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ABSTRACT

A STUDY OF LINE SOURCE FIELDS
TRANSMITTED THROUGH A 2D CIRCULAR
DIELECTRIC RADOME OR A SLAB

Anil Bircan
M.S. in Electrical and Electronics Engineering
Supervisor: Prof. Dr. Ayhan Altmntas
August 1996

In this thesis, far field solutions for the real and complex line sources sur-
rounded by a cylindrical dielectric shell (radome) are obtained in both E and
H polarizations. These far fields for the radome model are then compared with

the ones transmitted through an infinite dielectric slab.

The motivation is that as the far field in the main beam direction is con-
cerned, the radome of large radius can be approximated by an infinite dielectric
slab. It is clear that the fields of the cylindrical shell (radome) is expressed in
terms of cylindrical functions whereas for the slab, the fields are given through
Sommerfeld integrals. By applying the saddle point integration techniques to
the Sommerfeld integrals, the radiated fields of the slab are numerically calcu-
lated and compared with the fields of the dielectric shell. The source is taken
as a line source, but it can also simulate a beam field by the complex source

approach.

The study gives a better understanding of the reflector antennas covered

with dielectric radomes.

Neywords : Diclectric Radome. Dicleelric Slab. Complex Source

1l



OZET

DIELEKTRIK RADOM VE TABAKADAN GECEN
DOGRUSAL KAYNAK ALANLARININ INCELENMESI

Aml Bircan
Elektrik ve Elektronik Miuhendisligi Boltimu Yiiksek Lisans
Tez yoneticisi: Prof. Dr. Ayhan Altintas
" Agustos 1996

Bu calismada, £ ve H polarizasyonlarda, silindirik dielektrik kabukla
(radom) cevrelenmis reel ve karmasik kaynaklar icin Fraunhofer bdlgesinde alan
¢6ziimleri bulunmustur. Radom modeli icin hesaplanan bu uzak holge alan-

lar1, ayn1 kaynaklardan yayilan ve sonsuz dielektrik tabakadan gecen alanlar

ile karsilastirilmistir.

Buradaki motivasyon, ana yayilma dogrultusu yéniindeki uzak bolge alan-
lar1 diistiniildiginde, blyik yaricapli bir radomun sonsuz dielektrik tabaka
ile modellenebilecegidir. Radom modelindeki alanlarin silindirik fonksiyon-
lar cinsinden bulunacagi aciktir. Dizlem modeli icin ise Sommerfeld inte-
grali kullamlmstir. Eyer noktasi integrasyon teknikleri kullanilarak Sommer-
feld integralleri c6ziilmis ve tabaka modelindeki alanlar radom modeli icin
hesaplanimis alanlar ile karsilastinlmistir. Kaynak cizgisel (2 boyutta noktasal)
almmis ancak pratikteki dogrultulimus antenleri simule edebilmesi icin karmasik

kaynak yaklasimi uygulanmistir.

Bu tez. dielektrik radomla cevrelenmis yansiticr antenlerin daha iyi

anlastlmasimy saglamaktadir.

Analitar Kelimeler @ Didlcktrik Radom, Diclcktrik Tabaka, Karmasik Kay-

nak
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Chapter 1

INTRODUCTION

The penet'ration of electromagnetic waves through dielectric layers is an in-
teresting concern, for instance in the performance of antennas surrounded by
radomes. A radome is a dielectric shell used to protect the antenna from wa-
ter, sun, wind, etc. The radome, however, distorts the radiation pattern in
the far field by the peak-gain attenuation (loss of peak gain) and the boresight
error (difference between the apparent and the distorted beam directions) [1].
A precise analysis of radome performance is difficult, and nearly impossible in
practice, because the general shape of a radome layer does not fit into the frame
suitable for exact analysis. Thus, some approximation methods are resorted in
the literature. The basic principle of approximation is to find a configuration
to approximate the surface of the dielectric layer locally, which can be solved

rigorously by analytic means.

Plane wave spectral decomposition of the incident field, local plane wave
tracking through an equivalent plane slab and spectral synthesis of the trans-
mitted field proceduresignore at least the surface curvature when using equiv-
alent local slab models or multiple internal reflections and guided and leaky
waves excited in the radome [2]. In [2], a curvature corrected slab transmis-
sion coefficient is given. Then, high {requency asymptotics, ray approach and
physical optics with the coefficients found in [2] are used [3] to solve the radia-
tion from radome covered antennas. Ray techniques are used again for narrow
waisted Gaussian beam propagation through dielectric plane layer and circu-
lar cvlindrical layer [1]. In [5], attention is focused on the relation hetween
(ireen’s functions appropriate to closed and open shells; the 0 — 27 (periodic)

and (—oc) — (4o0) (nonperiodic) dependencies and the equivalence relation



between partial angular harmonic and ray type Green’s functions are investi-
gated. Accuracy, interrelation between the solutions and comparing them with

reliable tests are studied.

In this work, for the radome and slab geometries, real (axial) line sources in
both I¥ and H polarizations are taken into account, and, additionally, complex
line sources are considered to simulate directed beam fields used in practice.
For the closed, circular geometry of the radome, cylindrical functions are used
to represent the incident field via the addition theorem and the scattered fields
in the inner, outer and the middle regions. Then the boundary conditions
are applied to the total fields to obtain the Green’s functions. For the open,
infinite structure of the dielectric slab, the spectral representation is used to
calculate the far field. The Sommerfeld integral is carried out by asymptotics
with the surface wave contribution. The frequency and the thickness variations
ol the models are ;Llso examined to understand better the nature of the radome
and the slab structures. Finally, the far fields obtained for both models are
compared to study the validity of approximation of the radome by a dielectric

slab.

The outline of this thesis is as follows: In Chapter 2, the radome geometry
and problem are formulated and the solution is given. The solution involves
Bessel [unctions whose numerical generation is described in Chapter 3. In
Chapter 4, the infinite dielectric slab is considered. The Green’s functions for
hoth models are compared and the field difference is analyzed nunerically in

Chapter 5. Main conclusions are given in Chapter 6.

In the analysis, a sinusoidally-varying time dependence e~ is assumed

and suppressed.



Chapter 2

THE FAR FIELDS OF THE
DIELECTRIC CIRCULAR
SHELL (RADOME)

2.1 Real Line Source

A line current which is directed along the z axis, is assumed to be placed at
' as shown in Figure 2.1. The inner and outer radii are shown by ¢ and d,
respectively. The radome divides the whole space into three distinct regions
as shown in the figure. The radome material is assumed to be dielectric with
¢; and the radome is located in free space. I'rom the symmetry, 17 is taken as
directed along x-axis without loss of generality. The incident field radiated by
the source is uniform and axially symmetric with respect to the source position

—

r'

e = HM kol = 7)), (2.1)

where kg is the free space wavenumber.

The scattered fields can be written as

X

e = Z Sy (kor)e™ . r < e,

==

—_
N
o



Observation
Point

Region 3

Region 1
€0, po

Figure 2.1: Radome Geometry. The inner and outer radii are given by ¢ and d,
respectively. r/ is used as the location vector for real line source. For simplicity,
- . .

' is assumed to be directed along the x-axis.

Uy = Z [ann(l‘717') + (inHr(zl)(/"l")]Cind)» c<r<d, (2.3)
Ui = Z FnH,(ll)(_/co?‘)c':'”’", r > d, (2.4)

where ky = ko4/€, is the wavenumber in the radome and U°, U¢, Us¢ are the
z-components in Regions 1,2,3 of either electric or magnetic field in the case of

I or H polarization, respectively.

Note that, for the seattered fields, only standing waves (J)s) in Region 1,
outgoing (H.s) and standing waves in Region 2 and only outgoing waves in
Region 3 (since no reflection occurs in this region) arc included. Using the

addition theorem, the incident field can be written in the form of a series:



, - i (1 k in{¢—9') . J
[Jine — H(gl)(/»olF— 7_,|) _ n=—oo n ( ol ) (ko?") , T <1
oo H{D (kor) o (kor”)e™@=#) | > g,

where ¢ must be taken as zero, since 7’ is along the x-axis. Thus the total

field is determined by the expansion

(I:Ot — U1$C+( inc — nﬁoz—oo[‘sn + [{gl)(kor,)]‘]n(kor)eimbv' 0 <r< 'I"
ZO:_OO[San(kof') + Jn(kO"'/)H?ng)(kOr)]em(bv r! <r S C,

(2.6)
in Region 1, and by the expressions (2.7) and (2.8) in Regions 2 and 3 respec-

tively,

o0

UPt = 3 [padulbar) + guHO (kyr)]e™, ¢ <r <d, (2.7)
Ut = S rpHu(kor)e™, r > d, (2.8)

where sp, pn, ¢, and r, are the coefficients to be determined by the boundary
conditions.

i QLo
w_p. ar

In the case of I polarization, the continuity of £, and H, = (tan-
gential fields) at the boundaries » = ¢, d and the orthogonality conditions give
an infinite set of equations. This set consists of a series of independent blocks

in four equations:

1% = BY=e = spdulkoc) + J,,,(k07")H,(L1)(A:0c) = pnJn(kic) + g H ( 1¢),
(2.9)
[-j,;"’ = Ij“"[, —q = ol (kod) = ppJp(kyd) + an,(Ll)(kld), (2. 10)
/1;0( = [‘imll'zc = -'5n']1,1('1‘70(7)'*"']71(/‘707'/)H /‘0( \/—])" n 1( +\/_(I" [I /”(’
(2.11)

1Y = 13 ma = v Y (hod) = /Gpud i (kid) + /6 g D (kyd) - (2.12)
with four unknown coefficients »,,, p,, ¢, and s,.

Solving this system, the coefficients are obtained, and so are the fields in

all the regions.

N3



Figure 2.2: Geometry of the Complex Line Source Inside the Radome

Similarly, in the H polarization, orthogonality and the continuity of H, and

. 8H£ot . . . . .
By = == at the boundaries give the equations with unknown coefficients

Ty Pry Gn and Sp:

HP = H|r=c = sadn(koc) + T (korYH D (koe) = Pndn(kic) + an,(ll)(_/clc),
(2.13)
HPY = HYoea = rodly(kod) = pudu(kid) + ¢ HY (ki d), (2.14)

1
B = B e = SnJ,{L(koC)'i'Jn(/\?o"’)H,(Ll)'(/\-'u(’) = T[IJ,LJ,'L(klc)—#an,(Ll)'(klc)],
(2.]

] |
Hi = HEY oy = o HY (hod) = 7[an,’L(A:ld)+qnbl,g”'(kld)]. (2.16)

2 e,

[\]
—
[
N’

Again solving the system gives the coeflicients and the fields. Examining
the system of equations for both polarizations, one recognizes that the only

difference is that the /€, coeflicient appears in the other as 1/,/c,.

2.2 Complex Line Source

Unlike the real line source, the antenna feeders are not uniform in practice. So,
to simulate nonuniform radiators the complex line source is used, [6], [7]. In
Figure 2.2, a complex line source in a radome with a beam is shown. The line
source is placed at a complex location 7y which is given by

0O



Fy = 7% + ib = aZ + 1b(cos A% + sin B), (2.17)

where the parameter 3 gives the direction of the beam and b is related to the

beamwidth. For b = 0, the source is real and radiation is uniform.

Assuming that the source is located at (r,,0,), the field intensity at any

observation point (r,0) may be written as

tko R
Uire(7) = H (ko R) ~ \/2/me ™" S — | kR > 2.18
z (7) 0 (0 ) /7('6 \/ko—R’ 0R>>]., (.‘J.S)

where R is the distance of the observation point from the source,

R = \/'r2 + 72 — 2rrs cos(6 — 0;). (2.19)

In the far field, R = r — rg cos(0 — 0) applies in the phase term, R ~ r in
the amplitude term of (2.18):

eiko(r—rs cos(6—0,))

ko’l’ '

Ui = ¢ > |rl. (2.20)
.

Here, 7, 7o and b are the complex source position, real source position and

beam parameter vectors given in polar coordinates as 7 = (ro, 0p), 75 = (v, 0;)

and b = (b, 8). All angles are measured from the x-axis. The values of r; and

g, are

ro + tbcos

Ts

ry = /16 — b* + 2ibcos f3, 0, = cos™'( ) - (2.21)

~

Substituting (2.21) into (2.20) the following expression is obtained:

) eiko(r—ro cos(0—00))
vir =
- ]\707‘

which vields a maximum at § = # and a minimum at 0 = f 4 7.

ekbcos(O—ﬁ), (

Q]
b
N

The incident field can also he written as a series in terms of the addition

theorem:

-1



(i) = C H kol = 73)) = € 3 Julhor ) HO (or)e ™= 1 s .

(2.23)

The complex source at 7y can be thought as a cylindrical source in real space
located at 7 = 79. Uine 1s an exact solution of the Helinholtz equation, this is
unlike the Gaussian-type exponents frequently used to represent heam waves.
(laussian beam field is an approximate solution of the field equations that fails
outside the paraxial region surrounding the beam axis, the complex-source-
point yields a valid solution of the Helmholtz equation at arbitrary observation

points.

Using the scattered fields given in (2.2), (2.3), (2.4), the total fields can he

written as:

Ut = Z [sndn(kor) + C Jn(kors)[-[,(Ll)(k07')e_i'L05]ei’L¢, re <1 <c¢ (2.24)
Ut = Z [prdn(ker) + ([,L[17(L1)(/\717')]ei”¢’, c<r<d, (2.25)
Ut = ST o, N (ker)e™” . r > d. (2.26)

Continuity of the tangential fields yiclds

-‘"n']n(koc) +C Jn(1‘707'5)Hy(l.l)(/"'()c)('l_mas = ppJu(kic) + (/n]{v(l,l)(l"'lc)’ (2.27)
o H Y (kod) = pudo(krd) + ¢ LIV (ki d), (2.28)

(Loe) + C Julkor ) (hoe)e™ = alpu ) (kie) + ¢n H MY (kye)], (2.29)
Tn lffll)'(/\'()(l) = alpuJ] (kid) + [[,(Ll)’(l\:l(l)], (2.30)

where o = /= in I polarization and « = /£ in [ polarization,
T T

The field of interest is the one at far field which includes the coefficient r,,

sud,

n



CY$2n$7n($1ny3n - $3n?/1n)01n

T (Zonyrn — O%70Y6n) [TonCon — T7n(TinYsn — WTsnyin)] + LonComCin’ (2:31)
where

Cln = T7nY8n — T8n¥7n,  Con = Tinldn — AT4nYin, (2.32)

Tin = Jn(koc),  yin = J. (koc), (2.33)

Ton = C Jn(kors)e ™, (2.34)

23, = HV(koe),  yan = HM (koc), (2.35)

Tan = Jn(kic),  yin = Jy(k10), (2.36)

tsn = H (koc),  ysn = HMV (koc), (2.37)

zon = HV(kod),  yen = H" (kod), (238)

2oy = Ju(kid),  ym = J.(kid), (2.39)

zgn = HO(kyd),  yen = HY' (kyd) . (2.40)

In the numerical implementation of the radome geometry fields, Bessel func-
tions are generated as described in the next chapter. The radius, thickness and

the dielectric constant of the radome determine the truncation number of the

series expansions of the fields.

9



Chapter 3

NUMERICAL GENERATION
OF CYLINDRICAL
FUNCTIONS

3.1 Introduction

In this chapter, the numerical computation of Bessel [unctions of the first and

second kind for integer orders and complex arguments are considered.

Bessel functions of integer order are the natural and general solutions of
many radiation, scattering and guided wave problems which are formulated
in the cylindrical coordinate system. Complex or imaginary arguments are
associated with lossy materials, evanescent fields and leaky waves for instance.
Bessel functions are also used in the mathematical description of numerous
physical phenomena besides electromagnetism. Consequently their accurate

computation is of general importance.

J, () and ¥, (x), Bessel [unctions of the first and second kind respectively

are solutions to Bessel’s differential equations

22 y' 4+ sy + (.:'2 — Ilvz).l/ = (). (3.1)

One way to represent J, () and Y, (z) for integer n s [9].

10



B2 = (2 Y {;—1{% (32)

k=0

—_
[

/2yl (n— k= 1) .
/ ) Z( ]I:' 1)1(32/4)“

k=0
(=22/4)"

Dlelk 1)t pln b+ Dl

s

(=/2)"

T

(3.3)

where o(m) = —7 + 25" 1/k with (1) = —7, and 7 is Euler’s constant.

Using these equations to determine J,(z) and Y;,(z) is impractical because
serious losses of significance caused by small differences of large numbers occur
when the terms in the summations become too large. Alternatively an integral

representation may be tried for J,(z)

Ju(z) = = /01r cos(zsin — nd)do, (3.4)

but the integrand oscillates rapidly for large arguments and orders, this requires
many steps in the numerical integration, causing the computation time to be

too long.

Instead of these rather unsuitable methods of obtaining Bessel functions,
a different approach is applied in this thesis. It utilizes the method given by
DuToit [8] which encounters some forward and backward iterations based on

the recurrence relation

But1(2) = —Ba(2) — Ba-1(2). (3.5)

[t is the main equality which enables the calculation of J,(z) and Y, (=)
ol all orders for a given argument z, when two consequtive orders B,(z) and

13,4:(2) are known.

Before using this relation, the stability of recurrence should be guaranteed.
When the forward recurrence is used, the factor 2n/z amplifies any round-off
error. With the repetitive use of (3.5) the accumulation of errors occurs. The
relative errors are, however, decreasing when the [unctions B, are increasing
in the process of iteration. So. progressing through increasing values of |13, ()]

appears to be the best strategy.
Therelore. for J,(z) Tunctions, the backward recurrence is stable since

!



log101J4n(z) |

10 20 30 40 50 60 70 80 90 100
order n

Figure 3.1: |J,(2)|, Argument: z = 70+ 07 solid line, z = 60 + 10z dash-dotted
line

|Jn(z)| are increasing rapidly with decreasing n. For Y,(z), when z is com-
plex, the backward recurrence is stable for small n but the forward recurrence

is needed for n > r where r is the index corresponding to the minimum of
:, -~
[Ya(2)]-

Numerical experimentation indicated that the relative propagated error is

always stable when this rule is followed, see Figures 3.1 and 3.2 .
In more details, the guidelines are as follows:

. When z is real or when |Re(2)] > |Im(z)|, the general magnitude of
[J.(=)] and |Y,(2)] is atpi')roximately constant for a given argument = for n < |z|.
The relative propagated error is stable under these conditions when recurrence
is carried out with either increasing n (forward recurrence) or decreasing n
(backward recurrence). Since J,(z) decreases with increasing n when n > |z|
(I'ig.  3.1), backward recurrence can be used starting with arbitrary initial
orders J,(z) and Jy41(=) to compute the lower orders. Since Y, (z) increases
with n when n > |z| (IFig. 3.2) all higher orders may he computed from Yy(z)

and Y)(z), using forward recurrence.

2. When = is complex, the same rule still applies for ./, (), since it decreases

with increasing n for all values ol n. Y, (z) can be calculated from Y, (=), Y41(2)

12
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Figure 3.2: |Y,(2)|, Argument: z = 70 + 0¢ solid line, z = 60 + 107 dash-dotted

line

using forward recurrence for n > r and backward recurrence for n < r where r

is the value of n to yield a minimum to |Y,(z)| for a given argument z.

3.2 Algorithm for J,(z)

As explained above, backward recurrence is used to compute J,,(2) from J,(z)
and Jo41(z). The value of q must be sufficiently large for the starting value
J,+1(2) to be practically zero (see Fig. 3.1). Let B,(z) = S.J.(z) such that
By41(z) = 0 and Bq(;;)\ = 1, the relative propagated error caused by the as-
sumption that B,4 (=) = 0 will diminish for smaller values of n. After repetitive
use of (3.5) with decreasing n starting from ¢ + | and ¢, J,(2) is obtained by

normalization of I3, (z):

(3.6)

When Im[z] < 1, the normalization constant S in (3.6) may be computed

with the aid ol the series [8,9]

13



I = o) 423 Juele)
k=1

S = S Jo(Z) + 22 S Jgk(_Z)
k=1
q/2

k=1

&

The magnitude of any of the B,(z) functions is usually smaller and never
much larger than S under the condition Im[z] < l. This ensures that losses
of significance caused by differences of large numbers in the summation will
always be a minimum. When Im[z] >> 1, S will be magnitudes smaller than
some of the terms in the summation, and serious losses of significance will

occur. This is avoided by using the series [8,9],

S cos(z) = S Jo(z)+2 i(—l)k S Jor(2)
k=1
a/2
~ Bo(z) +2) Bul(2), (3.8)

k=1
when Im[z] > 1.

The following rule which is determined empirically by Du Toit [10], yield
a minimum value for q (the starting point for backward recurrence) with high
accuracy for real z, and for M < |z| (where M is the maximum-required Bessel-
function order) when double precision is required (double precision is used in

both the radome and the slab calculations in this thesis):
z| + 10.26]z[0-311015 1 1.8, 21 <25
i |z 7 |=] | 2] < (3.9)
2] + 6.6362|2[0%42181 4+ 0.4, |2| > 25.

3.3 Algorithm for Y,(z)

As discussed before, when z is real the magnitude of Y, (z) is approximately
constant for n < |z so higher orders may be computed from Yo(z) and Yi(z) us-
ing forward recurrence. Neumann’s expansion is used for accurate computation

ol Yo(z) and Yi(=z),
!



2 X0
Yo(z) = ;[ln( 2/2) +1do(z) = 2D (= J% ) (3.10)
k=1

o
H

fj 2k + Dokt (= )]. (3.11)

Yi(z) = —|[h T—1J;
(2) = 2[n(=/2) + 7~ 141(2) it

s

e

Only the significant J,(=) functions (until order n = ¢) are needed and the

series are truncated at n = q.

Wlen z is complex, ¥, (z) may be calculated for all n from Y, (z) and Y;4,(2)

using backward and forward recurrence.

After some experimentation it may be inferred that |Y,(z)] is at a minimum
for a given complex argument when r = [|z| + |[Im(z)]/2] (this can be verified

in Fig. 3.2). More precisely, a minimum occurs when [8]

Im(E sin[cos ™}(
T

)]) = I'm[cos™!(=)]. (3.12)

PO Bt

IS I e

This relation is tried using the Reguli Falsi numerical method to obtain
r but it is seen that the approximate value r = [|z] + [Im(z)|/2] gives quite

reasonable values for r.

Y.(z) and Y;11(2) are determined from Yy(2), Yy(z) and the J,(=) values as

follows:

With the expansion of the recurrence relation (3.5), Yo(2), Yi(z) or Jo(2),

J1(z) can be written in terms of Y, (z), Y,11(z) or J,(2), Jrqu(z) as

BO( ) =puB(2) + praBrya(z), (3.13)
B (2) = pa B (2) + paa Brgi(2). (3.14)
By the Wronskian,
2
]n+l( )) ( ) ]77)n+|( ):‘;7 (;JB)
it 1s known that the determinant
b (3.16)
P2r P2

is always equal to unity and it is used as a check in the codes.

15



Using known Bessel function values,

B
pu = FO, (3.17)
B
P21 = 3#1, (3.18)
_ Jo(z) - Pqu(Z)
P12 Ti(2) ; (3.19)
.]1(2:) —'pglJT(Z)
D22 = , 3.20
Jni(2) (3.20)

where B,(z) values are obtained for n < r by backward recurrence starting

from B,yi(z) = 0 and B,(z) = L.

Hence the solution to (3.13) and (3.14) is

B.(z) = —p12Bi(2) + p22Bo(z), (3.21)
Bry1(2) = pr1Bi(2) + pa1 Bo(z). (3.22)

Unfortunately, (3.21) and (3.22) cannot be used numerically when Im|z]
is large, because the terms on the right may be magnitudes larger than those
on the left side of the equations, causing serious truncation errors. However,
substition of (3.21) and (3.22) into (3.15) yield

1 2p12 o ¢
Yi(z) = ——|J.(2)Yo(2) + —=], 3.2:
(2) = S5 HEI() + 22 (329
1 2p11
Yiii1(2) = ——[Jr11(2) Y . 3.24
+1(2) Jo(Z)[ +1(2)Yo(2) + ] (3.24)
So, with », Y.(z) and Y.4:(2), Ya(z) is produced by backward recurrence

[or n < » and forward recurrence for n > .

3.4 The Accuracy of the Algorithms

The accuracy of the algorithms were also tested by examining the numerical

crror in the Wronskian

)
crror = Jop (2)Yo(2) = L)Y (2) — — (3.25)

16
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Figure 3.3: |Relative Error|
For illustration, this error is divided by [Jut1(2)| + |Jn(2)],
Joi1 (2)Yo(2) = Jo(2)Ypi(2) — 2
|6| — | +1( ) ( ) ( ) +l( ) T (326)

l‘]n+1(5)| +

Ju(2)]

The relative error |e| is representative in all four functions involved.

The result follows when it is assumed that the relative errors in all four

functions involved have the same amplitude, but are uncorrelated. This error

le|, Ju(z) and Yi(z) for~z = 120 + 10z are depicted in Figure 3.3 . The relative

error is in the order of 10715, 10716

precision used in the codes.

which compares favorably with the double



Chapter 4

THE FAR FIELDS OF THE
DIELECTRIC SLAB

4.1 Introduction

In this chapter, the far field radiation of real and complex line sources in the
presence of a dielectric slab of infinite extent is investigated. The geometry of

the problem is given in Figure 4.1 .

The fields of the unit line source located at the origin and radiating in free

space satisfy the scalar wave equation [11],

[ i + i + k319 (2, y) §(x)é 1.1
- — ; T,Y) = —o\x i 4,
(');_l:-z 0'1/2 0 ( I/ ( l ) (.I/) ( )
where @ is the z-component of the electric or magnetic field depending on the

nature of the source.

Because of the cylindrical symmetry, the equation above can be solved most

conveniently in evlindrical coordinates,

o* | o* .
LT L) = —a(p). 1.2
“Op* * pdp  kol®lr) *(p) (1:2)



Outside the source region, the right-hand side of (4.2) is zero and we have
the Bessel’s equation of zeroth order. In order to have an outgoing-wave solu-
tion that satisfies the radiation condition, the Hankel function of the first kind

is chosen for ®(p) with e™*** time dependence. In other words,

2 .
®(p) = C H (kop) ~ Cy[——e™* | kop — 0. (4.3)
1 hop

By matching the singularity of the Hankel function at p = 0 to the line

source, one has

@(p) = 71 (kop) - (1.1)

The application of thé boundary conditions on the slab surfaces are easier
to apply in cartesian coordinates. For this purpose, another solution including
the Fourier transform technique is investigated. Assuming that the Fourier
transform of ®(z,y) exists, ®(x,y) is expressible as a Fourier inverse transform

integral,

1 o0 s
D(a,y) = 5= /_ kb k), (4.5)

Substituting (4.5) into (4.1) and using the [act that,

Lo
b(x) = — dkgeter, (4.6)
271' J =0
it 1s obtained that,
L Tk 2 _ 1214 Lo ik ¢ -
— Ak == + kg — k2], y) = —— dhp e 6(y). (4.7)
21 o Jy? * 2 )

Since (4.7) is satisfied for all x, we must have

o?

y*

+ KD (k) = —0(y) (1.8)

[

where k2 = k§ — k2.
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A particular solution to (4.8) is

@, = vi(y) €M + vy(y) e, (4.9)

Substituting ®, in (48) one gets

i ky vi(y) e®Y —3 ky vy(y) ™Y = —6(y). (4.10)
Also, imposing the condition [14]
vi(y)e™ + vy(y)e™* =0, (4.11)

one solves for v{(y) from the above set of equations and by integrating, it is
found that v (y) = ﬁ Ignoring the physically unnecessary incoming-wave
part, ie ve(y), the solution i§ obtained as

2' eiky ly]

2k,

D(ky,y) =

(4.12)

Here, the radiation condition is satisfied by considering the outgoing-wave

solution. Hence (4.5) becomes

7 oo i eik; z+iky |y| v
O(x,y) = E/—-oo = —"-—ky— (4.13)
By the uniqueness of the solution to the partial differential equation (4.1),
(4.13) must also be equal to (4.4) since both of them satisfy (4.1). Hence, the

spectral representation of the line source for the free space is obtained,

dky ——— . (4.14)

T J—x ky

l /oo etk tiky [yl

This expression yields the plane wave expansion of the cylindrical wave of H(E ),
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=X

Region 0 €0, u0

R e L - DU

Region 2 €0, u0

.

o

Figure 4.1: Slab Geometry (o = 1 is taken for simplicity).

Modifying (4.14) for the geometry provided (Fig. 4.1), the far zone trans-

mitted field in Region 2 can be written as

({ik.r x—tky |y|

1 oo .
U(p) = = / dk, T(k,) ———, (4.15)
e v

where T(kl) is the transmission coefficient [12] for plane waves with the addi-
tional phase factor gained during the propagation through the dielectric slab.
As seen from Fig. 4.1 y takes negative values in Region 2. The integral in
(4.15) is also known as Sommerfeld integral. The expression for T(k,) is given
as:

g ¢t Rry—koy)(da—dy)

T(ky) = : .
(k=) (L + por)(1 + pi2)(L 4+ Ror Ryy ¢t 2 Fry (da—da))

where the parameters are as {ollows:

(4.16)




k
Por = 1 poliy

P10 w1koy? .
. ks ik For the TE case (4.17)
])12 - 1 y — 1/~0y
P21 u2kyy uokyy?
po1 = - = by
P10 e1koy ot . [ e o
L ek eke, [ A7or the TM case (4.18)

piz = P ek, eokyy’

1201 = "RlO - ll:ua - .
’”.‘1’ For both the TE and T M cases (4.19)

o = — Ry, = P21—2
Riz Ry T+par’

k2 + kg, = kS, (4.20)
K+ kD, =k (4.21)

The right hand side of (415) can be interpreted as an integral summation
of plane waves propagating through the slab in different directions into Region
2 including evanescent waves. Furthermore, these plane waves satis{ly the dis-
persion relations (4.20, 4.21). Hence (4.15) is the plane wave expansion of a
cylindrical wave passing through the dielectric slab. Due to (4.20) and (4.21),
ko, and kq, can be complex numbers. In order to satisfy the radiation condi-
tion of having only outgoing waves in the integrand, it must be ensured that

Lin[k,] >0, Re[k,] > 0.

In addition, the branch point singularities in (4.15) (at ko, = \/Ak§ — A2 = 0,
k, = +k,) should be avoided by the path of integration as shown in Figure
4.2(a). To carry out numerical integration, the path in Figure 4.2(b) is more
suitable. If a small loss is assumed by adding a small imaginary part in ¢,,
the wave field becomes absolutely integrable and the integral becomes well-

hehaved.

Three methods of numerical integration ol the Sommerfeld integral were
tested. For all three, @ and y were kept large, so that the observation point was
in far field. But this made the integrand oscillate rapidly and the integration
hard to be calculated. The adaptive recursive Simpson’s rule and Newton
(‘otes panel 8 rule didn’t give satisfactory results. For a dependable integral
algorithm. Filon Quadrature Method [13] is tried for the rewritten form of

(1.15):

2 N .
l(p) =~ ./” dk, cos(kya)T'(k,.)
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[igure 4.2: Different Paths of Sommerfeld Integration



In this algorithm, the integral fab dz cos(k z) f(z) is calculated by using the

Filon cosine formula

b
/ ducos(k x)f(z) = ha(fasink zn, — fosink xo) + B Co +~v C,),  (4.23)

with the interval [a,b] and f, is the value of the [unction at ,. The following

abbreviations with the cosine and sine sums complete the algorithm:

0=k/L:k(b““), (4.24)

a(0) = 62 +0.50 311;30 — 2sin® ()7 (4.25)
B(0) = 2 0(1 + cos;g) — sin 20’ (4.26)
7(0) _y sin ¢ —030 cosO, (4.27)

1 . 1
Ce = §f0 T, + f2 cos k To+ ... + jn—Z cos k Tno + ;fn cos k Tny (428)

1 .
C’o = ;fO $0+f3COSk$3—|- e +.fn—1 COSk:En—Ia (429)
where C. involves only ordinates with even subscripts and C, only those with

odd subscripts.

Filon’s method has given dependable results when |y| and ¢ (the angle of
the observation point, see Fig 4.1) are not large, that is when the observation

point is located not far from the slab along the normal.

However, fields are needed to be found for the far field (r — oo0) and
an asymptotic approach would give much more dependable results than any
numerical solution would. So the Sommerfeld integral in (4.15) is treated in

analytical terms.

4.2 Stationary Phase Solution For The Real

Line Source

Rewriting the Sommerfeld integral for real line source when @ = psin é,

y=—pcosd (F=uI+yyand p— o), one has

')!l
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1L1:z: —tky y
/ dk, T(k — _/ dky F(k,) e 25 (4.30)

The highly oscillating and the stationary parts of the integrand are ¢*®(=)

and f'(k;), respectively, where

F(ky) = (4.31)

Oky) = ks v —ky y = p(ke sind + \/kZ — k2 cos ), (4.32)

P'(k;) = psing — kwM’ (4.33)
, &k
" L’z
The stationary phase point is obtained by setting
&' (ky,) =0 = k;, = £kosing. (4.35)

Using the fact that,

>0 (L 2T (1 T san® (k. o
Ulp) = /_ﬁo dky F(k;) e ®kz) F(k,,) mezw(ku)h an®(ka, )] (4.36)

and ignoring the stationary phase point at k; = —kysin ¢ (since this corre-

sponds to the incoming waves) the real line source solution is found to be

2 in =
Ulp) ~ — eikor =it T'(ko sin @), (4.37)

where the large argument expansion of the first kind zeroth order Hankel func-

tion can be recognized,

(1) 2 thkop =i % aQ
I[() ~ e ROP (/\70/) — OO) (I;b)
mhyp



Main Beam Direction

Complex Line Source

=

¢
Figure 4.3: The Complex Line Source at the Slab Geometry. Here, g is the
angle of main beam direction, 7 is the physical location vector, and 2b is the

aperture width of the complex line source (75, b not shown).

4.3 Stationary Phase Solution For Complex

Line Source

In this case, the line source is located at a complex position vector 7:

7y = 1% + ib = 75 + 1b(cos A% + sin 7). (4.39)

The vector 75 can also be represented by its magnitude and angle,

rs = \/7‘5 — b% + 21brg cos f3, (4.40)
1 Tottbcosp [
0, = cos™H (BT, (1.41)

The real part of 7y corresponds to the source location at the origin, 7y = 0,

=0

7y = (T cos B+ i sin B)ib, (4.12)
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rs = b, (4.43)
ibcos 3

s

0, = cos"l(

) =7 (4.44)

To obtain the far field expression for the complex line source radiating
through the lossless (Im[e,] = 0), infinite, dielectric slab, a shift in the coordi-
nates of the real line source will be applied to (4.15). First it is assumed that

the real line source is located at (xo,30) instead of the origin,

.~“iky!l

I T kr(x— thy 3
Ulp) = _/ dky T(kg) etk (z=wo) ,iky vo (4.45)

T J—c0o ky

Next, r; = Zibcos 8 + jjibsin 3 is substituted instead of (zo,10) and the

[ollowing expression is obtained:

—iky y

U([)) — ;/—Oo dl\,l Cr(l"z‘) ezkI(J.—zbcos/J) elky(lbb]ll/j) ¢ p
v

(4.46)
Choosing the stationary and rapidly oscillating parts of the integrand and

applying the stationary phase approximation procedure,

—ky b singd

1. o €
Flky) = —T(ky) ke s (4.47)

]
T ky

T = psing, = —pcos e,

O(ky) =, sing + \/kE — k2pcos ¢, (4.48)

the same expressions for the complex line source are obtained for ®'(k,), " (k;)
and the stationary phase point &, as in (4.33), (4.31) and (4.35) for the real
source. )

Using (4.36) and ignoring k,, = —kgsin¢ lor the same reason as for the

real line source, the following far field expression is obtained:

) s .
Z oy ., . ) b heey 511169 €085 1 — 08 b S5
= (‘:lk()p =i Ij(/\'() sin (,’)) ¢? ko {sinocos i u).s.r_bmn/i). (,119)

wh,p

L (p) ~

In (1.19) the large argument expansion of the first kind zeroth order [Tankel

function 1 (kop) can be recognized. see (1.38).



Figure 4.4: Branch points (ko and k), steepest-descent paths (constant-phase
paths) passing through the saddle point (stationary phase point k,,) and the
Sommerfeld integration path (SIP)

4.4 Contribution Of Surface Wave Poles

The integrands of the Sommerfeld integrals have singularities on the complex
k, plane or k; plane in 2D case. The nature of these singularities affect the
results of asymptotic expansions and uniform asymptotic expansions. They
also affect the definition of the integration paths if the Sommerfeld integrals

are to be evaluated numerically as described in section 4.1 .

There are two basic types of singularities - the pole singularities and the
branch-point singularities. The pole singularities correspond to guided modes
in the layered medium: The branch points correspond to radiation modes.
These radiation modes form a continuum of modes. In addition, for the layered
medium, the branch points are only associated with the outermost regions, as

shown in [11, subsection 2.7.1].

The branch points in the integrand (4.46) &, = (/A5 — k2, the saddle point
and integration paths are shown in Figure 4.4 . In our problem, with reference
to I'igure 1.1, the outermost regions (the regions 0 and 2) are free space, so the
wavenumbers in these regions coincide k2 = ky. So only Ay is shown in [igure
4.1 . SIP is the conventional Sommerfeld mtegration path which would be

modified as needed. SIP avoids the branch point singularities as also described
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for Iigure 4.2 . The constant-phase path or the steepest-descent path that
passes through the saddle point k,, = kysin ¢ is shown as 5. Furthermore,
the constant-phase path around the branch point kg is S;. By virtue of Jordan’s
lemma and Cauchy’s theorem, we can deform the contour from the Sommerfeld
integration path (SIP) to the paths S, and S;. The region enclosed by .55,
St and SIP is analytic except for the possible occurrence of pole singularities.
Morcover, the contribution from the two vertical paths vanishes due to Jordan’s
lemma when they tend to infinity. The stationary phase solution is the same
as that one would have obtained by finding the leading-order saddle-point

contribution.

When the integration path is deformed from the original path of integration
to the constant-phase path passing through the saddle point at k., = kg sin ¢,
a ko (wavenumber in Region 2) branch-point contribution should be included
if kosing > k;. But, since Region 2 is formed of free space (k; = ko) and
¢ < 90° is of interest, no branch point contribution is needed (no lateral waves
which correspond to branch point contributions). Furthermore, by noting the
point where the steepest descent path crosses the real axis, the guided-mode
contribution will be included if ko/sin ¢ < k,, , the location of the j-th guided
mode. Also, the guided-mode poles have to be such that kg < ke, < ki
because a guided mode in medium 1 is evanescent both in media 0 and 2. So,

the criteria to be used for selecting which poles to contribute is

ko
sin ¢

< ks, < k. (4.50)

The pole singularities of the integrand as a consequence of (4.16) have to
be identified in order to find the complete field in Region 2. The poles of (4.16)
are given by the equation

1 + Ryy Ri» ({nkl-’/(d'z“(h) = 0. (451)

Physically, the above implies that a wave, after reflecting from the top and
the hottom interfaces, together with a phase shift through the slab, should be-
come in phase with itself again. This is precisely the guidance condition (some-
times referred to as the transverse resonance condition) for guided modes in a
diclectrie slab. Therefore, these poles in the complex &, plane are actually re-
lated 1o the guided modes ol a dielectric slab. Morcover, since kj, = /k} — k2,

equation (1.51) is just a function of k.. Hence the roots of (1.51) can be solved

numerically.



The number of guided-mode poles of a slab depends on the frequency and
the thickness of the slab. For instance, there are a large number of guided-
mode poles at high frequencies and a fewer number of poles at low frequencies.

Moreover, the thicker the slab, the more guided-mode poles there are.

Since Region 2 is free space, Ryjo = Rjo. Using the facts that Ry = — Ry
and Ry = 1 where ¢l F = — tan‘l(ﬁl) for TE waves (H polarization)
Yy
and ¢piM = — tan—l(%l) for TM waves (E polarization) are the phase shifts
Y .

of the Fresnel reflection coeflicients (also known as the Goos-Hanchen shiflts)

in (4.51), the transcendental equations are obtained:

d _ 7. d . d ,

T a0y s = kiy5 tan(ky,5) Lwven,
d . d L d

a0y§ = —kly';— COt(lylyg) Od(l,

I _ e« [ d cdY
Qoyy = & kiyy tan(kiyg) Lven,

M oy = — 9 ky ¢ cot(ky,d) Odd
D) e Mly2 1y &

where also ag, = ¢ ko, and d = d; — d; abbreviations are used.

Additionally, combining the dispersion relations for both media,

k& = k% - af,y, Region0, (4.54)
ki = k24K, Regionl, (4.55)

the needed second relation to be used with the transcendental equations is

obtained:

(kyyd)? + (cgyd)? = (K — k§)d*. (4.56)

The guidance condition can be plotted on a two-dimensional plane deter-
mined by ag,d and &y, d [Figure 1.5] . The two sets of curves intersect and give

rise to values of ag,d and ki d, which in turn determine k.

Referring to (1.30) the contribution of the guided-mode poles to the far
ficld of the real line source radiating through an infinite dielectric slab can be

written as
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Figure 1.5: 'T'M even and odd transcendental equations with combined disper-
sion relations at d = 2 thickness. Similar for the TS case.
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eip(k_r sin ¢+ky cos $)

= [
r 3 =

U:contribu.tion 2711 Res [T(l\ )]’ (/157)

“Tpy

where the poles are selected using the criteria (4.50) and

Res [T( k.vpj )] = jiwmerator(kxm )/Tienomina.tor (kxm )

Referring to (4.46), similarly, the pole contribution for the complex line

source 1s

(kz sin ¢+ky cosp)

ip
1 Z pkabeosB—kybsing &

™ k:y

[/contribu,tion -

lkI:kzm 271 Res[T(kxw )] -

(4.58)



Chapter 5

NUMERICAL RESULTS AND
COMPARISONS

As stated in the introduction, the motivation for the comparison of the radome
and slab fields is that as the far field in the main beam direction is concerned,
radome of the larger radius approaches geometrically to an infinite dielectric
slab. So the intuitive expectation should be the decrease of discrepancy be-
tween the far fields of the two models in the main beam direction as the radius
of radome is increased. To do this comparison, the geometries and the fields
should be arranged clearly and correctly. Also, the comparison criteria should

be chosen properly.

'
'
'

Beam

Dircclio& i

A B

Figure 5.1: Dielectric slab and radome illuminated by a complex source at A.

a) Normal Incidence, b) Inclined Beam

There are two conditions about the placement of the slab. when the beam
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of the complex source is directed normally to the slab (Figure 5.1(a)) and
when the beam is an inclined one with respect to the slab (Figure 5.1(b)). In
both figures the complex line source is placed at point A and, in fact, normal
incidence is only a special condition of the more general case of the inclined
incidence. In principle, the infinite slab is placed as a tangent at the point
where the main beam axis crosses the radome (point B in Figure 5.1). This is
shown more clearly in Figure 5.2 and 5.3 where only the inner boundaries of

the radome and the slab are shown.

-
<
<

P

Main Beam Direction

S

Q
S

Figure 5.2: Geometry for the normal incidence

Initially, the case when the beam is directed along the x-axis (normal inci-
dence) is considered. In Figure 5.2, the radome is centered at point O and the
source is located at point A. If the radius of the radome is increased by keeping
the tangent condition to the slab, the center of the radome has to be moved
towards left (such as point O’ as shown in IMigure 5.2). It is expected that a

Detter comparison is obtained for larger radome radius with the slab solution.

When the beam is an inclined one (see Figure 5.3), one should keep the slab
parameters d; and s, constant as the radome geometry is changed. So the
following relations are used to calculate the radome parameters ¢ and Srogome

using fixed slab parameters:
23

L ¢

IRadome = 7‘v_l'—— 0s(Istup) — — , 5.

/ Rad cO [Sl“(/_jSlu())((()S(/ g7 b) c)] (
(ll

’('()S(/H.S'lub) ’

(N §
~—

=
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Main Beam Direction

Slab
Surface Observation Point
Dire(A'tion (1)
Radome :
Surface |
~ 0 B
! Sla
! N
N
N
W
e dl
! ~Bstab
N o Al BRadome

Center of Radome Source

Figure 5.3: Geometry for the inclined beam

where ¢ == —%4—
cos 351ab

It is noted that the phase centers of the radome and slab fields are at points
O and A, respectively. So, for comparing the fields, the phases are represented

with respect to the same point, ie. the center of the radome.

As a check, the free“space radiation pattern is obtained when ¢, is set to 1
in the radome and slab codes (free space or empty radome and slab instead of

dielectric) for both polarizations and compared with the source fields.

In Figures (5.4) through (5.19), the far fields of the complex sources (b =
0.2)\) radiating through dielectric (\/c, = 2) radome and slab are plotted when
the thickness of the radome and the slab is 2A. We can denote the far fields
as (/" and U* for the radome and slab models, respectively. The plots consist
of three parts: a) (77| and [/*] as the magnitudes, b) /" — {7°] as the field
difference magnitude, ¢) LU and LU as the phases of the fields. In these

plots. both polarizations and two values of inclination angle (s, = 0,30) are
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presented. For inclined beam cases, the slab parameters d; = 3\ and Bgq =
30° are kept constant. The radome parameters a and Bprygome are calculated
according to (5.1) and (5.2). For Bsie = 0%, a = ¢ — d; and Bragome = 0° are

applied simply.

Rather than examining the field differences at specific angles, the average
ficld differences spanning the region of interest (main beam) is more convenient.
The extent of the span around the main beam direction is chosen to be +40°,
which is wide enough to take the whole beam into account. The mean, M, and
the mean square differences, M?, represent an average within the spanning

region with the relations

40° 'Ur _ Usl

M = a=-40° M2 — 220:_.400 IUT — Usl2

N ’ N ’
where N represents the number of samples in —40° < o < 40°. Asa meaningful

interpretation of the plots provided, Tables 1-4 can be referred where the mean

(5.3)

and the mean square differences in fields are calculated spanning +40° around

the main beam direction (the spanning angle a = 6 — Braaome, Figure 5.3).

The results obtained confirm the idea of improving the approximation of

the radome by the slab when the radome radius is increased.

When the radome radius is not large, different waveguide and resonance
properties of the dielectric slab and circular radome, point to quite clear dif-
ferences in the far field patterns. The fields become different in phase when
the spanning angle, o, is non-zero, see I'igures 5.4, 5.8, 5.12 and 5.16 . Also,
the amplitude of the radome field 1s more oscillatory as compared to the slab

far field. Finally, the field differences include the boresight error and peak-gain

attenuation.

With the greater radius ¢, the differences decrease, see Tables 1-4. This
is mainly due to the fact that the phase matching of the slab and radome
ficlds 1s much better satisfied when ¢ is increased. One can see, however, some
distinctions between I and H polarizations. The field difference appears to be
a little greater in the [ case especially at large spanning angles «. Also, the

differences are greater for the inclined beams.

Notice that the conclusion on the radome and slab field convergence which
follows from the results above, is actually a sort of "asymptotic” nature because
some field differences still exist far from the main beam, even for large . It

could be the effect of the difference hetween the closed radome and the open

36



slab topologies resulting in different waveguide and resonance properties of
these structures. The effect, however, is minor when the beam is narrow and

directed normal to the slab.

The results obtained in this work, show the limitations for the approxima-
tion of the radome by the infinite dielectric slab in the far field around the

main beam for the directed sources.

5.1 Frequency and Thickness Dependence

To understand how the radome and the slab affects the radiated fields, it is
worthwhile to see what happens when the frequency and the thickness of the
dielectric are changed. The far fields in the main beam direction as a function
of frequency and wavelengtfl are plotted in Iigures 5.20, 5.22 for the radome
and slab models respectively (the case of £ polarization, f = 0, ¢ = 0). In
these plots, the distorted effects of the closed radome model in addition to the
similar behaviors of the fields are observed. The thicknesses of the radome and
the slab are changed in Figures 5.21 and 5.23 . The periodicity of the far field
as a function of thickness is observed, with the period of Ay /2, as expected,

where Agier = Ao/ V€, € =4 and Ay is the [ree space wavelength.
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Table 1, I Polarization, Bsiy = 0, d; = 3\

Inner Radome Radius

Mean Error

Mean Square Error

Figure Number

c=5A 1.197953 0.055573 Iig 5.4
c =10\ 0.899181 0.041840 Fig 5.5
c =20\ 0.556542 0.025704 I'ig 5.6
c =40\ 0.323722 0.013925 [lig 5.7

Table 2, £ Polarization, Bsia = 30, di = 3\

Inner Radome Radius | Mean Error | Mean Square Error | T igure Number
c=5A 2.362785 0.108388 I'ig 5.8
c=10A 1.823967 0.091400 Fig 5.9
c =20\ 1.219008 0.066617 Fig 5.10
c =40\ 0.744024 0.041387 Fig 5.11

Table 3, H Polarization, Bsis =0, d; = 3\

Inner Radome Radius | Mean Error | Mean Square Error | Figure Number
¢ =5\ 1.10704 0.050534 Fig 5.12
c=10A 0.88236 0.037627 I'ig 5.13
c =20\ 0.66267 0.026212 Fig 5.14
c =40\ 0.54899 0.021671 I'ig 5.15

Table 4, H Polarization, Bsiap = 30, di = 3\

Inner Radome Radius

Mean Error

Mean Square Error

Figure Number

¢ =5\ 2.021541 0.090874 Fig 5.16
¢ = 10A 1.710943 0.078746 Fig 5.17
¢ = 20\ 1177634 0.056916 Fig 5.18
¢ = 10\ 0.782151 0.034336 Fig 5.19
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Figure 5.20: Far field as a function of frequency and wavelength
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