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ABSTRACT

ROBUST ADAPTIVE FILTERING ALGORITHMS
FOR IMPULSIVE NOISE ENVIRONMENTS

Gul Aydin
M.S. in Electrical and Electronics Engineering
Supervisor: Assoc. Prof. Dr. A. Enis Cetin
July 1996

[n this thesis, robust adaptive filtering algorithms are introduced for im-
pulsive noise environments which can be modeled as a-stable distributions
and/or e-contaminated Gaussian distributions. The algorithms are developed
using the Fractional Lower Order Statistics concept. Robust performance is

obtained.

Kevwords : Adaptive Fillering, a-stable distributions, Iractional Lower Or-
Y 9, )

der Moments, e-contaminated Gaussian distributions
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OZET

PATLAMALI GURULTULU ORTAMLAR IGIN DAYANIKLI
SUZGECLEME ALGORITMALARI

Gul Aydin
Elektrik ve Elektronik Mihendisligi Bolimt Yiksek Lisans
Tez yoneticisi: Assoc. Prof. Dr. A. Enis Cetin
Temmuz 1996

Bu tezde, patlamali giriltilerin  bulundugu ortamlarda calisabilecek
dayanikl siizge¢leme algoritmalar geligtirilmistir. Bu algoritmalar geligtirilirken
patlamali giiriltiiler kararh dagilimlarla ve/veya e ’la kirletilmis Gauss dagilimi
ile modellenmigtir. Tanitilan algoritmalarda Kesirsel Digiik Derece i's(;a.l;isti{;‘i

( KDDI ) kullanilmugtir. Sonucta dayankli performance elde edilmistir.

Anahtar Kelimeler : Siuzge¢leme Algoritmalar, Gauss olmayan dagilimlar,
Kararle dagilimlar, €’la kirletimis Gauss dagilome, Kesirsel Diguk Derece

jstatistiji.
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Chapter 1

INTRODUCTION

The Gaussian distribution has been by far the most popular statistical distribu-
tion in signal processing. This distribution has been widely used to model the
noise in the analysis of signals corrupted during transmission or measurement.
Many theorems in the fields of communications, speech analysis, estimation
and detection have used Gaussian noise assumption. Having no a priori in-
[ormation about the noise process, this is a well justified assumption due to
the “Central Limit Theorem” [1]. The second reason that makes a Gaussian
noise assumption attractive is its analytical tractability. The final reason is
that Gaussian processes are easy to describe, i.e., only the first two moments

are sufficient to characterize a Gaussian process.

Unfortunately, there are also many phenomena in signal processing which
are decidedly non-Gaussian [2]-[4]. Some examples of non-Gaussian noise are
atmospheric noise [5]-[7], underwater acoustic noise [8], noise on telephone
lines [9, 10], low frequency electromagnetic interference [11] and degradations
on aged audio recordings [12]. The common property of most of these type
of noises is that they show impulsive behaviour, that is they produce large-
amplitude outliers much more frequently than Gaussian noise. These high
amplitude samples correspond to very low probability parts of the Gaussian
probability density function, therefore they are not likely to be the samples
from a Gaussian probability density function. This indicates that impulsive
noises can only be represented by heavier tailed probability density functions

than Gaussian distribution.

Several attempts were made in developing a statistical model for impulsive

noise [4, 5], [12]-[16]. In this thesis, we concentrate on impulsive type noise



using the statistical model of a-stable distributions developed by Nikias and
Shao [17] and of e-contaminated Gaussian distributions [3]. We develop some

adaptive filtering algorithms.

An adaptive filter is a learning and self designing system which adjusts its
parameters by a recursive algorithm to optimize some performance criteria.
In this thesis, robust adaptive filtering algorithms are developed for impulsive

noise environments.
A brief outline of the chapters in this thesis is given below :

In Chapter 2, a-stable distributions and some of their properties will be
presented. We also give information about e-contaminated Gaussian distribu-

tions.

In Chapter 3, a family of the NLMS algorithms [18] are investigated. The
performance of these algorithms are examined in impulsive noise environments
for system identification both theoretically and experimentally. We also study
the performance under additive observation noise. We observe that they have

a very poor performance in impulsive noise environments.

[n Chapter 4, we introduce a new family of adaptive filtering algorithms
based on the Fractional Lower Order Statistics (FLOS) concept. Some proper-
ties of the proposed FLOS based algorithms are investigated. We also present
other existing FLOS based adaptive filtering algorithms for impulsive noise

environments and compare their performance.

In Chapter 5, we modify the Least Mean Mixed Norm algorithms using the
FFLOS. We investigate the properties of the LMMN algorithms in impulsive
noise environments. Then the proposed family of the algorithms is investigated.

Simulation studies will be presented.

In Chapter 6, proposed algorithms are compared and directions for the

[uture work are addressed.



Chapter 2

SOME HEAVY TAILED
DISTRIBUTIONS

2.1 Introduction

In this chapter, we introduce a-stable distributions and e-contaminated Gaus-
sian distributions. We review their characteristics and statistical properties.
The proofs of most of the results are omitted but can be found in probability

and statistics literature such as [1],[20]-[26].

2.2 «-Stable Distributions

The characteristic function of a-stable distributions are given by :

#(t) = expliat — 1|t [1 + iBsign(tw(t, o)) (2.1)
where
wlt, o) = { b (%) ifa £ (22)
Zloglt] ifa=1
and
—co<a<oo, v>0, 0<a<2 —-1<p<1 (2.3)

In the above expressions, @ is the location parameter, v is the dispersion, /3 is

the index of skewness and « 1s the characteristic exponent. When 4 = 0, the

3



distribution is called symmetric a-stable (SaS). The characteristic exponent,
«, controls the tails of the distribution. For 0 < @ < 2, the distributions have
algebraic tails which are significantly heavier than the exponential tail of the
(Gaussian distribution. The smaller the value of the «, the heavier the tails of
the distributions. When « = 2, the relevant stable distribution is Gaussian.

Cauchy distribution is also an a-stable distribution with o = 1 and = 0.

The a-stable distributions are called standard when ¢ = 0 and v = 1.

Then, one can see that if X is an a-stable random variable with parameters
L. . .

«, B, 7 and « then (X —a)/v= is standard with characteristic exponent « and

skewness /3.

By taking the inverse Fourier transform of the characteristic function, it is

easy to show that the standard stable density function is given by
1 foo
flz;0,B8) = ;/ exp(—t%) cos[zt + St*w(t, a)]dt. (2.4)
' 0

Note that f(x;a, ) = f(—z;a,—f). It can also be shown that the probability
density functions of the a-stable distributions are bounded and have derivatives
of arbitrary orders [21]. Unfortunately, no closed-form expressions exist for the
general a-stable density and distribution functions, except for the Gaussian
(a = 2), Cauchy (a = 1, = 0), and Pearson (« = 1,8 = —1) distributions
[26]. But power series expansions of their density functions are available. The
standard a-stable density function can be expanded into convergent power
series as follows [1], [21, 22], [26, 27]. For = > 0,

;_lzzozli:%[‘(ak + 1)(7&) —ork sin [%"(a + f)] for0 <a <1

Jws e, f) = ;rl;zgo:lﬁ:%";‘r(;% + l)(‘f)ksin [;—g(a + 6)] for 1 <o <2
where
n = Btan(ra/2), (2.5)
r= (14 727" (2.6)
& = —(2/m) arctan(n). (2.7)

The [ is the usual gamma function defined by
0
(e) = / t7=1emtdy, (2.8)
' 0
In particular, the standard SaS density function is given by

ﬁzz‘;li_—%—_i[‘(ak + 1)(z)"** sin [’”"—“} for0 <<l

2
o ﬂ—(t}—“) for a =1
Julw) = ﬁzz‘;o%F(%)w% for ] < <2
ﬁe—ﬁi for o = 2.



The standard SaS density functions for a few values of the characteristic
exponent « are shown in Figure 2.1. Observe that SaS densities have many
features of the Gaussian density. They are smooth, unimodal, symmetric with
respect to the median and bell-shaped. A detailed comparison between the
standard normal and SaS density functions shows that non-Gaussian stable
density functions depart from the corresponding Gaussian density in the fol-
lowing ways. For small absolute values of @, the SaS densities are more peaked
than the normal. For some intermediate range of |z|, the SaS distributions
have lower densities than the normal. Most importantly, unlike the Gaussian
density which has exponential tails, the a-stable densities have algebraic tails
[23]. Thus, the SaS densities have heavier tails than the Gaussian density [see

Figure 2.1 (b)].

2.2.1 Basic Properties of o-Stable Distributions

Two of the most important properties of the a-stable distributions are the
Stability Property and the Generalized Central Limit Theorem. They are re-
sponsible for much of the appeal of the stable distribution as a statistical model

of uncertainty.

The stability property is actually a defining characteristic of a-stable dis-

tributions.

Theorem 1 (Stability Property) : A random variable X is o-stable if and
only if for any independent random variables X, X, with the same distribution
as X, and for arbitrary constants ay, a,, there exist constants ¢ and b such
that

d :
ay X1 +a Xy =aX +0b (2.9)

where the notation X £ Y means that X and Y have the same distributions.
By using the characteristic function of the a-stable distributions, one can easily
show a more general statement : if X, X,, ..., X,, are independent and have
a-stable distribution functions with the same (e, ), then all the linear com-
binations of the form 3°7_, a; X; are c-stable with the same parameters v and

.

As a consequence of the stability property, it can be shown that «-stable
distributions are the only possible limit distributions for sums of independent
identically distributed (i.i.d.) random variables. This is known as the Gener-

alized Central Limit Theorem and is formally stated as follows [20]:
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Figure 2.1: Density functions of SaS distributions for different values of char-
acteristic exponent « :(a) the overall densities and (b) the tails of the densities.



Theorem 2 (Generalized Central Limit Theorem) : X is the limit in distri-

bution of normalized sums of the form
v
Sn = ()‘1 +"'+X1)/an_bn (210)
where X1, Xy, ..., are i.i.d. and a, — oo, if and only if X is stable.
- 7y o > LT ~ . v ". , CAS M MM o1 : M : M M M

In particular, if X;’s are i.i.d. and have finite variances then the limiting
distribution is Gaussian. This is of course the result of the ordinary Central
Limit Theorem.

The main cause of different behaviours of the Gaussian and «-stable dis-

tributions is their tails. It can be shown [28], [29] that for a-stable random

variable X with zero location parameter and dispersion -,
tll_}(l)’lo IP(|X| > t) =vC(a) (2.11)

where C'(a) is a positive constant depending on «. The «-stable distributions
have inverse power (i.e. :algebraic) tails while Gaussian distribution has expo-
nential tails. This fact shows that the tails of a-stable distributions are much

heavier than the tails of the Gaussian distributions.

EEquation (2.11) has an important consequence that the second-order mo-
ment of a-stable distributions, except for the limiting case o = 2, does not

exist. This can be written as in the following proposition [17]:

Proposition : Let X be an a-stable random variable. If 0 < o < 2 then

E[|XI]=00, if p>a (2.12)
and
E[|XI’] < oo, if 0<p <. (2.13)
If « =2, then
E[|X|] < 0o, for all p > 0. (2.14)

Therefore, a-stable distributions have no finite first or higher-order mo-
ments for 0 < o < 1; they have finite first-order moments and all the [ractional
moments of order p for 1 < o < 2 where p < ¢; and all the moments exist for

o = 2. Note also that a-stable distributions have infinite variances.



2.3 Symmetric a-Stable Random Variables

and Processes

A rcal random variable (r.v.) X is SaS, il its characteristics function is of the
form :

P(t) = exp{iat — v|t|*} (2.15)
where 0 < o < 2 is the characteristic exponent, v > 0 is the dispersion, and
—00 < a < oo is the location parameter. When o = 2, X is Gaussian and

when a =1, X is Cauchy.

2.3.1 Fractional Lower-Order Moments

Although the second-order moment of a SaS random variable with 0 < « < 2
does not exist, all the moments of order less than « do exist and are called the
[ractional lower-order moments or FLOM’s. The FLOM’s of a SaS random
variable can be easily found from its dispersion and characteristic exponent as
follow.
Theorem 3 : Let X be a SaS r.v. with zero location parameter and disper-
. m
sion 7. Then,
 [P] — - P 10
E[|IXF] = C(p,a)y’/® (2.16)

for 0 < p < «, where

» 2B (—p/a)
C(p, @) anl(—p/2)

depends only on « and p, not on X. In this expression I' is defined in (2.8).

(2.17)

"I'his important result was first proved by Zolotarev using the Mellin-Stieljes
transform [30]. Cambanis and Miller rediscovered [31] it by using a property ol
the characteristic function derived in [32]. An elementary proof of the theorem

using basic properties of the gamma function is given in [17].

A fundamental difficulty in stable signal processing with lower-order mo-
ments is that the tools of the Hilbert space theory are no longer applicable.
Although the linear space of a Gaussian process is a Hilbert space, the linear
space of the a-stable distributions is a Banach space for 1 < o < 2 and only a

metric space for 0 < o < 1 [17], [33].



2.4 e-contaminated Gaussian Distributions

The e-contaminated Gaussian mixture density has the probability density func-
tion of (1 —€)N(0,0%) + eN(0, Ao?). This family of the distribution is charac-
terized by the mixing parameter € which is the fraction of the contamination.
The outliers of the distribution are also Gaussian but have A times the variance

of the dominant distribution, resulting in an impulsive behaviour.

A typical realization of e-contaminated Gaussian distribution is given in

the following figure. In this figure we take e = 0.1, A = 10 and o* = 1.

10 T T T T T T T T T

epsilon=0.1

- 50 100 200 300 400 500 600 700 800 900 1000

time

&

Figure 2.2: A typical realization of e-contaminated (Gaussian mixture.

2.5 Conclusion

[n this chapter, we briefly review some heavy tailed distributions, namely «-
stable distributions and e-contaminated Gaussian distributions. Through the
thesis we use these two classes of distributions for modeling impulsive noise

environments.
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Chapter 3

A FAMILY OF NORMALIZED
LEAST MEAN SQUARE
ALGORITHM

3.1 Introduction

Normalized Least Mean Square (NLMS) algorithm is first developed by
Nagumo and Noda [36] and Albert and Gardner [37] independently. This al-
gorithm is also called the projection algorithm [35]. In [36], a modified version
of the NLMS [36] is introduced. Properties of the NLMS algorithm are studied
in [34] and in [18] a generalized family of the NLMS algorithms are presented.

In this chapter, we first review the above algorithms with some of their
properties. Then using the adaptive filtering configuration of Figure 3.1 we
investigate the performance of the NLMS type algorithms in impulsive noise

environments.

3.2 NLMS Algorithm

The NLMS algorithm of [36] and [37] has the [ollowing update equation :

(AN
Wi = Wi + ﬁ‘_ﬁ]_lkl—2xk (3.1)

m=0 “k—-m

10



where Wy, = [wo...wp—1 )7 are the tap weights of the adaptive filter at time
k, X; = [:ck...xk_,w_,_l]T are the M samples of the input data in filter memory
at time k, ey = dp — W' Xy is the error between the adaptive filter output
and the desired signal di, and p is the step size which should be appropriately
determined.

A varicty of the theoretical results for NLMS algorithm such as conditions
for convergence, rates of convergence and the effects of errors duc to digital

implementation of the algorithm are given in [38, 39].

i
X, + ¥ di

[igure 3.1: Adaptive filtering block diagram

3.2.1 Performance of NLMS Algorithm in Impulsive

Noise Environments

Consider an AR(L) a-stable process, defined as follows,

L
Th= D Qi +up (3.2)
i=1
where uy, is a symmetric a-stable (SaS) sequence of random variables. The
random variable zj is also symmetric a-stable (SaS) with the same parameters

as uy, [L7], [40] if {a;} is an absolutely summable sequence.

The NLMS algorithm of Equation (3.1) is used to identify an AR system
driven by an i.i.d. SaS random process, ug, with three different values of the
o parameter as well as e-contaminated Gaussian noise. AR(2) process has the

parameters a; = 0.99 and a; = —0.1. The tap weight values versus time plots

11



are given in Figure 3.2. We used oo = 1.1, 1.2 and 1.5 values for the SaS pro-
cess and standard Gaussian random process N(0,1) contaminated by another
Gaussian process N(0,10) with contamination rate ¢ = 0.1. As it can be seen
from Iigure 3.2, the performance of the algorithm is far from satisfactory. We
repeat the experiment under additive observation noise. Tor various « values
and e-contaminated Gaussian random processes, the performance is seen in

Iigure 3.3. Again, we conclude that the performance is far from satisfactory.

Note that in this thesis all the simulations are obtained by averaging 100
independent trials of the experiment and for each trial, a different computer

realization of the process uy is used.

3.3 A Modified NLMS Algorithm

T'he NLMS algorithms requires a minimum number of one additional multipli-
cation, division and addition over the usual LMS algorithm [41], which has the

following update equation :
Wit = Wi + pep Xy, (3.3)

to implement for shift-input data. Even so, the multipliers required for the
algorithm update may still be prohibitive in certain high-data-rate applications.
In these situations, it is useful to determine modified versions of the NLMS
algorithm of Equation (3.1) while reducing the computation per iteration. One

such modified algorithm, first suggested by Nagumo and Noda [36], is :

Wi =W+ sign(Xy). (3.4)

ek
M1,
Em:() |-7/k—m|
This update is similar to that of Equation (3.1) but allows the nonlinear trans-

formation of the input data vector elements.

3.3.1 Performance of the Modified NLMS Algorithm
in Impulsive Environments

The same experiment of Figure 3.2 is performed for the modified NLMS algo-

rithm of Equation (3.4). The plot is in Figure 3.4. The concluding remark is

again that this algorithm is unsatisfactory in impulsive noise environments.

12



3.4 A Family of NLMS Algorithms

In [18] a family of NLMS algorithms is derived with the motivation of the NLMS
and the modified NLMS algorithms mentioned above. The update equation is

given by :
Wi = Wi + pecly(Xy) (3.5)
Jerp—i|T tsign(zy_;) 1< g < oo

M-—1
Zm:O ,xk_""'q

[£4(Xk))i = (3.6)

1

G if ¢ = oo

where [F(.)]; denotes the 1" element of the vector-valued function F,(.), nis
any one of the integers 0,1,..., M — | such that |zx_,| = maxoc;cp—1 |er_;l,
and §; is the Kronecker delta function. For ¢ = 2, this algorithm reduces to
the NLMS algorithm of Equation (3.1) and for ¢ = 1, this update reduces to
the modified NLMS algorithm of Equation (3.4). For ¢ = 1, this algorithm is
shown to be the solution of the following optimization problem [18] :

minimize  [[Wyy — W[, (3.7)
subject to  di — W{HXk =0 (3.8)
where ||.|[, denotes the L, norm, and p satisfies the Holder inequality 1/p +

1/¢ = 1. Therefore, the adaptation algorithm of Equations (3.5) and (3.6)
provides the minimum change in an L,-norm sense of the tap weights to ex-
actly satisfy the filtering relationship between the input data and the desired
response at time k, similar to a projection in the Ly-norm case. Investigating
the algorithm of Equations (3.5) and (3.6) for ¢ = oo, that is for L;-norm case,

the update equation takes the following form:

Wi + pp if egoi] = maxogjem—r er—]
(3.9)

Wi k+1 =

W k otherwise.

In this update equation, the maximum absolute value of the input data vector
|vs—i| = maxocj<m—1]|2k—j| is supposed to be unique. In the case of being not
unique, a single filter tap weight of the set {w; : |vr—i| = maxo<jcar—1|er—;|}
is chosen randomly for updating. Therefore the only filter tap weight changed
at time & is a tap weight associated with an input sample that has the largest

absolute value of all input data samples currently in the filter memory.

13



3.4.1 Derivation

In this section we review the derivation of [18] in which it is shown that the
algorithms of Equations (3.5) and (3.6) solve the optimization problem in Equa-
tions (3.7) and (3.8). This derivation follows a similar derivation of [42] for the

modilied NLMS algorithm and uses the following theorem :

. : :
Theorem : Let A be a nonzero vector contained in the vector space RM,

oy P avay | o P 114 r - 1M1 - 3
and b be a scalar quantity. Then, the minimum L,-norm solution vector Z to

a consistent linear equation ATZ = b is given by
Z=0F,(A) (3.10)

where the vector function Fy(.) is given by Equation (3.6).

Proof : Let «; and z; denote the ith elements of the vectors A and Z,
respectively. Then

M-1
o] =1 > al < 112]],11A]l, (3.11)
=0
where the inequality follows from the Hoélder inequality with 1/p + 1/¢ = 1.
Thus, for the nonzero vector A, we have

6]
Z]], > ———. 3.12
» = 1Al (3.12)

Consequently, the following inequality holds :
e

y = 3.13
v TIAlL (3.13)

minprz_;||Z||, >

Let Z be a solution vector to the equation ATZ = b. Note that Z is not

unique but that it satisfies

1211, 2 minarz_||Z]], (3.11)

for all ||Z|] in RM. Now, let
= b0F,(A). (3.15)

[t can be seen that for 1 < ¢ < oo

_ (q— l/]) 1/ pLg— l/])
IPTRRNTYR 2=l W Uy vl (3.16)
v AP Al \JlAfpe?
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Using the relationship p = ¢/(¢ — 1), the term inside the parenthesis of

(3.16) can be shown to be equal to one. Thus, from (3.13) and (3.16), we have
|Z]], = minarz_,||Z]] . (3.17)

Cousidering the case (p = 1,4 = c0), it is found from (3.13) and (3.16) that

b
121, =
L= AL

= mingrz_,||Z||,. (3.18)

Therefore, Equation (3.10) follows.

To see how the theorem enables the solution to the problem posed in (3.7)
and (3.8), assign Z = Wiy — Wy, A = Xy, and b = ¢;. Then, from the

definition of the error e; we have
er=dp — XEWy = (d, — XT W) + XE(Wiyy — W), (3.19)
[f the constraint in Equation (3.8) is satisfied, then from the assignments of Z,
A, and b
Xi(Wip = W) =e, = ATZ = b (3.20)

and thus, the optimization problem in Equation (3.7) and (3.8) is the same
as the minimization of ||Z||p subject to ATZ = b. Therefore, [rom Equation

(3.17), the optimum update for Wy is given by (3.5) and (3.6).

3.4.2 Variance Analysis for Impulsive Environments

In this section we will show that :

E[||Wi41 — Wk”j] = 00 (3.21)
for the family of the NLMS algorithms presented above, for both finite and
infinite ¢.

['inite q case : Equation (3.5) and (3.6) can be written for each sample of

W, as lollows :

Tp_; |9 Ysign(xp_; L
Wikt = Wi+ pep z]\IJ_I gn I: J (3.22)
m=0 |l‘k_m|)

6k|'vk .lq~l 2

AL e o v
—_— . (3.23
( j\gzol lka—mr)) } )

and

E(wiks1 — wir)] = 1°E

15



If the algorithm converges at steady state, it can be assumed that the error,
¢, and the samples of the random process Xy, are uncorrelated. Thus the right

hand side of the last equation can be written as :

‘R _Ck ‘Tk—ilq_l ’ = W ’Ele.2E |9«‘1-»-_i|q_l ’ g
B\ ST et | P\ ey ) | O
m= - m=0 I**k—m

In the following, we will show that E[e;?] in Equation (3.24) is infinite and
the last expectation is strictly positive for at least one value of 7,0 < ¢ < M —1..
This way, we will be able to conclude that the left side of Equation (3.24) is
infinite for at least one value of 7, hence the claim in IEquation (3.21) is true.
Jor this purpose, let us investigate the last expectation for the index j, which

is chosen such that |zx—;| = maxo<m<m—1|Ts—m|- Then, we have

31" jor-s|"" 1 .
M1 | 7 = g = (3.25)
Zm:() |a'.k—m! M'.’Ck_jl All‘rk—j' .
implying,
- 2
E (-——_—— > —FE|[——5]. 3.26
Somzo [2k—ml’ M2 | oo (3.26)
Using Jensen’s inequality for the last term we obtain :
1 1 1 1
—E [——] > (3.27)
M> {fego*] — M2 Effer "] |

where the right hand side is zero since E[|z;_;|] = 0o. So, we can say that the
second expectation term in the right hand side of Equation (3.24) is strictly
greater than zero.

As for the first expectation term, E[e;?], it includes some linear combina-
tions of E[z_;%. Knowing that the samples of X}, are ScS random variables,

it is clear that E[ekz] has an infinite value. Therefore :
E[(wj,k..|.1 - wj,k.)2] =00 (;ZS)

implying

E[||[Wis — W3] = co. (3.29)

Infinite ¢ case : In this case, Equation (3.9) can be rewritten as :

wig + pgis il fep] = MaXo<m<M—t|Thom]| (3.30)

Wi k+1 = .
w;r otherwise
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and

o )2
B Wi — Wil = e | L] N
Thi

Again assuming that the error and the samples of the input vector are uncor-

related and the system converges, this last equation can be expressed as

. p , J_
E[[[ Wit — Wil = ;ﬁE[eﬁ]E[ } | (332)

T2
Lh—i
Using the Jensen’s inequality, [44], the second expectation term in the right
hand side of Equation (3.32) may be written as :
1 1
N
Th—i E[.’L‘k_i ]

Since E[z)_;%] = oo, we can say that the left hand side of Equation ( 3.33) is

(3.33)

strictly greater than zero.
Similar to the finite ¢ case, E[e;?] is infinite since it includes some linear
combinations of E[z;_;*]. Therefore. we can conclude that
2 .
E[[|[Wii1 — Wi[5] = co. (3.34)
It can be also shown that in the case ol Gaussian excitation and a-stable
observation noise, i.c., zx is a Gaussian AR sequence and dy, = WX, + ny,
where ny, is a-stable, the variance of the update term ol Equation (3.22) and

Iiquation (3.30) is not finite, either.

3.4.3 Performance Analysis of the Family of NLMS Al-

gorithms in Impulsive Environments

We repeat the same experiment for the family of the NLMS algorithm of Equa-
tions (3.5) and (3.6) as in Section 3.3.1 for a particular value of ¢ and see from
the Figure 3.5 that this algorithm is also far from satisfactory when the a-stable

distributions are used.

3.5 The Family of NLMS Algorithms with
Variable Step Size

The performance of the family of NLMS algorithins is improved for the Gaus-

sian environments using a variable step size, px [43] instead of x in Liquation
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(3.5). The variable step size py is :
e = pre-1 + perer— F(Xe_y )X, (3.35)

where p is a convergence parameter for the step size.

3.5.1 Derivation

In this subsection, we review the derivation for uy, [43]. In [43] the update
equation is considered in a more general form, i.e.,

Wit = Wi+ pp fen) F(Xy). (3.36)

Following the stochastic gradient-descent procedure as in [45] and [46], it can

he written

O¢(er)
b = flgyeq — P> 3.37
Pk = fth—1 pdﬂk—l (3.37)

The function ¢(.) denotes the relevant cost function to he minimized. Also

Opler) _ Opler) Oey (3.38)

Optk—1 deyp Oy

[Following the notation in [47], f(er) = Od(er)/dey, and putting
Wi =W+ pp_1 fer—1) F(Xyy) (3.39)
into the expression of ey ,
er = d — Wio1 Xp — et flerm i) F(Xaor) X0, (3.40)

is obtained. Thus, we get
b

a(ik
Opg-1

= —f(ek_l)F(Xk_l)TXk. (3.41)
Combining (3.37), (3.38) and (3.41) yields the step size update as
e = pik—1 + pf(er) fer1) F(Xpor) X (3.42)

Since in our case f(er) = ex, the last form of the step size is as given in

[lquation (3.35).



3.5.2 Performance of the Family of the NLMS Al-
gorithms with Variable Step Size in Impulsive

Noise

The same experiment of the Section 3.4.3 is performed again. As can be scen
from Figurc 3.6 the performance of the algorithm is unsatisfactory in the case
of a-stable distributions. This result is also obvious from the fact that the
expected value of the variable step size of Equation (3.35) is infinite in the case

ol a-stable distributions.

3.6 Conclusion

[n this chapter we review a family of NLMS algorithms. The performance of
the algorithms are assessed in impulsive noise environments. The obtained
plots are far from satisfactory. The degradation is also shown theoretically by
finding the variance of the update term as infinite by using c-stable random
processes. After all, it is clear that we need to develop some robust algorithims

for impulsive noise environments.
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[igure 3.2: Transient behavior of tap weight adaptations for the NLMS algo-
vithm of Equation (3.1) for a = 1.1, « = 1.2, @ = 1.5 and € = 0.1. The AR(2)
process parameters are a; = 0.99 and az = —0.1.

20



tap weights

tap weights

1
2
03 2 4l input alpha=1.2
o)
0 [ noise alpha=1.2
>0
input alpha=1.1 g
05 noise alpha=1.2 1
-1 : L
0 5000 10000 0 5000 10000
time time
1 L
input alpha=1.5 g
0.5{ noise alpha=1.2 2
3
Q
o
0 ] epsilon=0.1
S 0 P .
noise alpha=1.2
-0.5 ' -0.2 '
0 5000 10000 0 5000 10000
time time

[igure 3.3: Transient behavior of tap weight adaptations for the NLMS al-
gorithm of Equation (3.1) for o = 1.1, @ = 1.2, @ = 1.5 and € = 0.1 under
additive observation noise whose o = 1.2. The AR(2) process parameters are

ap = 0.99 and a, = —0.1.
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Figure 3.4: Transient behavior of tap weight adaptations for the modilied
NLMS algorithm of Equation (3.4) for « = 1.1, a = 1.2, a = 1.5 and ¢ = 0.1.
The AR(2) process parameters are a; = 0.99 and a; = —0.1.
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Chapter 4

FRACTIONAL
LOWER-ORDER STATISTICS

BASED ALGORITHMS

4.1 Introduction

The well-known NLMS algorithm is based on a second-order cost function.
Therefore it exhibits poor performance under a-stable noise. We robustify this
algorithm using the Fractional Lower Order Statistics (I'LOS). In this chapter,

proposed adaptive algorithms utilize fractional moments and correlations.

In the following section, the proposed FLOS based family of algorithms
and some of their properties are investigated. In Section 4.3 and 4.4 some
existing I'LOS based adaptive filtering algorithms for a-stable distributions
are reviewed. Following these, simulation results are presented. The perfor-
mance of these algorithms are investigated for systems with unknown orders
in Section 4.5. In Section 4.6 “Momentum” FLOS based adaptive algorithms
are proposed with relevant simulations. In Section 4.7, “Median™ FFLOS based
adaptive algorithms are introduced and in Section 4.8, we modify the I'LOS
based algorithms using a prenonlinearity at the input and the desired signal.
“Delayed” FLOS based algorithms are presented in Section 4.9. I[Sxtensive

simulation studies are also presented.

Let us introduce the following notation [L7]. Tor any two real numbers z
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and y > 0 as :
<> £ |z)Ysign(z)

where sign(.) is the signum function.

4.2 Proposed FLOS Based Algorithm

1t e PN . 1 APIPS ‘. - 1- 11 A § . X X .‘
As it is discussed in Section 3.4.2, the variance of the update term of the
algorithms presented in Chapter 3 is not finite in impulsive environments. In

order to achieve a finite variance, i.e.,
E[|[Wep1 — Wil[3] < o0 (4.1)

we modify the algorithms of Chapter 3 using Iractional Lower Order Statistics

(FLOS) concept.

b . V.
], is finite

The fractional lower-order moment (FLOM) of the error, E[|ey

for 0 < b < «. Based on this observation we define the following update

equation [51], [52], [53] :

Wit = Wi + pep < Fo (Xy) (4.2)

ok~ D sign(wy ;) if 2
E:'d:ol [£4—2m]9¢ ! < q < 00

1 s
%ﬂséi—n l[ q = 00
v =1

where [F,(.)]; denotes the i** element of the vector-valued function [I,(.), ¢
satisfies the relation 1/a 4+ 1/¢ < 1 . The FLOS parameter a > 0 obeys the
following inequality :

a<l1/2 (4.4)
Also, it is easy to check that actual weights form a stationary point of the
iterations. Hence, it is expected that the above class of algorithms which we
call FLOS based will have better performance than those in Chapter 3, in

impulsive environments.

In the following we will prove Equation (4.4) both for finite and infinite ¢

case.
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Finite ¢ case : The update equation of the FLOS based algorithms is given

by :

|zi—il D sign (2s-s)
Wi g1 = Wik + pep<* (4.5
Em—o |,U1» |qa ‘ )
for each sample of the weight vector Wy. Equation (4.5) implies that :
D) 2
cklalwk—i,(q_l) ,
E[('w-,kH — ’Ll)',k)Q] = /I,ZE I 4.6
l l 27]“/:[;01 |$k—7'll lqa ( )

which can be written as :

. |6k|“|~’vk il(‘l—l)a 2 ) 2 lwk ll(q—-l)a 2
/.L E . :/“t E“(ikl ]E M-—=1 |qu ) (47)

qa
ZH‘L‘"OI Tk— 771| m=0 |Th—m

by assuming that the error is uncorrelated with the past samples, xj_; , of the
input at steady state.
To have a finite value of the first expectation term in the right hand side,
we should have the following inequality:
a<af2 (1.8)
For the second expectation term of the right hand side of Equation (4.7),
let |zp—;| = l'n’dXOSmSM—ll-"«'k—mL then the term inside the expectation can be

written as :

_ -1 .
T o Y L O (19)
i:{ 0l |~ mlqa B Z:m =0 Ilk MIW T e ‘—.‘1|qa |"vk—j|u. -

I'rom here, we have to find the value of « satisfying the following:

o[ Lo

< oo. (4.10)
|21

It is shown in [61] that the property given in Equation (2.13) is also valid
for the interval —1 < p < «. Therefore the condition in Equation (4.1) is

satisfied when

a<1/2. (4.11)

Since the value of « is in the interval [1,2), in the applications of adap-

tive filtering for impulsive environments, taking the simultancous solution of
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Lquation (4.8) and (4.11) we get the condition for « as in Equation (4.11), i.e.,
a < 1/2 having :

E[[[Wiy — Wy[3] < oo. (4.12)

Infinite ¢ case : The update equation of the FLOS based algorithm can be
rewritten as :
e SO> o S
Wi k + “ail_(?l; if ]:rk'—il = INaXo<m<M 1 ,fck—-ml 1o
Wikt = _ (4.13)
w; ) otherwise.

So we consider for the analysis only the value of ¢ for which |op_;| =

MaXo<m<M—1|Th—m|. Then, we may write

2a
L’ . (AN
B{IWas — Wil = e | 2L, (4.1)

Again assuming that the error and samples of the input vector are uncorrelated

and the system converges, this last equation can be expressed as :

. . 2 1
Ell[Wis: — Will2] = 62 ElJes“]E [ } | (4.15)

I:L'k—i |2a,

. . 2 e .oy .
To have a finite value for the E[|ex|”] we must have the condition of Equation
(4.8) for a. Tollowing the same arguments as in finite ¢ case, for the second
expectation term we have for @ again the condition of Equation (4.11). Taking

the intersection region, we obtain ¢ < 1/2 for having

E[|[Wiet — Wi||7] < co. (4.16)

4.3 Least Mean-p Norm (LMP) Algorithm

The first of the FLOS based adaptive filtering algorithms for impulsive noise
environments is called Least Mean-p Norm (LMP) [17} algorithm with the

following update equation :
Wi = Wi+ ,ue,f"_DXk (4.17)
"T'he cost function of this algorithm is given by,
Ji = E[|ex]”] = E[|dy — WEX,|'] (4.18)

where | <p < a.
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There is no closed-form solution for the set of the coeflicients minimizing
liquation (4.18). But knowing that J is convex, a stochastic gradient method
to solve the coeflicients as in Equation (4.17) can be used. The algorithm
in Equation (4.17) is called Least Mean Absolute Deviation (LMAD) when
p = 1. The LMAD is actually the familiar signed LMS algorithm, although it

is derived in a different context.

4.4 Normalized Least Mean-p Norm (NLMP)
Algorithm
With the motivation of the NLMS algorithm, recently LMP algorithm is nor-

malized giving the Normalized Least Mean p-Norm (NLMP) [33] algorithmn by

the following update equation :

<p—1>
e
Wi, = Widpt— X, for 1 <p<a 4.19
; A ’ -
where g, A > 0 are appropriately chosen update parameters. When p = 1

the algorithm in Equation (4.19) is called Normalized Least Mean Absolute
Deviation (NLMAD) [33], having the following update equation:

sign(eg)
Wiy = Wit pu——"-X, 4.5
k+1 k+ﬂ||Xk||1+/\ k (4.20)

The NLMP algorithm is shown to outperform the other existing algorithms
when a-stable distributions are used, [33]. Therefore, during the simulation
studics we will only consider the NLMP algorithm and the algorithm that we

propose in Section 4.2.

4.4.1 Simulation Studies

In Figure 4.1, the system identification problem of Chapter 3 is considered.
A comparison study is performed for the proposed FLOS based algorithm of
Equations (4.2) and (4.3) and the NLMP algorithm of Equation (4.19). The
same comparison study is made on Figure 4.2 for an AR(3) process with coel-

ficients ¢; = 0.99, ay = —0.152, az = —0.097.

. . 2
[n Iigure 4.3 the system mismatch, [50], ||[W; — W. |3, where W, and W,
are the current tap weight and the optimal solution vectors, respectively, of the

AR(3) process defined above versus time plots are given for both algorithms.
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In T'igure 4.4 the proposed FLOS based algorithm is investigated under
additive impulsive observation noise with the same AR(2) process as above.

The degradation of the algorithm is seen from the plot clearly.

In Figure 4.5 the degradation of the NLMP algorithm under additive im-
pulsive observation noise is investigated with the same AR(2) process as in

Figure 4.1.

In Figure 4.6 a comparison study under additive impulsive noisc is plotted
for the proposed FFLOS based algorithm and the NLMP algorithm. From this

plot it is seen that they have comparable performance.

All the plots are obtained by 100 independent trials and to get a fair com-
parison between the algorithms, the step size of the algorithms are adjusted so

that the steady state variances of the tap weights are equal.
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Figure 4.1: Transient behavior of tap weight adaptations for the proposed
PLOS based algorithm (dashed line) of Equations (4.2) and (4.3) and the
NLMP algorithm (solid line) of Equation (4.19) for o = I.1, @« = 1.2, @ = 1.5
and € = 0.1. The AR(2) process parameters are a; = 0.99 and a; = —0.1.
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Figure 4.2: Transient behavior of tap weight adaptations for the proposed
FLOS based algorithm (dashed line) of Equations (4.2) and (4.3) and the
NLMP algorithm (solid line) of Equation (4.19) for o = 1.1, @« = 1.2, « = L.5
and ¢ = 0.1. The AR(3) process parameters are a; = 0.99, a; = —0.152 and

az = —0.097.
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Figure 4.3: The system mismatch, [[Wy; — Wy|]2, versus time is plotted for
the proposed FLOS based algorithm (dashed line) of Equations (4.2) and (4.3)
and the NLMP algorithm (solid line) of (4.19) for« = 1.1, « = 1.2, &« = 1.5 and
e = 0.1. The AR(3) parameters are a; = 0.99, a;, = —0.152 and a3 = —0.097.
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Figure 4.4: Transient behavior of the tap weight adaptations for the proposed
FLOS based algorithm of Equations (4.2) and (4.3) for o = 1.2 under additive
impulsive observation noise (solid line) when the noise distribution has « values
as 1.2 and 1.5, respectively. For comparison the performance under no additive
observation noise is also plotted (dashed line). The AR(2) process parameters

are a; = 0.99 and a; = —0.1.
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Figure 4.5: Transient behavior of the tap weight adaptations for the NLMP
algorithm of Equations (4.19) for o = 1.2 under additive impulsive observation
noise (solid line) when the noise distribution has « values 1.2 and 1.5, respec-
tively. For comparison the performance under no additive observation noise is
also plotted (dashed line). The AR(2) process parameters are a; = 0.99 and
ay = —0.1.
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Figure 4.6: Transient behavior of the tap weight adaptations for the proposed
FLOS based algorithm of Equations (4.2) and (4.3) (dashed line), and the
NLMP algorithm (solid line) of Equations (4.19), for @ = 1.2 under additive
impulsive observation noise when the noise distribution has « values 1.2 and
1.5, respectively.

4.5 Performance of the FLOS Based Algo-

rithm for Systems with Unknown Orders

In practice, there may be some systems with unknown order. In this section,
we try to see the performance of the proposed algorithm of Equations (4.2)
and (4.3) and the NLMP algorithm of Equation (4.19) when the order of the

system is unknown.

For this purpose, we generate the AR(2) SaS process with o = 1.2 and
a; = 0.99 and a; = —0.1 that we used before. Then we try to find the 5 tap
weight IR filter for this system. In Figure 4.7, we plot the transient behaviors
of these 5 tap weights for both of the algorithms and see their steady state
values as follows : a; = 0.9858, a; = —0.0956, a3 = —0.0047, a, = 0.0014
and a5 = —0.0030. As it is seen from these results as, a4 and a5 are so small
that they can be neglected, i.e., the system can be thought as a second-order

system.
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IPigure 4.7: Transient behavior of the tap weight adaptations for the proposed
FLOS based algorithm of Equations (4.2) and (4.3) (dashed line), and the
NLMP algorithm (solid line) of Equations (4.19), for a« = 1.2. The AR(2)
system, with a¢; = 0.99 and a3 = —0.1, is modeled by an AR(5) system.

4.6 “Momentum” FLOS Based Adaptive Al-

gorithms

The algorithms presented in this chapter until now are all based on the in-
stantancous value of the gradient vector. When the signals are Gaussian and
stationary, ignoring the past values and considering just the values of the gradi-
ent vector at time k for evaluating the coeflicients at the k** step, is a reasonable
approximation [49]. In impulsive noise environments, the current observation
may be an outlier and the corresponding update term may be useless. There-
fore the use of past values may provide robustness and improve convergence

speed.

In this section, with the motivation of “Momentum” LMS algorithm [54],
in addition to instantaneous value of the gradient vector, we deal also with

some of its past values. By doing so, we expect to accelerate the algorithms.
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4.6.1 “Momentum” FLOS Based Algorithm

The cost function of the algorithms in Equation (4.2) and (4.3) will be taken
A k
Jo= > E[||Wn — W)l for 0<j<k and 1<p<a (4.21)
n=k—j ‘
The corresponding update equation of the algorithm will have the following
form :
k
Wk+l =W, + s Z 6§a>.Fq(Xn) (422)
n=k—j
where
Ixn_iﬂq_l)”ﬂgn(wn_i) if e
ST H2<g<oo
[Fo(Xa)]i = (4.23)
72;;5n_m I[ q =00

n—m

for the ¢** entry.

4.6.2 “Momentum” NLMP Algorithm

With the help of the motivation given above, we take the cost function of the
NLMP algorithm of Equation (4.19) as

k
Je= Y, Elle]’] for 0<j<k and 1<p<a (4.24)

n=k—j
Using this new cost function we modify the NLMP algorithm by the following

update equation :

W W, + 4 Z’”: eSp1> X (4.25)
k+1 = Wk T T T A 4.25
weie i Xl + A

The additional terms introduce a “Momentum” effect during convergence
[54, 55], and they serve as the estimate of the previous gradients. Also by
intuition, if the previous weight charges is large, then adding a fraction of this
amount to the current update will “accelerate” the descent procedure to the
global minimum. As a result, smoother and [aster convergence can be expected
[or the weight vector. This improvement is achieved at the expense of the extra
storage requirement of the past weight vectors and an additional scalar vector
multiplication.
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4.6.3 Simulation Studies

In Figure 4.8 the proposed FLOS based algorithm of EEquations (4.2) and (4.3)
is plotted with the “Momentum” FLOS based algorithm of Equations (4.22)
and (1.23) using the AR(2) process with coefficients a; = 0.99 and «, = —0.1.
In IMigure 4.9 the NLMP algorithm of Equation (4.19) and the “Momentum”
NLMP algorithm of Equation (4.25) is plotted for the same system identi-
fication problem. In Figure 4.10 we plot the system mismatch of both of
the “Momentum” FLOS based algorithms mentioned above by generating an
AR(5) process. The process parameters are a; = 0.89, ay = —0.152, a3 = 0.1,

aqs = —0.197 and a5 = 0.097.

We also compare the “Momentum” FLOS based algorithms with additive
observation noise within themselves and each other. In Figure 4.11 “Momen-
tum” FLOS based algorithm of Equations (4.22) and (4.23) with and without
additive observation noise is plotted with the same AR(2) process, as above.
In Figure 4.12 the “Momentum” NLMP algorithm of Equation (4.25) with and
without additive observation noise is plotted again for the same AR(2) process.
Lastly, in Figure 4.13 both of the “Momentum” algorithms under additive ob-
servation noise is plotted for the same system identification problem. We take

4 =1 from T'igure 4.8 to Figure 4.13.

In Figure 4.14 with the AR(5) a-stable process above we investigate the
effect of the added last 7 terms to the update term in both of the algorithms
of Equations (4.22) and (4.23) and Equation (4.25). We plot the system mis-
match for various § = 1,3 and 5 values. For j = 1 the proposed FLOS based
algorithm of Equations (4.22) and (4.23) converges around 2500 time steps,
whereas for j = 5, it converges around 1000 time steps. Similarly, the algo-
rithm of Equation (4.25) converges in 3000 time steps for j = 1 and 1000 time
steps for j = 5. However, increasing j means also decreasing the space in the
memory. Irom the plots it is observed that, there is a great improvement in
the results when j is increased from 1 to 3. However, there is not much differ-
ence when j is increased from 3 to 5. We reach a point of diminishing returns
at 7 = 3 and the use of too many past values of the gradient vector does not

improve the convergence further.
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Figure 4.8: Transient behavior of tap weight adaptations for the “Momentum”
FLOS based algorithm (dashed line) of Equations (4.22) and (4.23) and the
proposed FLOS based algorithm (solid line) of Equations (4.2) and (4.3) for
a=11,a=12 a=15 and £ = 0.1. The AR(2) parameters are a; = 0.99

and ay = —0.1.
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Figure 4.9: Transient behavior of tap weight adaptations for the “Momentum”
NLMP algorithm (dashed line) of Equation (4.25) and the NLMP algorithm
(solid line) of Equations (4.19) for o = 1.1, &« = 1.2, « = 1.5, and € = 0.1. The
AR(2) parameters are a; = 0.99 and a; = —0.1.
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Figure 4.10: The system mismatch for the “Momentum” FLOS based algorithm
(dashed line) of Equations (4.22) and (4.23) and the “Momentum” NLMP
algorithm (solid line) of Equations (4.25) for & = 1.2. The AR(5) parameters
are a; = 0.89, a; = —0.152, a3 = 0.1, ay = —0.197 and a5 = 0.097.
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['igure 4.11: Transient behavior of tap weight adaptations for the “Momentum?”
FLOS based algorithm of Equation (4.22) and (4.23) for &« = 1.1 and o = 1.5

under additive impulsive observation noise with o = 1.2 (solid line). For
comparison the performance under no additive observation noise is also plotted
(dashed line). The AR(2) parameters are a; = 0.99 and a; = —0.1.
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impulsive observation noise with o = 1.2 (solid line). TFor comparison the
performance under no additive observation noise is also plotted (dashed line).
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Iigurc 4.13: Transient behavior of tap weight adaptations for the “Momentum”
IFLOS based algorithm (dashed line) of Equations (4.22) and (4.23) and the
“Momentum” NLMP algorithm (solid line) of Equation (4.25) for o« = 1.1 and
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Figure 4.14: System mismatch for the proposed “Momentum” FLOS based
algorithm of Equations (4.22) and (4.23) (left) and for the “Momentum” NLMP
algorithm of Equation (4.25) (right). Solid line for j = 1, dashdot line for § = 3
and dashed line for § = 5. The AR(5) parameters are a; = 0.89, ay = —0.152,
az = OJ., ag = —0.197 and as = 0.097.

4.7 “Median” FLOS Based Adaptive Algo-

rithms

Order statistics filtering is very effective in impulsive noise environments [56].
For some practical purposes the added last j terms of the update term of
Equations (4.22) and (4.23) and Equation (4.25) may be median filtered, i.c.,
we may reorganize the update equations for the algorithm of Equations (4.22)
and (4.23) as :

Wit = Wi + pmedian(U) (4.26)
where
U = [ < Fy(Xpei)s orny 6<% I (X)) (4.27)

with the same I (.) used before and for the algorithm of Equation (4.25) as :

Wii1 = Wi + pmedian(V) (1.28)
where
c<p-.-l> 6<])—1> r
V= k—j X —k X, (4.29)

X is 2+ XX + A

43



fap weight

The major drawback of median filtering is that the estimators are biased
[57] if the distribution of the input is asymmetric or if its mean and median

have different signs. This point is shown in the following section.

4.7.1 Simulation Studies

In this subsection, for the AR(5) process used before, we plot in IFigure 4.15
the transient behavior of the first tap weight for both of the algorithms of
Equation (4.26) and (4.28) and see that although we choose SeS distribution
as the input, we have a biased value for a; = 0.89 in both of the algorithms.
We also show the algorithms of Equations (4.2) and (4.3) and the algorithm of
Equation (4.19) on the same plot. We see that although the transient behaviour

of the tap weights improves the steady state, tap weights are biased.
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o
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Figure 4.15: Transient behaviour of the first tap weight for “Median” FLOS
hased algorithm of Equations (4.26) (left) and for the “Median” NLMP algo-
rithm of Equation (4.28) (right). Also the algorithms of Equation (4.2) and
(4.3) (left) and Equation (4.19) (right) with dashed line. True value, a; = 0.89,
is plotted by the dashed line.

4.7.2 Variation of the Parameter o with Median Fil-
tering

In this section, we investigate how the length of the median filter affects the

parameter « of any a-stable sequence. For this purpose we take two a-stable
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sequences with oo = 1.1 and o = 1.2. We median filtered these sequences with
the filter length N. Then, we estimate the value of « by using the Koutrovelos
Mecthod and linear regression [17] for this median filtered sequence. The results
are shown in Table 4.1. In the first column of the table, there is the length of
the median filter, in the second column, the estimated o values when the true
value of the v = 1.1 and in the third column, those estimated values for the

true value of o = 1.2.

| N | &(aue = 1.1) | &(ctirue = 1.2) |

3 1.6375 1.7593
3 1.8600 1.9421
7 1.9593 1.9763
9 1.9764 1.9851
11 1.9822 1.9881

Table 4.1: Table of computation results of « for different values of NV

From this table, it is seen that as the length of the median filter increases,
the sequence tends to behave as if it is Gaussian. Being aware of this fact, we
tested all the filter lengths above. The transient performance gets better, but

again there is a bias at steady state.

4.8 TUse of the Prenonlinearity in FLOS
Based Adaptive Algorithms

In this section, we investigate both of the algorithms using a soft limiter [58],
[59]. By doing so, we first passed the input and the desired signal through
the nonlinearity of Figure 4.16. In [58], [59] it is shown that for the NLMP
algorithm of Equation (4.19), using this kind of nonlinearity improves the per-

formance, giving a small bias.

We also investigate the performance of the “Momentum” FLOS based al-
gorithms under this prenonlinearity.
4.8.1 Simulation Studies

To see the performance of both of the algorithms of Equations (4.2) and (4.3)

and Equation (4.19) using nonlinearity, we plot the tap weight adaptations of



f(x)

X
a

Figure 4.16: The nonlinearity used for the input and the desired signal.

the AR(2) process above in Figure 4.17. As it is seen from the plot there is a
small bias at the output.

In Figure 4.18, we plot both of the “Momentum” FLOS based algorithms
of Equations (4.22) and (4.23) and Equation (4.25) for the j values of 0,1,3
and 5 using the nonlinearity of I'igure 4.16 for the input and desired signal
considering the AR(5) process used before. It can be deduced that as j increases

the performance of both of the algorithms improve.
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Figure 4.17: FLOS based algorithm of Equations (4.2) and (4.3) (left) and
NLMP algorithm of Equation (4.19) (right) with (dashed) and without (solid)
prenonlinearity, respectively.
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Figure 4.18: “Momentum” FLOS based algorithm of Equations (4.22) and
(4.23) (left) and “Momentum” NLMP algorithm of Equation (4.25) (right) by
using nonlinearity, for j = 0,1,3 and 5 for the heavy solid, solid, dashdot and

dashed line, respectively.

4.9 “Delayed” FLOS Based Adaptive Algo-

rithms

In some applications of adaptive filtering, the adaptation algorithm can be

implemented only with a delay, h, in the coefficient update [60].

In this section, with the motivation of “Delayed” LMS algorithm, [58], we
investigate the “Delayed” version of the FLOS based algorithms and compare
their performance. The update equation for the proposed FLOS based algo-
rithm of Equations (4.2) and (4.3) will be

Wk+1 = Wk + /L(:;fil'in(Xk_h) (/150)
and the update equation of the NLMP algorithm of Lquation (4.19) will be

,<p—1>
€pot Kk=h

1.31
P+ 2 (4.31)

Wi = Wi+ p

where ex_p, = dg_p — W1 IX_, and h is the delay. The term Iy (Xg-p) is

the term F,(X}) which is given before, with & is replaced by k — h.
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4.9.1 Simulation Studies

In this subsection, we investigate the performance of the “Delayed” FLOS
based algorithms under the system identification problem with the AR(2) pro-

cess that we encountered before.

In I'igure 4.19, we plot the system mismatch for the proposed algorithms

of above. The simulations are again the average ol 100 independent trials.
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Figure 4.19: The system mismatch, ||[W; — W*Hg, for the “delayed” FLOS
hased algorithm of Equations (4.30) (dashed line), and the “delayed” NLMP
algorithm of Equation (4.31) (solid) line. The AR(2) process parameters are
a = 0.99, a; = —0.1.

4.10 Computational Complexity of the FLOS
Based Algorithms

The proposed FLOS based algorithm of Equation (4.2) and (4.3) can also be

written as :

e, <8> B
Wip = Wi + ;LHX T 5 (4.32)
where
Xy = [ <lmbe >...xk_1\4+1<(q_1)“>]T
and the NLMP algorithm which can be rewritten as :
6L<p 1> N
Wi = Wi + [tmx (4.33)
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for p < . If we compare the computational complexity of these two algorithms,
it can be seen that the only difference is the nonlinear transformation of the
input vector in the algorithm of Equation (4.32). Since the vector X can be
rewritten as :

<ga> <gqa> 17T ., <ga> r

3 Ty

Ti ..,:Ck—M+1 = | —= Xk—],(l M — l) : (/1.3/1-)
Tk Th—M+1 T -

Xy =

only the term ﬂ\;’—ai is needed for recursive evaluation of Xy, at each time
step. The term —“—5::—0 can be computed by power series expansion and it
can be closely approximated by using a few multiplications independent of the
filter length M. Therefore, the complexity of both NLMP and IFLOS based

algorithms are the same.

4.11 Conclusion

In this chapter we present new adaptive filtering algorithms in the presence of
a-stable distributions. The proposed algorithms are developed with the mo-
tivation of FLOS concept and the family of NLMS algorithms of Chapter 3.
The performance of the proposed algorithms are investigated under various
additive observation noise. We also accelerate the algorithms that we pro-
pose and the NLMP algorithm. The performance of both of the accelerated
algorithms under additive observation noise is also investigated. The median
filtered versions and the prenonlinear filtered version of both of the algorithms
are also presented. For some practical purposes, the delayed version of the
algorithms are also explained. At the end, we see that the accelerated version
of the proposed FLOS based algorithms gives the best results among all of the
different versions of the algorithms. Ending with this result, we also deal with
the computational complexity of the proposed IFLOS based algorithm and see

that it is of the same order with the NLMP algorithm.



Chapter 5

ROBUST LEAST MEAN
MIXED NORM ADAPTIVE

FILTERING

5.1 Introduction

In this chapter, Least Mean Mixed Norm (LMMN ) algorithm [19] is robustified
using the Fractional Lower Order Statistics (FLOS). In the next section, we
briefly review the LMMN algorithm and some of its properties in impulsive
noise environments. In Section 5.3, we present the Robust Least Mcan Mixed

Norm (RLMMN) algorithm and some of its propertics.

5.2 The LMMN Algorithm

The LMMN algorithim is based on the Least Mean Square (LMS)[41] and Least
Mean Fourth (LMF) [62] algorithms. The cost function and the update equa-

tion is given by :

Jr = AE[e2] + (1 — M)E[e;] (5.1)
and
Wi = Wy + 2uer[) + 2(1 = Vel X, (5.2)
respectively. The scalar 0 <A < 11s the mixing parameter.
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5.2.1 Performance of the LMMN Algorithm in Impul-

sive Environments

The algorithm of Equation (5.2) is investigated for a-stable distributions and

it is shown that the variance of the update term is not finite, i.e. |

E([[Wy1 — Wi[3] = oo (5.3)
Proof : Let
€L = dk - WkTXk = VkTXk (54)
where
V., 2 W - W, (5.5)

is the weight error vector. Since Vi, — Vi = Wi — Wy, the weight update

equation of the LMMN algorithm can be written in terms of Vi as :
Vier = Vi — 2uer[A + 2(1 — V)ed] Xy (5.6)
and
2 2 Ty \2 T~ 1272 2 .
E[[[Wipr — Will}] = 4”E[(Vi X4 ) A+ 2(1 = (VX ) T IXilly). - (5.7)

We just want to show the unboundedness of the last equation. Considering the

first term after expanding the parenthesis is suflicient. In other words, let us
. | 2 2 .

consider the term E[(ViX;)"||Xk[[;). We may use the “independence theory

assumption” of [48] and assume that Vi and X are independent. Then, we

have
L, , MM ,
E[(VIX0) [IXells) = Y23 Blvkoivi [ E[zi—izi; || X |5]
=1 3=1
M ) M M 5
=Y Ewi_JE[i_IXkll] +>° Y. Elve—wvp_;]Bleg_iei_;||Xill}]  (5.8)
=1 =1 j=1,7#1

It is easy to see that E[z2_;||Xk||}] = oo, since it has the terms like Efx}_;]

within this expectation, so the concluding result is

Bl Wi — W2 = . (5.9)

Assuming the error and the inpul are uncorrelated al steady state we will

give a different proof :



IEquation (5.2) can be written as :
Wit — Will; = 4p?ef[A + 2(1 — \)ed]”[[Xe[2. (5.10)

At steady state if the algorithm converges, it can be assumed that the error,
¢k, and the samples of the random process X are uncorrelated. Thus, taking

the expected value of the last equation, we may write the right hand side as :
B[l Wyt — Will2) = 4Bl + 20 - NEPEIXAL. (5.11)

E . . . . 27 ¢ v . .
In this expression, we immediately see that E[||X[[5] is infinity in the case of
SaS random processes. Therefore without any further investigation we can say

that

E[||[Wy11 — Wilf] = co. (5.12)

5.2.2 Simulation Studies

In this subsection, we consider the same system identification problem dis-
cussed in Chapter 4. We generate a realization of the AR(2) process with
paramcters a; = 0.99 and a, = —0.1. We plot a realization of the transient
behaviour of the tap weights in IMigure 5.1. The performance seen in this plot is
unacceptable. The time axis cannot be extended beyond the value in the plot.
After those time values, the system blows up and the tap weight values go to
nonsense numbers like 108, In this plot, we take the value of the o = 1.2,

and the mixing parameter A = 0.1, 0.3, 0.6 and 0.9.

5.3 Robust LMMN (RLMMN) Adaptive Fil-
tering
In this section, a new [amily of descent type algorithms are presented. As

discussed in Section 5.2.1 the update term of the LMMN algorithm does not

have finite variance. In order to achieve finite variance, 1.e.,
2 o
E[||[Wii1 — Will3) < o0 (5.13)

we modify the algorithm of Section 5.2 using I'ractional Lower Order Statistics

(IFLOS) concept.
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Figure 5.1: 'Iransient behaviour of the tap weights for the LMMN algorithm

for o = 1.2.

In impulsive noise, the variance of the error, eg, is not finite in LMMN

algorithms of Section 5.2. However, the fractional lower order error,
<> A b o R
er "> = |eg| sign(ex) for 0 < b < «, (5.14)

has a finite variance. Based on this observation we define the Robust LMMN

(RLMMN) algorithm with the following update equation [63] :
Wist = Wi 4 2ues®> (A + 2(1 = M {ef* 1) X, (5.15)

. p _ i )
where X, = [2*”...2p-m+1°*"]" and M is the order of the filter. It can be

shown that the FLOS parameter a > 0 satisfies the relation :
a< a8 (5.16)
to have the condition of Equation (5.13).

Proof : The weight update equation of the RLMMN algorithm can be

written in terms of Vy as :
Vies = Vi = 2u(ViI X)) [A +2(1 - /\){(VkTXk)<“>}2] X (5.17)
[From here we have :
Wi = Willl = 42 (VX0 12 [ 201 = )10V X0 )] 1Rl
For |V "X, | using the Holder inequality we may write
[V X] < IVl 1Ko (5.18)
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Note that E[||Vi]|,] < oo and E[||X4||,.] < co. Therefore

Wi — Wil < 4u?|[Vie| 3] X]152
y ¢ 2a a . 2 a 1a et 2 .
[A2 4+ 2001 = NIVl P2 + 401 = N HVAINXel1] 1Rl (5.19)
Since we assume that Vi and X are independent we may write

E[|[Wipt — Well2] < 4 [VE] VL] Xk 221K l]
¢ - 1a da ||~ 2
+2A(1 = ME[| Vel 111Xkl [o] X ]])

q a 3| [~ 2 ¢
+4(1 = 2 E[|[ VI IE[IXel o] Xell]]. (5.20)
It is obvious but nevertheless, we also have
1a alw 2 a da) 1w 2
E[[Vel[* 11Xkl Xellp) < B[V TENX 1 1XK])

where the last equation is written using independence assumption. Now, let

. A .
us consider as zx—; = ||Xi||,, and use the last two equation we clearly get
a<of8 (5.21)

as a sufficient condition for the boundedness of E[||[Wyy, — Wi|[2]. In this
analysis we also use the terms E[|[V||?], E[||Vi][{*] and E[||V][5*]. Even if

V. is a SaS vector process, these terms are also finite with « < «/8.

Assuming the error and the inpul are uncorrelated al steady state, we can

obtain another bound for a:
The update equation of the RLMMN algorithm is given by
[Weps = Wil = 42lex™ (0 + 200 = D{er 1) 1Rully (5:22)
and
E[[Wi1 — Wil] = 40 Elles (A +2(1 = ) {es 1) TBIXAl) (5:23)
right hand side can be reorganized as
APE(es (O + 401 = Veal™ +4(1 = W leu“NEIXell})  (5.20)
From here we see that
a< af6 (5.25)
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|§] Note that

the first bound is tighter than the second bound. We also experimentally

as a sufficient condition for the boundedness of E[||W 1y — Wy

tested the performance of the algorithm depending on the value of the FLOS
parameter a. For ¢ < «/8 the algorithm converges. For /8 < a < «/6 the
algorithm again converges but it requires a smaller step size u. Finally, we also
tested ¢ > a/6 case and observed the diverging performance of the algorithm.

We expect this behaviour from the theoretical results, too.

5.3.1 Simulation Studies

[n this subsection, the FLOS based RLMMN algorithm is compared to the
Normalized Least Mean-p Norm (NLMP) algorithm of Chapter 4. The update

equation of the NLMP algorithm is given by, [33] :

e;p—l>
Wk‘+1 = Wk + 'LLWXL (526)

where 1 < p < « and u,e > 0 are appropriately chosen update parameters.

The algorithm of Equation (5.2) is also compared to the other proposed
I'LOS based algorithm of Chapter 4 whose update equation is given by,
[51],[52],[53] :

<a>

CL ~
Wi = Wi+ MWXk (5.27)
1

where

Xk — [wk<(q—1)a>m$k~M+l<(q-1)a>]fr,
the FLOS parameter ¢« < 1/2 and q satisfies the relation /a4 1/¢ < L. It
is shown in Chapter 4 that the algorithms of Equation (5.26) and (5.27) have

comparable performances.

In Figure 5.2 and Figure 5.3, we deal with system identification problem
for « = 1.2. We generate the AR(5) process with parameters «; = 0.89,
ay = —0.152, az = 0.1, ay = —0.197 and a5 = 0.097 which is driven by an i.i.d.
S«S random process, uy, of Chapter 4. The system mismatch, [[W; — W*||j,
where W), and W, are the current tap weight and the optimal solution vectors,
respectively, is plotted. It is shown in these two figures that the performance
of the RLMMN algorithm is comparable with the other two algorithms of

Lquation (5.26) and (5.27) depending on the value of the mixing parameter

ol ]
o



A. In Figure 5.2 we take A = 0.9 and in Figure 5.3 we take A = 0.1. For the
RLMMN algorithm the FLOS parameter « is taken as 0.1 for these two figures.

With the motivation of the RLMMN algorithm, consider the mixed cost
function Jy = AE[|ex]] + (1 — ME]

can be as follows :

3 - . .
e¢|’). The corresponding update equation

Wk+l =W, + sign(ek)[/\ + 3(1 — /\){6k<a>}2]Xk ('328)

e W A . . ) .
where X, = [2,<%...zk_pr41<*7] . With a similar theoretical analysis of Sec-

tion 5.3, we derive the condition on « as :
a < af6. (5.29)

Ior the experimental analysis, we deal with the AR(2) system identification
problem of Chapter 4. We plot the transient behaviour of the tap weights for
the RLMMN algorithm and the algorithm of Equation (5.28) in Figure 5.4. As
it can be seen from the plot the performances of the algorithms are comparable.

All the plots are obtained by averaging 100 independent trials and to get
a lair comparison between the algorithms, the step size of the algorithms are

adjusted so that the steady state variances of the tap weights are equal.

We also tested the performance of the RLMMN algorithm as a function of
the parameter A for two different values of the . In Table 5.1 we tabulated the
results. In the first colomn the value of the mixing parameter, in the second
colomn the convergence time for o = 1.2, and in the third colomn for « = 1.5

are given. For this purpose we just consider the first tap weight, i.e., ¢, = 0.89.

[/\ | Time step, « = 1.2 | Time step, « = 1.5 I

0.1 6342 6201
0.3 5936 5270
0.5 5824 4931
0.7 5054 4424
0.9 4232 4145

Table 5.1: A versus the convergence speed.

The computational complexity of the proposed algorithm of Equation (5.15)
is slightly lower than those of algorithms of Equation (5.26) and (5.27) since it
does not require the normalization terms of those algorithms. However, a ma-
jor problem arises for this algorithm due to the following fact. When the same
linear filtering operation is done on the input and the desired signal, the step

size of the proposed algorithm should be rearranged whereas the algorithms of

56



system mismatch

Equation (5.26) and Equation (5.27) do not require such a rearrangement. For
this purpose, a time varying step size may be used which is another research
subject for the time being for us. We did not investigate further properties of
this algorithm such as “Momentum” RLMMN, “Median” RLMMN and “De-

layed” RLMMN algorithms before we find a time varying step size.

5.4 Conclusion

In this chapter, new adaptive filtering algorithms for impulsive noise environ-
ments are introduced. These algorithms are developed using Fractional Lower
Order Statistics (FLOS) concept. The performance of the algorithms are com-
pared to the FLOS based algorithms of Chapter 4. It is observed that the new
algorithms have a comparable performance depending on the value of the mix-

ing parameter and have a robust performance in impulsive noise environments.
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Figure 5.2: The system mismatch for RLMMN algorithm (solid), the algorithm
of Equation (5.27) (dashdotted) and Equation (5.26) (dashed) for o = 1.2 and
A =0.9.
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Iigure 5.4: Transient behaviour of the tap weights for RLMMN algorithm
(dashed) and the algorithm of Equation (5.28) (solid) for o = 1.2 and A = 0.1.
AR(2) process parameters are a; = 0.99 and a; = —0.1.



Chapter 6

CONCLUSION

The main objective of this thesis is to develop robust adaptive filtering al-
gorithms for impulsive noise environments. The new adaptive algorithms are

based on the I'ractional Lower Order Statistics (FLOS) concept.

The novel algorithms can be classified into two categories. In the frst cat-
egory, the generalized family of Normalized Least Mean Square algorithm [18],
is robustified using FLOS. The performance of the algorithm is also compared
to the Normalized Least Mean p-Norm (NLMP) algorithm. The FLOS based
algorithm and the NLMP algorithm are also accelerated using the “Momen-
tum” technique and in this way a faster convergence hehaviour is achieved.
Nonlinear methods are incorporated into the adaptive algorithms and their
convergence behaviour is studied. It is observed that the performance of the
algorithms increases by using nonlinear methods. However, there is a small bias
for the estimators. It is experimentally seen that “Momentum” version of the

proposed FLOS based algorithm provides the fastest convergence performance.

[n the second category, the family of Least Mean Mixed Norm (LMMN)
algorithm is [19] robustifed again using the FLOS concept. The performance
of the proposed Robust Least Mean Mixed Norm (RLMMN) algorithm is also
compared with the FLOS based algorithm of the first category and the NLMP
algorithm for impulsive noise environments. Depending on the value of the
mixture parameter, the RLMMN algorithm has a comparable performance
with the FLOS based algorithm of the first category and the Normalized Least
Mean p-Norm (NLMP) algorithm. Based on the set of the simulations, it can
be deduced that the proposed algorithms have good convergence behaviour in

impulsive noise environments.
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The computational complexity of the proposed algorithms is not high and

shown to be comparable to the NLMP algorithm.

For the future work, we would like to improve the performance of these
algorithms using time varying step size. Also, we will investigate the model

order selection in an extensive manner.
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