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ABSTRACT

A STUDY OF LINE SOURCE FIELDS 
TRANSMITTED THROUGH A 2D CIRCULAR 

DIELECTRIC RADOME OR A SLAB

Anil Bircan
•M.S. in Electrical and Electronics Engineering 

Supervisor: Prof. Dr. Aylicin Altıntaş 
August 1996

In this thesis, far field solutions for the real and complex line sources sur­
rounded by a cylindrical dielectric shell (radonie) are obtained in both E  and 
H  polarizations. These far fields for the radoine model are then compared with 
the ones transmitted through an infinite dielectric slab.

The motivation is that as the far field in the main beam direction is con­
cerned, the radome of large radius can be cipproximated by an infinite dielectric 
slab. It is clear that the fields of the cylindrical shell (radome) is expressed in 
terms of cylindrical functions whereas for the slab, the fields are given through 
Sommerfeld integrals. By applying the saddle point integration techniques to 
the Sommerfeld integrals, the radiated fields of the slab are numerically calcu­
lated and compared with the fields of the dielectric shell. The source is taken 
as a line source, l)ut it can also simulate a beam field l)y the complex source 
a.|)proach.

d'he study gives a better understanding of the reflector antennas covered 
with di('lectric radomes.

Keywords : Dielectric lleulome. Die leedrie: Sleib. (Complex Sou,rex·
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ÖZET

DIELEKTRİK RADOM VE TABAKADAN GEÇEN 
DOĞRUSAL KAYNAK ALANLARININ İNCELENMESİ

Anıl Bircarı
Elektrik ve Elektronik Mühendisliği Bölümü Yüksek Lisans 

Tez yöneticisi: Prof. Dr. Ayhan Altıntaş 
Ağustos 1996

Bu çalışmada, E ve H polarizasyonlarda, silindirik dielektrik kabukla 
(radom) çevrelenmiş reel ve karmaşık kaynaklar için Fraunhofer bölgesinde alan 
çözümleri bulunmuştur. Radom modeli için hesaplanan bu uzak bölge alan­
ları, aynı kaynaklardan yayılan ve sonsuz dielektrik tabakadan geçen alanlar 
ile karşılaştırılmıştır.

Buradaki motivasyon, ana yayılma doğrultusu yönündeki uzak bölge alan­
ları düşünüldüğünde, büyük yarıçaph bir radomun sonsuz dielektrik tabaka 
ile modellenebileceğidir. Radom modelindeki alanların silindirik fonksiyon­
lar cinsinden bulunacağı açıktır. Düzlem modeli için ise Sommerfeld inte- 
grali kullanılmıştır. Eyer noktası integrasyon teknikleri kulhınılarak Sommer­
feld integralleri çözülmüş ve tabaka modelindeki alanlar radom modeli için 
lıesaplanmış alanlar ile karşılaştırılmıştır. Kaynak çizgisel (2 boyutta noktasal) 
alınmış ancak pratikteki doğrultulmuş antenleri sininle edebilmesi için karmaşık 
kaynak yaklaşımı uygulanmıştır.

13u tez. dielektrik radonıla çevrelenmiş yansıtıcı antenlerin daha iyi 
anlaşılmasını s a ğl anı ak t ad ı r.

Allahlar Kiliıııılrv : DUUklrik lladonı. Dirlcklrik Tabaka. Karmaşık Kay-
I ak
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Chapter 1

INTRODUCTION

The penetration of electromagnetic waves through dielectric layers is an in­
teresting concern, for instance in the performance of antennas surrounded by 
radomes. A radome is a dielectric shell used to protect the antenna from wa­
ter, sun, wind, etc. The radome, however, distorts the radiation pcittern in 
the far field by the peak-gain attenuation (loss of peak gain) and the boresight 
error (difference between the apparent and the distorted beam directions) [1]. 
A precise analysis of radome performance is difficult, and nearly impossible in 
practice, because the general shape of a radome layer does not fit into the frame 
suitable for exact analysis. Thus, some approximation methods are resorted in 
the literature. The basic principle of approximation is to find a configuration 
to approximate the surface of the dielectric layer locally, which can be solved 
rigorously by analytic means.

Plane wave spectral decomposition of the incident field, local plane wave 
tracking through an equivalent plane slab and spectral synthesis of the trans­
mitted field procedures'ignore at least the surface curvature when using equiv­
alent loccil slab models or multiple internal reflections and guided and leaky 
waves excited in the radome [2]. In [2], a curvature corrected slab transmis­
sion coefficient is given. Then, high rre(|uency asymptotics, ray api)roach and 
pliysical optics with the coefficients found in [2] are used [.‘J] to solve the radia­
tion from radoine covered antennas. Ray techniiiues are used again tor narrow 
waist('d (.¡aussian beam ])ropagation through dielectric plane layer and circu­
lar cylindrical layer [4]. In [5], attention is focused on the relation between 
(hx'en's functions appropriate to closed and open shells; tlu' 0 — 27t (periodic) 
and (—oo) — (+oo) (nonperiodic) depeiuk'iicies and tlie e(|uival('nce rela.tion



bet,ween partial cingular harmonic and ray type Green’s functions are investi­
gated. Accuracy, interrelation between the solutions and comparing them with 
reliable tests are studied.

In this work, for the radorne and slab geometries, real (axial) line sources in 
both E  and H  pohirizations are taken into account, and, additionally, complex 
line sources are considered to simulate directed beam fields used in practice. 
For the closed, circular geometry of the radome, cylindrical functions are used 
to represent the incident field via the addition theorem and the scattered fields 
in the inner, outer and the middle regions. Then the boundary conditions 
are applied to the total fields to obtain the Green’s functions. For the open, 
infinite structure of the dielectric slab, the spectral representation is used to 
calculate the far field. The Sommerfeld integral is carried out by asymptotics 
with the surface wave contribution. The frequency and the thickness variations 
of the models are also examined to understand better the nature of the radome 
and the slab structures. Finally, the far fields obtained for both models are 
compared to study the validity of approximation of the radome by a dielectric 
slab.

The outline of this thesis is as follows: In Chapter 2, the radome geometry 
and problem are formulated and the solution is given. The solution involves 
Bessel functions whose numerical generation is described in Chapter 3. In 
Chapter 4, the infinite dielectric slab is considered. The Green’s functions for 
both models are compared and the field difference is analyzed numerically in 
Chapter 5. Main conclusions are given in Chapter 6.

In the analysis, a sinusoidally-varying time dependence e '" “’* is assumed 
and suppressed.



Chapter 2

THE FAR FIELDS OF THE 
DIELECTRIC CIRCULAR  
SHELL (RADOME)

2.1 R eal Line Source

A line current which is directed along the z axis, is assumed to be placed at 
r' as shown in Figure 2.1. The inner and outer radii are shown by c and d, 
respectively. The radorne divides the whole space into three distinct regions 
as shown in the figure. The radome material is assumed to be dielectric with 
Cl and the radome is located in free space. From the symmetry, r' is tciken as 
directed along x-axis without loss of generality. The incident field radiated by 
the source is uniform and axially symmetric with respect to the source position 
,7/.

where k\) is the free space wavenumber. 

'File scattered fields can be written as

(2.1)

E  r < r , (2.2 )



♦ y

Figure 2.1: Radome Geometry. The inner and outer radii are given by c and d, 
respectively, r ' is used as the location vector for real line source. For simplicity, 
r' is assumed to be directed along the x-axis.

Y,[pnJn{hr )  + qnH\^Hk,r)y^'>>, c < r < d ,  (2.3)
n = —oo

oo

Ui‘ = E  r > d ,  (2.4)
n=—oo

where ki = is the wavenumber in the radome and U·̂ '̂  are the
z-components in Regions 1,2,3 of either electric or magnetic field in the case of 
E  or H polarization, respectively.

Note that, for the scattered fields, only standing waves in Region 1,
outgoing [H'^s] and standing waves in Region 2 and only outgoing waves in 
Region 3 (since no reflection occurs in this region) are included. Using the 
addition theorem, the incident field can be written in the form of a series:



( / '“  = r'l) = I  * \  r < r '

where (j)' must be taken as zero, since r' is along the x-axis. Thus the total 
field is determined by the expansion

Utot ^  jjsc^jjinc ^  \ sr=-oo[^n + J„(A;or)e‘"^  0 < r < r'
' ' 1 Er=-oo[^nJn(V) + Jn(V ')^(^H ¿·or)]e-^ r' < r < c,

(2.6)

in Region 1, and by the expressions (2.7) and (2.8) in Regions 2 and 3 respec­
tively,

■)]e'"  ̂ c < r < d. (2.7)

, r > d. (2.8)U T =  E  r„//„(A,·or)e'"^ r > d .

where .s„, p„, </„ and ?·„ are the coefficients to be determined by the boundary 
conditions.

In the case of E  polarization, the continuity of E. and H,p = (tan­
gential fields) at the boundaries r = c^d and the orthogonality conditions give 
an infinite set of equations. This set consists of a series of independent blocks 
in lour equations:

= E f  |,,=, ^  SnMf^oc) + Jn{kor')Hl^\koc) = PnJnikic) + r/„i/(‘)(A:ic),
(2.9)

E^f = E!,%=,i ^  VnHaikod) = PnJnihd) + q j i l ^ \ k ,d ) ,  (2.10)
I 1 tot _//j — ^̂ 2

rJi\!^'{kod) = s/^.pnd'Ak,d) + ^rqnH\!^'{hd)  (2.12)

with four uid<iiown coefficients /·,(, p„, (¡n a,nd .s„.

•Solving this .system, tlu' coelficients are obtained, and so are the fields in

all t h(> i('gions.



Figure 2.2: Geometry of the Complex Line Source Inside the Radorne

Similarly, in the H  polarization, orthogonality and the continuity of and 
at the boundaries give the equations with unknown coefficients 

Tn, Pn·, qn and s„:

= //f|r=c => -SnMkoc) + Jn{kor)Hi^Hkoc) = PnJnikic) + q^Hl^\k^c),
(2.13)

^  rJL(kod) = PnJnik^d) + q,M^^\kid), (2.14)

V -̂ r
(2.15)

L /f  =  => rnHl^^'ikod) = - L [ p , M k , d )  + fyJL(i)'(A-id)]. (2.16)

Again solving the system gives the coefficients ¿ind the fields. Excimining 
the system of equations for both polarizcitions, one recognizes that the only 
difference is that the coefficient appears in the other ¿is 1/^ /^ .

2.2 C om plex Line Source

Unlike the real line source, the antenna feeders are not nniform in practice. So, 
to simulate nonuniform radiators the com|)lex line source is used, [6], [7]. In 
f'igure 2.2, a complex line sonree in a radome with a beam is shown. 'I'lie line 
source' is placed at a complex location G which is given by



= ?'o + ib = ax + ib{cos f3x + sin /3y), (2.17)

where the parameter ¡3 gives the direction of the beam and b is related to the 
l)earnwidth. For 6 = 0, the source is real and radiation is uniform.

Assuming that the source is located at (rs,dj), the field intensity at any 
observation point (r, 9) may be written as

îk̂ R
= h „ R > l ,  (2.18)

V KqH
where R  is the distance of the observation point from the source,

R  =  sjr'  ̂ + — 2rrj cos(0 — Os). (2.19)

In the far field, R = r — Tq cos{9 — 6s) applies in the phase term, 77 ~  r in 
the amplitude term of (2.18):

^ i k o ( r — r s  c o s ( 0 — 0 s ) )

-------- 7= ------ , r > | r , | . (2.20)

Here, i’o <:̂ nd 6 are the complex source position, real source position and 
beam parameter vectors given in polar coordinates as 7̂  = (ro,^o)i = (i’s,^s) 
and 6 = (b,/3). All angles are measured from the x-axis. The values of r , and 
Os are

= — b'̂  + 27 6 cos [3, Os = cos ’ (_] / i’o + >b cos /3
) (2 .21)

Substituting (2.21) into (2.20) the following expression is obtained:

i k o ( r - r o  c o s ( O - O q ) )
j-jinc _ J________________^kbcos(O-p) (2.22)

which \-ields a maximum at 0 = 8 and a minimum at 0 = /3 + tt.

'I'lie incident field can also be written as a series in terms of the addition 
tlu'oreni:



t / - ( f )  = C = c  E  Jn{kors)Hi^Hkor)e‘̂ ’̂̂ -'-^\ r > |r,|.
/ 1 =  — <X)

(2.23)

Tlie complex source at 7’’̂  can be thought as a cylindrical source in real space 
lociited at f  = /-o· Uinc is an exact solution of the Helmholtz equation, this is 
unlike the Gaussian-type exponents frequently used to represent beam waves. 
Gaussian beam field is an approximate solution of the field equations that fails 
outside the paraxial region surrounding the beiun axis, the complex-source- 
point yields a valid solution of the Helmholtz equation at cirbitrary observation 
points.

Using the scattered fields given in (2.2), (2.3), (2.4), the total fields can be 
written as:

[/¡0̂  =  E  [snJnikor) + C 7’, < r < c, (2.24)
71=-OO

OO
U'« = £  |р,Л(1·,··) + c < .■ < d, (2.25)

тг= -о о

= E  r„ //(‘>(A:o7')c''"U r > d .  (2.26)
n = — '20

Continuity of the tangential fields yields

.',v„(fec) + c  ./,.(А:„1-,)Я,'."(<:„с)е-“‘'· = p ,M k ,c )  + Ч„НЦНк,с), (2.27)

rJJ!,"{kod) = P.Jn{hd) +  ,iJli'>(k,d), (2.28)

.s,./;,(fc.,c) +  C J , d k o r . ) l l ! ! ' ' { h , = <4р.Мк,с) + i/,//;."'(fc,c)), (2.29)

r j i ; , ' ’'{k„d) = a[p„j:(k,d) +  </„/-/<"'(ivi)|. (2.30)

wlun-c' fv = in E polarization and a = , / ^  in H polarization,

'I'Ik' field of interest is the one ii.t far (i(4d which includes the coefficient /·„,



r„. =

where

2/3n ^ 3 n ? / l n ) ^ l n (2.31)
^^7nyQn^\^Sn^2n ^Ini^lny^n ^ ^ 5 n 2 / l n ) ]  H”

^In — '^TnySn  ^ S n y in - i ^2 n  — ^ ^ ln y4 n  ^ ^ 4 n y i n · ) (2..32)

^\n — y i n  = d'ni^oc), (2..33)

X2n = C (2..34)

X 3n = !/3 „  =  H i 'K k c ) , (2.35)

Xi\n — y i n  — J n i ^ i d ) , (2..36)

X,n = y s n  = H ^ n ^ \ k , c ) , (2.37)

yen = Hi^^'ikod), (2.38)

X i n  — j y i n  = J ' n i h d ) , (2.39)

xsn = Hi^Hhd), y e n  = H ^ r ^ ^ \ k , d )  . (2.40)

In the numerical implementation of the radome geometry fields, Bessel func­
tions are generated as described in the next chapter. The radius, thickness and 
the dielectric constant of the radome determine the truncation number of the 
series expansions ot the fields.



Chapter 3

NUMERICAL GENERATION  
OF CYLINDRICAL 
FUNCTIONS

3.1 Introduction

In this chapter, the numerical computation of Ih'ssel functions of the first and 
second kind for integer orders and complex arguments are considered.

Bessel functions of integer order are the natural and general solutions of 
many radiation, scattering and guided wave problems which are formulated 
in the cylindrical coordinate system. Complex or imaginary arguments are 
associated with lossy materials, evanescent fields and leaky waves lor instance. 
Bessel functions are also used in the mathematical description of numerous 
physical phenomena besides electromagnetism. (Jonsequently their accurate 
computation is of genercd importance.

./,i(,i·) and IC.(.r), Bessel functions of the first and second kind respectively 
are solutions to Bessel’s differential ec|uations

u" + y + — i>'̂ )y — 0. (;h

One way to r('i)re.sent and for int('g('r n is [9



Ш  =  (~~/2)" Е  г
i=0

(3.2)

YJz)  = - H z / 2 ) U z ) -
7Г 7Г Е

к=0 к\ (~74)^·

E M t  + 1) + v>(n +  i
.̂=0 /¡:!(7i + ^)!7Г

(3.3)

where ^{m) — —r  + Xjk with (/?(!) = —r, and r  is Euler’s constant.

Using these equations to determine Jn{z) and Yn{z) is impracticcd because 
serious losses of significance caused by small differences of large numbers occur 
when the terms in the summations become too large. Alternatively an integral 
representation may be tried for Jn{z)

1
Jn{z) = — / cos(z sin ^

7Г J q
(3.4)

but the integrand oscillates rapidly for large arguments and orders, this requires 
many steps in the numerical integration, causing the computation time to be 
too long.

Instead of these rather unsuitable methods of obtaining Bessel functions, 
a different approach is applied in this thesis. It utilizes the method given by 
DuToit [8] which encounters some forward and backward iterations based on 
the recurrence relation

B n ^ i { z ) ^ — Bn{z)-Br._,{z). (3.5)

It is the main equality which enables the calculation of J„(c) and Yniz) 
of all orders for a given argument z, when two consequtive orders B^{z) and 
B,i^y{z) are known.

Before using this relation, the stability of recurrence should be guaranteed. 
When the forward recurrence is used, the factor 2n/z amplifies any round-off 
('i ror. With the repetitive use of (3.5) the accumulation of errors occurs. The 
i('la.l.iv(' (‘rrors are. however, decreasing when the functions B„, are increasing 
in l lu' proci'ss of iteration. .So. ])rogressing through increasing values of \ B,i,{z)\ 
app('a,rs to be the best strategy.

l'h(M4'for('. for ./„(.") fnnctions, the backward recurrence is stabh' since'



log10IJn(z)l

Figure 3.1: |J„(z)|, Argument: z == 70 + 0« solid line, 
line

= 60 + 10« dash-dotted

|J„(z)| are increasing rapidly with decreasing n. For F„(z), when z is com­
plex, the backward recurrence is stable for small n but the forward recurrence 
is needed for n > r where r is the index corresponding to the minimum of
in(--)|.

Numerical experimentation indicated that the relative propagated error is 
always stable when this rule is followed, see Figures 3.1 and 3.2 .

In more details, the guidelines are as follows:

1. When z is real or when \Rt{z)\ ^  |/«7«(z)|, the general magnitude of 
\Jn{z)\ and |in(z)| is approximately constant for a given argument z for n < |z|. 
The relative propagated error is stable under these conditions when recurrence 
is carried out with either increasing n (forward recurrence) or decreasing n 
(backward recurrence). Since ./„(z) decreases with increasing n when n > |z| 
(Fig. 3.1), backward recurrence can be used starting with arbitrary initial 
orders ./,,(z) and ./,,4.1 (z) to compute the lower orders. Since V'u(z) increases 
with n when n > |z| (Fig. 3.2) all liigher orders may be computed from Vo(z) 
and V|(z), using forward recurrence.

2. Wlien z is complex, the same rule still applies for ./„(z), since it decreases 
with increasing n for all values of n. Yn{z) ca.u be calculated from Vr(z), y’,.4.1 (z)

12



logic I Yn(z) I

Figure 3.2: |1̂ (2:)|, Argument: z = 70 + 0z solid line, z = 60 + lOi dash-dotted 
line

using forward recurrence for n > r and backward recurrence for n < r where r 
is the value of n to yield a minimum to |V^(^)| for a given argument

3.2 A lgorithm  for Jn{z)

As explained above, backward recurrence is used to compute Jn{z) from Jq{z) 
and The value of q must be sufficiently large for the starting value
J,,+ i{z) to be practically zero (see Fig. 3.1). Let Bn{z) = S.Jn{z) such that 

= 0 and Bq{z) — 1, the relative propagated error caused by the as­
sumption that Bq^i{z) = 0 will diminish lor smaller values of n. After repetitive 
use of (3..'5) with decreasing n starting from q + I and q, Jn{z) is obtained by 
normalization of Bn{z):

■ W )  =
Bniz)

s ' (3.6)

VVIk' ii hn[z] < I, the normalization constant S in (-3.6) may be computed 
wit.h the aid of tlui series [8,9]

13



1 = M z )  + 2Y^J,k{z)

S ■■

k=i

S Jo{z) + 2 Y ^ S  M z )
k=l

g/2

Boiz) + 2'£B2kiz) .
k=l

(3.7)

The magnitude of any of the Bn{z) functions is usually smaller and never 
much hirger than S under the condition Im[z] < 1. This ensures that losses 
of significance caused by differences of large numbers in the summation will 
always be a minimum. When Im[z] >>  1, S will be magnitudes smaller than 
some of the terms in the summation, and serious losses of significance will 
occur. This is avoided by using the series [8,9],

S cos{z) = S Jo{z) + 2 S J2k{z)
k=l

ql2
~  ^o(^) + 2 B2k{^)·,

k=l
(3.8)

when l7n[z] > 1.

The following rule which is determined empirically by Du Toit [10], yield 
a minimum value for q (the starting point for backward recurrence) with high 
accuracy for real z, and for M < \z\ (where M is the maximum-required Bessel- 
function order) when double precision is required (double precision is used in 
both the radome and the slab calculations in this thesis):

Îmi
|z| + 10.26| r̂"'““'̂  + 1.8,
?| + ().()362|z|‘̂ -̂ ‘‘2''si + 0.4,

< 25 
> 25.

(3.9)

3.3 A lgorithm  for Yn{z)

As discuss('d Ix'fore, when z is real the magnitude of Y,i(z) is approximately 
coiistaiit for n < |c| so higher orders may be computed from Vo(c) and Vi(cr) us­
ing forward recurrence. Neumaim’.s expansion is used for accurate computation 
of y;,(,:·) and y\{z).,



Yo(z) = -|ln(--/2) + r U z )  -  2 ¿ ( - 1) '· · ^ ]
^ k=l ^

(3.10)

F,(.-) = 2 p „ (,/2 ) + r -  I J . ( i ) -  (3.11)
¿=1 + U7T

Only the significant Jn{z) functions (until order n = q) are needed and the 
series are truncated at n = q.

When z is complex, Yn{^) may be Ccilcuhited for all n from Yr(z) and Yr+i{z) 
using backward and forward recurrence.

After some experimentation it may be interred that |yr(~)| is at a minimum 
for a given complex argument when r = [|2:| + |/m (;r)|/2] (this can be verified 
in Fig. 3.2). More precisely, a minimum occurs when [8]

7m(-sin[cos ’■(-)]) = /m[cos *(-)]. (3.12)

This relation is tried using the Reguli Falsi numerical method to obtain 
r but it is seen that the approximcite value r = [|r| + |/m (z ) |/2] gives quite 
reasonable values for r.

Y r { z)  and YrJ^i{z) are determined from Fo(.:), Ti(^) and the Jn{z) values as 
follows:

With the expansion of the recurrence relation (3.5), Voi-)  ̂ <A)(̂ )i
J\[z) can be written in terms of Y r { z ) ,  T.+i(;;) or Jr(-s), J t+ i {z ) as

Bo{z) — pu Br{z) + p\2Br+l(z),

^l(~) = p2 iBr{z) + P2 2 Br+l{z).

(3.13)

(3.14)

By the Wronskian,

♦7u+1 ('■') F j. ("̂ ) *Ai Ti+1 ("̂ ) t
7TZ

il. is known tluxt the determinant

Pll P l 2

Pzi P-n

(3.15)

(3.16)

is always c(|ual to unity and it is used as a check in I,he codes.



Using known Bessel function values,

Bo
Pn  = (.3.17)

B,
P2 i = (3.18)

M ^ )  -  PnJriz)

J r M  '
(3.19)

_  -  P 2 l J r { z )  
P22 T i \ ’ 

J r + l [ z )
(3.20)

where Bn{z) values are obtained for n < r by backward recurrence starting 
from = 0 and Br{z) = 1.

Hence the solution to (3.13) and (3.14) is

Br{z) — —pi2Bi(z) + P22Bq{z), 

B t+ i {z ) — PnBi[z)  +  P2i B q( z ).

(.3.21)

(3.22)

Unfortunately, (3.21) and (3.22) cannot be used numerically when Im[z] 

is large, because the terms on the right may be magnitudes larger than those 
on the left side of the equations, causing serious truncation errors. However, 
substition of (3.21) and (3.22) into (3.15) yield

= -r!-;(-^ '(^)ro(i) + ^ 1.
Jo{z) 7TZ

TTZ
(3.24)

So, with ?■, Y’r{z) and K+i(~)) Un(~) is produced by backward recurrence 
for n < V and forward recurrence for n > r.

3.4 The A ccuracy o f the A lgorithm s

'I’Ik' accuracy of the algorithms were also tested by e.xamining the numerical 
('i ror in t he VVronskian

( I'i'ov — 1 (...) 1 „ (~ ) .y„ (...) 1 1 (-.)
KZ

l()

(3.25)



log10 IJn(z)l, loglO IYn(z)l, Iog10 lERR O R I

Figure 3.3: \RelativeError\

For illustration, this error is divided by |./„+i(::)| + \Jn{z)\, 

\Jn+,{z)Yn{z) -  U Z ) \U ,{ Z )  -  ^ \
e = |./,.+ı(г)l + l·/»(--)|

The relative error |e| is representative in all four functions involved.

(3.26)

The result follows when it is assumed that the relative errors in all four 
functions involved have the same amplitude, l)ut are uncorrelated. This error 
|e|, Jn{z) and Yn{z) for-'5r = 120 + lOi are depicted in Figure 3.3 . The relative 
error is in the order of 10“ '̂', 10“ ^̂’ which compares favoriibly with the double 
precision used in the codes.
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Chapter 4

THE FAR FIELDS OF THE 
DIELECTRIC SLAB

4.1 Introduction

111 this chapter, the far field radiation of real and complex line sources in the 
presence of a dielectric slab of infinite extent is investigated. The geometry of 
the problem is given in Figure 4.1 .

The fields of the unit line source located at the origin and radiating in free 
space satisfy the scalar wave equcition [11],

(4.1)

wluu'C' <I> is the z-component of the electric or magnetic field depending on the 
nature of the source.

Because of the cylindrical symmetry, the equation above can lie solvixl most 
conveniently in cylindrical coordinates,

()(P p (Jp
(4.2

IS



Outside the source region, the right-hand side of (4.2) is zero and we have 
the Bessel's equation of zeroth order. In order to have an outgoing-wave solu­
tion tlicit satisfies the radiation condition, the HcUikel function of the first kind 
is cho,sen for ^{p) with time dependence. In other words.

« (r t  = C ~  ^  oo. (4.3)

By matching the singularity of the Hankel function at p = i) to the line 
source, one has

*(/») = j/4 " (W ). 4.4)

The application of thé boundary conditions on the slab surfaces are easier 
to apply in cartesian coordinates. For this purpose, another solution including 
the Fourier transform technique is investigated. Assuming that the Fourier 
transform of <&(;c,?/) exists, $(.c,v/) is expressible as a Fourier inverse transform 
integral.

I I  '

(4.5)

Substituting (4.5) into (4.1) cuid using the fact that.

¿(.r) = r
ZtT — 'X >

it is obtained that.

Since (4.7) is satisfied for all x, we must have

w Ikm x ' Â'y =  — k ' l .

(4.-6)

^  r  r  (4.7)
27T J-yj (hr 27T . / - . X ,

(4.8)

1!)



A pcirticular solution to (4.8) is

= My) + My) e (4.9)

Substituting in (4.8) one gets

i ky v[{y) -  i ky v ^ j )  =  S{xj).

Also, imposing the condition [14]

(4.10)

(4.11)

one solves for v[{y) from the above set of equations and by integrating, it is 
found that v\{y) =  Ignoring the physically unnecessary incoming-wave 
part, ie V2 {y)i the solution is obtained as

^{kx,y) =
i giky hi

2k„ (4.12)

Here, the radiation condition is satisfied by considering the outgoing-wave 
solution. Hence (4.5) becomes

i Jkx x-\-iky li/l 

ky (4.13)

By the uniqueness of the solution to the partial differential equation (4.1), 
(4.13) must also be equal to (4.4) since both of them satisfy (4.1). Hence, the 
spectral representation of the line source for the free space is obtained.

H,
1

i ‘> = i  /
7T J -

dkr
Jkx x-\-iky |y|

k'ti (4.14)

'This expression yields the plane wave expcinsion of the cylindrical wave of

20
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Modifying (4.14) for the geometry provided (Fig. 4.1), the far zone trans­
mitted field in Region 2 can be written ¿is

U,{p) =  -  r  d h  f { K )
7T — <x>

x - i k y  I?/1
(4.15)

where T{kx) is the transmission coefficient [12] for phine wcives with the addi- 
tioricil plmse factor gained during the propcigation through the dielectric slab. 
As seen from Fig. 4.1 y takes negative Vcilues in Region 2. The integral in 
(4.15) is also known as Sommerfeld integrcil. The expression for T{kx) is given 
¿is:

T{kx) =
/j.  ̂(̂ ’1 y 0̂y){ 1 )

(1 -f- poi)(l + P\2 ){ 1 + RoiRi'2 b<2-<5)) 
where the parameters ¿ire ¿is follows:

(4.16)

21



77 —  -L· —
^ P lO  ’

_ 1 _ 1 ̂ '2 y _ ßl ̂ '0 ;/
^ P 2 1  ß 2 ^ 1 y  P o k l y " ’

Fay the T E  case (4.17)

__  1 __  ^ 0 ^ \ y
^ P i o  € i A:02/ ’

__  1 __  ^1 ^ 2 y  __  €i  k p y

P 2 1  ^ 2 ^ \ y  eo^’l y '

For Ike TM case (4.1S)

Foi —
R \2 =

-i?10 = ,1+Pio  ̂ /?y,. i}-̂  ̂ J'ß  ßj^j
D  _  P21 - 1

■ " ' ^ 1  -  1 + P 2 1  ’

(4.19)

f̂ l + k l  = k l  

ki + k i  = k i
(4.20)

(4.21)

The right hand side of (4.15) can be interpreted as cui integral summation 
of plane waves propagating through the slab in different directions into Region 
2 including evanescent waves. Furthermore, these plane waves satisfy the dis­
persion relations (4.20, 4.21). Hence (4.15) is the pliine wave expansion of a 
cylindrical wave passing through the dielectric slab. Due to (4.20) and (4.21), 
k()y and k\y can be complex numbers. In order to satisfy the radiation condi­
tion of having only outgoing waves in the integrand, it must be ensured that 
I>n[ky] > 0, Re[ky] > 0.

In addition, the branch point singularities in (4.15) (at koy = y/k'o -  k'̂  — 0, 
kj. = ázko) should be avoided by the path of integration as shown in Figure 
4.2(a). To carry out numerical integration, the path in Figure 4.2(b) is more 
suitable. If a small loss is assumed by adding a small imaginary part in e,., 
the wave field becomes absolutely integrable and the integral becomes well- 
behaved.

'Three methods of numerical integration of the Sommerfeld integral were 
I ('sted. For all three, x and y were kept large, so that the observation point was 
in far field. But this made the integrand oscillate rapidly and the integration 
hard to ])(' calculated. The adaptive recursive Simpson’s ride and .Nhiwton 
Coles panel 8 rule didn’t give satisfactory results. For a dependable integral 
algoril.lim. h'llon Quadrature .\I(4.hod [14] is trii'd for the rewritten form of 
(1.15):

f{p) = -  /  dk,.cos(F.x)T(k,.)— ---- ,
7T ./() A:,,

( 1.22
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-X- Re[kx]

I Im[kx]
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--X- Re[kx]

t Im[kx]

^ -1̂ 0 ^
X

to 1 -► ► 1 ^
X kO

Re[kx]

Figure 4.2: Different Paths of Sommerfeld Integration



In this algorithm, the integral dx cos{k x) f(x )  is calculated by using the 
Filon cosine formula

[ b
/ dx cos{k x)f{x)  = h[a{fn sin k x„ -  /0 sin k xq) + /3 (7̂  + 7 C^], (4.23)

J  a

with the interval [a,b] and /„ is the value of the function £».t ,i-„. The ibllowing 
abbreviations with the cosine and sine sums complete the algorithm;

в = k h  =
k(b — a)

n

a(0)  =

ß(0 ) = 2

9  ̂+ 0.59 sin 29 — 2  sin^ 9 
¥  ’ 

9(1 + cos  ̂9) — sin 29

7(0) =  4

03
sin 0 — 0 cos 0

03 ’

(4.24)

(4.25)

(4.26)

(4.27)

Ce = ^/0 + /2 COS A; X2 + · · · +  fn - 2  cos k Xn- 2  + ^fn  cos k ;r„, (4.28)

Co -  ^/0 xo + fzcosk  X3 + . . .  + /„_i cos k x^-i, (4.29)

where Ce involves only ordinates with even subscripts and Co only those with 
odd subscripts.

Filon’s method has given dependable results when |?/| cincl (f) (the angle of 
the observation point, see Fig 4.1) are not large, that is when the observation 
point is located not far from the slab along the normal.

However, fields cire needed to be found for the far field (r —> 00) and 
an asymptotic approach would give much more dependable results than any 
numerical solution would. So the Sommerfeld integral in (4.15) is treated in 
analvtical terms.

4.2 Stationary Phase Solution For The Real 

Line Source

Ib'writing the Sommerfeld integral for real liiu' source when x = рз\\\ф, 
tj = —pcos Ф ( f  — X .V + !j a and p —>· 00), oik; Inis

24



1 /'CO  ̂ — y  poQ

i/(p) =  - /  d h T ( h ) ------------= /  d k ,F (k . )e “ V̂“ K (4.30)
7T J — OO rhy J — oo

p i k x  X  i k y  y  poo

The highly oscillating and the stationary parts of the integrand cire 
and F{kx), respectively, where

F { K )  = f{ k ,)
(4.31)

^ { k ^ )  =  k x  X -  ky y  =  sin</i +  ^ k l  -  k l  cos (/>), (4.32)

^'{kx) =  psin (j) — kx
pcos (j)

The stationary phase point is obtained by setting

(4.33)

(4.34)

^ '{ k x j  = 0  kx̂  = ±kosm(f>. (4.35)

Using the fact that,

U{p) =  j F l h  F(k,) ~  (4.36)

and ignoring the stationary phase point cit kx = —k{ys\n(f> (since this corre­
sponds to the incoming waves) the real line source solution is found to be

U{p) nkop
gî 'op g <4 T{ko sin ^), (4.37)

wlicr(' the large argument e.xpansion of tlie first kind zeroth order Hankel func­
tion can !)(' recognized.

nkop
(A:„p->00). (T.38)
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Figure 4.3: The Complex Line Source at the Slab Geometry. Here, ^  is the 
angle of main beam direction, rg is the physical location vector, and 2b is the 
aperture width of the complex line source (ro, h not shown).

4.3 Stationary Phase Solution For C om plex  

Line Source

In this case, the line source is located at a complex position vector r^:

=  To + ib = ro + ¿6(cos + sin ^y). (4.39)

The vector can also be represented by its magnitude and angle,

-s = \Jrl -  ¿2 2 ibro cos /i,

 ̂ _i/ro + ?:6cos/^
Og = cos (--------------- ).

(4.40)

(4.41)

'I'lic real part of fg corresponds to the source location at the origin, ?’o = 0,

fg = {x cos /:! + yam 0 )ib, 

26
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0 . =

Vs - İb,

_J , 'İ6cOS fi
cos

(4.43)

(4.44)

To obtain the far field e.xpression for the complex line .source rcxcliating 
through the lossless [Im[tr\ = 0), infinite, dielectric slab, a shift in the coordi- 
ncites of the real line source will be applied to (4.15). First it is a,ssumed that 
the real line source is located at {xo,yo) instead of the origin.

U{p) = -  /  dK T{k,) ------ .
7T J-OO kykit (4.45)

Next, fl  = xibcos (3 + yİhsın/3 is substituted instead of (a:o,yo) and the 
following expression is obtained:

1 roo  ̂ y
l/{p) = -  dk^ T{k^) ^------ _

7T J-oo k„

—iky y

y
(4.46)

Choosing the stationary and rapidly oscilhiting parts of the integrand and 
applying the stationary phase approximation procedure.

1 s in /i

F{k,) = - f { k , )  ^ ,
7T A1/

X = psm(j)^ = —pcoscj)^

^[kr) =x sin (j) + kl -  kip cos çi>.

(4.47)

(4.48)

the same expressions for the complex line source are obtained lor <&'(A.-j,), ^"{kx) 
and the stationary phase point as in (4.33), (4.34) and (4.35) for the rccil 
source.

Using (4.36) and ignoring k̂ .̂  = —kosuKp for the same reason as for the 
real line source, the following far field expression is obtained:

i-fip) 77k„p
^ ‘ k o p  ^ .b ko  (sino,-osd-.„s*sin/i)_

In (1.19) the large argunu'iit ('X|)ansion of tin' first kind zeroth order Ilanke 
function //o' (̂Aqp) can be recognized, sec (1.38).
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Figure 4.4: Branch points {ko and ¿1), steepest-descent paths (constant-phase 
paths) passing through the saddle point (stationary phase point and the 
Sommerfeld integration path (SIP)

4.4 C ontribution Of Surface Wave Poles

The integrands of the Sommerfeld integrals have singularities on the complex 
kp plane or kx plane in 2D case. The nature of these singularities affect the 
results of asymptotic expansions and uniform asymptotic expansions. They 
also affect the definition of the integration paths if the Sommerfeld integrals 
are to be evaluated numerically as described in section 4.1 .

There are two basic types of singularities - the pole singularities and the 
branch-point singularities. The pole singularities correspond to guided modes 
in the layered mediurn'. The branch points correspond to radiation modes. 
These radiation modes form a continuum of modes. In ciddition, for the layered 
medium, the branch points are only associated with the outermost regions, as 
shown in [11, subsection 2.7.1].

The l)ranch points in the integrand (4.46) ky — \Jk'  ̂ — k'̂ , the saddle point 
and integration paths are shown in F'igure 4.4 . In our problem, with reference 
to l'4gure 1. 1, tlie outermost regions (the regions 0 and 2) are free space, so the 
wa.v('iuimbers in these regions coincide k‘2 = ko. So only ko is shown in Figure
1.1 . SIP is the conventional Sommerfeld integration path which wonld be 
modified as ru'eded. SIP avoids the branch point singularities as also described
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for Figure 4.2 . The constant-phase path or the steepest-descent path that 
passes through the saddle point = ko sin <j) is shown as S i . Furthermore, 
the constant-phase path around the branch point ko is S 2 . By virtue of Jordan’s 
lemma and Cauchy’s theorem, we can deform the contour from the Sommerfeld 
integration path (SIP) to the paths S2 and ,?i. The region enclosed by S2 , 
S\ and SIP is analytic except for the possible occurrence of pole singularities. 
Moreover, the contribution from the two vertical paths vanishes due to Jordan’s 
lemma when they tend to infinity. The statioiiciry phase solution is the same 
as that one would have obtained by finding the leading-order saddle-point 
contribution.

When the integration path is deformed from the original path of integration 
to the constant-phase path passing through the saddle point at k^, = ko sin 
a A,’2 (wavenumber in Region 2) branch-point contribution should be included 
if kosincf) > k2 - But, since Region 2 is formed of free space (k2 = ko) and 

< 90° is of interest, no branch point contribution is needed (no lateral waves 
which correspond to branch point contributions). Furthermore, by noting the 
point where the steepest descent path crosses the real axis, the guided-mode 
contribution will be included if ko/sin  (j) < kx^ ,̂ the location of the j-th guided 
mode. Also, the guided-mode poles have to be such that ko < kx̂  ̂ < k\ 
because a guided mode in medium 1 is evanescent both in media 0 and 2. So, 
the criteria to be used for selecting which poles to contribute is

ko
sin (j>^  '̂1 ■ (4.50)

The pole singularities of the integrand as a consequence of (4.16) have to 
be identified in order to find the complete field in Region 2. The poles of (4.16) 
are given by the equation

1 + Roi İÎV2 = 0. (4.51)

Physically, the above implies that a wave, after reflecting from the top and 
tlu' l)ottorn interfaces, together with a [)hase shift through the slab, should be­
come in phase with itself again. This is precisely the guidance condition (.some­
times leferred to as the transvers(i resonauce condition) for guided modes in a. 
di('l('ctric slab. Therefore, tlu'se poh's in the complex k,,· plane are actua.lly re- 
lat('d to the guided inodes of a di(4ectric, slab. Moreover, since kjij = ,Jkj — k'f., 
(‘(|nation (1.51) is just a function of A:,,.. Hence the roots of (1.51) can be solved 
nnim'i’ically.
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The number of guided-mode poles of a slab depends on the frequency and 
the thickness of the slab. For instance, there are a large number of guided- 
mode poles at high frequencies and a fewer number of poles at low frequencies. 
Moreover, the thicker the slab, the more guided-mode poles there are.

Since Region 2 is free space, Ry¿, = R\q. Using the tacts tluit /?,io = —Ro\ 
and Roi -  where - — tan~^( for TE waves (U polarization)
and - — tan"^(^^|^) for TM waves (E polarization) are the phase shifts
of the Fresnel reflection coefficients (also known as the Coos-IIanchen shifts) 
in (4.51), the transcendental equations are obtained:

V2 tani/i;iy2j i^ven, 
kiy^ cot(Á;iy|) Odd,

-  kiyl U nikuji) Even, 
- f -  kiy^ cot(A:iy|) Odd,

Additionally, combining the dispersion relations for both media,

k¡ = kl -  aly, RegionO, (4.54)

ki = kl -b kly, Regionl, (4.55)

the needed second relation to be used with the transcendental e((uations is 
obtained:

TE<j 2
{ Ôy'i =

tmI aoj/f ~j
1 OC0y2 =

where also ctoy = i koy and d = d·

{kujd)^ + [oitíyd)̂  — (A:( — k'Q)iP. (4.56)

4'h(' guidance condition can be plotted on a two-dimensional plane deter­
mined l)y O'o,// and kxyd [Figure 4.5] . The two sets of curves intersect and give 
rise to values of a^yd and k\yd, which in turn determine A:,.,,.

Helerring to (l.flO) the contribution of the guided-mode poles to the far 
ii('ld of t4ie real line source radiating through an infinite dielectric slab can be 
wi’itteii as

;i()



E v e n  T M

O d d  TM

l''igur(' l.o: 'I'M (>veii and odd transcendental e(|ua.t,ions with coiubiiu'd disper­
sion r('lations at, d = 2A thickness. .Siinilar fbi· tlu' I'ls case.
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j^jcontr ibution
I ¿̂p(A\i· sin (¡)-\-ky cos 0)

= ---------1---------- 2^* ^eз[T’(¿.■г.„J], (4.57)
7T

where the poles ¿ire selected using the criteria (4.50) and
) ]  T-numerator {^‘Xpj ) / -^denominator i ^^ pj  )*

Referring to (4.46), similarly, the pole contribution for the complex line 
source is

I _ sin<-/>+A:i, COS0)
c o n t r i b u t i o n  _ __ ^   ̂^ k x b  c o s /3  — k y b  s in  f J _ _______________ 27tz .

(4.58)
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Chapter 5

NUMERICAL RESULTS AND  
COMPARISONS

As stated in the introduction, the motivation for the comparison of the radorne 
and slab fields is that as the far field in the main beam direction is concerned, 
radome of the larger radius approaches geometrically to an infinite dielectric 
slab. So the intuitive expectation should be the decrease of discrepancy be­
tween the far fields of the two models in the main beam direction as the radius 
of radome is increased. To do this comparison, the geometries and the fields 
should be arranged clearly and correctly. Also, the compcirison criteria should 
be chosen properly.

figure 5.1: Dielectric slal) and radome illuminat('d by a complex source at A. 
aj .N'ormal Incidence, b) Inclined B('ani

'There are two conditions about the placenunit of tin' slab, wluni tlu' beam



of the complex source is directed normally to the slab (Figure 5.1(a)) and 
when the beam is an inclined one with respect to the slab (Figure 5.1(b)). In 
both figures the complex line source is placed at point A and, in fact, normal 
incidence is only a special condition of the more general case of the inclined 
incidence. In principle, the infinite slab is placed as a tangent at the point 
where the main beam axis crosses the radome (point B in Figure 5.1). This is 
shown more clearly in Figure 5.2 and 5.3 where only the inner boundaries of 
the radome and the slab are shown.

Figure 5.2: Geometry for the normal incidence

Initially, the case when the beam is directed along the x-axis (normal inci­
dence) is considered. In Figure 5.2, the radome is centered at point 0  and the 
source is located at point A. If the radius of the radome is increased by keeping 
the tangent condition to the slab, the center of the radome has to be moved 
towards left (such as point 0 ’ as shown in Figure 5.2). It is expected that a 
better comparison is obtained for larger radome radius with the slab solution.

When the beam is an inclined one (see Figure 5.3), one should keep the slab 
parameters d\ and f:isiab constant as the radome geometry is changed. So the 
following relations are used to calculate the radome parameters a and ¡̂ Radome 
using fixed slab parameters:

Radoine COt [ • / ,1 )]) •smlAv/afc) <··

a — c d,
('Os(/i,s7„6)’

(5.1)

(5.2)
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Center of Radome Source

Figure 5.3: Geometry for the inclined beam

where e — J±.
COS [ 3 S l a b  ’

It is noted that the phase centers of the radome and slab fields are at points 
0  and A, respectively. So, for comparing the fields, the phases are represented 
with respect to the same point, ie. the center of the radome.

As a check, the freefopace radiation pattern is obtained when e,. is set to 1 
in tlie radome cind slab codes (free space or empty radome and slab instead of 
dielectric) for both polarizations and compared with the source fields.

In Figures (5.4) through (5.19), the far fields of the cornple.x: sources {b =  

0.2A) radiating through dielectric (yA7 = 2) radome and slal) are plotted when 
the thickness of the radome and the slab is 2A. VVe can chniote the far fields 
as IJ'' and f/* for the radome and slab models, respectively. 4'he plots consist 
of three parts: a) \IJ''\ and as the magnitudes, b) \W' — f/'*| as the field 
diih'rence magnitude, c) ¿W  and Z//'’' as the |)has('s of the fields. In these 
plots, both polarizations and two values of inclination angh' (/isiai, = 0,30^') are



presented. For inclined beam cases, the slab parameters d\ = .3A and (dsiab = 
30° are kept constant. The radome parameters a and Î Radome are calculated 
ciccording to (5.1) and (5.2). For ¡dsub =  0°, a = c -  dj and ^Radome = 0° are 
applied simply.

Rather than examining the field differences at specific angles, the average 
field differences spanning the region of interest (main beam) is more convenient. 
The extent of the span around the main beam direction is chosen to be ±40°, 
which is wide enough to take the whole beam into account. The mean, M, and 
the mean square differences, represent an average within the spanning 
region with the relations

M  = ---------- -------------, M -  ----------- ------------- , (5.3)

where N  represents the niunberof samples in —40° < o; < 40°. As a meaningful 
interpretation of the plots provided, Tables 1-4 can be referred where the mean 
and the mean square differences in fields are calculated spanning ±40° around 
the main beam direction (the spanning angle a = 0 — Î Radome·, Figure 5.3).

The results obtained confirm the idea of improving the approximation of 
the radome by the slab when the radome radius is increased.

When the radome radius is not large, different waveguide and resonance 
properties of the dielectric slab and circular radome, point to quite clear dif­
ferences in the far field patterns. The fields become different in phase when 
the spanning angle, a, is non-zero, see Figures 5.4, 5.8, 5.12 and 5.16 . Also, 
the amplitude of the radome field is more oscillatory as compared to the slab 
far field. Finally, the field differences include the boresight error and peak-gain 
attenuation.

With the greater radius c, the differences decrease, see Tables 1-4. This 
is mainly due to the fact that the phase matching of the shxb and radome 
fields is much better satisfied when c is increased. One can see, however, some 
distinctions between E  and II polarizations. The field difference appears to be 
a little greater in the II case especially at large spanning angles tv. Also, the 
differences are greater for the inclined becirns.

.\'ot.ice that the conclusion on the radonie and slab field convergence which 
follows from the results above, is actually a sort o f’’asymptotic'’ nature because 
soiiH' field differences still ('xist far from the main beam, even for large c. It 
could b(' th(‘ (dfect of the difference between the closed radonie and the open

rs |2
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slab topologies resulting in different waveguide and resonance properties of 
these structures. The effect, however, is minor when the beam is narrow and 
directed normal to the slab.

The results obtained in this work, show the limitations for the appro.xima- 
tion of the radome by the infinite dielectric slab in the far field around the 
main beam for the directed sources.

5.1 Frequency and Thickness D ependence

To understand how the radome and the slab affects the radiated fields, it is 
worthwhile to see what happens when the frequency and the thickiu'ss of the 
dielectric are changed. The far fields in the main beam direction as a function 
of frequency and wavelength are plotted in Figures 5.20, 5.22 for the radoine 
and slab models respectively (the case of E polarization, ¡3 = 0, (/> = 0). In 
these plots, the distorted effects of the closed radome model in addition to the 
similar behaviors of the fields are observed. The thicknesses of the radome and 
the slab are changed in Figures 5.21 and 5.22 . The periodicity of the' far field 
as a function of thickness is observed, with the period of A,;,t//2, as c.xpected, 
where \diei — = I cî nd Aq is the free space wavelength.



Table 1 , E Polarization, ¡3siab =  0, = 3A

Inner Radoine Radius Mean Error Mean Sqtiare Error Figure Number
c =  5A 1.197953 0.055573 Fig 5.4

c = lOA 0.899181 0.041840 Fig 5.5
c = 20A 0.556542 0.025704 Fig 5.6
c = 40A 0.323722 0.013925 Fig 5.7

Table 2, E Polarization, jdsiab = 30, d\ = 3A

Inner Radorne Radius Mean Error Mean Square Error Figure Number
c = oA 2.362785 0.108.388 Fig 5.8

c = lOA 1.823967 0.091400 Fig 5.9
c = 20A 1.219008 0.066617 Fig 5.10

• c = 40A 0.744024 0.041387 Fig 5.11

Table '3, H Polarization^ l̂ siab = 0, cli = 3A

[nner Radome Radius Mean Err'or Mean Square Error Figure Number
c = 5A 1.10704 0.050534 Fig 5.12

c = lOA 0.88236 0.037627 Fig 5.13
c = 20A 0.66267 0.026212 Fig 5.14
c = 40A 0.54899 0.021671 Fig 5.15

Table 4, H Polarization, /4siab = 30, c/i = 3A

Inner Radome Radius Mean Error Mean Square Error Figure Number

c = 5A 2.021541 0.090874 Fig 5.16
c = lOA 1.710943 0.078746 Fig 5.17
c = 20A 1.1776.34 0.056916 Fig 5.18
c = lOA 0.782151 0.034336 Fig 5.19
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Figure 5.6: Far Fields of Radome (solid curve) and Slab (dashed curve) as func­
tions of 6  (E Polarization, Normal Incidence, c =  20A, Î Radome =  Psiab = 0°,
OC — B ^  Radome)
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Figure 5.10: Far Fields of Radome (solid curve) and Slab (dashed curve) 
as functions of 9 (E Polarization, Inclined Incidence, c = 20A, (̂ siab = 30 ,̂ 
Oi. — 9 Radome)

(fip0)
Q.
LU

ow0)(/)
03sz

CL

200

-200
-80 100

Figure 5.11: Far Fields of Radome (solid curve) and Slab (dashed curve)
as Functions of 9  (E Polarization, Inclined Incidence, c  =  40A, / is iab  =  30‘\

— 9 llddoiric)

A2



</) 200 2 0 L.
I
o 0(0000
^  -200

------------1---: \
\ \
\ \
\ \

I
' \
1 ^

J  A

'------------' J/ > /
1

z
/ ' 1: / /

\ \  \
V I \ 1 \  \ 1 " /  / 1 /

■ >1 \ \ ' l / /X1 1N N 1  ̂ ' J_______1  ̂ /̂ ___
-1 0 0  -8 0  -6 0  -4 0  -2 0 20 40 60 80 100

Figure 5.12: Far Fields of Radome (solid curve) and Slab (dashed curve) 
as functions of 9 (H Polarization, Normal Incidence, c = 5A, [3siab = O'", 
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Figure' 5.13: Far Fields of Radoine (.solid curve) and Slab (dashed curve)
as ruiictions of 0  (II Polarization. Normal Incid('iic(', c =  lOA, /3,s/„6 =  d'b
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Figure 5.14: Far Fields of Radome (solid curve) and Slab (dashed curve) 
as functions of  ̂ (H Polarization, Normal Incidence, c = 20A, fisub = 0°,
Ct — 0 /3 Radome')

Figure 5.15: Far Fields of Radome (solid curve) and Slab (dashed curve)
as functions of 0  ( 11 Polarization, Normal Incidence, c =  lOA, j is iab  =  0",
1̂ — R u d o m c )
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Figure 5.16: Far Fields of Radome (solid curve) and Slab (dashed curve) 
as functions of 9 (H Polarization, Inclined Incidence, c = 5A, f̂ siab = 30"", 
Oi — 9 P  Radome)
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Figure 5.17: Far Fields of Radome (solid curve) and Slab (dashed curve)
as ruiictions of 9  (II Polarization, Inclined Incidence, c =  lOA, ¡isiab ~  3()‘\
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Figure 5.18; Far Fields of Radome (solid curve) and Slab (dashed curve) 
as functions of 0 (H Polarization, Inclined Incidence, c = 20A, ¡3siab = 30°,
CX — 0 Î Radomê

I'^guii' 5.1!): Far Fields of Radoine (solid curve) and Slab (daslu'd curve 
as iunclions ol 0 (11 Polarization, Inclined lncid('uc('. c = IDA. ¡isinh
O — 0 )
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Figure 5.20: Far field as a function of frequency and wavelength
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Figure 5.22: Far field as a function of frequency and wavelength
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