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ABSTRACT

TRANSFORMATION PROPERTIES OF PAINLEVE VI
EQUATION

Ayman Sakka
M.S. in Mathematics
Supervisor: Asst. Prof. Dr. Ugurhan Mugan
June, 1995

In this thesis, we studied the Schlesinger transformations of Painlevé VI equa-
tion. We showed that Painlevé VI equation admits Schlesinger transformations
which relate a given solution of Pailevé VI to solution of Painlevé VI but with
different values of the parameters. Using these transformations we obtained
the corresponding Backlund transformations for Painlevé VI. Also, we showed
that the Schlesinger transformations and the corresponding Backlund trans-

formations break down if and only if Painlevé VI has certain one-parameter

family of solutions.

Keywords : Painlevé Lquations, Monodromy Data, Schlesinger Transfor-

mations, Riemann-Hilbert Problem.
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OZET
PAINLEVE VI DENKLEMININ DONUSUM OZELLIKLERI

Ayman Sakka,
Matematik Bolumu Yiksek Lisans
Tez Yoneticisi: Asst. Prof. Dr. Ugurhan Mugan
Haziran, 1995

Bu tezde Painlevé VI denklemine ait Schlesinger dontigimleri incelenmistir.
Bu c¢alismanin sonununda, Painlevé VI denkleminin farkli parametre deger-

leri i¢in olan ¢bziimlerinin arasindaki iligkiyi veren Schlesinger déntgtimleri
elde edilmigtir. Buna ilaveten, Painlevé VI denkleminin tek parametreli
gozumlerinin Schlesinger déntiglimlerinin tanimsiz olmasi halinde elde edilebile-

ceyi gosterilmigtir.

Anahter Kelimeler: Painlevé Denklemleri, Monodromy Data, Schlesinger

Donigtumler:, Riemann-Hilbert Problemi.
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Chapter 1

Introduction

At the begining of the century Painlevé and his school [1] classified the second
order ODE of the form y” = F(y’,y,t), where F is rational in y’, algebraic
in y and locally analytic in t, which have the Painlevé property; i.e. their
solutions are free from movable critical points. They found that, within a
Mobius transformation, there exist fifty such equations. Distinguished among
these fifty equations are the so called six Painlevé equations PI-PVI. The im-
portence of these six equations arise from the fact that they are irreducible
and they can not be integrated in terms of known transcendantal functions,
so they define new transcendents. Any other of the fifty equations can either
be integrated in terms of known functions or can be reduced to one of these
six equations. Although the six Painlevé equations were first discovered from

strictly mathematical considerations, they have recently appeared in several

physical applications [2],[3],[4].

Explicit transformations and relevant exact solutions admitted by the

Painlevé equations first appeared in the Soviet literature. The main results

can be summarized as follows [5],[6] :

(i) For certain choices of the parameters, PII-PVI admit one-parameter
family of solutions expressible in terms of the classical transcendental
functions: Airy, Bessel, Weber-Hermite, Whittaker, and hypergeometric

respectively.

(it) PII-PV admit transformations which map solutions of a given Painlevé

equation to solutions of the same equation but with different values of

the parameters.

(iii) Using these transformations one can construct, for certain choices of the



parameters, various elementary solutions of PII-PV. These solutions are
either rational or functions which are related, through repeated differ-
entiations and multiplications, to the classical transcendental functions

mentioned above.

Later, Fokas and Ablowitz [7] have developed an algorithmic method to
study the transformation properties of second order ODE’s of the Painlevé
type. The algorithm is as follows:

Given one of the six Painlevé equations
y”=P1(y’)2+sz'+P3 (1.1)

where Py, P, P3, are functions of y, ¢, and a set of parameters ©. The first
step is to find the discrete Lie-point symmetries of this equation, i.e., transfor-
mations of the form

7(t;0) = F(y(t; 0),1) (1.2)
where the function F' is such that if y(¢; ©) solves (1.1) with parameters O,
then 7(t; ©) solves (1.1) with parameters ©. It is well known that the only
transformation of the type (1.2) which preserve the Painlevé property is the

Mébius transformation, hence one immediately replaces (1.2) by

Ay My ta

y(t;0) = ——— 1.3

y(t;©) asy + @y (1:3)
where a;, j = 1,2,3,4, are functions of ¢ only. Using (1.3) the Lie-point

discrete symmetries of (1.1) are easily obtained.

Next step is to find the generalized discrete symmetries of (1.1), i.e., trans-

formations of the form

§7(t;0) = F(y'(t;0),y(t;0), 1), (1.4)
or more generally

v(t;0) = F(y'(t;0),y(t; ©),1), (1.5)

where F' is such that v satisfies some second-order equation of the Painlevé
type. The only transformation of the type (1.5), linear in y’, which preserve

the Painlevé property is the one involving the Riccati equation, i.e.,

~ y' +ay*+by+c
1 0) = 1.6
w(t0) = = (1.6)

where a,b,c, e, f,g depend on ¢ only. The aim is to find a,b,¢,¢, f,g such

that (1.6) define a one-to-one invertible map between solutions y of (1.1) and

2



solutions v of some second order equation of the Painlevé type. In this process

the equation for v is completely determined. To be more specific, define
I=ay’+by+c, J=ey’+ fy+y, (1.7)

differentiating (1.6), and using (1.1) to replace y” and (1.6) to replace y’, one

obtains
Jv' = [P1J? = 2eyJ — fI0 4+ [-2P1J + PoJ + 2ayJ +
bJ + 2eyl + fI — ('y* + fly + ¢')|Jv+ (1.8)
[PiI? — Pyl + Py — 2ayl — bl + a'y? + b'y + ¢].

There are two cases to be distinguished :

(A) Find a,b,c, e, f,g such that (1.8) reduce to linear equation for y,
AV, v, 1)y 4+ B(v',v,t) = 0. (1.9)

Having determined a, b, c, e, f upon substitution of y = —B/A in (1.6)

one determines the equation for v, which will be one of the fifty equations

of Painlevé.
(B) Find a,b,c,e, f,g such that (1.8) reduces to a quadratic equation for y,
AW v, t)y* + B(v',v, )y + C(v',v,t) = 0. (1.10)

Then (1.6) yields an equation for » which is quadratic in the second

derivative.

Using this method they have recovered most of the results given in the Soviet

literature and obtained some new ones . For PVI they obtained the following

results:
Let y(t; e, 3,7, 6) be a solution of PVI:
171 1 1 9 1 1 1
A T ne 2 I B
Y 2(y+y—l+y—t>(y) <t+t—1+'z—t)y (111)

y(y — Dy —1)
t2(t —1)?

t—1 6t(t—1)),

t
P T T e

Then §(¢; &, 8,9, 6) are also solutions of PVI, where



g(t;dag;’?)g) =1- (1 - t)y(ﬁ;a,ﬂ,%(?);

_ - 1.14
&:aaﬂZS_%)'?:_,B,6:—7+%, ( )
) 2t(t — 1)@ - -1
g=y+2(e+ 1y -2 - AT DT )7
@ = %[(—35)1/2 —1J%, ,gf —3[(2e)"? + 177, (1.15)
N = —_— _:5 —_—
where
, o . ,
<I>:ty—+()\ K 1)y (/\—l—fc-}—l)t_/\(t-l-l)_(l &),
y 2(t - 1) 2t—1)y  20t-1) \2 4
V=024 L0+,
ta®ty (1.16)

K = ('—2,8)1/2 _ (201)1/2 _ l, A\ = (—2,5)1/2 + (20,)1/2,

471 ¢ K\Z?
BACE B 5), - B (L _> '
j - (2 Y v=26—-1+ 1 + 2

These were the first transformations for PVI. It should be noticed that these
transformations can not be used to generate infinite hierarchy of exact solu-
tions. This follows from the fact that a finite number of applications of these
transformations yields the identity. For example, one obtains the identity af-

ter three consecutive application of (1.14) and two consecutive applications of

(1.15).

Another type of transformations for PVI was found by Kitaev [8]. These
transformations, which can be considered as an analog of the well-known
quadratic transformations for the hypergeometric functions, relate a given so-
lution y(t) of PVI to a solution y(s) of PVI, where s is connected with t by a
quadratic relation. The application of these transformations is limited, since

they are only valid for specific values of the parameters, a = :—; or g—, g = —é,

and § # 1.

The Schlesinger transformations of the Painlevé equations have been discov-
ered during the implementation of the so-called inverse monodromic method,
an extension of the inverse spectral method to ODE’s [9],[10],[11],[12],[13],[14].
In order to apply the inverse monodromy method, it is necessary to study
the analytical structure of the solution of the associated monodromy prob-
lem, Y, = AY, where z plays the role of the spectral parameter. It turns out
that there exists a sectionary meromorphic function Y(z), with certain jumps
across certain contours in the complex z-plane; these jumps are specified by
the so-called monodromy data, MD. It turns out that it is possible to find an
appropriate transformations for the parameters of the Painlevé equation such
that the MD are invariant. These transformations can be found in closed form,

by solving a certain simple Riemann-Hilbert problems [15].
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The Schlesinger transformations of PII-PV have been studied by Mugan
and Fokas [16]. Using these transformations they re-drive some of the well
known Biucklund transformations of Painlevé equations. Using the same pro-

cedure we will investigate the Schlesinger transformations of PVI [17].

This thesis is organized as follows:
In chapter 2 the monodromy problem associated with PVI is given and the

analytic structure of Y(z) is obtained.
Chapter 3 consists of the Schlesinger transformations and the associated

Backlund transformations of PVI.
In chapter 4 the one-parameter family of solutions of PVI is obtained from the

associated transformations.



Chapter 2

The monodromy problem of PVI

In this chapter we present the linear equation associated with PVI and study

the analytical structure of the solution of this equation.

2.1 The sixth Painlevé equation

It is known that PVI,

&y 1(1 1 1 dy\?> (1 1 1\ dy
ww(;*m*m)(a)“(ﬁmu_tﬁ o)
y(y — 1)y —t) boot=1 e 1)
s \“HPEtg Ty 5(y—t>2>

can be written as the compatibility condition of the following linear system of

equations {10],

oYy oY
., = - = z 2.2
5r = ARY(2,1),  Zr=B(2)Y(z1), (2.2)
where
{ z z
A(Z) = @,]_ /:ll + Att —_ a’“( ) (112( ) ) :
z z— azn(z) ax(z)

uo + 0o —Wolg uy + 0, — 1w
AO = 1 ) Al = ~1 )
wy (uo +00) —ug wi (g +0)  —uy (2.3)

u + 0 - A
At:( e w‘“‘), B() = -5

w; (w4 0)



Setting,

Aw=4m+Aﬁwg:(? 0»

K2
k14 k2 = —(00 + 61 + 6,), K1 — Ky = 0o,
ana(z) = _Wolo _ With  wiu _ k(z —y)
z oz—l z—t zz—1)(z—1t)
u=an(y) = uo: 0 + u; -_'- fl o +ft,
z‘-———agz(y)—u—@—i—i
y y—-1 y-—t
(2.4)
Then
Uy + Uy + U = Ko, wolp + wiuy + weuy = 0,
0 0 - 0
lh mrh nr R, (2.5)
Wo w1 Wy
(t + 1)wouo + twyuy + wyu, = k, twoug = k(t)y,
which are solved as,
L () _
Wy = ——y—-, wyp = —-—-———A(y 1) , Wy = —k(y t) ,
tug w(t—1) bt — 1w,
1
wo= —{yly— )y - )&
HO(y — £) +10:(y — 1) — 262(y — 1)(y — t)]u
_ o__y=1 _ _2
Uy =10 {y(y — 1)(y — t)u
H(01 + 0oo)(y — 1) + 10,y — 1) = 22(y = Dy — )@ (26)
+r5(y — t) = &a(01 + t0;) — K1K2},
_ Y=t 2
01y — &) + 80+ 0s0)(y — 1) — 262y — 1)(y — 1)}
+I»%(y - 1) — n2(01 + tOt) - tl\?lfﬁz}.
The equation Y;; = Y, implies
- = 2u — — — — ,
dt t(t—1) y y-—-L y—t
du _ =8y 4 2%t + 1)y — )
(2.7)

+H(2y — ¢t — )8 + (2y — 1)0; + (2y — 1)(0¢ — 1)]u

—k1(ke + 1)},
y—t
(0oo l)t

Ldk _
(t=1)

kdt



Thus y satisfies the six Painlevé equation (2.1), with the parameters

a=3(0e— 1) B=-300 v=301 6=3(1-07).  (28)

2.2 Direct Problem

The essence of the direct problem is to establish the analytic structure of Y
with respect to z, in the entire complex z-plane. Since (2.2) is a linear ODE in
z, the analytic structure is completely determined by its singular points. The

equation (2.2) has regular singular points at z = 0, 1,1, co.

It is well known that if the coefficient matrix of the linear ODLE has an
isolated singularity at z = 0, then the solution in the neighborhood of z = 0
can be obtained via a convergent power series. In this particular case the

solution Yy(z) = (Yo(l)(z), YO(Z)(Z)), for 8y # n,n € Z has the form

Yo = Yo(2)22° = Go(J + Yorz + You2* +...)2"°, (2.9)
where
2]‘\70 loll)olto d G D 00 0
Go = 2k ) etlg = ]-a = ’
° — lo(wo + 0o) ° ° 0 0
Wo
. ' . . . (2.10)
ko = koe®o®), lo = lpe=7®) ko, ly = constant,
t
oo :/ l[ut + 0, — wtut]ds;
S Wo

and Yy, satisfies the following equation :

dGy

) (2.11)

Yor + [Yo1, Do} = —GJI(AlGo -

If 0y = n,n € Z then the solution Y5(z) may or may not have the log z term.

The monodromy matrix about z = 0 is given as

—_
S
—
o

~—

}/0(2621'”) — Y;)(Z)CZMDO.

The solution Yy(z) = (}ﬂ(l)(z),Yl(Z)(z)), of equation (2.2) in the neighbor-
hood of the regular singular point z =1 for ¢ # n,n € Z has the form

A

Yy = Vi(2)(z = 1)Pr = Gy(I + Y (2 = 1) + Yia(z = 1)* +.. ) (= = )P, (2.13)
8



where

2k‘1 llwlul i
G1:(2k1 )7 detGl':]-v DI:(10)7

w—1 li(uw1 + 6y) 0 0
ki = ken® Iy = he=®, ki 1} = constant,
t 1
o1 = / [1e + 0, — wtut]dsn;
s—1 mn
(2.14)
and Yj; satisfies the following equation :
B dG
Yi1 + [Yi1, D] = G711 (AoG; — dt‘ ). (2.15)

If 6, = n,n € Z then the solution Yj(z) may or may not have the log(z — 1)

term.
The monodromy matrix about z =1 is given as
Yi(ze¥™) = Yi(z)e¥ P, (2.16)
The solution Y(z) = (Yt(l)(z),Yt(z)(z)), of equation (2.2) in the neighbor-
hood of the regular singular point z =t for 0; # n,n € Z has the form

Y = YVi(2)(z = )P = Gu(T + Ya(z = t) + Yia(z — )P + .. )(z = 1), (2.17)

where
2kt ltwtut 0 0
Gt:(th (e + 0,) , detGy=1, Dt:(OtO)’
— u
w, (2.18)
ke = ket ®), l, = le=® [, 1, = constant,

1
’lI)()ll.()) + ((ul + 01 _ Wiy )]d.s)

t1
o= [ [~(uo+ 6y —
‘ /[s( 0 0 wy s—1 Wy
and Y;; satisfies the following equation :

{ .
Yo + Y, D) = G7 (7 Go). (2.19)

If 0, = n,n € Z then the solution ¥;(z) may or may not have the log(z —t)

term.



The monodromy matrix about z = ¢ is given as

Yi(ze®™) = Y, (z)e¥ D", (2.20)

The solution Yo (z) = (Y (V(2),Y{?(2)), of equation (2.2) in the neighbor-

hood of the regular singular point z = co for 8, # n,n € Z has the form

Y, = Yw(z)(l)D“ = (I 4 Yyt + ym(%)Z +.. .)(1) S 29

4 z z

<~

where

K1 =Ug+ U+ Uy K1 — Ky =00, Ki+kKa=—(00+0 +0,);
and Y, satisfies the following equation :
Yoo] + [YoohDoo] = —(Al -+ t/lt). (223)

If 0o = n,n € Z then the solution Y, (z) may or may not have the log % term.

The monodromy matrix about z = oo 1s given as

[\
o
NS
p —

Yoo (2€%™) = Yoo (2)e 2P, (2.

2.2.1 Monodromy Data

Yo, Y1, Y: and Y,, are solutions of the same linear equation (2.2), therefore there

are matrices, F;, j = 0,1,¢, independent of z such that

K Vi

, detE; =1, 1=0,1,¢t (2.25)
G

Yoo(z) = Y.,'(Z)Ei, E,‘ = (
Let Y. (z0) be the solution of equation (2.2) at z = z where 2o # 0,1,¢ is a
point in the complex z-plane. Starting from the point z = zo, if we describe a

closed path around the branch point z = 0, then equations (2.12) and (2.25)

imply
Yoo (20) = Yoo(20e%™) Eg ¥ ™P0 . (2.26)
If we continue and describe a closed path around the branch point z = 1, then
using the analyticity of Yi(z) at z = 0 and equations (2.16),(2.25),(2.27) we
find
Yoo(20) = Yoo (20e¥ ™V B ™01 2, B3 2P0 [y (2.27)

10



Similarly, after enclosing the branch point z = t, equations (2.24),(2.25) and
(2.27) give

Yoo (20) = Yoo (20e® ™) E; 1D B, BT 201 B Bt e Do By (2.28)

Therefore, comparing the equations (2.24) and (2.28) we find that the mon-
odromy data MD = {uo, Vo, Co, M0, 1, V1, C1, M1, tot, Vi, Ct, e} should satisfy the

following consistency condition:
(Eo—lezi‘erOEO)(Enl-lemerl El)(Et—IemecEt) — 6—2i7rDco’ (2'29)
The trace of (2.29) reads

cos (o — 01)(Copromy1 + movopC — Notior1G1 — CoYoptr )+
cos (0o + 01)(voGoriCi + pomopam — poGorimt — Yonop 1) = (2.30)
pm cos (0 + 05,) — il cos (8 — Oo).

11



Chapter 3

Transformations Of PVI1

In this chapter we will study the Schlesinger transformations of the linear

system (2.2). Using these transformations we will obtain Backlund transfor-

mations for PVI.

3.1 Schlesinger Transformations

Let R(z) be the transformation matrix which transforms the solution of the

linear problem (2.2) as ;

Y' = R(2)Y(2), (3.1)
but leaves the monodromy data associated with Y (z) the same. Let u';, w';,
¢'; = 0; + X\; be the transformed quantities of w;, w;, #;, ¢+ = 0,1,¢,00. The
consistency condition of the monodromy data (2.29) or (2.30) is invariant under
the transformation if A\ + Ao =k, M —do =1, Ao + X =m, Ao — Ay = 1,

where k, [, m,n, are either all odd or all even integers. It is enough to consider



the following three cases;

0o = 0o + Ao
0'y =6,

a:
o'y =0,
0/00 = 000 + /\ooy
0o = 0o
0, =180 A

b 1 1+ A1 (3.2)
¢y =0,
0/00 = 000 + Aoo,
6?'0 =0
0'y =6

c:
=0+ A
0,00 = 000 + /\00)

for A; = £1, 7 =0,1,¢,00.

Let the complex z-plane be divided into two sectors S* by an infinite con-

tour C passing through the points z = 0,1,% and let,
R(z) = R*(z), when z¢€ S*. (3.3)

Then the transformation (3.1) can be written as
[Y*) = R*(2)Y*(z) when z€ S%, (3.4)

and the monodromy matrices (2.12), (2.16), (2.20) and (2.24) about z =
0,1,t, 00 imply that the transformation matrix R(z) satisfies the following RH-

problems;

| BH(z) =R (2) on Cy
| R*(2) = R (z¢¥") on Cy,

+(5) = R~ (= v—
p. ) @) =R() on G (3.5)
R*(z) = R (ze*") on Cf,

R*(z) = R (z) on C[
c: :
R*(z) = R™(z¢*™) on Cr,

13



where C¥, ¢ =0, 1, are parts of the contour C' with the initial points z = 0, 1,1

T ?

respectively. The boundary conditions for the RH-problems are as follows;

Rt ~ Y!(z)z% }A/o_l(z) as z—0, zeSt
o Rt ~ Y{(z)f/l_l(z) as z—1, ze St
Rt ~Y/(2)Y(2) as z—t, z€S*
R ~YL(2)(2)™Y(2) as |z] » o0, z€ 5%
[ Rt ~ Y!(2)Y5\(2) as z—0, zeSt
. RY ~Y/(2)(z— 1MV Yz2) as z—1, z€S8* (3.6)
| Rt ~ Y (2)Y V() as z—t, zeSt ‘
Rt ~ )A’o'o(z)(%)&?"l(z) as |z| = o0, z€ St
Rt ~ Y§(2)V5 () as z—0, zeS*
Rt ~ Y{(2)¥7'(2) as z—1, zeSt
c: . .
Rt ~Y/(2)(z = t)MY,"}(2) as z—t, ze St
Rt ~ YL ()M)EY(2)  as |zl — o0, z€ SF,
where
A 0
=10 o)
Leo — Ai) 0 (3.7)
= , t=0,1,¢
0 32X +Xi)

For each case a, b and c there exist a function R(z) which is analytic everywhere

and the boundary conditions (3.6) specify R(z).

Solving the RH-problem for each case we find the following transformation

matrices R;(z), g =1,2,---,12:

0 0= 00 +1
0y =96 00 1 —w
P Ruy(z) = z °, (3.8)
0 t = 0; 0 1 —Tr1 Wory
0 =0 + 1,
0 0= 00 -1
0’] = 01 10 EQ-'-—OQ'TZ ~—72 1 s
Ry (z) = 4| wowo 5 (3.9)
0’y =0, @) ( 00 ) ( _'ZOJZZ) 1 :
0 =00 — 1,

14



0o=160,—1
0"y =6,

'y =0,

0o = 0o + 1,

06 = 0,

0y =0, +1
o, =0,

0 = 0o + 1,

0y = 0,
0 =0, -1
o, =0,

0, = 0o, — 1,

0's = bo

0y =0,+1
0'y =0,

0o =000 — 1,

0y = 0,

0, =0,

0, =0, +1
0 = 0o + 1,

0 0 | i I
R(3)(2) = + weotbo ), (3.10)
0 1 -1 u_oo-_l-—bqgrl ~
10 2 )
R(4)(2’) = ( ) z+ ( wol ) ) (3.11)
00 ~ % 1

0 1 -
R(5)(z) = 0 (z—1)+ o , (3.12)
01 —ry wir
1 O %7‘2 —T2 1
R(g)(Z) = ( 0 O ) + ( _lu]1+0] l z— l’ (313)
1 — AL 1
ro= (0 V) (L) e
01 —T ur+6 1 z-
1 0 = T2
R(g)(z) = ( - ) (z—— l) + ( _IL ! ) R (3.15)
0 0 1 we
R z) = z—=1t)+ , (3.16
o(2) (0 1)( ) (_ ) (3.16)
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0’1 = 01 1 0 MT‘Q —T9 1
R — Ut we 3.
o, — 6, -1 10)(2) ( 0 0 + e . ot (3.17)

0o =0 — 1,
0o =6
0, =0, 0 0 | 1
Ran(z) = + uetOe ,(3.18
0, =0,—1 (“)() (0 l) (-—7'1 it—%rl)z—t( )
0,00 - 000 + 1)
8o = o
0/1 = 01 1 0 T2 —T9
R z) = z—1)+ Wi , (3.19
1o o= (1)eae( 5 7)o
0 =0, — 1,
where | Lo 0
Uy 1 e + L)
=— t
m ].+000( w + W ’
(3.20)
1
e = T i (wyuy + twuy),

and u;, w;, 1 =0,1,t are given in (2.6).

The linear equation (2.2.a) is transformed under any transformation matrix
R(z) as follows:

oY’

9 A'(2)Y', A'(z) =[R(z)A(z) + %R(z)]R“(z). (3.21)
Therefore, the entries w';, w';, 1 = 0,1,¢ of the coefficient matrix A’(z)
can be determined in terms of the entries w;, w; ¢ = 0,1,t of A(z).

Let R(j)(z) and Ruy(z) be any transformation matrices which shift the pa-
rameters 0y, 01, 0, 0 to O + Xo, O + A1, 0, + Ay 0 + Ao and
0o + Mo, 01 + N1, 0, + N\, 0o + N respectively. The solution Y(z,t; u, w;)

of equation (2.2) is transformed under the transformation matrix R;)(z) as;
Y'(z, t; i, w') = Rij)(z, 6w, wi)Y (2, 4w, wi). (3.22)
Applying the transformation matrix Ry(z) to Y'(z) one obtains;

Yz, ;0" w") = Ruy(z, 6w, w'y) Y (2,80, w')

(3.23)
= Ry (z, 4w, w's) Ry (2, 4 w;, w;)Y (2, wi, w;).
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Since u’;, w’; can be determined in terms of u;, w;, ¢ = 0, 1,¢, one can obtain a
transformation matrix R(z,t;u;,w;) = Ruy(z,t; u's, w's) Ry (2, t; wi, w;) which
shifts the parameters 6y, 01, 0, 0 to 0o+ Xo + No, &1 + A1 + Xy, 0+ A +
Nty 0o 4 Ao + AN Therefore, using the transformation matrices Rj), j =
1,2,---,12, one can obtain the transformation matrix R(z) which shifts the
parameters 0y, 01, 6;, 05 by any integers. For examples, the transformation
matrices R(36)(2) = R)(2)Re)(2), Rus)(z) = Ruy(z)Rs)(z) and R n(z) =
R(1)(2) R(r)(2) are given as follows:

0,0 = 00 -1
0 =0;+1 - 0
1 1+ R(3,6)(Z) _I4 1 wq(uo + 0o) wiwou l’
H't = 9,} T3 —(’U,() + 00) Wolo z (3 24)
0 o =0,
r3 = wy(uo + bp) — uowo
9,0 = 00 + 1
0, =606,—-1 — 0 1
1 1 R(‘;,g)(z) =]+ i wO(Ul + 1) WoliUy - ,
O't = 0t T4 —(Ul + 01) WUy z—1
0/00 = 0007
Ty = wo(ul + 01) — U1
(3.25)
0/0 = 00 -|- 1
0y =60,+1 1 _
PR Run(z) =Tz + o) (3.96)
0, =0, Wy — Wo -1 Wo
0/00 = 0007

Note that, if

Yl(z‘) t’ 0'0, 0/1, O’t’ 9’00) - ]{(J)(Z, t, 00, 01,0L, Ooo)Y(z, t, 00, 01>0t7 ooo), (327)
and

Y”(Z, t; 0”07 0”1 ’ ollh 0”00) = R(j)(Z, t) 0/07 0117 ()/h oloo)yl(zv t; 010, 0/17 olt) oloo))
(3.28)

then
R(j+1)(2, t) 0/0) 0/170/t1 OIOO)R(])(za l) 007 Olyot) ooo) =] (‘329)

for j =1,3,5,7,9, L1,

17



3.2 Backlund Transformations For PVI

As we have shown in the previous section, equation (3.21) gives the relation
between u;, w; and the transformed quantities v’;, w';, 1 =0,1,¢. Using these

relations and the equation (2.5.d)
k= (t+ 1)u'ow'o + tuyw'y + vy, (3.30)

one obtains u/ow’y and k' in terms of u;’s, w;’s. Thus, the transformation
between the solution y(t) for the parameters «, 3,7, § and the solution y'(¢) for
the parameters o/, 8,7, 6’ of PVI can be obtained using the equation (2.5.e):

t / /
y = ”Zf”“. (3.31)

The transformations between the solutions of PVI obtained via the

Schlesinger transformation matrices R;)(2),7 = 1,2,--+,12 may be listed as

follows:
Ray(z) 1 wow'o = wo |(w _w)<u1+01_u_1>
(HL%): UoWo = Wo 1 0 ” W
1 U + 0t U
+?(w¢ - wo)( o E” , (3.32)

k' = —ooow0>

o = 3[V2a+1]?, f'=—3[V=26+1, +' =7, &=4

(231 +01 ’lt0—|-00> ('LLQ-I-OU l )

R(z)(Z) . 'U.lowlo = (00 — ].)7‘2 + u1w1(
U UoWo UgWo un

+Utwt (Ut + 0, _ u0+00> (Uo + 0o _ L)] .

t Up Wy UgWg UgWo W,

k= (t — Dugwy + (61 + (00 — 0, — 1)+
0
2(t — Duqw (uo to : >} Ty — 000__’&0 * “r

— 2
UpWo w UpWyo

o = {2 =P, B'= -V -1P, =7, &=
(3.33)

;g UpWo [ UpWp ww,  wy + 0
Riay(z): vow'o = —— — wy —
w; \ug + G upwy  ug + o

+uowo < UpWo > (utwt uy + 0¢>

— Wy - ) a .
tw, \ug + Oy upwy  wy + Oy (3.34)
UpWo

k' = "000 )
uo + o
o = V2 -1, B=—3[V20 -1 9'=1, &=

18



Rg)(z) : wow'o = —(6o + 1)r2 + [<UI - E) <ﬂ B 1)

w1 Wo

+£(ut+9t _u_t> <ﬂ_1>} 2
t Wy wp/ \wy

3.35
k' = —tuowo — [t(0o+ 01 + 1) + 6o+ 0 + 1+ ( )
2-w—(wo —w) + 2t—(wo —wy)|ry — —r2
0
——2[\,2&—1]2 IBI 2[\/ +1]2 7 =" 6 =4
0
Resy(z) + wow'o = wi(wo — w1)<u0 tY% _ Eﬂ>,
Wo w1 o
k= —0,w,, (3.36)
o =IVEa+ 17, F=B, ¥ =VEHIP, & =6
0 1
Rey(z) 1 wow's = —uowo — [90 — 2uowo<u1 +9% —)J ro+
U1 Wo
<U0+90 U1+01)(U1+01 1>2
UpWo — - — s,
UoWo U Wi Uyt wWo
IC, = —tUO'LUO - [01 -1 + t(l — 00 + 01)—
21tuowt>(u1 - L>] Py — 0, 0L O s
U Wo U1
o =3V 1%, B'=6, v =3V -1} § =4
(3.37)
o, ww (uo + 0, B u0wo>< _uw >
Bn(z): oo = wo \ug +0;  ww o u + 0
W= —f,, L (3.38)
Cuy + 6y
W= a1, f=p, ¥ = HE- 1P, 5=5
Rg)(z) : wow's = —uowo — [90 — 2u0<—z—0 - 1)] rot+
1
(=)
Wo w1 w1
k' = —tuowo + [0 + 1 — t(1 + 0o + 01)+ (3.39)
Wo 000 2
2tU0<w—1 —_ l)] E’I'm
o = ATa— 1P, B = fy = MR, 6= 6
ug + 0 u
Rg)(2) : wow'y = wy(wp — wt)< Ow ° EO),
’ ‘ (3.40)

kl = —OOOwt,

o =HV2a+1?, B'=p v =q, §=5-3VI-260+1]"
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0 1
Rpoy(z) i vwow'o = —tuowy — [90 — 2uowo<u;—; . ;) ro+

Wy 0

UgWo <uO +0  ut Ot) (ut +0. _1_> 2

i UgWg Uy U4 Wy "2

0 £
kl = (t —_ ].)’LL]’LU] + [491 — t(tgt —_ ].) —_ 2'LL1U)1<Ut + t —_ L)jl T2 (311)
U Wy w1
_000 Uy + 0t7‘§,
UsWy

o = j[V2a—1, B'=p4, ¥ =9, §=5-5VI-26-1]

1] waw, 1 / ww, \?2
Ran(z): vwow'o =~ 2 o) — —( ) —
(1)(2) : wow'o t u+ 0t( uo + bo) wo \uy + 0, (vo + o) — wowe| ,
K= g, 2
uy + 0,
o =1\V2a+1)? B =8, v =9, §&=L-1I-25-1]
(3.42)
R(lz)(Z) : 'ltlo’LUIO = —'tUo’wO - [00 - 2UO ('@' - 1)] ro+
w
l(uo—i-Oo uoj(wo > 5
n - — —1 T2
t Wy Wy Wy
k/ = —t’tto’wo — [00 + (Jt + 1— t(l + 0;) - 2Uo <3~ﬂ - 1)] 2 (343)
w
0o t
_.—-—7‘2,
Wi

o =HV2a—1% B=p, =y, &=5-3[VI-26+1"
where u;, w;, ¢ = 0,1,t and 7y, r, are given in the equations (2.6) and (3.20)

respectively.

The transformations (3.32)—(3.43) give implicit relations between y'(t) and
y(t). Therefore, in order to obtain y'(t) one should proceeds as follows: Firstly,
one uses the equation (2.8) to obtain the parameters 6;, : = 0,1,¢, 00, and
then equation (2.4.b) to obtain k1, k2. Second step, using equation (2.7.a) one
gets u which is substituted in (2.4.e) to obtain #. Next step, substituting 0;’s,
K1, ko and @ in (2.6) u;, w; 7 = 0,1,t can be obtained in terms of y(t). Having
obtained u;’s, w;’s one easily calculates u/ow’o, and &’. Lastly, using equation

(3.31) we obtain y'(t) in terms of y(t).
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Chapter 4

One-Parameter Families Of Solutions Of PVI

Lukashevich and Yablonskii [6] have proved that PVI admit one-parameter

family of solutions characterized by the Riccati equation

t(t — 1)% = V2ay® + (M — p)y + /281, (4.1)
if
V2 — /=28 —-1#0 (4.2)
and
o + % —6af +2a— )6~ )+ (6 +7)" +2(x— - 7) (4.3)
+2v2a(—a+ 384+ —8) 4+ 2,/-26(3a — B —7y+6) =0
where

/\_\/2_07—a—ﬂ—7—5 t_\/W—a—ﬁjww (1.4)
T Vea—v=p-1 ' VRa-v2p-1 '

If we define v as

_t(t = 1)(dv/dt)
YT T VRaw

then v(s) satisfy the hypergeometric equation

1
S = -th, o -‘,é 0, (45)

d*v dv
s(s—l)w—k[(l-{-al+/31)s——71]£+a1ﬂ10=0 (4.6)
where ~
) =V 2CY, ,61 = \/—2,6, Y1 = /\ (47)

The same result has been redrived by Fokas and Ablowits [7]. They noticed
that the transformation (1.15) breaks down if and only if ¢ = 0, = 0 (sce

equation (1.16)), which nothing but (4.1).
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Following the observation of Fokas and Ablowitz it is possible to redrive
the one-parameter family of solution (4.1) and to find some new ones using the
Schlesinger transformations and the corresponding Backlund transformations
of PVI. First of all the linear problem and hence the Schlesinger transforma-
tions are well defined if and only if u;, w; # 0, 7 =0,1,¢ and 0 # 0. Using
equation (2.5), one can find that this restriction is violated if one of the fol-
lowing 1s true:
up =uy = u; = 0 and ko = 0,
up=u; =u; +0; =0 and s, + 6, =0,
up=1uy +0; =u,=0and ko + 6, =0,
wo=u+0 =u+60,=0and ko +6; +6, =0,
uo+ 0o =u; =u, = 0 and k2 + 0o = 0,
wt+h=u=u+6;,=0and ko + 0+ 6, =0,

U+ 0 =u1+6;, =u,=0and k3 + 605+ 6, =0,
orugt+Oh=u+0=u+6;,=0and ko +0+6; +6,=0.
Using equations (2.4),(2.7) we find the following one-parameter families of so-

lutions respectively :

dy

t(t _ I)EZ =(1- 900)?/2 _ [00 + 0+ 1+t + 01)]3/ + 0ot (4.8)
0o+ 01+ 0, + 0, = 0.
d
t(t — 1)_(1%/ = (1 —00)y®> = [L + 00 — 0, + t(86 + 01)]y + bot, (4.9)
o+ 6, —0,+ 0., =0.
d
tt = 1) = (1= 0o)y” = [1+ 6o+ 00 + £(60 — 00)]y + ot (4.10)
00—01+0t+00020
d
(= 1)gp = (1= 0)y" = (1400 = b4 0= 0y +00ts )
0p— 0, — 0,4+ 0, = 0.
d
bt — 1)% = (1 = 0u)y® — [L + 0 — 00 — t(8 — 01)]y — Oot, (4.12)
~0p + 01+ 0, + 0o = 0.
d
(- 1)% = (1= 0w0)y® = [1 = 0. = 0o — £(0o = 01)]y — o, (4.13)
00—01+0t_0oo:0‘
I
bt — 1)((1_3; = (1 = Ooo)y® — [1 4+ 00 — 0o — t(00 + 01)]y — Oot, (4.14)
0o + 6y ~ 0, — 0 = 0.
d
t(t — 1)% = (1 = 0x)y®* —[L — 0, — 0o — t(00 + 01)]y — Oot, (4.15)

0o + 01+ 0; — 0o = 0.
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It also possible to obtain other one parameter family of solutions from some
of the Backlund transformations of PVI. For example, the transformation (3.35)
break downs if and only if £’ = u/qw’y = 0. This implies £ = 0 and hence one
of the equations (4.8)—(4.15), or

(0o +1) = [(“1 +o ﬂ) (El - 1) + l(”‘ +0_ i&)(i‘)_‘ - 1)} re,
w1 wo/ \wy i wy Wo / \Wo

(4.16)
0o
tu0w0+[t(00+01+1)+0O+0t+1+2—u—‘.(wo—wt)+2tﬂ(wo—w1)]r2+—rg = 0.
Wy Wo Wo
(4.17)
Using the equation (2.6), the equations (4.16) and (4.17) become
=Dy =3 + D=0+ 0y = D= = m(i+0) o

+(0+ 1) — 1) =0
and
Yy — 1)(y = O + [y — ) + 0y — 1) — 2 + 0 — 1)y — 1)y — t)]a
+(k2 + 0o — 1)?y — £[K2 + K20; — (6o — 1)(61 + 6o + 1)]
—[ng + K201 — (0o — 1)(0: + 06+ 1)] =0
(4.19)
Solving these two equations we find

d 1
t(t_l)d_i{ = (0m—1)y2—-Z-E[t(x2+2;;00+of—9?)+52+2n(00+1)—0%+0§]y+t00,

(4.20)
and
(lﬂ? — 01 — 0t)(n + 01 + 0;)(& - ()1 + 01)(& + 01 - 9:) = 0, (42].)
if
k=00 —00—2#0. (4.22)
It
K=0o—00—2=0, (4.23)
then equations (4.16) and (4.17) give
0 =07, (4.24)
and
l .
Ht ~ 1)% = (0o — D)y* — [t(00 + @) + 0o — a + L]y + 0o (4.25)

where a is such that a? = 6%. This result consides with the result of Lukashevich
and Yablonskii [6] with the choice /B = 0y. The choice /f = —0y can be ob-
tain by using the transformation (3.33) instate of (3.35). The transformations
(3.37) and (3.39) ((3.41) and (3.43)) give similar results to the transformations
(3.33) and (3.35) but with the roles of 0y and 0(6;) be exchanged.
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4.1 Rational solutions of PVI

Using the one-parameter family of solutions and the transformations (3.32)-
(3.43) one can obtain infinite hierarchies of rational solutions of PVI. But
to use these transformations it should be noticed that one should start with
the solution y(t) of PVI for the parameters «, 8,7,8 (80, 00, 01,0:) such that
8;,7 =0,1,t,00 do not satisfy the certain conditions under which PVI can be
reduced to Riccati equation. Since, under these restrictionson §;,57 = 0,1,%,00
the transformations break down. One can avoid these restrictions by using
discrete symmetries (2.12)—(2.15). For example, if we choose 6y = 0, 6, =
1, 6, = =2, 8., = 1, then equation (4.4) impliesy = %, ¢ = constant. Starting

with the solution

(=5
1 = -
YT (4.26)
ag =0, 180:0) 70:%) 50:_%7
then the transformation (1.14) yields,
)=1—c(t—1)?%
yl( ) C( ) ) (4.27)
CY]—_—O, ,81:—2, ’)’1:0, (91:0
Using (4.23) in the transformation (1.15) we obtain [7]
(1) = t(ct? —2ct4+c—1)
VR =00 "3t fe— 1 (4.28)
CY2:%, ﬁz=—%, ’Yz=%, 52=%>
Then the application of transformation (3.40) twice gives
t(ct® —3ct? +3ct —3t —c+1)
ya(t) = 57— ;
2(ctt — 2ct3 + 2ct — 2t —c+ 1)
| 1
O3 = 8, ,53 =—=, Y3=, 53 = 0, (429)
2 2
and
5 - t(ct* —4ct® +6ct> — 61> —det +4t—1)
vall) = 25 serd +10ct? — 10t2 + —10ct + 10t 4 3¢ — 3’
25 1 1 3
oy = — ﬂ‘l = —= Yo == 54 = ——. (430)

2’ 2’ 2’ 2
respectively. It can be verified that y;(t), ¢ = 1,2,3,4 satisfy PVI. Iollowing
the same procedure one can generate infinitely many rational solutions of PVI

by using the transformations (3.32)—(3.43).
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Chapter 5

Conclusion

Transformation properties of Painlevé equations was.the subject of extensive
investigations. However, the first transformations for PVI were obtained in
1982 [7]. Although these were important results, they were not enough to gen-
erate infinite hierarchies of exact solutions. This follows from the fact that a
finite product of these transformations yields the identity. Another transfor-
mation for PVI was obtained in 1991 [8]. To use this transformation there are

very strong restrictions, and this restrict the usage of this transformation.

It is well known[15] that one can use the Schlesinger transformations as-
sociated with a given Painlevé equation to obtain Backlund transformations
for this equation . Using this fact we studied the Schlesinger transformation
of PVI. We show that the linear problem associated with PVI admit transfor-
mations which shift the parameters of PVI, 6;; 7 = 0,1,¢, 00, by integers and
leave the monodromy data the same. Among these transformations there are
twelve basic transformations which can be obtained in closed form by solving
some simple RH-problems. All other transformations can be obtained using
these basic ones. Since these transformations shifts the parameters by integers,
any finite product of them does not give the identity. Moreover, these trans-
formations break down if and only if the solution y of PVI satisfies certain one
parameter families of solutions. Therefore, using these transformations and the
discrete symmetries [7] one can generate infinite hierarchies of exact solutions.
In addition, one should notice that if the solution of PVI is known for some
intervals, a; < 0; < a;+1; 7 = 0,1,¢,00, then one can use the Schlesinger

transformations to obtain the solution for any other values of 0;’s.
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