
î ;î ί « · β Ш -Щ ··· 'îî/ «--¿й 4 ̂ tï4H ·*®*· f · %f «f* fig 4 i '?*·i i i 'g r · « - r iKİ-İ iîii ;5-• Λ3 - *u> b* *li< Μ·νΕ· w · І№. / ̂ ·ί*? *»? »же» ■ ■ » »»».■*· \ r - b V w«

й :іі· ІёШnw-w- Λ..· “»..■i|È,'a. ip#·. -

ν5 ^ * 5 "

rCStSS*

VOLUME BASED TEXTURE
M APPING

A THESIS

SUBMITTED TO THE DEPARTMENT OF COMPUTER

ENGINEERING AND INFORMATION SCIENCE

AND THE INSTITUTE OF ENGINEERING AND SCIENCE

OF BILKENT UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTER OF SCIENCE

By
Giirkaii Salk

Fel)ruary, 1995

Gurkan 3A.HC..........
^atcrjdnc/afi

I certify that I have read this thesis and that in rny opinion it is fully adequate,
in scope and in quality, as a thesis for the degree of Master of Science.

Prof. Bülent Ozgüç (Advisor)

I certify that I have read this thesis and that in my opinion it is fully adequate,
in scope and in quality, as a thesis for the degree of Master of Science.

Assoc. Vrpi. Cevdet Aykanat

I certify that I have read this thesis and that in rny opinion it is fully adequate,
in scope and in quality, as a thesis for the degree of Master of Science.

Asst. Prof. Faruk Polat

Approved for the Institute of EngiiKiering and Science;

Prof. Mehmet ̂ aray
Director of the Institute

T
гя в
- ζ ΐ ς
< 9 9 ^

ß o o s o ^ f ^

ABSTRACT

VO LU M E BASED T E X T U R E M APPIN G

Gürkan Salk
M .S. in Computer Engineering and Inforiiicition Science

Advisor: Prof. Bülent Ozgüç
February, 1995

'I'he most realistic and attractive computer generated images are usually those
that contain a large arnount of visual complexity and detail. Texturing is a
widely used way of adding visual complexity and detail to computer gener
ated iniciges. Traditionally surface texturing was only used to simulate sur
face detail. In this thesis we generate textures dehiuid throughout a region of
three-dimensional space and map those textures together with their geometric
definition onto complex objects. The textured object is rendered volume based
with a. backward mapping algorithm (ray tracing). Hence the texture aJfects
the definition and the realism of the object. In rendering tlie scene, natural
phenomena such cis dispersion and absorption of light is also incorporated.

Keywords: 3-D Texture Mapping, Ray Tracing, Dispersion

ÖZET

h a c i m l i d o k u k a p l a m a y ö n t e m i

Gürkan Saik
Bilgisayar ve Enformatik Mühendisliği, Yüksek Lisans

Danışman: Prof. Bülent Ozgüç
Şubat 1995

En gerçekçi ve etkileyici bilgisayar çıktısı görüntüler, genellikle yeterince aynntı-
landırılrnış ve görsel karmaşıklığa sahip olanlardır. Doku kaplama yöntemi bu
görüntülere görsel karmaşıklık ve ayrıntı eklemenin en yaygın yöntemlerinden
biridir. Eskiden doku kaplama sadece yüzey ayrıntısını artırmak için kul
lanılırdı. Bu tezde kaplanaccik dokular üç boyutlu uzayda oluşturulup, ge
ometrik tanımlcU'iyla birlikte karmaşık cisimler üzerine kaplanırlar. Doku ka
planmış cisim ışın izleme yöntemiyle tonlandırılır. Kullandığımız yöntemde
doku cismin tanımını ve görünüşünü doğrudan etkilemektedir. Cisimlerin bu
lunduğu sahne bu yöntemle oluşturulurken ışığın soğıırulması ve ışığın ayrışması
gibi doğal olgular da dikkate alınmıştır.

111

ACKNOWLEDGMENTS

This thesis would not have been possible without the sympathetic aid given and
the deep interest shown by rny supervisor, Prof. Bülent Özgüç. His invaluable
instruction in the field of computer graphics, especially in texture mapping,
ray tracing and their combination has been my constant guidance and source
of inspiration.

I would like to express my thanks to both members of my thesis committee.
Assoc. Prof. Cevdet Aykanat and Asst. Prof. Faruk Polat for their valuable
comments.

1 cannot fully express my gratitude to Sibel Salman for her invaluble help and
support.

1 would like to express my deepest thanks to my family for making it possible.

IV

Contents

1 Introduction 1

1.1 Texturing and Volume Bcised Rendering in Literature................ 2

1.2 The Proposed M o d e l ... 4

2 3D Texture Generation 6

2.1 Methods For Generating Textures... 6

2.1.1 Bom bing.. 7

2.1.2 Fourier Synthesis.. 7

2.1..3 Projection Functions... 8

2.2 Implementation.. 9

2.2.1 Rendering the im a g e .. 9

2.2.2 Texture Generation... 11

3 Light and Colour Calculations 15

.3.1 Direction Calculation for the Refracted Ray 1.')

3.2 Direction Calculation for the Reflected R ay 17

3.3 Intensity C alculation... 17

V

CONTENTS vi

3.3.1 The Intensity Calculation of Reflected and Refracted Rciys 18

3.3.2 Absorption of L ight... 18

3.3.3 Intensity of a Light Source... 20

3.4 Calculation of C olou r... 21

3.4.1 Primary Colours 22

3.4.2 Dispersion... 22

3..5 Implementation.. 26

4 Ray Tracing 29

4.1 Implementation... 31

4.1.1 Implementation of Shading and Penumbras........................ 32

4.1.2 Implementation of the Anti-aliasing M e th o d 33

4.1.3 Calculating Intersections.. 3.6

4.1.4 The General M o d e l... 37

4.1..5 Results.. 40

5 Conclusion 41

Appendix

A Sample Images 43

List of Figures

2.1 A texture generated by bombing spheres into a cube 8

2.2 A wood texture generated by deformed projection 13

3.1 The solid angle u defines an area s on the surface of a sphere . . 21

3.2 Wavelengths of primary c o lo u r s .. 23

3.3 The decomposition of visible light into its component wavelength
regions (colours) by a glass p r is m ... 24

3.4 Anomalous dispersion... 25

3.5 The dispersion curve for the r3orosilicate Crown material 28

4.1 Solid angle calculation in sh ad in g ... 32

4.2 Algorithm for adaptive sampling.. 34

4.3 An example to refinement se lection ... 35

4.4 Examples of weighting w in dow s.. 35

4.5 Traversal of a ray in two-dimensional grid 36

4.6 Voxel traversal algorithm.. 37

4.7 Ray Tracing a lgorithm39

Vll

LIST OF FIGURES vm

A .l A texture generated with deformed p ro jection 44

A .2 A marble... 45

A.3 A wood textured object, where the wood texture is generated
with deformed projection.. 46

A.4 A scene with two prisms, where the front one is texture mapped
with bombing and is transparent, whereas the other one is non
transparent 47

A.5 A scene with two prisms, where the front one is texture mapped
with bombing and is transparent, wherecis the other one is non
transparent 48

A .6 The role of refractive index in dielectrics (an im ation)............... 49

A .7 The effectiveness of the adaptive supersampling anti-aliasing
method 50

A .8 The effect of aliasing in point sami:>led ray tracing 51

Chapter 1

Introduction

Texturing is an efficient cind low-cost technique for adding details and en
hancing the optical complexity of computer-generated objects with Ihe ciirn
of achieving more realism. It is an efficient and an inexpensive method since
the simulation of the details of an object is done without modeling tire object
explicitly. The texturing process consists of two steps: texture sampling and
texture mapping. Texture sampling ([11], [17]) involves the calculation of the
texture values at the location of the calculated texture coordinates. In this
method the generat.ion of the texture data and the geometry of the object are
totally uncoupled. These two attributes are combined together by means of
the texture mapping process. Texture mapping is the calculation of texture
coordinates using the object coordinates at a particular location of interest,
for example the location of the ray-object intersection during ray tracing. This
texturing process, which we call 2D texturing, works satisfactorily for texturing
solid objects as well.

Solid texturing, which is a vcvriation of 2D texturing, uses texture functions
defined throughout a region of three-dimensional space ([25], [29]). Many kinds
of non-homogeneous material, including wood and stone, may be more realis
tically rendered using solid texture functions. In solid texturing, the texture is
specified as a spatial 3D pattern defining a unity block from vvhicli the body
is sculptured. The main advantage of solid texturing is that it can be easily
applied, by means of the mapping process, to complex surfaces which an? dif
ficult to texture using two-dimensional texture functions. Another advantage
of solid texturing, which our proposed model in this thesis exploits, is that

1

CHAPTER 1. INTRODUCTION

the texture in the object has its own geometry. This property is crucial for
texturing transparent objects. Traditionally texture mapping (2-dirnensional
or 3-dimensional) was only used to give the surface of an object a colour value
depending on the texture to be mapped. In this thesis, we handle the tex
ture as objects which have their own refraction index, diffusion component,
and other physical properties. However, with this method, texturing is not
a low-cost and simple process anymore. Rendering a transparent object with
non-transparent texture, such as a marble block, is not possible with the tradi
tionell 2D texturing. Instead, 3D texturing features are used for the realization
of such objects and scenes. Another advantage of solid texturing is that it
eliminates the aliasing problems that arise from the highly compressed surface
coordinate system near the poles of a. sphere or in regions of tight curvature
on some parametric surfaces. Considering these facts, we used 3D textures in
our model for representing objects.

1.1 Texturing and Volume Based Rendering in Liter

ature

Texturing has been a critical development in the process of achieving realism in
computer-synthesized images. Earlier work in computerized image generation
lacked surface detail even if features such as shininess and transparency were
incorporated. Later, with the modeling of complex surface variations, called
texture, could computer images accpiire more realism.

In 1974, Celtmull [6] implemented the first system to use images of texture
applied to surfaces to give the affect of actual texture. Basically, the system
involved wrapping a 2D texture around an object. Blinn and Nevell [3] gen
eralized Catmull’s work and extended it to include environmental reflections.
Then, Blinn [2] achieved the appearance of undulations on the surface as an
improvement to earlier flat texture (such as the fake wood texturing found on
many plastic desk tops) by a method called ” bumb mapping” .

In order to map texture onto a surface, texture coordinates must be calcu
lated for each pixel representing a textured surface. The most straightforward
application of te.xture mapping simply chooses the pixel from the texture image

CHAPTER 1. INTRODUCTION

which lies closest to the computed texture coordinates. However, this method
works well for ordy a certain class of textures and surfaces. When the texture is
mapped onto a surface, it must be stretched and compressed in ordcn’ to fit the
shape of the surface and this ma,y cause aliasing problems. Unless the texture
image is very smooth, sharp details will become jagged and the texture will
break up where it is highly compressed. This problem is discussed by Blinn [2]
and later by Feibush et al [11]. In [11] an effective but very expensive solution
is given. Later, many researchers have worked on eliminating this problem.
Nevertheless, 2D texturing has another serious disadvantage: In 2D texturing
the geometry of the texture is not available. This makes the use of 2D texture
for volume rendering problemsorne.

As an alternative to 2D texturing, Peachey [25] and Perlin [26] inti'oduced
the notion of “solid texturing” independently and simultaneously. Solid tex
turing uses texture functions defined throughout a region of 3D space. Peachey
gave examples of solid texture functions based on Fourier synthesis, stochastic
texture models, projections of 2D textures, and combinations of these func
tions. Solid texturing functions do not depend on the surface geometry and
hence can be applied to complex surfaces which are difficult to texture using 2D
texturing due to the aliasing effects. The other disadvantage of 2D texturing
is also eliminated in 3D texturing since the texture has its own geometry.

The field of volume visualization can be traced back to the beginning of
the 1970s. The first research was made in 3D medical imaging by Greenleaf,
Tu and Wood [16]. Till now two principle approaches have been developed for
volume rendering: backward mapping algorithms that map the image plane
onto the data by shooting rays from pixels into the data sj^ace, and forward
mapping algorithms that map the data onto the image plane. The forward
mapping algorithms have been developed by reducing the volume array to only
the boundaries between materials. Thus, the data image is divided into slices
and is projected to the image space by combining the intensities of the portions
of the slices, which correspond to a given pixel. There are several methods for
the combination and calculation of the intensities on the image space. For
ward mapping algorithms are developed by researchers such as Lorensen [23]
and Westover [36]. The back mapping algorithms are methods where mainly
ray tracing is used as the global illumination model (also called depth cueing
in computer graphics literature). In these methods rays are traced through the

data until they hit a surface and then an intensity which is inversely propor
tional to the distance to the eye is assigned to the corresponding pixel (Vannier
[34]). Radiation transport equations have been used to siiruilcite transmission
of light through volumes (Kajiya [19]). The low-alhedo or single saittering
approximation has l:)een applied to model reflectance functions from layered
volumes (Blinn [4]). In all of these algorithms rays are traced in any direction
through a volume array. Other algorithms for ray tracing volumes are described
in (Fujimoto [12], Tuy [33] and Levoy [22]). The implemented algorithms are
mainly used to abstract natural phenomena like clouds and volumes with a
given density.

CHAPTER 1. INTRODUCTION 4

1.2 The Proposed Model

Our model is a backward mapping cilgorithm (depth cueing), mainly based on
the effects of material on light, that is, how light is affected after it intersects
with a medium, how dispersion, scattering and absorption effects occur. The
model incorporates all of these natural effects to get mor(! realistic pictures.
The model is used to abstract solids (dielectrics) rather than volume densities.
The structure of the dielectrics is assumed to be smooth, which is in tact rarely
the case.

Another important point in achieving realistic images is the use of glol)al
illumination technique. Early local illumination techniques such as Gouraud
or Phong shading are not adequate for the generation of realistic imag(!s. The
popular and effective global illumination techniques are ray tracing and radios-
ity. Since our subject deals mainly with refraction, dispersion and scattering of
light, we used ray tracing as the global illumination method, which is the only
global illumination technique capable of handling refraction. This property
comes from its ray oriented structure. The technique has both advantages and
disadvantages as stated below.

Advantages:

• Ray tracing uses a global lighting model that ccilculates reflections, re
fractions cind shadows.

CHAPTER 1. INTRODUCTION

• Ray tracing can handle a variety of geometric j^rirnitives.

Disadvantages:

• Ray tracing is often slow, since the intersection calculations are lloating
point intensive.

• Point sampling (Since ray tracing is a point sampling global illumination
technique) the environment causes aliasing.

To overcome these disadvantages we used several techniques. To speed
up the ray ti'cicing we implemented a voxel based algoritlim introduced by
[1]. To overcome the aliasing effects we used an adaptive sampling technique
introduced by [31]. These methods are explained in Chapter 4 in detail.

In Chapter 2, we describe 3D texture generation methods and their applica
tion to our model. Chapter 3 gives technical foundation for effects of materials
(dielectrics) on light and colour. The application of these natural phenomena
in our model is also discussed in this chapter. Chapter 4 gives the imjjlemen-
tation of ray tracing as a global illumination rendering method in our model.
The general structure of our proposed model is also described in this chapter.
Finally, we conclude and give future research directions in Chapter 5.

Chapter 2

3D Texture Generation

The most realistic and attractive computer generated images are usually those
that contain a large amount of visual complexity and detail. Surface texturing
is an effective method of simulating surface detail at relatively low cost. Tra
ditionally texture functions have been defined on the two-dimensional surface
coordinate systems of individual surface patches. Alternatively, 3D t(?xtures,
also called solid textures, are defined throughout a region of three-diriKinsional
space. 3D texture generation is superior to the traditional 2D methods as
it neatly circumvents the mapping problem. Since the texture value in the
generated texture exists everywhere in the object domain, it is easy to map
a point on the surface of the object, xw·, ijw, to a point on the tex
ture, which is given by the identity mapping yw·, ^w)· Basically, 3D
texture generating methods are bombing, Fourier synthesis, orthogonal projec
tion of two-dimensional textures and orthogonal projection of objects, such as
cylinders, that are deformed by means of twisting or bending functions. We
concentrate on the texture generation methods in this chapter .

2.1 Methods For Generating Textures

In principle, solid texture functions can be evaluated in most of the ways which
are populcir for two-dimensional texture functions. Texture functions can be
divided into digitized textures and synthetic textures. Digitized textures are

CHAPTER, 2. 3D TEXTURE GENERATION

more popular in two-dimensional textures, because it is relativelj ̂easy to dig
itize a photograph. Digitizing solid textures is less convenient since It involves
the two-dimensional digitization of a large number of cross-sectional slices. On
the contrary, synthetic textures are more flexible in the aspect that they can be
designed to hcwe certain desirable properties. For example, a synthetic texture
can often be iruide smoothly periodic, so that it can be used to iil] in infinite
spcice without visible discontinuities. Based on the above discussion, we have
used functions to generate only synthetic textures by the following techniques.

2.1.1 Bombing

Bombing is a. random pattern generation process which has been successfully
implemented in two-dimensional texturing b}̂ Schächter and Ahuja [30]. The
main idea of bombing is randomly dropping bombs of various shapes, sizes and
orientations onto the texture space. Utilizing this idea, we have bombed the
three-dimensional texture s]:)ace by cylinders, cubes and spheres. In Figure 2.1
there is a texture generated by bombing 365 spheres with radius of maximum
14 pixels (radii of spheres are randomly generated from a uniform distribution
between 1 and 14 pixels) onto a 128x128x128 cube. The texture is generated
by placing the spheres randomly into the cube.

2.1.2 Fourier Synthesis

Fourier synthesis can be used as a basis for representing various natui'al phe
nomena including water and terrain. Building a. three-dimensional texture field
using Fourier synthesis means generating pcirarneters which specify the ampli
tude, Irequency and phase of sinusoids. These parameters are then linearly
combined to produce a function in which the underlying periodicities may be
masked by a careful choice of the design parameters. Gardncu· [13] uses a, three
dimensional function G(X, Y, Z) to model the amorphous shape of tree and
clouds, modulating the surface intensity and the transpcirency of the ellipsoids.
We have also used this function. The parcimeter scheme by Gardner is:

CHAPTER 2. 3D TEXTURE GENERATION

Figure 2.1. A texture generated by bombing spheres into a cube

G{X, r , Z) = Er=i Ci[cos{w,,X +) + Ao]
X Ci[cos{wy^Y + <l>y·) + Ao]
X E ”=i Ci[cos{wziZ + <f>zi) + Ao]

where n is a value between 4 and 7, and C,+i w O.lOlCi. Ci is chosen such
that G(X,Y,Z) < 1. The initial values of w specify the underlying or base fre
quencies such as the rolling of hills in terrain. , (f>y. and 4>z, are phase shifts
into which a random component can be built. Ao is the basic offset providing
contrast control.

2.1.3 Projection Functions

Projection functions are a class of solid texture functions based on 2D textures
which are projected through 3D space. For example, Peachey [26] and Gardner
[14] have used orthogonal projection to approximate wood grain by applying
a two-dimensional texture p(u,v) to a complex surface using the orthogonal
projection function R:

CHAPTER 2. 3D TEXTURE GENERATION

R(X,Y,Z) = /9(X,Y) for X and Y G [0,1]
R(X,Y,Z) = 0, otherwise.

Here, R simply projects the texture p along the Z axis. Each texture ele
ment of p generates a rectangular parallelepiped that extends infinitely in both
directions on the Z axis of the 3D texture space. We have also used this method
under the name “orthogonal projection” .

Another projection function based method that we have used is what we call
“deformed projection” . In this method, an object is selected and is projected
by a deformation function (e.g. a twisting function). A texture is genercited
by sweeping geometric objects embedded in each other along the Z-axis. It is
easy to generate procedural textures such as wood texture using this method.

2.2 Implementation

The implementation of a 3D texture generator is made on the X-windows
environment using C language. Opercd ions of the user-interface can be grouped
into four master groups. The first group of operations are general operations
such as loading a file, Sciving a file, clearing the canvas, drawing the image and
exiting from the program, which are implemented via buttons. The second
group of operations consist of rendering the image such ¿is shading, light vector
position, and projection. The third group of operations are operations for
changing the properties of the cube in which the texture is generated. These
properties are colour and rotation. 'Phe fourth group of operations are those
which are used to generate the texture in the cube.

2.2.1 Rendering the image

To render the generated 3D textures we used local illumination techniques
such as constant, Gouraud and Phong shading. Shading is a difficult concept
in this program, since the colour is set in a dynamic way due to the limited
colour palette. The number of usable entries of the colour palette is limited
by approximately 240. We divided th(i colour {)alette into 3 parts, where each

CHAPTER 2. 3D TEXTURE GENERATION 10

pcirt contains intensities of the colours red, blue and green respectively. The
interpolcition of the colours is made dynamically. If a maximum red intensity
of 150 is selected, then the 80 locations reserved for red are interpolated in such
a way that the 80th entry has red intensity of 150 and the other entries contain
intensity values uniformly distributed between 0 and 150. Better results are
achieved using this type of interpolation.

All shading methods are implemented in such a way that only th(î polygons
of the objects have to be added to an edgeJist and then tlie whole object is
rendered. First all edges of the objects are added to an edgeJist (the objects
are represented as wire frames) holding the x and z values of each correspondiiig
y value and calculating these incrementally. The edgeJist structures for the
implemented three shading algorithms are different since tlu; data needed for
Phong and Gouraud shade are different.

Features such as the light source position and the orientcition of the cube
can be changed using the mouse. Hence, the interaction of the user and the
program is done mainly with the mouse. Projection used in the program is
perspective projection.

2.2.1.1 Constant Shading

Constant shading is used on objects having pliuie surfaces, that can 1:k‘ realis
tically shaded using constant surface intensities. The constant shading model
produces a constant surface intensity, provided that the point source and the
view reference point are sufficiently far from the surface. Suppose that N is the
surface normal, L is the direction of the light vector and V is the viewing di
rection. Thus, when the point source is far from the surface, there is no change
in the direction to the source (N · L is constant). Similarly, the direction to a
distant viewing point will not change over a surface, so V · R is constant. On
objects with complex surfaces, constant shading is an inefficient method. As
the generated texture is to be mapped on more complex objects than a cube,
and furthermore, as we want to implement burnb textures as well, the need for
shading methods different than constant shading arises.

CHAPTER 2. 3D TEXTURE GENERATION 11

2.2.1.2 Gouraud Shading

This intensity interpolation scheme, developed by CJouraud [15], removes in
tensity discontinuities between adjacent planes of a surface representation by
linearly varying the intensity over each plane so that intensity values match
at the plane boundaries. In this method, intensity values along each scan line
passing through a surface are interpolated from the intensities at the inter
section points with the surface. At each intersection point of an edg(; of the
surface and a scan line we find an intensity and the intensity on the rest of
the surface is calculated using the intensity on the edges. In this method, first
surface normals must be approximated at each vertex of the polygon. This is
accomplished by averaging the surface normals of each polygon containing the
vertex point. These vertex normal vectors are then used to generate the vertex
intensity values.

2.2.1.3 Phong Shading-

In the Gouraud shading method, we have calculated only the intensities on
each vertex and then interpolcited the intensities along the edges and the scan
lines. In the Phong shading method, all tlui normal vectors on the scan line
are interpolated and then the intensity for each point is calculated.

2.2.2 Texture Generation

In the program, all of the texture generation methods introduced at the begin
ning of the chapter are implemented.

2.2.2.1 Implementation of Bombing

The bombing method is implemented as described in Section 2.1.1., where; the
user is able to select the type of object to be bombed into the texture cube.
The possible objects are sphere, cylinder, and cube with given radius and/or
height. The placement of the objects into the texture cube is made randomly.

CHAPTER 2. 3D TEXTURE GENERATION 12

2.2.2.2 Implementation of Deformed Projection

This 3-dimensional texture generiition method is used to define the texture
throughout the 3D space procedurally. It is well suited for absti'cicting natural
textures, such as wood. The main idea is to sweep embedded 2D geometrical
objects along the Z-axis (e.g. circle). But sweeping without deforming the
object results in a too smooth texture, which is not the case in real textures,
for example wood. Thus, we cidded deforming functions, where the objects
can be deformed while sweeping. The deformation functions implemented are
tapering and twisting.

Tapering is easily developed from sctiling. We implemented a method,
where we choose a tapering axis (Z-axis) and differentially sccile the other two
components. Thus, to taper an object along its Z-axis:

X = rx, Y = ?■;(/, Z — z

where r = f { z) is a linear tapering profile function, (x, y, z) is a vertex in an
undeforrned solid and (X, Y, Z) is the deformed vertex. In our implementation,
we chose a lineiir function for ?■, where r = Ui*z. In this function, Ui is a variable
which is randomly generated from a uniform distribution between -0.06 and
0.06. To prevent overlapping of objects, we choose the difference between the
radii or side lengths of objects to be greater than 2-0.06· Max^Z, where Max.Z
is the maximum value until which the objects are sweeped on the Z-axis. Note
that the value 0.06 pi.xels is not a constant and other numbers can be tried
to obtain better results. The radius/side length of each object is found with
respect to this formula: = i * C, where i shows the object number and C
is the radius/side length difference. Thus C > 2 ■ 0.06 · MaxZZ. Finally, the
tapering formula for each object is defined a.s follows:

Xi - j\{z) - x + x

hi = f i { z) - y + y

Zr = z

Resulting in the following recursive formula:

X i — f i i - z) · Xi -)- /¿ -1(2 :) · Xi -b Xi

CHAPTER 2. 3D TEXTURE GENERATION 13

l i g h t brown

Tail of tho texture

Figure 2.2. A wood texture generated by deiorrned projection

Yi = fi(z) ■ l/i + f i - i {z) · Vi + yi

Zi =

where 1 < i < N o-of-obj ects + 1.

An example is given in Figure 2.2. There are 4 objects (circles) sweeped
along the Z-axis while being deformed with the following da.ta:

M z)

f2{z)

fsiz)

m

0.1-z

- 0 . 1 -z

-0.05 · ̂

0.05 ·

(1)
Radii of the circles are 2, 4, 6, and 8 respectively. As can be seen in Figure 2.2,
this method is appropriate for abstracting wood textures and other procedural
3D-textures.

CHAPTER 2. 3D TEXTURE GENERATION 14

Twisting is developed as a differential rotation. To twist an object about
its Z-axis we apply :

X = X · cosO — ysinO
Y = X · sinO — ycosO
Z = z

Applying twisting deformations on cii'cles does not make much sense, so it is
prefered to use objects like rectangles lor twisting. In the implementation we
used circles and rectangles for generating textures with deformed projection.
Again to prevent the overlapping of the objects, we must cissure a sufficient
clearance between adjacent objects. Thus, the treshhold of space, which guar
antees no overlapping, is equal to the diagonal of the rectangle. If object i is
a, X by y rectcuigle, object i will not intersect with object i + 1 after a twisting
function, if object ¿4-1 has both edges longer than \/x3 y·̂ . We set object
lengths which satisfy this criterion.

Using the union of two deformation functions is also possible. In this way,
different 3D textures can be generated by combining various tapering and twist
ing functions.

2.2.2.3 Implementation of Fourier Synthesis and Orthogonal Pro
jection

These two 3D texture generation methods are implemented exactly the way
described in Sections 2.1.2. and 2.1.3. However, these two techniques are not
suitable for volume based rendering not only because it is difficult to distinguish
between the texture and the material area, but also the number of distinct
textures in a generated texture rrui}' be unknown. Titus, the textures generated
via these methods are mapped on solid objects and used only to give colour to
the surfaces of the objects as in classical texture mapping.

Chapter 3

Light and Colour Calculations

in order to represent solids in ci more realistic wtxy, in addition to using syn
thetic texture, we represent semi or full transparent objects with semi, non or
full transparent textures in them. For example an object which is textured
by bombing Ccin be a semi-transparent object, where the bomb texture is non
transparent. This operation thus includes colour calculations (assuming that
the colours of the texture and the object are different) and refraction compu
tations. In order to handle those calculations easily and to get high quality
images we will use the ra.y tracing method as the rendering method. Hence, we
can get more realistic pictures in representing objects like marbles with solid
textures and balls made of serni-trcinsparent marble and so on. In ray tracing
the most important topics for generating high quality images are tin; calcu
lation of the reflection and refraction vectors, the colour value of the object
at each pixel and the calculation of the intersection point of the ray with the
object.

3.1 Direction Calculation for the Refracted Ray

'I'he refraction operation determines the direction of the refracted ra.y and the
colour value at the intersection point. The inputs to this operation are; (1)
the direction of the surface normal; (2) two refractive indices, one on each side
of the refracting surface; and (3) the direction of the incident ray. Here for
calculating the direction of the refracted ray we use Snell’s law. Accordingly

15

CHAPTER 3. LIGHT AND COLOUR CALCULATIONS 16

the direction of the refraction vector will be determined as follows : Let N be
the direction vector for the incident ray and let N* be the direction vector for
the refracted ra) ̂ Moreover, let N be the normal to the refracting surface, and
let ii be the angle of incidence (angle between the incident ray cind the surface
normal) and ¿2 be the angle of refraction. Finally let ¡i be the ratio of the
refractive indices on opposite sides of the refracting surface. (That is, if n is
the index of refraction on the incident-ray side of the refracting surface and n*
is that on the refracted-ray side, then fj, — n/n*). The vector form of Snell’s
law is:

N* x N = ¡.liN X N) (1)

and the scalar version is
sin{i2) = ¡J,sin{ii) (2)

where ¿2 and ¿1 are the angles of incidence and refraction, respectively. Thus,
we get

(iV* - f i N) x N = 0 (3)

which means that the vectors (N* — ^N) and N are parallel. Therefore, we
Ccin find a scalar quantity 7 such that (Â * — ¡j,N) = 'jN, which gives us the
formula for the direction vector of the refi'cicted ray.

N* = ¡J.N + 77V (4)

If we can determine 7 , we can easily find tlie direction vector, since f;he other
variables in the formula are known. Reminding that TV*, N and TV are unit
vectors, if we get the square, the equation turns to :

1 = -I- 7 '̂̂ + 2/í7 (TV · TV),

Hence, the solution for 7 is

7 = - î(TV · TV) ± {1 - - (TV · TV)2]}1/ '

(5)

(6)
The plus sign should be used between the two terms, because if the incident
ray intersects with a perpendicular surface where the refraction indices are the
same, then TV = TV and ̂ — 1. Therefore, TV · TV = 1 and 7 = —¡.i ± 1. Since
from equation (Eq-4) 7 should be zero (direction vector of the incident ray and
the refracted ray should be the same) and /u = 1, the plus sign should be used.

CHAPTER 3. LIGHT AND COLOUR CALCULATIONS 17

So, the expression for 7 is:

7 = +

= -f i {N -N) + {\ - ^'^N X Nyy/'^

= - f i {N-N) +[I . - fi'^N* x NY}^ '̂ ̂

= -ficosiii) + { 1 - { N * xNyy/'^

= -ficos(ii) A cos{i2)

(7)

We conclude that to find the direction of a refracting ray we need oidy apply
Eq. (3) and Eq. (6).

3.2 Direction Calculation for the Reflected Ray

Reflection Ccin be seen as a special case of refraction. If we take the refraction
index as ?/* = —7 the same equations as in the refriiction operation can be
used. So from equation 6, 7 = 2cos(/’i) cind from equation 3, the direction of
the reflected ray is :

N·̂ = - N + 2cos{ir)N (8)
Having outlined the methodologies used in finding the directions of the reflected
and refracted rays, the next step is to explain the calculation of the intensities at
the intersection points and the factors that effect the intensities of the refracted
and reflected rays.

3.3 Intensity Calculation

The factors that effect the intensity of a ray and consequently the intensity and
colour values of the object at each pixel are the intensity of the incidence ray
and the absorption of the object. The calculation of those intensities (remind
ing that the used method is ray tracing) is explained in the following sections.
In those calculations the index of refraction of the object and the texture is a
necessary constant, which should be known.

CHAPTER 3. LIGHT AND COLOUR CALCULATIONS 18

3.3.1 The Intensity Calculation of Reflected and Re
fracted Rays

The intensity value of the reflected ray can be calculated by the following
formula :

I reflected ^2 /̂l
I r e

r]2 - Vi
* IhincidentT . ' ■‘ reflected — , ̂ -̂ incident (9)

lincidenl V2 + Vl V2 + V\

Where r/2 is the index of refraction of the denser medium and rji is the index
of refraction of the less dense medium. For example a ray intersecting with a
glass (index of refraction of glass is 1.5 and index of refraction of air is 1) with
an angle of incidence say of 15*’ will reflect 4% of the incident light and refract
the remaining intensity. It can be seen from the formula that the amount of
light reflected and refracted depends on the refraction index of the medium,
which in turn results in transparency. Thus materials with large indices of
refraction turn out to be more opaque.

Another aspect in the reflected light calculation is the so called total internal
reflection. This happens when a refracted rciy enters a transparent obj(id, and
strikes the surface at angles greater than a particuhu· cingle (angle with the
surface normal) called the criticMl angle of incidence, ic- 'I'his value again
depends on the index of refraction of the triinsparent object. In this case the
ray is reflected fully back and does not esccipe the medium. The atigle of
incidence can be calculated using the following formula:

sini,. = — (10)
V2

where vi ks the refractive index of the less dense medium and ?/2 is the refractive
index of the more dense medium. Note that the phrase ‘does not escape the
medium‘ is valid for only convex objects. In our implementation is checked
at ecich intersection and the ray is reflected fully only when it makes an angle
greater than ic with the normal.

3.3.2 Absorption of Light

Another aspect, which effects the intensity of a pixel on the object is the ab
sorption of the intensity of the refracted ray. What is meant by the absor[)tion

CHAPTER 3. LIGHT AND COLOUR CALCULATIONS 19

is the loss of energy, while the rcvy is being transferred in a transparent object.
This loss is negligible when the ray is just reflected and not refracted, since
the loss of energy while the ray is traveling in air is very small. But in case
of refraction through objects the loss is not that small diui to the disturbing
influence of molecules in close proximity to each other. If the absorption for a
given thickness or concentration is known lor the trcuisparent object it is easy
to generalize this for other thicknesses and concentrations. The calculations
can be made according to two hiws, Lambert’s law or Beer’s law, which in fact
sta.te the same result in different contexts.

Lambert’s law deals with the relationship of the absorbing medium to the
absorption of radiant energy. It states that the fraction of light, which is
absorbed is independent of the intensity of the incident light. The main idea
is given with the extremely constrained example. It applies to light incident
onto the surface at i = to monochromatic light, and to])ure, homogeneous
materials (to avoid complications). If the material is made up of n layers, each
with a thickness of d, the fraction of enorrgy absorbed by each layer is the same
and is denoted by A. Hence, the transmittance through each layer is (1 - A).
The light intensity at the end of the object, which is made up of n layers is:

I = / o * (l - (^ + ^ (l
= /o * (1 — A)”

A) + A (l - A y + ... + A (1 - A)”- '))

Notice that the intensity of the light is decreasing exponentially with an in
crease in the thickness of the medium. Therefore, Lambert’s law is mathemat
ically expressed as :

I = I o e —ad
(i i)

where I is the intensity of the transmitted light, Iq is the intensity of the incident
light, d is the thickness of the medium and a is the cibsorption coefficient of the
medium, which is called the extinction coefficient when logio is used instead of
In.

Beer’s law states that the absorption of light is directly]:>roportional to the
number of molecules in the absorbing substance through which the light pcisses.
The mathematical expression of Beer’s law is:

loq— — —Acd
lo

(12)

CHAPTER 3. LIGHT AND COLOUR CALCULATIONS 20

= 10—Acd

lo
I = /olO— Acd

(13)

It can be seen that Beer’s law is the same as Lambert’s law in mathematical
sense. The difFerence is that Beer has decomposed Lambert’s extinction coef
ficient into the coefficients A and c, where A is the extinction coefficient and c
is the concentration of the absorbing material.

As a result, Lambert’s law can be used to calculate the intensity of the
transmitted light by taking appropriate values for the extinction coefficient
according to the object on which light is incident.

3.3.3 Intensity of a Light Source

For many years the standard against which intensity was measured was the
candle. One candle power represented the luminous intensity of a flame of a
certain make of candle. Now the standardized international unit of intensity
is the candela (cd). The intensity of the light from any source in a particular
direction is expressed by a numl^er of candela.

In order to define the intensity of light in space away from the source, it
will be necessary to deal with solid geometry and define the solid angle. If
the light source is envisioned as a point in space, we can imagine a spliere of
illumination around it. Since it is important to measure the intensity on the
surface of the imaginary sphere, we begin with the definition of the solid angle.
Consider a sphere of radius r and a solid angle u. The part of the sphere s that
is enclosed by the conical boundary surface of the solid angle is pro|)ortional
to the solid angle subtended by s. This is pictorialized in Figure 3.1. When
the size of the portion of the spherical surface s is equal to r ,̂ then the solid
angle equals to one steradian (sr). Thus more formally:

^ *2 (14)

Thus there are 47t steradians about a point in a complete sphere (area of a
sphere = Airr)̂. Now lets define an other concept, the luminous flux. 4'his is

CHAPTER 3. LIGHT AND COLOUR CALCULATIONS 21

Figure 3.1. The solid angle uj defines an area s on the surface of a sphere

the visible energy from a light source evaluated on the basis of the impression
of light which it induces in the eye. The distribution of flux varies directly with
the solid angle u} and the luminous intensity I according to:

$ = /ce / =
$
ce (15)

Since the flux is distributed homogeneously on the light .source, the intensity of
the light source at various surface patches varies directly with the solid angle.
The flux for a flashbulb gives 1.2 x 10̂ Im in all directions. So we will be holding
the flux at that constant and calculate the intensity of the surface patch with
respect to the solid angle.

3.4 Calculation of Colour

The most important mechanism for the production of colour by materials is
the selective removal of certain wavelengths of light from the spectinim by ab
sorption. Different than the concept explained in the jjrevious section, this ab
sorption is the absorption of the different wavelengths of frequencies. Colours,
as perceived by humans as colours, are in fact lights of different wavelengths
and white light is a set containing all the colours thcit a human can perceive.
The pigments on an object act as a filter which only reflect the colours of the
object and absorb the other colours. For example, if a white light falls on a
red object, only the wavelengths that we perceive as red are reflected, whereas
the other wavelengths are absorbed.

CHAPTER 3. LIGHT AND COLOUR CALCULATIONS 22

However, there are other mechanisms wiiich produce colour in a diflerent
way. These are dispersion, interference and Rayleigh scattering. These mech
anisms are exi:)lained in the following sections.

3.4.1 Primary Colours

Experiments by the English physician Thomas Young show that virtually all
colours Ccin be produced from a set of three lights, whose colours cire found at
widely separated regions of the spectrum. 'I'hese three colours are red, green
and blue. 'This means that the combination of all of those colours produce
white and it is possible to produce all the visible colours by using diflerent
combinations of intensities from these primary colours. For fxample, it is pos
sible to obtain the colour yellow by using same amount of red and griien and
no blue colour. Of course it is possible to use another set of primary colours,
but we have selected these for simplicity. The wavelengths of these colours as
measured b}̂ a spectrophotometer are as in Figure 3.2, which is tciken from
Williamson and Cummins

We use these colours with the measurements given in P̂ igure 3.2 as our set
of primary colours, since we can obtain all the visible colours by adding or
subtracting different combinations.

3.4.2 Dispersion

'Phe separation of white light into colours or equivalently wavelengtlis by a
medium is Ccilled dispersion. 'Phis fact was experimentally shown in 1762 by
Newton, who sent a white light beam to a prism, which decomposed into a
spectrum consisting of a large number of colours. P'he explanation For this
well-known fact is that light of all wavelengths travel at different vcilocities in
a transparent object. Since the red light has the (longest wavelength) greatest
velocity, it has the least dispersion and the violet light has the least velocity,
hence the greatest dispersion. 'Phus, the colours are divided sequentially be
tween red and violet. This is called the normal dispersion, which is illustriited
in Figure 3.3 taken from Brill [5].

CHAPTER 3. LIGHT AND COLOUR CALCULATIONS 23

Power

Grreen
400

Wavelength (nanometers)
600

500 600

700

Wavelength (nanometers)
700

Power

Red
400

Wavelength (nanometers)
500 600 700

Figure 3.2. Wavelengths of primary colours

CHAPTER 3. LIGHT AND COLOUR CALCULATIONS 24

Figure 3.3. The decomposition of visible light into its component wavelength
regions (colours) by a. glass prism

Since the velocity of lights of different Wcivelengths differ in a. medium,
the refractive index of the medium according to these different wavelengths
changes. The calculation of the refractive index can be stated as follows:

Plight
V =

c
V X ■ vt

(16)

Here Ui is the temporal frequency, which is the number of waves per unit time,
A is the wawelength and c is the velocity of liglit in air, which is approximately
3 · 10® m/s. From this formula the refractive index of a medium for each colour
can be calculated, since the wavelengths are given in the previous section, the
only un known is the temporal frequency, which differs according to the naediums
nature.

Dispersion of visible light varies with wavelength approximately as 1/A® (
Brill [5]). The additional comois from the temporary frequency component.
For this reason the shorter wavelengths show the greatest dispersion (1/A® is
larger for smaller values of A) and also a much greater rate of change of disper
sion for small changes in A (1/A® is nonlinear in A) than do longer wavelengths.

Anomalous dispersion is the dispersion of visible light in coloured media.

CHAPTER 3. LIGHT AND COLOUR CALCULATIONS 25

Figure 3.4. Anomalous dispersion

The diflFerence of the anomalous dispersion is that in coloured media, as we
have noticed earlier, some wavelengths are absorbed. This canses a.n a.bsor])tion
band, the absorjjtion band is the interval of Wcivelengths, which were al).sorbed
by the object (here yellow-green). The effect of the absorption band is that
r/ decreases at the beginning of the absorption band and increases raj)idly to
the end. Suppose a transparent object having colour implement yellow-green
(that is yellow-green wavelengths are absorbed). On the short-wavelength side
(the violet through blue colours) r/ decreases in the norma.l way, that is the
colours disperse in a decreasing manner (since the wavelengths are increasing).
However, the decrease of rj becomes more rapid as the absorption bajid is
approached. On the long-wavelength side of the absorption band, // takes a
hirger value than on the short-wavelength side. So the colours on the long-
wavelength side may be dispersed more than the ones on the short-wavelength
side. Figure 3.4, taken from Brill [5], shows the anomalous dispersion for the
given example.

In other words, the anomalous dispersion can have the effect of dispers
ing the long-Wcivelength at a greater amount than the short-wavelength. So
a coloured media can produce a colour iDrogression of blue-indigo-violet-red-
orange-yellow and with green not appearing because it is absorbed. Since the
effect of the anomalous band varies with the media that is transmitting the

CHAPTER 3. LIGHT AND COLOUR CALCULATIONS 26

ray, the jump of ?; in the absorption band is media dependent.

We implement this phenomena by taking a constant jump in the absoi'ption
band (according to solid cyanin, where the change is given in [5]).

3.5 Implementation

As mentioned earlier, we used raĵ tracing as the global illumination technique,
since it is suitable due to its ray oriented structure. The implementation details
of this technique are left to the next cluipter. In this section we explain how
the new features such as ¿ibsorption of light and dispersion are implemented
using ray tracing.

Absorption of light is implemented using the fact that the light transmit
ted through a medium looses a fraction of its intensity. This phenomcMia is
represented by equation 11. .Here, the only unknown is the so Ccilled exUnction
coefficient cv, which is a constant for homogeneous media and is given as an
input for each object to be rendered. The value of this coefficient should l̂ e
positive (approximately 0 for air) and approxirruitely 0.0353 for a medium ab
sorbing 10% of the transmitted intensity. Having found the intersection points
of a ray cit the biggest depth level, we calculate the intensity at each intersec
tion point b}̂ adding the ambient light intensity, the local intensity of tlie light
sources and the intensity due to specular reflection and then sul^tracting the
frciction of the absorbed intensity, since we know the length of the transmission
path (the distcince from one intersection to the next).

The implementation of dispersion is not as obvious as that of absorption.
As ray tracing is a technique in which the rays reaching the eye due to a
light source are traced bcickwards, separated light (as a result of dis])ersion,
the light is separated into different wavelengths) Ccinnot be combined (Rays
are shot one by one). Thus, another method must be used to generate this
effect. We implemented a new method for abstracting dispersion. In this
method the scene is rendered for eadi RGB colour, which makes up 2 extra.
rays for each pixel. That is, when we ray trace the sc(uie for the red colour we
assume that the light sources only])roduce red light. For example, for the blue
light we first calculate the refraction index of each object. Since the rei'raction

CHAPTER 3. LIGHT AND COLOUR CALCULATIONS 27

index entered initially for each object is assumed to be measured with light
of wavelength 670nm (in measuring refractive indices occasionally the lithium
line with wavelength 670nm is used), the new refraction index will be (e.g. a
medium made of glass, where the temporal frequencies for red, green and blue
colour are 2.86 · Hz, .3.61 · 10’ ' f / .2 and 4.92 · 10̂ ‘Nlz respectively):

Vne
ĵold '

r̂cd ■
= 1.52.5 (17)

From this formula we calculate the new refraction index of each object in
the scene and ray trace the scene Cor each colour, RGB. Thus by ray tracing
the scene with respect to each colour we even obtain effects like trcinslucency
without extra computation.

To decrease the aliasing effects and discontinuities on the coloured surface,
the user nuiy choose to increase the number of rays per pixel which are sent for
each colour. Since we use one ray for each colour, we get an average wavelength
for each colour (for example 675nm for red). Theoretically, we have to ray trace
the scene with each visible wavelength but this would be too costly. The best
result with feasible number of rays is obtained if we linearly interpolate the
refractive index rather than the wavelength. The variation of the refractive
index according to wavelength is nonlinear (approximately 1/A·)̂. It makes
more sense to shoot a ray with respect to tlie refrirctive index, as it is the
refractive index that determines the angle of refraction. For example, for glass
the refractive index varies between 1.5 and 1.53 (see Figure 3.5).

Thus ray tracing at Arj — 0.05 will give a reasonably good result. This will
result in 3 rays for blue, 2 rays for green and 1 ray for the red colour. Finally
we will calculate the intensity and colour of each pixel, by simply averaging the
calculated intensities for each colour. So using this method we can generate
colour in a scene, where there is no colour (in a scene like Figure 3.3).

CHAPTER 3. LIGHT AND COLOUR CALCULATIONS 28

1.7

« 1.0

Ic
1.5 _

1.4

Visible IR

J _______L

BorosiJicate Crown

J _______ L
0 200 400 600 800 1000

Wavelength, nm

Figure 3.5. The dispersion curve for the Borosilicate Crown material

Chapter 4

Ray Tracing

Ray tracing is a point sampling method in which a picture is generated by
tracing rays backwardly from the eye into the scene, recursivel}^ exploring re
flected and transmitted directions and tracing rays toward point light sources
to simulate shading [37]. Ray tracing is one of the most elegant techniques in
computer graphics. Many phenomena that are difficult or impossible to model
with other techniques are manageable with ray tracing, including shadows, re
flections, and refraction of light. However, there are some disadvantages of iciy
tracing, as mentioned earlier, that have to be overcome:

• Ray tracing is often slow.

• Ray tracing is prone to aliasing artifacts.

Ray tracing is often slow since the intersection calculations are floating])oint
intensive. The most costly part of the ray tracing method is the calculation of
the intersections, 'rhere are mainly two general strategies for decreasing the
number of intersections: hierarchical bounding volumes and space partitioning.
In the first approach complicated objects are enveloped with simpler bounding
volumes. Intersection tests are done first with bounding volumes (simpler tests)
and then the intersection with the real object is done only if it is necessary.
Many methods that take advantage of this technique have been implemented
([37], [28], [35], [20]). In the second approach the data space is partitioned into
regions or voxels, where each voxel contains a list of objects that are in that
voxel. Thus, when a ray enters a voxel, the intersection test is made; with ordy

29

CHAPTER 4. RAY TRACING 30

those objects in the partitioned region. Again, several methods exploiting this
technique have been proposed to speed up ray tracing ([14], [12]). We used
a fast voxel traversal algorithm (space partitioning algorithm) introduced by
Amanatides and Woo [1].

Ray tracing is prone to aliasing artifacts as it is a point sampling method.
According to Shannon’s theorem, for a given sampling rate, every signa,l which
has frequencies beyond the Nyquist limit will alias. Yet, it is too expensive to
sample at a rate where the aliasing will be sufficiently small (several hundreds
per pixel). Thus, powerful sampling strategies have to be found to reduce
aliasing while maintaining low cost.

A recent and most widely used cuiti-alicising method is supersarnplin<}. We
used a supersampling based anti-aliasing method which we explain in detail in
the implementation section.

In order to evaluate the power of anti-aliasing methods we need a frame
work. This framework has been constructed by several authors by bringing out
some characteristics of an optimal cinti-aliasing method [31]. We state these
characteristics and evaluate our method in terms of these characteristics below.

A dap tiv ity : One way to reduce the number of rays is to increment the
rays per pixel until the current error in a pixel falls below a predefined tresh-
hold, otherwise the sample number will be default (e.g. 1 pen· pixel). In our
method this will be done until a refinement criterion for one pixel is fulfilled.
The criterion for reiinement can be based on statistics (e.g. variance in [21],
confidence in [27]), signal theoi-y (e.g. signal to noise rate [9]), or some chcir-
acteristics of the human eye ¿is in our method, i.e. contrast).

Irregularity: Cook [7] showed that irregular sampling achieves better re
sults than regular one, since it replaces coherent aliasing patterns by incoherent
broad-band noise that is much less objectionable for human eye. The iriegu-
lar sampling techniques introduced iire poisson samj)ling [7], jittering [7] and
N-Roots sampling [32]. Our method does not have the irregularity property.

CHAPTER 4. RAY TRACING 31

C om plete Stratification: The main idea of stratification is that when N
samples are to be taken in an interval L, complete stratification consists of tak
ing exactly one sample in each stratum (interval length L/N)· In our method
we fulfill this condition by dividing the pixel into equally sized subpixels.

Im portan ce Sam pling: When a weighting function is used in sampling
the signal , it is more efficient to sample the signal with a non-uniform density.
This notion was introduced by Shirley [32], and he obtained such a sampling by
transforming the samples by the inverse of the distribution function associated
with the weighting function. We did not incorporate this notion in our method.

U ncorrelation : In imcorrelated sampling the idea is to create a. bijection
between the stratci of a dimension and those of another [18]. The important
point is that the bijection must be different for neighbouring dimensions and
for neighbouring pixels. This property is useful for methods which are made
of many dimensions like the distributed ray tracing method by Cook [8]. As
we do not have that many dimensions, we did not adopt uncorrelated sampling.

Fast R econstru ction : Reconstruction is a convolution carried out after
the sampling has been done. When sampling is not made uniformly the re
construction becomes more complex and needs more expensive filters [24]. In
our method it is not that expensive since the sampling is done with uniform
density (pixels are divided into equal sizes of order 2^).

As a summary, our implemented model contains the properties of adaptiv
ity, complete striitification and fast reconstruction.

4.1 Implementation

In this thesis we have implemented a ray tracing method which makes use of
features of the Distributed Rciy Tracing method introduced by Cook [8] and
improved by Shirley [32]. It is ci simplified method in that we did not implement
features like depth of field and motion blurr, which is left as a future work.

CHAPTER 4. RAY TRACING 32

Figure 4.1. Solid angle calculation in shading

In our model the translucency effect, which is handled in [8] by distributing
the secondary luiys of the reflected and refracted rays with respect to the solid
angle, is obtained by the effect of dispersion. Since the refractive index varies
for each colour, as explained in Chapter 3, the distribution of the rays for
different wavelengths will be achieved automatically.

4.1.1 Implementation of Shading and Penumbras

We implemented the shading concept like in the classic ray tracing method,
that is a so called shadow feeler (a ra.y) is sent from each light source to the
intersection point with one difference being that we used extended light sources
instead of point light sources. As described in Chapter 3, the intensity of light
on a surface depends on the visible parts of the light source. The light sources
are abstracted by spheres, assuming that the flux of light is the same in all
directions. Hence, the flux of the light is divided into pixels on the surface of
the sphere. The solid angle with respect to the intersection point is calculated
(.see Figure 4.1) and the part of the light source visible to the point is found.

As we have shown in Chapter 3 the effective intensity of the light source on
the point is the total flux/solid angle. Hence the total flux is held as a constant
(in our implementation 1.2 x 10*̂ Im), the intensity varies with the visible part
of the light source. To intersect the shadow feelers we use the same intersection
algorithm that we use for the normiil rays.

The calculation of the intensity is done in the following way. The distance

CHAPTER 4. RAY TRACING 33

between the center of the sphere and the point is known (d in Figure 4.1). The
length of the tangent to the sphere can be calculated (t in Figure 4.1) so each
pixel on the surface of the light source with a distance smaller than t will shoot
a ray to the intersection point. If the intersection point is visible, a fraction of
intensity will be added to the point’s loccd intensity. Thus, the proportion of
lit sample points in a region of the surface is equal to the proportion of that
light’s intensity that is visilrle in that region. Note that the light sources will
be stored with the location of the pixels on its surface. This methodology will
abstract the specular reflection in a more realistic way.

4.1.2 Implementation of the Anti-aliasing Method

Although distributed ray tracing is not prone to aliasing elfects as much as
classic ray tracing, still a need lor anti-aliasing arises to generate morc! realistic
pictures. We implemented cin adaptive supersampling method, which satisfies
the adaptivity, complete stratification and fast reconstruction properties. The
main idea of this method is originated by Schlick [31]. Since the smallest feature
that can be displayed on the screen is the pixel, the highest frequency of the
signal (in image s3mthesis, signal is only virtual and is not available under its
continuous form) should be the pixel frequency. To filter the signal, Shaniion’s
theorem states that four samples per pixel will be sufficient to reconstruct it.
Therefore, the main idea is to subdivide into lour subpixels and to compute a
mean value of the light reaching each sub-pixel. The value of the pixel becomes
more precise as the refinement progresses.

The cinti-aliasing i^rocedure begins after the intensities for each pixel are
calculated (for one colour). The algorithm used is given in Figure 4.2:

CHAPTER 4. RAY TRACING 34

/* input : a Pixel array of the scene contciining intensities of initial evaliiation */
/* output : Anti-aliased pixel intensities of the whole scene */
V oid Antijcdias
for = 2 to X A i ax-Scent — f do

for j = 2 to Y-M ax-Scene — 1 do
/* The intensity of the center pixel is compared with the intensities

of the surrounding 8 pixels (8-connectivity) and the two pixels
not satisfying the condition below are selected*/

while Treshholdrix(il^avray[i^j\xoloiLT ..r-\-Compar cd-pixel.colour ..r

if Pixeljitrray[i^j].ref lev el > C ompared-pixel.ref -level
Pixel-array\Compared-pixel\.ref Jevel p p
l ie f ine{ Pixel-array[Com,par ed-pixel])
Recoiistruct (Pixel-array [C ompar ed-pixel])

else
Pixel-array[i, j] .r e f -level -|- -f
Re fin e{ Pixel-array[i,j])
Reconstruct(Pixel-array[i,j])

endFunction

Figure 4.2. Algorithm for adaptive sampling

This algorithm is executed for eacli wavelength, that is for example for the
three colours RGB. The refinement procedure subdivides the entered pixel,
according to the refinement level to 4, 16 or 64 and finds the direction of the
ray, which will be sent through each new subpixel and calls the ray tracing
procedure to find the intensity values for these new subpixels. After the values
for these pixels are Ccilculated, the subpixels are reconstructed to form the
new intensity of the pixel. If the pixel is agciin not in the treshhold limit,
the refinement level is increased by one and sampling is done by dividing into
more subpixels. We used a refinement upper bound to reduce the cost, the
bound is given by dividing the pixel at most into 256 (16x16) subpixels. An
example of the refinement selection and the illustration of how the pi.xels are
stored are given in Figure 4.3. In this example, the illumination of the center
pixel and that of the subpixel on the left of the center pixel are compared and
the contrast is found to be out of the treshhold value and the left subpixel is
selected, since the refinement level is smaller.

CHAPTER 4. RAY TRACING 35

6 3 4
1 3 2

9 5 7
1 3 2

16 12 4
2 3 3

Illumination value

Refinement Level

I'̂ igure 4.3. An example to refinement selection

The reconstruction function combines the calculated intensity values in a
fast and weighted manner using weighting windows. Tlui advantage of the
method compared to other methods is that the final samples are evenly spaced,
so the reconstruction is only a convolution with a weighting window. Examples
of such weighting windows of various sizes are given in Figure 4.4.

1 1

1 1

3 4 5 5 4 3

4 7 8 8 7 4

2 3 3 2 1 5 8 20 20 8 5
1 3 8 8 3 256 5 8 20 20 8 5

64 3 8 8 3 4 7 8 8 7 4
2 3 3 2 3 4 5 5 4 3

Figure 4.4. Examples of weighting windows

4.1.3 Calculating Intersections

In our implementation we used a space partitioning ray tracing algorithm. The
algorithm implemented is introduced Amanatides and Woo [1] and is a well
known fast vo.xel traversal algorithm. The reason for using this algorithm is
the high speed and the simplicity of the algorithm. The path from one voxel
to its neighbour requires onl) ̂ two floating point comparisons and one floating
point addition.

CHAPTER 4. RAY TRACING 36

G rid

Figure 4.5. Traversal of a ray in two-dimensional grid

The traverscil of a ray in two dimensions is shown in Figure 4.5. The 3D
version of the algorithm is very similar in implementation, so we explain the
algorithm on the two dimensional case. In Figure 4.5 the shown ray must
visit the voxels a, b, c, d, e, f, g in that order. The algorithm has two main
operations;

1) the determination of the voxel in which the ray origin is found and
2) the determination of the value, where the ray crosses the first vertical

voxel boundary.

In the first operation, if the ray origin is outside the grid, the point where the
ray enters the grid is found. The variables StartX and StartY show the starting
voxel and the variables StepX and StepY are either 1 or -I (showing whether X
and Y are incremented or decremented, while crossing voxels). In the second
operation a similar procedure is done in the y direction and the results are
stored in the variables BoundX and BoundY. The minimum of these values
indicates how much the ra}̂ can travel in the current voxel. F'inally the two
variables DeltaX and DeltaY indicate the amount of movement along the ray
in the X and Y directions. The algorithm implemented is given in Figure 4.6.

CHAPTER 4. RAY TRACING 37

/* input : Direction of the ray, grid size, objects in each voxel */
/* output : The intersection of the ray with an object or no intersection */
V oid Z 'r averse
while (intersect = — NIL)

if (BoundX < BoundY)
if BoundX < BoundZ

X + = StepX
if X is outside grid then return(NIL)
BoundX + = DeltaX

else
Z + = StepZ
if Z is outside grid, then return(NIL)
BoundZ + = DeltaZ

else
if Bound Y < BoundZ

Y + = StepY
if Y is outside grid then return (NIL)
BoundY + = DeltaY

else
Z + = StepZ
if X is outside grid then return(NIL)
BoundZ + = DeltaZ

intersect = Ob jectList[X][Y][Z]
return (list)
endFunction

F'igure 4.6. Voxel trciversal algorithm

4.1.4 The General Model

The model is made up mainly of two parts. The first part is the “Texture Gen
erator,” which generates 3D textures according to the techniques explained in
Chapter 2. The second part is the “Ra}̂ Tracer” Imving the featux'es expiained
in the previous sections. After the texture is generated, the data of the texture
and the object on which the texture will be mapped is given as an input to the
“Ray Tracer.” The input data for the object and the texture are their index

CHAPTER 4. RAY TRACING 38

of refraction, the extinction coeiTicient and the ambient intensity. Note that
the given object can be any complex object, represented by triangular patches.
Such objects have been generated using the object modeler by Erkcxn [10]. In
this model objects are created by rotating a curve about an axis of rotation.
Thus, complex objects which are difficult to lbrmula.te can be general,ed and
abstracted. After the object is created and triangulated, the 3D texture is
mapped on the object and the scene is rendered with the ray tracing algorithm
given in Figure 4.7.

The colour information of the object is determined via the ambient co
efficient, which is given as input. The other coefficients used to determine
the pixel intensity are calculated with respect to the refraction index and the
extinction coefficient, which show the nature of the textured object and the
nature of the texture. The specular part of the intensity calculation is rather
a heuristic abstraction, since one of the two coefficients which determine the
angle of specularity is taken as a, constant in the program and may not reflect
the actual value. Other natural phenomena like dispersion, absorption of light
and opacity are implemented as explained previously in Chapter 3. Thus, after
the image is rendered the RGB values of each pixel are written to an RG B fde.
Note that the final intensities are calculated taking the average of tin? evalu
ated intensities for the different refraction indexes as a result of the dispersion
effect.

CHAPTER 4. RAY TRACING 39

/* input : Direction of the ray, intersection point & object no, Refraction
index and ext. coef. of the environment from which the ray comes from, depth
and intersection point*/
/* output : Intensity of the corresponding pixel from which the ray is shot * /
Void Ray N'race
if {depth > Max-depth)

reflected-colour = transmitted_coIour = black
else Calc_Direction (Direc_ray, 0 bject [objectno].normal,

prev_eta, Object[objectno].eta, &reflected_dir, &transmitted_dir);
k-refiected = ■ Ob].ct[ob,ectno].k^lobal·,
k_transmitted = Object[objectno]k^lobal - kjeilected;
if (k j ’eflected > 0)

T ra v e rse (re fle c te d _ d ir , p re v _ e ta , p i'ev _alp , d e p th + + ,in te r ,& :le n g t h ,
& re fle c te d -C o lo u r) ;

else re fle c te d -c o lo u r = 0;

if (k _ t r a n sm it te d > 0)

Traverse(transmitted_dir, Object[objectno].eta, Object[objectno].alp,
depth++, inter,&Iength,&transmittedjcolour);

else transmitted-colour = 0;
1 I __ (abs{prev-eta — Object[ohjectno\.eta)) ,
A _ S p e C U . c ir [prev-eta-\-Object[objectn6\.eta) ’

IntersectJight(inter, &light_direction, &dist, k_specular);
Calculate the specular intensity and the diffuse intensity
pixel-colour = Object [objectno].k-gIobaI·(transmitted-colour

- EXP(2-(96ject[objeci??.o].adength-transmitted-colour + reflected-colour
- EXP(2· prev-alpdength-reflected-colour);
+ Object[objectno].k-local·(diffuse-colour + ambient-colour +

specular-colour);
endFunction

Figure 4.7. Ray Tracing algorithm

CHAPTER 4. RAY TRACING 40

4.1.5 Results

To get more insight to the eihciency of the Rendering algorithm, we extracted
some results using the scene in Figure A.4. The rendering of the figure is done
in a 400x400 image resolution, and with a grid size of 20x20x20. The results
are given in the following table (time is measured as seconds):

Anti-alias Depth of Rendering Anti-alias Effect of Total
treshhold Ray Tracing Time Time dispersion Time

1.0 6 42.03 0 N/A 81.03
0.8 6 43.90 0 N/A 82.95
0.6 6 42.36 0.1 N /A 83.1
0.4 6 42.68 5.0 N/A 89.17
0.2 6 42.67 18.87 N/A 102.1
0.1 6 42.89 27.19 N/A 112.5

0.05 6 42.64 44.9 N /A 128.54

0.02 6 42.71 93.96 N/A 174.31
0.6 7 48.20 0.12 N/A 88.1
0.6 8 54.05 0.14 N/A 93.19
0.6 9 62.46 0..30 N/A 101.96

0.610 10 74.99 0.34 N/A 115.13
0.02 6 42.67 95.23 430.248 614.148

Chapter 5

Conclusion

In this thesis, we proposed a method for volume rendering texture mapped
dielectrics using the global illumination technique ray tracing. In abstracting
dielectrics we implemented the natural phenomena of effects of materials on
light such as dispersion, anomalous dispersion, absorption of light and opac
ity. In the model these effects are implemented in such a way that the user
is required only to enter natural information about the objects in the scene
(refraction index and extinction coefficient). Properties of objects, such as
opacity, are implemented in an inherent way, which are abstracted in many
models using several coefficients. By incorporating these natural phenomena
to our model, we generated more realistic images using a backward mapped
volume rendering algorithm.

The developed method is capable of texture mapping any 3D texture (rep
resented by triangles) on any complex object (represented by triangles). The
objects to be texture mapped can be modelled as sweep objects. 3D tex
tures are generated via a “Texture Generator” , which generates 31) textures
according to bombing, deformed projection, Fourier synthesis and 21) texture
projection methods.

The rendering method is implemented by adding features like anti-aliasing
and speeding up the ray trace algorithm using a space partitioning algorithm.
An adaptive supersampling anti-aliasing algorithm which satisfies the [)rop-
erties of complete stratification, adaptivity and fast reconstruction is imple
mented. The algorithm is constructed by shooting more rays Ixom one pixel.

4,1

CHAPTER 5. CONCLUSION 42

if the need arises (If the pixels’ intensity value is greater than a predefined
treshhold). The need for anti-aliasing arises, since the algorithm deals with
objects represented by triangular patches. The space partitioning aigorithm
increases the speed of the algorithm, by space partitioning the data, space cind
as a result, decrementing the number of intersection Ccdculations between ob
jects and rays. Another important feature of the rendering algorithm is that
the scene is rendered using extended light sources. With this method natural
phenomena like penumbra are implemented a.s well.

The implementation of dispersion and the feature of texturing objects us
ing fully defined geometric textures causes texturing to be no more a low-cost,
simple process. The effect of dispersion results in at least 2 more rays (one for
each basic colour, RGB) shot from each pixel, which triples the execution time.
In addition, the anti-aliasing algorithm increases the execution time also, since
it is a supersampling technique which when necessary can shoot 36 rays from
one pixel. Although these factors effect the execution time of the implemen
tation, they are necessary for obtaining more realistic pictures. The cuixent
version of the implementation is efficient, such that even with the existence of
these factors the execution time results are feasible. This efficiency is achieved
mainly by the use of the acceleration algorithm introduced by Armcinatides and
Woo [1]. But the algorithm ca.n be improved if parallelization is implemented.
The structure of the algorithm is very suitable for parallelization, since the
dispersion effect is calculated for each different wavelength in an independent
manner. Thus, these Ccdculations can be done on different processors of a
parallel machine.

As future work new 3D texture generation methods can be developed, which
enable the modelling of the generated textures, so that volume rendering can
be possible. Another point is the natural phenomena of Rayleigh scattering,
which is not implemented and can be added to the available system.

Appendix A

Sample Images

In this appendix, some sample images generated by the explained model, are
given. The sample images have a final 400x400 resolution, where the resolution
from which the scene is generated depends on the treshhold value of the adap
tive anti-aliasing method. The images have been produced on IRIS Indigo^.
The grid subdivision is 20 in all figures.

T his indigo is a registered trademark of Silicon Graphics,Inc.

i;3

APPENDIX A. SAMPLE IMAGES 44

Figure A .l. A texture generated witli defonned projection

This is a texture generated with deformed projection (with one oljject, a
circle). The texture is cipproximated by triangular patches (2500 patches),
where the triangles are calculated from NURBS approximations. In the next
figure this texture is mapped onto a sphere.

APPENDIX A. SAMPLE IMAGES 45

#

Figure A.2. A marble

In this figure the previous texture is mapped, and the scene is volume based
rendered. The scene is made up of 4 objects, 2 make up the background (4
total triangle patches), one is the mapped sphere and the fourth is the texture
(2500 patches). The refraction index of the sphere is 1.501.

APPENDIX A. SAMPLE IMAGES 46

i i i i i i S i i l s

i

Figure A.3. A wood textured object, where the wood texture is generated with
deformed projection

The wood texture is generated using deformed projection with 15 embedded
circles. The texture is made off 2500 triangular patches.

APPENDIX A. SAMPLE IMAGES 47

Figure A.4. A scene with two prisms, where the front one is texture mapped
with bombing and is transparent, whereas the other one is non-transparent

The scene consists of 34 objects (2 background, 2 prisms, 30 bombed
spheres) and is rendered with anti-aliasing treshhold 0.1 and there is no dis
persion effect. The refraction index of the transparent prism is 1.501 and of
that of the solid one 3.227.

APPENDIX A. SAMPLE IMAGES 48

Figure A.5. A scene with two prisms, where the front one is texture mapped
with bombing and is transparent, whereas the other one is non-transparent

The same scene as in the previous figure, but with the dispersion effect.
Here the light source have less intensity to observe the dispersion effect better.

APPENDIX A. SAMPLE IMAGES 49

A

Figure A.6. The role of refractive index in dielectrics (animation)

In this scene there is a bombed textured sphere (with spheres) wliose re
fractive index is decreasing. In the first frame it is solid (r/ = 3.7), then in the
following frames the refractive index decreases uniformly till 1.501 (refractive
index of glass), so the transparency increases and the opacity of the texture
increases. In the scene the dispersion effect is not incorporated.

y\PPENDIX A. SAMPLE IMAGES 50

Figure A .7. The effectiveness of the adaptive supersampling anti-aliasing
method

In this scene there are 3 objects (total 224 triangular patches). In rendering
this scene the anti-aliasing treshhold was given as 0.02 (that is 5 pixel intensity
difference is erroneous). The execution time of the algorithm to generate this
figure is 52 minutes.

APPENDIX A . SAMPLE IMAGES 51

Figure A.8. The effect of aliasing in point sampled ray tracing

The same figure without anti-aliasing. Again there is no dispersion. The
execution time of the algorithm to generate this figure is 17 minutes.

Bibliography

[1] J. Amariatides and A. Woo. A fast voxel traversal algorithm for ra.y trac
ing. EUROGRAPHICS'87, G. Maréchal (Editor'), pages 3 - 10, 1987.

[2] J. Blinn. Computer Display of Curved Surfaces. PhD thesis, University
of Utah, Dept, of Computer Science, 1978.

[3] .J. Blinn and M. Nevell. Texture and reflection on computer generated
images. Communications of the ACM, 19(10):47 - 58, 1976.

[4] .J. F. Blinn. Light reflection functions for simulation of clouds and dusty
surfaces. Computer Graphics (Proc. SIGGRAPH 82), 16(3):21 - 29, 1982.

[5] T. B. Brill. Light: Us Interaction with Art and Antiquities. Plenum Press,
1980. New York.

[6] E. Catrnull. A Subdivision Algorithm for Computer Display of Curved
Surfaces. PhD thesis. University of Utah, Dept, of Computer Science,
1974.

[7] R. L. Cook. Stochastic sampling in computer graphics. ACM Transactions
on Graphics, 5(1);51 -- 72, 1986.

[8] R. L. Cook, 3'. Porter, and L. Carpenter. Distributed ray tracing. Com
puter Graphics (Pr-oc. SIGGRAPH 84), 18(3):137 - 143, 1984.

[9] M. A. Dippe and E. II. Wold. Antialiasing through stochastic sampling.
Computer Graphics (Proc. SIGGRAPH 85), 19(3):69 - 78, 1985.

[10] S. B. Erkan and B. Ozgüç. Object oriented motion abstraction. The
.lournal of Visualization and Animation, 5:1 - 17, 1994.

52

BIBLIOGRAPHY 53

[11] E. A. Feibush, M. Levoy, and R. L. Cook. Synthetic texturing using digital
filters. Computer Graphics (Proc. SIGGRAPH 80), 14(3):294 - 301, 1980.

[12] A. Fujimoto, T. Tanaka, and K. Iwata. Arts: Accelerated ray tracing
system. IEEE Computer Graphics and Applications, 5(2):16 - 26, 1986.

[13] G. Y. Gardner. Simulation of natural scenes using textured quadratic
surfaces. Computer Graphics (Proc. SIGGRAPH 84), 18(3):11 -- 20, 1984.

[14] A. S. Glassner. Space subdivision for fast ray tracing. IEEE Computer
Graphics and Applications, 4(10):15 - 22, October 1984.

[15] H. Gouraud. Continuous shading of curved surfaces. IEEE Transactions
on Computers, C-20(6):623 - 628, June 1971.

[16] J. F. Greenleaf, T. S. Tu, and E. H. Wood. Computer generated 3-d
oscilloscopic images and associated techniques for display and study of
the spatial distribution of pulmonary blood flow. lEEFJ Trans. Nucl. Sci.,
NS-17:353 - 359, 1970.

[17] P. S. Heckbert. Survey of texture mapping. IEEE Computer Graphics
and Applications, 6(11):321 -- 332, 1986.

[18] J. T. Kajiya. The rendering equation. Computer Graphics (Proc. SIG
GRAPH 86), 20(3): 143 ·- 150, 1986.

[19] J. T. Kajiya and B. P. Von Herzen. Ray tracing volume densities. Com
puter Graphics (Proc. SIGGRAPH 84), 18(3).T65 - 174, 1984.

[20] T. L. Kay and J. T. Kajiya. Ray tracing complex scenes. Computer
Graphics (Proc. SIGGRAPH 86), 20(4):269 - 278, August 1986.

[21] M. E. Lee, R. A. Redner, and S. P. Uselton. Statistically optimized sam
pling for distributed ray tracing. Computer Graphics (Proc. SIGGRAPH
85), 19(3):61 - 67, 1985.

[22] M. Levoy. Display of surfaces from volume data. IEEE Computer Graph
ics and Applications, 8(3):29 - 37, 1988.

[23] E. W. Lorensen and H. E. Cline. Marching cubes: A high resolution 3d
surface construction algorithm. Computer Graphics (Proc. SIGGRAPH
87), 21(4):163 - 169, July 1987.

BIBLIOGRAPHY 54

[24] D. P. Mitchell. Generating antialiased images at low sampling densities.
Computer Graphics (Proc. SIGGRAPH 87) ̂ pages 65 - 72, 1987.

[25] D. R. Peachey. Solid texturing of complex surfaces. Computer Graphics
(Proc. of SIGGRAPH 85), 19(3);279 - 286, 1985.

[26] K. Perlin. An image synthesizer. Computer Graphics (Proc. of SIG-
GRAPII 85), 19(3):287 - 296, 1985.

[27] W. Purgathofer. A statistical method for adaptive stochastic sampling.
Proc. of Em'ographics 86, pages 145 - 152, 1986.

[28] S. M. Rubin and T. Whitted. A 3-dimensional representation for fast ren
dering of complex. Computer Graphics (Proc. SIGGRAPH 80), 14(3):343
- 349, 1980.

[29] G. Sakas and B. Kernke. Texture shaping: A method for modeling arbi
trarily shaped volume objects in texture space. In P. Brunet and F.W.
.Jansen, editors. Photorealistic Rendering in Computer Graphics, Proceed
ings of the Second FJurographics Workshop on Rendering, pages 207 - 218.
Springer-Verlag, 1994.

[30] B. J. Schächter and N. Ahuja. Random pattern generation processes.
Computer Graphics Image Processing, 10:95 - 114, 1979.

[31] C. Schlick. An adaptive sampling technique for multidimensional integra
tion by ray-tracing. In P. Brunet and F.W. Jansen, editors. Photorealistic
Rendering in Computer Graphics, Proceedings of the Second Eurographics
Workshop on Rendering, pages 21 - 29. Springer-Verlag, 1994.

[32] P. S. Shirley. Physically based lighting calculations for computer grciphics.
Ph.D. Thesis, University of Illinois at Urbana-Champaign, 1990.

[33] K. H. Tuy and L. T. Tuy. Direct 2d display of 3d objects. IEEE Computer
Graphics and Applications, 4(10):29 - 34, 1984.

[34] M. W. Vannier, J. L. Marsh, and J. 0 . Warren. 3d computer graphics for
craniofacicil surgical planning and evaluation. Computer Graphics (Proc.
SIGGRAPH 83), 17(3):263 - 273, 1983.

BIBLIOGRAPHY 55

[35] H. Weghorst, G. Hooper, and D. P. Greenberg. Improved computational
methods for ray tracing. ACM Transactions on Graphics, 3(1);52 - 69,
January 1986.

[36] L. Westover. Interactive volume rendering. Proc. of the Chapel Hill Work
shop on Volume Visualization, pages 144 - 153, May 1989.

[37] T. Whitted. An improved illumination model tor shaded display. Com
munications of the ACM, 23:343 - 349, 1980.

[38] S. J. Williamson and H. Z. Cummins. Light and Color in Nature and Art.
John Wiley and Sons Inc., 1983.

