn is based on the Least Mean Square (LMS)[41j and I.east 
Mean Fourth (LMF) [62] cdgorithms. The cost function and the update equa­
tion is given by :

A  =  AElea +  ( l-A )E [4 1  (5.1)

uid

W,+i = W , + 2fiek[X + 2(1 -  A)cf]Xfc, (5.2)

respectively. The scalar 0 < A < 1 is the mixing parameter.
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5.2.1 Performance of the LM M N Algorithm in Impul­
sive Environments

The algorithm of Equation (5.2) is investigated for cv-stable distributions and 
it is shown that the variance of the update term is not finite, i.e. ,

E [| | W ,+ i-W ,| a  =  cx). (5.3)

P roo f: Let

where

e, =  4  -  w ; ^ x ,  =  v ; ' x .

V , ^  W* -  W ,

(5.4)

(5..5)

is the weight error vector. Since Yk — = Wyt+i — Wyt, the weight upchite
equation of the LMMN algorithm can be written in terms of Yk :

V ,+i =  V , -  2yue,[A +  2(1 -  A)e^]X, (5.6)

and

E |||W i.. -  W i|@ =  4 ,.= E [(V 2 X f (A +  2(1 -  A){V2X)Y||Xi.||5). (5.7)

We just want to show the unboundedness of the last equation. Considering the 
first term after expanding the parenthesis is sufficient. In other words, let us 
consider the term E[(VjX/;)^||Xfc||2]. We may use the “independence theory 
assumption” of [48] and assume that Yk and X/;, c\.re independent. Then, we 
have

M  M 

¿=1 ;; = 1

M M M

=  5:EKL,|El^|_.||Xt|0 + E  i :  EK._m_,|E[,n._,.n_,||X,.||0 (5.8)
i-\ j=l¿=1

It is easy to see that E[a;|_j||XA;||2] =  oo, since it luis the terms like E[;r 
within this expectation, so the concluding result is

E [||W i.+ ,-W i|0 = co. (5.9)

Assuming the error and the input are uncorrelated at steady state we will 
give a dijjerent proof:
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Equation (5.2) can be written as :

l|Wi+. -  W ilg  = + 2(1 -  A)ea"||X^|i. (6.10)

At steady state if the algorithm converges, it can be assumed that the error, 
Cyt, and the samples of the random process X/. are uncorrehited. Thus, taking 
the expected value of the last equation, we iruiy write the right hand side as :

El||Wt+. -  W i| 0  =  V E (4 | A  + 2(1 -  A)4l"|E[||Xt||J). (5.11)

In this expression, we immediately see that E[||Xi.||2] is infinity in the case of 
ScvS random processes. Therefore without any further investigation we Ccui say 
that

E [| | W ,+ i-W ,| 0  = c«. (.5.12)

5.2.2 Simulation Studies

In this subsection, we consider the same system identification problem dis­
cussed in Chapter 4. We generate a recdization of the AR(2) process with 
parameters oi 0.99 and ii2 =  —0.1. We plot a realization of the transient 
behaviour of the tap weights in Figure 5.1. The performance seen in this plot is 
unacceptable. The time axis cannot be extended beyond the value in the plot. 
After those time values, the system blows up and the tcip weight values go to 
nonsense numbers like 10̂ ®'’ . In this plot, we take the value of the a =  1.2, 
and the mixing parameter A = 0.1, 0.3, 0.6 and 0.9.

5.3 Robust LMMN (RLMMN) Adaptive Fil­
tering

In this section, a new family of descent type algorithms are presented. As 
discussed in Section 5.2.1 the update term of the LMMN cdgorithrn does not 
have finite variance. In order to achieve finite variance, i.e..

E[||WA-’-f" 1 wklb. < oo (5.13)

we modify the algorithm of Section 5.2 using Fractioiml Lower Order Statistics 
(FLOS) concept.

52



0.5

40

100

Figure 5.1; 'Fransient behcwiour of the tap weights for the LMMN algorithm 
for a — 1.2.

In impulsive noise, the variance of the error, e ,̂ is not finite in LMMN 
algorithms of Section 5.2 . However, the fractional lower order error.

Gk =  |efc|̂ sign(efc) for 0 < 6 < cv. (5.14)

has a finite variance. Based on this observation we define the Robust LMMN 
(RLMMN) algorithm with the following update equation [63] :

W,+x = Wfc +  2/m<“>(A + 2(1 -  A){e<“>}''^)X, (5.15)

where M  is the order of the filter. It can be
shown that the FLOS parameter a > 0 satisfies the relation :

a <  a /8  (5.16)

to have the condition of Equation (5.13).

Proof : The weight update equation of the RLMMN algorithm can lie 
written in terms of as :

V,.+a =  V , -  2i.i{Yk^Xk]

From here we have ;

A +  2(1 - A ) { ( V / X , ) ' " ‘" ),<a> , 2
Xk. (5.17)

<a>  1  ̂ I||Wi+, -  Wi||5 =  V { ( V / X , ) “ q ^ [A +2(1 -  A ){(V ,'''X ^ )"“q  

For |V,' '̂X,| using the Holder inequality we may write

IVr'Xrl < llVilIJIXtIU.

ixr-iil

(5.18)
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Note that E[||Vfc||j] < (X) and E[||Xfc|| ]̂ < oo. Therefore

|2ci
looIIWm.,-W i||5< V ilV iifiiX iii;

+  2A(1 -  A )||V t||;»||X»|£ +  4(1 -  A)^||V^||i'‘ ||Xt||:^“] ||Xi.||J (5.19)

Since we assume that and X)t are independent we may write 

E[||W,+, -  W,||:̂ ] < V[A^E[||V,|rf]E[||X,||^“ ||X,ii,5

+2A(l-A)E[||V,||ri|X.|CI|X.-iy

+4(1 -  A)^E[||V,||i"]E[||X,|£‘ ||X,||, ]̂]. (5.20)

It is obvious but nevertheless, we also have

E [||V ,|f  ||X ,|C l|X ,|S  < E [ | |v , | f  ]E[||X,ieiiX,||.^]

where the last equation is written using independence assumption. Now, let 
us consider as Xk-j =  HXfcHoo equation we clecirly get

a < cv/8  (5.21)

as a sufFicient condition lor the boundedness ol E[||W,+,-W,|0. In this 
analysis we also use the terms E[||V̂ .||f], E[||V;-.||;'''·] and E[||V;t||f'·]. Even if 
Yk i« i:!· vector process, these terms are also finite with a < cv/8.

Assuming the error and the input are uncoirelated at steady state, we can 
obtain another bottnd for a:

The update equation of the RLMMN algorithm is given by

l| W i„  -  Wtl l^ = 4/|eiP(A + 2(1 -  A){ef‘>)")''||Xt||f (.5.22)

Hid

E[\\Wk+i -  Wfclg] =  4/E [|e,.f'“ (A +  2(1 -  A){e^“>}'')']E[||Xfc|İ2] (">-‘23) 

right hand side can be reorganized as

.4,/E (|etf(A '' + 4A(l -A)|ei.|'- +  4(1 -Af|e,r)lE[||Xi.||^] (.5.24)

From here we see that

a < a /6  (5.25)
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as a sufEcient condition for the boundedness of E[||W .̂+x — W -̂ll ]̂. Note thci.t 
the first bound is tighter than the second bound. We also experimentally 
tested the performance of the algorithm depending on the value of the FLOS 
parameter a. For a <  cv/8  the algorithm converges. For a/S < a < a /6  the 
algorithm cigain converges but it requires a smaller step size /i. Fiiudly, we also 
tested a > a/6 case and observed the diverging performance of the algorithm. 
We expect this behaviour from the theoretical results, too.

5.3.1 Simulation Studies

In this subsection, the FLOS based RLMMN algorithm is compcired to the 
Normalized Least Mean-p Norm (NLMP) algorithm of Cluipter 4. The update 
equation of the NLMP cilgorithm is given by, [33] :

< P - 1 >

Wk+i = W k  +  . Xk (5.26)
|X.||̂  +  £

where 1 < p < a and p ,e > 0 are appropriately chosen update parameters.

The algorithm of Equation (5.2) is also compared to the other proposed 
FLOS based algorithm of Chapter 4 whose update equation is given by, 
[511.(821,153] :

<a>

W a:+i =  W a; +  /i
IX;. 11

qa
qa

X a: (5.27)

where

] ,

the FLOS parameter a <  1/2 and q satisfies the relation 1/a + l/q <  1. It 
is shown in Chapter 4 that the algorithms of Equation (5.26) and (5.27) have 
comparable performances.

In Figure 5.2 and Figure 5.3, we deal with system identification problem 
for a =  1.2. We generate the AR(5) process with parameters cii =  0.89, 
ci2 =  —0.152, as =  0.1, a.i - —0.197 cind «5 =  0.097 which is driven by an i.i.d. 
SaS random process, Uk, of Chapter 4. The system mismatch, ||Wa -  W*||,̂ , 
where W a and W* are the current tcip weight and the optimal solution vectors, 
respectively, is plotted. It is shown in these two hgures that the performance 
of the RLMMN algorithm is comparable with the other two algorithms of 
15c|uation (5.26) and (5.27) depending on the value of the mixing parameter
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A. In Figure 5.2 we take A =  0.9 and in Figure 5.3 we take A =  0.1. For the 
RLMMN algorithm the FLOS parameter a is taken as 0.1 for these two figures.

With the motivation of the RLMMN cilgorithm, consider the mixed cost 
function Jk =  AE[|ei,.|] +  (1 — A)E[|eA;|·'’]. The corre.sponding updcite equcition 
Cell! be as follows :

W ,+  i =  W , +  sign(e,)[A +  3(1 -  A){e,<“>}2]X, (5.28)

where ■ With a similar theoretical analysis of Sec­
tion 5.3, we derive the condition on a as :

a < a /6. (5.29)

For the experimental analysis, we deal with the AR(2) system identification 
problem of Chapter 4. We plot the transient behaviour of the taj) weights for 
the RLMMN algorithm and the algorithm of Equation (5.28) in Figure 5.4. As 
it Ccui be seen from the plot the performances of the algorithms are comparcible.

All the plots are obtained by averaging 100 independent trials and to get 
a lair comparison between the algorithms, the step size of the algorithms are 
adjusted so that the steady state variances of the tap weights are equal.

We also tested the performance of the RLMMN algorithm as a function of 
the parameter A for two different values of the cv. In Table 5.1 we tabulated the 
results. In the first coloinn the value of the mixing parameter, in the second 
colorrm the convergence time for cv =  1.2, and in the third colorrm for cv =  1.5 
are given. For this purpose we just consider the first tap weight, i.e., ci\ =  0.89.

A Time step, cv =  1.2 Time step  ̂ a =  1.5
0.1 6342 6201
0.3 5936 5270
0.5 5824 4931
0.7 5054 4424
0.9 4232 4145

Table 5.1: A versus the convergence speed.

The cornputationcvl complexity of the proposed cilgorithm of Equation (5.15) 
is slightly lower than those of algorithms of Equation (5.26) and (5.27) since it 
does not require the nornicilization terms of those algorithms. However, a ma­
jor problem arises for this algorithm due to the following fact. When the same 
linear filtering operation is done on the input and the desired signal, the step 
size of the proposed algorithm should be rearrcUiged whereas the algorithms of
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Equation (5.26) and Equation (5.27) do not require such a rearrangement. Бог 
this purpose, a time varying step size may be used which is cuiother research 
subject for the time being for us. We did not investigate further properties of 
this algorithm such as “Momentum” RLMMN, “Median” RLMMN and “De­
layed” RLMMN algorithms before we find a time varying step size.

5.4 Conclusion

In this chapter, new adaptive filtering algorithms for impulsive noise environ­
ments are introduced. These algorithms are developed using Fractional Lower 
Order Statistics (FLOS) concept. The performance of the algorithms are com­
pared to the FLOS based algorithms of Chapter 4. It is observed that the new 
algorithms hcwe a comparable performance depending on the value of the mix­
ing parameter and have a robust performance in impulsive noise environments.

Figure 5.2: The system mismatch for RLMMN algorithm (solid), the algorithm 
of Equation (5.27) (dashdotted) and Equation (5.26) (dashed) for a =  1.2 and 
A =  0.9.
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Figure 5.3: The system mismatch for RLMMN algorithm (solid), the algorithm 
of Equation (5.27) (dashdotted) and Equation (5.26) (dashed) for a =  1.2 and 
A =  0.1.

Figure 5.4: Transient behaviour of the tap weights for RLMMN algorithm 
(dashed) and the algorithm of Equation (5.28) (solid) lor a =  1.2 and A = 0.1. 
AR(2) process parameters are ai =  0.99 and U2 =  —0.1.
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Chapter 6

CONCLUSION

The main objective of this thesis is to develop robust adaptive filtering al­
gorithms for impulsive noise environments. The new adaptive algorithms are 
based on the Fractional Lower Order Statistics (FLOS) concept.

The novel algorithms can be classified into two categories. In the first cat­
egory, the genera,lized family of Normalized Least Mean Square algorithm [18], 
is robustified using FLOS. The performance of the algorithm is also compared 
to the Normalized Lccist Mean p-Norrn (NLMP) algorithm. The P’LOS based 
algorithm and the NLMP cilgorithm are also accelerated using the “Momen­
tum” technique and in this way a faster convergence behaviour is achieved. 
Nonlinear methods cire incorporated into the adaptive algorithms and their 
convergence behciviour is studied. It is observed timt the performance of the 
algorithms increases by using nonlinear methods. However, there is a small bias 
for the estimators. It is experimentally seen that “Momentum” version of the 
proposed FLOS bcised algorithm provides the fastest convergence performance.

In the second category, the family of Least Mean Mixed Norm (LMMN) 
algorithm is [19] robustifed again using the FLOS concept. The performcuice 
of the proposed Robust Least Mean Mixed Norm (RLMMN) algorithm is also 
compcU'ed with the FLOS based cvlgorithm of the first category and the NLMP 
algorithm for impulsive noise environments. Depending on the value of the 
mixture ¡parameter, the RLMMN algorithm has a conq^arable performance 
with the FLOS based algorithm of the first category and the Normalized Least 
Mean p-Norrn (NLMP) algorithm. Based on the set of the simulations, it can 
)>e deduced that the proposed algorithms have good convergence behaviour in 
impulsive noise environments.
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The computational complexity of the proposed algorithms is not high and 
shown to be comparable to the NLMP algorithm.

For the future work, we would like to improve the performance of these 
algorithms using time varying step size. Also, we will investigate the model 
order selection in an extensive manner.
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